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DATA-STRUCTURE BUILDER FOR VLSI/CAD SOFTWARE

CHAPTER I

INTRODUCTION

VLSI circuits are becoming more and more complex, and good
CAD software tools are essential in their design. A database
management system can play a central role in storing and integrating
design data, enabling a quick development of new CAD tools.

Current VLSI /CAD systems generally use a file system provided
by an operating system to store design data. Although these systems
show good performance, they do not achieve a level of integration
that accrues from a centralized database management system. For
example, to use rnl, which is a timing logic simulator described in
the VLSI design tools reference manual [UW-871, one needs to create
a network description .net file or a .cif file. The file is then
translated by a program (netlist for a .net file or mextra for a .cif file)
into an intermediate circuit description .sim file. Finally, the presim
program is used to convert the .sim file into a binary file suitable for
use by ml. However, if the user finds it necessary to change, for
example, the value of a capacitance while ml is being executed, he
must exit from rnl, modify the .net file, and repeat the entire
process. As seen in this example, a VLSI /CAD system built on top of
a file system does not provide a good environment for the integration
of design tools.

During the past several years, many researchers observed that
conventional database systems are not adequate for CAD applications
[EAST-80, HASK-82, BATO-85, KIM-88, HARD-871. Some of them
investigated the data modelling issues and made various proposals
[BATO-84, BATO-85, KATZ -85, AFSA-85, KETA-86, KETA-87,
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HASK-82, HARD-84, HOLL-84, STON-86, WIED -86]. A few
researchers [KATZ-82, CHEN-881 have discussed the issues of
supporting rapid development of new design tools. Despite a popular
belief in object-oriented data models, we found that the formats of
most VLSI/CAD data are relational in essence.

Relational database systems have proven very successful in
business data processing applications. The primary reason of this
success is that they provide a simple table-view of data and impose
little preconceived structures. However, current relational database
systems cannot efficiently support repetitive access of large amounts
of data required by CAD application programs.

In this research, we introduce a data mapping facility, which we
call a data-structure builder. The data-structure builder is built on
top of a relational database management system, and it converts VLSI
design data stored in relational tables into data structures best suited
for each VLSI/CAD program. This data conversion process follows a
script written in a non-procedural mapping language. The script
identifies the tuples in relational tables from which the records for
such entities as transistors and nodes are constructed, and then it
provides linkages among those records so that the data structure can
be efficiently manipulated by a conventional programming language.
Besides constructing the data structure, the script can also initialize
certain fields by using declarative SQL statements. We show in this
thesis that the data-structure builder can significantly reduce the
amount of programming required for data conversion in VLSI/CAD
programs. Although our data-structure builder consumes several
times more CPU cycles than a file-based C implementation, we
consider this performance penalty can be tolerated because of the
following two reasons.

First, a VLSI/CAD program needs to build the internal data
structure only once at the beginning of its execution and the major
portion of the program is usually CPU-intensive. Second, every few
years, computer hardware performance improves enough to
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compensate for the increased CPU cycles.
This chapter has served to introduce the data-structure builder,

summarizing its objectives and significant features. Related work is
reviewed in Chapter II. In Chapter III, we present an overview of the
data-structure builder by using a simple example. Chapter IV
presents the BNF grammar and semantics for the major constructs of
the mapping language for writing data conversion script. We

describe the details of the data conversion process by using
additional examples in Chapter V. In Chapter VI, the
implementation of the data-structure builder is discussed, and the
result of performance evaluation of the data-structure builder is
presented in Chapter VII.

The final chapter summarizes the significant features of the
data-structure builder and the research contributions of this study.
Also, remaining unsolved problems are identified, and suggestions
for future research are offered.
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CHAPTER II

RELATED WORK

Very-large-scale integrated (VLSI) circuits are becoming
increasingly common due to their ease of manufacture, low cost, and
simplified design methodologies. No longer must the designer study
electronics and physics to build an integrated circuits (RUBI-871.
Digital electronic design is taught widely and is accessible to people
with any scientific background.

As the complexity of these electronic circuits increase, the
need to use computers for their design becomes more important.
Although computer-aided design (CAD) systems have existed for
quite some time, many of them are inadequate for current tasks, and
a continuous flow of new tools is being developed. These tools
perform more and more of the detailed and repetitive work involved
in VLSI system design, thus reducing the time it takes to produce a
chip.

A good CAD system should be able to understand the many
interchange formats that allow it to exchange design with other CAD
systems. These interchange formats not only allow free flow of
design information, but also enable obscure manufacturing styles,
understandable by a subset of CAD systems, to be accessible from
other systems. Although there are many interchange formats
targeted at mask making, there are a few standards. Caltech
Intermediate Format (.cif format) and Calma GDS II Stream Format
are well-known interchange standards, whereas Electronic Design
Interchange Format (.edif format) is newer and less popular, but its
vast extent may carry it to a wide acceptance. These interchange
formats all support hierarchical description.

The interchange format for circuit-level simulators that are
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integrated at the UW /NW VLSI Consortium [UW -87] is the .sim
format and it is used to describe MOS transistor networks and their
associated parameters. The UW/NW VLSI/CAD system supports the
.ca format as well as the .cif format for layout description. Appendix
A.2 gives the details of the .sim, .ca, and .cif formats.

Database management systems have generally been developed to
support business applications and, as a result, have often failed to
provide adequate support for the management of engineering and
design data. CAD systems are powerful tools that designers can use
to create, manipulate, evaluate and store design data. The
management of these large quantities of data is not a trivial task and
can profit from much research and new developments in the area of
business database management systems (DBMS). In the following
sections, we describe related work and distinguish our approach
from the ongoing research in the field.

2.1 Evolving Needs for Databases in Engineering Design
Handling large amounts of data is an integral part of modern

engineering practice. The traditional work area of engineers is filled
with drawings, books of specifications, handbooks of standard tables
and product catalogs. It is not surprising, then, that data files and
databases are becoming part of the computer applications in
engineering.

The need for handling extensive amounts of data arose
concurrently with major applications. An early need was storing
constants such as material properties for analysis programs. Such
data were stored separately and sequentially read at the beginning of
an application, but not modified during their use. By storing data
separately, they could be used by more than one program, but still be
occasionally extended or modified. When changes are made to the
data, they apply to all the projects using them.

Another development was the use of files for exchanging data
among different programs. Examples are textual or graphic oriented



6

programs that expand simple input to the proper format for an
application, or that takes output from an application and reformats it
into a chart or graphic review. Files provide communication among
programs. This use is being applied frequently today [EAST -81].

2.2 Integrated Design Database
The preceding file operations provide interfaces with particular

application programs. But as the number of programs grows, the
generation and management of input data they use become a burden.
Each file of input data has a distinct structure. Data preparation and
the writing of interfaces for different file formats has become a major
endeavor of many engineering groups.

The concept of data capture suggests that various input
processes could all feed into a common data repository, from which
is extracted the particular data needed for an application. Data
common to a number of applications need only be entered once and
used as input for all the applications, with reformatting as needed on
input and output. Such a common repository has come to be called
an integrated design database or just design database. This type of
integrated approach can greatly reduce the cost of writing a
pre-processor for yet another application or for implementing yet
another set of file transfer and mapping routines. In the longer
context, a design database's benefits include:

1. supporting new forms of integration, such as the automatic
generation of production data, such as drawings and
numerical control machine tapes, or for generation summary
reports to a division or company wide management
information system;

2. by keeping all design data in a common machine readable
form, the possibility exists to check consistency of data,
reducing or eliminating conflicts and improving control of
the design product;

3. by keeping data already prepared for use, integrated design
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databases support further automation;
4. by eliminating duplications of data;
5. eventually, a design database becomes an environment in

which designers work directly. It supports generation as
well as analysis, with the possibility of greatly improved
productivity.

2.3 Database Support for VLSI/CAD
One of the current trends in database research is supporting an

advanced engineering environment such as VLSI/CAD. During the
past several years, researchers have realized that the conventional
database systems do not support applications in the engineering
domain well.

One significant characteristic of VLSI /CAD and all other design
is a heavy reliance on hierarchical description. The abstractions on
any given level of the hierarchy allow many details at lower levels to
be temporarily ignored in understanding the abstractions on the next
higher level [SMIT-77]. A complex object, as the name implies, is an
assembly of objects, which themselves may be assemblies of other
objects [HASK -82, BATO-85, KIM-87].

Complex objects are represented as collections of
heterogeneous records which are often retrieved together. In VLSI
design, the subassemblies are commonly referred to as cells; the use
of a cell at the next level of the hierarchy is called an instance
[RUBI-87]. One CAD tool may treat a subassembly as a single object,
while another CAD tool may be concerned with the detailed structure
of that subassembly. Since different levels of abstraction in the
hierarchy are appropriate in different stages of the design process, a
CAD tool needs to shift the view level in the hierarchy very frequently
[KETA-88].

Another significant characteristic that is more specific to
electronic design is connectivity. Circuit connectivity must be
handled properly in the presence of hierarchy. When a cell instance
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is placed in a circuit subassembly, its components must be able to be
connected to other components within that subassembly (RUBI-87).

CAD databases are used to store design data and to integrate
design tools in VLSI design systems. Efficient access of complex
object is essential for computer aided design applications of database
management systems. In the conventional first normal form (1NF)
relational model, complex objects must usually be decomposed onto
different relations. This makes the model semantically difficult to
handle by the design tools to retrieve and manipulate the data and
performance is guaranteed to be poor because of the large number of
join operations required at execution time to construct complex
objects.

Also, efficient shift of view levels and representation of circuit
connectivity in the hierarchy during a single application run are not
possible through traditional unstructured view of relational systems.

The main limitation of the current relational model is its
inflexibility, that often prevents relational schema from modeling
completely and expressively the natural relationships and constraints
among entities. This observation has motivated the introduction of
new semantic data models (ZANI-83). The possibilities of extending
the relational model to capture more meaning; as opposed to
introducing a new model, have also been investigated.

One fundamental approach is to enhance the current DBMSs
based on the first normal form (1NF) relational model by adding new
capabilities or building another layer of software on the top of
current DBMSs to support hierarchical structures. Complex objects
are simply stored as ordinary relations and data clustering is not
supported.

Haskin and Lode proposed some extentions that support
hierarchic structures to the relational database systems by adding
several predefined attribute types and system generated keys to
express hierarchical relationships and to speed up join operations
[HASK-821. Zaniolo extends the relational model to support



9

generalization, aggregation, null values, surrogates, and set-valued
attributes [ZAIsII-83]. Then he extends the relational language QUEL
to support these features.

Stonebraker and Rowe introduce the preliminary design of a
new DBMS, called POSTGRES, which is the successor to the INGRES
relational database systems [STON-86]. POSTGRES proposes to
support fairly simple complex objects by supporting an extendible
type system, new operators, and new access methods. To support
more complex object, POSTGRES proposes to use procedures as
their definition mechanism. In addition, a programming language
interface mechanism called a potal is provided to retrieve data from
the database. A potal is similar to a cursor, except that it allows
random access to the data specified by the query and the program
can fetch more than one record at a time.

The work outlined above only makes the model semantically
easy to use by design applications, but the desired efficiency in the
CAD environment may not be achieved because a large number of join
operations are still required during the executions of CAD
applications.

Another approach that has received considerable attention is to
generalize the 1NF relational model to abandon the 1NF
requirement. The key idea is to allow relations to occur as attribute
values of tuples in a relation. Relations of that kind are called Non
First Normal Form (NF2) relations.

A DBMS that is based on the NF2 relational model should
provide direct storage (clustering) of complex objects. Makinouchi
recognizes the need for using relational databases for nonbusiness
database applications and introduces the NF2 relations [MAKI -77].
Several researchers have reported query languages for NF2 relational
databases [SCHE -82, FISH-83, ROTH -87]. They extended relational
algebra, with main emphasis on the new nest and unnest operators
that transform 1NF relations to NF2 relations and vice versa.

Dadam et al. prototype a DBMS to support NF2 data model that
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integrates flat and hierarchical relations [DADA-86]. Kemper shows
that a behaviorally object-oriented system can be implemented on
top of a structurally object-oriented database system that is based on
a NF2 relational model [KEMP-87].

In addition to the work outlined above considerable efforts have
been made in developing specific, complex semantic data models to
support VLSI/CAD applications. Batory and Kim call complex objects
molecular objects and develops a framework for capturing the
semantics of VLSI/CAD design objects [BATO-85]. A molecular object
is a modeling construct which enables a database entity to be
represented by two sets of heterogeneous records; one set describes
the object's interface and the other describes its implementation.

Ketabchi et al. introduce an object-oriented data model called
ODM, in which complex objects are defined as templates that are
similar to the class in Smalltalk [KETA-86]. ODM integrates
functional data model [SHIP-81] and the actor model of computation.
Bancilhon et al. present a database model called FAD, which supports
object identity and allows complex objects to be built out of atoms,
tuples, and sets [BANC-87]. Hardwick developed an experimental
database system called ROSE for CAD/CAM applications, extending
relational concepts to make them more suitable to CAD/CAM
[HARD-87]. The ROSE data model is based on the entity-relationship
model [CHEN-76], but it allows an entity to be constructed as an
AND/OR tree [McLE-83]. Such entities are stored in the files of an
operating system.

