#### AN ABSTRACT OF THE THESIS OF

| Mary F. Fauci                 | for the degree of            | Master of Science        |
|-------------------------------|------------------------------|--------------------------|
| in <u>Crop and Soil</u>       | Science presented on         | 21 May 1992 .            |
| Title: <u>Soil Biological</u> | Indices and Nitrogen Availab | ility During a Simulated |
| Transition from Inorga        | anic to Organic Sources of N | itrogen                  |
| Abstract approved:            | Redacted for I               | Privacy                  |

Richard P. Dick

Long-term cultivation has significantly decreased organic matter and biological activity in most soils. This may partially explain why producers interested in a transition from inorganic to organic nitrogen (N) sources initially experience short-term reduction in yields related to N availability. The Residue Utilization Plots (RUP) at the Columbia Basin Research Center, OR have been managed with either organic or inorganic N sources since 1931. As a result, the RUP soils vary widely in organic matter content and biological activity. These soil were used in a greenhouse study conducted to determine the short-term effects of recent organic residue and decreasing inorganic N amendments on plant dry matter yield (DMY) and N uptake, soil microbial biomass N and carbon (MBN and MBc, respectively), and soil enzyme activities (protease, histidase, and  $\beta$ -glucosidase) during a simulated transition. Four successive crops of Zea mays L. were grown. Treatments were arranged as a complete factorial and included the following factors: four RUP soils (beef manure, pea vine residue, 0 kg N or 90 kg N ha<sup>-1</sup>, each applied biennially to a wheat-fallow system); four greenhouse organic residues (pea vine, beef manure, poultry manure, or control); and four rates of N fertilizer (0-1600 mg N 2 kg<sup>-1</sup> soil as  $NH_4NO_3$ ).

In the absence of organic residue or N fertilizer, DMY and N uptake were greater in soil from the manure RUP than soil from the other field plots. Nitrogen uptake in the beef manure and control residue treatments was the same for each N rate and was directly proportional to the amount of inorganic N applied. Poultry manure and pea vine amendments both increased plant N uptake. Poultry manure was mineralized more quickly than pea vine, however pea vine provide N for plant uptake over a longer period of time than did the poultry manure.

The MBc and MB<sub>N</sub> in the soil from the manure RUP treatment was higher than in soil from the other RUP treatments both with or without greenhouse inorganic or organic N amendments. After the fourth crop, soil amended in the greenhouse with pea vine, beef manure, or poultry manure had 400, 210, and 80% greater MBc and 280, 140, and 50% greater MB<sub>N</sub>, respectively, than the unamended soil (averaged across field history and N treatment), and at the high inorganic N rate, MBc was smaller and MB<sub>N</sub> was larger than in soil from other N treatments (averaged across field history and organic residue treatment).

Soil that received long-term organic inputs had higher enzyme activity than soil from the 0 kg N or 90 kg N plots within each greenhouse organic residue treatment. Each greenhouse organic amendment increased activity relative to the control. Pea vine, added in the greenhouse, produced the greatest increase in activity. Nitrogen fertilizer treatment had little or no significant effect in enzyme activity.

Enzyme activity response to soil additions was similar to that observed for microbial biomass. Only in the absence of inorganic N and in the control residue treatment, were differences in plant N uptake resulting from long-term soil management reflected in the biological parameters measured. When an organic residue was added in the greenhouse, biological and plant parameter responses were not the same. Poultry manure residue treatment provided the most plant available N, but did not increase soil biological activity as much as pea vine residue. Beef manure added in the greenhouse increased biological activity measurements without increasing N uptake or DMY. In the short-term, pea vine residue was the best organic N source studied for increasing soil biological activity while maintaining plant productivity.

Soil Biological Indices and Nitrogen Availability During a Simulated Transition from Inorganic to Organic

Sources of Nitrogen

by

Mary F. Fauci

.

#### A THESIS

#### submitted to

Oregon State University

in partial fulfillment of the requirements for the degree of

Master of Science

Completed 21 May 1992

Commencement June 1993

**APPROVED:** 

# **Redacted for Privacy**

Associate Professor of Soil Science in charge of major

# **Redacted for Privacy**

Head of Department of Crop and Soil Science

Redacted for Privacy

Dean of Graduate School

Date thesis is presented 21 May 1992

Typed by researcher for <u>Mary F. Fauci</u>

### TABLE OF CONTENTS

|                                                                        | <u>Page</u> |
|------------------------------------------------------------------------|-------------|
| INTRODUCTION                                                           | 1           |
| CHAPTER 1 - Literature Review                                          | 3           |
| Nitrogen Dynamics and Soil Amendments                                  | 4           |
| Long-term Studies                                                      | 6           |
| Short-term Nitrogen Availability                                       | 9           |
| Soil Biological Indices and Nitrogen in Relation to Soil<br>Management | 11          |
| Literature Cited                                                       | 24          |
| CHAPTER 2 - Nitrogen Uptake and Dry Matter Yield                       | 32          |
| Abstract                                                               | 33          |
| Introduction                                                           | 34          |
| Materials and Methods                                                  | 36          |
| Results and Discussion                                                 | 42          |
| Conclusions                                                            | 54          |
| Literature Cited                                                       | 55          |
| CHAPTER 3 - Microbial Biomass Carbon and Nitrogen                      | 57          |
| Abstract                                                               | 58          |
| Introduction                                                           | 59          |
| Materials and Methods                                                  | 61          |
| Results and Discussion                                                 | 63          |
| Conclusions                                                            | 73          |
| Literature Cited                                                       | 74          |

### TABLE OF CONTENTS, continued

|                                                                               | <u>Page</u> |
|-------------------------------------------------------------------------------|-------------|
| CHAPTER 4 - Soil Enzyme Activities: Protease, Histidase, and<br>β-Glucosidase | 76          |
| Abstract                                                                      | 77          |
| Introduction                                                                  | 78          |
| Materials and Methods                                                         | 80          |
| Results and Discussion                                                        | 82          |
| Conclusions                                                                   | 93          |
| Literature Cited                                                              | 94          |
| CHAPTER 5 - Summary and Perspectives                                          | 96          |
| BIBLIOGRAPHY                                                                  | 104         |
| APPENDICES                                                                    |             |
| Appendix A. Plant response                                                    | 113         |
| Appendix B. Soil biological activity                                          | 130         |
|                                                                               |             |

### LIST OF FIGURES

| Figure |                                                                                                                                                                                                                     | <u>Page</u> |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 2.1    | Schematic overview of treatments applied during the experiment.                                                                                                                                                     | 41          |
| 2.2    | Cumulative dry matter yield and N uptake as affected by soil field history in the absence of greenhouse N inputs $(n = 3)$ .                                                                                        | 43          |
| 2.3    | Cumulative dry matter yield in the organic residue treatments<br>as affected by N fertilizer treatment, averaged over field<br>history ( $n = 12$ ).                                                                | 47          |
| 2.4    | Cumulative N uptake in the organic residue treatments as affected by N fertilizer treatment, averaged over field history $(n = 12)$ .                                                                               | 50          |
| 2.5    | Effect of inorganic N treatment relative to the N <sub>1600</sub> treatment<br>on N uptake in the beef manure residue treatment, averaged<br>over field history ( $n = 12$ ).                                       | 51          |
| 3.1    | Effect of organic amendments added in the greenhouse on MBc and MBN, averaged over field history and N treatment $(n = 48)$ .                                                                                       | 66          |
| 3.2    | Microbial respiration per unit MBc (biomass specific respiration) as affected by organic amendments added in the greenhouse. Each symbols represents the mean of three replicates. Sampling day 0 has been omitted. | 70          |
| 4.1    | $\beta$ -Glucosidase activity as affected by N treatment at the 164 day sampling, averaged over organic residue and field history treatments ( $n = 48$ ).                                                          | 83          |
| 4.2    | $\beta$ -Glucosidase activity in the organic residue treatments as affected by field history, averaged over N fertilizer treatment $(n = 12)$ .                                                                     | 86          |
| 4.3    | Protease activity in the organic residue treatments as affected<br>by field history, averaged over N fertilizer treatment $(n = 12)$ .                                                                              | 90          |
| 4.4    | Mean effect of organic residue treatments on histidase activity, averaged over N fertilizer treatment ( $n = 48$ for control; $n = 144$ for mean of residue treatments).                                            | 91          |

# LIST OF FIGURES, continued

| <u>Figure</u> |                                                                                                                                                                                                                    | <u>Page</u> |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 5.1           | Effect of recent organic residue amendments on soil MBc,<br>MBN, $\beta$ -glucosidase, and protease activity, averaged over field<br>history and N treatment ( $n = 48$ ).                                         | 100         |
| 5.2           | Effect of field history on plant and soil biological parameters<br>in the control residue treatment, $N_0$ for the plant parameters<br>(n = 3) and averaged over N rate for the biological parameters<br>(n = 12). | 101         |
| 5.3           | Effect of N treatment on DMY in the organic residue treatments, averaged over field history $(n = 12)$ .                                                                                                           | 103         |

### LIST OF TABLES

| <u>Table</u> |                                                                                                                                                                    | <u>Page</u> |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 2.1          | Factorial arrangement of treatments.                                                                                                                               | 36          |
| 2.2          | The C and N added to the RUP on a biennial basis (1931-1989).                                                                                                      | 37          |
| 2.3          | The C and N content of the soil (0-20 cm) from the RUP prior to the greenhouse experiment.                                                                         | 38          |
| 2.4          | Chemical characteristics of organic amendments added to the soils in the greenhouse.                                                                               | 39          |
| 2.5          | Inorganic N added in the greenhouse N fertilizer treatments.                                                                                                       | 39          |
| 2.6          | Effect of field history and inorganic N applied in the greenhouse on N uptake and dry matter yield of maize in the control greenhouse residue treatment at crop 1. | 45          |
| 2.7          | Effect of organic residue added in the greenhouse on N uptake in the N <sub>0</sub> treatment, averaged over field history $(n = 12)$ .                            | 53          |
| 3.1          | Effect of long-term field history on MBc and MBN, averaged over organic amendment and N fertilizer treatments $(n = 48)$ .                                         | 64          |
| 3.2          | Effect of long-term field history on biomass specific respiration, averaged over organic amendment and N fertilizer treatments $(n = 48)$ .                        | 68          |
| 3.3          | Effect of recent organic residue amendments on soil respiration, averaged over field history and N rate $(n = 48)$ .                                               | 69          |
| 3.4          | Microbial biomass and respiration as affected by N treatment<br>at the 306 day sampling period, averaged over organic<br>amendment and field history $(n = 48)$ .  | 71          |
| 3.5          | Effect of N treatment on ME <sub>N</sub> in soil from each RUP treatment at the 306 day sampling period, averaged across organic amendment ( $n = 12$ ).           | 72          |

# LIST OF TABLES, continued

| <u>Table</u> |                                                                                                                                                                                                                                                                                       | Page |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 4.1          | Protease activity as affected by long-term management,<br>averaged over organic amendment and N fertilizer treatments<br>(n = 48).                                                                                                                                                    | 84   |
| 4.2          | Effect of long-term management on histidase activity in soil from the control residue treatment, averaged over N fertilizer treatment $(n = 12)$ .                                                                                                                                    | 85   |
| 4.3          | Soil enzyme activity, organic C, and total N prior to the greenhouse experiment.                                                                                                                                                                                                      | 87   |
| 4.4          | Protease activity as affected by greenhouse amendment,<br>averaged over N fertilizer and field history treatment $(n = 48)$ .                                                                                                                                                         | 89   |
| 4.5          | $\beta$ -Glucosidase activity as affected by greenhouse amendment, averaged over N fertilizer and field treatment ( $n = 48$ ).                                                                                                                                                       | 89   |
| 5.1          | Effect of recent organic amendments on plant and soil biological parameters at the 306 day sampling in the N <sub>0</sub> treatment for the plant parameters ( $n = 12$ ) and averaged over N treatment for the biological parameters ( $n = 48$ ), both averaged over field history. | 102  |

.

# Soil Biological Indices and Nitrogen Availability During a Simulated Transition from Inorganic to Organic Sources of Nitrogen

#### INTRODUCTION

Long-term cultivation has significantly decreased organic matter and biological activity in most soils (Rasmussen et al, 1989; Bolton et al., 1985; McGill et al., 1986; Stevenson, 1982). This may partially explain why producers interested in a transition from inorganic to organic N sources initially experience short-term reduction in yields related to N availability. Carbon (C) in organic material is a source of energy for the microbial population that mediates the breakdown and release of nutrients contained within the organic material itself. Since microbial biomass increases when C is added to the soil (Frankenburger and Dick, 1983; Nannipieri et al., 1979; Powlson et al., 1987), it is believed that plant N deficiencies are caused, in part, from N immobilization while microbial populations increase (Janzen and Radder, 1989, Doran et al., 1985).

When use of synthetic N fertilizers is reduced or eliminated, N availability is dependent on the soil's biological system. Therefore, the re-establishment of an active microbial community is important during a transition (Culik, 1983). Many studies have shown that soil managed with organic N sources have greater microbial populations and enzyme activity than soils managed with mineral fertilizers (Bolton et al., 1985; Martynuik and Wagner, 1978; Anwarzay et al., 1990; Alef et al., 1988; Dick et al., 1988; McGill et al., 1986), but few studies have monitored microbial biomass and enzyme activity dynamics during the transition from mineral to organic sources of N.

The Residue Utilization Plots (RUP) at the Columbia Basin Research Center, OR have been managed with either organic or inorganic N sources since 1931. As a result, soils from the RUP vary widely in organic matter content and biological activity (Rasmussen et al., 1980, 1989; Dick et al., 1988). Various combinations of organic amendments and decreasing inorganic N rates were added to these soils in the greenhouse, and four consecutive crops of maize (*Zea mays* L.) were grown to simulate a transition from inorganic to organic sources of N. Treatments were arranged as a complete factorial and included the following factors: four RUP soils (beef manure, pea vine residue, 0 kg N, or 90 kg N ha<sup>-1</sup>, each applied biennially to a wheat-fallow system); four greenhouse organic residues (pea vine, beef manure, poultry manure, or control); and four rates of N fertilizer (0-1600 mg N 2 kg<sup>-1</sup> soil as NH<sub>4</sub>NO<sub>3</sub>). Plant dry matter yield and N uptake, soil microbial biomass, and soil enzyme activities were measured and will be discussed in Chapters 2, 3, and 4, respectively.

### CHAPTER 1

# LITERATURE REVIEW

Prior to the 1940's farmers recognized that crop yields were dependent on the ability of the soil to supply nitrogen (N). Sound agronomic practices such as crop rotations, use of green manure crops, animal manure application, and return of crop residues to the soil were used to maintain soil fertility and disrupt the life cycle of crop pests. Since N fertilizers became readily available in the 1950's farmers have become increasingly dependent on manufactured N fertilizer.

Manufacturing of N fertilizer is the most energy intensive component of production agriculture today (Keeney, 1982), and as nonrenewable fossil fuels become scarce, the cost of manufactured N fertilizers will rise. The relatively large pool of inorganic N in the soil, that results from inorganic N fertilizer application, is both readily available to plants and vulnerable to losses. Nitrogen in surface water reduces water quality, and nitrates that leach into the groundwater pollute drinking water. Organic sources of N can also cause pollution when applied in excess of crop needs. An estimated 82% of the nonpoint source N pollution comes from agriculture in the U.S.A. (Keeney, 1982).

The development and adoption of economical and efficient N management strategies that conserve natural resources while minimizing adverse environmental impacts is a major challenge to agriculturists today (Hargrove, 1988).

#### NITROGEN DYNAMICS AND SOIL AMENDMENTS

#### Nitrogen Cycle

The transformation of N from various chemical and biological pools in the soil to the atmosphere and back to the soil is termed the N cycle. Central to the soil N cycle are the mineralization and immobilization processes of heterotrophic microorganisms. Nitrogen mineralization, the transformation of organic N into the inorganic  $NH_4^+$  form, occurs when heterotrophic microbes consume organic substrates. Nitrogen in organic substrates is assimilated by microbes and used for cell maintenance, growth, and reproduction. Nitrogen in excess of microbial requirements is released into the soil as  $NH_4^+$ . Immobilization is the transformation of inorganic N into an organic form. The term is usually reserved for the

assimilation of inorganic N (NH<sub>4</sub><sup>+</sup> and NO<sub>3</sub><sup>-</sup>) into microbial tissue, plant uptake and N<sub>2</sub> fixation are excluded (Jansson and Persson, 1982).

Mineralization is responsible for making organically-bound nutrients available to plants, and plant residues are ultimately the substrate for soil microbes. When carbon (C) sources lack sufficient N to meet the requirements of the microbes consuming them, N from the inorganic N pool is immobilized (Jansson and Persson, 1982). Microbes, therefore, can both produce and compete for inorganic N in the soil.

Mineralization and immobilization are integrated processes. They are often thought of as concurrent processes, yet locations in the soil where mineralization occurs can be physically and or temporally separated from sites of immobilization (Drury et al., 1991). The net difference between these two processes ultimately determines the amount of N available for plants. From an ecological point of view, net mineralization (or immobilization) does not accurately reflect the rate of biological activity. A small net effect may be the result of low overall biological activity, or high activity in which the processes work in opposite directions (Jansson and Persson, 1982). The stable isotope, <sup>15</sup>N, and simple models can be used together to estimate gross rates of immobilization and mineralization (Paul and Juma, 1981; Nason and Myrold, 1991).

#### Native soil fertility

Soil organic matter (SOM) is a large reservoir of plant nutrients. Cycling of nutrients through organic and inorganic pools is essential in providing nutrients to growing plants and thus maintaining productivity. The main plant nutrients that occur predominantly in organic forms in surface soil are N, phosphorus (P), and sulfur (S). Nitrogen is a critical component of production agriculture because it is the nutrient required in the highest amount by grain crops (Olson and Kurtz, 1982). Since over 90% of the N in surface soils is in an organic form (Stevenson, 1982), practices that affect SOM effect N fertility.

Native soil fertility and SOM decline rapidly during the first decades of

cultivation, but eventually reach equilibrium values that are a function of the climate, soil type, cropping system, and management practices (Stevenson, 1982; Rasmussen et al., 1980; Black, 1973). The benefits of SOM in maintaining soil fertility and productivity have long been known. It is the source of energy for microbial populations that metabolize organically-bound nutrients (N, P, and S) thus making them plant available. The SOM also promotes desirable physical properties such as tilth, aggregate stability, increased water holding capacity, and improved water infiltration. It is often difficult to distinguish the benefits of SOM through enhanced fertility from those of improved physical structure.

In normal agricultural operations, N is removed from the system with the harvested product. If soil fertility is to be maintained, N must be added back to the system. Nitrogen fixation by microorganisms and additions of synthetic N fertilizer are the primary means by which N is added to the soil. Nitrogen from atmospheric precipitation and application of organic substances produced off site are additional pathways of N addition. Nitrogen increases yields and creates more residues per crop. Residues returned to the soil maintain SOM and fertility and enhance productivity. The beneficial effect of adequate N fertility is both cyclic and cumulative (Oveson, 1966; Larson, 1972; Rasmussen et al., 1980).

#### LONG-TERM STUDIES

#### Nitrogen Fertility and Soil Productivity

Additions of either inorganic or organic N tend to increase yield, total N, and organic C (or SOM) in soil when compared with soil that does not receive any additional N source (Campbell et al., 1986, 1991; Rasmussen et al., 1980, 1989; Bonde et al., 1988; Jenkinson and Johnson, 1977). When comparing between inorganic and organic sources of fertilizer differences in yield, total N, and organic C will depend on the relative amount and availability of the N in the organic source. The cumulative effect of the amount and quality of crop residue produced and returned to the soil as a result of the N source will also influence differences. Organic N sources also provide C to soil microorganisms. Many studies have investigated the effects of quantity and quality of N and C in soil amendments on soil chemical properties. Black (1973) found organic matter, total N, and yields had increased with the quantity of wheat straw added after four wheat-fallow cycles in Montana. All residues produced were removed to eliminate the effects of adding residues of different quality. Nitrogen fertilizer did not affect changes in SOM or total soil N, but did increase grain and straw yields. After 36 years of a fallow-wheat-wheat rotation in Saskatchewan, soil N was not affected by the source of N fertilizer (monoammonium phosphate or barnyard manure), but manure increased organic C and the net rate of N mineralization (Campbell et al., 1986). Data from 30 years of a rotation study, where the wheat straw was incorporated, showed yields and soil N in fertilized rotations were greater than in similar rotations that were not fertilized (Campbell et al., 1991). Rotations that included hay, green manure crops, or reduced fallow frequency had higher yields and greater soil N levels than rotations that returned less C to the soil.

In the long term, large additions of carbonaceous residues help maintain SOM and total N and improve crop yields. In a 12 year study in Iowa, Larson et al. (1972) found a linear relationship between amount of C applied and change in SOM. The type of residue applied, cornstalks supplemented with N fertilizer or alfalfa, did not affect the change in SOM, but available  $NH_4^+$ -N did increase with the amount of residue applied. Rasmussen et al. (1980) also found that soil C was correlated with the amount of C added regardless of the type of residue applied (wheat straw, manure, or pea vine) in a wheat fallow experiment initiated in 1931 in a semi-arid region of Oregon. In this case crop residues and animal manure were compared, but only crop residues were compared in the Iowa study. In both studies, C additions of 5 Mg residue ha<sup>-1</sup> or 2000 kg C ha<sup>-1</sup> per year were needed to maintain zero change in SOM levels.

In another study where all residues were removed, Bonde et al. (1988) also found that soil C and N were unaffected by different types of residues added over a 50-year period. Soil C and N in plots that received 80 kg N ha<sup>-1</sup> yr<sup>-1</sup> as Ca(NO<sub>3</sub>)<sub>2</sub> and 1800 kg C ha<sup>-1</sup> yr<sup>-1</sup> as straw were the same as in plots that received 80 kg N

7

and 1800 kg C ha<sup>-1</sup> yr<sup>-1</sup> as farmyard manure. Soil that received 80 kg N ha<sup>-1</sup> yr<sup>-1</sup> as  $Ca(NO_3)_2$  but no C had significantly lower soil C and N levels than soil that received C inputs (wheat straw or manure). Nitrogen alone did not cause significant increases in soil C and N levels when compared with unfertilized soil.

Although some studies have shown that type of organic residue is not important (Rasmussen et al., 1980; Bonde et al., 1988), the long-term benefits from organic amendments generally depend on the degree of humification of the residue (Tate, 1987). As plants age their protein and N content decrease while the amount of hemicellulose, cellulose, and lignin increase. Young green manure crops would, therefore, be most easily degraded followed by straw and then animal manures. Animal manures are mostly cellulose or lignin fibers, although some modification of the lignin to humic substances has occurred (Stevenson, 1986). Lignin persists in the soil because it is relatively resistant to microbial decomposition and the probability of an organic substance being incorporated into humus increases with residence time in the soil. For 30 years, a sandy loam in Alabama in a corn-cotton rotation was fertilized with commercial N fertilizer, dry horse manure (11.1 Mg ha<sup>-1</sup>), or a vetch green manure crop (Cope et al., 1958). Five years after the N treatments were terminated there was no residual yield advantage of the vetch over the N fertilizer treatment. The manure treatment still produced higher yields and had increased soil C and N levels by 33 and 62% of the original levels, respectively. Vetch and N fertilizer failed to maintain C and N levels, but slowed the rate of loss.

The most dramatic example of the benefits of manure comes from the Rothamsted experiments (Jenkinson and Johnson, 1977). In the Hoosfield continuous barley experiment, the soil from plots that received annual applications of manure (35 Mg ha<sup>-1</sup> yr<sup>-1</sup>) between 1852 and 1871 and none thereafter still contained more soil organic C and total N than the unmanured plots. Yields on the unmanured plots were similar to those produced on the previously manured plots when no inorganic N was applied, yet when inorganic N was applied the manured plots yielded more than the unmanured plots. Since the late 1800's there has been little change in soil C and N in the plots fertilized with NPK. The levels of C and N did not differ between the NPK and unfertilized plots even though the fertilized plots produced an average of 1.8 Mg ha<sup>-1</sup> more straw per crop than the unfertilized plots.

#### SHORT-TERM NITROGEN AVAILABILITY

A thorough understanding of the factors that affect both the amount and timing of mineral N release is needed for efficient management of organic residues. The short term availability of N from organic substances depends on the rate and extent of decomposition, therefore, microbial activity and population dynamics will influence the net result. The net difference between mineralization and immobilization depends on the energy supply (readily metabolized C source) to the microbes. Given equal C availability, a residue with a low C:N ratio will mineralize N more quickly than a residue with a high C:N ratio. There may be very little immobilization of high C:N ratio residues if the C is a poor energy source (Jansson and Persson, 1982).

Considerable attention has been devoted to predicting potential N availability from organic N sources. Methods of investigation, including lab incubation and leaching studies, short-term greenhouse and field experiments, and prediction models, have met with varying success (Stanford, 1982).

#### **Plant Residues**

In general, plant material with less than 1.5 to 1.7% N will cause immobilization during initial decomposition. This is equivalent to a C:N ratio of 25-30 for crop residues since most average 40% C by weight. Higher N concentrations usually result in net mineralization. Besides moisture, temperature, pH, oxygen, and microorganisms, mineralization rate depends on particle size and the chemical composition of the substrate, especially the lignin concentration (Parr and Papendick, 1978).

Vigil and Kissel (1991) compiled mineralization results from eight

experiments (six from the literature and two from their own work) on mineral soil to which crop residues had been added. They found that 75% of the variability in the measured amounts of net N mineralization could be explained by the C:N ratio of the crop residue added. By adding N concentration and lignin:N ratio of the crop residue, 80% of the observed variability could be explained. Müller et al. (1988) concluded lignin concentration was a better parameter than N concentration or C:N ratio for predicting the amount of N mineralized. Of 10 chemical characteristics measured, only lignin correlated with N release from different <sup>15</sup>N-labeled plant materials (N concentration ranging from 1.2 - 5.0% N and C/N ratio from 11-46) buried within mesh bags in the soil for 10 months.

<sup>15</sup>N-labeled crop residues have been used in many field studies to find out how much N from the residue is taken up by the subsequent crop (Vigil et al., 1991; Ladd and Amato, 1986; Wagger et al., 1985). Although the net amount of residue N taken up by the plant indicates how much became plant available, it fails to predict the relative contributions of residue derived N and native soil N mineralized by the microbial population in the presence of a fresh substrate. Few <sup>15</sup>N studies take mineralization-immobilization reactions into account (Nason and Myrold, 1991; Jansson and Persson, 1982). Vigil et al. (1991) used a mineralization-immobilization model based on the composition of the <sup>15</sup>N-labeled sorghum residues applied to predict net N mineralization. After adjusting model parameters, the model adequately predicted net mineralization.

#### Animal Manures

Whereas most predictions of mineral N production from crop residues include the C:N ratio or other descriptors of the chemical composition of the residue, the amount of N mineralized from manures is usually based on the  $NH_4^+$ concentration and some fraction of the remaining organic N (Beauchamp, 1986; Beauchamp and Paul, 1989).

Net immobilization of animal manures with very low C:N ratios has been reported (Castellanos and Pratt, 1981; Beauchamp, 1986; Sims, 1986). Poultry

10

manure is mineralized very rapidly (Castellanos and Pratt, 1981; Sims, 1986; Yadvinder-Singh et al., 1988) whereas dairy and cattle manure tend to cause net immobilization soon after incorporation followed by net mineralization (Castellanos and Pratt, 1981; Beauchamp, 1986; Vadvinder-Singh et al., 1988). Castellanos and Pratt (1981) found composted chicken manure had much less N than fresh chicken manure and that N was only about one half as available as the N in the fresh manure. Few studies have investigated N mineralization from both crop residues and manures.

## SOIL BIOLOGICAL INDICES AND NITROGEN IN RELATION TO SOIL MANAGEMENT

#### Microbial Biomass

The microbial biomass (MB) is recognized as both a source and a sink for plant nutrients (N, P, and S) and an active participant in nutrient cycling. Most of the biochemical reactions in the N cycle are mediated by microbial populations. Mineralization of organic substrates or immobilization of mineral nutrients by the MB depends on the growth dynamics of microorganisms. The C and N in the MB (MBc and MB<sub>N</sub>, respectively) turn over rapidly and reflect changes resulting from different management practices long before changes in total soil C and N are detectable (Powlson et al., 1987). The C and N in the MB typically represent 2-3% of soil organic C and 3-5% of total N in the surface of agricultural soils (McGill et al., 1986).

Soil MB can be estimated by plate counts, direct observation, or by relating the flush of mineralization after fumigation to an original amount of biomass. The chloroform fumigation-incubation method (Jenkinson and Powlson, 1976) is the most common method of analysis. The fumigation-extraction method is gaining popularity and is probably better suited for analysis of freshly amended soils (Brookes et al., 1985; Vance et al., 1987). The MB estimate does not give any indication of the activity of the microbial population. Respiration measurements, and ATP, dehydrogenase, and other soil enzymes are among the various assays

11

used to estimate microbial activity.

Many research groups have found that long-term additions of organic residues increase microbial population and biomass. Plate counts of soil from field plots under long-term management systems showed low populations in untreated soil, intermediate numbers in soil treated with inorganic fertilizers, and highest population in soil that received annual manure applications (Martynuik and Wagner, 1978). In a comparison of MB in soil from adjoining farms, Bolton et al. (1985) found soil on the farm that had never received inorganic N fertilizer and relied on green manures and native soil fertility for N had a larger and more active MB than soil that had received N, P, and S at the recommended rates since 1948. After 50 years of cropping to two rotations, McGill et al. (1986) found a 5-yr rotation that included forages had 117% more MBN than did a 2-yr, wheat-fallow rotation. Manured treatments contained twice as much MBN as did NPKS or control plots. Soil from the Broadbalk Plots at the Rothamsted experiment station that has received manure annually since the mid-1800's has higher MBc than soil from the NPK or control treated plots (Jenkinson and Powlson, 1976).

Recent additions of organic residues also increase MB (Ocio et al., 1991b; Ocio and Brookes, 1990; Perucci, 1990). Field incorporation of 10 Mg ha<sup>-1</sup> wheat straw (C:N = 48) with and without 100 kg NH<sub>4</sub>NO<sub>3</sub>-N ha<sup>-1</sup> caused both MBc and MB<sub>N</sub> to double within seven days after incorporation (Ocio et al., 1991a). After seven days the increase in MB<sub>N</sub> was the same with and without inorganic N. Since all the added inorganic N was still present, the MB<sub>N</sub> formed was probably from the N in the straw itself. After 12 months, MBc and MB<sub>N</sub> were still 20 and 18% greater, respectively, than in the untreated soil. The amount of MB in a soil reflects past inputs over many years, but is also influenced by a single input.

It is expected that organic residue additions will increase MB since C in the residues is a source of energy for the microbes. Insam et al. (1991) present data that support the concept that C is the limiting factor for microbes in agricultural soil and that the effect of fertilization on MB is an indirect one resulting from

increased C input. Bottner et al. (1988) also concluded that MB is controlled by C inputs.

On plots initiated in 1956 in Sweden, soil that received either straw and inorganic N or farmyard manure had higher MB than soil from either unfertilized or N fertilized plots (Schnürer et al., 1985). Although the straw plus N and the farmyard manure treatments received the same amount of C and N on an annual basis, MB in the manure treated soil tended to be lower than in the straw plus N treated soil. The authors postulated that the difference resulted from differences in availability of the C and N added. The C in the manure had been digested once prior to land application and, therefore, was not as easily decomposed as the straw. Although the N fertilized plot did not get any C addition other than root biomass (since all aboveground biomass produced was removed from these plots), the MBc and MBN in soil from this plot was greater than the unfertilized plots. In a 40week aerobic incubation with soil from these same plots (Bonde et al., 1988), the amount of N mineralized followed the same pattern as the MB; N mineralization was highest in soil supporting a large MB. In an aerobic-leaching incubation study, Robertson et al. (1988) investigated the change in MB in relation to C and N mineralization in soil from the straw plus N plot. Decline in the MBc and MBN during the 12-week incubation could account for 19 and 40% of the measured amounts of C and N mineralized, respectively.

Microbial biomass estimates give no indication of the activity of soil microorganisms. Soil respiration is often used to estimate microbial activity, however, it is not capable of adequately evaluating changes in activity among the various processes performed by the microbes. The amount of  $CO_2$  produced per unit biomass will depend on the substrate and the efficiency of the organisms involved. Efficiency depends on physical access, and substrate availability, nutrient status, age of organisms, and edaphic factors such as temperature, pH, and  $O_2$ concentration. The microbial respiration to biomass ratio is referred to as biomass specific respiration. Other names such as specific respiratory activity (Schnürer et al., 1985; Insam, 1990; Insam et al., 1991; Šantrůčková and Straškraba, 1991) and metabolic quotient (Anderson and Domsch, 1985) are also found in the literature. High biomass specific respiration may indicate a more metabolically active biomass that uses C at a faster rate (Ocio and Brookes, 1990). Others believe it is related to soil development and decreases with ecological succession (Insam et al., 1991). In agricultural soils, high biomass specific respiration means nutrient turnover is accomplished at high C expense.

#### Soil Enzymes

Most of the biochemical reactions involved in soil nutrient cycling are catalyzed by enzymes. Soil microorganisms are believed to be the primary source of enzymes in the soil (Skujins, 1978), and MB has often been correlated with enzyme activity (Alef et al., 1988; Bolton et al., 1985; Dick et al., 1988; Frankenberger and Dick, 1983; Nannipieri et al., 1978, 1979; Perucci, 1990). Because microbes produce enzymes, it is not surprising that factors that affect MB also affect enzyme activity.

Soil enzymes have been grouped into the following 10 distinct categories based on their location by Burns (1982):

- 1. intracellular
- 2. in the periplasmic space of Gram negative bacteria
- 3. bound to the exterior of living cells
- 4. extracellular
- 5. within non-proliferating cells
- 6. attached to dead cells or cell debris
- 7. released from lysed cells
- 8. temporarily in an enzyme-substrate complex
- 9. adsorbed to clay minerals
- 10. associated with humic colloids

Enzymes in categories 1-3 are under biological control. Those in categories 4-10 have been coined abiontic; they are enzymes acting independently of their biological source. The enzymes in categories 9 and 10 are referred to as bound or immobilized. All enzymes are proteins and thus vulnerable to degradation by proteolytic enzymes in soil. Free enzymes in the soil solution are subject to attack, whereas those absorbed to clay minerals or associated with humic colloids

presumably would be protected. Free enzymes are generally expected to have relatively high turnover rates in soils, and in the absence of renewed synthesis, decline (Ladd, 1972). Bound enzymes may or may not retain their catalytic capacity, substrates may not diffuse to bound enzymes, or steric restrictions may limit access to active sites. Many researchers have investigated the relative activity of free and bound enzymes (Ladd, 1972; Griffith and Thomas, 1979; Ladd and Jackson, 1982), and the persistence or stability of abiontic enzymes in soil (Burton and McGill, 1989).

Soil enzyme activity is believed to be relatively stabile (Burns, 1982). Long-term additions of organic residues result in higher enzyme potential in soil, and recent additions can dramatically increase activity. Differences in enzyme activity that result from changes in management practices may indicate the direction of change before other parameters are measurable.

#### Protease

The large group of enzymes responsible for hydrolysis of proteins is called proteases (peptide hydrolases, EC 3.4). Over 90% of the N in the soil surface is in an organic form, but only one-third to one-half of the organic N has been adequately characterized. Approximately half of the identified organic N compounds are amino acid-N that is derived from hydrolysis of peptides and proteins (Stevenson, 1982).

Most non-nitrogen fixing organisms must decompose nitrogenous substrates into low molecular weight compounds before N is assimilated. Many soil microorganisms have been shown to produce proteases (Ladd and Jackson, 1982). Niskanen and Eklund (1986) found 68 out of 240 strains of actinomycetes and bacteria isolated from soil had protease activity. Microorganisms can produce intracellular, membrane bound (Lagutina, 1988), and true extracellular proteases (Leake and Reed, 1990). Because of their high molecular weight, proteins are presumed to be hydrolyzed by extracellular enzymes only. Extracellular enzymes are believed to be important because the endproduct is released into the soil environment. Leake and Reed (1990) found proteins to be the sole N source for *Ericoid*, an ectomycorrhizal fungi, and because these microbes produce extracellular proteases they are believed to be directly involved in mobilization of N from organic matter. Specific proteases produced by soil microorganisms (Ladd and Jackson, 1982; Tsujibo et al., 1990) and extracted from soil (Hayano et al., 1987) have been purified and characterized.

Comparing results of soil protease studies is difficult because choice of substrates and assay procedures are often different (Ladd and Jackson, 1982). Protein substrates tested include haemoglobin, gelatine, ovalbumin, and casein. Dipeptide derivatives such as benzyloxycarbonyl-phenylalanyl leucine (ZPL) or substituted amides such as N-benzoyl-L-arginine amide (BAA) have also been used (Ladd, 1972; Ladd and Butler, 1972). Low molecular weight substrates may be hydrolyzed by both proteases and peptidases, and these may be endo- or exocellular enzymes. Soil assays with casein substrate measure potential activity of a range of proteases and peptidases, and hence these enzymes are often called caseinhydrolyzing enzymes. Throughout this thesis all references to protease activity represent activity measured with casein as the substrate unless specifically noted.

Soil protease activity correlates with organic C , total N (Niskanen and Eklund, 1986; Bonmati et al., 1991; Speir et al., 1980), and arginine ammonification (Alef et al., 1988). Alef et al. (1988) compared biological properties in agricultural soils with different long-term management histories. Soils that received organic fertilizers, no pesticides, and that included legumes in the crop rotation had higher protease activity, biomass respiration, and N mineralization rates than soils that received mineral fertilizer, pesticides, and did not include legumes in the rotation. They also found a highly significant correlation (r > 0.95) between protease activity and arginine ammonification. This reflects the close relationship between the hydrolysis of proteins and the ammonification of amino acids in soil.

Carbon additions stimulate an increase in protease activity. In soil incubated with glucose and sodium nitrate, Nannipieri et al. (1979) found that extractable amino acid concentrations rose after a peak in  $CO_2$  production, and that protease

activity increased soon after the amino acids appeared. The increase in protease activity coincided with a decline in the viable bacteria population. The newly synthesized amino acids and protease activity were both short lived, protease activity declined after seven days of incubation. In soil incubated with glucose and sodium nitrate, Ladd and Paul (1973) also found protease activity coincided with death of viable bacteria and was short lived. Four to five days after the incubation was begun, activity had increased twelve-fold, but after four weeks activity was less than 20% of the maximum. During incubation of chloroform fumigated soil, protease activity increased dramatically after a 2- to 3-day lag, and activity appeared to still be increasing at the conclusion of the 10 day incubation (Amato and Ladd, 1988). Dead microorganisms are a large and readily available source of proteins, and it is presumed that the surviving population respond by producing proteolytic enzymes. In a Histosol, Tate (1984) found protease activity increased with the availability of metabolizable organic matter. Two days after addition of mature sugarcane leaves to soil (0.1 g leaves/ 10 g soil), protease activity was twice that of the control and after 15 days, activity in soil amended with sugarcane remained 65% higher than that of the control. In soil incubated with a more complex substrate, municipal solid-waste compost, protease activity increased as the microbial biomass declined (Perucci, 1990). After one month of incubation, biomass C peaked and then declined rapidly until stabilizing by the third month. Protease activity increased steadily until the third month and then began to decline, but after 12 months, activity in the sludge-amended soil was still 3.5 times greater than the control.

#### Histidase

L-Histidine ammonia lyase (EC 4.3.1.3) catalyses the deamination of histidine to urocanate and  $NH_3$ . Histidine is widely distributed in nature and can account for up to 8% of the amino acids found in animal, plant, and microbial proteins (Frankenburger and Johanson, 1981). It makes up approximately 20% of the basic amino acids found in acid soil hydrolysates (6 M HCl) (Stevenson, 1982). The concentration of free amino acids in soil is very low and rarely exceeds  $2 \mu g^{-1} g^{-1}$  soil. Since amino acids are readily decomposed by microorganisms, the amount present in the soil solution represents a balance between synthesis and destruction (Stevenson, 1982).

During the degradation of proteins histidine is released. Deamination of amino acids is an important source of  $NH_4^+$  in soil. Many microorganisms isolated from soil produce histidase in pure culture (Lessie and Neidhart, 1967). The enzymes responsible for the deamination of amino acids in soil are intracellular, associated with proliferating microorganisms (Kiss et al., 1975), but because histidase does not require an interenzymatic redox carrier, unlike most deaminase enzymes, there is the potential for abiontic histidase activity. The contribution of abiontic deaminase activity to soil N mineralization remains unsolved (Ladd and Jackson, 1982), but Burton and McGill (1989) have shown that histidase has limited abiontic activity in soil. There are at least two enzymatic components of histidase activity: a labile component of recent biological origin and a more stable component with half lives of 3 and 77 hours, respectively. In the absence of microbial growth, histidase activity declined. The decline in activity was not attributable to either substrate limitation or end product inhibition.

