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There are a number of well known techniques for extracting parallelism from a

given program. They range from hardware implementations, building restructuring
compilers or reorganizing of programs so as to specify all the available parallelism. The

success rate of any of the known techniques is rather poor over all types of programs.

This has pushed the research community to explore new languages and design different

architectures to exploit program parallelism.

The principles of dataflow architectures have addressed the problem of exploiting

parallelism in systems by executing dataflow graphs. These graphs or programs represent

data dependencies among instructions and execution of the graph proceeds in a data-
driven manner. That is, an instruction is executed as soon as all its operands are
available, without waiting for any program counter to sequence its execution, as is the

case in conventional von Neumann architectures.

In this thesis, data flow graphs are generated during the intermediate compilation of

a functional language called SISAL (Streams and Iterations in a Single Assignment
Language). The Intermediate Form (IFl) is a graphical language consisting of multiple

acyclic function graphs that represent a given program. Each graph consists of a
sequence of nodes and edges. The nodes specify the operation and the edges indicate the

dependencies between the nodes. The graphs are further connected to each other by
means of implicit dependencies.

The Automator package developed in this project, preprocesses these multiple IF I

graphs and translates them into a single connected graph. It converts all implicit
dependencies into actual ones. Additionally, complex language constructs like For All,

loops and if-then-else are treated in special ways together with their nested levels by the
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Automator. There is virtually no limit to the number of nested levels that can be
translated by this package.

The Automator's prime contribution is in translating real programs written in SISAL

into a specified format required by an allocation algorithm called the Balanced Layered

Allocation Scheme (BLAS).

BLAS partitions a connected graph into independent tasks and assigns them to

processors in a multicomputer system. The problem of program allocation lies in
maximizing parallelism while minimizing interprocessor communication costs. Hence,

allocation is based on the best choice of communication to execution ratio for each task.

BLAS utilizes heuristic rules to find a balance between computation and communication

costs in the target system. Here the target architecture is a simulated nCUBE 3E
computer, having a hypercube topology.

Simulations show that, BLAS is effective in reducing the overall execution time of

a program by considering the communication costs on the execution times. The results

will help in understanding the effects in packing nodes (grain-packing), routing issues in

the network and in general, the allocation problem to any processor in a network. In

addition, tasks have also been assigned to adjacent processors only, instead of any
processor on the hypercube network. The adjacent allocation to processors helps to
determine trade-offs required between achieved speed-ups and the time it takes to
completely allocate large graphs on compilation.
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Allocation Of SISAL Program Graphs To Processors Using BLAS

CHAPTER 1. INTRODUCTION

1.1 The Potential

Ever increasing demand for computational power has spawned an idea of the Grand

Challenge. A Grand Challenge is a fundamental problem in science or engineering that

has a broad economic and scientific impact, and whose solution could be advanced by

applying high performance computing techniques and resources. Here, the concepts of

parallelism have offered enormous potential for increase in performance.

The primary constraint with technology today is the actual design complexity that is

incorporated within a chip. Newer fabrication processes using sub-micron geometry

allow for Very Large Scale Integrated Circuits (VLSI) to support more than 3 million

transistors on a single microprocessor chip for example, Intel's latest product offering :

The Pentium processor. These accomplishments are being further improved upon to

accommodate nearly twice the number of transistors on a single CMOS package,
equipped with faster clocks and novel cooling systems.

There is only so much that can go onto a single chip using available technologies.

With advent of the fifth generation microprocessors, based on ultra-large-scale integrated

circuits (ULSI) or Very High Speed Integrated Circuits (VHSIC), system architects are

confident that, one is closely approaching the limits in terms of attainable higher densities

and faster speeds in circuits.

An ironic aspect of the quest for ever-increasing speed is that, most of the
transistors are idle nearly all the time. Any modern day computer with one CPU (Central

Processing Unit) is dominated by multiple memory chips. The CPU issues sequential

requests over a bus to memory that responds to one request at a time. This is the
traditional von Neumann bottleneck. Any attempts to break this bottleneck assumes a
computer with multiple control units and multiple memory modules. Thus, the only
plausible alternative is to go parallel. In other words, programs can execute on multiple

processors connected in a regular structure and can access multiple memory banks, thus

performing computations and memory transfers concurrently.

Opinions are fairly divided in the research community as to the number of
processors needed for a cost-effective, efficient and fast system. One group looks at the
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practicality of Amadahl's thesis [14, 15 and 16] where-in, systems will face a severe

bottleneck on encountering the serial fraction within the application that is being
executed. Hence, large sections of serial code will over-ride the need for higher number

of processing elements (PEs). Other groups cite simulations of the excellent speed-ups

that can be attained using large number of PEs [20 and 25] over parallel algorithms.
Also, the commercial world has little experience with efficient use of large number of

PEs [25].

Several factors need to be considered when building a supercomputer. Parallel

algorithms, well designed parallel architectures coupled with powerful programming
environment which include sophisticated restructuring compilers, in all, play vital roles in

very fast performance. Crucial issues, like scheduling, synchronization and
communication need to be adequately addressed in order to exploit the inherent flexibility

of parallel processor systems.

Investment in serial (conventional) software over the years has been tremendous

and cannot be discarded completely. The transformation to new parallel versions will

take several years and a firm financial commitment. This brings users to agree for the

development of restructuring compilers that will take existing serial software written in

FORTRAN, Pascal, C or the like, and make it viable for use on the parallel processor
systems without any reprogramming. In program restructuring, a compiler or a
preprocessor identifies parts of the program that can take advantage of the architectural

characteristics of a machine [26]. Coding a program to take full advantage of the system

is a tedious task and a compiler will do a better job than any skillful programmer.

However, new software can be developed in a language specifically designed for

parallel computation. A number of parallel languages are available including functional

and data parallel languages. Finally, serial languages like C, FORTRAN, or Smalltalk

can be extended with parallel constructs [22 and 27].

1.2 Scheduling and Partitioning

The fore-most challenge of parallel systems is to maximize the program speed-up

(defined in chapter 2 in section 2.8). So, it is imperative to design a good processor
allocation or scheduling scheme that minimizes execution time and interprocessor
communication for any program. Due to complexity of the scheduling problems, only a

few simple cases have been solved optimally in polynomial time [26].
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Two types of scheduling strategies - Static and Dynamic scheduling are in focus
these days [25].

Static schemes can be accomplished by the user or a compiler and are deterministic
in nature. Scheduling is done before execution of the program, based on all global
program information. A common approach is to compute or predict the execution time of

different program segments, and in general, consider parameters that are unknown at
compile time and then decide the best scheduling strategy. This exposes the parameters

to various approximations in order to achieve optimal performance. Static strategies are

usually very complex and time consuming as will be seen with the BLAS (Balanced
Layered Allocation Scheme) in [12 and 18] and also in the discussion in chapters 5 and 6.

Also, compilation time is as important as the execution or run-time when evaluating
performance issues on a particular system.

Dynamic schemes are enabled with help through the operating system (OS) or the

hardware and have found their use in real machines [25]. This scheme is usually based

on the local information about the running program. As the scheduling decisions are

made at run time, a penalty is incurred in terms of overheads that may be introduced.

Hardware implementation is sometimes done for special architecture systems or for
scheduling special types of tasks. This is costly and lacks generality [25]. On the other

hand, any operating system implementation has a high overhead cost if the granularity of

the task is small. Frequent invocation of the OS will outweigh the benefits of parallelism.

Being a run-time approach makes dynamic schemes indeterministic.

Both schemes have their disadvantages with respect to either optimality or time or
cost or some combination there-of [25 and 26]. Trade-offs are necessary as the best is yet

to be found.

