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been reported for reconstructing images. Performance of weighted

least square error I co I filters has been studied in this work. A

comparison of the performance of the two filter types is included.
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PERFORMANCE ANALYSIS OF LEAST SQUARE ERROR I col FILTER

FOR IMAGE RECONSTRUCTION FROM PROJECTION

CHAPTER I

INTRODUCTION

Introduction: Digital reconstruction of an image from its projection

has become an important subject of research during the past few

years. This problem has arisen independently and repeatedly in

various scientific, medical and technical fields. The range of
applicability is diversified. The nonmedical areas where such

techniques are used include radio-astronomy, optical interferometry,

electron microscopy, and geophysical exploration. In the area of
medical imaging, which most probably has received the greatest

contribution from this technique, multiple projection data generated

by x-ray are used to reconstruct the internal structure of the human

body. This process is called Computerized Tomography. Other

medical applications include ultrasonic imaging and nuclear
medicine. The aim of this technique in ultrasonic imaging is similar

to that in x-ray imaging but the problem is made more difficult by the

refraction of the ultrasound as it propagates through tissue. In

nuclear medicine, the aim is to reconstruct the distribution of the

concentration of a gamma-ray emitting isotope in a given cross

section of the body.
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Because of its diversified applications, the problem of image

reconstruction from projection has been repeatedly considered by

researchers, resulting in the development of various algorithms for

this purpose. Different algorithms work favorably under different

conditions. Speed of such algorithms is an important issue and this

thesis deals with the improvement of speed for a class of algorithm in

this area for a specific type of implementation.

Motivation and Objective: Among the available image reconstruction

techniques from projections, the Convolution Backprojection (101

method tends to generate the best quality images. There are two

steps involved in this method. In the first step, projection data are

measured for a particular orientation of rays and they are convolved

with the impulse response of a filter whose frequency response
approximates I co I within the frequency range of interest. The result

of this convolution is a Modified Projection, denoted as Q(t). This

process is repeated for all projections measured from different angles

and a set of modified projections [WO, Qi(t), Q2(t).... Qn-1(t)) is

generated, where n is the total number of projections.

In the second step, the contribution of each of the modified

projection Qi(t) to a particular pixel is calculated and they are added

together to find the reconstructed value of that pixel. That is, if Ci

represents the contribution of Qi(t) for a pixel at the point (x0,y0),

then the reconstructed pixel value at that point is f(x0,y0) = Co + C1

+ + Cn-i I. This process is repeated for all the pixels of the image.
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Since a projection is of finite duration, it has a finite number of

non-zero samples. If the total number of samples in each projection

is K, then K samples in each of the modified projections are

sufficient to reconstruct the image. To calculate a sample of a
modified projection, K multiplications are needed; and for K samples

of a modified projection, the required number of multiplication is K2.

Assuming that the number of multiplications required for

backprojecting a single point is 4 RI, 4N2 additional multiplications

are needed; where N x N is the image size. This gives that for n

projections, approximately n(K2 + 4N2) operations are required. In

most cases K = N, and assuming that n is also in the same order of K

and N, it can be said that the total number of multiplications is in the

order of N3. Although the Convolution Backprojection method tends

to give the best quality reconstructions, it is a slow process.

Improvement of the speed of the Convolution Backprojection

method has been the interest of different research work. Some of the

work concentrates on improving the speed of the convolution part [2]

and some deals with the backprojection part [3]. The speed of

backprojection depends upon the type of interpolation used but there

is always a tradeoff between the quality of the reconstruction and the

speed of the algorithm used. This tradeoff is made depending upon

the application. Although exact interpolation can result in a better

reconstruction of an image, Shepp and Logan [1] have shown that the

simulated cross section of a brain phantom can be reconstructed

within acceptable accuracy by using linear interpolation. Kwoh et. al.

[3] have demonstrated that it is possible to reconstruct the image of
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a circular symmetric phantom by zero order interpolation while

maintaining accuracy acceptable for many practical applications.

The problem of speed improvement of the convolution process

has also been considered from different angles. When the size of data

is very large for a projection, use of FFT methods can give
considerable saving compared to direct convolution suggested by

Shepp and Logan [1]. Finite field transforms have been used in

different applications [4] to improve the speed of the convolution.

The amount of computation required to perform the convolution may

also be reduced by approximating the impulse response of the
required filter by a function which is piecewise constant over
intervals several times larger than the sampling interval [2]. The

implementation of multiplications with reduced precision has also

been found to improve the speed of the algorithm at the expense of

some accuracy [2].

Another speed improvement technique for Convolution

Backprojection is the use of truncated filters. Edelheit et. al [5] have

suggested the use of rectangular windows for truncating the filter,

where the width of the window is less than (2K-1); K being the

number of samples in a projection. This method has been proposed

for reconstructions from divergent beam X-rays. Lewitt et. al [6] have

suggested the use of weighted least square filters to improve the

result. They have tested their method for approximating Shepp and

Logan's filter response which performs well under noisy conditions.
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The idea of speed improvement of the convolution

backprojection method motivates this research work because of its

potential impact on practical applications. Of course there is always a

tradeoff between the quality of the reconstructed images and the

speed, but that is always decided by the requirements of a specific

application. Truncated filters improve the speed of software and may

be implemented in hardware for further improvements.

Ramachandran's filter [71 performs better for reconstructing high

frequency components and the motivation of this work is to

approximate this filter's frequency response by short length filters

and study their performance.

Statement of the Problem: It has been stated that the Convolution

Backprojection method tends to give better reconstructions among

the other available techniques. For an N x N image, the number of

computational operations required for this method is in the order of

N3. This computational complexity causes the process to be slow

and this thesis deals with the development of a speed improvement

scheme for this algorithm.

The objective of this thesis is to apply rectangular window and

weighted least square error filters for approximating the frequency

response of 1(01 and to evaluate their performances by producing

simulation results. Only reconstruction from parallel beams have been

considered.
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Thesis Organization: This thesis has been divided into five different

chapters. Each chapter deals with different issue of image
reconstruction. Descriptions of different chapters are given below.