Burton and McGill (1991) thoroughly examined C and N control of histidase activity in a black Chernozemic soil. Potential soil histidase activity increased 3-4 times after soil was incubated for 3 days with 100  $\mu$ g g<sup>-1</sup> of either histidine-C or urocanate-C. Enzyme synthesis was induced by both histidine and urocanate; the increase in activity was not an artifact of an increased microbial population. Induction of histidase is repressed by the presence of glucose-C at concentrations of 4000  $\mu$ g g<sup>-1</sup> soil. Glucose is a "superior" catabolite. Its presence represses synthesis of enzymes that degrade less favorable catabolites. Neither glucose nor NH<sub>4</sub><sup>+</sup> suppressed non-induced histidase activity.

Regulatory control of histidase synthesis occurs at high C concentrations that are uncommon in soil, except in microsites surrounding organic substrates. The regulatory control of histidase synthesis in an oligotrophic environment, such as soil, is probably of minor importance because enzyme activity in soil is limited by substrate availability rather than the amount of enzyme (Tateno, 1988). Burton (1989) concluded that the majority of soil histidase is the result of constitutive synthesis.

Frankenburger and Johanson (1983) found that histidase activity was correlated with organic C and total N content in the topsoil of 20 diverse soil samples from California and activity decreased with depth and with air drying. In a black Chernozemic soil cropped with barley, Burton (1989) found histidase and protease activities did not correlate with net mineral-N production. Biomass C, which integrates enzymatic potential and substrate supply, provided a better indication of net mineral-N production.

#### β-Glucosidase

β-D-Glucosidase is one of the three enzymes responsible for cellulose decomposition. Many enzymes are probably involved, but endo-1,4-β-D-glucanase, exo-1,4-β-D-glucanase, and β-D-glucosidase are considered to be primarily responsible (Hope and Burns, 1987). This paper will focus on glucosidase activity. β-D-Glucosidase (EC 3.2.1.21) catalyzes the hydrolysis of terminal non-reducing β-D-glucoside residues with the release of β-D-glucose. It is widely distributed in nature (Eivazi and Tabatabai, 1988), has been isolated and purified from pure cultures of microorganisms isolated from soil (Banerjee, 1990; Bagga et al., 1990; Khandke et al., 1989), and has also been extracted and purified directly from soil (Batistic et al., 1980; Hayano and Katami, 1977).

The assay for  $\beta$ -glucosidase is based on colorimetric determination of the  $\rho$ nitrophenol concentration when soil is incubated with buffered  $\rho$ -nitrophenol- $\beta$ -Dglucopyranoside (PNG) solution and toluene (Eivazi and Tabatabai, 1988). The substrate, PNG, is artificial. Hayano and Katami (1977) found that  $\beta$ -glucosidase is more active with natural substrates than with PNG. Air drying of field moist soil has been reported to both increase (Eivazi and Tabatabai, 1990) and decrease (Hope and Burns, 1987)  $\beta$ -glucosidase activity. Addition of trace elements during the assay inhibits activity, and steam sterilization for one hour completely destroys activity. Inorganic N also inhibits  $\beta$ -glucosidase activity when added during the assay (Eivazi and Tabatabai, 1990).

Microorganisms produce extracellular  $\beta$ -glucosidase and many researchers believe the enzyme becomes stabilized in humic-enzyme polymers during humus synthesis (Hope and Burns, 1987; Sarker and Burns, 1984; Sinsabaugh and Linkins, 1989). Although crude humic-enzyme complexes have been extracted from soil, subsequent purification and analysis of these fractions has not revealed the relationship between the enzyme and its polyaromatic support (Sarker and Burns, 1984). Researchers have artificially produced enzyme complexes bound to organic material or phenolic polymers to investigate the activity and stability of immobilized or bound  $\beta$ -glucosidase. Sarker and Burns (1984) found glucosidasephenolic copolymers had higher K<sub>m</sub> values and lower V<sub>max</sub> values than soluble enzymes. Resistance to commercial protease increased when the copolymer was fixed to clay, but V<sub>max</sub> decreased even more meaning that the bound enzyme was more stable, but less active.

Sinsabaugh and Linkins (1989) subjected artificially prepared organic matter-cellulase complexes to 10 repeated freeze-thaw or wet-dry cycles and measured total cellulase, endoglucanase, and glucosidase activity (exoglucanase is obtained by the difference between total cellulase and endoglucanase plus glucosidase activity). Both soluble and insoluble enzyme complexes were prepared. Uncomplexed enzymes retained less activity after the freeze-thaw cycles than soluble complexed enzymes. Of the insoluble complexes, only the  $\beta$ -glucosidase complex retained more activity than its uncomplexed control. After the wet-dry cycles  $\beta$ -glucosidase retained 55-105% of the original activity while the exoglucanase retained less than 60% and the endoglucanase retained less than 5%. Of these "bound" cellulases,  $\beta$ -glucosidase activity was the most stable. Hope and Burns (1987) concluded that  $\beta$ -glucosidase was bound to and protected by soil colloids. Their explanation for this conclusion was based on the effect of air drying. Ten percent of the original  $\beta$ -glucosidase activity was accounted for in the soil extract. Air drying decreased activity by 10-15%. Since air drying decreased total cellulase activity by 64%, they concluded that glucanases were free in solution or associated with microbes that were not resistant to air drying.

The origin of  $\beta$ -glucosidase in soil has also been investigated. Hayano and Tubaki (1985) studied  $\beta$ -glucosidase activity in an Andisol supporting a tomato monoculture under greenhouse conditions. They found that the soil passing through a 2-mm sieve had greater than 50% of the total  $\beta$ -glucosidase activity. The organic debris remaining on the sieve and the greater than 2-mm soil fraction each contributed approximately 20% of the total activity. The organic debris, rice straw, contributed a significant amount on the basis of its dry weight, which was only 1.5% of the total weight. By subjecting the soil to various soil sterilants to inhibit certain groups of microflora, they deduced that mucoraceaous fungi were probably the primary source of  $\beta$ -glucosidase in the soil studied.

 $\beta$ -Glucosidase activity correlated with organic C and decreased with depth in 10 agricultural soils from Iowa (Eivazi and Tabatabai, 1990). Verstraete and Voets (1977) also demonstrated that activity increased with soil organic matter. In a fiveyear field study, they showed that soil that received green manure plus either farmyard manure or crop residues had higher levels of  $\beta$ -glucosidase, urease, phosphatase, and saccharase activities, respiration and N mineralization than soil that did not receive organic inputs. In an 80-year long-term rotation and fertilizer experiment (Anwarzay et al., 1990), organic fertilizers increased biological activity ( $\beta$ -glucosidase, phosphatase, protease, xylanase, urease, and cellulase activity) more than mineral fertilizers. Lowest activities were found on non-fertilized plots.

#### Long-term Soil Management Effects on Soil Enzyme Activity

In general, soils that receive higher inputs of organic residues have higher enzyme activity. Soil organic matter is the source of energy for heterotrophs. Therefore, additions of organic residues stimulate microbial activity (Tate, 1984; Nannipieri et al., 1979; Ladd and Paul, 1973), and would be expected to increase enzyme activity as well. A five-year rotation of grains and legumes had significantly higher dehydrogenase, urease, catalase, phosphatase, and invertase activity than a wheat-fallow rotation after 40 years (Khan, 1970). In the same study, N increased enzyme activity, but soil treated with manure had higher activity than soil fertilized with inorganic N. In the Palouse region of eastern Washington, Bolton et al. (1985) found higher soil enzyme activity (urease, phosphatase, and dehydrogenase) and microbial biomass in a soil managed with leguminous green manures since 1909 than in an adjacent field which has received N, P, and S at recommended rates since 1948. After 55 years of a crop-residue and N-fertilization treatment in a wheat-fallow system, Dick et al. (1988) found soil that received manure or pea vine had higher enzyme activity (phosphatase, sulfatase,  $\beta$ glucosidase, amidase, and urease) than the control soil. Amidase and urease (enzymes involved in deamination) decreased with increasing inputs of inorganic N, but organic N (manure or pea vine) increased activity.

#### Transitions from Inorganic to Organic N Sources

Nitrogen deficiency is one of the factors responsible for reduced yield and profit losses during the initial conversion from mineral to organic sources of N. The C in the organic material is a source of energy for the microbial populations that mediate the breakdown and release of nutrients contained in the organic residues (Paul and Clark, 1989). Since MB increases when C is added to the soil (Frankenburger and Dick, 1983; Nannipieri et al., 1979; Powlson et al., 1987), it is believed that N deficiencies are caused, in part, from N immobilization by the increased microbial population (Janzen and Radder, 1989). In a transition study, Doran et al. (1985) found higher microbial biomass and potentially mineralizable N in a legume-grain system than in a conventional grain system. In the second year of the study, N deficiency and lower yields in the legume-grain rotation were associated with less soil  $NO_3^-$  and more N in the microbial biomass than in the conventional system.

When synthetic N fertilizers are reduced or eliminated, nutrient availability is dependent on the soil's biological capability. Therefore, the reestablishment of an active microbial community is important during a conversion (Culik, 1983). Many studies have shown that soil managed with organic N sources has higher microbial populations and enzyme activity than soil managed with mineral fertilizers (Bolton et al., 1985; Martyniuk and Wagner, 1978; Anwarzay et al., 1990; Alef et al., 1988; Dick et al., 1988; McGill et al., 1986), but few studies have monitored microbial biomass and enzyme activity dynamics during the transition from mineral to organic sources of N.

#### LITERATURE CITED

- Alef, K., T. Beck, L. Zelles, and D. Kleiner. 1988. A comparison of methods to estimate microbial biomass and N-mineralization in agricultural and grassland soils. Soil Biol. Biochem. 20:561-565.
- Amato, M., and J.N. Ladd. 1988. Assay for microbial biomass based on ninhydrinreactive nitrogen in extracts of fumigated soils. Soil Biol. Biochem. 20:107-114.
- Anderson, J.P.E., and K.H. Domsch. 1985. Determination of ecophysiological maintenance carbon requirements of soil microorganisms in a dormant state. Biol. Fertil. Soils 1:81-89.
- Anwarzay, M.O., W.E.H. Blum, P. Strauss, and E. Kandezer. 1990. Biological activity in soil in an 80-year long-term field experiment. (in German.) Forderungsdienst. 38:18-22.
- Bagga, P.S., D.K. Sandhu, and S. Sharma. 1990. Purification and characterization of cellulolytic enzymes produced by Aspergillus nidulans. J. Appl. Bacteriol. 68:61-68.
- Banerjee, U.C. 1990. Production of  $\beta$ -glucosidase (cellobiase) by *Curvularia* sp. Letters in Appl. Microbiol. 10:197-199.
- Batistic, L., J.M. Sarkar, and J. Mayaudon. 1980. Extraction, purification and properties of soil hydrolases. Soil Biol. Biochem. 12:59-63.
- Beauchamp, E.G. 1986. Availability of nitrogen from three manures to corn in the field. Can. J. Soil Sci. 66:713-720.
- Beauchamp, E.G., and J.W. Paul. 1989. A simple model to predict manure N availability to crops in the field. p. 140-149. *In J.A.* Hansen and K. Henriksen (ed.) Nitrogen in organic wastes applied to soils. Academic Press. London.
- Black, A.J. 1973. Soil property changes associated with crop residue management in a wheat-fallow rotation. Soil Sci. Soc. Am. Proc. 37:943-946.
- Bolton, H., L.F. Elliott, R.I. Papendick, and D.F. Bezdicek. 1985. Soil microbial biomass and selected soil enzyme activities: Effect of fertilization and cropping practices. Soil Biol. Biochem. 17:297-302.

- Bonde, T.A., J. Schnürer, and T. Rosswall. 1988. Microbial biomass as a fraction of potentially mineralizable nitrogen in soils from long-term field experiments. Soil Biol. Biochem. 20:447-452.
- Bonmati, M., B. Ceccanti, and P. Nanniperi. 1991. Spatial variability of phosphatase, urease, protease, organic carbon and total nitrogen in soil. Soil Biol. Biochem. 23:391-396.
- Bottner, P., Z. Sallih, and G. Biles. 1988. Root activity and carbon metabolism in soils. Biol. Fertil. Soils 7:71-78.
- Brookes, P.C., A. Landman, G. Pruden, and D.S. Jenkinson. 1985. Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol. Biochem. 17:837-842.
- Burns, R.G. 1982. Enzyme activity in soil: Location and a possible role in microbial ecology. Soil Biol. Biochem. 14:423-427.
- Burton, D.L. 1989. Control of amino acid catabolism in soil and direct assimilation by plants. Ph.D. diss. Univ. Alberta, Alberta.
- Burton, D.L., and W.B. McGill. 1989. Role of enzyme stability in controlling histidine deaminating activity in soil. Soil Biol. Biochem. 21:903-910.
- Burton, D.L., and W.B. McGill. 1991. Inductive and repressive effects of carbon and nitrogen on *L*-histidine ammonia-lyase activity in a black chernozemic soil. Soil Biol. Biochem. 23:939-946.
- Campbell, C.A., M. Schnitzer, G.P. Lafond, R.P. Zentner, and J.E. Knipfel. 1991. Thirty-year crop rotations and management practices effects on soil and amino nitrogen. Soil Sci. Soc. Am. J. 55:739-745.
- Campbell, C.A., M. Schnitzer, J.W.B. Stewart, V.O. Biederbeck, and F. Sells. 1986. Effect of manure and P fertilizer on properties of a black chernozem in southern Saskatchewan. Can. J. Soil Sci. 66:601-613.
- Castellanos, J.Z., and P.F. Pratt. 1981. Mineralization of manure nitrogencorrelation with laboratory indexes. Soil Sci. Soc. Am. J. 45:354-357.
- Cope, J.T., D.G. Strukie, and A.E. Hiltbold. 1958. Effects of manure, vetch, and commercial N on crop yields and C and N contents of a fine sandy loam over a 30-year period. Soil Sci. Soc. Proc. 22:524-527.
- Culik, M.N. 1983. The conversion experiment: reducing farming costs. J. Soil Water Conserv. 38:333-335.
- Dick, R.P., P.E. Rasmussen, and E.A. Kerle. 1988. Influence of long-term residue management on soil enzyme activities in relation to soil chemical properties of a wheat-fallow system. Biol. Fertil. Soils 6:159-164.
- Doran, J.W., D.G. Fraser, M.N. Culik, and W.C. Liebhart. 1985. Influence of alternative and conventional agricultural management on soil microbial processes and nitrogen availability. Am. J. Altern. Agric. 2:99-106.
- Drury, C.F., R.P. Voroney, and E.C. Beauchamp. 1991. Availability of NH<sub>4</sub><sup>+</sup>-N to microorganisms and the soil internal N cycle. Soil Biol. Biochem. 23:165-169.
- Eivazi, F., and M.A. Tabatabai. 1988. Glucosidase and galactosidases in soils. Soil Biol. Biochem. 20:601-606.
- Eivazi, F., and M.A. Tabatabai. 1990. Factors affecting glucosidase and galatosidase activities in soils. Soil Biol. Biochem. 22:891-897.
- Frankenburger, W.T., and W.A. Dick. 1983. Relationships between enzyme activities and microbial growth and activity indices in soil. Soil Sci. Soc. Am. J. 47:945-951.
- Frankenburger, W.T., and J.B. Johanson. 1981. L-histidine ammonia-lyase activity in soil. Soil Sci. Soc. Am. J. 46:943-948.
- Frankenburger, W.T., and J.B. Johanson. 1983. Distribution of L-histidine ammonia-lyase activity in soils. Soil Sci. 136:347-353.
- Griffith, S.M., and R.L. Thomas. 1979. Activity of immobilized pronase in the presence of montmorillonite. Soil Sci. Soc. Am. J. 43:1138-1140.
- Hargrove, W.L., A.L. Black, and J.V. Mannering. 1988. Cropping strategies for efficient use of water and nitrogen: Introduction. *In* W.L. Hangrove (ed.) Cropping strategies for efficient use of water and nitrogen. ASA Spec. Publ. 51. ASA, CSSA, and SSSA, Madison, WI.
- Hayano, K., and A. Katami. 1977. Extraction of β-glucosidase activity from pea field soil. Soil Biol. Biochem. 9:349-351.
- Hayano, K., and K. Tubaki. 1985. Origin and properties of β-glucosidase activity of tomato-field soil. Soil Biol. Biochem. 17:553-557.

- Hayano, K., M. Takeuchi, and E. Ichishima. 1987. Characterization of a metalloproteinase component extracted from soil. Biol. Fertil. Soils 4:179-183.
- Hope, C.F.A., and R.G. Burns. 1987. Activity, origin, and location of cellulases in a silt loam soil. Biol. Fertil. Soils 5:164-170.
- Insam, H., 1990. Are the soil microbial biomass and basal respiration governed by the climatic regime? Soil Biol. Biochem. 22:525-532.
- Insam, H., C.C. Mitchell, and J.F. Dormaar. 1991. Relationship of soil microbial biomass and activity with fertilization practice and crop yield of three ultisols. Soil Biol. Biochem. 23:459-464.
- Janzen, H.H., and R.D. Radder. 1989. Nitrogen mineralization in a green manureamended soil as influenced by cropping history and subsequent crop. Plant Soil 120:125-131.
- Jansson, S.L., and J. Persson. 1982. Mineralization and immobilization of soil nitrogen. p. 229-252. In F.J. Stevenson (ed.) Nitrogen in agriculture. Agron. Monogr. 22. ASA, Madison, WI.
- Jenkinson, D.S., and A.E. Johnson. 1977. Soil organic matter in the Hoosfield continuous barley experiment. p. 81-101. *In* Rothamsted Exp. Sta. Report for 1976, Part 2. Harpenden, Herts, England.
- Jenkinson, D.S., and D.S. Powlson. 1976. The effect of biocidal treatments on metabolism in soil-V. A method for measuring soil biomass. Soil Biol. Biochem. 8:209-213.
- Keeney, D.R. 1982. Nitrogen management for maximum efficiency and minimum pollution. p. 605-650. *In* F.J. Stevenson (ed.) Nitrogen in agriculture. Agron. Monogr. 22. ASA, Madison, WI.
- Khan, S.U. 1970. Enzymatic activity in a gray wooded soil as influenced by cropping systems and fertilizers. Soil Biol. Biochem. 2:137-139.
- Khandke, K.M., P.J. Vithayathil, and S.K. Murthy. 1989. Purification of xylanase, β-glucosidase, endocellulase, and exocellulase from a thermophilic fungus, *Thermoascus aurantiacus*. Arch. Biochem. Biophys. 274:491-500.
- Kiss, S., M. Dăgan-Bularda, and D. Rădulescu. 1975. Biological significance of enzymes accumulated in soil. Adv. Agron. 27:25-87.

- Ladd, J.N. 1972. Properties of proteolytic enzymes extracted from soil. Soil Biol. Biochem. 4:227-237.
- Ladd, J.N., and M. Amato. 1986. The fate of nitrogen from legume and fertilizer sources in soils successively cropped with wheat under field conditions. Soil Biol. Biochem. 18:417-425.
- Ladd, J.N., and J.H.A. Butler. 1972. Short-term assays of soil proteolytic enzyme activities using proteins and dipeptide derivatives as substrates. Soil Biol. Biochem. 4:19-30.
- Ladd, J.N., and R.B. Jackson. 1982. Biochemistry of ammonification. p. 172-228. In F.J. Stevenson (ed.) Nitrogen in agriculture. Agron. Monogr. 22. ASA, Madison, WI.
- Ladd, J.N., and E.A. Paul. 1973. Changes in enzymatic activity and distribution of acid-soluble, amino acid-nitrogen in soil during nitrogen immobilization and mineralization. Soil Biol. Biochem. 5:825-840.
- Lagutina, L.S. 1988. Two membrane-bound proteases of Aspergillus clavatus. Appl. Biochem. Microbiol. 24:386-392.
- Larson, W.E., C.E. Clapp, W.H. Pierre, and Y.B. Morachan. 1972. Effects of increasing amounts of organic residues on continuous corn: II. organic carbon, nitrogen, phosphorus, and sulfur. Agron. J. 64:204-208.
- Leake, J.R., and D.R. Reed. 1990. Proteinase activity in mycorrhizal fungi I. The effect of extracellular pH on the production and activity of proteinase by *Ericoid* endophytes from soil of contrasted pH. New Phytol. 115:243-250.
- Lessie, T.G., and F.C. Neidhardt. 1967. Formation and operation of the histidinedegrading pathway in *Psuedomonas aeruginosa*. J. Bacteriol. 93:1800-1810.
- Martynuik, S., and G.H. Wagner. 1978. Quantitative and qualitative examination of soil microflora associated with different management systems. Soil Sci. 125:343-350.
- McGill, W.B., K.R. Cannon, J.A. Robertson, and F.D.Cook. 1986. Dynamics of soil microbial biomass and water-soluble organic C in Breton L after 50 years of cropping to two rotations. Can. J. Soil Sci. 66:1-19.
- Müller, M.M., V. Sundman, O. Soininvaara, and A. Meriläinen. 1988. Effect of chemical composition on the release of nitrogen from agricultural plant materials decomposing in soil under field conditions. Biol. Fertil. Soils 6:78-83.

- Nannipieri, P., R.L. Johnson, and E.A. Paul. 1978. Criteria for measurement of microbial growth and activity in soil. Soil Biol. Biochem. 10:223-229.
- Nannipieri, P., F. Pedrazzini, P.G. Arcara, and C. Piovanelli. 1979. Changes in amino acids, enzyme activities, and biomasses during soil microbial growth. Soil Sci. 127:26-34.
- Nason, G.E., and D.D. Myrold. 1991. <sup>15</sup>N in soil research: Appropriate application of rate estimation procedures. Agric. Ecosys. Environ. 34:427-441.
- Niskanen, R., and E. Eklund. 1986. Extracellular protease-producing actinomycetes and other bacteria in cultivated soil. J. Agric. Sci. Finland 58:9-17.
- Ocio, J.A., and P.C. Brookes. 1990. An evaluation of methods for measuring the microbial biomass in soils following recent additions of wheat straw and the characterization of the biomass that develops. Soil Biol. Biochem. 22:685-694.
- Ocio, J.A., P.C. Brookes, and D.S. Jenkinson. 1991a. Field incorporation of straw and its effects on soil microbial biomass and soil inorganic N. Soil Biol. Biochem. 23:171-176.
- Ocio, J.A., J. Martinez, and P.C. Brookes. 1991b. Contribution of straw-derived N to total microbial biomass N following incorporation of cereal straw to soil. Soil Biol. Biochem. 23:655-659.
- Olson, R.A., and L.T. Kurtz. 1982. Crop nitrogen requirements, utilization, and fertilization. p. 567-604. *In* F.J. Stevenson (ed.) Nitrogen in agriculture. Agron. Monogr. 22. ASA, Madison, WI.
- Oveson, M.M. 1966. Conservation in a wheat summer fallow farming practice. Agron. J. 58:444-447.
- Parr, J.F., and R.I. Papendick. 1978. Factors affecting the decomposition of crop residues by microorganisms. p. 101-129. In W.R. Oschwald (ed.) Crop residue management systems. ASA Spec. Publ. 31. ASA, CSSA, and SSSA, Madison, WI.
- Paul, E.A., and F.E. Clark. 1989. Soil Microbiology and Biochemistry. Academic Press, Inc., San Diego, CA.
- Paul, E.A., and N.G. Juma. 1981. Mineralization and immobilization of soil nitrogen by microorganisms. p. 179-194. In F.E. Clark and T. Rosswall (eds.) Terrestrial nitrogen cycles. Ecol. Bull. (Stockholm) 33:179-195.

- Perucci, P. 1990. Effect of the addition of municipal solid-waste compost on microbial biomass and enzyme activities in soil. Biol. Fert. Soils 10:221-226.
- Powlson, D.S., P.C. Brookes, and B.T. Christensen. 1987. Measurement of the soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation. Soil Biol. Biochem. 19:159-164.
- Rasmussen, P.E., H.P. Collins, and R.W. Smiley. 1989. Long-term management effects on soil productivity and crop yield in semi-arid regions of eastern Oregon. USDA-ARS Station Bulletin Report #675.
- Rasmussen, P.E., R.R. Allmaras, C.R. Rohde, and N.C. Roager. 1980. Crop residue influences on soil carbon and nitrogen in a wheat-fallow system. Soil Sci. Soc. Am. J. 44:596-600.
- Robertson, K., J. Schnürer, M. Clarholm, T.A. Bonde, and T. Rosswall. 1988. Microbial biomass in relation to C and N mineralization during laboratory incubations. Soil Biol. Biochem. 20:281-286.
- Santrůčková, H., and M. Straškraba. 1991. On the relationship between specific respiration activity and microbial biomass in soils. Soil Biol. Biochem. 23:525-532.
- Sarker, J.M., and R.G. Burns. 1984. Synthesis and properties of  $\beta$ -D-glucosidasephenolic copolymers as analogues of soil humic-enzyme complexes. Soil Biol. Biochem. 16:619-625.
- Schnürer, J., M. Clarholm, and T. Rosswall. 1985. Microbial biomass and activity in agricultural soil with different organic matter contents. Soil Biol. Biochem. 17:611-618.
- Sims, J.T., 1986. Nitrogen transformations in a poultry manure amended soil: Temperature and moisture effects. J. Environ. Qual. 15:59-63.
- Sinsabaugh, R.L., and A.E. Linkins. 1989. Natural disturbance and activity of *Trichoderma viride* cellulase complexes. Soil Biol. Biochem. 21:835-839.
- Skujins, J. 1978. History of abiontic soil enzyme research. p. 1-50. In R.G. Burns (ed.) Soil Enzymes. Academic Press, New York.
- Speir, T.W., R. Lee, E.A. Pansier, and A. Cairns. 1980. A comparison of sulfatase, urease and protease activities in planted and in fallow soils. Soil Biol. Biochem. 12:281-291.

- Stanford, G. 1982. Assessment of soil nitrogen availability. p. 651-688. In F.J. Stevenson (ed.) Nitrogen in agriculture. Agron. Monogr. 22. ASA, Madison, WI.
- Stevenson, F.J. 1982. Organic forms of soil nitrogen. p. 67-122. In F.J. Stevenson (ed.) Nitrogen in agriculture. Agron. Monogr. 22. ASA, Madison, WI.
- Stevenson, F.J. 1986. Cycles of the soil, carbon, nitrogen, phosphorus, sulfur, micronutrients. John Wiley & Sons, Inc., NY.
- Tateno, M. 1988. Limitations of available substrates for the expression of cellulase and protease activities in soil. Soil Biol. Biochem. 20:117-118.
- Tate, R.L. 1984. Function of protease and phosphatase activities in subsidence of pahokee muck. Soil Sci. 138:271-278.
- Tate, R.L. 1987. Soil organic matter. John Wiley & Sons, Inc., NY.
- Tsujibo, H., K. Miyamotot, T. Hasegawa, and Y. Inamori. 1990. Purification of two types of alkaline serine proteases produced by an alkalophilic actinomycete. J. Appl. Bacteriol. 69:520-529.
- Vance, E.D., P.C. Brookes., and D.S. Jenkinson. 1987. An extraction method for measuring the soil microbial biomass C. Soil Biol. Biochem. 19:703-707.
- Verstraete, W., and J.P. Voets. 1977. Soil microbial and biochemical characteristics in relation to soil management and fertility. Soil Biol. Biochem. 9:253-258.
- Vigil, M.F., and D.E. Kissel. 1991. Equations for estimating the amount of nitrogen mineralized from crop residues. Soil Sci. Soc. Am. J. 55:757-761.
- Vigil, M.F., D.E. Kissel, and S.J. Smith. 1991. Field crop recovery and modeling of nitrogen mineralized from labeled sorghum residues. Soil Sci. Soc. Am. J. 55:1031-1037.
- Wagger, M.G., D.E. Kiddel, and S.J. Smith. 1985. Mineralization of nitrogen from nitrogen-15 labeled crop residues under field conditions. Soil Sci. Soc. Am. J. 49:1205-1208.
- Yadvinder-Singh, Bijay-Singh, M.S. Maskina, and O.P.Meelu. 1988. Effects of organic manure, crop residues and green manure (*Sesbania aculeata*) on nitrogen and phosphorus transformations in a sandy loam at field capacity and under waterlogged conditions. Biol. Fertil. Soils 6:183-187.

# CHAPTER 2

# NITROGEN UPTAKE AND DRY MATTER YIELD

#### ABSTRACT

Organic N additions can replace inorganic N as a means of conserving natural resources while minimizing adverse environmental impacts. Although longterm organic additions increase soil fertility and biological activity, producers are constrained by the need for short-term returns on their inputs. A successful transition from inorganic to organic N, therefore, depends on short-term N availability from organic N sources to maintain crop productivity. A greenhouse experiment was conducted to determine the effect of different organic amendments and decreasing inorganic N rates on dry matter yield (DMY) and plant N uptake. Treatments were arranged as a complete factorial that included the following factors: four soils obtained from the Residue Utilization Plots (RUP) initiated in 1931 at the Columbia Basin Research Center, Pendleton, OR (beef manure, pea vine residue, 0 kg N or 90 kg N ha<sup>-1</sup>, each applied biennially to a wheat-fallow system); four greenhouse organic residues (pea vine, beef manure, poultry manure, or control); and four rates of N fertilizer (0-1600 mg N 2 kg<sup>-1</sup> soil as  $NH_4NO_3$ ). Four successive crops of Zea mays L. were grown over a period of 306 days. In the absence of organic residue or N fertilizer, soil from the manure RUP treatment produced greater DMY and plant N uptake than soil from the other RUP treatments. Plant N uptake from soils in the beef manure and control residue treatments was the same throughout the experiment for each N rate, indicating no net N mineralization from the beef manure added in the greenhouse. In both the beef manure and control residue treatments, N uptake was directly proportional to the amount of inorganic N applied. Both the poultry manure and pea vine amendments increased mineral soil N and plant N uptake. Poultry manure was mineralized more quickly, however, pea vine provided N for plant uptake over a longer period of time.

### INTRODUCTION

There is a need to develop and adopt economical and efficient N management strategies that conserve natural resources while minimizing adverse environmental impacts (Hargrove, 1988). Reducing the amount of inorganic N applied to agricultural land is one such strategy. Pollution concern, public criticism, and the desire to cut input costs have prompted some producers to do so. When manufactured N fertilizers are reduced or removed from a production system, alternative N sources are required to maintain crop productivity. Using organic N sources produced on the farm (legumes, green manure, animal manure, and crop residues) is a viable alternative.

In the absence of inorganic fertilizers, N availability depends on the soil's N cycling capacity. Because most of the reactions involved in the N cycle are biologically mediated, the size and activity of soil microbial populations play an important role in N supply. Long-term applications of manufactured N fertilizers result in soils that have lower biological activity relative to soils that have received repeated additions of organic N (Rasmussen et al., 1989; Dick et al., 1988; McGill et al., 1986; Bolton et al., 1985). When making a transition from inorganic to organic N management, re-establishment of an active, functioning microbial community is critical to plant nutrient availability (Culik, 1983).

Although long-term organic additions increase soil fertility and biological activity (Rasmussen et al., 1989; McGill et al., 1986), producers are constrained by the need for short-term returns on their inputs. A successful transition from inorganic to organic N sources, therefore, depends on short-term N availability from the organic N sources to maintain crop productivity.

The Residue Utilization Plots (RUP) at the Columbia Basin Research Center, OR, have been managed with either inorganic or organic (manure or pea vine) N sources since 1931. As a result, soils from the RUP vary widely in organic matter content and biological activity (Rasmussen et al., 1980, 1989; Dick et al., 1988). Soils from the RUP provided a unique opportunity to simulate a transition from inorganic to organic N sources. The objective was to determine the effect of different organic amendments and decreasing inorganic N rates on dry matter yield and plant N uptake in soil which had been managed with long-term applications of either inorganic or organic N sources.

# MATERIALS AND METHODS

## Experimental Design

The experimental design was a completely randomized block with three replications. The treatments were arranged as a  $4 \times 4 \times 4$  complete factorial that included the following factors: soil field history, organic residue, and N fertilizer (Table 2.1).

| Field history | Organic residue | N Fertilizer†           |  |
|---------------|-----------------|-------------------------|--|
| Manure        | Pea vine        | N <sub>0</sub> ( 0)     |  |
| Pea vine      | Beef manure     | N <sub>400</sub> (200)  |  |
| Nitrogen      | Poultry manure  | N <sub>800</sub> (400)  |  |
| Control       | Control         | N <sub>1600</sub> (400) |  |

Table 2.1. Factorial arrangement of treatments.

<sup>†</sup> Subscript number is cumulative mg N applied per pot (2 kg soil) over four successive cropping periods. Number in parentheses is mg N applied as NH<sub>4</sub>NO<sub>3</sub> to the first crop.

 $N_{400}$  and  $N_{800}$  fertilizer levels decreased by 1/3 of the original rate with each successive crop.

### Soil

The soil was obtained from the RUP established in 1931 at the Columbia Basin Agricultural Research Center, Pendleton, Oregon. The soil is classified as a Walla Walla silt loam (coarse-silty, mixed, mesic Typic Haploxeroll). Since 1931, the RUP have been cropped with winter wheat in rotation with summer fallow. Plots have received wheat straw plus one of the following treatment on a biennial basis: (1) inorganic N fertilizer (34 kg ha<sup>-1</sup> from 1931-1966; 90 kg ha<sup>-1</sup> from 1967-1989), (2) strawy beef manure (22.4 metric tons ha<sup>-1</sup>), (3) pea vine residue (2.24 metric tons ha<sup>-1</sup>), and (4) only straw. Manure and pea vine residue were moldboard-plowed to 20-cm depth in the spring of each fallow year. Nitrogen fertilizer was applied at planting in October. The amount of C and N added to the soil in the RUP are presented in Table 2.2. Detailed descriptions of the experimental conditions and treatment history were reported by Oveson (1966) and Rasmussen et al. (1980).

| Field history | Wheat straw <sup>†</sup> | Amendments‡ | Total       |  |  |
|---------------|--------------------------|-------------|-------------|--|--|
|               | C Additions              |             |             |  |  |
|               | $kg C ha^{-1} 2 yr^{-1}$ |             |             |  |  |
| Manure        | 2850                     | 1415        | 4265        |  |  |
| Pea vine      | 2440                     | 790         | 3230        |  |  |
| Nitrogen      | 2370                     |             | <b>2370</b> |  |  |
| Control       | 1875                     | -           | 1875        |  |  |
|               | N Additions              |             |             |  |  |
|               | $kg N ha^{-1} 2 yr^{-1}$ |             |             |  |  |
| Manure        | 20                       | 110         | 130         |  |  |
| Pea vine      | 11                       | 35          | 46          |  |  |
| Nitrogen      | 13                       | 90 (45)§    | 103         |  |  |
| Control       | 8                        | —           | 8           |  |  |
|               | <u>C:N Ratio</u>         |             |             |  |  |
| Manure        | 139                      | 13          | 33          |  |  |
| Pea vine      | 218                      | 23          | 70          |  |  |
| Nitrogen      | 190                      | —           | 23          |  |  |
| Control       | 240                      | <u> </u>    | 240         |  |  |

Table 2.2. The C and N added to the RUP on a biennial basis (1931-1989).

† Estimated from average straw yield, C and N concentration, 1931-1978.

‡ Estimated from pea vine and manure applied, 1967-1986.

§ N rate changed in 1967, number in parentheses is for 1931-1966.

Surface soil (0-20 cm) was sampled from fallow plots in November 1989. A shovel was used to take six 25 x 25 x 20 cm subsamples of soil from each plot. Soil from each plot was passed through a 15-mm sieve, and any large straw debris discarded. The C and N content of the soil is shown in Table 2.3.

| Field history | Organic C          | Total N | C:N Ratio |
|---------------|--------------------|---------|-----------|
|               | g kg <sup>-1</sup> |         |           |
| Manure        | 14.0               | 1.21    | 11.6      |
| Pea vine      | 11.5               | 0.92    | 12.5      |
| Nitrogen      | 10.5               | 0.82    | 12.8      |
| Control       | 9.8                | 0.83    | 11.8      |

Table 2.3. The C and N content of the soil (0-20 cm) from the RUP prior to the greenhouse experiment.

# Greenhouse Experiment

Greenhouse pots each held two kg soil (oven dry weight basis) and were lined with double polyethylene bags to prevent leaching. At the beginning of the experiment each pot received a blanket application of 285 mg K, 120 mg S, 350 mg P, and 226 mg Ca in the form of  $K_2SO_4$  and  $Ca(H_2PO_4)_2H_20$ . Organic amendments were added on a gram total Kjeldahl N (TKN) basis. Chemical characteristics of the organic amendments are shown in Table 2.4. The pea vine residue was the same source applied to the RUP in the field. Beef and poultry manure were composted and commercially available. Soil water content in the pots was maintained at 0.35 kg kg<sup>-1</sup> throughout the experiment. Temperature in the greenhouse was controlled at 24/18°C, day/night. Days were 16 hours long, and artificial light was provided.

The soil and organic amendments were incubated for 87 days before the first crop was planted. Four maize seeds (*Zea mays* L.) per pot were sown to a depth of 2.5 cm. After seven days plants were thinned to three per pot. The plants were harvested 35 days after planting. Four successive crops were grown. After crop 2 was harvested, a second addition of organic amendments equivalent to 1 g TKN were added followed by a 65 day incubation. All pots received 80 mg S as  $K_2SO_4$  when crop 3 was planted. A schematic diagram of treatment application is presented in Figure 2.1.

At harvest, shoots were cut off at soil level. The roots were removed from

the soil and rinsed clean. Shoot and root tissue were dried at 65°C, weighed, and ground to pass a 0.42-mm sieve. Dry matter yield and plant N uptake values reported include both shoots and roots.

| Organic amendment | Total C | Total N          | Lignin | C:N |
|-------------------|---------|------------------|--------|-----|
|                   | —— g l  | ⟨g <sup>-1</sup> | %      |     |
| Pea vine          | 406     | 19               | 5.7    | 21  |
| Beef manure       | 365     | 15               | 28.4   | 24  |
| Poultry manure    | 400     | 48               | 19.9   | 8   |

Table 2.4. Chemical characteristics of organic amendments added to the soils in the greenhouse.

|                    | Сгор |     |     |     | Total <sup>†</sup> |
|--------------------|------|-----|-----|-----|--------------------|
| Nitrogen treatment | 1    | 2   | 3   | 4   |                    |
| · · ·              |      |     |     |     |                    |
| No                 | 0    | 0   | 0   | 0   | 0                  |
| N <sub>400</sub>   | 200  | 133 | 66  | 0   | 400                |
| N <sub>800</sub>   | 400  | 266 | 134 | 0   | 800                |
| N <sub>1600</sub>  | 400  | 400 | 400 | 400 | 1600               |

Table 2.5. Inorganic N added in the greenhouse N fertilizer treatments.

† Cumulative inorganic N added per pot (2 kg soil).

# Nitrogen, Carbon, and Lignin Determination

Ground shoot and root tissue, organic residues, and soils were analyzed for TKN content as described by Bremner and Mulvaney (1982). Soil inorganic N was extracted with 2 M KCl (10:1 extract to soil ratio). Ammonium from the TKN digests and soil extract NH<sub>4</sub><sup>+</sup>-N and NO<sub>3</sub>-N were determined on an Alpkem autoanalyzer (Alpkem, Clackamas, OR).

Total organic C content of the soil was determined by dry combustion and infrared detection on a Dohrmann C analyzer (Dohrmann, Santa Clara, CA). Carbon in the organic amendments was analyzed with a Leco C analyzer (Leco, St. Josephs, MI).

Lignin concentration of the organic residues was determined as described by Van Soest (1963).

# Statistical Analysis

Data were analyzed by standard ANOVA procedures for a completely randomized block design with SAS statistical software package (SAS Institute, Cary, NC). Main effect means were separated with Tukey's at the p = 0.05 level.



Figure 2.1. Schematic overview of treatments applied during the experiment.

41

#### **RESULTS AND DISCUSSION**

### Response to Long-term Field History

In the absence of organic residue or N fertilizer, soil that received long-term manure applications in the field produced greater dry matter yield (DMY) and N uptake than soil from other field treatments at the first crop (Figure 2.2). There was no significant difference in either DMY or plant N uptake from soils with other field histories, although DMY and N uptake were consistently higher in the soil from the pea vine RUP than in soil from either the N or control RUP treatment. Christ and Dick (199x) also found significantly higher ryegrass DMY and N uptake in soil from the manure RUP treatment than soil from the other RUP treatments during a 120-day greenhouse experiment when no inorganic N was added. In their study soil from the pea vine treatment also produced more DMY and N uptake than soil from the other RUP treatments (manure treatment excluded) although, the difference was not significant.