An important ingredient of scheduling is the partitioning phase which, by itself is

a complex optimization problem. A given parallel program needs to be partitioned or
broken down into independent tasks also called processes or threads that will
subsequently be allocated to different PEs.

1.3 Motivation

The aim of this research is, to develop a platform in order to study the effectiveness

of an existing static-allocation scheme (BLAS) on real algorithms written in a functional
language called SISAL (Streams and Iterations in a Single Assignment Language). This
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requirement led to the development of a graph preprocessor package called The
Automator. It is an interface between the SISAL programs and BLAS.

The BLAS algorithm was originally written by Dr. Lee [18] and further extended by

Freytag [12]. It laid the foundation for this thesis and will be explained in chapter 5.

The Automator operates on multiple function graphs produced during intermediate

compilation of SISAL programs. It expands the complex language constructs of the
intermediate form (IF1), converts all implicit dependencies between the graphs to actual

dependencies, does node packing and helps in exposing the existing parallelism. The

target of the Automator is a file containing a linked list of nodes in a specified format

readable by BLAS. The BLAS algorithm identifies all parallelizable threads in the
Automator's output and allocates them to different PEs.

This thesis has required work in three areas : 1. Significant analysis of the IF1
graphical language together with its internal structure and organization, so as to
successfully interface with it. 2. The development of the Automator package to
preprocess multiple IF1 graphs and prepare them for BLAS, and 3. To verify that, the
graphs produced by the Automator worked well with BLAS. In the process of
verification, some bugs were noticed in BLAS and important changes were made to
certain routines so as to make it work for all types of program graph inputs. The

corrections together with changes made to BLAS have been listed in section 5.5.

1.4 Thesis Organization

Chapter 2 starts with an overview of machine architectures that exist today and the

choice of using message passing computers in this work. Certain architectural aspects of

the system : namely, the routing and interconnect issues that affects performance of the

allocation process, are described. The choice of Hypercube topology is explained and

some of its properties are highlighted. The parameters that are used to specify the extent

of parallelism achieved on a particular architecture are defined. These parameters will be

clearer when reading plots in chapter 5. Finally, parallelism issues are discussed and it
lays the foundation for chapter 3, 4 and 5.

Chapter 3 describes the need for parallel languages and the influence of the data
flow community on the research in exploiting maximum parallelism from algorithms. A

note on SISAL is included with the various stages in its compilation. Motivation for

using SISAL and its intermediate form is discussed. The IF1 graphical language is

described in some detail, in relevance to the development of the Automator. The IF1
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representation consists of acyclic graphs of different functions that make up a SISAL

program. Knowledge of the language, and its internal data structures gives a better
understanding of the Automator's work in preprocessing graphs.

Chapter 4 discusses the Automator package in its entirety and elaborates on all the

techniques involved in preprocessing and presenting graphs to the Balanced Layered
Allocation Scheme (BLAS) for assignment to different processors. The treatment of the

various compound constructs of IF1 are explained. A section on mapping of IF1 nodes is

also included. It provides an initial platform with regards to actual mapping of the IF1

constructs on any multicomputer system

Chapter 5 is a brief on the BLAS algorithm and the simulation results obtained
with BLAS. The allocation strategy is explained with two examples. Also, included are

the limitations of BLAS and the various changes made to it. The programs used for
simulations are described in brief. They are Matrix Multiplication, LU-Decomposition

and SIMPLE. Speed-up, Efficiency and Performance Ratio (explained in chapter 2)
curves are plotted to show the effectiveness of BLAS on the allocation of tasks to PEs.

Chapter 6 concludes this thesis with a brief overview of the work and future areas

that need to be explored. A section on the possible improvements in BLAS and
Automator is included. A comparison with hand calculations is also shown at the end, to

highlight the effectiveness of this work.
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CHAPTER 2. ARCHITECTURES and PERFORMANCE ISSUES

2.1 Overview of Machine Architectures

The buzz word Pipeline has become synonymous with almost any practical system

today. Almost any current processor supports a pipelined instruction execution cycle.

The 5 phases : Instruction fetch (IF), Decode, Execute, Memory and Write Back are

pipelined, with logically subsequent instructions going through the different phases of

execution simultaneously. Another feature coupled with this is the support of Vector
operations for functional units, where-in long vectors of operands are processed at a time.

These features form the prime technological trends that give us supercomputers and
Massively Parallel Processing (MPP) systems. Pipe lined, Array and Vector processor

based systems are categorized according to Flynn's taxonomy [16] as Single Instruction

Multiple Data Stream (SIMD) because of their single control unit. SIMD implies
synchronous systems with a single control unit and all PEs driven by the same clock.

A different organization [16 and 26] is the multiprocessor or parallel processor

system. Composed of a set of independent or autonomous PEs, which are fully or
partially interconnected in some way, these systems are classified in Flynn's taxonomy as

Multiple Instruction stream and Multiple Data streams (MIMD) architectures. They can

be synchronous or asynchronous. The control is distributed, with each PE having its own
control unit and driven by its own clock. Global control may be used in some
hierarchical architectures built around the MIMD philosophy. The SIMD and MIMD
architectures are shown in figure 2.1.

2.1.1 Models

Parallel Processor systems further get categorized based on their PE-Memory
access. These are Shared Memory systems and Message Passing systems. All PEs in a

Shared Memory system share the same memory address space and are connected to this
shared physical memory by a high bandwidth bus or some multistage interconnection

network. Inter PE communication is accomplished through shared areas in memory.
Examples of shared memory architectures are Cray X-MP, Cray-2, Alliant FX/8 [14, 15,

16 and 25]. Each PE accesses the shared data by reading from or writing to a shared
variable in the globally accessible memory area. However, because more than one PE
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may try to access the same variable, discrepancies will rise in the final value of the
variable.

Global Control
Unit

PE

PE

PE

N PE 1

PE
and

Control unit

PE
and

Control unit

PE
and

Control unit

A typical SIMD Architecture

SIMD : Single Instruction
Stream and Multiple
Data Stream

A typical MIMD Architecture

MIMD : Multiple Instruction
Stream and Multiple
Data Stream

figure 2.1 SIMD and MIMD Architectures
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For example, if PE1 is attempting to multiply a shared variable x by 5 and PE2

needs to decrement it, then different results will occur depending on which PE gets hold

of that variable first. To circumvent undesirable effects, programming for shared
memory systems require low level primitives (instructions) to resolve such mutual-
exclusion problems.

In contrast, PEs in a Message Passing organization have their own local memory

with no concept of any global shared area. The PEs communicate via messages that are

generated and passed using a particular scheme. Usually, these architectures are also
described as multicomputer systems [14, 15, 16 and 35]. There are variants in this
organization where one PE can access the memory of some remote PE. Systems may

require a dedicated PE or a host that exercises initialization and global control of the

organization. Refer to figure 2.2 and figure 2.3 for elaboration on the classification of
systems.

The Message Passing model can work with synchronous or asynchronous
communication. In the synchronous paradigm, the sending process and the receiving
process must synchronize in time and space for passing a message. If one process is
ready to communicate but the other process is not, then blocking or waiting occurs.

Asynchronous communication utilizes buffers for each PE channel to avoid any
synchronization conflicts of the processes. The ready process passes the message without

waiting and so, makes the asynchronous transfer almost non-blocking. Since channel

buffers are finite in size, a sender may eventually be blocked.

Intel's and nCUBE's hypercube based systems are very good examples of message

passing architectures using the Hypercube Interconnect. Results for this project were

obtained by simulations based on nCUBE's latest system: nCUBE 3E Series in which the

processing elements communicate synchronously on a hypercube network.