Wiederhold develops a connection between object concepts in
programming language and view concepts in relational database
systems [WIED-86]. He proposes to combine the concepts of views
and objects into a single concept: view-objects. The view-object
extracts out of the base data in relational form as needed. A view
tuple or set of view tuples will contain projected data corresponding
to an object. The view-object generator then assembles the data into
a set of objects. The object will be made available to the program by
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attaching them to the predefined object prototypes. This approach
does not provide the flexibility to explicitly specify the internal
structure and linkages of a complex object.

Database user interface is an another area of research that is
closely related to our research. We use the word user in the sense of
application programs, not in the sense of terminal users. Much
effort has been spent to design good programming language
interfaces into databases [STON-86, WIED-86]. Current relational
database systems (e.g., INFORMIX) usually require a lot of
programming when delivering data items to application programs. A
common method for relational systems is to execute a query that
produces a flat relation (a set of records) and then use a cursor
mechanism for accessing the records in the set one by one
[DATE-86].

In business data processing applications, meaningful units may
contain collections of heterogeneous records, this is not unusual, for
example, a customer may have several orders and each order
includes several items. To retrieve meaningful units into application
programs for further computation, cursors must be defined over
queries and repeated operations are needed to deliver data into
program arrays [INFO-87]. This situation becomes even worse when
relational model is applied to application areas such as information
retrieval systems [SCHE-82] and CAD systems.

We believe that the relational model is a foundation, not an end
in itself, and it provides a common core of functions that will be
needed in all future systems, just as assembly language provides a
very primitive core of functions that are needed by all software
systems today [DATE-86]. We feel data clustering is difficult to
achieve in specially designed semantic data models or NF2 models
when different applications want to cluster data in different ways
[WIED-86, HARD-87]. We also feel that a specially designed semantic
data model or NF2 model is difficult to be extended to solve future
problems [STON-86]. Rather than building a new system that is
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based on a large, complex data model, we believe that we can
accomplish our goals by using the small, simple 1NF relational
model.

Advantages claimed for the relational model in the classical data
processing domain include ease of use, data independence,
increased productivity, and multi-file correlation. We believe that
these advantages hold for design applications. In fact, given the
complexity of design applications and the fact that complex
applications evolve continuously and therefore require a lot of
flexibility from the point of view of data management, the relational
approach might well be the only way to go [HALL-84].

A database system for VLSI/CAD applications needs to represent
both the structures and relationships of design entities. In the
relational system both are represented by relations. A database
system also needs to model the structure of a design entity.
Structural relationships are measured using a data model.
Unfortunately, the relational model is inadequate for design
applications because it was invented for flat, homogeneous entities.
Of course, other types of relationships can be simulated in the
relational model using artificial keys. However, accessing data in a
structural relationship is unnecessarily complex on both the
conceptual (user) level and the physical (machine) level.

Network systems are able to represent the structural
constraints of design entities more directly. Extentions to the
relational model, such as the Entity Relationship model (E-R model),
are also able to represent the structural constraints of a design entity
directly [HARD-84].
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CHAPTER III

OVERVIEW OF DATA-STRUCTURE BUILDER

From the data stored in relations, the data-structure builder
constructs the internal data structure to be used by a VLSI /CAD
program. A VLSI/CAD program performs this data conversion at the
beginning of its execution so that the data structure can be efficiently
accessed during the rest of its execution. The data structure thus
constructed consists of records and explicit pointers among them.
For a circuit simulation program, we provide records for such
entities as transistors and nodes, and there should be pointers from
the record representing a node to the records representing the
transistors connected to that node. For a layout program, records
are provided for the rectangles that represent regions in various
(e.g., diffusion, polysilicon, and metal) layers. Pointers link related
records and provide traversal paths. We call the internal data
structure thus constructed a structured view.

The system architecture for the data-structure builder is shown
in Fig. 3-1. The data-structure builder consists of a simple input
scanner and a mapping subsystem. The input scanner, which is
based on a finite state automaton, reads design data in a format such
as .cif, .sim, or .ca format, and it then stores them in appropriate
relational tables. Under this architecture all the CAD tools share the
centralized relational database. Nonetheless, each CAD tool can have
a different internal data structure most suitable for its own use. The
mapping subsystem performs the required data conversion between
these two forms of data, following a script written in a
non-procedural mapping language.

The data conversion script consists of three parts: the
record-definitions part, the index-statements part, and the
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link-statements part. The record-definitions part specifies the
records to be constructed, and the link-statements part specifies
pointers to be provided among them. The index-statements part
specifies an indexing mechanism for fast access to the indexed
records. Field initialization statements, which may involve SQL
statements, are used within each record definition part.

We now show this data conversion process by using a simple
example involving only one CMOS inverter. Fig. 3-2(a) shows the
circuit diagram of the CMOS inverter. The .sim file of the circuit is
shown in Fig. 3-2(b).

The relational tables to be constructed from the .sim file are
shown in Fig. 3-3. Information concerning nodes in the circuit is
stored in table Node. Each node has a node name (nname) and a
node potential (npot). The potential values of 0, 1, and 3 represent
the logic values low, intermediate or unknown, and high,
respectively.

Table Cap stores information on capacitances. Each capacitance
has a capacitance number (id), the node name (cnode) of the node to
which the capacitance is connected, and a capacitance value (coal) in
pF. Only one node to which a capacitance is connected is shown
because the other end of the capacitance is assumed to be grounded.

Table Trans stores information on transistors. Each transistor
has a gate node, a source node, and a drain node representing its
connection. Attributes twidth and tlength of table Trans represent
in lambda the width and the length of the gate area of each
transistor. Attribute ttype represents transistor type (2 for PMOS
and 0 for NMOS). A resistor, which is a two-terminal device, is
represented in table Trans with the value of attribute gate set to Vdd
(a resistor in NMOS is sometimes formed in this way) and the
resistance value stored in attribute twidth.

Fig. 3-4 shows the data structure (structured view) used by
program presim/rnl for the logic simulation of the circuit. The
current presim/rnl program using a file system uses about 22 pages
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of programming statements to construct this structured view.
The script given in Fig. 3-5(a) creates the records for the nodes

and transistors. The following convention is used in this thesis. We
use identically spelled names for a relational table and for the record
type for the records created from the tuples in that table. However,

the names of relational tables are started with an upper-case letter
(e.g., Node and Trans) and those of the record types with a
lower-case letter (e.g., node and trans). As we assume that
upper-case letters and lower-case letters are different, these names
are actually different.

The first FOR EACH ... PROVIDE STRUCT ... statement
(PROVIDE-STRUCT statement) creates a node record for each tuple
in table Node. The record definition is similar to the structure
definition in C language. The body of PROVIDE-STRUCT statement
is applied to each tuple in a relational table.

In the PROVIDE-STRUCT statement for the node records, the
capacitance field ncap is initialized with the expression involving the
SQL statements. The CMOS-PW technology is assumed, and CGA
(capacitance of gate area) and CPA (capacitance of polysilicon area)
are electrical parameters. For each node, the gate areas (each of
which can be computed as twidth * tlength) of the transistors to
whose gates the node is connected are added and then multiplied by
the capacitance per unit area (CGA CPA). This result and other
capacitances connected to the node are added to get the total
capacitance for that node. The constant, LAMBDA, is the conversion
factor from lambda to microns. Field npot, which represents the
current potential of the node, is also initialized to the value of
attribute npot in table Node.

The second PROVIDE-STRUCT statement creates a trans
record for each tuple in table Trans. The PROVIDE ... INDEX ...

statement (PROVIDE-INDEX statement) creates a hash table on the
basis of string values for nname field of node records.

The scrip given in Fig. 3-5(b) creates pointers between the
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node records and the trans records. The first LINK ... AND ...

statement (LINK statement) provides pointers for the gate
connections between the node records and the trans records. The
gate connection relationship is one-many because there are usually
many transistors whose gates are connected to a node. In the
WHERE clause, the set of transistor records to be linked to a node
record is specified as Node.nname = Trans.gate. For each node
record, a pointer chain is created that begins at the field ngate of the
node record as specified by MEMPTR (member pointer), and that
threads through the fields glinks of the selected trans records as
specified by SIBPTR (sibling pointer). Also, a back pointer (BCKPTR)
is created in each trans record to its owner node record in the field
gate.

The second and third LINK statements provide similar pointers
for the source and drain connections, respectively, producing the
structured view as shown in Fig. 3-4.
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Mapping
Subsystem

i
Relations

V
(Structured)
View

Fig. 3-1 Architecture of data-structure builder.



in

Vdd

t1

t2

out

c1

units: 250.00 tech: cmos -pw format: MIT
p in out Vdd 8.00 8.00 r 0 0 64.00
e in Gnd out 8.00 4.00 r 0 0 32.00
c out 0.03

/ //////
Grid

(a) Circuit diagram. (b) The .sim file.

Fig. 3-2 A circuit diagram and a .sim file for a CMOS inverter.
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Node

nname npot

Vdd 3

Gnd 0

in 1

out 1

Trans

Cap

id cnode oval

c1 out 0.03
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id gate source drain twidth tlength ttype

t1

t2

in

in

out

out

Vdd

Gnd

8.0

8.0

8.0

4.0

2

0

Fig. 3-3 Relational tables for CMOS inverter.



hashnode

11111,

..M111111

MEMPTR

ngate nsource ndrain "in"

BCKPTR

20

t1
. 1

gate ;ourcE drain glink slink dlink

1

ngate nsourc i ndrain our

ngate nsourc i ndrain "Vdd"
4-- late

f

1

ngate nsourc i ndrain "Gnd"

SIBPTR

V t2

iOU10E drain glink slink dlink

Fig. 3-4 Structured view for CMOS inverter.



typedef struct node *nptr;
typedef struct trans *tptr;

FOR EACH Node /*
PROVIDE STRUCT node ( /*

nptr nlink; /*
tptr ngate; /*
tptr nsource; /*
tptr ndrain;
nptr 'mead;
float ncap = (CGA-CPA) * LAMBDA *
"Select SUM(twidth * tlength) From
"Select SUM(cval) From Cap Where

I.
float viow = LOWTHRESH;
float vhigh = HIGHTHRESH; /
short tplh; /*
short tphl; /*
long ndelay; /*
long ctime; /*
short npot = Node.npot; /*
short nflags; /*
char *nname = Node.nname; /*
char statestatus; /*
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for each tuple in table Node */
node record definition */
sundries list */
list of gates connected to this node */
list of sources connected to this node */
list of drains connected to this node */
link in hash bucket */
LAMBDA *

Trans Where Trans.gate = %Node.nname" +
Cap.cnode = %Node.nname";
capacitance of this node */
low logic threshold for this node */
high logic threshold for this node /
low to high transition time */
high to low transition time */
delay of last transaction */
time of last transaction */
current potential of this node */
flag word */
name of node */
whether node has been set to 0 or 1 V

FOR EACH Trans
PROVIDE STRUCT trans (

nptr gate;
nptr source;
nptr drain:
tptr glink;
tptr slink;
tptr dlink;
float twidth = 'Trans.twidth
float tlength = Trans.tlength
float tnumber;
int ttype = Trans.ttype;

/ for each tuple in table Trans */
/ * trans record definition
/* node to which gate is connected */
/* node to which source is connected */
/* node to which drain is connected V
/* gate link in node connection list */
/* source link in node connection list */
/* drain link in node connection list */

LAMBDA;
LAMBDA;

/* transistor number */
/* type of transistor */

PROVIDE STRHASH INDEX hashnode / provide string hash index on node name */
ON node(nname)

(a) Record definitions.

Fig. 3-5 Mapping script for presim/rnl.
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LINK node AND trans (ONE-MANY)
WHERE Node.nname = Trans.gate
WITH MEMPTR : ngate

BCKPIR : gate
SIBPTR : glink

LINK node AND trans (ONE-MANY)
WHERE Node.nname = Trans. source
WITH MEMPTR : nsource

BCKFTR : source
SIBFTR : slink

LINK node AND trans (ONE-MANY)
WHERE Node.nname = Trans.drain
WITH MEMPTR : ndrain

BCKFTR : drain
SIBPTR : d1Mk

(b) Link statements.

Fig. 3-5 Continued.
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CHAPTER IV

MAPPING LANGUAGE

In this chapter, we show the BNF grammar for the major
constructs of the mapping language for writing data conversion
scripts, and we then explain the semantics of those constructs. In
describing the grammar, we use the following conventions.

1. A I represents an optional (zero or one) occurrence of A.
2. A I B represents an occurrence of A or B.
3. Terminal symbols are represented in two ways: Reserved

keywords appear as themselves in bold characters, and
punctuation characters and operators are enclosed in single
quotation marks.