Since no N fertilizer or organic residues were added in the N<sub>0</sub> treatment, N uptake reflects differences in mineral N supplying capacity of the soil resulting from long-term management. Prior to planting crop 1, soil from the manure, pea vine, N, and control field treatments had 42.9, 38.9, 30.1, and 19.2  $\mu$ g inorganic N g<sup>-1</sup> soil, respectively. In the first maize crop, N uptake was approximately one-half of this amount for each treatment.

Long-term yields from the RUP indicate that the manure amended soil produces 5% higher wheat yields than the N amended soil (Rasmussen et al., 1989). In the greenhouse, when inorganic N is not added, the manure amended soil supplies more N and produces much higher yields than soil with a long-term history of inorganic N application (Figure 2.2). Yields on unamended soil from the RUP for the first maize crop were 91% higher in the manure amended soil, than in soil from the long-term RUP N treatment, and even the pea vine amended soil produced 24% greater maize yield than the N amended soil.



Figure 2.2. Cumulative dry matter yield and N uptake as affected by soil field history in the absence of greenhouse N inputs (n = 3).

In the absence of greenhouse N inputs (organic residue or inorganic N), N uptake and DMY in the first maize crop was correlated with soil organic C, total N, and the amount of C added to soil in the field ( $r^2 = 0.99$ , 0.93, and 0.96 for N uptake and 0.99, 0.97, and 0.96 for DMY, respectively). Plant productivity can be maintained with either organic or inorganic N, however, organic N sources improve soil fertility relative to inorganic N. In general, N amendments increase yield and create more residues per crop. Residues returned to the soil maintain soil organic matter and N fertility. The beneficial effect of N fertility is both cyclic and cumulative. If crop residues are removed, however, N fertilizer alone does not maintain soil organic C or total N content (Black, 1973; Bonde et al., 1988).

After the first crop, DMY and N uptake were similar regardless of past management history (Figure 2.2), indicating similar N mineralization rates in these soils. In a previous greenhouse study with soil from the same plots, Christ and Dick (199x) found the soil that received inorganic N had a higher mineralization rate than soil from either the manure or pea vine treatment. Their study also found that although soils from the manure and pea vine treatments had a lower mineralization rate, they had a larger pool of potentially mineralizable N than soil from either the control or N treatment. The pea vine and manure are C as well as N sources, and both have increased the soil organic C and total N levels relative to the N treatment (Table 2.3). Bonde et al. (1988) also found C additions (manure or straw plus N fertilizer) increased N mineralization potential and soil organic C and total N levels. In their study, soil with a history of inorganic N application had higher mineralization rate and lower potentially mineralizable N than soil that received organic matter additions.

Differences in DMY and N uptake resulting from different long-term management practices diminished once inorganic N was added (Table 2.6). Christ and Dick (199x) also found no significant difference in ryegrass N uptake when adequate inorganic N was added, however, manure amended soil produced higher yields in the presence of up to 160 mg N kg<sup>-1</sup> soil.

44

|               | mg N applied 2 kg <sup>-1</sup> soil |                                  |       |  |
|---------------|--------------------------------------|----------------------------------|-------|--|
| Field history | 0† 200†                              |                                  | 400‡  |  |
|               | N uptake                             |                                  |       |  |
|               | . <u></u>                            | — mg N 2 kg <sup>-1</sup> soil – |       |  |
| Manure        | 43a§                                 | 157a                             | 293a  |  |
| Pea vine      | 29b                                  | 130a                             | 242a  |  |
| Nitrogen      | 24b                                  | 142a                             | 247a  |  |
| Control       | 18b                                  | 139a                             | 248a  |  |
|               | Dry matter yield                     |                                  |       |  |
|               | g 2 kg <sup>-1</sup> soil            |                                  |       |  |
| Manure        | 6.5a                                 | 14.6a                            | 18.6a |  |
| Pea vine      | 4.2ab                                | 13.9ab                           | 15.1a |  |
| Nitrogen      | 3.4b                                 | 14.4a                            | 16.5a |  |
| Control       | 2.8b                                 | 12.6b                            | 15.8a |  |

Table 2.6. Effect of field history and inorganic N applied in the greenhouse on N uptake and dry matter yield of maize in the control greenhouse residue treatment at crop 1.

+ n = 3.

 $\ddagger n = 6.$ 

§ Means followed by the same letter within a column are not significantly different (Tukey's, p = 0.05).

When organic residues were added in the greenhouse, no differences in DMY resulted from past management history (data not shown). At the N<sub>0</sub> fertilizer rate, trends in N uptake among the soils from the different field histories that received pea vine or beef manure in the greenhouse followed those of the control residue treatment. In the greenhouse poultry manure treatment, N uptake was 32% higher in the soil from the pea vine RUP treatment than soil from other field treatments at crop 1. After crop 1, the N uptake in the poultry manure residue treatment was similar in all soils regardless of field history. There is no explanation for this interaction, however,  $\beta$ -glucosidase activity (Chapter 4) measured prior to planting was also much higher in this treatment combination.

Field history had little effect on DMY and N uptake relative to the effects of N fertilizer and organic residue treatments, therefore, results presented below were averaged across field history.

## Response to Inorganic Nitrogen and Organic Residue Treatments

Dry matter yield - The pea vine and poultry manure treatments had similar dry matter yields as did the beef manure and control (Figure 2.3). At the  $N_{1600}$  rate, the DMY was approximately the same for all organic residue treatments indicating N was not limiting DMY at this N rate. Dry matter yield in the  $N_{800}$  and  $N_{1600}$ treatments were not significantly different in the soil amended with either pea vine or poultry manure throughout the cropping period. The  $N_{1600}$  treatment produced significantly greater DMY than the  $N_{800}$  treatment in the beef manure and control residue treatments after crop 2 and 3, respectively.

For the first crop, the pea vine and poultry manure provided enough N for maximum DMY regardless of the N fertilizer treatment. In the absence of inorganic N, the beef manure and control residue treatments produced very low DMY, 28% of poultry manure or pea vine treatment at crop 1.

The amount of N added to crop 4 was 0 mg N for all N treatments except the  $N_{1600}$ . Crop 4 DMY for the  $N_0$ ,  $N_{400}$ , and  $N_{800}$  treatments was the same within each residue treatment. In the beef manure and control treatments the  $N_{1600}$  rate produced higher DMY than the other N treatments, but in the poultry manure and pea vine treatments, N rate had no effect on DMY at crop 4.



Figure 2.3. Cumulative dry matter yield in the organic residue treatments as affected by N fertilizer treatment, averaged over field history (n = 12).

*Nitrogen uptake* - Cumulative uptake in the beef manure and control residue treatments was less than that in the poultry manure and pea vine treatments throughout the cropping period (Figure 2.4). In the pea vine, beef manure, and control treatments, N uptake increased with increasing N rates until crop 4 when N uptake was the same within each residue treatment for the N<sub>0</sub>, N<sub>400</sub>, and N<sub>800</sub> rate. At crop 4, only the N<sub>1600</sub> treatment received an application of inorganic N. More N was taken up by plants in the N<sub>1600</sub> treatment at crop 4 than in any other inorganic N treatment with the exception of the poultry manure residue treatment. In the poultry manure treatment, N uptake was influenced by N treatment only at crop 2 when N uptake increased with increasing rates of N applied. Throughout the cropping period for the pea vine, beef manure, and control treatments and after crop 1 for the poultry manure treatment, the difference in cumulative N uptake between the N<sub>0</sub>, N<sub>400</sub>, and N<sub>800</sub> treatments was proportional to the amount of cumulative N applied.

In the absence of applied inorganic N, differences in plant N uptake between the control residue treatment and the other residue treatments reflect the amount of plant-available N derived from the residues. Nitrogen uptake in the beef manure and control residue treatments was the same throughout the experiment at each N rate, indicating no net N mineralization from the beef manure (Figure 2.4). However, differences in soil inorganic N between days 0 and 87 (the incubation period prior to cropping) suggest that 23 mg N 2 kg<sup>-1</sup> soil was immobilized in the beef manure treatment (data not shown).

Net immobilization of N contained in beef or dairy manure, in soil incubation experiments, has previously been reported (Yadvinder-Singh et al., 1988; Beauchamp, 1986; Castellanos and Pratt, 1981). In a greenhouse experiment, Castellanos and Pratt (1981) found amending soil with a fresh dairy manure (C:N ratio of 15.9, 2% total N) depressed yields in the first barley crop. Beauchamp (1986) found beef manure (C:N ratio of 15.4, 0.5% total N) addition had no effect on the first crop of maize seedlings grown in the greenhouse, but increased DMY and N uptake in the second crop. Composting stabilizes the N and C in manure and reduces its value as an N fertilizer (Castellanos and Pratt, 1981). The beef manure added to the soil in the greenhouse in the present study was composted and no short-term benefit to the plants was derived. In both the beef manure (Figure 2.5) and control residue treatments, N uptake was directly proportional to the amount of inorganic N applied. In long-term studies, however, manure has been shown to improve soil fertility, N supplying capacity, and physical parameters (Rasmussen et al., 1989), as well as provide an energy source for soil microorganisms.

Assuming that soil organic matter mineralization was unaffected by the addition of the organic residues, 36% of the organic N originally present in the poultry manure residue was mineralized during the 87 days prior to planting crop 1. Sims (1986) reported 36 and 38% of the organic N from two poultry manures (C:N of 12 and 15, respectively) was mineralized within the first 90 days of a soil incubation experiment conducted at 25°C. Castellanos and Pratt (1981) found approximately 28 and 48% of the total N content of fresh and composted poultry manure (both with a C:N ratio of 6.5), was mineralized in 10 weeks, respectively.

49



Figure 2.4. Cumulative N uptake in the organic residue treatments as affected by N fertilizer treatment, averaged over field history (n = 12).



Figure 2.5. Effect of inorganic N treatment relative to the N<sub>1600</sub> treatment on N uptake in the beef manure residue treatment, averaged over field history (n = 12).

Legumes have historically been used to maintain soil N fertility. Short-term benefit from legumes depends on mineralization of N from the residues after incorporation into soil. During the 87 days prior to planting crop 1, 15% of the organic N originally present in the pea vine residue added to the soil in the greenhouse was mineralized. Yadvinder-Singh et al. (1988) measured rapid mineralization of a young green manure residue, Sesbania aculeata, incubated with soil at 30°C. By week 16, all of the residue-N was mineralized. As plants age they become more resistant to decomposition (Parr and Papendick, 1978). The pea vine residue used in the present study consisted of mature pea plants minus the peas and pods. Yaacob and Blair (1980) investigated N uptake from two mature <sup>15</sup>N-labeled leguminous residues, soybean (Glycine max) and Siratro (Macroptillium atropurpureum). After 12 weeks of growth in a greenhouse, Rhodes grass (Chloris gayana) recovered 15% of the soybean N and 14-56% of the Siratro N. Greater N recovery from the Siratro residue was believed to be due to its higher N content and greater percentage of leaf material. In a greenhouse experiment, Janzen and Radder (1989) found that 26% of the N from mature <sup>15</sup>N-labeled tangier flatpea (Lathvrus tingitanus cv. Tinga) residue added to soil was recovered by wheat and canola plants.

Thirty one and 13% of the total N content of the poultry manure and pea vine residues was taken up by the first maize crop as estimated by the difference in N uptake between the control and the residue treatments at the N<sub>0</sub> rate (Table 2.7). An additional 2 and 5% was taken up by the second crop, respectively. It is not possible to distinguish the percent of the N taken up by crops 3 and 4 derived from the first or second addition of organic residues. By the end of the experiment, however, 20% of the total pea vine-N and 30% of the total poultry manure-N was taken up by the four maize crops. Since N was not limiting N uptake at the N<sub>0</sub> rate during crops 3 and 4 in the poultry manure residue treatment, more poultry manure-N may have been available than the amount taken up by the crop suggests. The pea vine-N was not mineralized and subsequently taken up by plants as quickly as the poultry manure-N, but pea vine provided N over a longer period of time than did poultry manure. In the pea vine residue treatment N uptake at crop 3 was greater than at crop 1, indicating that the pea vine added to the soil before crop 1 was still contributing N for uptake by the third crop. Based on the amount of N taken up at crop 2, it seems likely that the benefit from poultry manure amendment was of limited duration.

|                 | Сгор                    |      |       |       |  |  |
|-----------------|-------------------------|------|-------|-------|--|--|
| Organic residue | 1                       | 2    | 3     | 4     |  |  |
|                 | mg N 2 kg <sup>-1</sup> |      |       |       |  |  |
| Poultry manure  | 337.6                   | 29.5 | 193.4 | 114.5 |  |  |
| Pea vine        | 158.3                   | 60.2 | 182.4 | 69.3  |  |  |
| Beef manure     | 32.3                    | 9.7  | 18.4  | 4.6   |  |  |
| Control         | 28.4                    | 12.9 | 20.5  | 13.4  |  |  |

Table 2.7. Effect of organic residue added in the greenhouse on N uptake in the  $N_0$  treatment, averaged over field history (n = 12).

## CONCLUSIONS

Only in the absence of inorganic N additions, do soil differences resulting from long-term management practices influence plant productivity (DMY and N uptake). Soil managed with organic residues (manure or pea vine) are more productive and have higher total N and C levels than soil managed with inorganic or no N fertilizer. In the short-term there was no benefit to the plants from adding composted beef manure to the soil. Both poultry manure and pea vine additions increased DMY and N uptake. Poultry manure-N was mineralized more quickly than pea vine-N, however the pea vine provide N to the plants over a longer period of time.

- Beauchamp, E.G. 1986. Availability of nitrogen from three manures to corn in the field. Can. J. Soil Sci. 66:713-720.
- Black, A.J. 1973. Soil property changes associated with crop residue management in a wheat-fallow rotation. Soil Sci. Soc. Am. Proc. 37:943-946.
- Bolton, H., L.F. Elliott, R.I. Papendick, and D.F. Bezdicek. 1985. Soil microbial biomass and selected soil enzyme activities: Effect of fertilization and cropping practices. Soil Biol. Biochem. 17:297-302.
- Bonde, T.A., J. Schnürer, and T. Rosswall. 1988. Microbial biomass as a fraction of potentially mineralizable nitrogen in soils from long-term field experiments. Soil Biol. Biochem. 20:447-452.
- Bremner, J.M., and C.S. Mulvaney. 1982. Nitrogen-total. p. 595-624. In A.L. Page et al. (ed.) Methods of soil analysis. Part 2. Agron. Monogr. 9. ASA, Madison, WI.
- Castellanos, J.Z., and P.F. Pratt. 1981. Mineralization of manure nitrogencorrelation with laboratory indexes. Soil Sci. Soc. Am. J. 45:354-357.
- Christ, R., and R.P. Dick. 199x. Effects of long-term residue management and nitrogen fertilization on availability and profile distibution of nitrogen. Plant Soil (submitted).
- Culik, M.N. 1983. The conversion experiment: Reducing farming costs. J. Soil Water Conserv. 38:333-335.
- Dick, R.P., P.E. Rasmussen, and E.A. Kerle. 1988. Influence of long-term residue management on soil enzyme activities in relation to soil chemical properties of a wheat-fallow system. Biol. Fertil. Soils 6:159-164.
- Hargrove, W.L., A.L. Black, and J.V. Mannering. 1988. Cropping strategies for efficient use of water and nitrogen: Introduction. *In* W.L. Hangrove (ed.) Cropping strategies for efficient use of water and nitrogen. ASA Spec. Publ. 51. ASA, CSSA, and SSSA, Madison, WI.
- Janzen, H.H., and R.D. Radder. 1989. Nitrogen mineralization in a green manureamended soil as influenced by cropping history and subsequent crop. Plant Soil 120:125-131.

- McGill, W.B., K.R. Cannon, J.A. Robertson, and F.D.Cook. 1986. Dynamics of soil microbial biomass and water-soluble organic C in Breton L after 50 years of cropping to two rotations. Can. J. Soil Sci. 66:1-19.
- Oveson, M.M. 1966. Conservation in a wheat summer fallow farming practice. Agron. J. 58:444-447.
- Parr, J.F., and R.I. Papendick. 1978. Factors affecting the decomposition of crop residues by microorganisms. p. 101-129. In W.R. Oschwald (ed.) Crop residue management systems. ASA Spec. Publ. 31. ASA, CSSA, and SSSA, Madison, WI.
- Rasmussen, P.E., R.R. Allmaras, C.R. Rohde, and N.C. Roager. 1980. Crop residue influences on soil carbon and nitrogen in a wheat-fallow system. Soil Sci. Soc. Am. J. 44:596-600.
- Rasmussen, P.E., H.P. Collins, and R.W. Smiley. 1989. Long-term management effects on soil productivity and crop yield in semi-arid regions of eastern Oregon. USDA-ARS Station Bulletin Report #675.
- Sims, J.T., 1986. Nitrogen transformations in a poultry manure amended soil: Temperature and moisture effects. J. Environ. Qual. 15:59-63.
- Yaacob, O., and G.J. Blair. 1980. Mineralization of <sup>15</sup>N-labelled legume residues in soil with different nitrogen contents and its uptake by rhodes grass. Plant Soil 57:237-248.
- Yadvinder-Singh, Bijay-Singh, M.S. Maskina, and O.P.Meelu. 1988. Effects of organic manure, crop residues and green manure (*Sesbania aculeata*) on nitrogen and phosphorus transformations in a sandy loam at field capacity and under waterlogged conditions. Biol. Fertil. Soils 6:183-187.
- Van Soest, P.J. 1963. Use of detergents in the analysis of fibrous feeds. II. A rapid methods for the determination of fiber and lignin. J. Assoc. Official Agric. Chem. 46:829-834.

# CHAPTER 3

# MICROBIAL BIOMASS CARBON AND NITROGEN

#### ABSTRACT

Soils under long-term management practices that rely on organic material and native soil fertility for N support larger microbial biomass (MB) than soils managed with mineral fertilizers. Since soil microbes mediate most biochemical reactions in the N cycle, management practices that influence the size of the MB may affect the ability of soils to cycle and provide N for plant growth. A simulated transition from inorganic to organic N sources was conducted in a greenhouse to determine the long and short-term effects of inorganic and organic N additions to soil on the soil MB. Treatments were arranged as a complete factorial that included the following factors: four soils obtained from the Residue Utilization Plots (RUP) initiated in 1931 at the Columbia Basin Research Center, Pendleton, OR (beef manure, pea vine residue, 0 kg N or 90 kg N ha<sup>-1</sup>, each applied biennially to a wheat-fallow system); four greenhouse organic residues (pea vine, beef manure, poultry manure, or control); and four rates of N fertilizer (0-1600 mg N 2 kg<sup>-1</sup> soil as NH<sub>4</sub>NO<sub>3</sub>). Four successive crops of Zea mays L. were grown over a period of 306 days. Microbial biomass carbon and nitrogen (MBc and MBn, respectively) in soil that received long-term manure applications were significantly higher (p < 0.05) than in soil from the other RUP treatments. At the final sampling, soils amended with pea vine, beef manure, or poultry manure in the greenhouse had 400, 210, and 80% greater MBc and 280, 140, and 50% greater MBN than unamended soil, respectively. Soil from the N RUP treatment respired significantly (p < 0.05) more per unit MBc than soil from the other RUP treatments At the high greenhouse inorganic N rate, MBc tended to be lower and MBN was significantly higher than in soil receiving lower rates of inorganic N. Soil MB did increase with organic amendments in the presence of inorganic N. This suggests that a gradual reduction of inorganic N additions during a transition in the presence of organic amendments does not inhibit an increase in MB.

#### INTRODUCTION

The soil microbial biomass (MB) is a source and sink for plant nutrients and an active participant in nutrient cycling (McGill et al., 1986). Both the quantity and bioavailability of material added to soil affects the size of the MB. Soils under long-term management practices that rely on organic material and native soil fertility for N support a larger MB than soils managed with mineral fertilizers (Schnürer et al., 1985; McGill et al., 1986; Jenkinson and Powlson, 1976; and Bolton et al., 1985). Recent additions of organic residues also increase the MB in the short-term (Ocio et al., 1991b; Ocio and Brookes, 1990; and Perucci, 1990). The C and N in the MB (MBc and MBN, respectively) turn over rapidly and indicate changes resulting from management practices long before changes in total soil C and N are detectable (Powlson et al., 1987). Because most biochemical reactions in the N cycle are mediated by soil microorganaisms, management practices that influence the size and activity of the MB may affect the ability of soils to cycle and provide N for plant growth. In the absence of organic amendments, biological activity declines (Bolton et al., 1985; Dick et al., 1988). This decline reduces the potential of soil to mineralize organic residues. Yield losses that occur as inorganic N fertilizers are replaced by organic inputs probably result from microbial immobilization of nutrients as microbial population size increases in response to organic amendments. In a transition study, Doran et al. (1985) found higher MB and potentially mineralizable N in soil from a legume/grain system than in soil from a conventional grain system. In the second year of the study, N deficiency and lower yields in the legume/grain rotation were associated with lower soil NO3<sup>-</sup> and more N in the MB than in soil from the conventional system. Crop productivity after a transition from inorganic to organic N sources depends on re-establishment of an active microbial community (Culik, 1983).

The Residue Utilization Plots (RUP) at the Columbia Basin Research Center, OR, have been managed with either organic or inorganic N sources since 1931. As a result, soils from the RUP vary widely in organic matter content and biological activity (Rasmussen et al., 1980, 1989; Dick et al., 1988). The objective of this study was to determine the effects of long-term and recent additions of inorganic and organic N sources on the soil MB in soils from the RUP.

## MATERIALS AND METHODS

The soil came from the experiment described in Chapter 2. In brief, a simulated transition from inorganic to organic N sources was conducted to determine the effects of organic residues and decreasing N rates on plant and soil-biological parameters. Treatments were arranged as a complete factorial that included the following factors: four soils obtained from the Residue Utilization Plots (RUP) initiated in 1931 at the Columbia Basin Research Center, Pendleton, OR (beef manure, pea vine residue, 0 kg N or 90 kg N ha<sup>-1</sup>, each applied biennially to a wheat-fallow system); four greenhouse organic residues (pea vine, beef manure, poultry manure, or control); and four rates of N fertilizer (0-1600 mg N 2 kg<sup>-1</sup> soil as NH<sub>4</sub>NO<sub>3</sub>). Four successive crops of *Zea mays* L. were grown over a period of 306 days.

Organic amendments were added on an equal N basis (1 g total Kjeldahl-N 2 kg<sup>-1</sup> soil) before cropping began and again after the second crop was harvested. Inorganic N was applied at a split rate at each planting and at 21 days after planting. The initial rates were 0, 200, 400, or 400 mg N 2 kg<sup>-1</sup> soil for the N<sub>0</sub>, N<sub>400</sub>, N<sub>800</sub>, and N<sub>1600</sub> treatments, respectively (subscript number is the cumulative mg N added per pot over the 4 crops). The rate of N applied in the N<sub>0</sub> and N<sub>1600</sub> treatments remained constant throughout the experiment. The N<sub>400</sub> and N<sub>800</sub> treatments decreased by one-third of the original rate with each successive crop.

Soil MB analysis was performed prior to the greenhouse experiment (day 0), after the soil was incubated with the organic residues but before any crop was grown (day 87), after the second harvest (day 164), and after the fourth harvest (day 306). Soil was passed through a 2-mm sieve and stored moist at 4°C in the dark. Microbial biomass C (MBc) and N (MBN) were determined by the chloroform-fumigation incubation method. The original procedure of Jenkinson and Powlson (1976) was modified as follows. Twelve grams (fresh weight) of soil was weighed into glass scintillation vials. The vials were placed in a desiccator containing wet paper towels and 50-ml beaker containing 40 ml of ethanol-free

61
chloroform and a few glass beads. The desiccator was evacuated and the soil exposed to chloroform vapors for 24 hours.

The soil was transferred into polyethylene tubes (21 cm x 22.5 mm diameter) fitted with rubber septa that enabled sampling for gas chromatography. No inoculum was added and soil moisture was not adjusted. Samples were incubated at 24°C for 10 days in the dark. Total CO<sub>2</sub> produced after 10 days was determined with a thermal conductivity gas chromatograph.

After  $CO_2$  sampling, 50 ml of 2 *M* KCl was added to the tubes. The tubes were shaken lengthwise for 1 h and stored at 4°C until filtered. Extracts were filtered through a 25 mm glass fiber filter (Type A/E, Gelman Sciences Inc., Ann Arbor, MI) directly into autoanalyzer vials. The vials were capped and frozen until  $NH_4^+$ -N and  $NO_3^{-1}$ -N were determined on an Alpkem autoanalyzer (Alpkem, Clackamas, OR).

The MBc and MB<sub>N</sub> were calculated with the following formulas:

 $MBc = CO_2 - C_f / 0.41$  (Voroney and Paul, 1984),

 $MB_N = (NH_4^+ - N_f - NH_4^+ - N_{\mu f})/0.68$  (Shen et al., 1984),

where f and uf denote fumigated and unfumigated samples, respectively. The  $CO_2$ -C  $_{uf}$  was used to estimate basal respiration. Metabolic specific respiration was expressed as respiration per unit MBc.

All results are expressed on a per g oven dry ( $105^{\circ}$ C, 24 hr) weight basis. The data were analyzed by standard ANOVA techniques for randomized blocks with SAS statistical software package (SAS Institute, Cary, NC). Main effect means were separated with Tukey's at the p = 0.05 level.

## Field History

Soil from the Residue Utilization Plots (RUP) that received long-term manure applications had significantly higher MBc and MBN than soils with other field histories (Table 3.1). Studies from other long-term plots have shown similar results. Soil from the Broadbalk Plots at the Rothamsted Experiment Station that have received manure annually since the mid-1800's has higher MBc than soil from the NPK or control treated plots (Jenkinson and Powlson, 1976). After 50 years of cropping in Alberta, McGill et al. (1986) found manured soil contained twice the MBN as did NPKS or control plots. All of these studies, however, are confounded by the return of crop residues. Higher biomass measured in manure amended soil may have resulted from either the N or C in the manure itself or indirectly via increased amounts crop residues returned to the soil.

The manure applied to the RUP has increased the amount and quality of the straw residue returned to the plot (2850 kg straw-C ha<sup>-1</sup> 2 yr<sup>-1</sup>, C:N = 139 in manure treatment vs. 1875 kg straw-C ha<sup>-1</sup> 2 yr<sup>-1</sup>, C:N = 240 in control treatment) and has also supplied additional C and N (1415 kg C and 110 kg N ha<sup>-1</sup> 2 yr<sup>-1</sup>, Table 2.2). Initial MBc and MBN measurements were highly correlated with the total amount of C added to the soil in each RUP treatment ( $r^2 = 0.90$  and 0.92, respectively). Neither was correlated with total N added, but both were correlated with the organic N added ( $r^2 = 0.94$  and 0.99, respectively). In a long-term experiment where all residues were removed, Schnürer et al. (1985) found that adding inorganic N alone increased both MBc and MBN, but when both C and N (via straw plus N fertilizer or manure) were added, MBc and MBN increased by more than 50% relative to the inorganic N treated soil. Carbon additions had a greater effect than N supply on MB. Insam et al. (1991) suggested the effect of N fertilization on MBc is an indirect one resulting from increased C input to soil via roots and crop residues in response to improved N nutrition.

|               | Sampling day |         |                          |       |  |
|---------------|--------------|---------|--------------------------|-------|--|
| Field history | 0†           | 87      | 146                      | 306   |  |
|               |              | Biomass | carbon                   |       |  |
|               |              | μg C g  | <sup>-1</sup> soil ———   |       |  |
| Manure        | 276a‡        | 287a    | 230a                     | 327a  |  |
| Pea vine      | 202Ь         | 244b    | 199b                     | 280b  |  |
| Nitrogen      | 196b         | 210c    | 155c                     | 271bc |  |
| Control       | 168b         | 227bc   | 163c                     | 253c  |  |
|               |              | Biomass | nitrogen                 |       |  |
|               |              | μg N g  | g <sup>-1</sup> soil ——— |       |  |
| Manure        | <b>21</b> a  | 51a     | 35a                      | 48a   |  |
| Pea vine      | 12b          | 39b     | 30b                      | 42b   |  |
| Nitrogen      | 8c           | 32d     | 21d                      | 39bc  |  |
| Control       | 7c           | 37c     | 26c                      | 36c   |  |

Table 3.1. Effect of long-term field history on MBc and MBn, averaged over organic amendment and N fertilizer treatments (n = 48).

† There was no organic amendment or N treatment at day 0 (n = 8).

‡ Means in each column followed by the same letter are not significantly different (Tukey's, p = 0.05).

Long-term crop yields from the RUP indicate that the manure amended soil has produced 5, 30, and 75% greater wheat yields than the N, pea vine, and control treatments, respectively (Rasmussen et al., 1989). The N and manure treated soils produce similar yields which indicates that 130 kg N ha<sup>-1</sup> added via manure and wheat straw (110 and 20 kg N ha<sup>-1</sup>, respectively) in the manure treatment supplies as much plant-available N as the N treatment which supplies 102 kg N ha<sup>-1</sup> (90 kg NH<sub>4</sub>NO<sub>3</sub>-N ha<sup>-1</sup> and 12 kg straw-N ha<sup>-1</sup>). Organic N in the manure must be mineralized by the MB before becoming plant-available, and as expected, the manure treated soil supports a much larger MB than the soil from the N RUP (Table 3.1). At the beginning of the experiment, MBc was 1.9, 1.6, 1.4, and 1.6% of soil organic C and the MB<sub>N</sub> was 2.0, 1.5, 1.1, and 1.0% of total soil N in the manure, pea vine, N, and control treated soils, respectively. The RUP amended with manure or pea vine had higher soil C and N levels and more of the C and N tended to be in a biological form. Others have found long-term additions of straw, green, or farmyard manure increase the MBc : soil C ratio (Insam et al., 1991; Bonde et al., 1988; Anderson and Domsch, 1989) and flush of N to total soil N ratio (McGill et al., 1986). When agricultural practices remain unchanged for long periods, the MBc to soil C ratio is thought to represent an equilibrium characteristic of the system. Although there may be temporary changes (e.g., increases in MB resulting from recent soil additions) the soil system maintains an apparent equilibrium when measured over time.

## **Organic Amendments**

Recent additions of organic amendments had a larger effect on the MB than did long-term field treatments (Figure 3.1 and Table 3.1). Additions of organic amendment in the greenhouse increased MBc and MBN relative to the control at each sampling date. At the 306 day sampling, the soil amended with pea vine, beef manure, or poultry manure had 400, 210, and 80% greater MBc and 280, 140, and 50% greater MBN than the unamended soil, respectively. This is consistent with other studies which have shown that recent additions of organic residues have increased soil MB during short term incubations (Ocio and Brookes, 1990; Ocio et al., 1991b). Long-term incubations and field studies have shown rapid increases in MB shortly after the addition of an organic residue followed by a gradual decline. Perucci (1990) found MBc and MBN peaked one month after municipal sewage sludge was added to soil. After 12 months of laboratory incubation, both MBc and MBN were still two-fold greater than in untreated soil. Ocio et al. (1991a) found that MBc and MBN were 20 and 18% greater than in the unamended soil one year after field incorporation of 10 Mg ha<sup>-1</sup> wheat straw (C:N = 48).



Figure 3.1. Effect of organic amendments added in the greenhouse on MBc and MB<sub>N</sub>, averaged over field history and N treatment (n = 48).

All residues were added on a equal N basis, but the pea vine and beef manure had similar C:N ratios (21 and 24, respectively) and, therefore, both treatments added approximately the same amount of C. Soil amended with pea vine in the greenhouse supported 60% more MBc and MBN than the beef manure amended soil. Schnürer et al. (1985) found greater MB in straw plus inorganic N treated soil than in manure treated soil even though both were added on an equal C and N basis. They postulated the difference resulted from substrate bioavailability. Because the C in manure was "digested" prior to soil application it is expected to be more resistant to microbial decomposition than crop residues. The lignin concentration in the beef manure was four times greater than that in the pea vine (28 and 6% lignin, respectively, Table 2.4). Because lignin is resistant to microbial degradation, less C would be available for MB incorporation from the beef manure. Both manures used were composted, but the beef manure supported a greater MB than did the poultry manure (Figure 3.1). The amount of C added in the beef manure was three times greater than in the poultry manure (24 and 8 g C 2 kg<sup>-1</sup> soil, respectively). The MBc and MBN increase in the beef manure amended soil over the control was approximate three times greater than the MBc and MBn increase in the poultry manure amended soil over the control at the 306 day sampling.

## **Biomass Specific Respiration**

Although the functional relationship between MB and microbial respiration is not yet fully understood (Šantrůčková and Straškraba, 1991), high biomass specific respiration in the presence of easily degradable substances is commonly observed (Schnürer et al., 1985; Insam et al., 1991). Soil with a field history of N application had higher biomass specific respiration than soil from other RUP treatments (Table 3.2). The overall C:N ratio of straw residue and N amendment added to the N treated soil was the lowest of the RUP treatments (C:N ratio of 23 vs. C:N ratios of 33, 70, and 240 for the manure, pea vine, and control treatments, respectively), thus, the organic material was probably the easiest to decompose. The total amount of C added to the soil in the field in the N treatment was less than in the manure and pea vine treatments. Schnürer et al. (1985) and Bonde et al. (1988), however, found that long-term N fertilizer additions had no effect on biomass specific respiration and soil that received C additions (either straw plus N fertilizer or manure) had higher biomass specific respiration than soil that did not receive C.

|               | Sampling day                                               |        |        |       |  |  |
|---------------|------------------------------------------------------------|--------|--------|-------|--|--|
| Field history | 0†                                                         | 87     | 146    | 306   |  |  |
|               | $\mu$ g CO <sub>2</sub> -C $\mu$ g <sup>-1</sup> biomass-C |        |        |       |  |  |
| Manure        | 0.12                                                       | 0.28c§ | 0.25c  | 0.30a |  |  |
| Pea vine      | 0.12                                                       | 0.32bc | 0.27bc | 0.34a |  |  |
| Nitrogen      | 0.18                                                       | 0.39a  | 0.41a  | 0.36a |  |  |
| Control       | ND‡                                                        | 0.33b  | 0.30b  | 0.32a |  |  |

Table 3.2. Effect of long-term field history on biomass specific respiration, averaged over organic amendment and N fertilizer treatments (n = 48).

† There was no organic amendment or N treatment at day 0 sampling date (n = 8). ‡ Not determined.

§ Means in each column followed by the same letter are not significantly different (Tukey's, p = 0.05).

Insam et al. (1991) compared soils with various fertilizer treatments and found lower biomass specific respiration in soil receiving full fertilization compared with inadequately fertilized soil. A negative correlation between biomass specific respiration and soybean yield was obtained. In contrast, RUP soil from the longterm N treatment had the highest biomass specific respiration. It also produces higher grain yields than either the pea vine or control plots (Rasmussen et al., 1989). Insam et al. (1991) hypothesized microbes may require more C and energy if they have to compete for nutrients, and hence, will have a higher biomass specific respiration under low nutrient conditions. Results from my study do not support this hypothesis since inorganic N added to otherwise adequately fertilized soil in the greenhouse had no effect on biomass specific respiration (data not shown).

Soil amended with beef manure in the greenhouse respired more  $CO_2$ -C per unit MBc than soil from the other residue treatments (Figure 3.2). Amending soil with either pea vine or poultry manure in the greenhouse, however, did not increase biomass specific respiration relative to the unamended control. Ocio and Brookes (1990) found that biomass specific respiration increased in soil amended with wheat straw (2% w w<sup>-1</sup>). If high biomass specific respiration truly indicates presence of organic matter that is easy to decompose, soil amended with beef manure (28% lignin) would not be expected to exhibit high biomass specific respiration. The beef manure amended soil not only respired the most  $CO_2$ -C per unit MBc, it respired the most  $CO_2$ -C per unit soil at the end of the experiment (Table 3.3).

| _                 | Sampling day                                                    |     |      |  |  |  |
|-------------------|-----------------------------------------------------------------|-----|------|--|--|--|
| Organic amendment | ndment 87 164 30                                                |     |      |  |  |  |
|                   | μg CO <sub>2</sub> -C g <sup>-1</sup> soil 10 day <sup>-1</sup> |     |      |  |  |  |
| Pea vine          | 149a†                                                           | 72a | 116b |  |  |  |
| Beef manure       | 90b                                                             | 83a | 131a |  |  |  |
| Poultry manure    | 46c                                                             | 43b | 54c  |  |  |  |
| Control           | 27d                                                             | 24c | 33d  |  |  |  |

Table 3.3. Effect of recent organic residue amendments on soil respiration, averaged over field history and N rate (n = 48).

† Means in each column followed by the same letter are not significantly different (Tukey's, p = 0.05).



Figure 3.2. Microbial respiration per unit MBc (biomass specific respiration) as affected by organic amendments added in the greenhouse. Each symbols represents the mean of three replicates. Sampling day 0 has been omitted.

## Nitrogen Fertilizer

Nitrogen fertilizer treatment began after the 87 day sampling. At the 164 day sampling, MBc and MBN were not affected by N fertilization. At the 306 day sampling, the effect of N rate on MBc was not consistent among the organic residue treatments although the  $N_{1600}$  treated soil tended to have the smallest MBc (Table 3.4). The MB<sub>N</sub> was significantly higher in the  $N_{1600}$  treatment than the other N rates which were not different from one another. Only the  $N_{1600}$  rate received any inorganic N when crop 4 was grown. Apparently there was no residual effect on MB<sub>N</sub> from N fertilizer added to the  $N_{400}$  and  $N_{800}$  treatments during earlier cropping. Drury et al. (1991) found high MBN values in corn plots soon after fertilization. The MB<sub>N</sub> approximately doubled after N application, but after one month there was no longer any apparent effect. Although field and laboratory studies (Ocio et al., 1991a, 1991b) have shown most of the N required by the MB soon after straw application comes from the N contained in the straw itself, adding inorganic N along with <sup>15</sup>N-labeled wheat straw (C:N ratio = 56) increased total biomass N in the laboratory (Ocio et al., 1991b). The inorganic N increased the total amount of MBN, yet decreased the amount of MBN coming from the <sup>15</sup>Nlabeled wheat straw. If it assumed that the C and N from residues are incorporated proportionally into the MB, this may explain both the slight decrease in MBc and the large increase in MB<sub>N</sub> in the presence of inorganic N at the 306 day sampling.

Table 3.4. Microbial biomass and respiration as affected by N treatment at the 306 day sampling period, averaged over organic amendment and field history (n = 48).

|                    | N                         |                           |     |                                       |
|--------------------|---------------------------|---------------------------|-----|---------------------------------------|
| Nitrogen treatment | Carbon                    | Nitrogen                  | C:N | Respiration                           |
|                    | $\mu$ g C g <sup>-1</sup> | $\mu$ g N g <sup>-1</sup> |     | μg CO <sub>2</sub> -C g <sup>-1</sup> |
| No                 | 285                       | 40                        | 7.4 | 85                                    |
| N <sub>400</sub>   | 288                       | 38                        | 7.7 | 88                                    |
| N <sub>800</sub>   | 293                       | 36                        | 8.4 | 93                                    |
| N <sub>1600</sub>  | 265                       | 51                        | 5.5 | 67                                    |

In the soil with a history of N fertilization, the percentage increase in MBN in the N<sub>1600</sub> treatment over the other N treatments was greater than in soil with other field history (Table 3.5). Although the percent increase was greater, the actual amount of MBN in soil from the N RUP / N<sub>1600</sub> treatment combination was no greater than in soil from the manure RUP / N<sub>1600</sub> treatment. Repeated additions of inorganic N over the years may have preconditioned the soil, resulting in more rapid or efficient response to additional inputs of inorganic N than soil that did not have a history of inorganic N additions. Another explanation may be that N was not limiting to microbes in the N<sub>1600</sub> treatment at crop 4. Insam et al. (1991) found the effect of fertilization on MBc was more pronounced on low nutrient status soils. This may also explain the greater effect of N fertilization on MBN in the soil from N treated RUP which has low total N.

| (n = 12).          |                           |          |          |         |  |  |
|--------------------|---------------------------|----------|----------|---------|--|--|
|                    | Field history             |          |          |         |  |  |
| Nitrogen treatment | Manure                    | Pea vine | Nitrogen | Control |  |  |
|                    | $\mu$ g N g <sup>-1</sup> |          |          |         |  |  |
| No                 | 48                        | 41       | 39       | 34      |  |  |
| N <sub>400</sub>   | 44                        | 38       | 33       | 35      |  |  |
| N <sub>800</sub>   | 45                        | 40       | 32       | 29      |  |  |
| N <sub>1600</sub>  | 54 (18)†                  | 50 (26)  | 54 (56)  | 45 (38) |  |  |

Table 3.5. Effect of N treatment on MBN in soil from each RUP treatment at the 306 day sampling period, averaged across organic amendment (n = 12).

<sup>†</sup> Number in parentheses is percent increase of  $N_{1600}$  over the mean of other N levels.