2.2 Choice of a Distributed Architecture - nCUBE 3E Series

Shared memory systems represent a more traditional programming model and
extensive research has enabled it to practical realizations. However there are inherent

performance issues due to data contention and access time costs to non-local data
(applicable to systems with PEs having small local memories and a large global space
-refer to figure 2.2(b)).

Experience with these machines has proved that, they perform well for a small
number of PEs. But, these architectures do not scale well as processors and memory are
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added. When PEs are added, contention for the system's limited bus bandwidth is
increased, degrading processor-memory performance. Most shared access systems have a

local cache at each PE to increase their effective PE-memory bandwidth.

2.3 Cache

Cache works on the principle of locality of reference [16], which describes the fact

that over an interval of time, the addresses generated by a typical program is clustered in

space. In other words : 1. Recently referenced items are likely to be referenced again in

the near future Temporal locality . 2. A process has a tendency to access items whose

addresses are near one another Spatial locality . 3. In typical programs, execution of

instructions follow a sequential order unless a branch or out-of-order instruction is
encountered Sequential locality.

Thus, caches enable fast accesses of memory. However, in the shared systems, a
problem of data inconsistency or cache coherence is introduced. This is possible when

one PE updates a variable in its cache, and another PE reads the variable from shared

memory, thus getting the old incorrect value. Methods have been devised to alleviate this

problem in totality, using hardware techniques. So, adding PEs, requires more logic to

manage the memory system thus, increasing its cost and reducing performance.

Distributed-memory or Message Passing systems however, do not suffer from the

above mentioned drawbacks. Since each PE has its own memory, potential bottlenecks

associated with PE-memory bus and the need for elaborate cache management
subsystems are completely eliminated. Adding PEs adds memory, and PE-memory
bandwidth scales with computational power. The nCUBE 3E systems have incorporated

a sophisticated interconnect topology to facilitate a high bandwidth inter-PE
communication. Their methods and the interconnect topologies will be described in
another chapter. Further, based on their bus interconnections, systems in figure 2.2(a) are

called tightly coupled and figure 2.2(b) systems are loosely coupled.

2.4 The Interconnect

A variety of interconnection networks can be used to connect the PEs in any
distributed or shared memory systems. Broadly, interconnection networks are classified

into Static or Dynamic networks.
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As the name implies a Static Interconnect consists of fixed links between the PEs

and can be considered point-to-point or a direct network. Linear Arrays, Rings, Chordal

Rings, Mesh, Torus, Tree, Star, Barrel Shifters and Hypercubes all fall in this category

[16 and 28]. These topologies are used to construct message passing computers.

Dynamic networks are implemented with switches and communication links. The

switched channels are dynamically configured to match the communication demand in

user programs so as to establish paths among PEs and memory banks. These are referred

to as indirect networks [35] and are used to build shared address space systems [15 and

35].

The communication efficiency of the underlying network is critical to the
performance of a parallel computer. The aim is to achieve a low latency network with a

high data transfer rate and thus a wide communication bandwidth [16]. Thus, the
network properties need to be analyzed in order to make design choices of the machine

size, system scalabilty and flexibility for data routing operations. Further, any topology

under consideration should provide a high fault tolerance, regularity of structure, simple

deadlock free routing algorithm, high I/O bandwidth, and small diameter. It should also

be able to embed other topologies like ring, mesh and trees so as to facilitate portability of

the applications written on the latter topologies [12].

The representative topology in this work has been the Hypercube. This thesis is not

constrained to just this network, it can be extended to other systems too. Massively
Parallel systems require an interconnect topology capable of scaling to large number of

PEs without degrading communication performance or increasing latency. The
hypercube meets these requirements. Additionally, the hypercube can efficiently emulate

other topologies, assuring that users will always have the correct interconnect for the task

at hand.

2.4.1 Interconnect Parameters

The diameter of a network is the maximum of the shortest distance between any

two PEs in the network. Small diameter implies shorter distance and lower
communication latencies. For a hypercube the diameter d = log2 p where p is the
maximum number of PEs. The dimension of a hypercube is its diameter.

Connectivity is the measure of the multiplicity of paths between any two PEs. High

connectivity is desirable as it provides for alternate routing schemes and more reliability

or fault-tolerance. For a k-dimensional hypercube the connectivity is k.
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Bisection Width is the minimum number of communication links that have to be
removed to partition the network into two equal halves. For a hypercube it is p/2.

Channel Width is the number of physical wires in each communication link between

the PEs. Each wire represents a bit.

Channel Rate is the peak rate at which a single physical wire can deliver bits.

Channel Bandwidth is the peak rate at which data can be communicated between

the ends of the communication links. It is the product of channel rate and channel width.

Bisection Bandwidth is the minimum volume of communication allowed between

any two halves of the network with an equal number of PEs. It is a product of channel
bandwidth and bisection width.

A good way of determining the cost of the network is by considering the number of

communication links it has or the number of wires in all. The hypercube has
(log2p)*(p/2) links. Thus, a 3 (k=3) dimension Cube with p = 8 has a cost of 3*4 = 12
links.

2.4.2 Hypercube

Definition [12] : A k-dimensional hypercube is an undirected graph of 2k nodes
(PEs) having addresses between 0 and 2k-1 such that there is an edge between any two

nodes, if and only if, the binary representations of their addresses differ in only one bit.

Above, in our discussion of parameters, some of the properties of hypercubes have

been outlined and a few more follow. Hypercubes for dimension k equal to 1, 2 and 3 are
shown in figure 3.1.

Property 1: A k-dimensional hypercube [12] can be constructed recursively using two
(k-1)-dimensional hypercubes.

Property 2: In a k-dimensional cube, each PE is directly connected to 'k' other PEs.
Property 3: The minimum distance between two nodes PEi and PEj is the number of bits

that differ between the addresses of node PEi and PEj. This is called the Hamming
Distance H(PEi, PEj) [12]. Also, the Hamming Distance is the number of 'ones' in the

binary representation of ' PEi.label EXOR PEj.label' where EXOR is the bitwise
exclusive-or operation and 'PEi.label' indicates the bit address of PEi.

Property 4: For a k-dimensional hypercube the binary representation of 'PEi.label EXOR

PEj.label' can at most contain 'k ones'. Thus the shortest path between any two PEs
cannot have more than 'k links'.
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figure 2.4 Hypercubes for different 'k' dimensions

An exhaustive study of the properties of hypercubes can be found in [12] and figure

2.4 shows 3 different hypercube topologies.

2.5 Routing Concepts

Performance is a function of the algorithm used to route a message in parallel
computers. The path it takes a message through the network to go from source to
destination is called the routing mechanism. As this thesis is based on message passing

multicomputers, the routing schemes, latency analysis or communication costs for it, with

respect to the hypercube topology will be discussed.

A message is a logical unit of information for inter-PE communication. It can have

variable length, and consists of arbitrary number of fixed length packets. A packet is a

basic unit containing the destination address for routing and sequence number for
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purposes of reassembly at the destination, as the packets may arrive in a random order

and will need to be enveloped into the original message. Each packet also contains data.

A packet may alternatively be further divided into distinct flow-control digits or

flits. The routing information (destination address and sequence number) occupy the
header flits and the remaining flits are the data elements of the packet. Two switching
schemes that are used for routing messages in hypercubes are Store-and-Forward (SFr)

and Cut-Through routing (CTr). These will be described in sections 2.7.1 and 2.7.2
respectively. However, the smallest unit of information in SFr is a packet and in CTr, it

is the flit. Typical packet lengths vary from 64 bits to 512 bits.