Chapter II gives an overview of different reconstruction
techniques. It describes the Projection Slice theorem, which is the

backbone of many reconstruction techniques, in detail. Three major

reconstruction techniques, namely Direct Fourier Technique,

Algebraic Reconstruction Technique and the Convolution

Backprojection Method have been discussed here.

Chapter III discusses the use of truncated Ico1 filters for image

reconstruction from projections with the Convolution Backprojection

method. It discusses the nature of the error present in both the least

square and weighted least square error filters.

Chapter IV deals with simulation results. A simulated brain

phantom has been reconstructed by least square and weighted least

square I co I filters. Discussions about the results have also been

included in this chapter.

Finally in chapter V, the author summarizes his contributions

in this thesis and discusses the conclusions derived.

Recommendations for further work are also presented.
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CHAPTER II

OVERVIEW OF RECONSTRUCTION TECHNIQUES

Introduction: There are many algorithms available for image
reconstruction from projections. The literature review reveals that

they can be placed in three major classes:

1) Direct Fourier Technique

2) Algebraic Reconstruction Technique, and

3) Convolution Backprojection Method.

Other approaches exist, but they are variations of these techniques.

This thesis is mainly involved with the Convolution

Backprojection method. Discussions about various aspects of this

technique are presented throughout the thesis in different contexts.

In this chapter a brief discussion about each technique is presented.

Before discussing any individual technique, it is important to
introduce the basic theorem behind the development of these
algorithms, which is commonly known as the Projection Slice

Theorem.

Projection Slice Theorem: Assume f(x,y) is the object density
function at the point (x,y) and F(o)x,coy) is its two dimensional Fourier

transform, the Projection Slice theorem can be stated as (8):
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The Fourier transform of the projection at orientation 0 is a

section (line sampling) of the Fourier transform of j(x,y), where the

sampling line passes through the origin ox = wy =0 and makes an

angle 8 with the wx axis.

Projection can be defined as a shadowgram obtained by
illuminating an object by penetrating radiation. An illustration is

shown in Figure 2.1. If a ray is passing through an object, it gets

attenuated at every point depending upon the density of the object at

that point. So the measured projection at a point is proportional to

the total attenuation of the ray incident on that point.

Fig 2.1: Illustration of a projection of an object f(x,y) for an
orientation of angle 8 .
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Refering to Figure 2.1, an object f(x,y) is placed on the x-y

coordinate system. Projection data are generated by passing a set of

parallel rays at orientation 8. Orientation 0 means that the line drawn

perpendicular to the set of rays and passing through the origin of x-y

co-ordinates makes an angle 0 with the x axis.

For a particular orientation, 0 is a constant and the measured

projection p(u;0) at a distance u from the origin of the u-v coordinates

is a one dimensional function. Since the measured projection is

proportional to the total attenuation of a ray as it passes through the

object and the attenuation is again proportional to the density of the

object at that point, mathematically we can write that the projection

measured at a distance t from the origin of the u-v domain is:

p(t ; 0) =
L(t,0)

f(x,y) dv [2.1]

where L(t,0) means that the function has been integrated along the

line xcos0+ysin0 = t. Expressing Equation [2.1] in a general form as a

function of u and v, it can be written as

00
p(u ; 8) = f( u cos0 v sin° , u sin0 + v cos0) dv

-00
(2.2]

Let P(o);0) denotes the one dimensional Fourier transform of p(u;0)

with respect to the variable u. That gives,

P(o);0)=.1.. p(u ; 0) e-i(°1-1 du (2.31
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Now, the two dimensional Fourier transform F(co,0) of the object

density function f(x,y) is given in the polar co-ordinates as

17 f(x,y) e-j(xcocose+ycosine) dx [2.4]

If the items in Equation (2.4] are expressed as a function of u and v,

which is a rotated co-ordinate system with respect to the x-y domain,

x and y are replaced by

and

x = u cos0 v sine

y = u sine + v cos° (2.5)

F(co,0) =1:01° Aucos0 vsine , using + vcose) ejl-u° dudv

fff(ucose vsin0 , using + vcos0) dv le-juw du

= f_. p(u , 0) e-P10) du

= P(o.) ; 0) [2.6]

Equation [2.6] verifies the statements of the Projection Slice Theorem.

It follows from the above development, that if projections are

measured from different angles for a number of orientations 0, then it

is equivalent to the knowledge of the Fourier transform of the object

function on a star shaped region on the Fourier plane. This is the

basis of many reconstruction techniques and in the following sections

the development of various classes of algorithms are discussed.



11

Direct Fourier Technique: The Direct Fourier Techniques for
reconstructing an image from its projection consists of three steps:

1) Computation of the line samples of the Fourier transform of

the object function f(x,y) from the measurements of the

projections.

2) Generation of the samples of the Fourier transform F(cox,o.)y)

of the object f(x,y) on a rectilinear grid by interpolating the

known polar grid; and

3) Computation of the inverse two dimensional Fourier transform

of the rectilinear grid to evaluate the approximate object

function f(x,y).

The line samples of the Fourier transform of the object are

computed by taking the one dimensional Fourier transform of the

projection data. By the Projection Slice theorem, if a projection is

measured for the orientation of an angle 0 and then the one

dimensional Fourier transform of that data is calculated, it is

equivalent to the knowledge of the values of the two dimensional

Fourier transform of the object along the line which passes through
the origin cox = coy = 0 and makes an angle 0 with the cox axis. i.e,

F(co ; 0) = p(u ; 0) ej°311 du

Refering to Figure 2.2, it can be said that if a projection is taken

at 01 orientation and another in 02 orientation, the values of the
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Fig 2.2: Line samples in the Fourier space of an object function f(x,y)

Fourier transform F(cox,o)y) of the object f(x,y) can be generated

along the lines AA' and BB'. Similarly if projections are measured for a
set of orientations [ 8 0 , 8 1 , 8 2 , ......... , for any initial angle 00

and (0 i+i 0 i ) = (7c + 0) /n, it is possible to genarate a star shaped

sample space of the function F(cox,coy) as shown in Figure 2.3a. Since

in all practical applications the samples of the projections will be
measured, equispaced samples of the Fourier transform of the
projection data will be calculated along each radial line and the

resulting situation is shown in Figure 2.3b. This figure shows that

samples of the Fourier transform are on a polar grid. For a particular

0, the samples of the Fourier transform F(k,8) along the radial line

can be calculated as

N/2
27c

F(k,8)= p(n;0) e JN+1 nk
n=-N/2

[2.7]
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coy

*

COX

a

a
*

do

Fig 2.3a: Star shaped line Fig 2.3b: Sample points on a polar
sampled Fourier space. grid of the Fourier space.