### CONCLUSIONS

Soil organic amendments increased the MB in both the short and long-term. In the long-term the amount of organic material correlated with the amount of MB present, while in the short-term response the composition of the material added influenced the response. Inorganic N did not affect the MB in the long-term, but increased the MB<sub>N</sub> in the short-term. The MB to soil C and N ratios were higher under management practices that included an additional organic amendment (manure or pea vine) than in soil that received inorganic or no N fertilizer. The MB changed rapidly in response to soil amendments even in the presence of inorganic N application. This suggests that MB can be increase by adding an organic N source at the same time inorganic N is added, thus, allowing for the reestablishment of an active microbial community without severe plant N deficiencies.

- Anderson, T.H., and K.H. Domsch. 1989. Ratios of microbial biomass carbon to total organic carbon in arable soils. Soil Biol. Biochem. 21:471-479.
- Bolton, H., L.F. Elliott, R.I. Papendick, and D.F. Bezdicek. 1985. Soil microbial biomass and selected soil enzyme activities: effect of fertilization and cropping practices. Soil Biol. Biochem. 17:297-302.
- Bonde, T.A., J. Schnürer, and T. Rosswall. 1988. Microbial biomass as a fraction of potentially mineralizable nitrogen in soils from long-term field experiments. Soil Biol. Biochem. 20:447-452.
- Culik, M.N. 1983. The conversion experiment: reducing farming costs. J. Soil Water Conserv. 38:333-335.
- Dick, R.P., P.E. Rasmussen, and E.A. Kerle. 1988. Influence of long-term residue management on soil enzyme activities in relation to soil chemical properties of a wheat-fallow system. Biol. Fertil. Soils 6:159-164.
- Doran, J.W., D.G. Fraser, M.N. Culik, and W.C. Liebhart. 1985. Influence of alternative and conventional agricultural management on soil microbial processes and nitrogen availability. Am. J. Altern. Agric. 2:99-106.
- Drury, C.F., J.A. Stone, and W.I. Findlay. 1991. Microbial biomass and soil structure associated with corn, grasses, and legumes. Soil Sci. Soc. Am. J. 55:805-811.
- Insam, H., C.C. Mitchell, and J.F. Dormaar. 1991. Relationship of soil microbial biomass and activity with fertilization practice and crop yield of three ultisols. Soil Biol. Biochem. 23:459-464.
- Jenkinson, D.S. and D.S. Powlson. 1976. The effect of biocidal treatments on metabolism in soil-V. A method for measuring soil biomass. Soil Biol. Biochem. 8:209-213.
- McGill, W.B., K.R. Cannon, J.A. Robertson, and F.D. Cook. 1986. Dynamics of soil microbial biomass and water-soluble organic C in Breton L after 50 years of cropping to two rotations. Can. J. Soil Sci. 66:1-19.
- Ocio, J.A. and P.C. Brookes. 1990. An evaluation of methods for measuring the microbial biomass in soils following recent additions of wheat straw and the characterization of the biomass that develops. Soil Biol. Biochem. 22:685-694.

- Ocio, J.A., P.C. Brookes, and D.S. Jenkinson. 1991a. Field incorporation of straw and its effects on soil microbial biomass and soil inorganic N. Soil Biol. Biochem. 23:171-176.
- Ocio, J.A., J. Martinez, and P.C. Brookes. 1991b. Contribution of straw-derived N to total microbial biomass N following incorporation of cereal straw to soil. Soil Biol. Biochem. 23:655-659.
- Perucci, P. 1990. Effect of the addition of municipal solid-waste compost on microbial biomass and enzyme activities in soil. Biol. Fert. Soils 10:221-226.
- Powlson, D.S., P.C. Brookes, and B.T. Christensen. 1987. Measurement of the soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation. Soil Biol. Biochem. 19:159-164.
- Rasmussen, P.E., R.R Allmaras, C.R. Rohde, and N.C. Roager. 1980. Crop residue influences on soil carbon and nitrogen in a wheat-fallow system. Soil Sci. Soc. Am. J. 44:596-600.
- Rasmussen, P.E., H.P. Collins, and R.W. Smiley. 1989. Long-term management effects on soil productivity and crop yield in semi-arid regions of eastern Oregon. USDA-ARS Station Bulletin Report #675.
- Šantrůčková, H. and M. Straškraba. 1991. On the relationship between specific respiration activity and microbial biomass in soils. Soil Biol. Biochem. 23:525-532.
- Schnürer, J., M. Clarholm, and T. Rosswall. 1985. Microbial biomass and activity in agricultural soil with different organic matter contents. Soil Biol. Biochem. 17:611-618.
- Shen, S.M., G. Pruden, and D.S. Jenkinson. 1984. Mineralization and immobilization of nitrogen in fumigated soil and the measurement of microbial biomass nitrogen. Soil Biol. Biochem. 16:437-444.
- Voroney, R.P. and E.A. Paul. 1984. Determination of  $k_{\rm C}$  and  $k_{\rm N}$  in situ for calibration of the chloroform fumigation-incubation method. Soil Biol. Biochem. 16:9-14.

# CHAPTER 4

.

SOIL ENZYME ACTIVITIES: PROTEASE, HISTIDASE, AND  $\beta$ -GLUCOSIDASE

### ABSTRACT

Soils that receive only inorganic nutrients may have a low biological potential to cycle material of organic origin. This can cause nutrient availability problems during a transition from conventional practices to alternative agricultural systems that rely on organic amendments. A greenhouse experiment was conducted to investigate the effects of nutrient management on soil enzyme activity (protease, L-histidine NH<sub>3</sub>-lyase, and  $\beta$ -glucosidase) during a simulated transition from inorganic to organic sources of N. Treatments were arranged as a complete factorial that included the following factors: four soils obtained from the Residue Utilization Plots (RUP) initiated in 1931 at the Columbia Basin Research Center, Pendleton, OR (beef manure, pea vine residue, 0 kg N, or 90 kg N ha<sup>-1</sup>, each applied biennially to a wheat-fallow system); four greenhouse organic residues (pea vine, beef manure, poultry manure, or control); and four rates of N fertilizer (0-1600 mg N 2 kg<sup>-1</sup> soil as NH<sub>4</sub>NO<sub>3</sub>). Four successive crops of Zea mays L. were grown over a period of 306 days. Soil that received long-term organic inputs had higher enzyme activities than the soil from the 0 kg N or 90 kg N plots regardless of greenhouse organic amendment or N fertilizer treatment. Each greenhouse organic amendment increased activity relative to the control. Pea vine, added in the greenhouse, produced the greatest increase in activity. Inorganic N treatments had little or no significant effect on enzyme activity. In the short-term, it is possible to increase soil enzyme activity by adding an organic substrate while continuing to add inorganic N.

## INTRODUCTION

Soils managed with organic materials generally have larger and more active soil microbial populations than soils managed with mineral fertilizers (Bolton et al., 1985; McGill et al., 1986; Dick et al., 1988; Alef et al., 1988; Anwarzay et al., 1990). Most of the biochemical reactions involved in the soil N cycle are catalyzed by enzymes, and the primary source of soil enzymes is believed to be soil microorganisms (Skujins, 1978). When synthetic N fertilizers are reduced or eliminated from a production system, crop N availability dependents on the soil's biological capacity. Thus, enzyme-catalyzed reactions that mineralize organic N and release  $NH_4^+$  become increasingly important. Management practices have the potential to influence enzyme activity and, therefore, may affect the ability of soils to cycle and provide N for plant growth.

The Residue Utilization Plots (RUP) at the Columbia Basin Research Center, OR, have been managed with either organic or inorganic N sources since 1931. As a result, soil from the RUP vary widely in organic matter content and biological activity (Rasmussen et al., 1980, 1989; Dick et al., 1988). Dick et al. (1988) found long-term additions of inorganic N have resulted in decreased urease and amidase activities (enzymes involved in N cycling) relative to the control soil, whereas organic N additions (manure or pea vine) have increased activities. Other soil enzyme activities (acid phosphatase, alkaline phosphatase, arylsulfatase,  $\beta$ glucosidase, amidase, and urease) are also higher in soils managed with organic N sources than in the control soil.

Soil from this long-term study provided a unique opportunity to study enzyme dynamics during a simulated transition from mineral to organic sources of N in the greenhouse. Protease (EC 3.4) and L-histidine NH<sub>3</sub>-lyase (histidase, EC 4.3.1.3) activity were measured because they are enzymes involved in N mineralization. Protease is often thought to catalyze the first step in the N mineralization process since most microorganisms must decompose nitrogenous substrates into low molecular weight compounds before N is assimilated. During the degradation of proteins, amino acids are released, and subsequent deamination of amino acids is a source of ammonium in soil. Histidase deaminates the amino acid, histidine.  $\beta$ -Glucosidase (EC 3.2.1.21) was measured because its hydrolysis product (glucose) is an energy source for soil microorganisms (Eivazi and Tabatabai, 1988). By manipulating organic and inorganic N inputs, both the short and long-term effects of organic amendments and inorganic N on enzyme activity were investigated. The objective of this study was to determine the impact of soil inputs on the activity of enzymes involved with N and C cycling.

## MATERIALS AND METHODS

The soil came from the greenhouse experiment previously described in chapter 2. In brief, a simulated transition from inorganic to organic N sources was conducted to determine the effects of organic residues and decreasing N rates on plant and soil-biological parameters. The experimental design was a completely randomized block with three replications. Treatments were arranged as a complete factorial that included the following factors: four soils obtained from the Residue Utilization Plots (RUP) initiated in 1931 at the Columbia Basin Research Center, Pendleton, OR(beef manure, pea vine residue, 0 kg N, or 90 kg N ha<sup>-1</sup>, each applied biennially to a wheat-fallow system); four greenhouse organic residues (pea vine, beef manure, poultry manure, or control); and four rates of N fertilizer (0-1600 mg N 2 kg<sup>-1</sup> soil as NH<sub>4</sub>NO<sub>3</sub>). Four successive crops of *Zea mays* L. were grown over a period of 306 days.

Soil from the Rup was collected in November 1989 for the greenhouse experiment. Organic residues were added on an equal N basis (1 g total Kjeldahl-N 2 kg<sup>-1</sup> soil) before cropping began and again after the second crop was harvested. Inorganic N was applied at a split rate at planting and at 21 days after planting. The initial rates were 0, 200, 400, or 400 mg N 2 kg<sup>-1</sup> soil for the N<sub>0</sub>, N<sub>400</sub>, N<sub>800</sub>, and N<sub>1600</sub> treatments, respectively (subscript number is the cumulative mg N added per pot over four crops). The rate of N applied in the N<sub>0</sub> and N<sub>1600</sub> treatments remained constant throughout the experiment. The N<sub>400</sub> and N<sub>800</sub> treatments decreased by one-third of the original rate with each consecutive crop.

Soil enzyme analysis was performed prior to the greenhouse experiment (day 0), after the soil was incubated with the organic residues (day 87), after the second harvest but before any crop was grown (day 164), and after the fourth harvest (day 306). The soil was passed through a 2-mm sieve and stored moist at 4°C in the dark.  $\beta$ -Glucosidase activity was assayed as described by Eivazi and Tabatabai (1988). Protease activity was determined as described by Nannipieri et al. (1979) except controls were incubated with Tris buffer, and received 1 ml of

80

2.5% casein (in Tris) after the reaction was terminated with 17.5% trichloroacetic acid. Samples were incubated in a rotary shaker (160 RPM) at 52°C. The histidase activity assay of Frankenburger and Johanson (1981) was used with modification. Samples were incubated in 125 ml capped specimen cups and terminated with 25 ml of 2.5 M potassium chloride - silver sulfate (100 mg L<sup>-1</sup>) solution. Use of this procedure eliminated the need for disposal of radioactive uranyl acetate.

All results are expressed on a per g oven dry ( $105^{\circ}$ C, 24 h) weight of soil basis. The data were analyzed by standard ANOVA techniques for randomized blocks with SAS statistical software package (SAS Institute, Cary, NC). Significant main effects were separated with Tukey's at the p = 0.05 level.

## **RESULTS AND DISCUSSION**

## Inorganic N

Inorganic N added in the greenhouse had little effect on soil enzyme activity. Only  $\beta$ -glucosidase at the 164 day sampling was affected by N fertilizer treatment (Figure 4.1), and the response was approximately proportional to the cumulative amount of N added. Eivazi and Tabatabai (1990) found that (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> or KNO<sub>3</sub> added during the assay decreased  $\beta$ -glucosidase activity by 15%. Inorganic N added in the present study, therefore, was likely incorporated into the organic pool prior to enzyme analysis. Under N-limited conditions, inorganic N is expected to stimulate microbial activity. This may explain the observed results.

In this study inorganic N had no effect on protease or histidase activity (data not shown). Burton (1989) found no significant relationship between protease activity and  $NH_4^+$  or  $NO_3^-$  content of a Chernozemic soil sampled throughout a cropping season. Labile histidase activity was inversely related to soil NH4<sup>+</sup> concentration and at low soil NH<sub>4</sub><sup>+</sup> concentration (< 3  $\mu$ g g<sup>-1</sup>) labile histidase activity positively correlated with soil NO<sub>3</sub> content. In a laboratory incubation study, Burton and McGill (1991) found NH<sub>4</sub><sup>+</sup> additions in the absence of glucose had no effect on soil histidase activity, however, some portion of histidase activity was sensitive to feedback inhibition by NH<sub>4</sub><sup>+</sup>-N at low concentrations (0-5  $\mu$ g g<sup>-1</sup>). Dick et al. (1988) found that urease and amidase activities were inversely related to the amount of inorganic N added to the soil in the RUP. Since NH<sub>4</sub><sup>+</sup> is the reaction product of both enzymes, the authors postulated that repeated additions of NH<sub>4</sub><sup>+</sup> to the soil had inhibited microbial induction of urease and amidase. Bremner and Mulvaney (1978) reported unpublished data from a laboratory study which showed that several NH<sub>4</sub><sup>+</sup> based fertilizers had no effect on soil urease activity. Ammonium feedback inhibition for urease or amidase activity, however, has not been specifically studied.

82



Figure 4.1.  $\beta$ -Glucosidase activity as affected by N treatment at the 164 day sampling, averaged over organic residue and field history treatments (n = 48).

The N fertilizer treatment did not interact with field history or organic residue treatment, therefore, results presented below were averaged over N fertilizer treatment.

## Long-term nutrient management practices - field history

The effect of field history varied among the enzymes studied. Protease activity in soil with a long-term history of manure application was significantly greater than in the soil from other RUP treatments (Table 4.1). Soil from the pea vine treatment tended to have higher protease activity than soil from either the inorganic N or control treatments. Alef et al. (1988) found higher protease activity in soil that received organic fertilizers, no pesticides, and included legumes in crop rotations than in soil that received mineral fertilizers.

|               | Sampling day |       |       |  |  |  |
|---------------|--------------|-------|-------|--|--|--|
| Field history | 87 164 30    |       |       |  |  |  |
|               |              |       |       |  |  |  |
| Manure        | 0.98a†       | 0.86a | 0.85a |  |  |  |
| Pea vine      | 0.85b        | 0.67b | 0.75b |  |  |  |
| Nitrogen      | 0.80b        | 0.56c | 0.61c |  |  |  |
| Control       | 0.75b        | 0.67b | 0.61c |  |  |  |

Table 4.1. Protease activity as affected by long-term management, averaged over organic amendment and N fertilizer treatments (n = 48).

† Means followed by the same letter within a column are not significantly different (Tukey's p = 0.05).

Histidase activity was highly variable, especially when an organic residue was added in the greenhouse (coefficient of variation 17-49%, depending on residue treatment). In the control residue treatment, soil that received long-term additions of organic N (manure or pea vine) tended to have higher histidase activity than soil that received inorganic or no N fertilizer (Table 4.2).

|               | Sampling day |       |      |  |  |
|---------------|--------------|-------|------|--|--|
| Field history | 87           | 164   | 306  |  |  |
| <u> </u>      |              |       |      |  |  |
| Manure        | 270a†        | 252ab | 254a |  |  |
| Pea vine      | 253ab        | 278a  | 250a |  |  |
| Nitrogen      | 221ab        | 201bc | 242a |  |  |
| Control       | 204b         | 182c  | 242a |  |  |

Table 4.2. Effect of long-term management on histidase activity in soil from the control residue treatment, averaged over N fertilizer treatment (n = 12).

† Means followed by the same letter within a column are not significantly different (Tukey's p = 0.05).

β-Glucosidase activity differences among soil from the RUP treatments were similiar to those observed for histidase activity. Although there was some interaction between the organic residue and field history treatments (mainly in the pea vine residue treatment), soil that received either manure or pea vine in the field tended to produce 20  $\mu$ mol ρ-nitrophenol (PNP) g<sup>-1</sup> soil hr<sup>-1</sup> more than soil that received inorganic or no N fertilizer in the field (Figure 4.2). Data from a five year field study showed soil that received green manure plus either farmyard manure or crop residues had higher β-glucosidase activity than soil that did not receive organic inputs (Verstaete and Voets, 1977). In an 80-year crop rotation and fertilizer study, organic fertilizers increased enzyme activities (β-glucosidase, phosphatase, protease, xylanase, urease, and cellulase) more than mineral fertilizers, and lowest enzyme activities were found on non-fertilized plots (Anwarzay et al., 1990).



Figure 4.2.  $\beta$ -Glucosidase activity in the organic residue treatments as affected by field history, averaged over N fertilizer treatment (n = 12).

Others have correlated protease, histidase, and  $\beta$ -glucosidase activity with soil organic C and total N content (Niskanen and Eklund, 1986; Speir et al., 1980; Frankenburger and Johanson, 1983; Eivazi and Tabatabai, 1990). In general, enzyme activity measured prior to the greenhouse experiment followed soil organic C and total N levels (Table 4.3).

| Field<br>History | Protease                                 | Histidase                                                 | β-Glucosidase                            | Organic<br>C | Total<br>N          |
|------------------|------------------------------------------|-----------------------------------------------------------|------------------------------------------|--------------|---------------------|
|                  | μg TYR g <sup>-1</sup> h <sup>-1</sup> † | μg NH4 <sup>+</sup> -N g <sup>-1</sup> 48 h <sup>-1</sup> | μg PNP g <sup>-1</sup> h <sup>-1</sup> ‡ | g            | kg <sup>-1</sup> —— |
| Manure           | 0.76†                                    | 241‡                                                      | 71.4                                     | 14.0         | 1.21                |
| Pea vine         | 0.50                                     | 228                                                       | 78.7                                     | 11.5         | 0.92                |
| Nitrogen         | 0.39                                     | 170                                                       | 51.1                                     | 10.5         | 0.82                |
| Control          | 0.41                                     | 172                                                       | 58.5                                     | 9.8          | 0.83                |

Table 4.3. Soil enzyme activity, organic C, and total N prior to the greenhouse experiment.

*†* TYR represents tyrosine.

 $\ddagger$  PNP represents  $\rho$ -nitrophenol.

Soil that received long-term additions of organic N tended to have higher enzyme activity than soil that received inorganic or no N fertilizer. Organic N provides a C source to heterotrophic microbes and since soil enzymes originate from microbes, proliferation of microbes should increase potential enzyme activity. Less C is returned to the soil in the RUP that receives long-term additions of inorganic N (2370 kg C ha<sup>-1</sup> 2 yr<sup>-1</sup>) than in either pea vine or manure amended soil (3230 and 4265 kg C ha<sup>-1</sup> 2 yr<sup>-1</sup>, respectively). Nitrogen mineralization rate is greater in soil from the inorganic N RUP (0.0211 mg N kg<sup>-1</sup> soil d<sup>-1</sup>) than in soil managed with either manure or pea vine (0.0152, and 0.0156 mg N kg<sup>-1</sup> soil d<sup>-1</sup>, respectively; Christ and Dick, 199x). Smaller C additions and more rapid N mineralization may account for the lower microbial biomass (Chapter 3; Rasmussen et al., 1989) and lower enzyme activity found in the soil managed with inorganic N.

## Recent additions of organic residues

Recent additions of organic residues had a greater effect on enzyme activities than either field history or N fertilizer treatment. Organic residues added in the greenhouse increased protease and  $\beta$ -glucosidase activity relative to the control (Tables 4.4 and 4.5 and Figures 4.2 and 4.3) response to the different organic residue treatments varied, however, pea vine amended soil had the highest enzyme activity. Adding an organic residue increased histidase activity (Figure 4.4), however, the assay was highly variable which makes interpretation difficult.

Increased potential enzyme activity may be the result of direct addition of enzymes via the residue, or microbial proliferation or microbial induction in response to residue addition. Pea vine was the only residue itself that had appreciable enzyme activity, and only  $\beta$ -glucosidase activity at that (potential contribution at rate added amounts to 88  $\mu$ g PNP g<sup>-1</sup> soil hr<sup>-1</sup>). Pea vine addition increased soil protease activity as well as soil  $\beta$ -glucosidase activity even though pea vine residue did not have any protease activity itself. Increased enzyme activity in response to pea vine addition was, therefore, most likely a result of microbial proliferation or induction. No attempt was made to distinguish between proliferation or induction.

After the initial organic residue treatments were mixed with the soil in the greenhouse, the soil surface of pots amended with the pea vine residue was covered with a thick mat of *Mucor* sp.. This fungal proliferation may have contributed to the tremendous increase in  $\beta$ -glucosidase activity observed in this treatment. By subjecting an Andisol in a greenhouse to various sterilants that inhibit certain groups of microflora, Hayano and Tubaki (1985) concluded that mucoraceaous fungi were the primary source of  $\beta$ -glucosidase in the soil studied.

| ана <sub>ник</sub> , ' стали, солосия ин | Sampling day |       |       |  |
|------------------------------------------|--------------|-------|-------|--|
| Organic amendment                        | 87           | 164   | 306   |  |
| Pea vine                                 | 1.97a†       | 1.18a | 1.37a |  |
| Beef manure                              | 0.63b        | 0.74b | 0.73b |  |
| Poultry manure                           | 0.44c        | 0.44c | 0.48c |  |
| Control                                  | 0.33d        | 0.44c | 0.23d |  |

Table 4.4. Protease activity as affected by greenhouse amendment, averaged over N fertilizer and field history treatment (n = 48).

† Means followed by the same letter within a column are not significantly different (Tukey's p = 0.05).

| Table 4.5. | β-Glucosidase     | activity as  | affected by   | greenhouse | amendment, | averaged |
|------------|-------------------|--------------|---------------|------------|------------|----------|
| ove        | r N fertilizer ar | nd field tre | atment $(n =$ | 48).       |            |          |

|                      | Sampling day |        |        |  |
|----------------------|--------------|--------|--------|--|
| Greenhouse amendment | 87           | 164    | 306    |  |
| Pea vine             | 180.3a†      | 158.1a | 215.7a |  |
| Poultry manure       | 113.5b       | 126.1b | 118.3b |  |
| Beef manure          | 84.7c        | 101.3c | 113.1b |  |
| Control              | 65.3d        | 95.2d  | 68.6c  |  |

† Means followed by the same letter within a column are not significantly different (Tukey's p = 0.05).



Figure 4.3. Protease activity in the organic residue treatments as affected by field history, averaged over N fertilizer treatment (n = 12).



Figure 4.4. Mean effect of organic residue treatments on histidase activity, averaged over N fertilizer treatment (n = 48 for control; n = 144 for mean of residue treatments).

Protease activity in soil from the poultry manure treatment was similar to that of soil in the control treatment (Table 4.4 and Figure 4.3). Inorganic N content of the poultry manure, pea vine, and beef manure account for 11.5, 1.9, and 3.9%, respectively of the total N added in each treatment. Therefore, since more of the N in the poultry manure was inorganic, less organic N substrate was available to stimulate proteolytic enzymes in this treatment. Also, the poultry manure treatment added only one-third as much C as in either pea vine or beef manure treatment.

Pea vine and beef manure added approximately the same amount of C to the soil (21 and 24 g 2 kg<sup>-1</sup> soil, respectively) and all residues were added on an equal N basis. However, pea vine treatment had a greater effect on protease and  $\beta$ -glucosidase activity than beef manure (Tables 4.4 and 4.5 and Figures 4.2 and 4.3). Adding a fresh energy source to soil enhances microbial growth and, therefore, has the potential to increase soil enzyme activity. Tate (1984) found that adding a readily metabolizable substrate (sugarcane leaves) to a large pool of organic material already present in a Histosol increased protease activity. Pea vine residue was not composted as were the poultry and beef manure, and it contained less lignin than the beef manure. Pea vine, therefore, was more readily metabolizable than the beef manure which may explain the higher protease and  $\beta$ -glucosidase activity measured in soil from the pea vine residue treatment.

Although poultry manure treatment had little effect on protease activity (Table 4.4 and Figure 4.3), it significantly increased  $\beta$ -glucosidase activity (Table 4.5 and Figure 4.2). There was some interaction in the pea vine field history poultry manure residue treatment combination at crop 1 (Figure 4.2), however, with the exception of this interaction beef manure and poultry manure residue treatments had a similar effect on  $\beta$ -glucosidase activity when this interaction is ignored.

### CONCLUSIONS

Increased soil enzyme activity resulting from recent organic N additions depended on the composition of the substance added, not on the amount of N or C applied. In the short-term, inorganic N fertilizer had little effect on soil enzyme activity. Long-term additions of inorganic N, however, resulted in low enzyme activity when compared with management practices that returned more C to the soil. The data suggest that low enzyme activity in soil that received repeated additions of inorganic N did not result from inhibition by the inorganic N itself, but rather was related to the amount and availability of C added. In the short-term, soil enzyme activity can be increased by adding a readily metabolizable organic substrate while continuing to add inorganic N.

### LITERATURE CITED

- Alef, K., T. Beck, L. Zelles, and D. Kleiner. 1988. A comparison of methods to estimate microbial biomass and N-mineralization in agricultural and grassland soils. Soil Biol. Biochem. 20:561-565.
- Anwarzay, M.O., W.E.H. Blum, P. Strauss, and E. Kandezer. 1990. Biological activity in soil in an 80-year long-term field experiment. (in German.) Forderungsdienst. 38:18-22.
- Bolton, H., L.F. Elliott, R.I. Papendick, and D.F. Bezdicek. 1985. Soil microbial biomass and selected soil enzyme activities: Effect of fertilization and cropping practices. Soil Biol. Biochem. 17:297-302.
- Bremner, J.M., and R.L. Mulvaney. 1978. Urease activity in soils. p. 149-197. In R.G. Burns (ed.) Soil Enzymes. Academic Press, New York.
- Burton, D.L. 1989. Control of amino acid catabolism in soil and direct assimilation by plants. Ph.D. diss. Univ. of Alberta, Alberta.
- Burton, D.L., and W.B. McGill. 1991. Inductive and repressive effects of carbon and nitrogen on *L*-histidine ammonia-lyase activity in a black chernozemic soil. Soil Biol. Biochem. 23:939-946.
- Christ, R., and R.P. Dick. 199x. Effects of long-term residue management and nitrogen fertilization on availability and profile distribution of nitrogen. Plant Soil (submitted).
- Dick, R.P., P.E. Rasmussen, and E.A. Kerle. 1988. Influence of long-term residue management on soil enzyme activities in relation to soil chemical properties of a wheat-fallow system. Biol. Fertil. Soils 6:159-164.
- Eivazi, F., and M.A. Tabatabai. 1988. Glucosidase and galactosidases in soils. Soil Biol. Biochem. 20:601-606.
- Eivazi, F., and M.A. Tabatabai. 1990. Factors affecting glucosidase and galatosidase activities in soils. Soil Biol. Biochem. 22:891-897.
- Frankenburger, W.T., and J.B. Johanson. 1981. L-histidine ammonia-lyase activity in soil. Soil Sci. Soc. Am. J. 46:943-948.
- Frankenburger, W.T., and J.B. Johanson. 1983. Distribution of L-histidine ammonia-lyase activity in soils. Soil Sci. 136:347-353.

- Hayano, K., and K. Tubaki. 1985. Origin and properties of β-glucosidase activity of tomato-field soil. Soil Biol. Biochem. 17:553-557.
- McGill, W.B., K.R. Cannon, J.A. Robertson, and F.D.Cook. 1986. Dynamics of soil microbial biomass and water-soluble organic C in Breton L after 50 years of cropping to two rotations. Can. J. Soil Sci. 66:1-19.
- Nannipieri, P., F. Pedrazzini, P.G. Arcara, and C. Piovanelli. 1979. Changes in amino acids, enzyme activities, and biomasses during soil microbial growth. Soil Sci. 127:26-34.
- Niskanen, R., and E. Eklund. 1986. Extracellular protease-producing actinomycetes and other bacteria in cultivated soil. J. of Agric. Sci. in Finland 58:9-17.
- Rasmussen, P.E., R.R. Allmaras, C.R. Rohde, and N.C. Roager. 1980. Crop residue influences on soil carbon and nitrogen in a wheat-fallow system. Soil Sci. Soc. Am. J. 44:596-600.
- Rasmussen, P.E., H.P. Collins, and R.W. Smiley. 1989. Long-term management effects on soil productivity and crop yield in semi-arid regions of eastern Oregon. USDA-ARS Station Bulletin Report #675.
- Skujins, J. 1978. History of abiontic soil enzyme research. p. 1-50. In R.G. Burns (ed.) Soil Enzymes. Academic Press, New York.
- Speir, T.W., R. Lee, E.A. Pansier, and A. Cairns. 1980. A comparison of sulfatase, urease and protease activities in planted and in fallow soils. Soil Biol. Biochem. 12:281-291.
- Tate, R.L. 1984. Function of protease and phosphatase activities in subsidence of pahokee muck. Soil Sci. 138:271-278.
- Verstraete, W., and J.P. Voets. 1977. Soil microbial and biochemical characteristics in relation to soil management and fertility. Soil Biol. Biochem. 9:253-258.

## CHAPTER 5

## SUMMARY AND PERSPECTIVES

Crop DMY and N uptake, microbial biomass, and soil enzyme activity as affected by organic residues, N fertilizer, and long-term management history during a simulated transition from inorganic to organic sources of N were discussed in Chapters 2, 3, and 4, respectively. The purpose of this chapter is to summarize and discuss these results as they relate to one another.

### Soil Enzymes and Microbial Biomass

Soil microorganisms are believed to be the primary source of soil enzymes (Skujins, 1978), therefore, as expected, enzyme activity response to soil additions was similar to that of the microbial biomass (Figure 5.1). Soil from the pea vine residue treatment had the highest microbial biomass and enzyme activity generally followed by soil from the beef manure, poultry manure and control residue treatments.  $\beta$ -Glucosidase activity, however, was higher in soil from the poultry manure treatment than in beef manured treated soil (Figure 5.1). Since the poultry manure had no appreciable  $\beta$ -glucosidase activity itself, the poultry manure amendment either induced microbial production of  $\beta$ -glucosidase or promoted selective growth of microorganisms that constitutively produce more  $\beta$ -glucosidase.

## Plant and Soil Biological Parameters

In general soil enzyme activity and microbial biomass are not good predictors of plant growth (Dick et al., 1988; Skujins, 1978). Since enzymes chosen for this study are involved in N and C cycling, their activity might reflect soil N availability. In the absence of inorganic N, differences in DMY and N uptake resulting from long-term soil management were similar to biological parameters measured in the control residue treatment (Figure 5.2). However, when an organic residue was added in the greenhouse soil biological and plant parameter response was not the same (Table 5.1). The poultry manure residue treatment provided the most plant available N, but did not increase soil biological parameters very much. Beef manure added in the greenhouse increased soil biological parameters without increasing DMY or N uptake. In general, organic N additions
increased the soil biological parameters measured. Nitrogen availability during a transition will depend on the composition of the organic substrate added as indicated by the observed differences in N uptake. When inorganic N was added in the greenhouse neither enzyme activities or microbial biomass were closely related to maize yield or N uptake.

Most soil biological parameters were lower at the 164 day sampling than on the 306 day sampling (Figure 5.1) even though approximately the same amount of time had elapsed between organic residue addition and soil sampling (164 and 142 days, respectively). Higher soil biological parameters at the 306 day sampling may indicate a cumulative effect. However, a more plausible explanation centers around plant response. The 164 day sampling immediately followed the harvest of crop 2, and the largest differences in DMY and N uptake among N treatments occurred during crop 2 (DMY is presented as an example in Figure 5.3). Even though all soil biological parameters weren't significantly affected by N treatment, competition between plants and microbes at this time would be expected. Competition for N may explain the lower soil biological parameter measurements obtained at the 164 day sampling. The microbes were probably N limited at the 164 day sampling.

Only  $\beta$ -glucosidase activity measured after the crop 2 harvest (164 day sampling) was affected by N treatment (Figure 4.1). Activity increased with the amount of N applied as did dry matter yield (Figure 5.3). Root exudates contain C substrates for  $\beta$ -glucosidase. Since the microbial biomass was not affected by N treatment at this sampling date,  $\beta$ -glucosidase may have been induced by the presence of increased C substrates resulting from N application.

When crop 4 was grown, inorganic N was only applied to the  $N_{1600}$  treatment. In the pea vine, beef manure, and control treatments, N uptake was the same for the  $N_0$ ,  $N_{400}$ , and  $N_{800}$  rate within each residue treatment and more N was taken up by plants in the  $N_{1600}$  treatment. N uptake was unaffected by N treatment in the poultry manure residue treatment at crop 4. The MB<sub>N</sub> measured after harvesting crop 4 was significantly higher in the  $N_{1600}$  treatment than in the other inorganic N treatments which were not different from one another. Apparently,

under N limiting conditions, microbial biomass and plants compete for inorganic N. When nutrients are in excess of plant requirements microbes become a nutrient sink.

The relative differences in microbial biomass and soil enzyme activity among soils from the RUP remained relatively constant throughout the experiment (Figure 5.2). The greater increase in MBN in response to N treatment in the soil from the nitrogen RUP relative to soils from the other RUP is an exception to this. In general, regardless of past history, soil from the RUP responded similarly to recent additions of organic residues and N fertilizer.

## **Perspectives**

In the short-term, pea vine was the best organic N source studied for increasing soil biology while maintaining plant productivity. In the short-term, choosing an organic N source as a replacement for inorganic N in a cropping system will depend on the timing and extent of N mineralization from the organic substrate. In the long-term, a substrate that builds soil organic matter, thus improving soil fertility, biological, and physical parameters (such as the manure added to the RUP) may be the best choice, if available. However, since N<sub>2</sub> fixation by rhizobia associated with legumes is an addition rather than a translocation of N, inclusion of legumes in cropping systems will be important in sustaining soil productivity in the future.



Figure 5.1. Effect of recent organic residue amendments on soil MBc, MB<sub>N</sub>,  $\beta$ -glucosidase, and protease activity, averaged over field history and N treatment (n = 48).



Figure 5.2. Effect of field history on plant and biological parameters in the control residue treatment,  $N_0$  for the plant parameters (n = 3) and averaged over N rate for the biological parameters (n = 12).

| Table 5.1.       | Iffect of recent organic amendments on plant and soil biological parameters at the 306 day sampling in the |
|------------------|------------------------------------------------------------------------------------------------------------|
| N <sub>o</sub> t | eatment for the plant parameters ( $n = 12$ ) and averaged over N treatment for the biological parameters  |
| (n =             | 48), both averaged over field history.                                                                     |

| Organic<br>Amendment | Protease                       | Glucosidase                  | Biomass C                             | Biomass N                                               | N Uptake                | Yield                    |
|----------------------|--------------------------------|------------------------------|---------------------------------------|---------------------------------------------------------|-------------------------|--------------------------|
|                      | $\mu$ mol TYR† g <sup>-1</sup> | $\mu$ g PNP‡ g <sup>-1</sup> | μg CO <sub>2</sub> -C g <sup>-1</sup> | $\mu$ g NH <sub>4</sub> <sup>+</sup> -N g <sup>-1</sup> | mg N 2 kg <sup>-1</sup> | g DMY 2 kg <sup>-1</sup> |
| Pea vine             | 1.37 (496)§                    | 216 (222)                    | 524 (404)                             | 73 (288)                                                | 470 (525)               | 32.6 (247)               |
| Beef manure          | 0.73 (217)                     | 118 (76)                     | 320 (208)                             | 45 (141)                                                | 65 (-13)                | 7.5 (-20)                |
| Poultry manure       | 0.48 (109)                     | 113 (67)                     | 184 (77)                              | 28 (48)                                                 | 675 (797)               | 30.5 (224)               |
| Control              | 0.23                           | 67                           | 104                                   | 19                                                      | 75                      | 9.4                      |

† TYR represents tyrosine.
‡ PNP represents ρ-nitrophenol.
§ number in parentheses is percent increase over control.

102



Figure 5.3. Effect of N treatment on DMY in the organic residue treatments, averaged over field history (n = 12).

## BIBLIOGRAPHY

- Alef, K., T. Beck, L. Zelles, and D. Kleiner. 1988. A comparison of methods to estimate microbial biomass and N-mineralization in agricultural and grassland soils. Soil Biol. Biochem. 20:561-565.
- Amato, M., and J.N. Ladd. 1988. Assay for microbial biomass based on ninhydrinreactive nitrogen in extracts of fumigated soils. Soil Biol. Biochem. 20:107-114.
- Anwarzay, M.O., W.E.H. Blum, P. Strauss, and E. Kandezer. 1990. Biological activity in soil in an 80-year long-term field experiment. (in German.) Forderungsdienst. 38:18-22.
- Anderson, J.P.E., and K.H. Domsch. 1985. Determination of ecophysiological maintenance carbon requirements of soil microorganisms in a dormant state. Biol. Fertil. Soils 1:81-89.
- Anderson, T.H., and K.H. Domsch. 1989. Ratios of microbial biomass carbon to total organic carbon in arable soils. Soil Biol. Biochem. 21:471-479.
- Bagga, P.S., D.K. Sandhu, and S. Sharma. 1990. Purification and characterization of cellulolytic enzymes produced by Aspergillus nidulans. J. Appl. Bacteriol. 68:61-68.
- Banerjee, U.C. 1990. Production of β-glucosidase (cellobiase) by *Curvularia* sp. Letters in Appl. Microbiol. 10:197-199.
- Batistic, L., J.M. Sarkar, and J. Mayaudon. 1980. Extraction, purification and properties of soil hydrolases. Soil Biol. Biochem. 12:59-63.
- Beauchamp, E.G. 1986. Availability of nitrogen from three manures to corn in the field. Can. J. Soil Sci. 66:713-720.
- Beauchamp, E.G., and J.W. Paul. 1989. A simple model to predict manure N availability to crops in the field. p. 140-149. In J.A. Hansen and K. Henriksen (ed.) Nitrogen in organic wastes applied to soils. Academic Press. London.
- Black, A.J. 1973. Soil property changes associated with crop residue management in a wheat-fallow rotation. Soil Sci. Soc. Am. Proc. 37:943-946.
- Bolton, H., L.F. Elliott, R.I. Papendick, and D.F. Bezdicek. 1985. Soil microbial biomass and selected soil enzyme activities: effect of fertilization and cropping practices. Soil Biol. Biochem. 17:297-302.

- Bonde, T.A., J. Schnürer, and T. Rosswall. 1988. Microbial biomass as a fraction of potentially mineralizable nitrogen in soils from long-term field experiments. Soil Biol. Biochem. 20:447-452.
- Bonmati, M., B. Ceccanti, and P. Nanniperi. 1991. Spatial variability of phosphatase, urease, protease, organic carbon and total nitrogen in soil. Soil Biol. Biochem. 23:391-396.
- Bottner, P., Z. Sallih, and G. Biles. 1988. Root activity and carbon metabolism in soils. Biol. Fertil. Soils 7:71-78.
- Bremner, J.M., and C.S. Mulvaney. 1982. Nitrogen-total. p.595-624. In A.L. Page et al. (ed.) Methods of soil analysis. Part 2. Agron. Monogr. 9. ASA, Madison, WI.
- Bremner, J.M., and R.L. Mulvaney. 1978. Urease activity in soils. p.149-197. In R.G. Burns (ed.) Soil Enzymes. Academic Press, New York.
- Brookes, P.C., A. Landman, G. Pruden, and D.S. Jenkinson. 1985. Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol. Biochem. 17:837-842.
- Burns, R.G. 1982. Enzyme activity in soil: location and a possible role in microbial ecology. Soil Biol. Biochem. 14:423-427.
- Burton, D.L. 1989. Control of amino acid catabolism in soil and direct assimilation by plants. Ph.D. diss. Univ. Alberta, Alberta.
- Burton, D.L., and W.B. McGill. 1989. Role of enzyme stability in controlling histidine deaminating activity in soil. Soil Biol. Biochem. 21:903-910.
- Burton, D.L., and W.B. McGill. 1991. Inductive and repressive effects of carbon and nitrogen on *L*-histidine ammonia-lyase activity in a black chernozemic soil. Soil Biol. Biochem. 23:939-946.
- Campbell, C.A., M. Schnitzer, J.W.B. Stewart, V.O. Biederbeck, and F. Sells. 1986. Effect of manure and P fertilizer on properties of a black chernozem in southern Saskatchewan. Can. J. Soil Sci. 66:601-613.
- Campbell, C.A., M. Schnitzer, G.P. Lafond, R.P. Zentner, and J.E. Knipfel. 1991. Thirty-year crop rotations and management practices effects on soil and amino nitrogen. Soil Sci. Soc. Am. J. 55:739-745.