Routing mechanisms can be classified by two main criteria : one classification is
based on the selection of the path, namely minimal and nonminimal and the other
classification is based on how the network-state information is used, namely deterministic

and adaptive.

In short, minimal routing scheme requires each link to bring the message closer to

the destination by selecting the shortest path between the source and the destination. This

may cause congestion at some nodes on the network. In contrast, the nonminimal will

not care for the shortest path, but try to avoid any network congestion and inadvertently

always route the message by a longer path.

Deterministic mechanism determines [15] a unique path for a message, based on the

source and destination. This may result in uneven use of the network resources.
Adaptive routing, in contrast requires the current state of the network so as to route the

message around any congestion's as they may arise.

The adaptive-nonminimal routing scheme requires added intelligence at each node

and is more expensive in terms of time and money. A commonly used routing
mechanism for hypercubes called E-Cube routing which falls under deterministic-
minimal scheme is described. Further, the E-Cube routing algorithm may use either, the
SFr or CTr switching schemes.

2.6 E-Cube Routing in a 3 dimension Hypercube

k=3 (dimension)

Let PEO.label = 000 source address (src) and

PE7.label = 111 destination address (dst)

src EXOR dst = 111
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The 3 bit positions - Least Significant Bit (LSB on extreme right) bitO, bitl and

Most Significant Bit (MSB) bit2, denote the 3 dimensions of the hypercube. PEO first

forwards the message along the dimension corresponding to LSB. This means the
message will go to a connected PE whose address will differ only in bit0. It is PE1.1abel

= 001. This is now the new source 'src'.

src EXOR dst = 001 EXOR 111 = 110

PEI will forward it to PE3 whose label differs in the bitl position. PE3 now becomes the

new source and its label = 011

src EXOR dst = 011 EXOR 111 = 100

PE3 will finally forward the message to the destination PE7 along its MSB (bit3)
dimension. Refer to figure 2.5 for the above example on E-Cube routing.

figure 2.5 E-Cube Routing in a 3-dimensional Hypercube network
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2.7 Communication Latency

The total time it takes to prepare the message for transmission and the time taken to

traverse the network to reach the destination is equal to communication latency tc.
[35].

Startup Time is : It is the time to prepare the message at the source PE. It includes the

time to add the header, trailer, error correction information and also includes the time

taken to execute the routing algorithm and establish the path [35]. This is a one-time
cost.

Hop-Time th : The time taken by the header to travel between directly connected
processors on the network. Called also as Node latency, it is related to the routing switch

delay for determining which output buffer or channel the message should be forwarded to

[35].

Word Transfer Time t, : If channel bandwidth is x words/second then each word
takes the time of tw = 1/x to traverse the link [35].

2.7.1 Store-and-Forward Routing (SFr)

A packet is transmitted from a source to destination via intermediate PEs in the
path. Each node has a packet buffer. When an intermediate PE receives a packet it stores

the complete packet in its buffer. Then it is forwarded to the next node or PE only if the
desired output channel and the packet buffer on the receiving end are both available [15].

Let m : message size m words long.
1 : number of links to be traversed

Cost for traversing each link is th for the header and m.tw for the remaining message.
Thus,

tcomm = is + (th + m.tw).1

as is is incurred only once [35]. However, in today's systems th is quite small and if
neglected from above equation, the communication latency becomes

tcomm = is + (m.tw).1
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2.7.2 Cut-Through Routing (CTr)

As mentioned earlier, the smallest unit of information is the flit. In particular, CTr
is also called wormhole routing. All flits in the same message are transmitted in order as

inseparable companions [15] in a pipelined fashion. Only the header flit knows where the

packet is destined for, and the other flits just tow along the header flit.

The message is routed from the incoming link to the outgoing link as it arrives. An
intermediate PE does not wait to receive the entire message as in SFr, but the hardware
routers in each node read in the header flit information and advance it to the right
channel. Different packets can be interleaved during transmission, but the flits within
cannot be mixed up. Also, flits will always go on the same path taken by the header.
Since, each PE is not required to store the entire message, CTr requires less memory and
memory bandwidth at each intermediate PE and is real fast. In fact it can be proved [15]
that wormhole routing has a latency almost independent of the source and destination.

There can be instances of deadlock. If a flit is available at each of the PEs to be
dispatched, but the outgoing links of those PEs are already occupied by other flits, or the
receiving PE flit buffers are yet to be emptied, then a state of deadlock is reached as
nothing moves till one flit is discarded from the network. This loss of information is
unacceptable and so, a routing algorithm like E-Cube routing is preferred as it is deadlock
free [26 and 35].

For the same identity of 'm' and '1' from above, the message header takes a time of
l.th to reach the destination. The entire message will arrive in m.tv after the header.
Thus, the total communication latency for CTr is

tcomm = 1.th M.tw

It is clear that Cut Through routing takes less time to route a message and it is the
scheme used in todays multicomputers employing Hypercube topology.

For all parameters being the same for a particular k-dimension hypercube, the STr is
a function of (m.1) and CTr is a function of (m+1). So, for small 'm' or '1' both behave the
same but for larger 'm' or large '1' (higher dimensions) the CTr is better. For a single
message a comparison of SFr and CTr is shown with respect to time in figure 2.6.
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A Single message sent over a Store-and-Forward network.

i

Time

The above message broken into 4 'flits' and sent with Cut-Through routing.

Shaded flit is
the header flit

Time

figure 2.6 Comparing Store-and-Forward with Cut-Through routing for a single

message.

2.8 nCUBE 3E Inter Connect

The nCUBE 3E can scale from 8 to 65,536 processors. This implies a dimension
range of 3 to 16, so a maximum of 16 hops (as 216 = 65,536) in a completely configured

system. The architecture can be upgraded in increments of 8 processors.

The Start Up Time is as low as 5 p.s (1 i.ts = 1 microsecond = 10-6 seconds) as
compared to other available machines having 100 1.1s. This low value of is = 5 p.s is
achieved by using Direct Memory Access Channels (DMA) at each node that initiate the
transfer.
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It employs cut-through routers which forward the messages with no software
intervention and buffering, at an intermediate hop latency of 200 ns (1 ns = 1 nanosecond
= 10-9 seconds).

It has internal data buffers between each hypercube DMA channel and the memory

system, sustaining high transfer rates on multiple channels with minimal interference. As

cache and DMA buffers are on the same device, cache resident data can be directly
transferred to a message without first being written to memory.

The Channel Bandwidth = 50 MB per sec (MB = Mega Bytes). nCUBE 3E
channels are full duplex and parity checked for reliability. Full duplex indicates a two

way transmission. Parity-check implies checking for the odd or even number of '1's in a

sequence of bits at sending and receiving ends so as to ensure integrity of data. The
nCUBE 3E has 16 channels reserved for interprocessor communication. This supports a
dimension of 16 providing for 65,536 computational nodes.

Importance of the above parameters can be appreciated and their effect noticed

when the communication latency is examined over a particular topology for different
message sizes and hops.

Let the dimension k = 4

1 Word = 8 bytes = 64 bits (data path of nCUBE 3E processor)

Start up time: is = 5 pis

Hop Time: th = 200 ns

Channel BandWidth = 50 MB per sec

Word Transfer Time: tv, = 1 + (50*106) seconds per byte

tom, = 20 ns/byte

Now for a message size of 1 word the communication latency from PEO (address = 000)
to PE7 (address = 111) involves 3 hops (1). From above section of CTr

Communication Latency :

tcomm = is + l.th + m.tw

= 5 pis + 3 hops . 200 ns/hop +

1 word . 8 bytes/word . 20 nano-seconds per byte

= 5.10-6 + 600.10-9 + 160.10-9

tcomm = 5.76 !is

One word takes 5.76 pis and 10 words take 7.2 pis. Further for 100 words the latency is
21.6 pis. This indicates that the dominating factor here is the start up time ts. Even when
the order of the message size is increased by a factor of 10, the latency increases at a
much lower rate.
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If the number of hops is doubled, say 6, for a 6 dimension Cube, then the latency

increases to 6.36 !is for 1 word and to 7.56 ps for 12 hops in a 12 dimension cube.