Different interpolation schemes are used for the second step of

this technique. Two of the simplest kinds are nearest neighbor

estimation and bilinear interpolation [8]. The resulting sample grid is

shown in Figure 2.4.

COY

41

COX

Fig 2.4: Sample points on a rectangular
grid of the Fourier space.
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The two dimensional inverse Fourier transform of these samples

generates the object data.

Algebraic Reconstruction Technique: Algebraic reconstruction
techniques reconstruct an object function f(x,y) by solving a set of

linear equations which relate the sampled projections to the desired

discrete reconstruction grid [10]. In Figure 2.5 a square grid has

been superimposed on an image f(x,y). It is assumed that f(x,y) is

constant in each square cell. Also it is assumed that there are total N
= n x n cells in the grid and fm denotes the constant value in the mth

cell. In algebraic reconstruction, the ray is defined to have a width

and the measured projection at a point is called a raysum.

ith ray
of
width

Fig 2.5: For the algebraic reconstruction technique,
a rectangular grid is superimposed on the object.
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If Pi is the raysum measured with the ith ray, then

= Pi ; i = 1, 2, 3, , M [2.11]

j=1

where M is the total number of rays in all the projections, and wij is

the weighting factor representing the contribution of the jth cell to
the ith raysum. The factor wij is equal to the fractional area of the jth

image cell intercepted by the ith ray. Equation [2.11] can be written

in the expanded form as follows:

wl 1 fl w12 f2 +

w21 fl + w22 f2 +

wmi fl + wm2 f2

+ w1N fN = P1

+ w2N fN = P2

+ wMN fN = PM

[2.12]

For a 256 x 256 size image, N = 65536 and normally M also has the

same size. So Equation [2.12] represents approximately a matrix of

size 65000 x 65000 and it is solved in an iterative method.

The quality of reconstructed images by this method are not

favorable compared to the other two methods and also it needs several

iterations to reconstruct the image. Each iteration needs a number of

computations comparable to the total number of computations in other

methods [9].
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Convolution Backprojection Method: The Convolution Backprojection

method probably is the most popular algorithm in computer aided

tomography. This is simple and tends to give better reconstructions

than other approaches. The mathematical model used in this
approach was first introduced by Ramachandran and Laksminarayan

[7]. This model is also based on the Projection Slice theorem. Shepp

and Logan [1] developed a modified model, but the mathematical

foundation of both models are essentially the same.

If the Fourier transform F(cox , coy) is known, then the object

function f(x,y) is given by

f(x,y) nox coy) egalxx+coyY) dcoxdwx

[2.13]

now if, (Ox = w COS()

and coy = w sin0

then,

f(x,y) =
(1)47c2 0 -.0 F(

,
0)

e
jco(xcos0 + ysin0) I co I dw dO

[2.14]

where I w I comes from the Jacobian of the transformation into polar

co-ordinates.

By Equation [2.5] F(co , 8) = P(o.), 8) ; and substituting this in

Equation [2.14] , we have



f(x,y) Pr p( 0) jo)(xcos0 + ysin0)
47t2 0 e 10)1 dcod0

At this point, the variable Q(t,0) is introduced such that

Gs(t;e) =
27c J-- P(0), 0) 10)1 ei(ot do)

where, t = xcos0 + ysinO.

Equation [2.15] now can be written as

17

[2.15]

[2.16]

it
f(x,y) =

1
Q(t,0) d0 [2.17]

ir

Equation [2.16] suggests that Q0(t) is the inverse Fourier transform of

the product of two Fourier transforms. So Q0(t) can be evaluated by

convolving two time domain functions corresponding to I.F.T [ P(o),0)]

and I.F.T [1o) 1], where I.F.T denotes inverse Fourier transform.

I.F.T [P(o),0)] is the measured projection data p0(t) for a

particular orientation 0, which is known to us. On the other hand,

I.F.T [1o)1] cannot be computed as the function 1o)1 does not converge.

But in all practical cases, the projection data will be sampled at a

regular interval, say a; and under such circumstances, it can be
assumed that in the frequency domain the projections do not have any

significant energy band outside the frequency interval of ( -1/2a, 1/2a).
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Based on the previous assumption, the term I co I in Equation

[2.16] can be replaced by the function H(co), where

H(co) = G(o) B(co)

and G(co) is some function which approximates I co I in the desired

frequency range and

B(co) = 1, when I co I <

0 otherwise.

It is now possible to calculate I.F.T (I-1(o))] = h(t) and the following can

be written,

Q(t;0) = P8(t) h(t-t) dt [2.18]

In the discrete domain, Equation [2.18] can be written as

00

Q(t;8) = a pg (tk ; 0) h (t tk) (2.191
k=-.

where tk = ka; k = 0, ±1, ±2,

and Equation [2.16] can be written as

j=n-1

27C
{

n
a Ep(tk,Oph(t-tk)}

j=0 k=-0.

00
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n-1 .0

= a 1 / p(tk , 0j) h(xcos0j + ysinej tk)2n
j=0 k=-....

[2.20]

where Oi = in/n; i = 0, 1, n-1.

If it is assumed that f(x,y) = 0 for x2 + y2 > 1, then p(t:0) = 0 for

I t I > 1 or I k I > 1/a . Hence the sum on k in Equation [2.20]

becomes finite.