- Castellanos, J.Z., and P.F. Pratt. 1981. Mineralization of manure nitrogencorrelation with laboratory indexes. Soil Sci. Soc. Am. J. 45:354-357.
- Christ, R., and R.P. Dick. 199x. Effects of long-term residue management and nitrogen fertilization on availability and profile distibution of nitrogen. Plant Soil (submitted).
- Cope, J.T., D.G. Strukie, and A.E. Hiltbold. 1958. Effects of manure, vetch, and commercial N on crop yields and C and N contents of a fine sandy loam over a 30-year period. Soil Sci. Soc. Proc. 22:524-527.
- Culik, M.N. 1983. The conversion experiment: reducing farming costs. J. Soil Water Conserv. 38:333-335.
- Dick, R.P., P.E. Rasmussen, and E.A. Kerle. 1988. Influence of long-term residue management on soil enzyme activities in relation to soil chemical properties of a wheat-fallow system. Biol. Fertil. Soils 6:159-164.
- Doran, J.W., D.G. Fraser, M.N. Culik, and W.C. Liebhart. 1985. Influence of alternative and conventional agricultural management on soil microbial processes and nitrogen availability. Am. J. Altern. Agric. 2:99-106.
- Drury, C.F., J.A. Stone, and W.I. Findlay. 1991a. Microbial biomass and soil structure associated with corn, grasses, and legumes. Soil Sci. Soc. Am. J. 55:805-811.
- Drury, C.F., R.P. Voroney, and E.C. Beauchamp. 1991b. Availability of NH<sub>4</sub><sup>+</sup>-N to microorganisms and the soil internal N cycle. Soil Biol. Biochem. 23:165-169.
- Eivazi, F., and M.A. Tabatabai. 1988. Glucosidase and galactosidsaes in soils. Soil Biol. Biochem. 20:601-606.
- Eivazi, F., and M.A. Tabatabai. 1990. Factors affecting glucosidase and galatosidase activities in soils. Soil Biol. Biochem. 22:891-897.
- Frankenburger, W.T., and J.B. Johanson. 1981. L-histidine ammonia-lyase activity in soil. Soil Sci. Soc. Am. J. 46:943-948.
- Frankenburger, W.T., and J.B. Johanson. 1983. Distribution of L-histidine ammonia-lyase activity in soils. Soil Sci. 136:347-353.
- Frankenburger, W.T., and W.A. Dick. 1983. Relationships between enzyme activities and microbial growth and activity indices in soil. Soil Sci. Soc. Am. J. 47:945-951.

- Griffith, S.M., and R.L. Thomas. 1979. Activity of immobilized pronase in the presence of montmorillonite. Soil Sci. Soc. Am. J. 43:1138-1140.
- Hargrove, W.L., A.L. Black, and J.V. Mannering. 1988. Cropping strategies for efficient use of water and nitrogen: Introduction. In W.L. Hangrove (ed.) Cropping strategies for efficient use of water and nitrogen. ASA Spec. Publ. 51. ASA, CSSA, and SSSA, Madison, WI.
- Hayano, K., and A. Katami. 1977. Extraction of β-glucosidase activity from pea field soil. Soil Biol. Biochem. 9:349-351.
- Hayano, K., and K. Tubaki. 1985. Origin and properties of β-glucosidase activity of tomato-field soil. Soil Biol. Biochem. 17:553-557.
- Hayano, K., M. Takeuchi, and E. Ichishima. 1987. Characterization of a metalloproteinase component extracted from soil. Biol. Fertil. Soils 4:179-183.
- Hope, C.F.A., and R.G. Burns. 1987. Activity, origin, and location of cellulases in a silt loam soil. Biol. Fertil. Soils 5:164-170.
- Insam, H., 1990. Are the soil microbial biomass and basal respiration governed by the climatic regime? Soil Biol. Biochem. 22:525-532.
- Insam, H., C.C. Mitchell, and J.F. Dormaar. 1991. Relationship of soil microbial biomass and activity with fertilization practice and crop yield of three ultisols. Soil Biol. Biochem. 23:459-464.
- Janzen, H.H., and R.D. Radder. 1989. Nitrogen mineralization in a green manureamended soil as influenced by cropping history and subsequent crop. Plant Soil 120:125-131.
- Jansson, S.L., and J. Persson. 1982. Mineralization and immobilization of soil nitrogen. p. 229-252. In F.J. Stevenson (ed.) Nitrogen in agriculture. Agron. Monogr. 22. ASA, Madison, WI.
- Jenkinson, D.S., and A.E. Johnson. 1977. Soil organic matter in the Hoosfield continuous barley experiment. p. 81-101. *In* Rothamsted Exp. Sta. Report for 1976, Part 2. Harpenden, Herts, England.
- Jenkinson, D.S., and D.S. Powlson. 1976. The effect of biocidal treatments on metabolism in soil-V. A method for measuring soil biomass. Soil Biol. Biochem. 8:209-213.

- Khan, S.U. 1970. Enzymatic activity in a gray wooded soil as influenced by cropping systems and fertilizers. Soil Biol. Biochem. 2:137-139.
- Khandke, K.M., P.J. Vithayathil, and S.K. Murthy. 1989. Purification of xylanase, β-glucosidase, endocellulase, and exocellulase from a thermophilic fungus, *Thermoascus aurantiacus*. Arch. Biochem. Biophys. 274:491-500.
- Kiss, S., M. Dăgan-Bularda, and D. Rădulescu. 1975. Biological significance of enzymes accumulated in soil. Adv. Agron. 27:25-87.
- Keeney, D.R. 1982. Nitrogen management for maximum efficiency and minimum pollution. p. 605-650. In F.J. Stevenson (ed.) Nitrogen in agriculture. Agron. Monogr. 22. ASA, Madison, WI.
- Ladd, J.N. 1972. Properties of proteolytic enzymes extracted from soil. Soil Biol. Biochem. 4:227-237.
- Ladd, J.N., and M. Amato. 1986. The fate of nitrogen from legume and fertilizer sources in soils successively cropped with wheat under field conditions. Soil Biol. Biochem. 18:417-425.
- Ladd, J.N., and J.H.A. Butler. 1972. Short-term assays of soil proteolytic enzyme activities using proteins and dipeptide derivatives as substrates. Soil Biol. Biochem. 4:19-30.
- Ladd, J.N., and R.B. Jackson. 1982. Biochemistry of ammonification. p. 172-228. In F.J. Stevenson (ed.) Nitrogen in agriculture. Agron. Monogr. 22. ASA, Madison, WI.
- Ladd, J.N., and E.A. Paul. 1973. Changes in enzymatic activity and distibution of acid-soluble, amino acid-nitrogen in soil during nitrogen immobilization and mineralization. Soil Biol. Biochem. 5:825-840.
- Lagutina, L.S. 1988. Two membrane-bound proteases of Aspergillus clavatus. Appl. Biochem. Microbiol. 24:386-392.
- Larson, W.E., C.E. Clapp, W.H. Pierre; and Y.B. Morachan. 1972. Effects of increasing amounts of organic residues on continuous corn: II. organic carbon, nitrogen, phosphorus, and sulfur. Agron. J. 64:204-208.
- Leake, J.R., and D.R. Reed. 1990. Proteinase activity in mychorrhizal fungi I. the effect of extracellular pH on the production and activity of proteinase by *Ericoid* endophytes from soil of contrasted pH. New Phytol. 115:243-250.

- Lessie, T.G., and F.C. Neidhardt. 1967. Formation and operation of the histidinedegrading pathway in *Psuedomonas aeruginusa*. J. Bacteriol. 93:1800-1810.
- Martynuik, S., and G.H. Wagner. 1978. Quantitative and qualitative examination of soil microflora associated with different management systems. Soil Sci. 125:343-350.
- McGill, W.B., K.R. Cannon, J.A. Robertson, and F.D.Cook. 1986. Dynamics of soil microbial biomass and water-soluble organic C in Breton L after 50 years of cropping to two rotations. Can. J. Soil Sci. 66:1-19.
- Müller, M.M., V. Sundman, O. Soininvaara, and A. Meriläinen. 1988. Effect of chemical composition on the release of nitrogen from agricultural plant materials decomposing in soil under field conditions. Biol. Fertil. Soils 6:78-83.
- Nannipieri, P., R.L. Johnson, and E.A. Paul. 1978. Criteria for measurement of microbial growth and activity in soil. Soil Biol. Biochem. 10:223-229.
- Nannipieri, P., F. Pedrazzini, P.G. Arcara, and C. Piovanelli. 1979. Changes in amino acids, enzyme activities, and biomasses during soil microbial growth. Soil Sci. 127:26-34.
- Nason, G.E., and D.D. Myrold. 1991. <sup>15</sup>N in soil research: appropriate application of rate estimation procedures. Agric. Ecosystems Environ. 34:427-441.
- Niskanen, R., and E. Eklund. 1986. Extracellular protease-producing actinomycetes and other bacteria in cultivated soil. J. Ag. Sci. Finl. 58:9-17.
- Ocio, J.A., and P.C. Brookes. 1990. An evaluation of methods for measuring the microbial biomass in soils following recent additions of wheat straw and the characterization of the biomass that develops. Soil Biol. Biochem. 22:685-694.
- Ocio, J.A., P.C.Brookes, and D.S. Jenkinson. 1991a. Field incorporation of straw and its effects on soil microbial biomass and soil inorganic N. Soil Biol. Biochem. 23:171-176.
- Ocio, J.A., J. Martinez, and P.C.Brookes. 1991b. Contribution of straw-derived N to total microbial biomass N following incorporation of cereal straw to soil. Soil Biol. Biochem. 23:655-659.
- Olson, R.A., and L.T. Kurtz. 1982. Crop nitrogen requirements, utilization, and fertilization. p. 567-604. *In* F.J. Stevenson (ed.) Nitrogen in agriculture. Agron. Monogr. 22. ASA, Madison, WI.

- Oveson, M.M. 1966. Conservation in a wheat summer fallow farming practice. Agron. J. 58:444-447.
- Parr, J.F., and R.I. Papendick. 1978. Factors affecting the decomposition of crop residues by microorganisms. p. 101-129. *In* W.R. Oschwald (ed.) Crop residue management systems. ASA Spec. Publ. 31. ASA, CSSA, and SSSA, Madison, WI.
- Paul, E.A., and F.E. Clark. 1989. Soil Microbiology and Biochemistry. Academic Press, Inc., San Diego, CA.
- Paul, E.A., and N.G. Juma. 1981. Mineralization and immobilization of soil nitrogen by microorganisms. p. 179-194. In F.E. Clark and T. Rosswall (eds.) Terrestrial nitrogen cycles. Ecol. Bull. (Stockholm) 33:179-195.
- Perucci, P. 1990. Effect of the addition of municipal solid-waste compost on microbial biomass and enzyme activities in soil. Biol. Fert. Soils 10:221-226.
- Powlson, D.S., P.C. Brookes, and B.T. Christensen. 1987. Measurement of the soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation. Soil Biol. Biochem. 19:159-164.
- Rasmussen, P.E., R.R Allmaras, C.R. Rohde, and N.C. Roager. 1980. Crop residue influences on soil carbon and nitrogen in a wheat-fallow system. Soil Sci. Soc. Am. J. 44:596-600.
- Rasmussen, P.E., H.P. Collins, and R.W. Smiley. 1989. Long-term management effects on soil productivity and crop yield in semi-arid regions of eastern Oregon. USDA-ARS Station Bulletin Report #675.
- Robertson, K., J. Schnürer, M. Clarholm, T.A. Bonde, and T. Rosswall. 1988. Microbial biomass in relation to C and N mineralization during laboratory incubations. Soil Biol. Biochem. 20:281-286.
- Santrůčková, H., and M. Straškraba. 1991. On the relationship between specific respiration activity and microbial biomass in soils. Soil Biol. Biochem. 23:525-532.
- Sarker, J.M., and R.G. Burns. 1984. Synthesis and properties of  $\beta$ -D-glucosidasephenolic copolymers as analogues of soil humic-enzyme complexes. Soil Biol. Biochem. 16:619-625.

- Schnürer, J., M. Clarholm, and T. Rosswall. 1985. Microbial biomass and activity in agricultural soil with different organic matter contents. Soil Biol. Biochem. 17:611-618.
- Shen, S.M., G. Pruden, and D.S. Jenkinson. 1984. Mineralization and immobilization of nitrogen in fumigated soil and the measurement of microbial biomass nitrogen. Soil Biol. Biochem. 16:437-444.
- Sims, J.T., 1986. Nitrogen transformations in a poultry manure amended soil: Temperature and moisture effects. J. Environ. Qual. 15:59-63.
- Sinsabaugh, R.L., and A.E. Linkins. 1989. Natural disturbance and activity of *Trichoderma viride* cellulase complexes. Soil Biol. Biochem. 21:835-839.
- Skujins, J. 1978. History of abiontic soil enzyme research. p. 1-50. In R.G. Burns (ed.) Soil Enzymes. Academic Press, New York.
- Speir, T.W., R. Lee, E.A. Pansier, and A. Cairns. 1980. A comparison of sulfatase, urease and protease activities in planted and in fallow soils. Soil Biol. Biochem. 12:281-291.
- Standford, G. 1982. Assessment of soil nitrogen availability. p. 651-688. In F.J. Stevenson (ed.) Nitrogen in agriculture. Agron. Monogr. 22. ASA, Madison, WI.
- Stevenson, F.J. 1982. Organic forms of soil nitrogen. p. 67-122. In F.J. Stevenson (ed.) Nitrogen in agriculture. Agron. Monogr. 22. ASA, Madison, WI.
- Stevenson, F.J. 1986. Cycles of the soil, carbon, nitrogen, phosphorus, sulfur, micronutrients. John Wiley & Sons, Inc., NY.
- Tateno, M. 1988. Limitations of available substrates for the expression of cellulase and protease activities in soil. Soil Biol. Biochem. 20:117-118.
- Tate, R.L. 1984. Function of protease and phosphatase activities in subsidence of pahokee muck. Soil Sci. 138:271-278.
- Tate, R.L. 1987. Soil organic matter. John Wiley & Sons, Inc., NY.
- Tsujibo, H., K. Miyamotot, T. Hasegawa, and Y. Inamori. 1990. Purification of two types of alkaline serine proteases produced by an alkalophilic actinomycete. J. Appl. Bacteriol. 69:520-529.
- Vance, E.D., P.C. Brookes., and D.S. Jenkinson. 1987. An extraction method for measuring the soil microbial biomass C. Soil Biol. Biochem. 19:703-707.

- Verstraete, W., and J.P. Voets. 1977. Soil microbial and biochemical characteristics in relation to soil management and fertility. Soil Biol. Biochem. 9:253-258.
- Vigil, M.F., and D.E. Kissel. 1991. Equations for estimating the amount of nitrogen mineralized from crop residues. Soil Sci. Soc. Am. J. 55:757-761.
- Vigil, M.F., D.E. Kissel, and S.J. Smith. 1991. Field crop recovery and modeling of nitrogen mineralized from labeled sorghum residues. Soil Sci. Soc. Am. J. 55:1031-1037.
- Voroney, R.P. and E.A. Paul. 1984. Determination of  $k_c$  and  $k_N$  in situ for calibration of the chloroform fumigation-incubation method. Soil Biol. Biochem. 16:9-14.
- Wagger, M.G., D.E. Kiddel, and S.J. Smith. 1985. Mineralization of nitrogen from nitrogen-15 labeled crop residues under field conditions. Soil Sci. Soc. Am. J. 49:1205-1208.
- Yaacob, O., and G.J. Blair. 1980. Mineralization of <sup>15</sup>N-labelled legume residues in soil with different nitrogen contents and its uptake by rhodes grass. Plant Soil 57:237-248.
- Yadvinder-Singh, Bijay-Singh, M.S. Maskina, and O.P.Meelu. 1988. Effects of organic manure, crop residues and green manure (*Sesbania aculeata*) on nitrogen and phosphorus transformations in a sandy loam at field capacity and under waterlogged conditions. Biol. Fertil. Soils 6:183-187.
- Van Soest, P.J. 1963. Use of detergents in the analysis of fibrous feeds. II. A rapid methods for the determination of fiber and lignin. J. Assoc. Official Ag. Chem. 46:829-834.

## APPENDICES

| Sample† Shoot DMY Root DMY Shoot TK | KN Root TKN          |
|-------------------------------------|----------------------|
| grams                               | mg N g <sup>-1</sup> |
| N10054 40.00                        | 0.071                |
| PV0051 13.89 2.15 0.080             | 0.071                |
| PV0052 12.54 3.18 0.110             | 0.075                |
| PV0053 10.67 2.12 0.121             | 0.074                |
| PV0081 14.15 3.41 0.090             | 0.064                |
| PV0082 11.52 2.18 0.162             | 2 0.094              |
| PV0083 13.02 3.03 0.143             | 0.072                |
| PV0091 14.74 3.15 0.095             | 0.056                |
| PV0092 11.65 2.81 0.121             | 0.074                |
| PV0093 10.65 1.84 0.145             | 0.076                |
| PV0101 9.02 1.45 0.138              | 0.102                |
| PV0102 9.89 2.21 0.099              | 0.065                |
| PV0103 13.50 2.80 0.098             | 0.075                |
| PV1051 18.46 3.88 0.133             | 0.082                |
| PV1052 12.77 2.53 0.207             | 0.109                |
| PV1053 13.60 2.46 0.170             | 0.121                |
| PV1081 15.36 3.10 0.166             | <b>6</b> 0.079       |
| PV1082 12.51 2.10 0.199             | 0 0.116              |
| PV1083 8.13 2.71 0.201              | 0.094                |
| PV1091 15.64 2.56 0.168             | <b>0.118</b>         |
| PV1092 12.72 2.91 0.149             | 0.095                |
| PV1093 15.05 3.31 0.177             | 0.102                |
| PV1101 11.99 1.85 0.220             | 0.118                |
| PV1102 10.63 1.91 0.219             | 0.110                |
| PV1103 13.12 2.19 0.202             | 0.089                |
| PV2051 15.52 1.96 0.218             | B 0.150              |
| PV2052 13.36 2.38 0.262             | 2. 0.151             |
| PV2053 12.09 1.72 0.257             | 0.155                |
| PV2081 16.11 2.90 0.253             | 0.124                |
| PV2082 13.31 2.52 0.272             | 0.159                |
| PV2083 14.02 2.42 0.231             | 0.144                |
| PV2091 15.48 3.17 0.197             | 0.128                |
| PV2092 9.58 2.06 0.254              | 0.147                |
| PV2093 14.42 1.83 0.235             | 0.169                |
| PV2101 10.11 1.42 0.282             | 0.172                |
| PV2102 14.25 2.46 0.234             | 0.119                |
| PV2103 11.74 1.61 0.279             | 0.147                |
| PV2A051 14.51 2.04 0.184            | 0.141                |
| PV2A052 14.64 2.19 0.224            | 0.144                |
| PV2A053 15.40 2.19 0.231            | 0.145                |
| PV2A081 14.67 2.84 0.215            | 0.126                |
| PV2A082 10.69 1.82 0.275            | 0.191                |
| PV2A083 16.04 2.36 0.258            | 0.147                |
| PV2A091 15.09 2.68 0.211            | 0.114                |
| PV2A092 11.90 1.90 0.269            | 0.149                |
| PV2A093 15.87 2.15 0.243            | 0.142                |
| PV2A101 18.04 3.33 0.185            | 0.100                |

1.97

PV2A102

PV2A103

12.61

5.35

•

0.259

0.275

0.113

Appendix A. Plant dry matter yield and N concentration - crop 1.

| Sample† | Shoot DMY | Root DMY | Shoot TKN | Root TKN |
|---------|-----------|----------|-----------|----------|
|         | gra       | ms ———   | mg N      | g-1      |
|         |           |          |           |          |
| BM0051  | 4.15      | 1.22     | 0.068     | 0.055    |
| BM0052  | 3.02      | 0.96     | 0.078     | 0.053    |
| BM0053  | 4.27      | 1.26     | 0.081     | 0.048    |
| BM0081  | 5.82      | 1.50     | 0.061     | 0.048    |
| BM0082  | 3.75      | 0.99     | 0.088     | 0.055    |
| BM0083  | 3.14      | 0.90     | 0.084     | 0.054    |
| BM0091  | 4.12      | 1.17     | 0.083     | 0.053    |
| BM0092  | 3.44      | 1.08     | 0.085     | 0.060    |
| BM0093  | 2.84      | 0.90     | 0.079     | 0.059    |
| BM0101  | 2.59      | 0.65     | 0.067     | 0.061    |
| BM0102  | 2.10      | 0.74     | 0.084     | 0.052    |
| BM0103  | 2.40      | 0.60     | 0.088     | 0.058    |
| BM1051  | 15.92     | 2.99     | 0.083     | 0.058    |
| BM1052  | 9.69      | 2.17     | 0.120     | 0.079    |
| BM1053  | 12.79     | 2.47     | 0.118     | 0.060    |
| BM1081  | 13.72     | 3.05     | 0.103     | 0.064    |
| BM1082  | 12.63     | 2.76     | 0.113     | 0.058    |
| BM1083  | 12.10     | 3.08     | 0.108     | 0.064    |
| BM1091  | 14.69     | 2.68     | 0.089     | 0.063    |
| BM1092  | 12.30     | 3.06     | 0.107     | 0.072    |
| BM1093  | 10.70     | 1.81     | 0.122     | 0.069    |
| BM1101  | 14.26     | 3.16     | 0.081     | 0.068    |
| BM1102  | 2.07      | 0.22     | 0.235     | 0.213    |
| BM1103  | 11.01     | 1.83     | 0.108     | 0.081    |
| BM2051  | 15.88     | 2.72     | 0.179     | 0.076    |
| BM2052  | 12.14     | 3.02     | 0.118     | 0.075    |
| BM2053  | 15.23     | 2.73     | 0.162     | 0.079    |
| BM2081  | 16.09     | 3.55     | 0.173     | 0.087    |
| BM2082  | 14.51     | 3.20     | 0.167     | 0.098    |
| BM2083  | 11.11     | 2.02     | 0.209     | 0.098    |
| BM2091  | 18.35     | 3.53     | 0.141     | 0.083    |
| BM2092  | 14.06     | 2.73     | 0.185     | 0.097    |
| BM2093  | 15.29     | 3.20     | 0.159     | 0.100    |
| BM2101  | 18.56     | 3.32     | 0.100     | 0.092    |
| BM2102  | 12.97     | 2.71     | 0.170     | 0.096    |
| BM2103  | 14.61     | 2.39     | 0.167     | 0.105    |
| BM2A051 | 17.76     | 3.70     | 0.143     | 0.072    |
| BM2A052 | 16.57     | 3.09     | 0.141     | 0.091    |
| BM2A053 | 13.98     | 2.15     | 0.190     | 0.096    |
| BM2A081 | 18.41     | 2.77     | 0.157     | 0.086    |
| BM2A082 | 15.69     | 3.24     | 0.171     | 0.082    |
| BM2A083 | 14.72     | 2.33     | 0.191     | 0.089    |
| BM2A091 | 17.29     | 4.02     | 0.151     | 0.081    |
| BM2A092 | 13.24     | 2.07     | 0.186     | 0.103    |
| BM2A093 | 14.29     | 3.07     | 0.167     | 0.079    |
| BM2A101 | 17.40     | 3.11     | 0.152     | 0.078    |
| BM2A102 | 13.50     | 1.99     | 0.139     | 0.080    |
| BM2A103 | 13.55     | 2.57     | 0.174     | 0.084    |

Appendix A, continued. Plant dry matter yield and N concentration - crop 1.

| Sample†  | Shoot DMY     | Root DMY     | Shoot TKN             | Root TKN          |
|----------|---------------|--------------|-----------------------|-------------------|
|          | gra           | ms           | mg N                  | i g <sup>.1</sup> |
|          |               |              | •<br>•                |                   |
| PM0051   | 13.99         | 1.33         | 0.239                 | 0.099             |
| PM0052   | 11.21         | 1.56         | 0.247                 | 0.160             |
| PM0053   | 12.49         | 1.34         | 0.236                 | 0.131             |
| PM0081   | 16.05         | 2.72         | 0.184                 | 0.075             |
| PM0082   | 14.25         | 2.75         | 0.209                 | 0.122             |
| PM0083   | 13.92         | 1.99         | 0.207                 | 0.119             |
| PM0091   | 12.81         | 1.92         | 0.290                 | 0.108             |
| PM0092   | 14.94         | 2.65         | 0.246                 | 0.103             |
| PM0093   | 15.79         | 2.92         | 0.271                 | 0.087             |
| PM0101   | 16.54         | 1.93         | 0.171                 | 0.079             |
| PM0102   | 12.48         | 2.77         | 0.219                 | 0.103             |
| PM0103   | 11.90         | 1.59         | 0.231                 | 0.101             |
| PM1051   | 14.67         | 1.92         | 0.234                 | 0.124             |
| PM1052   | 12.78         | 2.21         | 0.255                 | 0.166             |
| PM1053   | 14.63         | 1.84         | 0.249                 | 0.144             |
| PM1081   | 13.39         | 1.91         | 0.259                 | 0.167             |
| PM1082   | 13.66         | 2.10         | 0.262                 | 0.175             |
| PM1083   | 11.87         | 1.50         | 0.265                 | 0.189             |
| PM1091   | 17.77         | 2.49         | 0.261                 | 0.131             |
| PM1092   | 10.77         | 1.51         | 0.242                 | 0.176             |
| PM1093   | 5.78          | 1.60         | 0.273                 | 0.191             |
| PM1101   | 14.13         | 1.92         | 0.249                 | 0.155             |
| PM1102   | 8 74          | 1 18         | 0.256                 | 0.169             |
| PM1102   | 13 52         | 1.03         | 0.272                 | 0.126             |
| PM2051   | 16.93         | 2.81         | 0.245                 | 0.157             |
| PM2052   | 12.94         | 2.61         | 0.283                 | 0.190             |
| PM2052   | 13 71         | 2.35         | 0.262                 | 0.120             |
| PM2081   | 0 33          | 2.00         | 0.202                 | 0.104             |
| DX2001   | 7.02          | 2.20         | 0.2-5                 | 0.177             |
| N12082   | 14.04         | 2.02         | 0.252                 | 0.131             |
| DM2003   | 14.04         | 1.94         | 0.200                 | 0.170             |
| PM2091   | 13.72         | 2 30         | 0.209                 | 0.179             |
| CIVI2092 | 14.1J<br>7 00 | 2.JU<br>1 76 | 0.277                 | 0.177             |
| EIVI2093 | עד.ו<br>א ד   | 1.20         | ሀ.ፈጋሀ<br>ስ <b>ንዩግ</b> | 0.421             |
|          | 7.44          | 1.24         | 0.201                 | 0.224             |
| PM2102   | 9.02          | 1.41         | 0.238                 | 0.231             |
| PM2103   | 11.24         | 1.54         | 0.201                 | 0.234             |
| PM2AU51  | 14.74         | 2.02         | 0.275                 | 0.220             |
| PMZAU5Z  | 13.38         | 2.22         | 0.200                 | 0.195             |
| 2AU53    | 10.59         | 1.32         | 0.283                 | 0.240             |
| -M2A081  | 13.30         | 1.92         | 0.237                 | 0.100             |
| M2A082   | 10.17         | 2.60         | 0.289                 | 0.175             |
| M2A083   | 10.70         | 1.49         | 0.279                 | 0.000             |
| M2A091   | 16.16         | 2.44         | 0.256                 | 0.178             |
| PM2A092  | 12.42         | 2.11         | 0.212                 | 0.195             |
| PM2A093  | 12.40         | 2.00         | 0.177                 | 0.251             |
| PM2A101  | 16.77         | 2.37         | 0.268                 | 0.155             |
| PM2A102  | 12.29         | 2.35         | 0.166                 | 0.172             |
| PM2A103  | 11.16         | 1.37         | 0.189                 | 0.240             |

Appendix A, continued. Plant dry matter yield and N concentration - crop 1.

•

| Sample† | Shoot DMY | Root DMY | Shoot TKN | Root TKN          |
|---------|-----------|----------|-----------|-------------------|
|         | gra       | ms       | mg N      | 1 g <sup>-1</sup> |
|         |           |          | 0.054     | 0.040             |
| C0051   | 3.47      | 0.77     | 0.074     | 0.048             |
| C0052   | 1.87      | 0.50     | 0.081     | 0.071             |
| C0053   | 2.65      | 0.88     | 0.077     | 0.053             |
| C0081   | 5.33      | 1.58     | 0.073     | 0.049             |
| C0082   | 5.64      | 1.82     | 0.064     | 0.061             |
| C0083   | 3.89      | 1.13     | 0.073     | 0.066             |
| C0091   | 3.53      | 0.95     | 0.073     | 0.059             |
| C0092   | 3.56      | 1.07     | 0.073     | 0.060             |
| C0093   | 2.66      | 0.73     | 0.064     | 0.064             |
| C0101   | 2.11      | 0.67     | 0.059     | 0.060             |
| C0102   | 2.30      | 0.86     | 0.067     | 0.055             |
| 20103   | 1.81      | 0.65     | 0.068     | 0.071             |
| C1051   | 14.01     | 2.33     | 0.092     | 0.073             |
| C1052   | 11.38     | 2.50     | 0.101     | 0.066             |
| C1053   | 10.88     | 2.14     | 0.123     | 0.063             |
| C1081   | 13.56     | 2.82     | 0.088     | 0.072             |
| C1082   | 11.29     | 2.14     | 0.143     | 0.085             |
| C1083   | 11.53     | 2.50     | 0.113     | 0.075             |
| C1091   | 12.85     | 2.09     | 0.088     | 0.074             |
| C1092   | 11.36     | 2.33     | 0.099     | 0.074             |
| C1093   | 10.89     | 2.17     | 0.104     | 0.079             |
| C1101   | 12.18     | 2.55     | 0.094     | 0.066             |
| C1102   | 9.74      | 2.08     | 0.120     | 0.069             |
| C1103   | 9.78      | 1.40     | 0.146     | 0.086             |
| C2051   | 17.32     | 2.89     | 0.147     | 0.098             |
| C2052   | 9.49      | 1.99     | 0.173     | <b>0.106</b>      |
| C2053   | 11.24     | 1.78     | 0.193     | 0.120             |
| C2081   | 18.03     | 3.80     | 0.153     | 0.089             |
| C2082   | 16.15     | 2.73     | 0.167     | 0.111             |
| C2083   | 13.59     | 2.97     | 0.185     | 0.102             |
| C2091   | 16.22     | 2.29     | 0.151     | 0.093             |
| C2092   | 13.78     | 3.08     | 0.160     | 0.100             |
| C2093   | 14.90     | 3.05     | 0.172     | 0.106             |
| C2101   | 14.65     | 2.34     | 0.171     | 0.126             |
| C2102   | 13.40     | 2.46     | 0.178     | 0.122             |
| C2103   | 10.72     | 1.16     | 0.162     | 0.080             |
| C2A051  | 17.49     | 3.22     | 0.125     | 0.088             |
| C2A052  | 14.53     | 2.57     | 0.160     | 0.107             |
| C2A053  | 14.19     | 1.99     | 0.178     | 0.095             |
| C2A081  | 20.34     | 4.00     | 0.133     | 0.084             |
| C2A082  | 12.64     | 1.87     | 0.214     | 0.109             |
| ~24083  | 13.87     | 1.81     | 0.187     | 0.101             |
| C2A001  | 4 64      | 0.96     | 0.232     | 0 165             |
| C2A091  | 13 55     | 2 30     | 0.168     | 0.105             |
| C2A032  | 13.86     | 1 01     | 0.182     | 0.024             |
| C7A101  | 16.88     | 2.27     | 0.102     | 0.073             |
| C2A102  | 10.00     | 2.27     | 0.127     | 0.107             |
| C2A102  | 12.00     | 1 11     | 0.150     | 0.112             |

Appendix A, continued. Plant dry matter yield and N concentration - crop 1.

| Sample† | Shoot DMY | Root DMY | Shoot TKN | Root TKN        |
|---------|-----------|----------|-----------|-----------------|
|         | gra       | ms       | mg N      | g <sup>-1</sup> |
|         |           |          |           |                 |
| PV0051  | 5.54      | 1.60     | 0.086     | 0.057           |
| PV0052  | 4.52      | 0.88     | 0.110     | 0.071           |
| PV0053  | 5.22      | 1.22     | 0.121     | 0.073           |
| PV0081  | 6.74      | 1.85     | 0.090     | 0.053           |
| PV0082  | 5.05      | 1.16     | 0.162     | 0.065           |
| PV0083  | 5.71      | 1.35     | 0.143     | 0.057           |
| PV0091  | 5.69      | 1.57     | 0.095     | 0.054           |
| PV0092  | 4.75      | 1.30     | 0.121     | 0.057           |
| PV0093  | 3.60      | 0.83     | 0.145     | 0.060           |
| PV0101  | 6.31      | 1.61     | 0.138     | 0.056           |
| PV0102  | 5.47      | 1.42     | 0.099     | 0.063           |
| PV0103  | 4.14      | 1.04     | 0.098     | 0.052           |
| PV1051  | 13.41     | 3.48     | 0.133     | 0.055           |
| PV1052  | 12.55     | 2.90     | 0.207     | 0.068           |
| PV1053  | 12.53     | 2.73     | 0.170     | 0.074           |
| PV1081  | 13.77     | 3.24     | 0.166     | 0.063           |
| PV1082  | 12.89     | 3.23     | 0.199     | 0.065           |
| PV1083  | 677       | 1.21     | 0.201     | 0.077           |
| PV1091  | 12.26     | 2.70     | 0.168     | 0.062           |
| PV1092  | 11 16     | 2.50     | 0.149     | 0.070           |
| PV1093  | 11.10     | 2.69     | 0.177     | 0.071           |
| PV1101  | 13.09     | 3.01     | 0.220     | 0.058           |
| PV1102  | 12.04     | 2.48     | 0.219     | 0.062           |
| PV1103  | 10.84     | 1.62     | 0.202     | 0.073           |
| PV2051  | 19.65     | 5.12     | 0.218     | 0.076           |
| PV2052  | 14.89     | 3.29     | 0.262     | 0.094           |
| PV2053  | 15.31     | 2.94     | 0.257     | 0.093           |
| PV2081  | 18.83     | 4.71     | 0.253     | 0.070           |
| PV2082  | 13 56     | 2.78     | 0.272     | 0.105           |
| PV2083  | 15.88     | 2.98     | 0.231     | 0.090           |
| PV2091  | 18.02     | 3.92     | 0.197     | 0.072           |
| PV2092  | 13.89     | 3 29     | 0.254     | 0.085           |
| PV2003  | 16.43     | 2.87     | 0.235     | 0.083           |
| PV2101  | 17.78     | 3.52     | 0.282     | 0.091           |
| PV2102  | 16.60     | 3.92     | 0.234     | 0.091           |
| PV2102  | 18.14     | 2.76     | 0.279     | 0.080           |
| PV2A051 | 20.58     | 5.23     | 0.184     | 0.086           |
| PV2A052 | 15.84     | 3 39     | 0.224     | 0.103           |
| PV2A053 | 16.00     | 2.62     | 0.221     | 0 1 1 1         |
| PV2A081 | 18.00     | 4.00     | 0.215     | 0.081           |
| PV2A082 | 15.46     | 3.32     | 0.275     | 0.122           |
| PV2A083 | 17.15     | 3.12     | 0.258     | 0.104           |
| PV2A091 | 19.85     | 4.56     | 0.211     | 0.078           |
| PV2A092 | 12.43     | 2.02     | 0.269     | 0.130           |
| PV2A093 | 16 65     | 2.93     | 0.243     | 0.103           |
| PV2A101 | 18.82     | 3.69     | 0.185     | 0.087           |
| PV2A102 | 13.93     | 2.89     | 0.259     | 0.103           |
| PV2A103 | 16.79     | 2.82     | 0.275     | 0.091           |

Appendix A, continued. Plant dry matter yield and N concentration - crop 2.

| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sample <sup>†</sup> | Shoot DMY | Root DMY | Shoot TKN | Root TKN        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------|----------|-----------|-----------------|
| BM0051         0.41         0.36         0.068         0.069           BM0052         0.50         0.32         0.078         0.072           BM0081         0.81         0.55         0.061         0.063           BM0081         0.81         0.55         0.088         0.079           BM0082         0.85         0.38         0.088         0.071           BM0091         0.57         0.54         0.083         0.064           BM0092         0.53         0.45         0.085         0.071           BM0093         0.48         0.48         0.079         0.088           BM0101         0.14         0.47         0.067         0.068           BM0102         0.58         0.48         0.084         0.071           BM1051         6.84         1.75         0.088         0.064           BM1052         8.55         2.08         0.120         0.064           BM1053         6.33         1.15         0.118         0.067           BM1081         9.61         2.72         0.103         0.058           BM1082         9.34         2.65         0.113         0.066           BM1092         6.79                                                                                |                     | gra       | ms       | mg N      | g <sup>-1</sup> |
| BM0051         0.41         0.36         0.068         0.069           BM0052         0.50         0.32         0.078         0.072           BM0081         0.81         0.55         0.061         0.063           BM0082         0.85         0.38         0.088         0.071           BM0081         0.81         0.55         0.064         0.063           BM0082         0.85         0.38         0.084         0.071           BM0091         0.57         0.54         0.083         0.064           BM0092         0.53         0.45         0.085         0.071           BM0101         0.14         0.47         0.067         0.068           BM0102         0.58         0.48         0.084         0.071           BM1051         6.84         1.75         0.083         0.062           BM1052         8.55         2.08         0.120         0.064           BM1051         6.84         1.75         0.083         0.062           BM1081         9.61         2.72         0.103         0.058           BM1082         9.34         2.65         0.113         0.060           BM1092         6.79                                                                                |                     |           |          |           |                 |
| BM0052         0.50         0.32         0.078         0.072           BM0053         0.62         0.34         0.081         0.070           BM0081         0.81         0.55         0.061         0.063           BM0082         0.85         0.38         0.088         0.079           BM0093         0.57         0.54         0.083         0.064           BM0092         0.53         0.45         0.085         0.071           BM0093         0.48         0.48         0.067         0.068           BM0101         0.14         0.47         0.067         0.068           BM102         0.58         0.48         0.084         0.071           BM103         0.79         0.43         0.088         0.064           BM1051         6.84         1.75         0.083         0.062           BM1052         8.55         2.08         0.120         0.064           BM1053         6.33         1.15         0.118         0.067           BM1082         9.34         2.65         0.113         0.066           BM1081         9.61         2.72         0.103         0.079           BM1082         9.34 </td <td>BM0051</td> <td>0.41</td> <td>0.36</td> <td>0.068</td> <td>0.069</td>   | BM0051              | 0.41      | 0.36     | 0.068     | 0.069           |
| BM0053         0.62         0.34         0.081         0.070           BM0081         0.81         0.55         0.061         0.063           BM0082         0.85         0.38         0.088         0.079           BM0083         1.14         0.50         0.084         0.071           BM0091         0.57         0.54         0.083         0.064           BM0092         0.53         0.45         0.085         0.071           BM0093         0.48         0.48         0.079         0.088           BM0101         0.14         0.47         0.067         0.068           BM102         0.58         0.48         0.084         0.071           BM103         0.79         0.43         0.088         0.064           BM1051         6.84         1.75         0.083         0.062           BM1052         8.55         2.08         0.120         0.064           BM1081         9.61         2.72         0.103         0.058           BM1082         9.34         2.65         0.113         0.060           BM1083         8.98         1.82         0.108         0.076           BM1091         5.37 </td <td>BM0052</td> <td>0.50</td> <td>0.32</td> <td>0.078</td> <td>0.072</td>   | BM0052              | 0.50      | 0.32     | 0.078     | 0.072           |
| BM0081         0.81         0.55         0.061         0.063           BM0082         0.85         0.38         0.088         0.079           BM0083         1.14         0.50         0.084         0.071           BM0091         0.57         0.54         0.083         0.064           BM0092         0.53         0.45         0.085         0.071           BM0092         0.53         0.44         0.067         0.068           BM0101         0.14         0.47         0.067         0.068           BM1021         0.58         0.48         0.084         0.071           BM1051         6.84         1.75         0.083         0.064           BM1052         8.55         2.08         0.120         0.064           BM1053         6.33         1.15         0.118         0.067           BM1081         9.61         2.72         0.103         0.058           BM1082         9.34         2.65         0.113         0.066           BM1093         7.62         1.55         0.122         0.064           BM1102         1.12         2.91         0.235         0.066           BM1093         7.62                                                                                | BM0053              | 0.62      | 0.34     | 0.081     | 0.070           |
| BM0082         0.85         0.38         0.088         0.079           BM0083         1.14         0.50         0.084         0.071           BM0091         0.57         0.54         0.083         0.064           BM0092         0.53         0.45         0.085         0.071           BM0093         0.48         0.48         0.079         0.088           BM1010         0.14         0.47         0.067         0.068           BM0102         0.58         0.48         0.084         0.071           BM0103         0.79         0.43         0.088         0.064           BM1051         6.84         1.75         0.083         0.062           BM1053         6.33         1.15         0.118         0.067           BM1082         9.34         2.65         0.113         0.060           BM1083         8.98         1.82         0.108         0.066           BM1091         5.37         1.68         0.089         0.079           BM1092         6.79         1.33         0.107         0.061           BM1093         7.62         1.55         0.122         0.064           BM1101         7.68                                                                                | BM0081              | 0.81      | 0.55     | 0.061     | 0.063           |
| BM0083         1.14         0.50         0.084         0.071           BM0091         0.57         0.54         0.083         0.064           BM0092         0.53         0.45         0.085         0.071           BM0093         0.48         0.48         0.079         0.088           BM0101         0.14         0.47         0.067         0.068           BM102         0.58         0.48         0.084         0.071           BM1051         6.84         1.75         0.083         0.062           BM1051         6.84         1.75         0.083         0.062           BM1052         8.55         2.08         0.120         0.064           BM1053         6.33         1.15         0.118         0.067           BM1081         9.61         2.72         0.103         0.058           BM1082         9.34         2.65         0.113         0.060           BM1083         8.98         1.82         0.108         0.066           BM1091         5.37         1.68         0.089         0.079           BM1093         7.62         1.55         0.122         0.064           BM1101         7.68<                                                                                | BM0082              | 0.85      | 0.38     | 0.088     | 0.079           |
| BM0091         0.57         0.54         0.083         0.064           BM0092         0.53         0.45         0.085         0.071           BM0093         0.48         0.48         0.079         0.088           BM0101         0.14         0.47         0.067         0.068           BM0102         0.58         0.48         0.084         0.071           BM1051         6.84         1.75         0.083         0.062           BM1052         8.55         2.08         0.120         0.064           BM1053         6.33         1.15         0.118         0.067           BM1081         9.61         2.72         0.103         0.058           BM1082         9.34         2.65         0.113         0.066           BM1091         5.37         1.68         0.089         0.079           BM1092         6.79         1.33         0.107         0.061           BM1091         5.37         1.68         0.089         0.079           BM1092         6.79         1.33         0.107         0.061           BM1091         5.37         1.68         0.99         0.081         0.054           BM1102                                                                                | BM0083              | 1.14      | 0.50     | 0.084     | 0.071           |
| BM0092         0.53         0.45         0.085         0.071           BM0093         0.48         0.48         0.079         0.088           BM0101         0.14         0.47         0.067         0.068           BM0102         0.58         0.48         0.084         0.071           BM0103         0.79         0.43         0.088         0.064           BM1051         6.84         1.75         0.083         0.062           BM1052         8.55         2.08         0.120         0.064           BM1053         6.33         1.15         0.118         0.067           BM1081         9.61         2.72         0.103         0.058           BM1082         9.34         2.65         0.113         0.060           BM1083         8.98         1.82         0.108         0.066           BM1091         5.37         1.68         0.089         0.079           BM1092         6.79         1.33         0.107         0.061           BM1093         7.62         1.55         0.122         0.064           BM1101         7.68         1.99         0.081         0.054           BM103         5.70<                                                                                | BM0091              | 0.57      | 0.54     | 0.083     | 0.064           |
| BM0093         0.48         0.48         0.079         0.088           BM0101         0.14         0.47         0.067         0.068           BM0102         0.58         0.48         0.084         0.071           BM0103         0.79         0.43         0.088         0.064           BM1051         6.84         1.75         0.083         0.062           BM1052         8.55         2.08         0.120         0.064           BM1051         6.33         1.15         0.118         0.067           BM1081         9.61         2.72         0.103         0.058           BM1082         9.34         2.65         0.113         0.060           BM1083         8.98         1.82         0.108         0.066           BM1091         5.37         1.68         0.089         0.079           BM1092         6.79         1.33         0.107         0.061           BM1093         7.62         1.55         0.122         0.064           BM1101         7.68         1.99         0.081         0.054           BM1025         1.15         0.122         0.066         BM2051         18.57         4.14                                                                                 | BM0092              | 0.53      | 0.45     | 0.085     | 0.071           |
| BM0101         0.14         0.47         0.067         0.068           BM0102         0.58         0.48         0.084         0.071           BM1051         6.84         1.75         0.083         0.062           BM1052         8.55         2.08         0.120         0.064           BM1053         6.33         1.15         0.118         0.067           BM1081         9.61         2.72         0.103         0.058           BM1082         9.34         2.65         0.113         0.060           BM1081         9.61         2.72         0.108         0.066           BM1082         9.34         2.65         0.113         0.060           BM1081         9.537         1.68         0.089         0.079           BM1092         6.79         1.33         0.107         0.061           BM1093         7.62         1.55         0.122         0.064           BM1101         7.68         1.99         0.081         0.054           BM1102         11.12         2.91         0.235         0.066           BM2051         18.57         4.14         0.179         0.062           BM2052         1                                                                                | BM0093              | 0.48      | 0.48     | 0.079     | 0.088           |
| BM0102       0.58       0.48       0.084       0.071         BM0103       0.79       0.43       0.088       0.064         BM1051       6.84       1.75       0.083       0.062         BM1052       8.55       2.08       0.120       0.064         BM1053       6.33       1.15       0.118       0.067         BM1081       9.61       2.72       0.103       0.058         BM1082       9.34       2.65       0.113       0.060         BM1083       8.98       1.82       0.108       0.066         BM1091       5.37       1.68       0.089       0.079         BM1092       6.79       1.33       0.107       0.061         BM1093       7.62       1.55       0.122       0.064         BM1101       7.68       1.99       0.081       0.054         BM1102       11.12       2.91       0.235       0.066         BM2051       18.57       4.14       0.179       0.062         BM2052       13.37       3.21       0.118       0.066         BM2052       13.37       3.21       0.118       0.066         BM2083       13.48                                                                                                                                                                      | BM0101              | 0.14      | 0.47     | 0.067     | 0.068           |
| BM0103         0.79         0.43         0.088         0.064           BM1051         6.84         1.75         0.083         0.062           BM1052         8.55         2.08         0.120         0.064           BM1053         6.33         1.15         0.118         0.067           BM1081         9.61         2.72         0.103         0.058           BM1082         9.34         2.65         0.113         0.060           BM1083         8.98         1.82         0.108         0.066           BM1091         5.37         1.68         0.089         0.079           BM1092         6.79         1.33         0.107         0.061           BM1093         7.62         1.55         0.122         0.064           BM1101         7.68         1.99         0.081         0.054           BM1102         11.12         2.91         0.235         0.066           BM2051         18.57         4.14         0.179         0.062           BM2052         13.37         3.21         0.118         0.066           BM2053         15.17         2.97         0.162         0.055           BM2081                                                                                         | BM0102              | 0.58      | 0.48     | 0.084     | 0.071           |
| BM1051         6.84         1.75         0.083         0.062           BM1052         8.55         2.08         0.120         0.064           BM1053         6.33         1.15         0.118         0.067           BM1081         9.61         2.72         0.103         0.058           BM1082         9.34         2.65         0.113         0.060           BM1083         8.98         1.82         0.108         0.066           BM1091         5.37         1.68         0.089         0.079           BM1092         6.79         1.33         0.107         0.061           BM1101         7.68         1.99         0.081         0.054           BM1102         11.12         2.91         0.235         0.066           BM103         5.70         1.19         0.108         0.076           BM2051         18.57         4.14         0.179         0.062           BM2052         13.37         3.21         0.118         0.066           BM2053         15.17         2.97         0.162         0.0655           BM2082         14.51         3.12         0.167         0.065           BM2083 <td< td=""><td>BM0103</td><td>0.79</td><td>0.43</td><td>0.088</td><td>0.064</td></td<> | BM0103              | 0.79      | 0.43     | 0.088     | 0.064           |
| BM1052       8.55       2.08       0.120       0.064         BM1053       6.33       1.15       0.118       0.067         BM1081       9.61       2.72       0.103       0.058         BM1082       9.34       2.65       0.113       0.060         BM1083       8.98       1.82       0.108       0.066         BM1091       5.37       1.68       0.089       0.079         BM1092       6.79       1.33       0.107       0.061         BM1092       6.79       1.33       0.107       0.061         BM102       11.12       2.91       0.235       0.066         BM1102       11.12       2.91       0.235       0.066         BM103       5.70       1.19       0.108       0.076         BM2051       18.57       4.14       0.179       0.062         BM2053       15.17       2.97       0.162       0.065         BM2081       15.52       3.16       0.173       0.059         BM2082       14.51       3.12       0.167       0.066         BM2083       13.48       3.00       0.209       0.066         BM2093       13.42 <td< td=""><td>BM1051</td><td>6.84</td><td>1.75</td><td>0.083</td><td>0.062</td></td<>                                                                              | BM1051              | 6.84      | 1.75     | 0.083     | 0.062           |
| BM1053         6.33         1.15         0.118         0.067           BM1081         9.61         2.72         0.103         0.058           BM1082         9.34         2.65         0.113         0.060           BM1083         8.98         1.82         0.108         0.066           BM1091         5.37         1.68         0.089         0.079           BM1092         6.79         1.33         0.107         0.061           BM1091         7.62         1.55         0.122         0.064           BM1101         7.68         1.99         0.081         0.054           BM1102         11.12         2.91         0.235         0.066           BM103         5.70         1.19         0.108         0.076           BM2051         18.57         4.14         0.179         0.062           BM2052         13.37         3.21         0.118         0.066           BM2083         15.17         2.97         0.162         0.065           BM2082         14.51         3.12         0.167         0.065           BM2083         13.48         3.00         0.209         0.066           BM2091 <td< td=""><td>BM1052</td><td>8.55</td><td>2.08</td><td>0.120</td><td>0.064</td></td<> | BM1052              | 8.55      | 2.08     | 0.120     | 0.064           |
| DM105         DM2         DM2         DM10         DM10           BM1081         9.61         2.72         0.103         0.058           BM1082         9.34         2.65         0.113         0.060           BM1083         8.98         1.82         0.108         0.066           BM1091         5.37         1.68         0.089         0.079           BM1092         6.79         1.33         0.107         0.061           BM1093         7.62         1.55         0.122         0.064           BM1101         7.68         1.99         0.081         0.054           BM102         11.12         2.91         0.235         0.066           BM2051         18.57         4.14         0.179         0.062           BM2052         13.37         3.21         0.118         0.066           BM2081         15.52         3.16         0.173         0.059           BM2082         14.51         3.12         0.167         0.065           BM2083         13.48         3.00         0.209         0.066           BM2092         13.41         2.47         0.185         0.079           BM2083         13.                                                                                | BM1052              | 6 33      | 1.15     | 0.118     | 0.067           |
| BM1081       1.02       1.12       0.101       0.060         BM1082       9.34       2.65       0.113       0.060         BM1083       8.98       1.82       0.108       0.066         BM1091       5.37       1.68       0.089       0.079         BM1092       6.79       1.33       0.107       0.061         BM1093       7.62       1.55       0.122       0.064         BM1101       7.68       1.99       0.081       0.054         BM1102       11.12       2.91       0.235       0.066         BM103       5.70       1.19       0.108       0.076         BM2051       18.57       4.14       0.179       0.662         BM2052       13.37       3.21       0.118       0.066         BM2081       15.52       3.16       0.173       0.059         BM2082       14.51       3.12       0.167       0.065         BM2083       13.48       3.00       0.209       0.066         BM2092       13.41       2.47       0.185       0.079         BM2093       13.42       3.00       0.159       0.100         BM2102       12.30       <                                                                                                                                                           | BM1081              | 9.61      | 2.72     | 0.103     | 0.058           |
| BM1083       8.98       1.82       0.108       0.066         BM1091       5.37       1.68       0.089       0.079         BM1092       6.79       1.33       0.107       0.061         BM1093       7.62       1.55       0.122       0.064         BM1101       7.68       1.99       0.081       0.054         BM1102       11.12       2.91       0.235       0.066         BM103       5.70       1.19       0.108       0.076         BM2051       18.57       4.14       0.179       0.062         BM2052       13.37       3.21       0.118       0.066         BM2053       15.17       2.97       0.162       0.065         BM2081       15.52       3.16       0.173       0.059         BM2082       14.51       3.12       0.167       0.065         BM2083       13.48       3.00       0.209       0.066         BM2092       13.41       2.47       0.185       0.079         BM2093       13.42       3.00       0.159       0.100         BM2101       15.22       3.16       0.100       0.064         BM2093       13.33                                                                                                                                                                 | BM1082              | 9.34      | 2.65     | 0.113     | 0.060           |
| BM1091       5.37       1.68       0.089       0.079         BM1092       6.79       1.33       0.107       0.061         BM1093       7.62       1.55       0.122       0.064         BM1101       7.68       1.99       0.081       0.054         BM1102       11.12       2.91       0.235       0.066         BM1103       5.70       1.19       0.108       0.076         BM2051       18.57       4.14       0.179       0.062         BM2052       13.37       3.21       0.118       0.066         BM2083       15.17       2.97       0.162       0.065         BM2081       15.52       3.16       0.173       0.059         BM2082       14.51       3.12       0.167       0.066         BM2091       17.66       3.86       0.141       0.061         BM2092       13.41       2.47       0.185       0.079         BM2093       13.42       3.00       0.159       0.100         BM2093       13.33       2.27       0.167       0.064         BM2091       15.22       3.16       0.100       0.064         BM2092       13.33                                                                                                                                                               | BM1083              | 8.98      | 1.82     | 0.108     | 0.066           |
| BM10926.791.330.1070.061BM10926.791.330.1070.061BM10937.621.550.1220.064BM11017.681.990.0810.054BM110211.122.910.2350.066BM1035.701.190.1080.076BM205118.574.140.1790.062BM205213.373.210.1180.066BM205315.172.970.1620.065BM208115.523.160.1730.059BM208214.513.120.1670.066BM209313.483.000.2090.066BM209213.412.470.1850.079BM209313.423.000.1590.100BM210115.223.160.1000.064BM210212.302.580.1700.080BM210313.332.270.1670.069BM2A05117.413.400.1430.079BM2A05215.953.180.1410.080BM2A05314.812.230.1900.082BM2A08317.743.240.1910.090BM2A08317.743.240.1910.090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | BM1091              | 5.37      | 1.68     | 0.089     | 0.079           |
| BM1092 $7.62$ $1.55$ $0.122$ $0.064$ $BM1093$ $7.62$ $1.55$ $0.122$ $0.064$ $BM1101$ $7.68$ $1.99$ $0.081$ $0.054$ $BM1102$ $11.12$ $2.91$ $0.235$ $0.066$ $BM1103$ $5.70$ $1.19$ $0.108$ $0.076$ $BM2051$ $18.57$ $4.14$ $0.179$ $0.062$ $BM2052$ $13.37$ $3.21$ $0.118$ $0.066$ $BM2053$ $15.17$ $2.97$ $0.162$ $0.065$ $BM2081$ $15.52$ $3.16$ $0.173$ $0.059$ $BM2082$ $14.51$ $3.12$ $0.167$ $0.065$ $BM2083$ $13.48$ $3.00$ $0.209$ $0.066$ $BM2091$ $17.66$ $3.86$ $0.141$ $0.061$ $BM2092$ $13.41$ $2.47$ $0.185$ $0.079$ $BM2093$ $13.42$ $3.00$ $0.159$ $0.100$ $BM2101$ $15.22$ $3.16$ $0.100$ $0.064$ $BM2102$ $12.30$ $2.58$ $0.170$ $0.080$ $BM2051$ $17.41$ $3.40$ $0.143$ $0.079$ $BM2A052$ $15.95$ $3.18$ $0.141$ $0.080$ $BM2A053$ $14.81$ $2.23$ $0.190$ $0.082$ $BM2A081$ $19.76$ $4.56$ $0.157$ $0.069$ $BM2A082$ $13.81$ $3.70$ $0.171$ $0.090$ $BM2A083$ $17.74$ $3.24$ $0.191$ $0.090$                                                                                                                                                                                                                                                                                              | BM1092              | 6.79      | 1.33     | 0.107     | 0.061           |
| BM1001.021.021.021.02BM11017.681.990.0810.054BM110211.122.910.2350.066BM11035.701.190.1080.076BM205118.574.140.1790.062BM205213.373.210.1180.066BM205315.172.970.1620.065BM208115.523.160.1730.059BM208214.513.120.1670.065BM208313.483.000.2090.066BM209117.663.860.1410.061BM209213.412.470.1850.079BM209313.423.000.1590.100BM210115.223.160.1000.064BM210212.302.580.1700.080BM210313.332.270.1670.069BM2A05117.413.400.1430.079BM2A05215.953.180.1410.080BM2A05314.812.230.1900.082BM2A08119.764.560.1570.069BM2A08213.813.700.1710.096BM2A08317.743.240.1910.090BM2A08317.743.880.1510.070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BM1092              | 7.62      | 1.55     | 0.122     | 0.064           |
| DM11011.001.011.010.001BM110211.122.910.2350.066BM11035.701.190.1080.076BM205118.574.140.1790.062BM205213.373.210.1180.066BM205315.172.970.1620.065BM208115.523.160.1730.059BM208214.513.120.1670.065BM208313.483.000.2090.066BM209117.663.860.1410.061BM209213.412.470.1850.079BM209313.423.000.1590.100BM210115.223.160.1000.064BM210212.302.580.1700.080BM210313.332.270.1670.069BM2A05117.413.400.1430.079BM2A05215.953.180.1410.080BM2A05314.812.230.1900.082BM2A08317.743.240.1910.096BM2A08317.743.240.1910.090BM2A08119.764.560.1570.069BM2A08317.743.240.1910.090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BM1101              | 7.62      | 1.99     | 0.081     | 0.054           |
| BM1103 $5.70$ $1.19$ $0.108$ $0.076$ BM2051 $18.57$ $4.14$ $0.179$ $0.062$ BM2052 $13.37$ $3.21$ $0.118$ $0.066$ BM2053 $15.17$ $2.97$ $0.162$ $0.065$ BM2081 $15.52$ $3.16$ $0.173$ $0.059$ BM2082 $14.51$ $3.12$ $0.167$ $0.065$ BM2083 $13.48$ $3.00$ $0.209$ $0.066$ BM2091 $17.66$ $3.86$ $0.141$ $0.061$ BM2092 $13.41$ $2.47$ $0.185$ $0.079$ BM2093 $13.42$ $3.00$ $0.159$ $0.100$ BM2101 $15.22$ $3.16$ $0.100$ $0.064$ BM2102 $12.30$ $2.58$ $0.170$ $0.080$ BM2103 $13.33$ $2.27$ $0.167$ $0.069$ BM2A051 $17.41$ $3.40$ $0.143$ $0.079$ BM2A052 $15.95$ $3.18$ $0.141$ $0.080$ BM2A053 $14.81$ $2.23$ $0.190$ $0.822$ BM2A081 $19.76$ $4.56$ $0.157$ $0.069$ BM2A082 $13.81$ $3.70$ $0.171$ $0.996$ BM2A083 $17.74$ $3.24$ $0.191$ $0.090$ BM2A081 $17.79$ $3.88$ $0.151$ $0.070$                                                                                                                                                                                                                                                                                                                                                                                                               | BM1102              | 11.12     | 2.91     | 0.235     | 0.066           |
| BM105BM205118.574.140.1790.062BM205213.373.210.1180.066BM205315.172.970.1620.065BM208115.523.160.1730.059BM208214.513.120.1670.065BM208313.483.000.2090.066BM209117.663.860.1410.061BM209213.412.470.1850.079BM209313.423.000.1590.100BM210115.223.160.1000.064BM210212.302.580.1700.080BM210313.332.270.1670.069BM2A05117.413.400.1430.079BM2A05215.953.180.1410.080BM2A05314.812.230.1900.082BM2A08317.743.240.1910.090BM2A08119.764.560.1570.069BM2A08117.743.240.1910.090BM2A08117.743.880.1510.070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | BM1103              | 5.70      | 1.19     | 0.108     | 0.076           |
| BM205110.0710.07BM205213.373.210.1180.066BM205315.172.970.1620.065BM208115.523.160.1730.059BM208214.513.120.1670.065BM208313.483.000.2090.066BM209117.663.860.1410.061BM209213.412.470.1850.079BM209313.423.000.1590.100BM210115.223.160.1000.064BM210212.302.580.1700.080BM210313.332.270.1670.069BM2A05117.413.400.1430.079BM2A05215.953.180.1410.080BM2A05314.812.230.1900.082BM2A08213.813.700.1710.096BM2A08317.743.240.1910.090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | BM2051              | 18 57     | 4.14     | 0.179     | 0.062           |
| BM205216.512.970.1620.065BM208115.523.160.1730.059BM208214.513.120.1670.065BM208313.483.000.2090.066BM209117.663.860.1410.061BM209213.412.470.1850.079BM209313.423.000.1590.100BM210115.223.160.1000.064BM210212.302.580.1700.080BM210313.332.270.1670.069BM2A05117.413.400.1430.079BM2A05215.953.180.1410.080BM2A05314.812.230.1900.082BM2A08119.764.560.1570.069BM2A08213.813.700.1710.096BM2A08317.743.240.1910.090BM2A09117.393.880.1510.070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BM2052              | 13.37     | 3.21     | 0.118     | 0.066           |
| BM200315.115.70.059BM208115.523.160.1730.059BM208214.513.120.1670.065BM208313.483.000.2090.066BM209117.663.860.1410.061BM209213.412.470.1850.079BM209313.423.000.1590.100BM210115.223.160.1000.064BM210212.302.580.1700.080BM210313.332.270.1670.069BM2A05117.413.400.1430.079BM2A05215.953.180.1410.080BM2A05314.812.230.1900.082BM2A08119.764.560.1570.069BM2A08213.813.700.1710.096BM2A08317.743.240.1910.090BM2A09117.393.880.1510.070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BM2053              | 15.17     | 2.97     | 0.162     | 0.065           |
| BM208114.513.120.1670.065BM208214.513.120.1670.065BM208313.483.000.2090.066BM209117.663.860.1410.061BM209213.412.470.1850.079BM209313.423.000.1590.100BM210115.223.160.1000.064BM210212.302.580.1700.080BM210313.332.270.1670.069BM2A05117.413.400.1430.079BM2A05215.953.180.1410.080BM2A05314.812.230.1900.082BM2A08119.764.560.1570.069BM2A08213.813.700.1710.096BM2A08317.743.240.1910.090BM2A09117.393.880.1510.070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | BM2081              | 15.52     | 3.16     | 0.173     | 0.059           |
| BM20021 /1010.1210.121BM208313.483.000.2090.066BM209117.663.860.1410.061BM209213.412.470.1850.079BM209313.423.000.1590.100BM210115.223.160.1000.064BM210212.302.580.1700.080BM210313.332.270.1670.069BM2A05117.413.400.1430.079BM2A05215.953.180.1410.080BM2A05314.812.230.1900.082BM2A08119.764.560.1570.069BM2A08213.813.700.1710.096BM2A08317.743.240.1910.090BM2A09117.393.880.1510.070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BM2082              | 14 51     | 3.12     | 0.167     | 0.065           |
| BM209117.663.860.1410.061BM209213.412.470.1850.079BM209313.423.000.1590.100BM210115.223.160.1000.064BM210212.302.580.1700.080BM210313.332.270.1670.069BM2A05117.413.400.1430.079BM2A05215.953.180.1410.080BM2A05314.812.230.1900.082BM2A08119.764.560.1570.069BM2A08213.813.700.1710.096BM2A08317.743.240.1910.090BM2A09117.393.880.1510.070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BM2083              | 13.48     | 3.00     | 0.209     | 0.066           |
| BM209213.412.470.1850.079BM209313.423.000.1590.100BM210115.223.160.1000.064BM210212.302.580.1700.080BM210313.332.270.1670.069BM2A05117.413.400.1430.079BM2A05215.953.180.1410.080BM2A05314.812.230.1900.082BM2A08119.764.560.1570.069BM2A08213.813.700.1710.096BM2A08317.743.240.1910.090BM2A09117.393.880.1510.070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BM2091              | 17.66     | 3.86     | 0.141     | 0.061           |
| BM209313.423.000.1590.100BM210115.223.160.1000.064BM210212.302.580.1700.080BM210313.332.270.1670.069BM2A05117.413.400.1430.079BM2A05215.953.180.1410.080BM2A05314.812.230.1900.082BM2A08119.764.560.1570.069BM2A08213.813.700.1710.096BM2A08317.743.240.1910.090BM2A09117.393.880.1510.070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BM2092              | 13 41     | 2.47     | 0.185     | 0.079           |
| BM200513.1213.0010.00BM210115.223.160.1000.064BM210212.302.580.1700.080BM210313.332.270.1670.069BM2A05117.413.400.1430.079BM2A05215.953.180.1410.080BM2A05314.812.230.1900.082BM2A08119.764.560.1570.069BM2A08213.813.700.1710.096BM2A08317.743.240.1910.090BM2A09117.393.880.1510.070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BM2093              | 13.42     | 3.00     | 0.159     | 0.100           |
| BM210212.302.580.1700.080BM210313.332.270.1670.069BM2A05117.413.400.1430.079BM2A05215.953.180.1410.080BM2A05314.812.230.1900.082BM2A08119.764.560.1570.069BM2A08213.813.700.1710.096BM2A08317.743.240.1910.090BM2A09117.393.880.1510.070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BM2101              | 15.22     | 3.16     | 0.100     | 0.064           |
| BM210313.332.270.1670.069BM2A05117.413.400.1430.079BM2A05215.953.180.1410.080BM2A05314.812.230.1900.082BM2A08119.764.560.1570.069BM2A08213.813.700.1710.096BM2A08317.743.240.1910.090BM2A09117.393.880.1510.070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BM2102              | 12.30     | 2.58     | 0.170     | 0.080           |
| BM2A05117.413.400.1430.079BM2A05215.953.180.1410.080BM2A05314.812.230.1900.082BM2A08119.764.560.1570.069BM2A08213.813.700.1710.096BM2A08317.743.240.1910.090BM2A09117.393.880.1510.070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BM2103              | 13 33     | 2.27     | 0.167     | 0.069           |
| BM2A05117.1117.1217.1217.1217.12BM2A05215.953.180.1410.080BM2A05314.812.230.1900.082BM2A08119.764.560.1570.069BM2A08213.813.700.1710.096BM2A08317.743.240.1910.090BM2A09117.393.880.1510.070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BM2A051             | 17.41     | 3.40     | 0.143     | 0.079           |
| BM2A05214.812.230.1900.082BM2A08119.764.560.1570.069BM2A08213.813.700.1710.096BM2A08317.743.240.1910.090BM2A09117.393.880.1510.070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BM2A052             | 15.95     | 3.18     | 0.141     | 0.080           |
| BM2A08119.764.560.1570.069BM2A08213.813.700.1710.096BM2A08317.743.240.1910.090BM2A09117.393.880.1510.070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BM2A053             | 14.81     | 2.23     | 0.190     | 0.082           |
| BM2A082         13.81         3.70         0.171         0.096           BM2A083         17.74         3.24         0.191         0.090           BM2A091         17.39         3.88         0.151         0.070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BM2A081             | 19.76     | 4.56     | 0.157     | 0.069           |
| BM2A083         17.74         3.24         0.191         0.090           BM2A091         17.39         3.88         0.151         0.070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | BM2A082             | 13.81     | 3.70     | 0.171     | 0.096           |
| BM2A091 17.39 3.88 0.151 0.070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BM2A083             | 17.74     | 3.24     | 0.191     | 0.090           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BM2A091             | 17.39     | 3.88     | 0.151     | 0.070           |
| BM2A092 16.31 3.18 0.186 0.086                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BM2A092             | 16.31     | 3.18     | 0.186     | 0.086           |
| BM2A093 15.44 2.44 0.167 0.093                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BM2A093             | 15.44     | 2.44     | 0.167     | 0.093           |
| BM2A101 17.60 3.57 0.152 0.083                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BM2A101             | 17.60     | 3.57     | 0.152     | 0.083           |
| BM2A102 16.11 3.44 0.139 0.086                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BM2A102             | 16.11     | 3.44     | 0.139     | 0.086           |
| BM2A103 14.14 1.86 0.174 0.093                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BM2A103             | 14.14     | 1.86     | 0.174     | 0.093           |

Appendix A, continued. Plant dry matter yield and N concentration - crop 2.

| Sample†                 | Shoot DMY | Root DMY                 | Shoot TKN      | Root TKN                |
|-------------------------|-----------|--------------------------|----------------|-------------------------|
|                         | gra       | ms ————                  | mg N           | l g <sup>-1</sup>       |
| PM0051                  | 3.24      | 0.88                     | 0.239          | 0.051                   |
| PM0052                  | 3.21      | 1.11                     | 0.247          | 0.057                   |
| PM0053                  | 2.06      | 0.82                     | 0.236          | 0.057                   |
| PM0081                  | 2.94      | 1.03                     | 0.184          | 0.053                   |
| PM0082                  | 3.60      | 0.90                     | 0.209          | 0.052                   |
| PM0083                  | 2.88      | 0.59                     | 0.207          | 0.059                   |
| PM0091                  | 3.52      | 1.08                     | 0.207          | 0.055                   |
| PM0092                  | 2.26      | 0.66                     | 0.246          | 0.059                   |
| PM0093                  | 2.10      | 0.60                     | 0.240          | 0.051                   |
| PM0101                  | 3.07      | 1.04                     | 0.271          | 0.051                   |
| PM0102                  | 3.01      | 0.97                     | 0.171          | 0.054                   |
| PM0103                  | 3.06      | 0.97                     | 0.21           | 0.055                   |
| PM1051                  | 14 62     | 3 34                     | 0.231          | 0.001                   |
| PM1052                  | 13 50     | 3 14                     | 0.255          | 0.005                   |
| PM1053                  | 12.32     | 2.48                     | 0.225          | 0.062                   |
| PM1081                  | 18 35     | 4 18                     | 0.249          | 0.001                   |
| PM1082                  | 12 31     | 2 73                     | 0.257          | 0.004                   |
| M1082                   | 15.88     | 3.00                     | 0.202          | 0.005                   |
| M1005                   | 10.78     | 2.00                     | 0.205          | 0.007                   |
| M1091                   | 15.70     | 2.00                     | 0.201          | 0.055                   |
| M1022                   | 0 31      | 1.23                     | 0.242          | 0.074                   |
| M1075                   | 14 50     | 2.80                     | 0.275          | 0.055                   |
| M1101                   | 15.80     | 2.00                     | 0.249          | 0.007                   |
| M1102                   | 10.86     | 1 78                     | 0.200          | 0.074                   |
| 2M2051                  | 10.00     | 1.78<br>A A5             | 0.272          | 0.004                   |
| M2051                   | 14.28     | 2.64                     | 0.245          | 0.090                   |
| M2052                   | 18.04     | 3 21                     | 0.265          | 0.113                   |
| M2095                   | 18.07     | 3.80                     | 0.202          | 0.105                   |
| M2001                   | 15.42     | 2.00                     | 0.245          | 0.075                   |
| M2082                   | 16 38     | 3.20                     | 0.252          | 0.100                   |
| M2005                   | 20.07     | 3.74                     | 0.200          | 0.072                   |
| M2091                   | 15 65     | 2 28                     | 0.209          | 0.075                   |
| M2092                   | 16.00     | 2.20<br>2.48             | 0.277          | 0.078<br>በ 1 <b>ና</b> በ |
| M2075                   | 20.54     | 2.40                     | 0.220          | 0.150                   |
| DM2101                  | 17 15     | 2.05                     | 0.258          | 0.111                   |
| M2102                   | 18.22     | 3.02                     | 0.250          | 0.115                   |
| M2105<br>M2A051         | 17.84     | 3 32                     | 0.201          | 0.055                   |
| M2A051                  | 16 36     | 3 10                     | 0.266          | 0.104                   |
| M2A052                  | 17.22     | 2.13                     | 0.283          | 0.142                   |
| M24095                  | 23.09     | 5 14                     | 0.237          | 0.104                   |
| M2A082                  | 17 76     | 3.17                     | 0.227          | 0.105                   |
| M2A083                  | 18.23     | 3.03                     | 0.209          | 0.107                   |
| M2A003                  | 20.72     | 5.55                     | 0.273          | 0.145                   |
| M74007                  | 16 79     | 2.50<br>2.80             | 0.200          | 0.004<br>A 12A          |
| M74002                  | 17.99     | 2.02                     | 0.414          | 0.134                   |
| νιώς το το<br>Σλίγα 101 | 16.09     | 2.71                     | 0.177          | 0.123                   |
| M2A102                  | 16.56     | 2.24<br>2.84             | 0.200<br>N 166 | 0.00J<br>0.17A          |
| MANIUA                  | 15.00     | 4.0 <del>4</del><br>1.04 | 0.100          | 0.144                   |

Appendix A, continued. Plant dry matter yield and N concentration - crop 2.

| Sample† | Shoot DMY | Root DMY | Shoot TKN | Root TKN |
|---------|-----------|----------|-----------|----------|
|         | gra       | ms       | mg N      | g-1      |
|         |           |          |           |          |
| C0051   | 1.24      | 0.67     | 0.074     | 0.053    |
| C0052   | 0.55      | 0.36     | 0.081     | 0.081    |
| C0053   | 0.32      | 0.24     | 0.077     | 0.104    |
| C0081   | 1.70      | 0.78     | 0.073     | 0.055    |
| C0082   | 1.64      | 0.73     | 0.064     | 0.066    |
| C0083   | 1.66      | 0.45     | 0.073     | 0.053    |
| C0091   | 1.74      | 0.69     | 0.073     | 0.054    |
| C0092   | 1 23      | 0.70     | 0.073     | 0.057    |
| C0093   | 0.57      | 0.38     | 0.064     | 0.070    |
| C0101   | 1 1 2     | 0.58     | 0.059     | 0.063    |
| C0102   | 1.12      | 0.55     | 0.067     | 0.062    |
| C0102   | 0.60      | 0.27     | 0.068     | 0.084    |
| C1051   | 10.00     | 2 55     | 0.000     | 0.053    |
| C1051   | 0.12      | 1.80     | 0.072     | 0.055    |
| C1052   | 9.15      | 0.71     | 0.101     | 0.001    |
| C1033   | 4.24      | 2.80     | 0.125     | 0.105    |
| C1081   | 0.76      | 2.07     | 0.000     | 0.051    |
| C1082   | 9.70      | 2.30     | 0.145     | 0.052    |
| C1083   | 9.05      | 1.09     | 0.115     | 0.001    |
| C1091   | 19.85     | 2.34     | 0.000     | 0.033    |
| C1092   | 9.12      | 2.44     | 0.099     | 0.074    |
| C1093   | 2.51      | 0.40     | 0.104     | 0.110    |
| C1101   | 19.18     | 2.24     | 0.094     | 0.049    |
| C1102   | 3.12      | 0.49     | 0.120     | 0.108    |
| C1103   | 4.13      | 0.78     | 0.146     | 0.095    |
| C2051   | 15.80     | 3.33     | 0.147     | 0.069    |
| C2052   | 13.76     | 2.43     | 0.173     | 0.074    |
| C2053   | 14.06     | 2.19     | 0.193     | 0.075    |
| C2081   | 14.32     | 2.69     | 0.153     | 0.071    |
| C2082   | 12.43     | 2.35     | 0.167     | 0.078    |
| C2083   | 13.69     | 1.99     | 0.185     | 0.075    |
| C2091   | 13.64     | 2.56     | 0.151     | 0.067    |
| C2092   | 14.51     | 2.78     | 0.160     | 0.073    |
| C2093   | 13.26     | 2.26     | 0.172     | 0.077    |
| C2101   | 13.92     | 2.56     | 0.171     | 0.076    |
| C2102   | 12.96     | 3.11     | 0.178     | 0.072    |
| C2103   | 14.31     | 2.17     | 0.162     | 0.073    |
| C2A051  | 16.59     | 2.67     | 0.125     | 0.084    |
| C2A052  | 14.38     | 2.48     | 0.160     | 0.088    |
| C2A053  | 17.53     | 2.97     | 0.178     | 0.083    |
| C2A081  | 18.25     | 3.93     | 0.133     | 0.072    |
| C2A082  | 13.54     | 3.44     | 0.214     | 0.103    |
| C2A083  | 17.84     | 2.81     | 0.187     | 0.077    |
| C2A091  | 1.33      | 0.72     | 0.232     | 0.390    |
| C2A092  | 13.80     | 2.81     | 0.168     | 0.098    |
| C2A093  | 14.61     | 2.25     | 0.182     | 0.102    |
| C2A101  | 17.15     | 2.83     | 0.127     | 0.082    |
| C2A102  | 12.43     | 1.87     | 0.158     | 0.108    |
| C2A103  | 14.19     | 1.98     | 0.207     | 0.099    |

Appendix A, continued. Plant dry matter yield and N concentration - crop 2.

| Sample†                  | Shoot DMY    | Root DMY     | Shoot TKN            | Root TKN       |
|--------------------------|--------------|--------------|----------------------|----------------|
|                          | gra          | ms           | mg N g <sup>-1</sup> |                |
|                          |              |              |                      | ~ ~ ~ ~ ~      |
| PV0051                   | 7.42         | 1.48         | 0.163                | 0.057          |
| PV0052                   | 8.94         | 1.69         | 0.198                | 0.071          |
| PV0053                   | 1.80         | 0.29         | 0.366                | 0.073          |
| PV0081                   | 11.05        | 2.11         | 0.165                | 0.053          |
| PV0082                   | 9.08         | 2.14         | 0.194                | 0.065          |
| PV0083                   | 6.26         | 1.64         | 0.283                | 0.057          |
| PV0091                   | 9.49         | 2.22         | 0.188                | 0.054          |
| PV0092                   | 5.05         | 1.07         | 0.317                | 0.057          |
| PV0093                   | 6.56         | 1.64         | 0.246                | 0.060          |
| PV0101                   | 8.34         | 1.82         | 0.218                | 0.056          |
| PV0102                   | 7.81         | 1.64         | 0.297                | 0.063          |
| PV0103                   | 5.07         | 0.97         | 0.291                | 0.052          |
| PV1051                   | 8.69         | 1.66         | 0.246                | 0.055          |
| PV1052                   | 8.26         | 1.41         | 0.231                | 0.068          |
| PV1053                   | 5.82         | 1.39         | 0.253                | 0.074          |
| PV1081                   | 8.62         | 1.58         | 0.337                | 0.063          |
| PV1082                   | 7.62         | 1.36         | 0.351                | 0.065          |
| PV1083                   | 7.20         | 1.07         | 0.260                | 0.077          |
| PV1091                   | 10.24        | 1.89         | 0.229                | 0.062          |
| PV1092                   | 8.28         | 1.61         | 0.312                | 0.070          |
| PV1093                   | 6.16         | 1.18         | 0.245                | 0.071          |
| PV1101                   | 8.80         | 1.72         | 0.262                | 0.058          |
| PV1102                   | 8.80         | 1.76         | 0.292                | 0.062          |
| PV1103                   | 6.39         | 1.43         | 0.241                | 0.073          |
| PV2051                   | 8.73         | 1.65         | 0.273                | 0.076          |
| PV2052                   | 8.95         | 1.32         | 0.309                | 0.094          |
| PV2053                   | 5.29         | 1.14         | 0.316                | 0.093          |
| PV2081                   | 6.92         | 0.84         | 0.351                | 0.070          |
| PV2082                   | 9.95         | 1.85         | 0.299                | 0.105          |
| PV2083                   | 6.14         | 1.00         | 0.368                | 0.090          |
| PV2091                   | 9.84         | 2.09         | 0.277                | 0.072          |
| PV2092                   | 10.17        | 2.14         | 0.257                | 0.085          |
| PV2093                   | 5.88         | 1.11         | 0.319                | 0.083          |
| PV2101                   | 8.93         | 1.46         | 0.323                | 0.091          |
| PV2102                   | 8.89         | 1.51         | 0.240                | 0.081          |
| PV2103                   | 7.17         | 1.07         | 0.271                | 0.080          |
| PV2A051                  | 9,85         | 1.66         | 0.322                | 0.086          |
| PV2A052                  | 8.40         | 1.51         | 0.288                | 0.103          |
| PV2A053                  | 5.82         | 0.95         | 0.314                | 0.111          |
| PV2A081                  | 8.56         | 1.25         | 0.357                | 0.081          |
| PV2A082                  | 10 23        | 2.10         | 0.354                | 0.122          |
| PV2202                   | 6 90         | 1 20         | 0.317                | 0.104          |
| DV24001                  | 9.67         | 1.20         | 0.328                | 0.078          |
| DV/20021                 | 9.02         | 1 00         | 0.320                | 0.073          |
| L V 473074<br>DV/2 4 002 | 5.22<br>6 13 | 1.37<br>N 0/ | 0.302                | 0.100          |
| F V 223093<br>DV/3 A 101 | 0.45         | 1 /1         | 0.333                | 0.105          |
| E V 2/3101<br>DV2 & 102  | 7.44<br>0.90 | 1.41         | 0.524                | 0.007<br>A 1A2 |
|                          | 7 0 7        | 1.1.1        | VI                   | 0.10.1         |