Present research trends have brought down the communication factor considerably,

but still more work is required to achieve close to ideal results.

The speed of any PE for nCUBE 3E is given to be 50 MHz (1 MHz = 106 cycles per

second). This gives the processor cycle time to be

t = 20 ns/cycle.

Hence, is = 250 cycles

and th =10 cycles

Execution times of all operations in this thesis are expressed in cycles.

2.9 Performance Parameters

A parallel system is a combination of an algorithm and the parallel architecture it is

implemented on. A parallel algorithm can best be evaluated when taking the architecture

into account. Following are a few parameters that are important to this thesis

2.9.1 Speed Up and Efficiency

For a given program Tseq denotes the sequential or serial time to execute the

program on a single processor. Tp denotes the parallel execution time on p PEs. Thus,
for p processors the speed-up Sp is : Sp = Tseq / Tp (2.1)

It is the relative benefit of solving the problem in parallel. Consequently Efficiency

for the above system of p PEs will be given as :

Ep = Sp / p (2.2)

As speed-up can never exceed the number of PEs for a given run, we have the
condition : 0 Ep S 1.

2.9.2 Ideal Speed Up

It is the ratio of the Sequential-Time to the Critical Path Time. Critical path time is

the lower bound time or the minimum time above which the performance cannot
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improve. This is dependent on the application algorithm and node execution times. The

modus operandi of identifying the critical path is discussed in the section on BLAS in

chapter 5. Thus, ideal speed up is given as:

Ideal Speed up = Tseq / CP-Time (2.3)

2.9.3 Cost

Cost of solving an algorithm on a parallel machine is :

Cost = p . Tp (2.4)

It reflects the sum of the time spent by each PE in solving the problem. Also, it is a
denominator for the expression of Efficiency if Sp is substituted. Higher the Cost lower

is the Efficiency. Also, Efficiency can be viewed as the ratio of Sequential Cost to
Parallel Cost. Cost is also expressed as Processor-Time product (p.Tp) [25 and 35].

A Cost-Optimal parallel system is one in which the cost of solving the problem is

proportional to the execution time of the sequential algorithm on a single processor. A

Cost-Optimal parallel system has an efficiency of 1.

2.9.4 Performance Ratio

The variable that gives a better understanding of the scalability effects in . This is
indicated by PR and is -

PR = Sp / Ideal Speed-up * 100 % (2.5)

This percentage gives the merit for how well the algorithm on a parallel system reaches

its ideal speed-up when the PEs and the problem size is increased. Since,

1 5 Sp p and
ideal speed-up is greater than Sp, then SR/100 lies between 0 and 1. Further elaboration

will be done when discussing results in chapter 5.

2.10 Parallelism

Primary goal for designing parallel systems is to minimize program execution time.

A large number of scientific and engineering problems have pushed for the need to
exploit as much parallelism so as to adequately solve them in real time.
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Problems may have different parallel formulations, which result in varying benefits,

and all problems are not equally amenable to parallel processing.

Two major components of parallel algorithm design consists of 1) specifying the

concurrency and 2) specifying the data locality [35]. Concurrency is the identification

and the specification of the problem as a set of tasks that can be concurrently performed.

It is necessary to keep the processors busy. Data Locality is mapping of these tasks onto

various PEs so as to minimize the overhead of communication.

2.10.1 Types

Parallelism can be broadly seen as Structured or Unstructured. The former implies

a set [25] of independent identical tasks or processes that operate on different data sets.

The latter implies different instructions with different data streams. Also termed as Data

Parallelism, structured parallelism, by its very nature has been easier to deal with. An
example of Data Parallelism is the matrix multiplication problem which has been
discussed in detail in this thesis in chapters 3, 4, 5 and 6. Further, unstructured
parallelism is also referred to as Control Parallelism [16 and 35]. A good example of

Control Parallelism is where processors are used in a pipeline. The computation is
parallelized by executing different parts of a program at each PE and sending
intermediate results to the next PE. The result is a pipeline of data flowing between
processors.

Many problems show a certain amount of both data parallelism and control
parallelism [35]. However, the amount of control parallelism available in a program is

independent of the size of the problem and is thus limited, but, the amount of data
parallelism in a problem is directly proportional to the size of the program. Therefore, to

use a large number of PEs efficiently on large problems, it is necessary to exploit any
inherent data parallelism within the application.

Specifying parallelism is an important step towards extracting best results from
parallel systems. A user chooses the best available parallel algorithm. The data
structures are then organized to suit the parallel architecture, e.g., vectors are better than

linked list for they allow parallel access [16, 25 and 26]. The algorithm is then coded

using an appropriate language. Either this language is a known serial language like

FORTRAN or C with parallel constructs or it is a new parallel language like SISAL or Id.

SISAL has been the choice for this thesis and its brief discussion and motivation will be

presented in chapter 3.



23

2.11 Program Granularity

Coding the program into independent modules of computation called subroutines

helps in its parallel execution. Parts of the computation are organized as subroutines that

can be made to execute in parallel. Parallelism at the subroutine level can be described as

Coarse Grain.

Loop level parallelism is Medium Grained. Parallelism can be specified by the user

or the compiler can figure it out by doing a dependence analysis at the loop level.
Different types of parallelism exist at this level based on the dependence graph of the
loop.

Operation or Instruction level parallelism is called Fine Grained. Though actual
program runs have shown that fine grain parallelism does not give better speed-ups as

compared to medium grain, it is still important with respect to the parallelism that can be

exploited within the PEs like using pipelining, multiple functional units and other infra

PE parallelism.

2.12 Processor Granularity

Parallel Computers are constructed with varying number of PEs. Some machines

like Cray Y-MP contain a small number of very powerful PEs and are called Coarse

Grain computers. Cray Y-MP offers 8-16 PEs, each capable of several Gflops (1 Gflop =

109 floating point operations per second). Fine Grain computers are those which consist

of a large number of less powerful PEs [26 and 35]. These are CM-2 which has at a
maximum of 65,536 one-bit PEs and MasPar-MP2 containing up to 16,384 PEs. In
between, Coarse and Fine there exists a class of computers in which each PE gives

workstation type performance. These are the Medium Grain computers containing a few

thousand processors like nCUBE2, Thinking Machine's CM-5 and Intel's Paragon XP/S.

This thesis work has simulated a nCUBE 3E Series architecture (primarily the network)

configuring it as a medium to coarse grain system (64 to 1024 PEs).

Applications that have higher degree of concurrency make effective use of a large
number of less powerful PEs in fine to medium grain computers. In contrast, applications

with lower degree of concurrency make cost effective use of coarse grain systems.
Further, PEs that are used in coarse grain machines are fast, specially fabricated and not

available in large scale, so they cost more [15 and 25] as compared to the medium grain

and fine grain computers that have a record of using off-the-shelf processors. This
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requires a tradeoff between cost and utility of the computer [35] when choosing processor

granularity.

The granularity (defined formally in [35] ) of a parallel computer is the ratio of the

time required for a basic communication operation to the time required for a basic
computation. This is also applicable to program granularity where-in, the C/T ratios are

calculated for different programs (section 5.8) to compare their grain sizes and achieved

speed ups.