4. Syntactic units appear in italic characters (e.g.,
struct-statement).

struct-statement
A struct-statement, which is used to construct records for the

tuples in a relation, has the following syntax:

struct-statement ::= FOR EACH table -name
PROVIDE STRUCT record-type

record-type ::= record type -name '{' field-list '}'

field-list ::= ,field declaration':' [field-list ]

field-declaration ::= type-specifier declarator [ '=' expression ]

The type of the records to be constructed from the tuples in a
table table-name is specified by record-type. The syntax of
record-type is similar to that of a structure type in C. Selected
attributes of each tuple and additional properties are grouped into
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the fields specified by field-list, forming a record type
record-type-name.

The declaration of a field may include an expression that
initializes the field. An expression can be formed from the attributes
of the current tuple and SQL statements enclosed in double
quotation marks. An SQL statement may include parameters
preceded by percent marks. This SQL statement is submitted to the
database management system as a character string with the
parameters replaced by the actual values for a particular record.
Nested record type definitions are not allowed.

index-statement
An index-statement, which is used to construct an indexing

mechanism for fast access to records, has the following syntax:

index-statement ::= PROVIDE index-kind INDEX Index-name
ON record-type-name T field-name 'Y

index-kind ::= STRHASH
I BSTREE
I NUMHASH

The name of an index is specified by index-name. The field to
be indexed is specified as record-type-name T field-name ')', which
indicates that the index should be provided for field field-name of
record type record-type-name.

We support three kinds of indexes: STRHASH (string hashing),
NUMHASH (number hashing), and BSTREE (binary search tree).
Indexing mechanism STRHASH is based on hashing on character
strings. Indexing mechanism NUMHASH is based on hashing on
numbers. Indexing mechanism BSTREE uses a binary search tree on
character strings.

simple-link-statement
A simple-link-statement, which is used to provide pointers

between two record types, has the following syntax:



simple-link-statement ::= link-clause
where-clause
with-clause

link- clause ::= LINK record-type-name AND record-type-name

record-type-name ::= type-name [ alias I

mapping-kind ::= ONE-ONE
I ONE-MANY

where-clause ::= WHERE predicate

predicate ::= condition [ AND predicate I

condition ::= item-name 1=' item-name

item-name ::= table-name '.' column-name
I record-type-name 1.' field-name

with-clause ::=WITH MEMPTR ':' field-name
[ SIBPTR ':' field-name
[ BCEPTR field-name]]
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'(' mapping-kind T

A link-clause is used to provide pointers from the records of
the type R1 indicated by the first record-type-name to the records of
the type R2 indicated by the second record-type-name. An alias is
allowed to link records of the same record type. The kind of the
relationship type between the two record types should be specified
by mapping-kind, which may be one-one or one-many.

A where-clause specifies the condition for establishing the
linkages. The predicate in where-clause specifies that record rl of
type R1 and record r2 of type R2 are to be linked if predicate is true
when it is evaluated using the attribute values associated with rl and
r2. An attribute used in the predicate may be a column name of a
table (table-name '.' column-name) or a field name of a record-type
(record-type-name '.' field-name).

A with-clause identifies the fields where pointers are stored.
We use three kinds of pointers: MEMPTR (member pointer), SIBPTR
(sibling pointer), and BCKPTR (back pointer). For one-many
relationship, both MEMPTR and SIBPTR must be provided, and
BCKPTR is optional. For one-one relationship, MEMPTR must be
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provided, and BCKPTR is optional.
We now describe the data structure used by the pointers for

each kind of relationship.
1. (one-one) Suppose that we have one-one relationship from

records of type R1 to records of type R2. We provide, for each
record ri of type R1, a direct pointer MEMYrIt that points to
the corresponding record r2 of type R2. We then create a back
pointer from r2 to ri if the BCKPTR clause is provided. The
resultant data structure is shown in Fig. 4-1(a).

2. (one-many) Suppose that we have one-many relationship from
records of type R1 to records of type R2. We create, beginning
at the MEMPTR field of each record r of type R1, a pointer
chain that threads through SIBPTR fields of all the type R2
records rl, r2, ..., rk related to r. We then create back pointers
from each of rl, r2, ..., rk to r if the BCKPTR clause is provided.
The resultant data structure is shown in Fig. 4-1(b).

Although our language allows only one-one and one-many
relationship types to be specified, we can create a many-many
relationship type by using two one-many relationship types.

Suppose we want to establish a many-many relationship from
records of type R1 derived from relation P1 to records of type R2
derived from relation P2. As we handle this case by two one-many
relationship types, we first create a view relation P3 from which
intermediate records of type R3 can be derived. Assume that the
many-many relationship must be established according to the values
of fields fl of P1 and f2 of P2. Then the query to create P3 is as
follows:

Select kl, k2
From P1, P2
Where P1.fl = P2.f2.

The kl and k2 denote the keys of relations P1 and P2, respectively.
A new record type R3 can now be constructed from P3 with a
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struct-statement. We then provide two simple-link-statement
statements to construct two one-many relationships: R1 to R3 and
R2 to R3. The resultant data structure, which is similar to the
multilist representation of links in a network model [ULLM-831, is
shown in Fig. 4-2.



R1 R2

R1 R2

MEMPTR

a

MEMPTR

b

* Fields specified by MEMPTR, SIBPTR, and BCKPTR should be

actual pointer fields indicated by MEMPTR, SIBPTR, and

BCKPTR clauses.
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a

BCKPTR

IRPTP

BCKPTR

RIRPTR

a

BCKPTR

RIRPTR

a

BCKPTR

RIRPTR

b

laBCKPTR

RIRPTR

(a) One-one relationship. (b) One-many relationship.

Fig. 4-1 Data structure for one-one and one-many relationships.



R1 R3 R2

29

Fig. 4-2 Data structure for a many-many relationship.
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CHAPTER V

ADDITIONAL EXAMPLES

Three of the most widely used formats for the representation of
VLSI design data are the .sim, .ca, and .cif formats, and many
programs accept design data in these formats. The .sim format is
used to describe MOS transistor networks and their parameters.
The .cif format allows a hierarchical description of VLSI geometry in
a concise manner. The .ca format allows us to describe VLSI circuit
layouts at a higher level than the .cif format. Fig. 5-1 shows how
design data in these formats are used by some VLSI design tools.

The data conversion process required by the timing and logic
simulator presim/rnl, which uses the .sim format, was discussed in
Chapter III. In this chapter, we show the data conversion processes
for the interactive graphics display program vic, which uses the .ca
format, and the CIF library routine readcif, which uses the .cif format.
As an example, we use a layout of a 2-bit adder constructed with the
layout assembly program cfl (Coordinate Free LAP) [UW -87]. Cfl is a
library of subroutines intended to facilitate the construction of VLSI
circuit layouts. The circuit and layout diagrams of the 2-bit adder are
shown in Appendix A.3. Cjl produces a set of .ca output files, each of
which contains the layout of a cell in a hierarchical description of the
circuit. Caesar can convert those .ca files into a single .cif file so that
it can be used by programs like readcif that uses the .cif format.

5.1 Vic (View an Integrated Circuit Layout)
Vic, which accepts design data in the .ca format, is an

interactive graphics display program. Fig. 5-2(a) shows the hierarchy
of the .ca files for a 2-bit adder cell. Every cell in the hierarchy is
represented by a .ca file. Two .ca files (adder2.ca and fadder.ca) are
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shown in Fig. 5-2(b).
The relational tables constructed from those nine .ca files are

shown in Fig. 5-3 (some are not complete). Some names were
changed for clarity of exposition; e.g., description and symbol were
changed to cname and cell, respectively.

Table Cell stores information on cells in the hierarchical
description of the 2-bit adder. Each cell has a cell number (id) and a
name (cname). Attributes /lx, lly, urx, and ury of table Cell represent
the lower-left x-, lower-left y-, upper-right x-, and upper-right
y-coordinates of the cell's bounding box.

Table Call stores information on cell calls. A cell call creates an
instance of a subcell, which may be translated, rotated, and reflected
within the bounding box of the current cell. Each call has a call
number (id), the cell name of a caller (caller), the cell name of a
callee (callee), and the left six elements of a 3X3 transformation
matrix for the callee (a, b, c, d, e, and j).

In circuit design, transformations are typically linear, which
means that the shape can be rotated, translated, or scaled. In a two-
dimensional domain, this information can be represented with a 3X3
matrix. Since homogeneous coordinate transformations are not used
in circuit design, only the left six elements of this matrix are valid.
However, square matrices are easier to manipulate, so they continue
to be used [RUBI-871.

Information concerning labels is stored in table Label. Each
label has a label number (id), a cell name to which that label belongs
(cell), the name of the label (iname), and the position of the name of
the label relative to its center (position). Attributes llx, lly, urx, and
ury of table Label represent the lower-left x-, lower-left y-,
upper-right x-, and upper-right y-coordinates of a label's rectangle.
Labels are used to specify texts for the names of such components as
signals and cells in a circuit. A circuit extractor often uses those
labels when they produce a circuit from a layout description.
Rectangles and names associated with labels are used by the graphics
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editor.
Table Box stores information on boxes that are the basic

constituents of VLSI transistors and wirings. Each box has a box
number (id), the cell name to which a box belongs (cell), and a mask
layer associated with the box (layer). The layer values of 4 and 1
represent metal and polysilicon, respectively. Attributes lbc, lly, urx,
and ury of table Box represent the lower-left x-, lower-left y-,

upper-right x-, and upper-right y-coordinates of each box.
Fig. 5-4 shows the structured view used by program vic for

graphics display. The current vic program uses about 24 pages of
programming statements to build this structured view, which can be
constructed by the script given in Fig. 5-5.

In the PROVIDE-STRUCT statement in the cell record type, the
field lbc, which indicates the lower-left x-coordinate of the bounding
box of a cell, is initialized by an expression involving SQL statements.
The bounding box of each subcell is transformed, within the
bounding box of the cell that calls this subcell, according to the
transformation matrix provided for that subcell. A cell consists of
boxes that are directly contained in it and the bounding boxes of
transformed subcells.

The Ux value of a cell is computed as follows.
1. Select the minimum lix value among the lix values of the boxes

that are directly contained in the cell.
2. Compute all the x-coordinates of the bounding boxes of the

transformed subcells by multiplying the two diagonally located
points of each subcell's bounding box, (lbc, lly, 1) and (urx, ury,
1), by the first column of the 3X3 transformation matrix.

3. Compute the minimum Ux value of the transformed subcells by
selecting the minimum value among the values computed from
2.

4. Select the minimum of the two, which are the value computed
from 1 and the value computed from 3, for the lower-left
x-coordinate of the cell.
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The fields lly, urx, and ury are initialized similarly. The
functions MINI() and MAXI() compute the minimum and maximum,
respectively, of their two arguments.

The last LINK statement provides pointers from the pointer
array of each cell record to the chains of box records. The box
records associated with each cell are grouped in chains; a chain of
box records is provided for each mask layer. MAX LAYER is the
number of layers supported by a technology.

5.2 Preprocessing
The .sim and .ca formats support only such entities as

transistors, nodes, rectangles, and labels. In the .ca format, a matrix
is given as transformation parameters. Storing these entities and the
transformation matrix in relational tables can be easily performed by
an input scanner. No further processing is necessary for the .sim
and . ca formats.

Besides the entities mentioned above, the .cif format supports
the Manhattan polygons and wires that are converted into rectangles
when an application program builds a data structure. Manhattan
geometry means that the edges are parallel to the x or y axis.
Therefore, our input scanner for the .cif format converts, in advance,
the Manhattan polygons and wires into rectangles.

Although some synthesis tools generate geometry at arbitrary
angles, sometimes called Boston geometry, designers rarely use such
a facility. The reason is that arbitrary-angle design rules do not exist
for many IC processes and, if they did, would be so difficult to check
that only a computer could produce error-free layout. In this
research, we only consider the Manhattan geometry.

In the .cif format, translation is specified as the letter T
followed by an x, y offset. These offsets will be added to all
coordinates in the subroutine, to translate its graphics across the
mask. Rotation is specified as the letter R followed by an x, y vector
endpoint that defines a line to the origin. The unrotated line has the
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endpoint (1, 0), which points to the right. Mirroring is available in
two forms: MX to mirror about the x axis and MY to mirror about the
y axis. The geometry is flipped about the axis by negating the
appropriate coordinate.

Any number of transformations can be applied to an object and
their listed order is the sequence that will be used to apply them.
Since transformation parameters are not given as a matrix, the input
scanner for the .cif format must compute the transformation matrix
based on the given parameters for rotation, translation, and
reflection. Current programs that use the .cif format compute these
transformation matrices at the beginning of their execution.

The .cif format supports arguments to the DS (definition start)
statement, which are the cell number and a scaling factor. The
scaling factor for a subroutine defined by DS and DF (definition
finish) statements consists of a numerator followed by a denominator
that will be applied to all values inside the subroutine. This scaling
allows large numbers to be expressed with fewer digits and allows
ease of rescaling a design. The input scanner applies the scaling
factor to all values inside the subroutine and then stores the resultant
values in relational tables.