The choice of the function G(co) in Equation [2.17] has been a

subject of research [1,7]. The choice is mainly dominated by the

requirements of any specific application. Ramachandran and

Laksminarayan made a choice corresponding to

G(co) = I a) I . [2.21]

which leads to the following impulse response of the filter h(t),

h(0) = n 0
2a`

h(na) = 0 . for n = even

h(na). 2 for n= odd [2.22]
Ir n2 a2
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Another important choice for the function G(o.)) , made by Shepp

and Logan, is

03a
H(co) = I --a-

2
I

leading to the impulse response

h(0) = 2
4

h(na)
na2(4n2 1)

(2.231

(2.241

Shepp and Logan's filter is less sensitive to noise at the expense of

reduced resolution corresponding to high frequency components.
This thesis specifically deals with the function G(co) = I col.

Aliasing and Artifacts in Reconstructed Images: In all practical

applications, projections are measured at some sample points and that

is the only knowledge available about the data. According to the

sampling theorem if the Fourier transform of a function is to be

calculated from its samples, it must be sampled at a rate twice the

highest frequency content of the signal. In all practical cases the

object and hence the projection is of finite duration. This suggests

that the Fourier transform of the projections will be of infinite
duration in the frequency domain. If the measured projections have

smooth edges, then the higher frequency components of the signals

will have less energy. When such a signal is sampled and its Fourier
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transform is computed, there will always be some aliasing error

present in the result.

When implementing the direct Fourier reconstruction

technique, the discrete Fourier transform of the projections is
calculated as suggested by Equation [2.7]

N/2
2n

F(k03) = p(n ; 9) e-jN+lnk

n=-N/2

In light of the previous discussion, F(k ; 0) is corrupted by the

aliasing effect.

Theoretically an infinite number of projections are required for

reconstructing a function; but in practice, only a finite number of

projections are measured. This also causes artifacts in the
reconstructed image.

In the Convolution Backprojection method, each projection is

convolved with a so called I co I filter. In using that filter it is assumed

that the projections do not have any frequency content outside the

range (-1/2a, 1/2a). As has been discussed, a projection with finite

duration will have energy at all frequencies and the calculated Q(t,0) in

Equation [2.19] will have contaminations.
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In the end, although errors exist, they can be reduced very

much by using the reconstruction techniques under practical
conditions which closely follow the assumptions made. For example,

these algorithms will work better for objects with smooth projections,

because under such conditions the higher frequency content of the

signals can be practically neglected.
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CHAPTER III

TRUNCATED I w I FILTER FOR IMAGE RECONSTRUCTION

Introduction: One of the steps involved in the Convolution
Backprojection method is to generate modified projections by
convolving projection data with a filter which approximates the I co I

filter within the frequency range of interest. Although it is possible to

reconstruct good quality images with a finite length impulse response

filter, it is seen that the quality of the image depends upon the length

of the filter.

Filters having finite length impulse response are characterized

by localized errors. That may cause significant distortions in
reconstructed images. In this chapter, such errors are characterized

and the processes which may reduce such errors are discussed so that

better quality images can be reconstructed by short length filters.

Although the mathematical model used for image reconstructions by

the Convolution Backprojection method has been introduced in the

last chapter, the discussion in this chapter starts with the model

equation and then leads to the characterization of the errors in
approximate I co I filters.

Reconstruction Model : It has been shown in Equation [2.151 that if

P(co,0) represents the Fourier transform of the projection measured at

the 0 angle orientation, then the object value at any co-ordinate (x,y)

can be expressed as
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1

4n2
ic p(

cx)
I I dcod0f(x,y) - 0) 0) ejo)(xcose+ysine) CO4n

1 TE 1 I.°°
P(w,o) I co I ejw(xcos0+ysine) do) dO

27c., 0 22n

The integral within the curly bracket represents the inverse Fourier

transform of the product of the two individual Fourier transforms Fi(co)

= P(co;0) and F2(co) = I co I . The properties of the Fourier transform

suggests that this integral can be calculated by convolving two time

domain functions corresponding to F1(w) and F2(o)), provided that the

inverse Fourier transform of both functions exists. The time domain

function corresponding to F1(w) is p(t;8), which is the measured
projection for a particular orientation; but the function isMI de)f--.

not finite, leading to the conclusion that the inverse Fourier
transformation of I co I does not exist.

Now, for most practical cases the measured projection will be

smooth and hence will have frequency spectrums with significant

energy content only in some low frequency band. The higher

frequency content will be gradually insignificant and after a certain

frequency range they can be neglected without introducing much of an

error. Some logical choice has to be made at this point for the cut off

frequency.

For processing data in a digital computer, all the data have to be

digitized including the measured projections. If the sampling interval
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is denoted by 'a', then the Nyquist frequency is 1/2a and it can be

assumed that there is no energy in the measured signal beyond the
frequency interval (-1/2a,1/2a). Accordingly one may replace the I co I

function with another which approximates this function only within
the angular frequencies (-7c/a,n/a). One choice may be denoted by

H(w) = 1 w 1 B(w), where,

B(w) = 1, for 1 0)1 <

= 0, otherwise.

Such a function is shown in Figure 3.1. This function is suggested by

Ramachandran and Laksminarayan [7].

-7C /a 7c/a

Fig 3.1: The transfer function of the I col filter which is band limited
to an angular frequency n/a.
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It is evident that the integral f_. I H(co) I dco is finite and so its
00

Fourier transform exists. The impulse response h(t) of the filter H(co)

can be shown to be

for t = 0,

for t =0,

TC

h(0) =
2a2

1 1 1 it TZ

h(t) = [

t2
+

t2
cos a t + ta sin a t ] [3.1]

If h(t) is sampled at the same rate as the measured projection, t can

be replaced by na in Equation [3.1], where n = ±1, ±2, ..... which

gives

h(na) = 1 [
1 1 n 7C

n n2a2 n2a2 cos a na +
na2 sin a na ]

replacing h(na) by h(n), Equation [3.2] can be written as

a
h(n)

1 1
[ n1 n cos nit ]

TC n2a2 +

so when n is odd,

and when n is even,

h(n) =
2

n2a2

[3.2]

h(n) = 0. [3.3]
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The sampled impulse response is shown in Figure 3.2.

h(n)

Fig 3.2: The unit sample response of the transfer
function shown in Figure 3.1.