2.13 Utilization

Experience has shown that only a small fraction of the maximum available
parallelism can be realized [25 and 26]. This will also be seen in the results section in
chapter 5 when considering the maximum attainable parallelism and achieved speed ups.

Restricting forces during parallel execution include overheads of synchronization,

inter PE communication, scheduling and any other random delays due to memory and

network conflicts. Many considerations [25, 27, 29 and 30] have prompted researchers to

write more sophisticated and automated tools to specify parallelism, restructure and map

problems, rather than leave any of these steps to skills of the best programmer. This
thesis is a step towards that automation.

SISAL programs on their intermediate compilation gives a file containing multiple

acyclic graphs. The implicit dependencies between these graphs are translated to actual

dependencies by a graph preprocessor called the Automator. The translated graphs are

then allocated to different PEs in a hypercube networked system by the allocation
algorithm BLAS. Chapter 3 describes SISAL and the IF1 stage.
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CHAPTER 3. A PARALLEL LANGUAGE - SISAL

After extensive research and use, auto-parallelizing compilers have not met
expectations in automatically parallelizing imperative languages. Imperative languages

like Fortan-77, C, Pascal, Cobol and others have been developed for sequential machines.

The model of computation for these assumes a single processor and a single instruction
stream. Since, a large installed base of imperative code already exists, the auto-
parallelizing compilers will stay for some time to come but, they do not present a long

term solution. Also, [22] the existing languages reflect the storage structure of the von

Neumann concept of computer organization in that each language has some method of

effecting a change in state of the memory that cannot be modeled as a local effect. This

makes it very difficult to analyze parts of the program that may be executed concurrently.

Many of the present parallel languages for shared memory or message passing
systems are essentially sequential (imperative) languages 'augmented' by a set of special
system calls. These calls provide low-level instructions (also called primitives) for
message passing, process synchronization, process creation, mutual exclusion, and other

necessary functions [35]. Synchronization is a general term for timing constraints
imposed by the communications and interactions between concurrent processes. In order

for these 'extended' languages to be used on parallel systems, information stored in
different PEs must be explicitly shared using the above primitives. These features will

make programs efficient, but, also difficult to understand, debug and maintain. Further,

lack of standards in parallel languages has made program portability across architectures

very difficult. In general, [25] if the communication patterns required by the parallel

algorithm are not supported by the parallel language, then the parallel program will be

less efficient. Also, the communication patterns will vary over different architectures.

3.1 The Data Flow Concept

A well known representative to the approach of making parallel processing more
accessible are the data flow systems. These start with the data driven model of
computation, employ a different style of high level programming and design special

purpose architectures targeted specifically to the execution of data flow programs. The

study of data flow systems is out of scope for this work but can be found in [2, 3, 6, 7, 13,

19 and 23]. However, the concepts laid out by the data flow research community has
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opened many avenues to integrate the data flow model with the conventional von
Neumann architectures. This has resulted in hybrid systems and, in keeping alive new

parallel languages suited for parallel computing.

The von Neumann model [1, 2, 3, 6, 7 and 13] is characterized by two main aspects:

1. It has a global addressable memory to hold the program and data objects, with
program instructions frequently updating the contents of memory during execution.

2. It has an instruction counter which holds the address of the next instruction to be

executed. This counter is either implicitly (incremented after each instruction) or

explicitly (depending on the jump address) updated to provide the machine with a

sequence of instructions to execute. This characteristic implies a single locus of
control a fundamental limitation for parallel processing.

In contrast, the data flow model [1, 2, 3, 6, 7 and 13] is characterized by 2 features:

1. It deals only with values and not with names of value containers i.e., the addresses.

This property is fundamental to functional or applicative languages which have no

built-in concept of global updatable memory. An operator in these languages
produces a value that is used by other operators.

2. There is no single locus of control i.e. no program-counter.

An instruction in this model is enabled (executed or issued), if and only if, the
required input values or operands have been computed earlier. The executing instruction

produces a set of output values which will be passed on to the other instruction or
instructions that may need it. Thus, an instruction [2 and 17] in data flow has no other

side-effects, and a language based on such a model does not introduce sequencing
constraints other than ones imposed by the data dependencies in the algorithm. In

principle, it is possible to expose all of the parallelism in a data flow program. A
program in any high level data flow language like Id, VAL or SISAL directly translates

into a graph where the nodes represent functions and arcs represent dependencies.

3.2 Functional Languages

The term functional is often used [2, 3 and 6] to describe a language that operates

by application of functions to values.
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Few properties of functional languages and their brief explanations will allow a
better understanding.

3.2.1 Properties

Property I. Locality of effect [1, 2 and 13]

Locality of effect means instructions do not have unnecessary far reaching data
dependencies. Consider a program fragment

M = X+Y

N = M/Y

0 = X*M
Here M, N and 0 are all temporaries. Another fragment appearing elsewhere in the

program may use the same temporaries to do an unrelated computation. Both fragments

will not be allowed to execute in parallel because, of apparent data dependencies that is

created from duplication of temporaries. Functional languages take care of this by
limiting the scope of a variable to a particular region or procedure in which it is active.

Thus, they avoid global variables.

Property 2. Freedom from Side Effects

Side Effects can be seen when procedures modify variables in the calling program

or even when they modify their own arguments. In general, if arrays or records exist as

global objects in memory and are manipulated by statements and passed as pointers or
procedure parameters, it is very difficult to know what effects a modification on an array
element may have elsewhere in the program.

A solution sought by functional languages is to use call by value instead of the
traditional von Neumann approach of call by reference. In 'call by value' schemes a

procedure copies its arguments, even if they are arrays. Thus, the actual arguments are
never modified in the calling program .

Freedom from side effects ensures that data dependencies are the same as
sequencing constraints. It is more difficult [1 and 13] to achieve than Locality as it
requires fundamental changes in the way a language's virtual machine processes data.
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Property 3. Single Assignment Principle [1 and 13]

A variable may appear on the left side of an assignment only once within the area of

the program within which it is active. It allows more clarity and ease of program
verification. This feature is easy to achieve.

The above 3 properties are amongst the important ones and a more detailed
explanation may be sought in [1 and 13]. Hence, functional languages promote the
construction of correct parallel programs by isolating the programmer from the
overwhelming complexities of parallel computing.

3.3 SISAL

SISAL belongs to a class of applicative languages which share the following
characteristics :

1. Expression based or Function Based.

2. Determinate results when a function is invoked with same arguments any number of

times.

3. No side effects.
4. Lack of global variables.

SISAL stands for Streams and Iterations in a Single Assignment Language. The

single assignment feature, as described above, allows a name to receive a value only once

in each name-scope after which it becomes a read-only value to be shared amongst any

number of consumers. This property eliminates one of the major causes of indeterminacy

in parallel execution [8 and 22]

Being entirely free of side effects each module or well formed [22] portion of
SISAL program corresponds to a mathematical function and the entire effect of putting

two parts together is to compose the corresponding functions. The input and output

issues are addressed through the introduction of streams of values that communicate

between program modules.

The language includes the standard scalar types namely Boolean, integer, real and

double precision. In addition there are aggregate types like arrays, records, unions and

streams. Multidimensional arrays are implemented as arrays of arrays [31]. The streams

in SISAL are non-strict : the values are available as soon as produced. The loops in
SISAL may be sequential or parallel. It supports the construct ForAll to specify loops
with all iterations to be executable in parallel. In addition, decision constructs like Select
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executing the if-then-else format and Tag Case is available. These complex constructs

typical to SISAL-IF1 will be discussed at length in the chapters 9 and 10.

The SISAL project [8] is a collaborative effort between Lawrence Livermore
National Laboratory (LLNL), Colorado State University, University of Manchester and

Digital Equipment Corporation.