5.3 Readcif
Readcif is a library routine that builds a data structure from a

.cif file in Manhattan geometry. Readcif is used by many programs
such as mextra, cifplot, and mcp. Fig. 5-6 shows the .cif file for the
2-bit adder, which is converted with caesar from the .ca files shown
in Fig. 5-2.

The relational tables constructed from the .cif file after
preprocessed by the input scanner are shown in Fig. 5-7 (some are
not complete). Table Cell stores information on cells in the
hierarchical description of the 2-bit adder. Each cell has a cell
number (cell num) and a name (cnarne).

Table Call stores information on cell calls. Each call has a call



35

number (id), the cell name of a caller (caller), the cell name of a
callee (callee), and the left six elements of a 3X3 transformation
matrix for the callee (a, b, c, d, e, and j). Three transformations can
be applied in the .cif format: translation, rotation, and mirroring.
The input scanner for the .cif format converts these transformation
information to a 3X3 matrix.

Table Label stores information on labels. Each label has a label
number (id), a cell name to which that label belongs (cell), the name
of the label ( lname), and label location (x and y).

Table Box stores information on boxes. Each box has a box
number (id), the cell name to which a box belongs (cell), and a mask
layer associated with the box (layer). Attributes 1, b, r, and t of table
Box represent the left -, bottom-, right-, and top-coordinates of each
box

Fig. 5-8 shows the part of the structured view used by readcif.
There is one-many relationship between the cell record type and
each of the call, box, and label record types. Readcif accepts
Manhattan polygons and wires and converts them to boxes.
NUMHASH, an indexing mechanism based on hashing, is supported
by the mapping subsystem and is used to support fast access to cell
records based on hashed cell numbers. The current readcif program
uses about 21 pages of programming statements to build this
structured view, which can be constructed by the script given in Fig.
5-9.
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MAGIC

I ESIM

ICRYSTAL

CAESAR

IMEXTRA I

CIFPLOT I

PRESIM RNL

tools, O -- library routines, 0 files

Fig. 5-1 VLSI design tools and data formats used by them.



tech cmos-pw

« metal »
rect 512 10 527 20

rect 517 10 527 20

« polysilicon »
rect 490 -40 496 177

rect 490 171 496 177

use fadder

transform 1 0 0 0 1 0

box 0 -40 502 374

use ladder

transform 1 0 532 0 1 0

box 0 -40 502 374

« end »
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tech cmos-pw

« metal »
rect 158 11 170 19

rect 162 11 170 19

« polysilicon »

rect 146 -31 152 -20

rect 146 -31 267 -25

use hadder

transform 1 0 0 0 1 0

box 0 0 158 354

use or2

transform 1 0 348 0 1 0
box 0 0 154 135

use hadder

transform 1 0 174 0 1 0

box 0 0 158 354

« end »

adder2.ca fadder.ca

(a) Hierarchy. (b) The .ca

Fig. 5-2 Hierarchy of the .ca files for a 2-bit adder.
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Call

et: 1.11: I. . IA I 1

Box

id cell layer Ilx fly urx ury

20adder2 4 512 10 527

2 adder2 4 517 10 527 20

15 adder2 1 490 -40 496 177

16 fodder 4 158 11 170 19

Fig. 5-3 Relational tables of a 2-bit adder for .ca format.
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Fig. 5-4 Structured view of a 2-bit adder for vic.



FOR EACH Label
PROVIDE STRUCT label

char *name = Label.lname;
int x = Label.11x;
int y = Label.11y;
int layer = 32;
struct label *next;

FOR EACH Box
PROVIDE STRUCT box {

int llx = Box.11x;
int lly = Box.11y;
int urx = Bax.urx;
int ury = Box.ury;
struct box *next;

FOR EACH Call
PROVIDE STRUCT call {

char *name = Call.callee;
int a = Call.a;
int b = Callb;
int c = Call.c
int d = Call.d;
int e = Call.e;
int f = Calif;
struct call *next;
struct cell *definition;

/* for each tuple in table Label * /
/* label record definition */
/* name of label */
/* lower-left x- coordinate of label */
/* lower-left y-coordinate of label */
/' layer index for label is 32 */
/* link in label list */

/* for each tuple in table Box' /
/* box reocrd definition V
/* lower-left x-coordinate of box */
/* lower-left y-coordinate of box */
/* upper-right x-coordinate of box */
/* upper-right y-coordinate of box */
/* link in box list V

/* for each tuple in table Call */
/* call record definition */
/* cell name of callee
/* 3X3 transformation matrix */

I.
/*
/*

ado */
b e 0 */
c f 1 */

/* link in call list */
/* pointer to cell record of callee V
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FOR EACH Cell /* for each tuple in table Cell'/
PROVIDE STRUCT cell { /* cell record definition */

char *name = Cell.cname; /* name of cell'/
int a = 1; /* multiplier, set to 1 for the .ca format */
int b = 1; /* divisor, set to 1 for the .ca format
int llx = MINI("Select MIN(Box.11x) From Box Where Box.cell = %Cell.cname ",

MINI("Select MIN(a*SymY.11x + b*SymY.11y + c)
From Cell SymX, Call, Cell SymY
Where SymX.cname = Call.caller
And Call.callee = SymY.cname
And SymX.cname = %Cell.cname",
"Select MIN(a*SymY.urx + b*SymY.ury + c)
From Cell SymX, Call, Cell SymY
Where SymX.cname = Call.caller
And Call.callee = SymY.cname
And SymX.cname = %Cell.cname"));

/* lower-left x-coordinate of cell'/

Fig. 5-5 Mapping script for vic.
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int lly = MINI("Select MIN(Box.11y) From Box Where Box.cell = %Cell.cname",
MINI("Select MIN(d*SymY.11x + e*SymY.11y + 1)

From Cell SymX, Call, Cell SymY
Where SymX.cname = Call.caller
And Call.callee = SymY.cname
And SymX.cname = %Cell.cname",
"Select MIN(d*SymY.urx + e*SymY.ury + f)
From Cell SymX, Call, Cell SymY
Where SymX.cname = Call.caller
And Call.callee = SymY.cname
And SymX.cname = %Cell.cname"));

/* lower-left y- coordinate of cell */
int urx = MAXI( "Select MAX(Box.urx) From Box Where Box.cell = %Cell.cname",

MAXI("Select MAX(a*SymY.11x + b*SymY.Ily + c)
From Cell SymX, Call, Cell SymY
Where SymX.cname = Call.caller
And Call.callee = SymY.cname
And SymX.cname = %Cell.cname",
"Select MAX(a*SymY.urx + b*SymY.ury + c)
From Cell SymX, Call, Cell SymY
Where SymX.cname = Call.caller
And Call.callee = SymY.cname
And SymX.cname = %Cell.cname"));

/* upper-right x-coordinate of cell */
int ury=MAXI("Select MAX(Box.ury) From Box Where Box.cname=%Cell.cname",

MAXI("Select MAX(d*SymY.lbc + e*SymY.11y + 0
From Cell SymX. Call, Cell SymY
Where SymX.cname = Call.caller
And Call.callee = SymY.cname
And SymX.cname = %Cell.cname",
"Select MAX(d*SymY.urx + e*SymY.ury + fl
From Cell SymX, Call, Cell SymY
Where SymX.cname = Call.caller
And Call.callee = SymY.cname
And SymX.cname = %Cell.cname"));

/* upper-right y-coordinate of cell */
struct box *boxIMAX_LAYEK /* pointer array of box for each layer */
struct label *label; /* list of labels connected to this cell */
struct call *child; /* list of calls connected to this cell */

PROVIDE BSTREE INDEX cell tree /* provide binary search tree index */
ON cell(name) /'' on cell name */

Fig. 5-5 Continued.



42

LINK cell AND label (ONE-MANY)
WHERE Cell.cname = Label.cell
WITH MEMFTR : label

SIBPTR : next

LINK cell AND call (ONE-MANY)
WHERE Cell.cname = Call.caller
WITH MEMPTR : child

SIBPTR : next

LINK call AND cell (ONE-ONE)
WHERE call.name = cell.name
WITH MEMPTR : definition

for (1=0: i<MAXLAYER; i++) (
LINK cell AND box (ONE-MANY)
WHERE Cell.cname = Box.cell AND Box.layer = Si
WITH MEMPTR : box[Sif

SIBPTR : next

Fig. 5-5 Continued.
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DS 1 200
9 nor2;

4;

L CP; B 12 52 14 26;
B 48 12 32 58;
B 12 44 14 86;

LCD; B 28 28 42 30;
B 16 28 36 58;

94 in2# 72 136;
94 Vdd! 4 220;

DF;

DS 2 200 4;
9 inv;
L CP; B 44 32 98 112;

B 12 96 114 48;

94 in# 56 116;

DF;

DS 8 200 4;
9 fadder,
L CP; B 12 22 298 -51;

B 242 12 413 -56;

C 7 R 1 OTO 0;
C 6 R 1 0 T 696 0;
C 7 R 1 0 T 348 0;
DF;

DS 9 200 4;
9 adder2;
L CP; B 12 434 986 137;

B 12 12 986 348;

94 Z1 1644 792;

C 8 R 1 0 T 0 0;
C 8 R 1 0 T 1064 0;
DF;

C 9;
End

Fig. 5-6 The .cif file for a 2-bit adder.



Cell

Label

id cell !name x y layer

nor2 in2# 72 136 NUI I

2 nor? Vddl 4 220 NUI I

12 inv in# 56 116 NULL
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Call

id caller callee a b c d

1 and2 nand2 1 0 0 0 1 0

2 and2 inv 1 0 92 0 1 0

3 or2 nor2 0 0 0 1 0

4 or2 inv 1 0 88 0 1 0

5 hadder xor2 1 0 158 0 1 194

6 hadder and? 1 0 0 0 1 0

7 fadder hadder 1 0 174 0 1 0

8 fadder hadder 1 0 0 0 1 0

fadder nr2 1 0 348 0 1 0

10 adder2 fadder 1 0 0 0 1 0

11 adder2 fadder 1 0 532 0 1 0

Box

id

1

cell

nor2

layer

4

I

8

h

0

r

20

t

52

2 nor2 4 8 52 56 64

15 nor? 1 116

76

112

96

128

120

124

12816 inv 4

Fig. 5-7 Relational tables of a 2-bit adder for .cif format.
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441W
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4111111110

next

adder'

calls

boxes

lahplq elpio 411111P0

Fig. 5-8 Structured view of a 2-bit adder for readcif.



46

FOR EACH Box
PROVIDE STRUCT box {

int type = 15;
struct box *next;
int b = Bomb;
int 1= Box.1;
int t = Box.t;
int r = Box.r;
int layer = Box.layer;

FOR EACH Call
PROVIDE STRUCT call (

int type = 14;
struct call *next;
int b;
int 1;
int t:
int r
int layer = Box.layer;
int symNo = "Select cell_num From Cell Where Cell.cname = %Call.callee";

/* cell number of callee */

/* for each tuple in table Box */
/* box record definition */
/0 object type */
/* link in box list V
/* bottom coordinate of box */
/0 left coordinate of box */
/* top coordinate of box V
/* right coordinate of box */
/* layer associated with box 0/

/* for each tuple in table Call 0/
/* call record definition 0/
/0 object type'/
/* link in call list */

char *callee = Call.callee;
char *instance;
int a = Call.a;
int b = Call.b;
int c = Call.c
int d = Call. d;
int e =
int f = Call.f;

FOR EACH Label
PROVIDE STRUCT label (

int type = 17;
struct label *next;
int b = Label.y;
int 1= Label.x;
int t = LabeLy;
int r = Label.x;
int layer = Label.layer;
char *name = LabeLlname;
char *hype;
int used;
int len;

/* 3X3 transformation matrix */

/0 a d 0 */
/* b e 0 0/
/* c f 1 */

/* for each tuple in table Label */
/' label record definition 0/
/0 object type */
/0 link in label list */
/0 bottom-coordinate of label */
/0 left-coordinate of label */
/0 top-coordinate of label 0/
/* right-coordinate of label */
/* layer associated with label */
/* label name'/

Fig. 5-9 Mapping script for readcif.



FOR EACH Cell
PROVIDE STRUCT cell {

int type = 13;
struct cell *next;
int b;
int 1;
int t;
int r;
int n = Cell.cell_num;
struct call *calls;
struct box *boxes
struct label *labels;
int hook;

}
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/* for each tuple in table Cell */
/* cell record definition */
/* object type */
/* link in hash bucket */
/* bottom-coordinate of cell */
/* left-coordinate of cell */
/* top-coordinate of cell */
/* right-coordinate of cell V
/* cell number */
/* list of calls connected to this cell */
/* list of boxes connected to this cell */
/* list of labels connected to this cell */

PROVIDE NUMHASH INDEX Cell table /* provide number hash index */
ON cell(n) /* on cell number */

LINK cell AND label (ONE-MANY)
WHERE Cell.cname = Label.cell
WITH MEMPTR : labels

SIBPTR : next

LINK cell AND box (ONE-MANY)
WHERE Cell.cname = Box.cell
WITH MEMFTR : boxes

SIBP1R : next

LINK cell AND call (ONE-MANY)
WHERE Cell.cname = Call.caller
WITH MEMPTR : calls

SIBPTR : next

Fig. 5-9 Continued.
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CHAPTER VI

IMPLEMENTATION OF DATA-STRUCTURE BUILDER

In this chapter, we discuss the implementation of our
data-structure builder. The data-structure builder consists of a
simple input scanner and a mapping subsystem as shown in Fig. 3-1.
There should be an input scanner for each design format, and we
implemented input scanners for the .sim and .ca formats. The
mapping subsystem translates a mapping script into the code that
reads design data from a database and constructs a structured view.
We explain how this translation process is performed by the
translator of the data-structure builder.