Note that h(n) extends to infinity in both directions. But if

there are K samples in the measured projection, it is sufficient to

calculate K samples of the modified projections by convolving the

measured projection data with the filter. This result may be computed

by direct convolution and 2K-1 samples of the filter are required for

exact evaluation. The expression is given by



Q(n;e) = a / p(m;0) h(n-m)
m=-K
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[3.41

The results of modified projections between two samples are
generated by interpolation. In this thesis linear interpolation has

been used as suggested by Shepp and Logan [l].

The important point is that, while generating samples of

modified projections, the measured projection data can see only 2K-1

samples of the impulse response of the H(o)) filter. The frequency

response of these 2K-1 samples are not exactly the same as that of

H(co) filter.

Error in Finite Length I co I Filter : K samples of the modified

projection can be calculated from K samples of the measured
projections and 2K-1 samples of the impulse response of the 10)1

filter. Also, since the frequency response of the I w I filter is band

limited, its impulse response is of infinite duration. It is obvious that

2K-1 samples of the I o.) I filter do not offer the ideal frequency

response and hence there are always some errors between the
frequency responses of the 2K-1 samples of the impulse response and

the desired one. These errors are characterized in this section.

Choosing 2K-1 samples from an infinite duration impulse

response is the same as multiplying the ideal impulse response with a

rectangular window of unit hight and appropriate width. That is, if
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the samples of the infinite duration impulse response are expressed as

hd(n) and the samples of the truncated filter are denoted by h(n), then

where,

h(n) = hd(n) w(n)

w(n) = 1 ,

= 0 ,

-(K-1) 5 n 5_ K-1

otherwise.

[3.5]

If the Fourier transform is applied in both sides of Equation [3.5] , it

can be written as

1 r'it
H(w) = Hd(Q) W(co-Q) dc,2, [3.6]

That is, H(co) is the continuous convolution of the desired frequency

response with the Fourier transfoim of the window. Thus the actual

frequency response will be the smeared version of the desired
response Hd(co).

It is often the intention of a designer to achieve the 'best'
frequency response of a filter for a given length N. Of course, the

definition of the word 'best' is dependent on the error criterion
defined for the design. Finite duration filters designed by applying a

rectangular window in the time domain have minimum squared

integral error in the frequency response. This is a well known result

and is shown below.
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Integral squared error is defined as the integral of the squared

difference between the actual and the desired frequency response
over the basic frequency range -it 5_ CO 5. It. If this error is denoted by

E, then

E = 12I7c
n I Hd(co) 1 2 do) [3.7]

H(w) is the real function for the I 0)1 filter under discussion. Assuming

that the length of the truncated filter is 2N-1 and is symmetric about

the origin, the following relationships can be written,

and

H(w) = h(n)

n= -N

h(n) =
27c

1 pc
H(0)) Own do)

Hd(w) =

00

n=-00
hd(n) e -jc°11

hd(n) =
2rc

1
.f2T Hd(w) &um dw

According to Parseval's theorem, the energy in a signal can be

calculated in the time domain as well as in the frequency domain.

That is, if the samples of a signal are denoted by x(n) and its Fourier

transform as X(w) then
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I x(n)1 2 = 1 1.7t I X(CO) 12 do) [3.81
27C -It

n=-00

Applying this principle to Equation [3.7], it can be written that

E =
2n

1H(o)) Hd(o))12 do)
-7

00

Ih(n) hd(n)1 2
n=-0.

[3.91

Since h(n) is of finite duration, from -(N-1) to (N-1) only, Equation

[3.9] can be written as

N-1 00

E = lh(n) hd(n)12 + 2 Ihd(n)1 2 [3.101
n=-N+1 n=N

It is obvious in Equation [3.10] that E is minimum if h(n) is identical to

hd(n) for the values of n from -N+1 to N-1.

The above analysis shows that if a finite number of the samples of

the impulse response of the I co I filter are used to compute modified

projections, then the frequency response of the filter has minimum

integral square error when compared to the desired frequency
response.
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Although the error in a truncated I co I filter using rectangular

window is optimum in the least square sense, the error is localized

heavily where the function has a discontinuity in its derivative. This is

the well known "Gibbs phenomenon". The desired frequency
response has a discontinuity in its derivative at co=0 and two other at

± it. The error in the neighborhood of co = ± it is not of intense

attention. because in most practical cases the measured projections

have spectrums with large amplitudes near the origin. The amplitude

of the spectrums in those cases decrease with an increase in
frequency letting the Ito I filter tolerate larger errors near co = ±7C for

good quality image reconstructions.

The Fourier transform W(co) of w(n) defined in Equation 13.51 is

given by

K-1 2K-2

W(w) = e-jcon e-jcok ejw(K-1)

n=-K+ 1 k=0

e-jc0(2K-1)
ejco(K-1)

1- eja)

ej0)(2K-1)/2 e-jco(2K-1)/2

ejco/2 e-jco/2

Sin c.{ 2(2K-1)}
[3.11]

Sin-2
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Equation [3.6) suggests that having W(co) as narrow as possible

causes H(co) to approximate Hd(co) closely. The width of the main lobe

of W(w) decreases as K increases. The maximum length of the filter

for calculating the modified projections can be N=2K-1 and it is of

interest here to investigate the approximation error as N is decreased.

The oscillating nature of W(w) causes the integral W(w S2) H(12)

in Equation [3.6] to vary in a oscillatory manner and Figure 3.3 shows

the error in the truncated I w I filter as a function of frequency for N=

63. From the figure it is evident that the maximum error in the low

frequency range occurs at w=0. This error E(0) is given simply by the

algebraic summation of the samples of the impulse response. E(0)

has a positive value at zero frequency for finite filter length. The

magnitude of E(0) increases as N is decreased. This can be observed

in Figure 3.4. Figure 3.4 shows the error in the I co I filter for N=31.