3.3.1 The SISAL Compiler

The osc is an Optimizing SISAL Compiler developed at LLNL. The figure 3.1
shows the different stages of the compiler. SISAL allows for independent compilation

units. Being typical to applicative computing, the osc compiler [31] eliminates the extra

copying and memory overheads.

The osc starts out at the SISAL front-end by translating the source files with suffix

.sis into an intermediate form called IF1. The IF1 is the basic core around which this
work revolves. IF1 files define the dependencies between data flow graphs. The IF1LD

links the IF1 files into a monolith and presents them to the successive stages for
optimization.

The IF1OPT is a machine independent optimizer that carries out some standard
optimizations described below.

Loop fission; Loop splitting; Constant folding; Invariant removal; Parallel

operation hoisting (from sequential loops); Loop inversion (pulling tests

out of loops); Loop fusion; Common subexpression elimination; Dope

vector optimizations; Loop unrolling and Cascaded test removal.

Details on the optimizations can be obtained from [8]. The next phases in the
compilation are the IF2 stages, which are essentially machine dependent supersets of IF1.

The IF2 stages support abstract memory referencing. The IF2MEM is a build-in-place

analyzer which allocates abstract memory locations to IF1 nodes. IF2UP is the update-

in-place analyzer identifying the opportunities for carrying out some operations in place

without additional memory allocation [8 and 31]. The monolith, now optimized and
translated into IF2, is given to the IF2PART for parallelization. Finally, IF2GEN
translates the IF2 graphs into C code or FORTRAN code. The C or FORTRAN

compiler links the runtime libraries and produces binary executable code to be run on the
target machine.

The translation for BLAS begins after the IF1OPT stage because the feature of
machine independence is maintained only till that phase in compilation.
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The Automator works
with these stages

Sisal Program Modules

LL Parser

IF ILD

IFIOPT

1F2MEM

EF2UP

IF2PART

IF2GEN

C Code

Sisal Library

Run Time Libraries
and Include files

figure 3.1 Structure of SISAL's "osc" compiler

3.4 IF1 Phase

Any restructurer has to perform sophisticated dependence analysis and build a data
dependence graph (DDG) of a program [25]. The DDG is an internal representation ofa
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program that is used by most subsequent passes to carry out variety of transformations

and optimizations keeping the semantics of the source program. The DDG is a directed

graph, where nodes correspond either to program statements or tasks and arcs represent

dependencies. Dependencies imply a partial order of execution on the program
statements or tasks as it may be. The IF1 stage is such a restructurer.

Intermediate Form-1 is a graphical language based only on acyclic data flow
graphs. There are four components to an IF! graph [31]: Nodes, Edges, Types and Graph

Boundaries. Nodes denote operations of the language, Edges represent values and
operands that are passed from node to node, Types are attached to each edge or function

and lastly, Graph boundaries surround a group of nodes and edges. These components

will be addressed in detail in the section 3.5 and will find place in the description of the

Automater.

3.4.1 Motivation

Motivation to use IF1 in this project primarily came from following considerations :

1) IF1 is a graphical representation of the program. The acyclic nature of the graphs

gives an opportunity to realize the Automater tool with ease.

2) There are no control operators within the graph as is in Id a well known data flow
language used widely with true data flow architectures. Language constructs like

iterations and decision blocks like if-then-else are clearly defined to contain
separate subgraphs each having its own scope and acyclic nature.

3) Preparing these graphs for any scheduling scheme can be achieved as they are

completely architecture independent. Thus, even though the SISAL project was

initially focused on multiprocessor systems, the intermediate compilation and first

stage of standard optimizations were made independent of the architecture.

4) Lastly, the source code for SISAL and IF structures is easily available from LLNL

at no extra cost; in fact, support for the language is free and computer time on a

CRAY supercomputer at LLNL is offered free for any research group working on

SISAL related projects.

In contrast, the other candidate for consideration Id Noveau fell short of the above

features in our evaluation in addition to its having a more dynamic scheme of graphical
representation during run time.
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3.5 The IF1 Language

A good aid in understanding the graphical language is to trace a real example,
which will be followed through the text. The matrix-multiplication program and its IF1

representation follows. However, the complete description of the algorithm is left to a
later section on the Implementation of the Automater.

A SISAL Program for matrix multiplication called matmult.sis is given below :

define Main

type OneD = array[double_real];
type TwoD = array[OneD];

% Multiple A[1..x, 1..y] and B[1..y, 1..z].

function Main(x,y,z: integer; A, B: TwoD returns TwoD)

for i in 1, x cross j in 1, z

Cij := for k in 1, y
returns value of sum A[i, k] * B[k, j]

end for
returns array of Cij
end for

end function % multiply

figure 3.2 matmult.sis

A detailed explanation of the program constructs can be obtained from the
Language Reference Manual [22]. Brief analysis follows : The define statement is an

export declaration stating which function will export values to the outside world. This is
followed by a data type definition where-in, a 2-dimensional array-TwoD is an array of
another array-OneD. The data typing is strict in SISAL. Source comments follow the %

sign till end of that line only. Rest of the program is reserved for function definition
which comprises of the function signature and one or more expressions defining the
results. The function declaration for Main is read as : Composed of : variables x, y, z
(all integers) and Arrays - A and B (both 2-dimensional); it returns a 2-dimensional value.

The for construct will be dwelled into, in chapter 4. The cross operation is known as the

cartesian or outer product of sequences defining an implicit nesting of the for
expressions. The above cross product means :

for i in 1, x
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for j in 1, z

The osc compiler interprets the 'cross product' as a parallelizable section.

When the source matmult.sis is compiled with the command

osc -IF1 matmult.sis

the source outputs an intermediate compilation stage called matmult.ifl. A complete

explanation for deciphering the IF1 file is available in the manual [33]. Here a brief idea

is presented for clarity.

{ Compound 1 0

C 0 %s1-12
N 1 142 %s1=12
L 1 1 4 "1" %mk=V
E 0 1 1 2 4 %na=y %mk=V %s1=11
E 1 1 0 6 17 %na=k %mk=V
G 0 %s1=12
N 1 105
E 0 2 1 1 10 %na=a %mk=V
E 0 3 1 2 4 %na=i %mk=V
N 2 105 %s1=12
E 1 1 2 1 9 %mk=V
E 0 6 2 2 4 %na=k %mk=V
N 3 105
E 0 4 3 1 10 %na=b %mk=V
E 0 6 3 2 4 %na=k %mk=V
N 4 105 %s1=13
E 3 1 4 1 9 %mk=V
E 0 5 4 2 4 %na=j %mk=V
N 5 152 %s1=12
E 2 1 5 1 3 %mk=V
E 4 1 5 2 3 %mk=V
E 5 1 0 7 3 %mk =V
C, 0 %s1=12
N 4 149 %s1=13
L 4 1 20 "SUM" %mk=V
L 4 2 3 "0.0DO" %mk=V
E 0 7 4 3 21 %mk=V
E 4 1 0 1 3 %mk=V
} 1 0 3 0 1 2 %s1=12

figure 3.3 Section of the matmult.ifl file (Innermost ForAll)

Evidently, it is cumbersome to read such a representation. It serves better to create

a graph (a drawing) from such a language for analysis. Also, the .0 files will be
presented graphically for the remainder of this thesis.

The above section represents the innermost for statement in ' matmult.sis', evaluating

the expression for different values of 'k'. To see the graphical representation of the above

section refer to figure 3.4.



34

3.5.1 Dissection of the matmultifl section

The first non-blank character on any line in an .ifl file distinguishes the structures.