6.1 Input Scanners
A statement of each design format usually consists of a keyword

or letter followed by parameters. As the first keyword or letter of a
line (statement) determines a statement type, it is easy to program
an input scanner based on a simple finite state automaton. An input
scanner reads design data in a format such as .sim, .ca, or .cif format,
and it then stores them in appropriate relational tables. In the
following sections, we discuss the algorithms of the scanners for the
.sim and .ca formats.

6.1.1 Input Scanner for .sim Format (Simscan)
Fig. 6-1 shows the algorithm simscan, which is the scanner for

the .sim format. In the main routine, simscan creates three
relational tables for the .sim format. Table Trans stores the
information on transistors, table Node stores the information
concerning nodes, and table Cap stores the information on
capacitances.
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The procedure input° scans a .sim file, storing record values in
the appropriate relational tables. In the .sim format, lines beginning
with the mark 'CP' indicate redirection of input from the named file.
Sirnscan uses the recursive call for the input to revert to the current
file when the end-of-file is reached.

In the procedure newtransO, the hashing table over the node
names is used to determine if the nodes associated with gate, source,
and drain of a transistor are already defined. If a node is newly
defined, then its name and parameters are inserted into table Node.

6.1.2 Input Scanner for .ca Format (Cascara)
Fig. 6-2 shows the algorithm cascan, which is the scanner for

the .ca format. In the main routine, cascan creates four relational
tables for the .ca format. Table Cell stores the information on cells,
table Call stores the information concerning cell calls, table Box
stores the information on boxes, and table Label stores the
information on labels. Cascan first stores the name of a top-level cell
and its parameters into table Cell.

The procedure load° scans a .ca file, storing record values in
the appropriate relational tables. In the statements for the
parameter CALL of switch statement, if the callee is a new cell, its
name is added to the call list, which is the list of subcell names in
the caller's cell definition. This list is used for a recursive scan in
the hierarchy of the .ca files for a cell definition. Cascan also uses a
binary search tree of cell nodes (cell tree) sorted by cell names to
determine if a given cell is a new one. If there are cell calls in a cell
definition, the associated files of those subcells are scanned and
processed in a recursive manner.

6.2 Mapping Subsystem
The mapping subsystem converts the data stored in relational

tables into internal data structures suitable for VLSI/CAD tools,
following a script written in our mapping language. The mapping
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subsystem translates a mapping script into INFORMIX_ESQL/C
[INFO-87]. INFORMIX_ESQL/C is C with extentions for embedded
SQL statements. Fig. 6-3 shows how a script is processed by the
mapping subsystem of our data-structure builder.

A script file is preprocessed into two files: the header file that
contains structure definitions and the function file that contains
C-functions. The global variables used by the functions are defined at
the beginning of the function file, and the global variables used by the
application program are defined in the header file. Functions are
produced in INFORMDC ESQL/C. The header file is produced in C.

The record type definition of each struct-statement is
translated into a corresponding C-structure definition and a
record build() function call that constructs the records of that type.
The field initialization expression provided for a field definition is
translated into a field_init() function call. The index-statement is
translated into an index structure definition and an index() function
call that constructs the indexing structure. The link-statement in a
script is translated into a link() function call. The link() function
links the constructed records by using the sort-join method based on
the fields specified in a link statement.

The function init(), which calls each of the functions mentioned
above, is provided at the beginning of an application program. At the
beginning of a program execution, the generated code reads the
design data from the database for initial C-structure building. Since
the major portion of a typical VLSI/CAD program is CPU-intensive,
the disk access overhead at the beginning of a program execution is
not excessive.

6.2.1 Functions for Generating Structured View
In this section, we show and explain the functions that are

generated from the script shown in Fig. 3-5 for presim/rnl. The
header file rnldb.h containing structure definitions and global
variables used by presim/rnl is shown in Fig. 6-4(a), and the global
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variable definitions in the function file rnldb.ec are shown in Fig.
6-4(b).

init()
The code generated for the init() function is shown in Fig. 6-5.

In the function init(), a target database is selected and then the
cardinalities of tables Node and Trans are retrieved respectively into
the global variables num_node and num_trans with select
statements. The cardinality of a table is used in other functions.
Function init() calls each of the functions described in the following
for a structured view construction.

record_build()
Fig. 6-6 shows the code for the record_build() function. The

record_build0 function creates the dynamic array nodeTable whose
elements are pointers to the node record type with calloca, an UNIX
system call. The size of the array is same as the cadinality of the
Node table. The record_buildu function then creates the node
records, each of which is pointed by each array element. The array
transTable and the trans records are created similarly. Fig. 6-7
shows the arrays nodeTable and transTable, and the corresponding
node and trans records that are created by function record_build()
for presim/rnl.

index()
Fig. 6-8 shows the code for the index() function. The index()

function creates the hash table hashnode based on the nname field of
the node record type as specified in the script. Each element of
array hashnode points a node record. The variables hashnode and
HASHSIZE are defined as global variables in the header file so that
they can be accessed by presim/rnl.

The hash table hashnode on the basis of string values for the
nname field of the node records is shown in Fig. 6-7.
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field_init()
The generated code for the fteld_init0 function is shown in Fig.

6-9. A field initialization expression provided in a field definition is
translated into a field_init0 function call. The expression for a field
initialization may involve two kinds of special terms that need to
access database tables. One, represented by table-name I.'
column-name, is to get an attribute value in a table and the other,
represented by an SQL statement enclosed by double quotes, is to get
a value with the query. The SQL statement for a field initialization
has parameters that indicate a search condition for a particular
record.

In the script shown in Fig. 3-5(a), the fields npot and nname in
the node record type definition are initialized respectively with
expressions Node. npot and Node.nname. Also, the fields twidth,
tlength, and ttype in the trans record type definition are initialized
respectively with expressions Trans.twidth * LAMBDA, Trans.tlength
* LAMBDA, and Trans. ttype. In these expressions, LAMBDA is 1.0.
The field ncap of the node record type definition is initialized with
an expression that involves two select (SQL) statements. Each select
statement has a search condition: Trans.gate = %Node.nname for the
first statement and Cap.cnode = %Node.nname for the second
statement. For both statements, the search parameter is
Node.nname that is preceded by a percent mark and it is same with
the expression (term) for the nname field of the node record type
definition.

The field_init() function first creates the dynamic arrays
nodenpot, nodenname, transtwidth, transtlength, and transttype,
and it then stores the attribute values for the above terms and
parameter into the arrays. The select statements used in the ncap
field initialization are prepared in the string forms to be used in the
following for-loop. In the for-loop, these select statements are
submitted to the DBMS as a character string with the parameters
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replaced by a previously retrieved element of array nodenname for
each node record, which will be interpreted as an SQL query and
executed by the DBMS. Other terms in the expressions that need to
access database tables are also replaced with corresponding array
element.

link()
Fig. 6-10 shows the generated code for the link() function that

links the constructed records by using the sort-join method. In the
script shown in Fig. 3-5(b), there are three link statements that
provide the linkages of three one-many relationships for the gate,
source, and drain connections. In the where-clauses, the conditions
for establishing the linkages are specified by Node.nname =
Trans.gate, Node.nname = Trans.source, and Node.nname =

Trans.drain. Therefore, we need the attribute values of the nname
field of table Node and the gate, source, and drain fields of table
Trans because the conditions are specified by the column names of
the tables.

In the link() function, procedure keytable() retrieves these
attribute values with select statements and stores them in the
dynamic arrays gatetrans, sourcetrans, draintrans, and nnamenode.
These arrays have two fields recid and reckey as declared in the
header file. The recid field stores tuple identification numbers and
the reckey field stores the values of an attribute used in a condition.
In the keytable() procedure, procedure quickSort() sorts these
dynamic arrays according to the reckey values and performs the sort
part of the sort-join method.

The second procedure one_many 10 in the link() function
establishes linkages for the gate connection between the node
records and the trans records. Procedures one_many2() and
one_many30 establish linkages respectively for the source and drain
connections. These procedures perform the join part of the
sort-join method.
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We now show how the sort-join method provides linkages by
using a simple example. Fig. 6-11 shows the sort-join method for
providing linkages of one-many relationship for the gate connection
between the node records and the trans records. Fig. 6-11(a) shows
arrays nnamenode and gatetrans. The reckey field of array
nnamenode stores node names and that of array gatetrans stores the
node names to which the gates of transistors are connected.
Procedure quickSort() sorts these arrays and the resultant arrays are
shown in Fig. 6-11(b).

In Fig. 6-11(c), the indexes of two arrays nodeTable and
transTable that are created by the record_build() function serve as
tuple identification numbers and correspond with the recid fields of
the arrays nnamenode and gatetrans. In Fig. 6-11(b), for the first
element in array nnamenode whose reckey value is "a" and recid
value is "1", there are three elements that match with the "a" in array
gatetrans and those three elements have recid values "2", "3", and
"6". Therefore, the one many 10 function provides, beginning at the
ngate field of the node record pointed by the element whose index
value is "1" in array nodeTable, a pointer chain that threads through
the glink fields of the trans records pointed by the elements whose
index values are "2", "3", and "6" in array transTable. Procedure
one_manyl() then performs the same method for the second
element in array nnamenode, scanning for matching elements in
array gatetrans from the index value "3". The one_manyl()
procedure scans array nnamenode, scanning for matching elements
in array gatetrans until either of two arrays is exhausted, providing
linkages of one-many relationship. Fig. 6-11(c) shows the part of
linkages established by procedure one_manyl() for the gate
connection.

If the condition of a link statement is specified by field names
of two record types, then the records of each type themselves are
sorted and scanned to establish linkages between the record types
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for one-one or one-many relationships.

Procedure memspace() shown in Fig. 6-12, allocates a bulk
memory space and returns the amount of memory that is requested
by the functions described above. As there are many memory
allocation requests throughout a structured view construction
process, this procedure saves execution time of an application
program.

6.2.2 Translation
In this section, we first discuss the symbol table and abstract

syntax tree used by the translator of our mapping subsystem and then
present the algorithms for the major modules that generate the
functions to construct a structured view.

The symbol table in Fig. 6-13(a) describes the data structure
that the translator constructs from the mapping script for
presim/rnl. A node of a symbol table contains, among other
informations, source text to make it easier to generate a target code.

In the symbol table, nodes for the record type definitions are
linked in linear list and there is a head pointer records addressing
the first node of the list. A node in the list has the field fields, which
is a head pointer pointing the first node of the list for field
definitions in a particular record type definition. If a field is
initialized with an expression, then the field init in a field definition
node points a tree that represents the expression. As shown in the
script, the capacitance field ncap of the node records is initialized
with an expression involving SQL statements. In Fig. 6-13(a), this
expression is represented with the tree pointed by the init field of
the ncap field definition node and the tree node contains the source
text for each term in the expression.

If a record type is declared with the typedef construct, then a
node containing the record name and the pointer name for that
record type is added to the list pointed by the head pointer typedefs
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as shown in Fig. 6-13(b).
Fig. 6-14 shows the abstract syntax tree that the translator

constructs from the link statements of the script for presim/rnl. A
tree node also contains source text for easy code generation. The
pointer linkages is the head pointer addressing the first element of a
linked list and the pointer linktree of each node in the list points a
tree representing the link-statement construct.

Information such as index-kind and index-name on an
index-statement construct is stored in global variables for code
generation phase.