0.004
Error in Ramachandran's filter for N=63

0.002 -

1
-o.000

-0.002 -

-0.004
0 0 0.1 0.2 0.3

Frequeny
0.4 0.5

Fig 3.3: Error in Ramachandran's I co I filter for N=63.
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0.010
Error in Ramachandran's filter for N=31

0.005

0.1 0.2 0.3 0.4
Frequeny

0 5

Fig 3.4: Error in Ramachandran's I co I filter for N=31.

A direct comparison between the errors in Ramachandran's

filters for N=63 and N=31 is given in Figure 3.5 where the previous

two graphs have been drawn in the same frame. The zero frequency

0.010

Error in Ramachandran's filter for N=63,31

0.005 -
4

Error for N=63
- - Error for N=31

-0.005 -

-0.010
0 0 0.1

1

0.2 0.3
Frequeny

i

0.4 0 5

Fig 3.5: Comparison of the error in Ramachandran's filter for
for N=63 and N=31.
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error for the above two filters with N=63 and N=31 are .00317 and

.00632 respectively.

Weighted Least Square Error Filter: The frequency response H(co) of a

finite length impulse response filter is given by

N-1

H(w) = h(n) ejm
n= N+ 1

[3.14]

The frequency response of the !co I filter is a real function and also

even about the origin co=0. By the property of the Fourier transform,

h(n) will also be a real function and even about n=0; that is, h(n) =

h(-n). In this case, Equation [3.14] can be written as

H(co) = h(0) + h(1)[eiwn + ejwn) + h(2)fej2con e-j2con)

N-1

= h(0) + 2 h(n) coscon [3.15]
n=1

If the values of h(n) of the approximate filter are equal to the

values of hd(n) of the desired filter, it has been mentioned in the

previous section that the filters represented by Equation [3.15]
correspond to a frequency response with minimum integral square of

the approximation error. Although this error is minimum in the least

square sense, it has been shown that it is concentrated heavily in

some specific areas of the frequency range. As a result, reconstructed
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images contain heavy distortions corresponding to those frequencies.

Reconstruction from truncated filters are improved by reducing the

error from the frequency ranges where the signals have significant

level of amplitudes. low frequencies in this case. This can lead to

reconstruction of images with significantly short filters. One

technique of designing such filters is the weighted least square
approach suggested by Lewitt [6].

The formulation of the design problem may start from sampling

the frequency range of interest at M equally spaced points. If the

sampling starts at (1)=0. then the frequency samples are located at

27ck
k= 0, 1, 2, .... M-1.

On the other hand, if there is no sample at co=0, then the samples are

located at

(2k+1)m
= k= 0, 1. 2, .... M-1.

The samples of the desired frequency response can be denoted by
Hd(cok) and the samples of the actual frequency response can be

represented by H(wk). H(cok) can be written from Equation (3.15J as

follows,

N-1

H(o.)k) = h(0) + 2h(n) Cos cokn
n=1

(3.161
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Substituting xkn = 2 Cos cokn, H(cok) = H(k) and Hd(0)k) = Hd(k),

Equation [3.16) stands as

H(k) = h(0) + h(1) xkl + h(2) xk2 + + h(N-1) xk(N_I)

If the error between the desired and the actual frequency response is

expressed as e(k), the following can be written.

H(k) = Hd(k) + e(k)

or e(k) = Hd(k) H(k)

The square error can be written as

[3.171

e2(k) = [ Hd(k) H(k)I2

and the weighted square error can be expressed as

e\2(k) = W(k) [Hd(k) H(k)12

The total of the weighted square errors over all the sample points is

given by

M-1

E = E ew(k)
k =0



M-1

W(k)[Hd(k) th(0) + h(1) xkl + h(2) Xk2
k=0

38

+h(N-1) Xkw_i)}12

The objective is to choose h(0), h(1), , h(N-1) such that the total

square error E is minimized. Under such conditions, the following

relationships must hold.

dE
dh(n) - 0' for n = 0, 1, , N-1.

Equation 13.18) gives the following set of equations,

[3.18]

M-1

21 W(k)[Hd(k) {h(0) + h(1) xkl + +h(N-1) xk(N..1)11 = 0
k=0

M -1

W(k)[Hd(k) th(0) + h(1) xki + +h(N-1) xk(\i_i)}1 xkl = 0
k=0

M-1

W(k)[Hd(k) {h(0) + h(1) xkl + +h(N-1) xk(\j_i))] xk(Ni_i) =0
k=0

The above set of equations holds for the expression

XTWXh=XTWHd [3.19]
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X= 1 xii
1 x21

1 x(m_

owi

X12

x22

x(M -1)2

xl(N-1)

x2(N-1)

X(M-1)(N-1)

w= W ( 0 ) 0 0 0

0 W(1) 0 0

0 0 W(2) 0

0 0 0 W (M -1)

NI

h= h(0)

h(1)

h(N-1)

and Hd = Hd(0)

Hd(1)

H d (M 1 )

Equation [3.19] can be solved for h(n), where n = 0, 1, 2, N-1, by

numerical analysis techniques for solving simultaneous equations.

The quality of the reconstructed image depends upon the choice

of the weighting function. It has been discussed earlier that for the

least square error filter, which has uniform error weighting, the
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error is large near zero frequency, then minimum for intermediate

frequencies and again large near the Nyquist frequency. For most

practical images, the measured projections have spectrums with large

amplitudes at low frequencies and decreasing amplitudes as the
frequency increases. This suggests that errors in the frequency
response near zero frequency have significant impact on the quality of

reconstructed images. On the other hand, since the spectral

amplitude of the signals are very low at the high frequencies, the

error tolerance at higher frequencies may be higher than that for

lower frequencies. This kind of discussion leads to the choice of a

weighting function which has large values at low frequencies and

decreases as the frequency increases. Lewitt et. al have suggested

17w2 as an appropriate weighting function. Figure 3.6 shows the

error in the frequency response of the I w I filter for this weighting

Error in weighted least square error filter for N=63.