Appendix A, continued. Plant dry matter yield and N concentration - crop 3.

| Sample† | Shoot DMY | Root DMY | Shoot TKN | Root TKN |
|---------|-----------|----------|-----------|----------|
|         | gra       | ms       | mg N      | g-1      |
|         |           |          |           |          |
| BM0051  | 1.40      | 0.83     | 0.153     | 0.069    |
| BM0052  | 0.46      | 0.68     | 0.102     | 0.072    |
| BM0053  | 0.69      | 0.45     | 0.138     | 0.070    |
| BM0081  | 2.71      | 1.11     | 0.141     | 0.063    |
| BM0082  | 1.02      | 0.66     | 0.105     | 0.079    |
| BM0083  | 1.46      | 0.73     | 0.143     | 0.071    |
| BM0091  | 1.43      | 0.95     | 0.139     | 0.064    |
| BM0092  | 0.31      | 0.65     | 0.124     | 0.071    |
| BM0093  | 0.33      | 0.51     | 0.108     | 0.088    |
| BM0101  | 1.15      | 0.60     | 0.133     | 0.068    |
| BM0102  | 0.75      | 0.82     | 0.109     | 0.071    |
| BM0103  | 0.41      | 0.57     | 0.116     | 0.064    |
| BM1051  | 4.19      | 1.60     | 0.141     | 0.062    |
| BM1052  | 1.40      | 0.54     | 0.147     | 0.064    |
| BM1053  | 2.76      | 0.78     | 0.178     | 0.067    |
| BM1081  | 6.28      | 1.81     | 0.114     | 0.058    |
| BM1082  | 2.51      | 0.93     | 0.194     | 0.060    |
| BM1083  | 4.13      | 1.00     | 0.191     | 0.066    |
| BM1091  | 4.88      | 1.54     | 0.141     | 0.079    |
| BM1092  | 2.70      | 1.06     | 0.183     | 0.061    |
| BM1093  | 4.98      | 1.28     | 0.143     | 0.064    |
| BM1101  | 4.62      | 0.85     | 0.163     | 0.054    |
| BM1102  | 2.57      | 1.21     | 0.152     | 0.066    |
| BM1103  | 4.11      | 1.13     | 0.131     | 0.076    |
| BM2051  | 5.07      | 1.21     | 0.212     | 0.062    |
| BM2052  | 4.62      | 1.30     | 0.163     | 0.066    |
| BM2053  | 5.72      | 1.25     | 0.202     | 0.065    |
| BM2081  | 6.83      | 1.69     | 0.149     | 0.059    |
| BM2082  | 5.00      | 1.22     | 0.182     | 0.065    |
| BM2083  | 3.38      | 0.74     | 0.266     | 0.066    |
| BM2091  | 6.10      | 1.27     | 0.217     | 0.061    |
| BM2092  | 6.72      | 1.96     | 0.174     | 0.079    |
| BM2093  | 3.95      | 0.92     | 0.235     | 0.100    |
| BM2101  | 4.46      | 0.98     | 0.238     | 0.064    |
| BM2102  | 6.41      | 1.96     | 0.187     | 0.080    |
| BM2103  | 5.02      | 1.16     | 0.213     | 0.069    |
| BM2A051 | 7.06      | 1.34     | 0.275     | 0.079    |
| BM2A052 | 7.09      | 1.47     | 0.340     | 0.080    |
| BM2A053 | 7.42      | 1.07     | 0.310     | 0.082    |
| BM2A081 | 8.41      | 1.55     | 0.326     | 0.069    |
| BM2A082 | 6.62      | 1.29     | 0.326     | 0.096    |
| BM2A083 | 6.44      | 1.46     | 0.288     | 0.090    |
| BM2A091 | 8.09      | 1.49     | 0.303     | 0.070    |
| BM2A092 | 7.63      | 1.66     | 0.310     | 0.086    |
| BM2A093 | 7.70      | 1.29     | 0.282     | 0.093    |
| BM2A101 | 7.48      | 1.23     | 0.299     | 0.083    |
| BM2A102 | 6.26      | 1.77     | 0.311     | 0.086    |
| BM2A103 | 7.60      | 1.69     | 0.293     | 0.093    |

Appendix A, continued. Plant dry matter yield and N concentration - crop 3.

| Sample† | Shoot DMY | Root DMY | Shoot TKN | Root TKN        |
|---------|-----------|----------|-----------|-----------------|
|         | gra       | ms       | mg N      | g <sup>-1</sup> |
|         |           |          |           |                 |
| PM0051  | 6.73      | 1.08     | 0.289     | 0.051           |
| PM0052  | 3.53      | 0.69     | 0.292     | 0.057           |
| PM0053  | 6.23      | 1.05     | 0.290     | 0.057           |
| PM0081  | 6.36      | 1.08     | 0.310     | 0.053           |
| PM0082  | 5.44      | 0.85     | 0.327     | 0.052           |
| PM0083  | 0.80      | 0.94     | 0.319     | 0.059           |
| PM0091  | 5.21      | 0.66     | 0.325     | 0.056           |
| PM0092  | 9.05      | 1.58     | 0.304     | 0.059           |
| PM0093  | 6.18      | 0.90     | 0.324     | 0.051           |
| PM0101  | 6.92      | 1.23     | 0.262     | 0.054           |
| PM0102  | 8.01      | 1.58     | 0.319     | 0.053           |
| PM0103  | 5.19      | 1.08     | 0.279     | 0.061           |
| PM1051  | 5.96      | 1.20     | 0.344     | 0.063           |
| PM1052  | 8.23      | 1.80     | 0.310     | 0.082           |
| PM1053  | 6.36      | 0.93     | 0.317     | 0.061           |
| PM1081  | 5.64      | 0.82     | 0.373     | 0.064           |
| PM1082  | 5.14      | 1.10     | 0.324     | 0.063           |
| PM1083  | 7.52      | 1.44     | 0.290     | 0.067           |
| PM1091  | 6.47      | 0.90     | 0.311     | 0.055           |
| PM1092  | 6.74      | 0.99     | 0.301     | 0.074           |
| PM1093  | 8.03      | 1.09     | 0.290     | 0.099           |
| PM1101  | 5.29      | 0.81     | 0.317     | 0.067           |
| PM1102  | 7.77      | 1.92     | 0.247     | 0.074           |
| PM1103  | 7.07      | 1.39     | 0.247     | 0.064           |
| PM2051  | 6.10      | 0.79     | 0.302     | 0.090           |
| PM2052  | 7.41      | 1.47     | 0.309     | 0.118           |
| PM2053  | 6.39      | 1.05     | 0.288     | 0.103           |
| PM2081  | 5.78      | 0.78     | 0.344     | 0.075           |
| PM2082  | 5.56      | 1.17     | 0.354     | 0.106           |
| PM2083  | 6.59      | 1.11     | 0.288     | 0.092           |
| PM2091  | 7.01      | 1.25     | 0.314     | 0.073           |
| PM2092  | 6.03      | 1.11     | 0.305     | 0.078           |
| PM2093  | 5.19      | 0.71     | 0.294     | 0.150           |
| PM2101  | 6.33      | 0.97     | 0.312     | 0.111           |
| PM2102  | 7.68      | 1.50     | 0.328     | 0.113           |
| PM2103  | 6.58      | 1.05     | 0.317     | 0.095           |
| PM2A051 | 5.94      | 0.85     | 0.339     | 0.164           |
| PM2A052 | 7.58      | 1.33     | 0.311     | 0.142           |
| PM2A053 | 6.45      | 1.06     | 0.327     | 0.154           |
| PM2A081 | 7.24      | 1.01     | 0.337     | 0.105           |
| PM2A082 | 7.70      | 1.59     | 0.335     | 0.107           |
| PM2A083 | 7.15      | 1.34     | 0.346     | 0.143           |
| PM2A091 | 6.01      | 0.80     | 0.334     | 0.082           |
| PM2A092 | 5.12      | 0.85     | 0.317     | 0.134           |
| PM2A093 | 6.83      | 0.95     | 0.338     | 0.123           |
| PM2A101 | 6.47      | 1.18     | 0.349     | 0.083           |
| PM2A102 | 6.60      | 1.28     | 0.325     | 0.124           |
| PM2A103 | 6.84      | 1.04     | 0.327     | 0.149           |

Appendix A, continued. Plant dry matter yield and N concentration - crop 3.

| Sample† | Shoot DMY    | Root DMY | Shoot TKN | Root TKN       |
|---------|--------------|----------|-----------|----------------|
|         | gra          | ms       | mg N      | g-1            |
|         |              |          |           |                |
| C0051   | 1.59         | 0.77     | 0.109     | 0.053          |
| C0052   | 1.61         | 0.86     | 0.079     | 0.081          |
| C0053   | 1.42         | 0.71     | 0.097     | 0.104          |
| C0081   | 2.27         | 1.03     | 0.111     | 0.055          |
| C0082   | 1.65         | 0.82     | 0.091     | 0.066          |
| C0083   | 1.65         | 0.87     | 0.086     | 0.053          |
| C0091   | 2.03         | 0.87     | 0.093     | 0.054          |
| C0092   | 1.93         | 0.79     | 0.095     | 0.057          |
| C0092   | 1.55         | 0.70     | 0.024     | 0.070          |
| C0101   | 1.44         | 0.70     | 0.007     | 0.070          |
| C0101   | 0.05         | 0.79     | 0.104     | 0.005          |
| C0102   | 1.50         | 0.40     | 0.082     | 0.002          |
| C0105   | 1.50         | 0.00     | 0.090     | 0.004          |
| C1051   | 4.55         | 1.12     | 0.134     | 0.055          |
| C1052   | 4.08         | 1.20     | 0.120     | 0.001          |
| C1055   | 4./1         | 1.17     | 0.127     | 0.109          |
| C1081   | 4.04         | 1.24     | 0.108     | 0.051          |
| C1082   | 3.29         | 1.41     | 0.111     | 0.052          |
| C1083   | 3.80         | 1.01     | 0.144     | 0.001          |
| C1091   | 3.65         | 0.93     | 0.185     | 0.055          |
| C1092   | 4.95         | 1.39     | 0.132     | 0.074          |
| C1093   | 3.90         | 1.07     | 0.141     | 0.110          |
| C1101   | 4.23         | 0.92     | 0.174     | 0.049          |
| C1102   | 4.18         | 0.99     | 0.118     | 0.108          |
| C1103   | 5.05         | 1.52     | 0.110     | 0.095          |
| C2051   | 4.89         | 1.13     | 0.230     | 0.069          |
| C2052   | 5.62         | 1.59     | 0.171     | 0.074          |
| C2053   | 5.52         | 1.24     | 0.198     | 0.075          |
| C2081   | 4.46         | 0.89     | 0.242     | 0.071          |
| C2082   | 6.41         | 1.91     | 0.155     | 0.078          |
| C2083   | 4.57         | 0.99     | 0.209     | 0.075          |
| C2091   | 4.86         | 1.30     | 0.239     | 0.067          |
| C2092   | 6.23         | 1.54     | 0.177     | 0.073          |
| C2093   | 5.52         | 1.12     | 0.192     | 0.077          |
| C2101   | 5.06         | 1.03     | 0.259     | 0.076          |
| C2102   | 6.13         | 1.51     | 0.171     | 0.072          |
| C2103   | 7.07         | 1.81     | 0.150     | 0.073          |
| C2A051  | 7.08         | 1.37     | 0.364     | 0.084          |
| C2A052  | 8.61         | 1.49     | 0.310     | 0.088          |
| C2A053  | 5.03         | 1.06     | 0.356     | 0.083          |
| C2A081  | 6.80         | 1.50     | 0.295     | 0.072          |
| C2A082  | 8.72         | 1.85     | 0.286     | 0.103          |
| C2A083  | 7.01         | 1.43     | 0.323     | 0.077          |
| C2A091  | 6.52         | 1.53     | 0.330     | 0.390          |
| C2A092  | 7 68         | 1 35     | 0.330     | 0.098          |
| C2A003  | 5 3 2        | 0.03     | 0 367     | 0 102          |
| C2A101  | 5.52<br>6 A2 | 1 11     | 0.367     | 0.102<br>N N27 |
| C2A102  | 6 /1         | 1 27     | 0.202     | 0.002          |
| C2A102  | 7 16         | 1.52     | 0.333     | 0.100          |
| C2A103  | /.10         | 1.77/    | 0.221     | ViV77          |

•

Appendix A, continued. Plant dry matter yield and N concentration - crop 3.

| Sample† | Shoot DMY    | Root DMY | Shoot TKN | Root TKN          |
|---------|--------------|----------|-----------|-------------------|
|         | gra          | ms       | mg N      | [ g <sup>-1</sup> |
|         |              |          |           |                   |
| PV0051  | 3.37         | 0.72     | 0.212     | 0.115             |
| PV0052  | 2.96         | 0.64     | 0.209     | 0.119             |
| PV0053  | 2.76         | 0.48     | 0.392     | 0.213             |
| PV0081  | 2.69         | 0.51     | 0.211     | 0.116             |
| PV0082  | 2.42         | 0.53     | 0.229     | 0.128             |
| PV0083  | 2.29         | 0.54     | 0.252     | 0.132             |
| PV0091  |              | 0.46     | 0.253     | 0.141             |
| PV0092  | 2.08         | 0.39     | 0.260     | 0.121             |
| PV0093  | 3.03         | 0.62     | 0.206     | 0.108             |
| PV0101  | 2.43         | 0.62     | 0.198     | 0.101             |
| PV0102  | 3.03         | 0.61     | 0.240     | 0.119             |
| PV0103  | 2.62         | 0.63     | 0.220     | 0 119             |
| PV1051  | 2.82         | 0.58     | 0.220     | 0.125             |
| PV1052  | 3.07         | 0.23     | 0.197     | 0.110             |
| PV1053  | 2.66         | 0.62     | 0.206     | 0.113             |
| PV1081  | 3.07         | 0.55     | 0.263     | 0.105             |
| PV1082  | 3.07         | 0.55     | 0.239     | 0.134             |
| PV1083  | 2.27         | 0.05     | 0.220     | 0.113             |
| PV1001  | 3.78         | 0.50     | 0.133     | 0.105             |
| PV1002  | 3.10         | 0.07     | 0.227     | 0.100             |
| PV1092  | 2.12         | 0.09     | 0.197     | 0.092             |
| PV1101  | 2.52         | 0.49     | 0.200     | 0.118             |
| PV1101  | 2.01         | 0.47     | 0.290     | 0.138             |
| PV1102  | 2.99         | 0.63     | 0.227     | 0.115             |
| PV1103  | 3.38<br>3.50 | 0.36     | 0.201     | 0.102             |
| PV2051  | 3.52         | 0.49     | 0.348     | 0.108             |
| PV2052  | 3.11         | 0.58     | 0.227     | 0.115             |
| PV2053  | 3.22         | 0.50     | 0.363     | 0.179             |
| PV2081  | 3.37         | 0.49     | 0.381     | 0.202             |
| PV2082  | 2.49         | 0.36     | 0.210     | 0.124             |
| PV2083  | 3.21         | 0.57     | 0.353     | 0.198             |
| PV2091  | 2.58         | 0.56     | 0.226     | 0.109             |
| PV2092  | 2.65         | 0.51     | 0.198     | 0.093             |
| PV2093  | 2.34         | 0.39     | 0.352     | 0.174             |
| PV2101  | 2.94         | 0.55     | 0.266     | 0.132             |
| PV2102  | 3.19         | 0.63     | 0.265     | 0.129             |
| PV2103  | 2.32         | 0.33     | 0.389     | 0.209             |
| PV2A051 | 2.12         | 0.36     | 0.455     | 0.250             |
| PV2A052 | 3.92         | 0.55     | 0.445     | 0.240             |
| PV2A053 | 2.88         | 0.47     | 0.421     | 0.268             |
| PV2A081 | 3.72         | 0.55     | 0.439     | 0.262             |
| PV2A082 | .3.17        | 0.50     | 0.428     | 0.282             |
| PV2A083 | 3.31         | 0.54     | 0.420     | 0.290             |
| PV2A091 | 3.80         | 0.65     | 0.427     | 0.252             |
| PV2A092 | 3.81         | 0.65     | 0.425     | 0.260             |
| PV2A093 | 2.87         | 0.47     | 0.413     | 0.243             |
| PV2A101 | 3.05         | 0.49     | 0.426     | 0.234             |
| PV2A102 | 3.05         | 0.47     | 0.437     | 0.288             |
| PV2A103 | 3.42         | 0.58     | 0.433     | 0.263             |

Appendix A, continued. Plant dry matter yield and N concentration - crop 4.

| Sample†            | Shoot DMY    | Root DMY | Shoot TKN              | Root TKN          |
|--------------------|--------------|----------|------------------------|-------------------|
|                    | gra          | ms ———   | mg N                   | l g <sup>-1</sup> |
| -                  |              | 0.40     | 0.1.45                 | 0.000             |
| BM0051             | 0.53         | 0.40     | 0.145                  | 0.098             |
| BM0052             | 0.23         | 0.38     | 0.153                  | 0.078             |
| BM0053             | 0.41         | 0.32     | 0.173                  | 0.083             |
| BM0081             | -            | 0.46     | 0.181                  | 0.248             |
| BM0082             | 0.07         | 0.35     | 0.155                  | 0.103             |
| BM0083             | 0.03         | 0.29     | 0.175                  | 0.106             |
| BM0091             | 0.65         | 0.50     | 0.166                  | 0.096             |
| BM0092             | 0.05         | 0.22     | 0.202                  | 0.100             |
| BM0093             | 0.19         | 0.34     | 0.151                  | 0.076             |
| BM0101             | 0.37         | 0.39     | 0.165                  | 0.087             |
| BM0102             | 0.19         | 0.30     | 0.174                  | 0.092             |
| BM0103             | 0.76         | 0.43     | 0.147                  | 0.087             |
| BM1051             | 0.59         | 0.24     | 0.152                  | 0.090             |
| BM1052             | 0.37         | 0.39     | 0.153                  | 0.077             |
| BM1053             | 1.37         | 0.53     | 0.150                  | 0.094             |
| BM1081             | 0.65         | 0.29     | 0.160                  | 0.100             |
| BM1082             | 0.93         | 0.57     | 0.146                  | 0.083             |
| BM1083             | 0.30         | 0.58     | 0.148                  | 0.087             |
| BM1091             | 0.21         | 0.38     | 0.175                  | 0.111             |
| BM1092             | 0.99         | 0.53     | 0.146                  | 0.092             |
| BM1093             | 0.45         | 0.36     | 0.148                  | 0.092             |
| BM1101             | 0.30         | 0.40     | 0.151                  | 0.091             |
| BM1102             | 0.26         | 0.66     | 0.147                  | 0.088             |
| BM1103             | 1.07         | 0.38     | 0.152                  | 0.082             |
| BM2051             | 1.61         | 0.41     | 0.141                  | 0.090             |
| BM2052             | 1.08         | 0.47     | 0.148                  | 0.095             |
| BM2053             | 0.59         | 0.46     | 0.132                  | 0.101             |
| BM2081             | 1.20         | 0.55     | 0.149                  | 0.091             |
| BM2082             | 2.75         | 0.47     | 0.129                  | 0.098             |
| BM2083             | 2.23         | 0.64     | 0.182                  | 0.106             |
| BM2091             | •            | 0.24     | 0.185                  | 0.115             |
| BM2092             | 0.76         | 0.42     | 0.131                  | 0.088             |
| BM2093             | 1.36         | 0.56     | 0.131                  | 0.097             |
| BM2101             | 1.84         | 0.57     | 0.152                  | 0.095             |
| BM2102             | 1.75         | 0.53     | 0.148                  | 0.088             |
| BM2103             | 2.16         | 0.74     | 0.128                  | 0.093             |
| BM2A051            | 2.76         | 0.62     | 0.406                  | 0.084             |
| BM2A052            | 4.04         | 0.70     | 0.391                  | 0.192             |
| BM2A053            | 3.62         | 0.59     | 0.413                  | 0.214             |
| BM2A081            | 2.59         | 0.50     | 0.403                  | 0.263             |
| RM2A082            | 3.36         | 0.52     | 0.395                  | 0.212             |
| RM24083            | 2 98         | 0.50     | 0.350                  | 0.250             |
| RM74001            | 3 01         | 0.26     | 0.418                  | 0.258             |
| BM7A007            | 3.79         | 0.40     | 0.401                  | 0.223             |
| DIVI20072          | 3.10         | 0.55     | 0 208                  | 0.235             |
| DIVI20000          | 3.32         | 0.52     | 0.570                  | 0.235             |
|                    | 3.12<br>2.06 | 0.30     | 0.722<br>በ <u>4</u> 20 | 0.271             |
| DIVIZATUZ          | J.UO         | 0.47     | 0.420                  | 0.217             |
| 3M2A102<br>3M2A103 | 3.00<br>3.45 | 0.62     | 0.409                  | 0.219             |

Appendix A, continued. Plant dry matter yield and N concentration - crop 4.

| Sample† | Shoot DMY | Root DMY | Shoot TKN | Root TKN        |
|---------|-----------|----------|-----------|-----------------|
|         | gra       | ms       | mg N      | g <sup>-1</sup> |
|         |           | ,        |           |                 |
| PM0051  | 3.53      | 0.62     | 0.356     | 0.173           |
| PM0052  | 3.55      | 0.49     | 0.388     | 0.196           |
| PM0053  | 2.71      | 0.39     | 0.367     | 0.217           |
| PM0081  | 3.90      | 0.72     | 0.341     | 0.185           |
| PM0082  | 3.35      | 0.54     | 0.376     | 0.196           |
| PM0083  | 2.96      | 0.40     | 0.397     | 0.209           |
| PM0091  | •         | 0.38     | 0.389     | 0.228           |
| PM0092  | 3.16      | 0.73     | 0.229     | 0.136           |
| PM0093  | 2.53      | 0.29     | 0.381     | 0.208           |
| PM0101  | 3.00      | 0.48     | 0.325     | 0.172           |
| PM0102  | 2.97      | 0.64     | 0.214     | 0.285           |
| PM0103  | 3.47      | 0.47     | 0.371     | 0.209           |
| PM1051  | 3.62      | 0.56     | 0.386     | 0.232           |
| PM1052  | 2.81      | 0.51     | 0.388     | 0.225           |
| PM1053  | 2.95      | 0.51     | 0.379     | 0.174           |
| PM1081  | 2.08      | 0.43     | 0.397     | 0.250           |
| PM1082  | 2.85      | 0.38     | 0.390     | 0.247           |
| PM1083  | 3.47      | 0.51     | 0.373     | 0.221           |
| PM1091  | 3.66      | 0.54     | 0.402     | 0.191           |
| PM1092  | 2.81      | 0.56     | 0.389     | 0.225           |
| PM1093  | 3.57      | 0.41     | 0.353     | 0.179           |
| PM1101  | 3.09      | 0.46     | 0.370     | 0.236           |
| PM1102  | 3.05      | 0.75     | 0.351     | 0.207           |
| PM1103  | 3.35      | 0.41     | 0.326     | 0.156           |
| PM2051  | 1.79      | 0.45     | 0.403     | 0.241           |
| PM2052  | 3.97      | 0.60     | 0.383     | 0.213           |
| PM2053  | 3.09      | 0.38     | 0.405     | 0.226           |
| PM2081  | •         | 0.40     | 0.424     | 0.285           |
| PM2082  | 3.40      | 0.57     | 0.398     | 0.239           |
| PM2083  | 2.68      | 0.37     | 0.390     | 0.256           |
| PM2091  | 2.83      | 0.51     | 0.395     | 0.246           |
| PM2092  | 1.98      | 0.41     | 0.382     | 0.240           |
| PM2093  | 3.26      | 0.44     | 0.401     | 0.225           |
| PM2101  | 3.43      | 0.57     | 0.387     | 0.207           |
| PM2102  | 3.75      | 0.51     | 0.379     | 0.193           |
| PM2102  | 2.76      | 0.39     | 0.388     | 0.200           |
| PM2A051 | 1.82      | 0.38     | 0.435     | 0.275           |
| PM2A052 | 3.46      | 0.53     | 0.394     | 0.253           |
| PM2A053 | 2.82      | 0.46     | 0.451     | 0.272           |
| PM2A081 | 2.73      | 0.46     | 0.413     | 0.279           |
| PM2A082 | 2.81      | 0.51     | 0.402     | 0.293           |
| PM2A083 | 2.85      | 0.49     | 0.407     | 0.268           |
| PM2A091 | 2.76      | 0.52     | 0.414     | 0.293           |
| PM2A092 | 2.20      | 0.48     | 0.395     | 0.293           |
| PM2A093 | 2.40      | 0.44     | 0.410     | 0.273           |
| PM2A101 | 2.79      | 0.52     | 0.393     | 0.266           |
| PM2A102 | 2,96      | 0.71     | 0.376     | 0.118           |
| PM2A103 | 2.21      | 0.35     | 0.381     | 0.294           |

٠

.

-

Appendix A, continued. Plant dry matter yield and N concentration - crop 4.

| Sample† | Shoot DMY | Root DMY | Shoot TKN | Root TKN |  |
|---------|-----------|----------|-----------|----------|--|
|         | gra       | ms       | mg N      | g-1      |  |
|         |           |          |           |          |  |
| C0051   | 0.46      | 0.32     | 0.122     | 0.083    |  |
| C0052   | 1.65      | 0.42     | 0.126     | 0.089    |  |
| C0053   | 0.37      | 0.38     | 0.133     | 0.081    |  |
| C0081   | 0.56      | 0.39     | 0.140     | 0.091    |  |
| C0082   | 0.52      | 0.33     | 0.143     | 0.094    |  |
| C0083   | 0.59      | 0.35     | 0.127     | 0.082    |  |
| C0091   | 0.57      | 0.34     | 0.150     | 0.088    |  |
| C0092   | 0.25      | 0.32     | 0.139     | 0.082    |  |
| C0093   | 2.81      | 0.36     | 0.119     | 0.074    |  |
| C0101   | 0.52      | 0.38     | 0.130     | 0.083    |  |
| C0102   | 0.73      | 0.32     | 0.124     | 0.099    |  |
| C0102   | 0.72      | 0.41     | 0.118     | 0.071    |  |
| C1051   | 0.72      | 0.25     | 0.110     | 0.118    |  |
| C1052   | 0.42      | 0.45     | 0.109     | 0.074    |  |
| C1052   | 0.00      | 0.36     | 0.114     | 0.078    |  |
| C1033   | 0.95      | 0.50     | 0.142     | 0.076    |  |
| C1081   | 0.01      | 0.70     | 0.140     | 0.085    |  |
| C1082   | 0.09      | 0.47     | 0.145     | 0.085    |  |
| C1085   | 0.90      | 0.42     | 0.155     | 0.077    |  |
| C1091   | 0.75      | 0.30     | 0.133     | 0.093    |  |
| C1092   | 1.97      | 0.48     | 0.124     | 0.070    |  |
| C1093   | 0.90      | 0.51     | 0.130     | 0.080    |  |
| C1101   | 0.57      | 0.35     | 0.137     | 0.085    |  |
| C1102   | 1.35      | 0.38     | 0.140     | 0.072    |  |
| C1103   | 0.95      | 0.35     | 0.138     | 0.078    |  |
| C2051   | 1.47      | 0.51     | 0.153     | 0.096    |  |
| C2052   | 0.79      | 0.47     | 0.134     | 0.088    |  |
| C2053   | 0.90      | 0.50     | 0.139     | 0.084    |  |
| C2081   | 1.58      | 0.58     | 0.176     | 0.100    |  |
| C2082   | 1.42      | 0.54     | 0.130     | 0.088    |  |
| C2083   | 1.24      | 0.53     | 0.153     | 0.091    |  |
| C2091   | 1.61      | 0.57     | 0.153     | 0.099    |  |
| C2092   | 0.94      | 0.33     | 0.129     | 0.082    |  |
| C2093   | 1.43      | 0.43     | 0.141     | 0.079    |  |
| C2101   | 1.22      | 0.51     | 0.178     | 0.099    |  |
| C2102   | 0.83      | 0.40     | 0.141     | 0.081    |  |
| C2103   | 1.01      | 0.38     | 0.140     | 0.075    |  |
| C2A051  | 2.82      | 0.50     | 0.384     | 0.217    |  |
| C2A052  | 3.49      | 0.48     | 0.411     | 0.256    |  |
| C2A053  | 1.30      | 0.24     | 0.395     | 0.288    |  |
| C2A081  | 4.83      | 0.57     | 0.424     | 0.259    |  |
| C2A082  | 3.65      | 0.54     | 0.420     | 0.247    |  |
| C2A083  | 3.91      | 0.59     | 0.405     | 0.225    |  |
| C2A091  | 1.98      | 0.31     | 0.420     | 0.303    |  |
| C2A092  | 3.62      | 0.57     | 0.439     | 0.205    |  |
| C2A093  | 2.37      | 0.42     | 0.400     | 0.253    |  |
| C2A101  | 1.79      | 0.42     | 0.460     | 0.265    |  |
| C2A102  | 3 38      | 0.57     | 0.431     | 0.231    |  |
| C2A103  | 3 47      | 0.44     | 0.420     | 0.247    |  |

Appendix A, continued. Plant dry matter yield and N concentration - crop 4.

† Sample identification example:



| Sample†         | protease‡ | β-glucosidase§ | histidase¶ | respiration# | biomass C†† | biomass N‡‡ |
|-----------------|-----------|----------------|------------|--------------|-------------|-------------|
| <b>DV</b> /0051 | 27        | 215            | 157        | 100          | 502         | 61          |
| PV0051          | 2.7       | 215            | 157        | 190          | 502         | 01<br>56    |
| PV0052          | 1.5       | 514            | 1/3        | 152          | 453         | <b>30</b>   |
| PV0055          | 1.5       | 580<br>216     | 200        | 158          | 434         | 70          |
| PV1051          | 2.0       | 310<br>270     | 1/1        | 205          | 200         | 13          |
| PV1052          | 2.1       | 5/5<br>070     | 194        | 130          | 399         | 00<br>70    |
| FV1055          | 1.5       | 270            | 109        | 174          | 400         | 77<br>PT    |
| PV2051          | 2.0       | 271            | 110        | 114          | 512         | 66          |
| PV2052          | 1.0       | 571            | 165        | 134          | J41<br>440  | 79          |
| PV200051        | 2.1       | 031            | 154        | 133          | 440<br>576  | 70          |
| PV2A051         | 2.0       | 204<br>A16     | 178        | 128          | 387         | 70          |
| PV2A053         | 1.5       | 410            | 248        | 110          | 582<br>454  | - 76        |
| PV0081          | 24        | 433            | 138        | 139          | 436         | 86          |
| PV0082          | 1.4       | 512            | 171        | 170          | 552         | 93          |
| PV0083          | 1.0       | 512            | 185        | 187          | 474         | 92          |
| PV1081          | 2.5       | 330            | 115        | 120          | 537         | 91          |
| PV1082          | 1.7       | 536            | 173        | 163          | 492         | 86          |
| PV1083          | 1.7       | 488            | 193        | 210          | 522         | 96          |
| PV2081          | 2.3       | 423            | 120        | 148          | -           | 101         |
| PV2082          | 2.7       | -              | 221        | 172          | 593         | 91          |
| PV2083          | 1.2       | -              | 200        | 150          | 431         | 100         |
| PV2A081         | 2.6       | 471            | 157        | 198          | 582         | 97          |
| PV2A082         | 2.3       | 381            | 198        | 156          | 515         | 73          |
| PV2A083         | 2.3       | 182            | 188        | 147          | 570         | 86          |
| PV0091          | 2.0       | 399            | 148        | 110          | 419         | 77          |
| PV0092          | 2.3       | 417            | 192        | 141          | 557         | 80          |
| PV0093          | 1.1       | 467            | 179        | 120          | 476         | 70          |
| PV1091          | 2.8       | 382            | 164        | 130          | -           | 82          |
| PV1092          | 2.6       | 385            | 200        | 125          | 479         | 82          |
| PV1093          | 1.6       | -              | 185        | 160          | 561         | -           |
| PV2091          | 2.6       | 458            | 175        | 127          | 571         | 85          |
| PV2092          | 2.0       | 508            | 224        | 120          | 547         | 68          |
| PV2093          | 1.3       | 173            | 175        | 102          | 422         | 77          |
| PV2A091         | 2.5       | 346            | 132        | 130          | 564         | 87          |
| PV2A092         | 1.8       | 448            | 210        | 117          | 572         | 75          |
| PV2A093         | 1.6       | 279            | 178        | 139          | 483         | 81          |
| PV0101          | 2.1       | 469            | 149        | 152          | 459         | 70          |
| PV0102          | 2.2       | 419            | 178        | 222          | 536         | 85          |
| PV0103          | 1.4       | 550            | 173        | 178          | 515         | 84          |
| PV1101          | 1.6       | 458            | 185        | 161          | 616         | 74          |
| PV1102          | 2.2       | 429            | 195        | 157          | 458         | 74          |
| PV1103          | 1.3       | 421            | 189        | 173          | 461         | 90          |
| PV2101          | 2.1       | 399            | 151        | 108          | 450         | 75          |
| PV2102          | 1.7       | 483            | 186        | 220          | 554         | 74          |
| PV2103          | 1.8       | 335            | 192        | 143          | 464         | 83          |
| PV2A101         | 2.4       | 382            | 175        | 155          | 585         | 73          |
| PV2A102         | 1.6       | 580            | 178        | 128          | 437         | 68          |
| PV2A103         | 1.4       | -              | 178        | 157          | 473         | 76          |

Appendix B. Biological Parameters - 87 day sampling.

| Sample† | protease‡ | β-glucosidase§ | histidase¶ | respiration# | biomass C†† | biomass N‡‡ |
|---------|-----------|----------------|------------|--------------|-------------|-------------|
|         |           |                |            |              |             |             |
| BM0051  | 0.6       | 169            | 60         | -            | 148         | 29          |
| BM0052  | 1.0       | 437            | 63         | 71           | 177         | 23          |
| BM0053  | 0.5       | 469            | 93         | 95           | 146         | 33          |
| BM1051  | 0.9       | 222            | 71         | 90           | 219         | 36          |
| BM1052  | 0.7       | 460            | 69         | 97           | 181         | 23          |
| BM1053  | 0.5       | 338            | 88         | 117          | 205         | 30          |
| BM2051  | 0.7       | 311            | 65         | 83           | 171         | 28          |
| BM2052  | 0.6       | 400            | 69         | 69           | 152         | 21          |
| BM2053  | 0.9       | 323            | 117        | 87           | 162         | 32          |
| BM2A051 | 0.5       | 319            | 92         | 81           | 269         | 27          |
| BM2A052 | 0.5       | 281            | 73         | 87           | 178         | 28          |
| BM2A053 | 0.6       | 387            | 86         | 126          | 157         | 32          |
| BM0081  | 0.8       | 374            | 96         | 60           | 249         | 44          |
| BM0082  | 0.7       | 622            | 80         | 102          | 275         | 41          |
| BM0083  | 0.4       | 370            | 125        | 81           | 183         | 37          |
| BM1081  | 0.8       | 354            | 104        | 82           | 288         | 42          |
| BM1082  | 0.7       | 460            | 76         | 75           | 287         | 49          |
| BM1083  | 0.6       | 495            | 113        | 97           | 279         | 46          |
| BM2081  | 0.9       | 259            | 86         | 68           | 272         | 48          |
| BM2082  | 0.8       | 391            | 81         | 99           | 337         | 42          |
| BM2083  | 0.5       | 402            | 94         | 80           | 281         | -           |
| BM2A081 | 0.6       | 266            | 91         | 80           | 258         | 45          |
| BM2A082 | 0.8       | 369            | 90         | 102          | 296         | 37          |
| BM2A083 | 0.6       | 340            | 101        | 104          | 235         | 40          |
| BM0091  | 0.7       | 321            | 99         | 63           | 182         | 39          |
| BM0092  | 0.4       | 356            | 95         | 91           | 191         | 33          |
| BM0093  | 0.4       | 319            | 102        | 95           | 271         | 35          |
| BM1091  | 0.8       | 326            | 97         | 113          | 274         | 38          |
| BM1092  | 0.4       | 473            | 81         | 62           | 279         | 34          |
| BM1093  | 0.5       | 416            | 103        | 99           | 232         | 36          |
| BM2091  | 0.7       | 289            | 101        | 59           | 186         | -           |
| BM2092  | 0.8       | 387            | 91         | 134          | -           | 40          |
| BM2093  | 0.6       | 434            | 101        | 84           | 187         | 35          |
| BM2A091 | 0.7       | 211            | 88         | 79           | 221         | 32          |
| BM2A092 | 0.8       | 465            | 102        | 62           | 153         | 38          |
| BM2A093 | 0.4       | 302            | 115        | 70           | 199         | 35          |
| BM0101  | 0.6       | 157            | 55         | 54           | 123         | 25          |
| BM0102  | 0.8       | 175            | 58         | 111          | -           | 29          |
| BM0103  | 0.3       | 233            | 78         | 103          | 169         | 31          |
| BM1101  | 0.8       | 209            | 68         | 83           | 236         | 29          |
| BM1102  | 0.6       | 327            | 55         | 111          | 176         | 27          |
| BM1103  | 0.4       | 179            | 91         | 250          | 202         | 29          |
| BM2101  | 0.6       | 265            | 70         | 42           | 144         | 27          |
| BM2102  | 0.7       | 356            | 56         | 77           | 208         | 37          |
| BM2103  | 0.4       |                | 75         | 125          | 154         | 31          |
| BM2A101 | 0.6       | 253            | 61         | 73           | 184         | 29          |
| BM2A102 | 0.7       | 211            | 61         | 52           | 148         | 34          |
| BM2A103 | 0.5       | -              | 78         | 110          | 238         | 32          |

Appendix B, continued. Biological Parameters - 87 day sampling.

| Sample† | protease‡ | β-glucosidase§ | histidase¶ | respiration# | biomass C†† | biomass N‡‡ |
|---------|-----------|----------------|------------|--------------|-------------|-------------|
|         |           |                |            |              |             |             |
| PM0051  | 0.6       | 309            | 109        | 41           | 122         | 19          |
| PM0052  | 0.2       | 254            | 83         | 57           | 132         | 19          |
| PM0053  | 0.3       | 283            | 80         | 47           | 163         | 20          |
| PM1051  | 0.2       | 361            | 98         | 47           | 144         | 20          |
| PM1052  | 0.4       | 303            | 101        | 63           | 113         | 23          |
| PM1053  | 0.3       | 437            | 79         | 43           | 109         | 17          |
| PM2051  | 0.4       | 431            | 84         | 55           | 124         | 24          |
| PM2052  | 0.6       | 316            | 109        | 60           | 169         | 13          |
| PM2053  | 0.2       | 238            | 69         | 30           | 114         | 18          |
| PM2A051 | 0.2       | 322            | 80         | 61           | 126         | 20          |
| PM2A052 | 0.5       | 305            | 100        | 44           | 108         | 17          |
| PM2A053 | 0.2       | 255            | 81         | 46           | 125         | 11          |
| PM0081  | 0.7       | 615            | 113        | 37           | 193         | 44          |
| PM0082  | 0.9       | 615            | 96         | 71           | 207         | 37          |
| PM0083  | 0.3       | 473            | 79         | 39           | 249         | 38          |
| PM1081  | 0.6       | 613            | 144        | 41           | 270         | 38          |
| PM1082  | 0.7       | 328            | 88         | 47           | 176         | 32          |
| PM1083  | 0.4       | 601            | 119        | 46           | 206         | 41          |
| PM2081  | 0.7       | 495            | 103        | 39           | 158         | 40          |
| PM2082  | 0.8       | 489            | 99         | 60           | 270         | 33          |
| PM2083  | 0.4       | 571            | 121        | 33           | 208         | 41          |
| PM2A081 | 0.7       | 419            | 109        | 52           | 279         | 41          |
| PM2A082 | 1.0       | 411            | 101        | 73           | 266         | 29          |
| PM2A083 | 0.4       | 448            | 117        | 47           | 180         | 43          |
| PM0091  | 0.6       | 572            | 162        | 30           | 174         | 29          |
| PM0092  | 0.4       | 427            | 170        | 73           | 148         | 24          |
| PM0093  | 0.5       | 583            | 132        | 54           | 218         | 24          |
| PM1091  | 0.5       | 619            | 186        | 47           | 162         | 35          |
| PM1092  | 0.2       | 360            | 120        | 33           | 138         | 31          |
| PM1093  | 0.3       | 555            | 171        | 49           | 154         | 23          |
| PM2091  | 0.4       | 553            | 150        | 38           | 127         | 25          |
| PM2092  | 0.6       | 308            | 158        | 40           | 169         | 28          |
| PM2093  | 0.4       | 505            | 141        | 60           | 259         | 23          |
| PM2A091 | 0.5       | 631            | 175        | 58           | 114         | 27          |
| PM2A092 | 0.7       | 608            | 190        | 56           | 135         | 23          |
| PM2A093 | 0.3       | 412            | 138        | 35           | 149         | 27          |
| PM0101  | 0.3       | 262            | 104        | 25           | 106         | -           |
| PM0102  | -         | 491            | 84         | 30           | -           | 15          |
| PM0103  | 0.2       | 401            | 109        | 51           | 164         | 22          |
| PM1101  | 0.3       | 348            | 117        | 47           | 157         | 24          |
| PM1102  | 0.6       | 439            | 99         | 52           | 158         | -           |
| PM1103  | 0.3       | 486            | 103        | 50           | 148         | 21          |
| PM2101  | 0.3       | 395            | 104        | 25           | 110         | 20          |
| PM2102  | 0.7       | 273            | 101        | 23           | 145         | 18          |
| PM2103  | 0.3       | 383            | 89         | 39           | 142         | 21          |
| PM2A101 | 0.3       | 365            | 95         | 51           | 153         | 32          |
| PM2A102 | 0.6       | 291            | 100        | 35           | 129         | 23          |
| PM2A103 | 0.2       | 258            | 83         | 35           | 154         | 18          |

Appendix B, continued. Biological Parameters - 87 day sampling.
| Sample† | protease‡ | β-glucosidase§ | histidase¶ | respiration# | biomass C†† | biomass N‡‡ |
|---------|-----------|----------------|------------|--------------|-------------|-------------|
|         |           |                |            |              |             |             |
| C0051   | 0.2       | 140            | 52         | 18           | 61          | 14          |
| C0052   | 0.3       | 138            | 52         | 25           | 59          | 15          |
| C0053   | 0.2       | 374            | 58         | 28           | 108         | 15          |
| C1051   | 0.2       | 129            | 53         | 21           | 80          | 14          |
| C1052   | 0.2       | 178            | 48         | 17           | 46          | 12          |
| C1053   | 0.2       | 356            | 62         | 37           | 99          | 11          |
| C2051   | 0.2       | 121            | 47         | 21           | 65          | 13          |
| C2052   | 0.5       | 194            | 51         | 34           | 41          | 5           |
| C2053   | 0.2       | 383            | 52         | 26           | 100         | 13          |
| C2A051  | 0.2       | 139            | 48         | 29           | 104         | 15          |
| C2A052  | 0.2       | 136            | 49         | 19           | 51          | 7           |
| C2A053  | 0.1       | 366            | 54         | 33           | 64          | 12          |
| C0081   | 0.5       | 207            | 88         | 25           | 135         | 30          |
| C0082   | 0.8       | 280            | 69         | 44           | 178         | 28          |
| C0083   | 0.6       | 420            | 83         | 40           | 117         | 27          |
| C1081   | 0.3       | 163            | 75         | 34           | 172         | 28          |
| C1082   | 0.6       | 336            | 71         | 45           | 124         | 27          |
| C1083   | 0.5       | 317            | 79         | 30           | 159         | 34          |
| C2081   | 0.4       | 185            | 76         | 22           | 148         | 29          |
| C2082   | 0.5       | 182            | 73         | 33           | 143         | 25          |
| C2083   | 0.6       | 520            | 81         | 38           | 166         | 31          |
| C2A081  | 0.5       | 160            | 76         | 38           | -           | 30          |
| C2A082  | 0.7       | 158            | 75         | 32           | 127         | 25          |
| C2A083  | 0.7       | 308            | 79         | 32           | 126         | 2           |
| C0001   | 0.0       | 187            | 76         | 25           | 118         | 10          |
| C0097   | 0.5       | 251            | 70         | 58           | 118         | 14          |
| C0092   | 0.5       | 201            | 60         | 17           | 82          | 22          |
| C1093   | 0.5       | 158            | 70         | 25           | 130         | 24          |
| C1091   | 0.5       | 156            | 75         | 25           | 150         | 24<br>19    |
| C1092   | 0.4       | 200            | 106        | 53           | 106         | 10          |
| C1093   | 0.5       | 400            | 100        | J4<br>43     | 110         | 20          |
| C2091   | 0.1       | 190            | 85<br>70   | 43           | 70          | 20          |
| C2092   | 0.4       | 100            | 19<br>76   | 10           | 79<br>80    | 15          |
| C2093   | 0.2       | 278            | /0         | <i>3</i> 0   | 82          | 24          |
| C2A091  | 0.2       | 217            | 80         | 20           | 120         | 23          |
| C2A092  | 0.5       | 206            | 82         | 20           | 149         | 21          |
| C2A093  | 0.4       | 332            | 70         | 29           | 102         | 16          |
| C0101   | 0.1       | 143            | 48         | 21           | 48          | 14          |
| C0102   | 0.2       | 186            | 49         | 11           | 64          | 22          |
| C0103   | 0.4       | 388            | 61         | 23           | 131         | 14          |
| C1101   | 0.2       | 111            | 45         | 17           | 84          | 15          |
| C1102   | 0.3       | 147            | 47         | 23           | 81          | 16          |
| C1103   | 0.2       | 241            | 59         | 18           | 75          | 15          |
| C2101   | 0.2       | 145            | 50         | 18           | 58          | 14          |
| C2102   | 0.2       | 106            | 46         | 15           | 54          | 17          |
| C2103   | 0.2       | 327            | 55         | 14           | 60          | 14          |
| C2A101  | 0.2       | 92             | 52         | 14           | 74          | 15          |
| C2A102  | 0.2       | 155            | 49         | 24           | 78          | 13          |
| C2A103  | 0.2       | 409            | 62         | 27           | 82          | 15          |

Appendix B, continued. Biological Parameters - 87 day sampling.