The major modules in code generation are genInitO,
genRecord_build0, genlndexO, genField_initO, and genLink() which
generate respectively the functions initO, record_build0, index(),
field_initO, and link(). Fig. 6-15 through Fig. 6-19 show the
algorithms for the major modules.



main () (

Open .sim input file
Create database tables

input (.sim file)
Close .sim file

1

input (file) {

while (not end-of-file) (
Read a line
if (blank line)

Skip
if (first line and first character is ' I ')

Set the unit and technology
switch (first character of the line) (

case '@' : Open redirected file
input (redirected file)
Close redirected file

case 'e' : newtrans (n-channel)
case T : newtrans (n-channel zero threshold)
case v : newtrans (p-channel)
case 'd' : newtrans (depletion)
case T : newtrans (low-power depletion)
MSC 'c' : Insert capacitance and its parameters into Cap table

}

}

newtrans (type) (

Insert the transistor and its parameters into Trans table

if (the nodes associated with gate, source, and drain are new)
Insert those nodes and their parameters into Node table

}

Fig. 6-1 Algorithm simscan
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main () {

Set options and technology
Create database tables

Insert top level cell into Cell table

load (top-level cell)

load (cell) {

}

Open .ca file containing the cell definition
Initialize cell definition variables

while (not end-of-file) (
Read a command line
switch (command class) (

case BOX: Insert box and its parameters into Box table
case CALL : Insert cell call information and transformation matrix

into Call table
if (there is no entry for callee in Cell table) {

Add the callee and its parameters into Cell table
Add callee to the call list

/" call list keeps subcell names in the caller's cell definition /

case END : Restore cell definition variables
case LABEL : Insert label and its parameters into Label table
case LAYER : Set the current layer index

Close . ca file
Add the cell name to the cell tree
/ cell tree is a binary search tree of cell nodes sorted by cell names

for (each callee in the call list)
if (the callee is not found in cell tree)

load (callee)

Fig. 6-2 Algorithm cascan.
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Script File
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Output Modules

Header File

Function File

#include Header File
global def.

init(name)
record build()
field_init()
link()
index()

}

VLSI/CAD Tool

#include Header File

main()
init(dbname)

BODY

}

Fig. 6-3 Mapping subsystem strategy.
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typedef struct trans *tptr;
typedef struct node *nptr;
typedef struct key *keyptr;

struct node {
nptr nlink;
tptr ngate;
tptr nsource;
tptr ndrain;
nptr hnext;
float ncap;
float viow;
float vhigh;
short tplh;
short tphl;
long ndelay;
long ctime;
short npot;
short nflags;
char * nname;
char statestatus;

struct trans {
nptr gate;
nptr source;
nptr drain;
tptr glink;
tptr slink;
tptr dlink;
float twidth;
float tlength;
float tnumber;
int ttype;

};

struct key {
int recid;
char *reckey;

};

#define HASHSIZE 731
nptr hashnode[HASHSIZE];

(a) Header file.

Fig. 6-4 Header file and global definitions for presim/rnl.
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#include <stdio.h>
#include "rnldb. h"

$inc lude sqlca;

$int num_node;
$int num trans;
nptr *nodeTable;
tptr *transTable;
keyptr gatetrans;
keyptr sourcetrans;
keyptr draintrans;
keyptr nnamenode;
short *nodenpot;
char *nodenname;
float *transtwidth;
float *transtlength;
int *transttype;

char *memspace();
char *storage;
#define NFREE 4096
int nfree = 0;

(b) Global definitions.

Fig. 6-4 Continued.
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init(name)
char *name;

char *dbname;

dbname = name;
database $dbname;

select count(*)
into $num_node
from node;
select count(*)
into $num_trans
from trans;

record_build();
fieldinit();
link();
indexx();

Fig. 6-5 Generated code for function init0.
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record_build()
{ register int i;

nodeTable = (nptr *) calloc(num_node, sizeof(nptr));
for(i=0; i<num_node; i++)

nodeTable[i] = (nptr) memspace(sizeof(struct node));

transTable = (tptr') calloc(num_trans, sizeof(tptr));
for(i=0; i<num trans; i++)

transTable[i] = (tptr) memspace(sizeof(struct trans));

}

Fig. 6-6 Generated code for function record build°.
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ngate nsource ndrain

ngate nsource ndrain ....

ngate nsource ndrain ....

nsource ndrain ....ngate

hashncde

gate source drain

gate source drain
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transTable

gate source

gate source

drain

drain

(le urce drain

Fig. 6-7 Data structure constructed by functions record build° and
index°.
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indexx()
register int i,f;

for(i=0; i<HASHSIZE; i++)
hashnode[i] = 0;

for(i=0; i<num_node; i++) {
f = hashcode(nodeTable[i]->nname);
nodeTable[i]->hnext = hashnode[f];
hashnode[f] = nodeTable[i];

}

}

hashcode(name)
char *name;

int 1=0;

while('name) i = (MO + *name++ - '0') % HASHSIZE;
return(i<0 ? i+HASHSIZE : i);

}

Fig. 6-8 Generated code for function index°.
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field_init()
register int i;

$ short hnpot;
$ string hnname[20];
$ float htwidth;
$ float htlength;
$ int httype;
$ float ncap_0;
$ char qstmcap_0[80];
$ char` pncap 0;
$ float ncap_1;
$ char qstrncap_1[80];
$ char * pncap_1;

nodenpot = (short `) calloc(num_node, sizeof(short));
nodenname = (char ") calloc(num_node, sizeof(char *));
transtwidth = (float') calloc(num_trans, sizeof(float));
transtlength = (float') calloc(num_trans, sizeof(float));
transttype = (int ") calloc(num trans, sizeof(int));

declare node_cur cursor for
select npot, nname
from node;

declare trans_cur cursor for
select twidth, tlength, ttype
from trans;

open node cur;
for(i =0; i<num_node; i++) {

fetch node cur into $hnpot, $hnname;
nodenpot[i] = hnpot;
nodenname[i] = (char') memspace(strlen(hnname) + 1);
stcopy(hnname, nodenname[i]);

$ close node_cur;

open trans cur;
for(i =0; i<num_trans; i++) {

fetch trans cur into $htwidth, $htlength, $httype;
transtwidth[i] = htwidth;
transtlength[i] = htlength;
transttype[i] = httype;

1

close trans_cur;

Fig. 6-9 Generated code for function field init0.



strcpy(qstmcap_O, "select sum(twidth tlength) from Trans
where Trans.gate = ? ");

prepare qidncap_O from $qstrncap_0;
declare curncap_0 cursor for qidncap_0;
strcpy(qstrncap_1, "select sum(cval) from Cap where Cap.cnode = ? ");
prepare qidncap_1 from $qstrncap_1;
declare curncap_1 cursor for qidncap_1;

for (i =0; i<num_node; i++) {
pncapO = nodenname[i];
open curncap_0 using $pncap_0;
fetch curncap_0 into $ncap_0;
if(sqlca.sqlwarn.sqlwarn1 == W)

ncap_O = 0.0;
close curncap_0;

pncap_1 = nodenname[i];
open cumcap_1 using $pncap_1;
fetch curncap_1 into $ncap_1;
if(sqlca.sqlwarn.sqlwarn1 == W')

ncap_1 = 0.0;
close curncap_1;

nodeTable[i]->ncap = 0.000690 ncap_0 + ncap_1;
nodeTable[i]->vlow = 0.3;
nodeTable[i]->vhigh = 0.8;
nodeTable[i]->npot = nodenpot[i];
nodeTable[i]- >nname = nodenname[i];

}

for (i =0; i<num_trans; i++) {
transTable[i]->twidth = transtwidth[i] 1.0;
transTable[i]->tlength = transtlength[i]* 1.0;
transTable[i]->ttype = transttype[i];

}

}

Fig. 6-9 Continued.
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link()

keyTables();
one_manyl 0;
one_many2();
one_many3();

one_manyl ()
{ int fromindex=0, toinclex=0;
int caseno, memptr=1;

while(fromindex < num_node && toindex < num_trans) {
if(strcmp(nnamenode[fromindex].reckey, gatetrans[toindex].reckey) > 0)
caseno = 1;

else if( strcmp (nnamenode[fromindex].reckey, gatetrans[toindex].reckey) < 0)
caseno = 2;

else
caseno = 3;

switch(caseno)
case 1 : ++toindex; break;
case 2 : ++fromindex; memptr =1; break;
case 3 :

if(memptr) {
nodeTable[nnamenode[fromindex].recid]->ngate

transTable[gatetrans[toindex]. recid];
memptr = 0;

}

else
transTable[gatetrans[toindex-1].recid]->glink = transTable[gatetrans[toindex].recid];

transTable[gatetrans[toindex].recid]->gate = nodeTable[nnamenode[fromindex].recid];
++toindex; break;

default : fprintf(stderr, "wrong case number");

Fig. 6-10 Generated code for function link0.
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one_many2()
{ int fromindex=0, toindex=0;
int caseno, memptr=1;

69

while(fromindex < num_node && toindex < num_trans) (
if( strcmp (nnamenode[fromindex].reckey, sourcetrans[toindex].reckey) > 0)
caseno = 1;

else if(strcmp(nnamenode[fromindex].reckey, sourcetrans[toindex].reckey) < 0)
caseno = 2;

else
caseno = 3;

switch(caseno) (
case 1 : ++toindex; break;
case 2 : ++fromindex; memptr =1; break;
case 3 :

if(memptr) {
nodeTable[ nnamenode [fromindex].recid]- >nsource =

transTable[sourcetrans[toindex]. recid];
memptr = 0;

else
transTable[sourcetrans[toindex-1 ]. recid]->slink =

transTable[sourcetrans[toindex]. rec id];

transTable[sourcetrans[toindex].recid]->source =
nodeTable[nnamenode[fromindex]. recid];

++toindex; break;
default : fprintf(stderr, "wrong case number");

one_many3()
{ int fromindex=0, toindex=0;
int caseno, memptr=1;

while(fromindex < num_node && toindex < num_trans) (
if(strcmp(nnamenode[fromindex].reckey, draintrans[toindex].reckey) > 0)
caseno = 1;

else if( strcmp (nnamenode[fromindex].reckey, draintrans[toindex].reckey) < 0)
caseno = 2;

else
caseno = 3;

Fig. 6-10 Continued.



switch(caseno) {
case 1 : ++toindex; break;
case 2 : ++fromindex; memptr = 1; break;
case 3 :
if(memptr) {

nodeTable[ nnamenode [fromindex].recid] - >ndrain =
transTable[draintrans[toindex]. recid];

memptr = 0;

else
transTable[draintrans[toindex-1 ]. recid]->dlink

transTable[draintrans[toindex]. recid];

transTable[ draintrans [toindex].recid] - >drain = nodeTable [rin amenode[fromindex].recid];
++toindex; break;

default : fprintf(stderr, "wrong case number);

keyTables()
{ register int i;
$ string kgatetrans[20];
$ string ksourcetrans[20];
$ string kdraintrans[20];
$ string knnamenode[20];

gatetrans = (keyptr) calloc(num_trans, sizeof(struct key));
sourcetrans = (keyptr) calloc(num_trans, sizeof(struct key));
draintrans = (keyptr) calloc(num_trans, sizeof(struct key));
nnamenode = (keyptr) calloc(num_node, sizeof(struct key));

declare ktrans_cur cursor for
select gate, source, drain
from trans;

declare knode_cur cursor for
select nname
from node;

Fig. 6-10 Continued.
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$ open ktrans_cur;
for(i =0; i<numtrans; i++) {

$ fetch ktrans_cur into $kgatetrans, $ksourcetrans, $kdraintrans;
gatetrans[i].recid = i;
gatetrans[i].reckey = (char') memspace(strlen(kgatetrans) + 1);
stcopy(kgatetrans, gatetrans[i].reckey);
sourcetrans[i].recid = i;
sourcetrans[i].reckey = (char") memspace(strlen(ksourcetrans) + 1);
stcopy(ksourcetrans, sourcetrans[i].reckey);
draintrans[i].recid = i;
draintrans[i].reckey = (char ') memspace(strlen(kdraintrans) + 1);
stcopy(kdraintrans, draintrans[i].reckey);

}
$ close ktrans_cur;

$ open knode_cur;
for(i=0; i<num_node; i++) (

$ fetch knode_cur into $knnamenode;
nnamenode[i].recid = i;
nnamenode[i].reckey = (char') memspace(strien(knnamenode) + 1);
stcopy(knnamenode, nnamenode[i].reckey);

}

$ close knode_cur;

quickSort(gatetrans, num_trans);
quickSort(sourcetrans, num_trans);
quickSort(draintrans, num_trans);
quickSort(nnamenode, num_node);

)

quickSort(a, n)
struct key a[];
int n;
{ int k;

char 'pivot,

if(find_pivot(a, n, &pivot) != 0) {
k = partition(a, n, pivot);
quickSort(a, k);
quickSort(a+k, n-k);

1

Fig. 6-10 Continued.
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find_pivot(a, n, pivot .ptr)
struct key a[];
int n;
char * *pivot .ptr;
{ int i;

for(i =1; i<n; i++)
if(strcmp(a[0].reckey, a[i].reckey) != 0) {

*pivot_ptr = (strcmp(a[0].reckey, a[i].reckey) > 0) ? a[0].reckey :
a[i].reckey;

return(1);

}
retum(0);

}

partition(a, n, pivot)
struct key all
int n;
char *pivot;
{ int i=0, j=n-1;

while(i <= j) (
while(strcmp(agreckey, pivot) < 0)

i++;
while(strcmp(a[j].reckey, pivot) >= 0)

}--;
if(i < j)

swap(84++], &ali--]);
)
return(i);

}

swap(p, q)
keyptr p, q;
{ struct key temp;

temp = "p;

*P = *q;
*q = temp;

}

Fig. 6-10 Continued.
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char *memspace(n)
int n;