0.003

0.002

0.001

6, -0.000

-0.001

-0.002

-0.003
0 0 0.1 0.2 0.3

Frequeny
0.4 0 5

Fig 3.6: Error in weighted least square error filter for N.63.
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function. For N =63, the zero frequency error for this filter is .00172.

This error is less than Ramachandran's filter with N.63 but it is
clearly seen here that the error increases with increasing frequency.
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CHAPTER IV

SIMULATION RESULTS AND DISCUSSION

Introduction: Various models for image reconstruction from
projections have been introduced in Chapter II and the Convolution

Backprojection method has been discussed in more detail in chapter

III. The later chapter also included discussion about approximating
the I co I filter with fewer samples of the unit sample response. Various

types of errors present in different approximations have also been

discussed in that chapter. The present chapter deals with the
application of different approximations for image reconstruction.

Simulation results have been introduced here along with an analysis of

the errors in the reconstructed images. The discussion starts with

the process of generating the projection data for the simulations.

Generation of Data for Simulation: Simulation results presented in

this chapter are for the image shown in Figure 4.1. This image has

similarities with the so called "head phantom" introduced by Shepp

and Logan [11. Such images have been used in research work to test

the accuracy of an algorithm to reconstruct cross sections of human

head with X-ray tomography. Accuracies of the short filters have also

been tested for the same kind of image. Reconstruction of the human

head is believed to demand very high numerical accuracy and freedom

of artifacts from a reconstruction method.
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Figure 4.1: Simulated image of a brain phantom.

Table 4.1

Specifications of the ellipses in Figure 4.1

ellipse center major
axis

minor
axis

rotation
angle in
degree

grey
level

a 0,0 .75 .906 0 200

b 0,0 .703 .859 0 -80

c .328, -.125 .203 .344 22.5 -55

d -.328, -.125 .203 .5 -22.5 -55

e 0, .344 .25 .25 0 40
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Figure 4.1 consists of five ellipses. Specifications are given in

Table 4.1. The advantage of using such an image for computer

simulation is that one can write analytic expressions for the projection

of the image.

The projection of an image composed of multiple ellipses is

simply the sum of the projections of the individual ellipses. Rosenfield

and Kak [1 01 have given an expression for the projection of f(x,y)

shown in Figure 4.2 as

Po(t)

Figure 4.2: Illustration of a projection of an ellipse. The grey
level in the interior of the image is p and zero outside.
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2pAB
Po(t) = a2(0) t2 for It I a(0)

= 0 for ti > a(e)

where a2(0) = A2 Cos2O + B2 Sin2O

A2 Y2and f(x,y) = p for A2 + B2 s 1

= 0 otherwise.

For any ellipse centered at (xi,y1) and rotated by an angle the

projection P°0(t) has also been shown to be

1310(t) = Po_ ( t s Cos(, 0 ))

where s = .\/)(12±y12 and y = tan-1 ( xi ).

Using the above expressions. the projections for the image in Figure

4.1 have been calculated for one hundred equally spaced orientations

within 0 < 0 < Tr.

Simulation Results: In this section the results of different
reconstruction attempts have been presented for different filter
lengths N of the I co I filters designed by different approaches. In all

the cases the image sizes are 128 x 128 pixels and each projection has

also been sampled at 128 equally spaced points. Also in each case,

one hundred projections from one hundred equally spaced angles have
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been considered. Linear interpolation has been used to calculate the

values of the modified projections in intermediate points.

Least Square Error Filter: Figure 4.3a shows the reconstructed head

phantom for Ramachandran's filter of length N = 255. The unit sample

response of this filter has been obtained by sampling the inverse

Fourier transform of the desired frequency response, and so it
represents a least square error filter. Figure 4.3b shows a numerical

comparison between the grey levels of the actual and the
reconstructed images along the line y = .017, which is the sixty fourth

row of the image. This is the best reconstruction possible for this

filter for the given number of samples per projection. This is because,

if there are K samples in the measured projection, K samples of the

modified projection can be generated by maximum 2K 1 samples of

the unit sample response of the I o I filter. From now on, all numerical

comparisons between the grey levels of the reconstructed image and

the actual image along a particular line will refer to the line y = .017.

Figure 4.4 shows the reconstruction of the same image by the

same kind of filter of length N = 127. Comparison of the numerical

values in Figure 4.4b shows that this reconstruction is of comparable

accuracy with that in Figure 4.3. This is due to the fact that
magnitudes h(n) of the unit sample response given by equation [3.31

becomes very small as n increases to large values. Those small values

of h(n) do not contribute significantly in the result of the convolution

when the modified projections are generated. This type of truncation





48

of the unit sample response of the I co I filter by rectangular window

has been proposed by Edelheit et. al. 15] for image reconstruction

from diverging X-rays. But this approach reaches a limiting point vary

fast as the length of the filter is decreased as shown in Figure 4.5.

Reconstruction by Ramachandran's filter, N=127
240

190

140 -

90 -

40

-10

3.0122.

1

Ideal value
Reconstructed value

0 10 20 30 40 50 60 70 80 90 100 110 120
Distance in pixel number

Fig 4.4: Comparison of the reconstruction of the head
phantom along y=.017 line using Ramachandran's
filter of length 127.

Figure 4.5 shows the result of reconstruction of the same object

for length N = 47. The difference between the reconstructed and the

desired image values are obvious in Figure 4.5. It was shown in
chapter III that as the length of the unit sample response of the I co I

filter is shortened, the error at zero frequency goes up. This is true

for other low frequencies also. These errors become significant when

the length of the filter is N = 47 for projections of the image under

consideration. Each of the modified projections in this case is
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contaminated by zero and low frequency error and so the final

reconstruction has a upward shift with other low frequency errors.

240

Reconstruction by Ramachandran's filter, N=47

It

190

140 -

90 -

40 -

-10 . .