•

| Sample† | protease‡ | β-glucosidase§ | histidase¶ | respiration# | biomass C†† | biomass N‡‡ |
|---------|-----------|----------------|------------|--------------|-------------|-------------|
|         |           |                |            |              |             |             |
| PV0051  | 1.6       | 363            | 133        | 72           | 288         | 37          |
| PV0052  | 1.0       | 187            | 117        | 91           | 294         | 50          |
| PV0053  | 0.9       | 397            | 140        | 69           | <b>194</b>  | 41          |
| PV1051  | 1.4       | 448            | 154        | 95           | 271         | 37          |
| PV1052  | -         | -              | -          | -            | -           | -           |
| PV1053  | -         | -              | 136        | -            | -           | -           |
| PV2051  | 1.4       | 420            | 188        | 87           | 296         | 35          |
| PV2052  | 1.3       | 120            | 133        | 82           | 323         | 39          |
| PV2053  | 0.9       | 278            | 189        | 46           | 167         | 25          |
| PV2A051 | 0.8       | 305            | 148        | 81           | 322         | 31          |
| PV2A052 | 1.0       | 187            | 119        | 70           | 284         | 33          |
| PV2A053 | 0.6       | 308            | 152        | 67           | 182         | 25          |
| PV0081  | 1.5       | 319            | 140        | 75           | 359         | 58          |
| PV0082  | 1.4       | 205            | 116        | 97           | 384         | 60          |
| PV0083  | 1.1       | 261            | 124        | 78           | 258         | 56          |
| PV1081  | 2.0       | 423            | 152        | 87           | 376         | 63          |
| PV1082  | 1.5       | 146            | 153        | 103          | 371         | 49          |
| PV1083  | 0.8       | 288            | 122        | 77           | 318         | 58          |
| PV2081  | 1.1       | 495            | 159        | 73           | 384         | 58          |
| PV2082  | 1.1       | 302            | 152        | -            | 379         | 57          |
| PV2083  | 1.2       | 435            | 138        | 57           | 306         | 55          |
| PV2A081 | 1.7       | 420            | 187        | 80           | 358         | 52          |
| PV2A082 | 1.3       | 223            | 149        | 54           | 273         | 36          |
| PV2A083 | 0.8       | 343            | 145        | 37           | 257         | -           |
| PV0091  | 1.4       | 485            | 159        | 78           | 361         | 60          |
| PV0092  | 0.7       | 307            | 152        | 59           | 357         | 60          |
| PV0093  | 1.1       | 370            | 180        | 59           | 279         | -           |
| PV1091  | 1.4       | 448            | 161        | 85           | 386         | 55          |
| PV1092  | 1.3       | 315            | 155        | 84           | 351         | 50          |
| PV1093  | 0.9       | 362            | 178        | 41           | 249         | 47          |
| PV2091  | 1.5       | 404            | 215        | 77           | 385         | 49          |
| PV2092  | 0.8       | 320            | 206        | 91           | 366         | 42          |
| PV2093  | 0.5       | 336            | 162        | 46           | 278         | 43          |
| PV2A091 | 1.4       | 442            | 197        | 79           | 429         | 47          |
| PV2A092 | 1.0       | 337            | 218        | 62           | 392         | 49          |
| PV2A093 | 0.6       | 378            | 192        | 33           | 228         | 36          |
| PV0101  | 2.4       | 403            | 124        | 82           | 276         | 37          |
| PV0102  | 1.8       | 234            | 128        | 83           | 332         | 38          |
| PV0103  | 0.3       | 253            | 143        | 59           | 233         | 41          |
| PV1101  | 1.9       | 491            | 206        | 80           | 347         | 47          |
| PV1102  | 1.3       | 308            | 123        | 80           | 347         | 48          |
| PV1103  | 1.1       | 264            | 155        | <b>79</b>    | 137         | 41          |
| PV2101  | 1.2       | 500            | 185        | 64           | 310         | 43          |
| PV2102  | 1.5       | 286            | 155        | 101          | 336         | 49          |
| PV2103  | 0.8       | 275            | 150        | 46           | 217         | 39          |
| PV2A101 | 1.3       | 538            | 183        | 74           | 275         | 41          |
| PV2A102 | 1.1       | 262            | 184        | 73           | 358         | 60          |
| PV2A103 | 0.6       | 324            | 173        | 43           | 218         | 39          |

Appendix B, continued. Biological Parameters - 164 day sampling.

| Sample† | protease‡ | β-glucosidase§ | histidase¶ | respiration# | biomass C†† | biomass N‡‡ |
|---------|-----------|----------------|------------|--------------|-------------|-------------|
|         |           |                |            |              |             |             |
| BM0051  | 0.6       | 316            | 93         | 98           | 178         | 32          |
| BM0052  | 0.4       | 129            | 57         | 77           | 168         | 29          |
| BM0053  | 0.3       | 352            | 86         | 92           | 147         | 27          |
| BM1051  | 0.7       | 318            | 97         | 109          | 176         | -           |
| BM1052  | 0.4       | 150            | 63         | 110          | 187         | 34          |
| BM1053  | 0.6       | 368            | 97         | 68           | 102         | 24          |
| BM2051  | 1.1       | 409            | 121        | 68           | 179         | 18          |
| BM2052  | 0.7       | 124            | 60         | 85           | 166         | 23          |
| BM2053  | 0.6       | 416            | 114        | 65           | 128         | 16          |
| BM2A051 | 0.9       | 288            | 120        | 105          | 200         | 23          |
| BM2A052 | 0.5       | 114            | 74         | 102          | 191         | 27          |
| BM2A053 | 0.4       | 399            | 134        | 98           | 114         | 18          |
| BM0081  | 1.6       | 306            | 119        | 86           | 270         | 35          |
| BM0082  | 0.8       | 164            | 74         | 90           | 262         | 41          |
| BM0083  | 0.4       | 433            | 103        | 50           | 206         | 40          |
| BM1081  | 1.1       | 449            | 139        | 88           | 268         | 37          |
| BM1082  | 0.8       | 225            | 79         | 97           | 275         | 42          |
| BM1083  | 0.7       | 425            | 111        | 83           | 190         | 39          |
| BM2081  | 1.0       | 491            | 144        | 92           | 212         | 27          |
| BM2082  | 0.6       | 201            | 82         | 83           | 249         | 37          |
| BM2083  | 0.9       | 474            | 119        | 49           | 153         | 30          |
| BM2A081 | 0.9       | 347            | 165        | 74           | 261         | 33          |
| BM2A082 | 0.8       | 162            | 85         | 70           | 268         | 37          |
| BM2A083 | 0.5       | 408            | 130        | 38           | 155         | 30          |
| BM0091  | 0.8       | 384            | 144        | 109          | 184         | 34          |
| BM0092  | 0.8       | 174            | 76         | 73           | 223         | 34          |
| BM0093  | 0.5       | 702            | 104        | 41           | 154         | 34          |
| BM1091  | 1.4       | 443            | 143        | 117          | 230         | 37          |
| BM1092  | 0.8       | 238            | 74         | 132          | 266         | 35          |
| BM1093  | 0.6       | 530            | 107        | 71           | 162         | 31          |
| BM2091  | 0.8       | 482            | 138        | 60           | 242         | 35          |
| BM2092  | 0.6       | 159            | 73         | 102          | 228         | 32          |
| BM2093  | 0.6       | 552            | 132        | 98           | 196         | 38          |
| BM2A091 | 1.1       | 511            | 162        | 93           | 232         | 30          |
| BM2A092 | 0.8       | 137            | 96         | 72           | 218         | 24          |
| BM2A093 | 0.9       | 629            | 146        | 57           | 157         | 25          |
| BM0101  | 0.9       | 311            | 98         | 85           | 180         | 28          |
| BM0102  | 0.4       | 170            | 55         | 86           | 178         | 28          |
| BM0103  | 0.4       | 235            | 87         | 58           | 123         | 30          |
| BM1101  | 1.0       | 361            | 119        | 84           | 210         | 31          |
| BM1102  | 0.7       | 145            | 55         | 98           | 177         | 24          |
| BM1103  | 0.5       | 173            | 98         | 56           | 131         | 27          |
| BM2101  | 1.1       | 321            | 119        | 104          | -           | 26          |
| BM2102  | 0.7       | 145            | 56         | 92           | 169         | 25          |
| BM2103  | 0.5       | 255            | 102        | 85           | 152         | 25          |
| BM2A101 | 1.1       | 251            | 126        | 76           | 196         | 23          |
| BM2A102 | 0.7       | 125            | 71         | 99           | 211         | 28          |
| BM2A103 | 0.6       | 236            | 101        | 65           | 148         | 26          |

Appendix B, continued. Biological Parameters - 164 day sampling.

| Sample† | protease‡ | β-glucosidase§ | histidase¶ | respiration# | biomass C†† | biomass N‡‡ |
|---------|-----------|----------------|------------|--------------|-------------|-------------|
|         |           |                |            |              |             |             |
| PM0051  | 0.2       | 425            | 129        | 40           | 152         | 16          |
| PM0052  | 0.3       | 213            | 97         | 32           | 149         | 18          |
| PM0053  | 0.4       | 435            | 105        | 39           | 90          | 15          |
| PM1051  | 0.4       | 356            | 123        | 51           | -           | 23          |
| PM1052  | 0.3       | 252            | 101        | 23           | 105         | 9           |
| PM1053  | 0.4       | 368            | 114        | 44           | 91          | 13          |
| PM2051  | 0.1       | 332            | 132        | 41           | 117         | 9           |
| PM2052  | 0.4       | 242            | 104        | 33           | 116         | 14          |
| PM2053  | -         |                |            | 292          | 489         | -           |
| PM2A051 | 0.1       | 277            | 123        | 39           | 104         | 11          |
| PM2A052 | 0.5       | 337            | 118        | 41           | 146         | 14          |
| PM2A053 | 0.2       | 325            | 115        | 33           | 39          | 21          |
| PM0081  | 0.6       | 547            | 121        | 66           | 233         | 37          |
| PM0082  | 0.6       | 364            | 110        | 66           | 253         | 30          |
| PM0083  | 0.6       | 355            | 109        | 59           | 168         | 36          |
| PM1081  | 0.8       | 392            | 173        | 49           | 223         | 28          |
| PM1082  | 0.8       | 433            | 105        | 40           | 214         | 29          |
| PM1083  | 0.5       | 411            | 129        | 40           | 169         | 30          |
| PM2081  | 0.8       | 446            | 129        | 43           | 224         | 30          |
| PM2082  | 0.5       | 393            | 102        | 21           | 196         | 27          |
| PM2083  | 0.7       | 676            | 147        | 41           | 188         | 31          |
| PM2A081 | 0.4       | 557            | 136        | 83           | 274         | 35          |
| PM2A082 | 0.7       | 502            | 129        | 28           | 214         | 30          |
| PM2A083 | 0.5       | 611            | 149        | 36           | 148         | 29          |
| PM0091  | 0.5       | 514            | 154        | 38           | 172         | 27          |
| PM0092  | 0.7       | 348            | 134        | 49           | 218         | 32          |
| PM0093  | 0.5       | 309            | 158        | 37           | 170         | 32          |
| PM1091  | 0.6       | 544            | 154        | 39           | 163         | 24          |
| PM1092  | 0.6       | 384            | 129        | 33           | 159         | 17          |
| PM1093  | 0.3       | 260            | 153        | 26           | 125         | 27          |
| PM2091  | 0.3       | 490            | 159        | 61           | 156         | 21          |
| PM2092  | 0.4       | 478            | 140        | 28           | 139         | 20          |
| PM2093  | 0.3       | 256            | 133        | 22           | 94          | 30          |
| PM2A091 | 0.3       | 434            | 167        | 61           | 200         | 22          |
| PM2A092 | 0.6       | 417            | 152        | 25           | 129         | 22          |
| PM2A093 | 0.4       | 210            | 140        | 15           | 77          | 15          |
| PM0101  | 0.4       | 271            | 111        | 36           | 129         | 20          |
| PM0102  | 0.5       | 425            | 89         | 38           | 154         | 25          |
| PM0103  | 0.3       | 170            | 113        | 20           | 110         | 23          |
| PM1101  | 0.3       | 305            | 108        | 39           | 144         | 18          |
| PM1102  | 0.3       | 290            | 90         | 24           | 142         | 21          |
| PM1103  | 0.2       | 187            | 120        | 25           | 112         | 22          |
| PM2101  | 0.3       | 330            | 114        | 37           | 115         | 17          |
| PM2102  | 0.5       | 335            | 105        | 35           | 114         | 21          |
| PM2103  | 0.5       | 236            | 136        | 16           | 77          | 13          |
| PM2A101 | 0.3       | 352            | 137        | 48           | 148         | 18          |
| PM2A102 | 0.5       | 318            | 111        | 22           | 117         | 23          |
| PM2A103 | 0.3       | 307            | 126        | 14           | 128         | 26          |

Appendix B, continued. Biological Parameters - 164 day sampling.

.

| Sample† | protease‡ | β-glucosidase§ | histidase¶ | respiration# | biomass C†† | biomass N‡‡ |
|---------|-----------|----------------|------------|--------------|-------------|-------------|
|         |           |                |            |              |             |             |
| C0051   | 0.5       | 213            | 77         | 18           | 87          | 12          |
| C0052   | 0.3       | 162            | 65         | 9            | 26          | 14          |
| C0053   | 0.5       | 176            | 78         | 37           | 79          | 19          |
| C1051   | 0.4       | 215            | 90         | 19           | 85          | 7           |
| C1052   | 0.4       | 169            | 67         | 17           | 69          | 8           |
| C1053   | 0.2       | 252            | 93         | 32           | 48          | 10          |
| C2051   | 0.3       | 230            | 100        | 18           | 78          | 5           |
| C2052   | 0.4       | 180            | 85         | 28           | 67          | 12          |
| C2053   | 0.2       | 253            | 93         | 27           | 62          | 8           |
| C2A051  | 0.3       | 196            | 107        | 27           | 84          | 8           |
| C2A052  | 0.3       | 193            | 82         | 31           | 83          | 5           |
| C2A053  | 0.2       | 173            | 102        | 28           | 70          | 10          |
| C0081   | 1.0       | 284            | 97         | 29           | 191         | 29          |
| C0082   | 0.8       | 195            | 87         | 30           | 175         | 32          |
| C0083   | 0.6       | 193            | 95         | 31           | 111         | 24          |
| C1081   | 1.3       | 378            | 109        | 33           | 171         | 23          |
| C1082   | 0.7       | 179            | 82         | 42           | 166         | 23          |
| C1083   | 0.5       | 289            | 109        | 15           | 106         | 18          |
| C2081   | 0.9       | 310            | 123        | 51           | 184         | 19          |
| C2082   | 0.5       | 237            | 91         | 33           | 143         | 20          |
| C2083   | 0.5       | 212            | 118        | 30           | 110         | 15          |
| C2A081  | 0.8       | 331            | 120        | 37           | 146         | 18          |
| C2A082  | 0.6       | 279            | 112        | 21           | 130         | 19          |
| C2A083  | 0.4       | 146            | 136        | 26           | 98          | 20          |
| C0091   | 0.9       | 258            | 105        | 24           | 140         | 18          |
| C0092   | 0.4       | 352            | 87         | 19           | 134         | 21          |
| C0093   | 0.3       | 214            | 106        | 15           | 71          | 16          |
| C1091   | 0.6       | 355            | 118        | 28           | 118         | 15          |
| C1092   | 0.3       | 291            | 90         | 20           | 94          | 11          |
| C1093   | 0.3       | 163            | 118        | 8            | 69          | 17          |
| C2091   | 0.3       | 358            | 117        | 27           | 104         | 12          |
| C2092   | 0.4       | 395            | 94         | 27           | 105         | 11          |
| C2093   | 0.3       | 168            | 117        | 18           | 74          | 13          |
| C2A091  | 0.4       | 293            | 99         | 33           | 93          | -           |
| C2A092  | 0.2       | 314            | 104        | 39           | 144         | 22          |
| C2A093  | 0.2       | 175            | 129        | 13           | 66          | 17          |
| C0101   | 0.4       | 204            | 63         | 11           | 74          | 14          |
| C0102   | 0.2       | 141            | 59         | 16           | 91          | 13          |
| C0103   | 0.3       | 173            | 77         | 13           | 54          | 17          |
| C1101   | 0.6       | 220            | 82         | 14           | 78          | 11          |
| C1102   | 0.3       | 176            | 66         | 9            | 76          | 11          |
| C1103   | 0.3       | 121            | 88         | 19           | 49          | 13          |
| C2101   | 0.5       | 194            | 85         | 20           | 76          | 7           |
| C2102   | 0.3       | 197            | 74         | 18           | <b>83</b> · | 10          |
| C2103   | 0.3       | 170            | 89         | 13           | 40          | 9           |
| C2A101  | 0.4       | 213            | 106        | 30           | 111         | 17          |
| C2A102  | 0.2       | 264            | 67         | 21           | 112         | 14          |
| C2A103  | 0.2       | 113            | 112        | 12           | 53          | 14          |

Appendix B, continued. Biological Parameters - 164 day sampling.

| Sample† | protease‡       | β-glucosidase§ | histidase¶ | respiration# | biomass C†† | biomass N‡‡ |
|---------|-----------------|----------------|------------|--------------|-------------|-------------|
|         |                 |                |            |              |             |             |
| PV0051  | 1.2             | 504            | 232        | 143          | 514         | 76          |
| PV0052  | 0.6             | 582            | 169        | -            | 501         | 72          |
| PV0053  | 1.3             | 1068           | 201        | 135          | 548         | 55          |
| PV1051  | 1.5             | 430            | 164        | 133          | 514         | 67          |
| PV1052  | 0.8             | 476            | 148        | 110          | 504         | 60          |
| PV1053  | 1.6             | 1241           | 264        | 3            | 519         | 58          |
| PV2051  | 1.6             | 420            | 183        | 137          | 433         | 58          |
| PV2052  | 0.8             | 419            | 155        | 146          | 551         | 57          |
| PV2053  | 1.2             | 956            | 285        | 158          | 563         | 69          |
| PV2A051 | 1.8             | 577            | 189        | 90           | 481         | 92          |
| PV2A052 | 0.7             | 501            | 143        | 82           | 566         | 99          |
| PV2A053 | 1.3             | 1161           | 217        | 114          | 451         | 34          |
| PV0081  | 2.2             | 268            | 179        | 146          | 549         | 89          |
| PV0082  | 0.7             | 541            | 143        | 97           | 539         | 82          |
| PV0083  | 0.8             | 777            | 218        | 132          | 520         | 76          |
| PV1081  | 2.1             | 387            | 163        | 98           | 510         | 86          |
| PV1082  | 1.3             | 444            | 136        | 124          | 565         | 76          |
| PV1083  | 1.2             | 647            | 209        | 112          | 430         | 58          |
| PV2081  | 1.9             | 619            | 212        | 109          | 610         | 96          |
| PV2082  | 1.4             | 314            | 200        | 135          | 647         | 92          |
| PV2083  | 1.7             | 1003           | 211        | 132          | 601         | 81          |
| PV2A081 | 1.5             | 759            | 212        | 118          | 507         | 81          |
| PV2A082 | 0.9             | 617            | 180        | 105          | 588         | 109         |
| PV2A083 | 1.5             | 926            | 472        | 137          | 602         | 62          |
| PV0091  | 1.6             | 541            | 183        | 119          | 475         | 68          |
| PV0092  | 1.0             | 591            | 180        | 90           | 632         | 92          |
| PV0093  | 1.4             | 425            | 228        | 84           | 428         | 69          |
| PV1091  | 2.5             | 510            | 185        | 120          | 519         | 65          |
| PV1092  | 1.2             | 477            | 182        | 136          | 542         | 62          |
| PV1093  | 2.2             | 796            | 274        | 146          | 574         | 80          |
| PV2091  | 2.0             | 615            | 248        | 140          | 596         | 85          |
| PV2092  | 1.1             | 680            | 225        | 137          | 654         | 74          |
| PV2093  | 2.0             | 921            | 334        | 128          | 576         | 83          |
| PV2A091 | 1.8             | 621            | 220        | 91           | 481         | 112         |
| PV2A092 | 1.0             | 739            | 168        | 74           | 565         | 59          |
| PV2A093 | 1.2             | 1025           | 269        | 94           | 495         | 79          |
| PV0101  | 1.3             | 797            | 381        | 111          | 448         | 61          |
| PV0102  | 0.8             | 450            | 129        | 115          | 419         | 47          |
| PV0102  | 12              | 808            | 251        | 118          | 452         | 68          |
| PV1101  | 2.0             | 516            | 190        | 140          | 451         | 75          |
| PV1102  | 1 1             | 358            | 130        | 115          | 494         | 67          |
| PV1103  | 1.1             | 602            | 254        | 124          | 526         | 73          |
| PV2101  | 1.1             | 476            | 396        | 127          | 496         | 69          |
| PV2102  | 1.7             | 695            | 155        | 113          | 538         | 55          |
| PV2102  | 1.1             | 562            | 219        | 171          | 433         | 31          |
| PV2A101 | 1.5<br>1 A      | 865            | 199        | 77           | 423         | 48          |
| PV2A102 | 1. <del>4</del> | 694            | 196        | 95           | 599         | 88          |
| PV2A103 | 13              | 628            | 274        | 99           | 533         | 86          |

Appendix B, continued. Biological Parameters - 306 day sampling.

| Sample† | protease‡ | β-glucosidase§ | histidase¶ | respiration# | biomass C†† | biomass N‡‡ |
|---------|-----------|----------------|------------|--------------|-------------|-------------|
|         |           |                |            |              |             |             |
| BM0051  | 0.6       | 518            | 98         | 163          | 295         | 41          |
| BM0052  | 0.5       | 394            | 83         | 131          | 352         | 41          |
| BM0053  | 0.2       | 434            | 109        | 134          | 263         | 35          |
| BM1051  | 0.3       | 860            | 110        | 135          | 329         | 36          |
| BM1052  | 0.8       | 589            | 108        | 162          | 386         | -           |
| BM1053  | 0.6       | 423            | 99         | 148          | 250         | 32          |
| BM2051  | 0.7       | 483            | 123        | 142          | 311         | 37          |
| BM2052  | 0.5       | 444            | 85         | 136          | 353         | 41          |
| BM2053  | 0.3       | 511            | 129        | 161          | 261         | 28          |
| BM2A051 | 0.3       | 540            | 119        | 63           | 262         | 72          |
| BM2A052 | 0.8       | 441            | 103        | 66           | 289         | 68          |
| BM2A053 | 0.8       | 424            | 114        | 126          | 207         | 25          |
| BM0081  | 0.9       | 987            | 143        | 134          | 353         | 47          |
| BM0082  | 1.0       | 521            | 99         | 126          | 395         | 49          |
| BM0083  | 0.6       | 827            | 111        | 130          | 314         | 50          |
| BM1081  | 1.0       | 648            | 139        | 151          | 357         | 50          |
| BM1082  | 1.2       | 591            | 120        | 142          | 482         | 55          |
| BM1083  | 0.9       | 642            | 119        | 160          | 364         | 49          |
| BM2081  | 1.0       | 723            | 129        | 190          | 367         | 46          |
| BM2082  | 1.2       | 623            | 111        | 145          | 491         | 39          |
| BM2083  | 1.0       | 977            | 118        | 166          | 305         | 39          |
| BM2A081 | 1.0       | 471            | 155        | 121          | 399         | 59          |
| BM2A082 | 1.0       | 603            | 122        | 106          | 398         | 89          |
| BM2A083 | 0.7       | 717            | 136        | 152          | 316         | 62          |
| BM0091  | 0.9       | 681            | 131        | 136          | 360         | 46          |
| BM0092  | 0.8       | 410            | 109        | 113          | 373         | 50          |
| BM0093  | 1.0       | 514            | 104        | 162          | 290         | 42          |
| BM1091  | 1.2       | 942            | 142        | 148          | 338         | 48          |
| BM1092  | 1.1       | 744            | 122        | 133          | 371         | 51          |
| BM1093  | 0.4       | 682            | 111        | 172          | 290         | 43          |
| BM2091  | 0.7       | 573            | 146        | 155          | 297         | 41          |
| BM2092  | 1.0       | 474            | 108        | 127          | 360         | 46          |
| BM2093  | 0.8       | 470            | 147        | 157          | 258         | 45          |
| BM2A091 | 0.6       | 593            | 158        | 70           | 255         | 56          |
| BM2A092 | 0.7       | 683            | 123        | 62           | 275         | 75          |
| BM2A093 | 0.4       | 506            | 114        | 94           | 298         | 34          |
| BM0101  | 0.6       | 441            | 86         | 122          | 239         | 34          |
| BM0102  | 0.8       | 437            | 84         | 129          | 311         | 41          |
| BM0103  | 0.2       | 461            | 99         | 157          | 286         | 42          |
| BM1101  | 0.8       | 472            | 90         | 145          | 293         | 39          |
| BM1102  | 0.9       | 410            | 85         | 121          | 337         | 38          |
| BM1103  | 0.5       | 437            | 100        | 151          | 314         | 42          |
| BM2101  | 0.8       | 675            | 110        | 129          | 323         | 33          |
| BM2102  | 1.0       | 334            | 83         | 115          | 341         | 41          |
| BM2103  | 0.5       | 432            | 92         | 126          | 281         | 37          |
| BM2A101 | 0.5       | 467            | 111        | 66           | 264         | 46          |
| BM2A102 | 0.7       | 517            | 88         | -            | 267         | 15          |
| BM2A103 | 0.4       | 390            | 105        | 92           | 220         | 37          |

Appendix B, continued. Biological Parameters - 306 day sampling.

.

| Sample† | protease‡ | β-glucosidase§ | histidase¶ | respiration# | biomass C†† | biomass N‡‡ |
|---------|-----------|----------------|------------|--------------|-------------|-------------|
|         |           |                |            |              |             |             |
| PM0051  | 0.6       | 532            | 150        | 48           | 203         | 23          |
| PM0052  | 0.5       | 459            | 92         | 60           | 207         | 26          |
| PM0053  | 0.4       | 863            | 115        | 67           | 161         | 13          |
| PM1051  | 0.6       | 532            | 140        | 48           | 185         | 20          |
| PM1052  | 0.4       | 525            | 93         | 61           | 188         | 24          |
| PM1053  | 0.4       | 801            | 121        | 68           | 153         | 19          |
| PM2051  | 0.5       | 566            | 129        | 54           | 199         | 19          |
| PM2052  | 0.4       | 441            | 97         | 60           | 220         | 28          |
| PM2053  | 0.6       | 679            | 108        | 70           | 162         | 16          |
| PM2A051 | 0.4       | 473            | 91         | 42           | 182         | 60          |
| PM2A052 | 0.3       | 467            | 86         | 41           | 177         | 50          |
| PM2A053 | 0.7       | 951            | 110        | 44           | 124         | 25          |
| PM0081  | 0.8       | 608            | 156        | 42           | 275         | 33          |
| PM0082  | 0.7       | 537            | 123        | 104          | 316         | 45          |
| PM0083  | 0.8       | 533            | 127        | 56           | 200         | 29          |
| PM1081  | 0.7       | 944            | 145        | 64           | 230         | 28          |
| PM1082  | 0.6       | 377            | 109        | 63           | 258         | 34          |
| PM1083  | 0.8       | 652            | 135        | 46           | 206         | 31          |
| PM2081  | 0.4       | 685            | 119        | 53           | 226         | 19          |
| PM2082  | 0.5       | 501            | 122        | 52           | 258         | 36          |
| PM2083  | 0.7       | 897            | 131        | 89           | 178         | 20          |
| PM2A081 | 0.3       | 546            | 121        | 74           | 220         | 30          |
| PM2A082 | 0.4       | 727            | 107        | 54           | 227         | 50          |
| PM2A083 | 0.5       | 896            | 105        | 55           | 160         | 29          |
| PM0091  | 0.7       | 632            | 136        | 41           | 200         | 27          |
| PM0092  | 0.7       | 565            | 139        | 84           | 240         | 36          |
| PM0093  | 0.3       | 851            | 157        | 76           | 45          | 8           |
| PM1091  | 0.5       | 644            | 156        | 37           | 198         | 25          |
| PM1092  | 0.6       | 798            | 116        | 55           | 215         | 27          |
| PM1093  | 0.3       | 895            | 108        | 81           | 86          | 11          |
| PM2091  | 0.7       | 471            | 155        | 39           | 199         | 22          |
| PM2092  | 0.5       | 616            | 114        | 44           | 207         | 26          |
| PM2093  | 0.3       | 707            | 120        | 63           | 111         | 18          |
| PM2A091 | 0.5       | 553            | 109        | 33           | 174         | 26          |
| PM2A092 | 0.5       | 954            | 88         | 39           | 171         | 22          |
| PM2A093 | 0.2       | 758            | 96         | 31           | 144         | 23          |
| PM0101  | 0.4       | 641            | 146        | 29           | 190         | 23          |
| PM0102  | 0.5       | 275            | 125        | 52           | 220         | 19          |
| PM0103  | 0.2       | 717            | 92         | 47           | 145         | -           |
| PM1101  | 0.5       | 532            | 114        | 27           | 142         | 18          |
| PM1102  | 0.6       | 442            | 92         | 67           | 192         | 24          |
| PM1103  | 0.3       | 883            | 110        | 56           | 156         | 14          |
| PM2101  | 0.4       | 497            | 148        | 30           | 192         | 18          |
| PM2102  | 0.5       | 451            | 103        | 48           | 155         | 14          |
| PM2103  | 0.3       | 887            | 120        | 52           | 128         | 19          |
| PM2A101 | 0.3       | 540            | 127        | 58           | 134         | 70          |
| PM2A102 | 0.4       | 425            | 97         | 36           | 130         | 56          |
| PM2A103 | 0.2       | 835            | 81         | 38           | 152         | 49          |

Appendix B, continued. Biological Parameters - 306 day sampling.

| Sample† | protease‡ | β-glucosidase§    | histidase¶ | respiration# | biomass C†† | biomass N‡‡ |
|---------|-----------|-------------------|------------|--------------|-------------|-------------|
|         |           |                   |            |              |             |             |
| C0051   | 0.2       | 209               | 47         | 27           | 87          | -           |
| C0052   | 0.3       | 193               | 58         | 41           | 78          | 15          |
| C0053   | 0.2       | 215               | 59         | 19           | 174         | 28          |
| C1051   | 0.2       | 154               | 60         | 35           | 75          | 7           |
| C1052   | 0.3       | 337               | 66         | 71           | 106         | 15          |
| C1053   | 0.1       | 384               | 50         | 28           | 194         | 30          |
| C2051   | 0.3       | 188               | 54         | 39           | 82          | 10          |
| C2052   | 0.3       | 332               | 72         | 45           | 77          | 11          |
| C2053   | 0.1       | 232               | 61         | 25           | 59          | 6           |
| C2A051  | 0.2       | 162               | 62         | 32           | 64          | 38          |
| C2A052  | 0.2       | 189               | 63         | 45           | 80          | 48          |
| C2A053  | 0.1       | 209               | 42         | 28           | 61          | 30          |
| C0081   | 0.6       | 152               | 76         | 34           | 165         | 23          |
| C0082   | 0.7       | 277               | 77         | 47           | 191         | 29          |
| C0083   | 0.3       | 255               | 69         | 31           | 140         | 23          |
| C1081   | 0.6       | 247               | 74         | 48           | 173         | 19          |
| C1082   | 0.5       | 262               | 80         | 64           | 159         | 27          |
| C1083   | 0.3       | 264               | 73         | 32           | 132         | 19          |
| C2081   | 0.6       | 229               | 73         | 44           | 147         | 20          |
| C2082   | 0.5       | 348               | 86         | 62           | 158         | 28          |
| C2083   | 0.2       | 293               | 85         | 39           | 126         | 18          |
| C2A081  | 0.3       | 238               | 78         | 35           | 107         | 22          |
| C2A082  | 0.5       | 209               | 100        | 52           | 155         | 35          |
| C2A083  | 0.2       | 273               | 86         | 37           | 86          | 26          |
| C0091   | 0.4       | 252               | 67         | 41           | 125         | 20          |
| C0092   | 0.1       | 182               | 87         | 12           | 89          | 13          |
| C0093   | 0.1       | 154               | 75         | 19           | 106         | 15          |
| C1091   | 0.2       | 202               | 74         | 38           | 124         | 15          |
| C1092   | 0.0       | 311               | 87         | 22           | 88          | 9           |
| C1092   | 0.0       | 273               | 83         | 20           | 97          | 14          |
| C2091   | 0.1       | 279               | 73         | 28           | 125         | 12          |
| C2092   | 0.1       | 302               | 69         | 38           | 91          | 14          |
| C2092   | 0.1       | 202               | 94         | 20           | 76          | 12          |
| C2A091  | 0.1       | 115               | 59         | 34           | 97          | -           |
| C2A091  | 0.1       | 406               | 84         | 65           | 89          | 28          |
| C2A092  | 0.1       | 700               | 77         | 16           | 45          | 36          |
| C0101   | 0.1       | 252               | 45         | 21           | 107         | 11          |
| C0101   | 0.2       | 250               | 53         | 21           | 107<br>77   | 14          |
| C0102   | 0.1       | 200               | 54         | 20           | 86          | 13          |
| C1101   | 0.1       | 172               | 51         | 20           | 79          | 12          |
| C1101   | 0.2       | 330               | 67         | 27           | 70          | 12          |
| C1102   | 0.2       | 200               | 66         | 25           | 68          | 10          |
| C1105   | 0.1       | 165               | 53         | 31           | 100         | 10          |
| C2101   | 0.2       | 205               | 55<br>67   | 25           | 5U<br>100   | 0           |
| C2102   | 0.0       | 273<br>277        | . 02       | ム<br>21      | 00<br>70    | 7<br>11     |
| C2103   | 0.2       | <i>L  </i><br>151 | 13         | 21<br>15     | /0          | 11          |
| C2A101  | 0.1       | 131               | 29<br>42   | 15           | 9L<br>5A    | 15          |
| C2A102  | 0.1       | 220               | 03<br>71   | 23<br>10     | 54          | 10          |
| C2A103  | 0.2       | 204               | /1         | 10           | 33          | 14          |

Appendix B, continued. Biological Parameters - 306 day sampling.

- † Sample identification see Appendix A. for key.
- ‡ Protease units  $\mu$ mol tyrosine g<sup>-1</sup> soil h<sup>-1</sup>.
- §  $\beta$ -Glucosidase units  $\mu g \rho$ -nitrophenol g<sup>-1</sup> soil h<sup>-1</sup>.
- ¶ Histidase units  $\mu g \text{ NH}_4^+$ -N g<sup>-1</sup> soil 48 h<sup>-1</sup>.
- # Respiration units  $\mu g \operatorname{CO}_2$ -C g<sup>-1</sup> soil 10 d<sup>-1</sup>.
- †† Biomass C units  $\mu$ g CO<sub>2</sub>-C g<sup>-1</sup> soil.
- $\ddagger$  Biomass N units  $\mu$ g NH<sub>4</sub><sup>+</sup>-N g<sup>-1</sup> soil.