{ char *p;

n = (n + 3) & -3;
if(n > nfree) {

if(n > NFREE) {
if((p = (char *) malloc(n)) == NULL)

fprintf(stderr, "No more room");
exit(0);

1

return(p);
}

if((storage.(char *) malloc(NFREE)) == NULL) (
fprintf(stderr, "No more room");
exit(0);

}

nfree = NFREE;
)

nfree -= n;
p = storage;
storage += n;
return(p);

Fig. 6-12 Procedure merrtspace0.
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"trans" fields next

I

(a) Symbol table.
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(b) Linked list for typedef construct.

recname ptrname next

Fig. 6-13 Symbol table used by translator.
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a NT:

Fig. 6-14 Abstract syntax tree for link-statements.



genlnit 0 {

Declare global variables

Generate code to select a database

}

while there are more record definition nodes in the symbol table
if record type is declared with struct-statement

Get the cardinality of the table

Generate code that calls functions for structured view construction

Fig. 6-15 Algorithm for module genlnit0.
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genRecord_build 0 (

while there are more record definition nodes in the symbol table {
if record type is declared with typedefconstruct

Declare the record type with typedefconstruct in header file
else

Declare record type in header file
while there are more field definition nodes for the record type

Declare field definition in header file
}

Declare global variables in function file

while there are more record definition nodes in the symbol table {
if record definition is in struct-statement (

Generate code that creates dynamic pointer arrays and the records
pointed by each of the array element

)
}

Fig. 6-16 Algorithm for module genRecord build0.
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genlndex 0

Get the data type for the indexed field from symbol table

switch (index type) (
case STRHASH : Declare global variables for STRHASH in header file

Generate code for string hash index in function file
case NUMHASH : Declare global variables for NUMHASH in header file

Generate code for number hash index in function file
case BSTREE : Declare global variables for BSTREE in header file

Generate code for binary search tree in function file
}

}

Fig. 6-17 Algorithm for module genlruiex0.
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genField_init 0 {

while there is no entry in the term list
/' term list keeps terms that need to access database tables in expressions

Declare host variables for the term

while there is no entry in the SQL-string list
/ * SQL-string list keeps terms that are SQL statements in expressions */

Declare necessary string variables for the term

111

while there is no entry in the term list
Generate code to create dynamic arrays

/$ these arrays will store attribute values associated with the tern'/

while there is no entry in the term list {
Declare select statement for terms in term list
Generate code to fetch term values and store them in the dynamic arrays

while there is no entry in the SQL-string list
Prepare and declare parameterized select statement

while there are more record definition nodes in the symbol table (
while there are more field definition nodes in the field list of the record node (

if field initialization flag is set {
if expression involves SQL-string

Generate code to execute the SQL statement and store it in the
variable
GenExpress (abstract syntax tree for the expression)

else
GenExpress (abstract syntax tree for the expression)

}

genExpress (tree) {

if tree is not NULL (
genExpress (tree->leftchild)
Print term string
genExpress (tree->rightchild)

Fig. 6-18 Algorithm for module genField_initO.
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genLink 0

while there is no entry in key list
/* key list keeps the conditions of where clauses in link statements */

Declare host variables for storing attribute values of the conditions
Create dynamic arrays to store those values

while there is no entry in key list
Declare select statement to retrieve attribute values of the conditions
Generate code to fetch key values and store them in the dynamic arrays

Generate code to sort the dynamic arrays (quick sort) based on key strings

while there is no entry in key list
switch (mapping kind) (

case ONEONE : Generate function that establish linkages for one-one
relationship (sort-join) using the dynamic arrays

case ONEMANY : Generate function that establish linkages for
one-many relationship (sort-join) using the dynamic
arrays

case RONEONE : Generate function that establish linkages for one-one
relationship (sort-join)

case RONEMANY : Generate function that establish linkages for
one-many relationship (sort-join)

}

Fig. 6-19 Algorithm for module genLinkO.
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CHAPTER VII

PERFORMANCE MEASUREMENT

We reimplemented presim and vic according to the strategy
discussed in the previous chapter and analyzed their performance.
We actually provided for each program (presim or vic) the following
versions. The least efficient version (dbpresim or dbvic) used SQL
statements for record construction, field initialization and record
linking. The most efficient version (dbpresim2 or dbvic2) used SQL
statements only for record construction and record linking, and it
performed complex field initialization whose expression involved
SQL statements by user-provided C functions. Each of the other
versions measured the CPU time required for record construction,
field initialization, record linking, or index creation. Fig. 7-1 shows
the performance measurement results for presim and dbpresim.

We used as test cases 16-bit shift register arrays of 1 to 16
stages. We plotted the CPU times required for structure building for
different numbers of total records (transistor and node records)
constructed for register arrays. The programs were run on the
Sequent Balance 21000.

Presim is the original file-based program. Dbpresim is our least
efficient version of presim. As the number of records increased, the
CPU times of presim and dbpresim increased almost linearly. Since
the CPU time used by dbpresim was about 17 times greater than that
of presim, each function of dbpresim was analyzed to determine the
major cause of this performance deterioration, with the result also
shown in Fig. 7-2.

Each of the following programs measured the times required by
record construction, field initialization, record linking and index
creation. Record build constructs the records of the node and trans
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record types. Field initialization by the expressions provided in field
definitions is performed by fteld_init. Link provides pointers among
the constructed records. Index constructs the indexing structure
(STRHASH).

As can be seen from the figure, we discovered that the CPU
time of the field_init function took about 78% of that of dbpresim,
and hence was the major source of the overhead. This is because the
capacitance field ncap of each node record is initialized with an SQL
statement. For example, in the case for 11223 records, which
consisted of 4183 node records and 7040 transistor records, 4183
SQL statements were executed for this purpose.

In order to eliminate this excessive overhead, we modified
dbpresim by replacing the SQL statement for the initialization of the
ncap fields by a C procedure. This could be done easily because all
other fields whose values were used by this procedure were already
initialized by the record_build function. We called the modified
version dbpresim2. This change improved the performance by a
factor of about 3. Consequently, the CPU time of dbpresim2 became
only about 5 times greater than that of presim.

Most of the remaining overhead is in linking among
constructed records by the link function. The CPU time required for
record construction is comparable to that of the original presim.
The overhead due to the index creation is negligible. Fig. 7-3 shows
the performance comparison of presim, dbpresim and dbpresim2.

We also performed similar measurements for vic. The results
are shown in Fig. 7-4, Fig. 7-5, and Fig. 7-6. The CPU time of dbvic,
which is our least efficient version, is about 13 times greater than
that of vic. Our most efficient version, dbvic2, is about 3 time slower
than vic. The measured data for the vic programs were similar to
those for the presim programs.
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CHAPTER VIII

CONCLUSIONS AND FUTURE RESEARCH

In integrating various VLSI/CAD tools, it is desirable to store
design data in a centralized database. However, it is generally agreed
that conventional database systems are inefficient for VLSI/CAD
applications, since such applications often access large amounts of
data repetitively. Also, each application program needs a special data
structure best suited for its own use. In order to solve these
problems, we designed and implemented a data mapping subsystem
that converts various VLSI/CAD design data stored in relational tables
into an internal data structure that can be efficiently manipulated in
C. This data conversion process follows a script written in a
non-procedural mapping language. Besides constructing the data
structure, the script can also initialize certain fields by using
declarative SQL statements.

The results obtained from applying our technique to some real
VLSI/CAD tools have shown that our approach, compared to C
implementation, requires only about 1/10 of code for this data
conversion in VLSI/CAD programs. Although our data-structure
builder consumes several times more CPU cycles than a file-based C
implementation, this performance overhead is not excessive due to
the recent advancement of computer hardware.

If application programs are allowed to update data fields in a
structured view, a view update mechanism that propagates updates
from the structured view to the base relations may be required. The
view update problem has received considerable attention in the
database literature [BANC-81, DAYA-82, MASU-84, MEDE-86,
KELL-861. The view update problem can be defined as follows
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EVIAN-881: Consider a database and a view of the database, each
satisfying certain integrity constraints. Suppose that an update is
performed on the view that is valid with respect to the view. When
and how can such a update be translated into a valid update of the
underlying database?

Since the mapping from the database states to the view states is
many-to-one in general, the reverse mapping from a view to a
database state is not unique. Therefore, as proposed by [MASU -84]
and EKELL-861, a view update translation mechanism may have to
involve the users in resolving this ambiguity. The view update
translation mechanism, which propagates the values that have been
changed in the structured view to base relations, can be invoked at
the end of the program execution.

Another area for future research is an extention of our system as
shown in Fig. 8-1. Tuple database is simply a collection of tuples,
each of which represents a fragment of design information with an
arbitrary length. A meaningful unit such as composite objects is
usually a collection of heterogeneous tuples.

A query statement returns a set of possible tuples, which may
be heterogeneous. All operations on tuples are based on attribute
values and the database can be projected or sliced in many different
ways, allowing flexible grouping of design information without losing
the simplicity of the relational model.

After retrieving a set of possible tuples (database) by a select
statement, we can apply our mapping technique on the database to
construct a structured view for a VLSI/CAD application program.
This approach can support versioning, composite objects, layering,
etc.

A simple way of supporting versions that cut across relational
tables can be supported by providing attributes version-from and
version-to to every tuple. Then tuples belonging to the version ver
can be selected by applying the following condition version from ver
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version-to. We can support tables in a traditional relational database
simply by providing enumerated-type attribute tbl, whose values are
table names, to every tuple. The major goal of this extended system
is to enhance further the flexibility of the relational model without
losing its amicability for efficient query processing of design data.
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A.1 BNF Grammar of Mapping Language

In this appendix, we describe the complete BNF grammar for
our mapping language, and then explain the semantics of its various
constructs. In describing the grammar, we use the following
conventions.

1. [ A represents an optional (zero or one) occurrence of A.
2. A I B represents an occurrence of A or B.
3. Terminal symbols are represented in two ways: Reserved

keywords appear as themselves in bold characters, and
punctuation characters and operators are enclosed in single
quotation marks.

4. Syntactic units appear in italic characters (e.g.,
struct-statement).

statement ::= struct-statement
I index-statement
I link-statement

struct-statement ::= FOR EACH table-name
PROVIDE STRUCT record-type

record-type ::= record-type-name field-list T

field list ::= field-declaration';' [field -list ]

field-declaration ::= type-specifier declarator '=' expression ]

type- specifier ::= integer-type-specifier
I floating-point-type-speafier
I structure-type-reference

integer-type-specifier ::= signed-type-specifier
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signed-type-specifier ::=

unsigned- type specifier
character-type-specifier

short [ int ]
int
long f int ]

unsigned-type-specifier ::= unsigned short f hit I
I unsigned ( hit I
I unsigned long [ int ]

character-type-specifier ::= [ unsigned I char

floating-type-specifier ::= float
I long float
I double

structure-type-reference ::= struct record-type-name

declarator ::= simple-declarator
I array-declarator
I pointer-declarator

simple-declarator ::= identifier

array-declarator ::= declarator '[. constant T

pointer-declarator ::= '4" declarator

expression ::= term [ arithmetic-operator expression I

term ::= ['+' I '-'] value

value ::= constant
I table-name '.' column-name
I SQL-string

I '(' expression T
I function-name T expression ',' expression T

SQL-string ::= '' SQL-statement ""



function-name ::= MAXI

I MINI

arithmetic-operator ::= '+' I '-' I I '/'

record-type-name ::= identifier

table-name ::= identifier

column-name ::= identifier

index-statement ::= PROVIDE index-kind INDEX index-name
ON table-name T column-name T

index-kind ::= STRHASH

I BSTREE
I NUMHASH

index-name ::= identifier

link-statement ::= simple-link-statement
I for-link-statement

simple- link statement ::= link-clause
where-clause
with-clause
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link-clause ::= LINK record-type-name AND record-type-name 'C mapping-kind 'Y

record-type-name ::= type-name I alias I

mapping-kind ::= ONE-ONE

I ONE-MANY

where clause ::= WHERE predicate

predicate ::= condition
I condition AND predicate

condition ::= item-name '=' item-name
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item-name ::= table-name 1.' column-name
I record-type-name '.' field-name

with-clause ::= MEMPTR ':' field-name
I SIBPTR ':' field-name
BCKPTR field-name)]

for-link-statement ::= for for-expression simple-link-statement

for-expression ::= '(' loop-var constant ';' loop-var '<' constant ';' loop-var '++")'

loop-var ::= identifier

field-name ::= identifier

statement
A statement in a script can be a struct-statement,

index-statement, or link-statement.

struct-statement
A struct-statement is used to construct the records for the

tuples in a relational table. The type of the records to be constructed
for the tuples in a table table-name is specified by record-type.

record-type
The syntax of the record-type is similar to that of a structure

type in C. Selected attributes of each tuple and additional fields are
specified by field-list to form a record type record-type-name.
Nested record type definitions are not allowed.

field-declaration
Afield-declaration consists of a type-specifier of the field and a

declarator. The declaration of a field may include an expression that
initializes the field value.
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expression
An expression can be formed from constants, SQL statements

enclosed in double quotation marks, and the attributes of the current
tuple, each of which is specified as table-name 1: column-name.

function-name
A function-name can be MAXI or MINI, which computes the

maximum or minimum, respectively, of their two arguments.