Ideal value
Reconstructed value

isee.N.pe.\

1

1

e4"-vev-di

frIMINFIRMOMMTV

r I I I I I I I 1 I

0 10 20 30 40 50 60 70 80 90 100 110 120
Distance in pixel number

Fig 4.5: Comparison of the reconstruction of the head
phantom along y=.017 line using Ramachandran's
filter of length 47.

Weighted Least Square Error I w I Filter: In the case of least mean

square error filters, it has been shown that as the length of the filter

is decreased, the low and high frequency approximation error

increases. But. since most projections measured in practical

applications have very small Fourier coefficients near the Nyquist

frequency, the approximation error for the I co I filter at higher

frequencies may have larger magnitudes. On the other hand, the

Fourier coefficients of the measured projections are large at low

frequencies and the approximation may have very little tolerance for

errors at those frequencies. Figure 4.6 shows the result of the
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reconstruction of the head phantom for a weighted least square filter

of length N=255. The weighting function used is 1/0)2.

Reconstruction by weighted least square error filter, N=255
240

190-

140 -

90 -

Ideal value
Reconstructed value

40-

-10 P1'1"'
0 10 20 30 40 50 60 70 80 90 100 110 120

Distance in pixel number

Fig 4.6: Comparison of the reconstruction of the head
phantom along y=.017 line using weighted
least square error filter of length 255.

Figure 4.7 shows the reconstruction of the head phantom for the

filter of length N=47. Comparing the numerical values between the

desired image and this reconstructed image along the line y = .017,

it is obvious that this filter gives better reconstruction than the filter

used in Figure 4.5. This is because of the nature of the weighting
function 1/6)2. This function has been suggested by Lewitt et. al. [6]

and weights errors at low frequencies heavily. In the mid-frequency

range, the least mean square error filter contains a very small
approximation error and a lower weighting offered by 1 /CO2 works
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satisfactorily. At higher frequencies, very small values of the

weighting function causes the approximation errors in the designed

Reconstruction by weighted least square error filter, N=47
240

190 -

40 -

-10

Ideal value
Reconstructed value

I I I I 1 I I ' I I I ' I

0 10 20 30 40 50 60 70 80 90 100 110 120
Distance in pixel number

Fig 4.7: Comparison of the reconstruction of the head
phantom along y=.017 line using weighted
least square error filter of length 47.

filter to be large; but as the Fourier coefficients of the projection data

is very small in this range, they do not produce significant
reconstruction errors. Figure 4.8 shows reconstruction for a filter of

length N= 35. Although Figure 4.8 shows higher reconstruction errors

than in case of N=47, this reconstruction should be acceptable for

many practical applications. Figure 4.9 shows the result of
reconstruction using the same kind of filter with length N=31. This

result shows increased deviation.
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Reconstruction by weighted least square error filter, N=35
240

190 -

140

90

40 -

I

Ideal value
Reconstructed value

NoCIMerasignyla

11111
-10 . .1 I .1 .1

0 10 20 30 40 50 60 70 80 90 100 110 120
Distance in pixel number

Fig 4.8: Comparison of the reconstruction of the head
phantom along y=.017 line using weighted
least square error filter of length 35.

Reconstruction by weighted least square error filter, N=31
240

190 Ideal value
Reconstructed value

40 -

-10 I I - 1 1 1

0 10 20 30 40 50 60 70 80 90 100 110 120
Distance in pixel number

Fig 4.9: Comparison of the reconstruction of the head
phantom along y=.017 line using weighted
least square error filter of length 31.
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Comparison of Performances: To compare the performances of the

two kinds of filters discussed here, signal to noise ratio in the
reconstructed images has been calculated. Signal to noise ratio has

been defined as

SNR = 10 log

I ydni j)2
j

I tf(i,i) g(id)}2

where f(i,j) are the pixels of the ideal image and g(i,j) are the pixels of

the reconstructed image. Figure 4.10 shows the variation of signal to

noise ratio with the length of the filters. This figure indicates the

better signal to noise ratios for the weighted least square error filters

for given lengths.

10

8-
0

6

4

2

0
I

-2 -

-4

Signal to noise ratio in reconstructed images

Ramachndran's filter
Weigthed least square error filter

0 100
Filter length

Fig 4.10: Signal to noise ratio in reconstructed images
for the two kinds of filters.

200 300



54

CHAPTER V

SUMMARY AND CONCLUSIONS

Summary and Conclusions: The purpose of this thesis is to study the

performance of least square error I co I filters for image reconstruction

from projections. The study evaluates the performance of the filters in

reconstructing a simulated head phantom. Such a head phantom has

been reported by other research workers to require high numerical

accuracy and freedom of artifacts. The size of the reconstructed

images are 128x128.

From the results presented in the previous chapter, it can be
seen that the weighted least square I co I filter performs better than the

least square error filter suggested by Ramachandran for a given length.

This conclusion is drawn from the results shown in Figure 4.10. This

figure shows that the signal to noise ratio in reconstructed images are

always higher for weighted least square error filters than for
Ramachandran's filters for a given length.

For Ramachandran's filters, it can be seen that the

reconstructed images for lengths N=255 and N=127 are of comparable

accuracy. But after that the noise increases drastically as the length is

shortened. One might find it easy to calculate the coefficients of

Ramachandran's filter because of the associated analytic expressions.
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Half of the coefficients of the Ramachandran's filter are zero.

One may use this property to save computations in calculating the

convolutions. So, when the signal to noise ratio of both the filters are

of same order, as in the case of N=127, Ramachan.dran's filter may be

preferable. On the other hand, the length of the weighted least

square error filter can be reduced drastically for a very small decrease

in signal to noise ratio; this slower rate of degradation of
reconstruction can be realized from the slops of the two graphs in

Figure 4.10.

Recommendation for Future Work: It can be mentioned here that

there is another optimum filter design technique available which has

been found very efficient in dealing with discontinuities of fuctions.

This is known as the minimax approach and it minimizes the
maximum approximation error. This approach can be tested for
designing the I co I filters.

Systolic array architectures have been found attractive for
implementing convolution. Since convolution is a major part in the

Convolution Backprojection method, another area of future research

could be the implementation of this algorithm with systolic arrays.
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