SQL-statement
A SQL-statement may include parameters preceded by percent

marks. This SQL statement is submitted to the database
management system as a character string with the parameters
replaced by the actual values for a particular record.

arithmetic-operator
The binary arithmetic operators are +, *, and /. The binary +

and - operators have the same precedence, which is lower than the
precedence of * and /, which is in turn lower than unary + and -.

index-statement
An index-statement is used to construct an indexing

mechanism for fast accesses to records. The name of an index is
specified by index-name. The field to be indexed is specified as
record-type-name T field-name ')', which indicates that the index
should be provided for field field-name of record type
record-type-name.

index-kind
We support three kinds of indexes: STRHASH (string hash),

NUMHASH (number hash), and BSTREE (binary search tree).
Indexing mechanism STRHASH is based on hashing on character
strings. Indexing mechanism NUMHASH is based on hashing on
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numbers. Indexing mechanism BSTREE uses a binary search tree on
character strings.

link-statement
A link-statement that is used to provide pointers between two

record types can be a simple-link-statement or for-link-statement.

simple-link-statement
A simple-link-statement consists of link-clause, index-clause

and link-clause.

link-clause
A link-clause is used to provide pointers from the records of

the type R1 indicated by the first record-type-name to the records of
the type R2 indicated by the second record-type-name. An alias is
allowed to link records of the same record type.

mapping-kind
The kind of the relationship type between the two record types

should be specified by mapping-kind, which may be one-one or
one-many.

where-clause
A where-clause specifies the condition for establishing the

linkages.

predicate
The predicate in where-clause specifies that record rl of type

R1 and record r2 of type R2 are to be linked if predicate is true
when it is evaluated using the attribute values associated with rl and
r2. An attribute used in the predicate may be a column name of a
table (table-name '.' column-name) or a field name of a record-type
(record-type-name '.' field-name).
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with-clause
A with-clause identifies the fields where pointers are stored.

We use three kinds of pointers: MEMPTR (member pointer), SIBPTR
(sibling pointer), and BCKPTR (back pointer). For one-many
relationship, both MEMPTR and SIBPTR must be provided, and
BCKPTR is optional. For one-one relationship, MEMPTR must be
provided, and BCKPTR is optional.

for-link-statement
A simple-link-statement can be specified inside of a loop to

provide pointers from each element of a pointer array field in one
record type to associated records of the other record type.
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A.2 Design Formats

In this section, we describe three design formats used by our
data-structure builder: the .sim, .ca, and .cif formats.

A.2.1 Simfile - the .sim file format
The .sim files are ASCII files used by various programs to

describe MOS transistor networks and their associated parameters.
Mextra and netlist output .sim files; sim2spice, presim and others
read the files.

Each line of a .sim file is a separate "record" whose type is
determined by the first character of the line. The possible record
types are described in this section.

Lines beginning with vertical bar (I) are treated as comments
and ignored by programs that read .sim files. A only exception is if
this line contains the information units:, tech:, and format:. Units
specifies the conversion factor to centimicrons, tech declares the
technology (e.g., nmos) that was used in the design and format
declares the .sim file format used for the various other records. The
.sim format uses a lambda value for transistor size and picofarad
loads.

Lines beginning with @ followed by filename (@ filename) are
used to redirect input from the named file. When the end-of-file is
reached, input reverts to the current file at the following line.
Indirect files can be nested; usually there is some system dependent
limit on the number of simultaneously open files which limits the
depth of nesting.

The following is the possible transistor records:
e gate source drain length width xpos ypos Irpa] area
i gate source drain length width xpos ypos [ma] area
d gate source drain length width xpos ypos frpa] area
p gate source drain length width xpos ypos [rpa] area
1 gate source drain length width xpos ypos [rpa] area
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The first character tells the type of the transistor:
e n-channel enhancement
i n-channel zero threshold (intrinsic) enhancement
p p-channel enhancement
d depletion
1 low-power depletion

The next three parameters are the names of the gate, source,
and drain nodes. The length and width can be either integers or
floating-point giving the dimensions of the active transistor area.
Xpos and ypos report the coordinates of the upper left hand conner
of the transistor (netlist always specifies 0,0).

The next parameter is a letter specifying the shape of the
transistor:

r rectangular
p rectangular, monotonically increasing width
a other shapes

Net list always puts an "r" in this field.
Area tells the true active area; may be different from

width*length if the network extractor used an approximation (in
output from netlist, area always equals width*length).

The following record is used to specify node capacitance in pf.
c node cap
Cap can be either an integer or floating-point number. This is

the type of record used by netlist to describe user-specified
capacitors. The other node to which this capacitor is connected is
assumed ground (GND).

A.2.2 Cafile - the .ca file format
The .ca format allows a hierarchical description of VLSI circuit

layout at a higher level than the .cif format. Every cell in a hierarchy
is represented by a .ca file, which contains the layout of the cell. The
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.ca format provides only rectangles for graphics primitives, which is
the most commonly used way of specifying geometry. The .ca format
is powerful descriptive form for VLSI geometry.

There are only a few .ca statements and they fall into one of two
categories: statement with parameters or statement without
parameters. A statement without parameters is enclosed by double
arrows (« ») and a statement with parameters consists of a
keyword followed by parameters separated by spaces.

Statements without Parameters
The layer statement (« layername ») sets the mask layer to

be used for all subsequent geometry until the next such statement.
Layername specifies a layer-name such as metal or polysilicon. For
example, the command:

« metal »
sets the metal layer.

The label statement (« labels ») specifies that all subsequent
rectangles are labels to be placed in specified locations.

The final statement in a .ca file is the end statement (« end
»), which terminates a .ca file.

Statements with Parameters
The tech statement declares the technology (e.g., cmos) that

was used in the design. For example, the command:
tech cmos-pw

declares cmos-pw technology.
The only geometry that the .ca format supports is a rectangle.

The rect statement describes a rectangle by giving its lower-left x-,
lower-left y-, upper-right x-, and upper-right y-coordinates. The
format is as follows:

rect 11x Uy wx ury
Labels are used to specify texts for the names of such

components as signals and cells in a circuit. A circuit extractor often
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uses those labels when they produce a circuit from a layout
description. Rectangles and names associated with labels are used by
the graphics editor. The label statement in the .ca format is as
follows:

label name lbc lly urx ury
Name is the name of the label. Lbc, 11y, urx, and ury represent
lower-left x-, lower-left y-, upper-right x-, and upper-right
y-coordinates of a label's rectangle.

A cell call creates an instance of a subcell, which may be
translated, rotated, and reflected within the bounding box of the
current cell. A cell call is specified by using the use statement
followed by the transform statement.

The use statement invokes a subcell-file that contains the layout
description of the subcell. All subcells are given names when they
are defined and these names are used in the use statement to
identify them. The names of a subcell and a subcell-file that contains
the layout of the subcell are identical. The format is as follows:

use cellname
The transform statement specifies three transformations to

affect the geometry inside the subcell instanced by the use
statement. Parameters followed by the keyword transform represent
the left six elements of a 3X3 transformation matrix. The format is
as follows:

transform abcdef
The first column of the matrix is specified by the numbers a, b, and c
and the second column is specified by the numbers d, e, and f.

The coordinates for the bounding box of a subcell that is
instanced by the use statement are given with the box statement.
The box statement describes the bounding box for a subcell by giving
its lower-left x-, lower-left y-, upper-right x-, and upper-right
y-coordinates. The format is as follows:

box lbc Uy urx ury
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A.2.3 Ciffi le - the .0j-file format
The .cif format is a recent form for the description of

integrated circuits. Created by the university community, .cif format
has provided a common database structure for the integration of
many research tools. The .cif format provides a limited set of
graphics primitives that are useful for describing the
two-dimensional shapes on the different layers of a chip. The format
allows hierarchical description, which makes the representation
concise.

Each statement in the .cif format consists of a keyword or letter
followed by parameters and terminated with a semicolon. Spaces
must separate the parameters but there are no restrictions on the
number of statements per line or of the particular columns of any
field. Comments can be inserted anywhere by enclosing them in
parenthesis.

There are only a few statements in the .cif format and they fall
onto one of two categories: geometry or control. The geometry
statements are: LAYER to switch mask layers, BOX to draw a
rectangle, WIRE to draw a path, POLYGON to draw an arbitrary
figure, and CALL to draw a subroutine of other geometry statements.
The control statements are DS to start the definition of a subroutine,
DF to finish the definition of a subroutine, 0 through 9 to include
additional user-specified information, and END to terminate a .cif
file. All of these keywords are usually abbreviated to one or two
letters that are unique.

Geometry
The LAYER statement (or the letter L) sets the mask layer to be

used for all subsequent geometry until the next such statement.
Following the LAYER keyword comes a single layer-name parameter.
For example, the command:

L NC:

sets the layer to be the NMOS contact cut.
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The BOX statement (or the letter B) is the most commonly used
way of specifying geometry. It describes a rectangle by giving its
length, width, center position, and an optional rotation. The format
is as follows:

B length width xpos ypos [rotation];
Without the rotation field, the four numbers specify a box the center
of which is at (xpos, ypos) and is length across in x and width tall in
y. All numbers in the .cif format are integers that refer to
centimicrons of distance, unless subroutine scaling is specified.

The WIRE statement (or the letter W) is used to construct a
path that runs between a set of points. The path can have a nonzero
width and has rounded corners. After the WIRE keyword comes the
width value and then an arbitrary number of coordinate pairs that
describe the endpoints. For example, the command:

W 25 100 200 100 100 200 200 300 200;
specifies a wire. The endpoint and corner rounding are implicitly
handled.

The POLYGON statement (or the letter P) takes a series of
coordinate pairs and draws a filled polygon from them. Since filled
polygons must be closed, the first and last coordinate points are
implicitly connected and need not be the same. A sample polygon
statement is as follows:

P 150 100 200 200 200 300 100 300 100 200;1

Hierarchy
The call statement (or the letter C) invokes a collection of other

statements that have been packaged with DS and DF. All subroutines
are given numbers when they are defined and these numbers are
used in the CALL to identify them. If, for example, a LAYER
statement and a BOX statement are packaged into subroutine 4, then
the statement:

C 4;

will cause the box to be drawn on that layer.
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In addition to simply invoking the subroutine, a CALL statement
can include transformations to affect the geometry inside the
subroutine. Three transformations can be applied to a subroutine in
the .cif format: translation, rotation, and mirroring. Translation is
specified as the letter T followed by an x, y offset. These offsets will
be added to all coordinates in the subroutine, to translate its
graphics across the mask. Rotation is specified as the letter R
followed by an x, y vector endpoint that defines a line to the origin.
Mirroring is available in two forms: MX to mirror about the x axis and
MY to mirror about the y axis. The geometry is flipped about the axis
by negating the appropriate coordinate.

Any number of transformation can be applied to an object and
their listed order is the sequence that will be used to apply them.

A sample call statement is as follows:
C 10 T -50 0 R 0 -1 MY MX;
The statements to be packaged are enclosed between DS

(definition start) and DF (definition finish) statements. Arguments to
the DS statement are the subroutine number and a subroutine scaling
factor. There are no arguments to the DF statement. The scaling
factor for a subroutine consists of a numerator followed by a
denominator that will be applied to all values inside the subroutine.
This scaling allows large numbers to be expressed with fewer digits
and allows ease of rescaling a design.

A sample subroutine is described as follows:
DS 10 2 20;

B 10 20 5 5;
W 1 5 5 10 15;

Note that the scale factor is 2/20, which allows the trailing zero to
be dropped from all values inside the subroutine.

Control
Extensions to the .cif format can be done with the numeric
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statements 0 through 9. Although not officially part of the .cif
format, certain conventions have evolved for the use of these
extensions. Typical user extensions to the .cif format are as follows:

0 x y layer N name; Set named node on specified layer and
position

OV xl yl x2 y2 ... xn yn; Draw vectors
2A "msg" T x y; Place message above specified location
2B "msg" T x y; Place message below specified location
2C "msg" T x y; Place message centered at specified

location
2L "msg" T x y; Place message left of specified location
2R "msg" T x y; Place message right of specified

location
9 cellname; Declare cell name
94 label x y; Place label in specified location

The final statement in a .cif file is the END statement (or the
letter E). It takes no parameters and typically does not include a
semicolon.
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A.3 Circuit and Layout Diagrams of 2-Bit Adder

Fig. A-1 shows the circuit diagram of the 2-bit adder used in
Chapter V. The layout diagram of the 2-bit adder is shown in Fig. A-2.
Labels except for "Xl", "Yl", and "Z1" are removed for clarity of
exposition.
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Fig. A-1 Circuit diagram of 2-bit adder.
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Fig. A-2 Layout diagram of 2-bit adder.