If the line begins with the following (upper case) ASCII letters then they mean :-

C Comment

E Edge

L Literal

N Simple Node

Start of Complex Node

End of the corresponding Complex Node

T Type label

G Graph (Function Graph or a Subgraph)
X Graph (Exported Function)

I Graph (Imported Function)

As mentioned earlier an IF1 graph consists of nodes, edges, types and graph
boundaries. Here, a brief explanation is presented, summarizing important aspects of
reading .ifl files before one ventures to understand the actual data structures around
which the code for IF1 files was built. The Automator tool has been developed using the

structures of IF1 files to translate and present a SISAL program to the Balanced Layered
Allocation Scheme.

3.6 Nodes

Nodes represent operations on values they receive. Each node has 2 set of ports :

input ports to import the values from another node, or the graph boundary, or a constant
(Literal) and output ports to export values to another node or graph boundary. Nodes are
of two types : Simple and Compound.

3.6.1 Simple Nodes of IF1

Simple Nodes begin with a N in the above file and the are of the form:

N Label Operation
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"I"

(RangeGen
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(AElement)

Row

(
AElement

k

/ V

B

(AElement)

Row

AElement

kj

Times

aik* kj

a"0.0DO" ik*bkj

(Reduce )

elements

figure 3.4 Innermost Nested Level of matmult.ifl

The Operation field is a code-number that may be obtained from the manual. The
number '142' is a RangeGenerate operation. It generates a sequence of integers and
places them on the output port. The inclusive range is given on its input ports. Most
simple nodes have a fixed number of input and output ports although there are variable
[33] number of inputs to nodes such as those that build structured data types. Simple
nodes do : the arithmetic and Boolean operations; arrays, records, unions and streams
manipulations; Gather and Scatter of multiple values and function calls.
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3.6.2 Compound Nodes of IF1

Compound nodes contain subgraphs, while simple nodes do not. The semantics of

the Compound Nodes determine the manner in which its subgraphs interact. Their form

is :

{
G

G

G

} Label Operation Code Association List (Integers separated by a single space)

Hence, the section from matmult.ifl file in figure 3.3, is a For All Compound node.

The line beginning with a G represents a subgraph. The first G is the Generator,
followed by the Body subgraph and finally the Returns subgraph. The Operation Code

for For All (from [33]) is 0 and the Association List on the last line beginning with '1', is :

3 0 1 2 3. The integers indicate 3 subgraphs numbered 0, 1 and 2 where-in, subgraph 0

feeds subgraph 1 and the subgraph 1 outputs are packaged by the Returns subgraph 2.

The first integer in an association list gives the subgraph count. Defined within the scope

of each G are the nodes, edges and literals.

3.6.3 Dependencies in a Compound Structure

Three kinds of implicit dependencies can exist within a compound node [33]:

1) Data Dependence between the compound node and its subgraphs.

2) Data Dependence between subgraphs of a compound node.

3) Control Dependence that may occur as a result of a Boolean condition being true or
false.

Dependence 1) will occur when a compound node passes its input values to its

subgraphs, or when any subgraph returns values that become the results of the compound

node. Dependence 2) will be seen usually in loops, when the loop values, calculated in

the initialization subgraph, and values of the loop body subgraph are passed to the results

part and back into the loop body. Finally, the control dependence is evident in the if-

then-else structure called Select and iterative loops called LoopA or LoopB. A predicate
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determines which expression to evaluate in a Select or when an iterative loop is to
terminate.

3.7 Edges

Edges represent explicit data dependencies within the graph. Semantics of a
compound node describe the implicit dependencies between the subgrpahs, thus, not all

data dependencies are explicitly given in the edge list.

The edge list begins with E in the .ifl file and each edge is 6-tuples. That is, they

have 6 fields to describe their interaction. They are Source-Node, Source-Port,
Destination-Node, Destination-Port, Reference to Type Label and Comments. The
following line in the above .ifl file is read as :

E 01 12 4 %na=y %mk=V %s1=11

An edge having its source at Node 0 at its port-1, goes to Node 1 at its port-2. The

reference to the Type label is 4 (Types not shown here). The Comments field are usually

filled with Pragmas. Each pragma variable starts with a % sign and consist of a 2
character code. Pragmas are used to record the source line (%s1) of the generated edge,

give a name (%na) to the edge and mark this edge 'by reference' ( %mk =R) or 'by value'

( %mk =V). There are more pragmas that the osc compiler may output in the .ifl line,

than those described above, and their details can be found in the manual [8].

Literals are a form of edge with a difference, that, they do not have a source. They

are 5-tuples having 5 fields, the extra fifth field being the value of the Literal. The value

is indicated in double inverted commas as shown in the following example taken from the

above .ifl file :

L 1 1 4 "1" %mk=V

The above line is read as : a Literal going to Node 1 at its port-1 and having value
of "1". Literals can depict the entry of Constants, Imported Functions and Boolean
conditions into a Node.

Edges can also be viewed as being exported when leaving a node and imported

when entering a node. Literals may only be imported.
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3.8 Types

Type Description will always appear in the beginning of the .ifl file and is in the
format :

T Label TypeCode Basic Code Comments

First 6 Labels are reserved for the 'Basic' Type Code which describe the edge as
follows:

T 1 1 0 %na=Boolean

T 2 1 1 %na=Character

T 3 1 2 %na=Double

T 4 1 3 %na=Integer

T 5 1 4 %na=Null

T 6 1 5 %na=Real

Once again, the comments are pragmas introduced by the compiler indicating the

name of the edge. Here, the Type Code 1 represents a type called Basic. The Basic
Codes describing the actual nature of the edge are in the fourth field, ranging from 0 to 5.

There are variations in the above format depending on the type-descriptor for Arrays,

Functions, Records and other such language constructs. Details can be referenced in [33].

In the above example of an edge E, in section 3.7, the number 4 in the field 'Reference to

Type Label' indicates that, the edge is carrying integer values.

3.9 Graph Boundaries

Graph Boundaries begin with the line containing G and a Type reference followed

by a name in inverted commas. A Type reference of '0' indicates that it is a subgraph

and the name field is left blank, as in the file section of figure 3.3. Lines beginning with

X (exported function) or I (imported function) have the same format and indicate graph
boundaries.

The boundary denoted by a black line surrounding the nodes in figure 3.4, serves as

the collector of imported and exported values for all edges inside it. The label of the
boundary is always an implicit '0'. When a value is imported from a boundary, the Node

receiving it has its source node as '0' and if the graph is returning values of computed
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results, then these values are sent to node zero. Hence, a node whose destination node is

0 in the above .ifl file section (figure 3.3), implies that, the node is exporting values to

the boundary. Label zero is reserved for the graph boundary in the IF1 language
specification.

Labels are unique only within a graph and if the graph contains subgraphs then the

label definitions do not extend into the subgraphs.

3.10 Structures in IF1 -- An Overview

After getting a good look at the graphical form and its numerical representation, it is

simpler to comprehend how the IF1 structures are actually organized. The IF1 structures

are the central theme around which the Automater Tool is built. Refer to the 1F1 graph in

figure 3.5. This represents the outer block of the matmult.ifl file. It is the Functional

graph for matrix multiplication with the nested levels of the For All node not shown here.

The internals of IF1 are essentially organized into two main data structures : 1.

Node-Structure (NS) and 2. Edge-Structure (ES). There are other structures but, this

discussion will not pursue these for sake of clarity. Details can be found in the source of
SISAL from LLNL.

Outer wall of the above graph is a graph boundary for the Function and is
represented as a Node-Structure. Boundaries to all the graphs and subgraphs are Node-

Structures. Nodes that lie within a boundary wall, are connected to each other and the
wall itself, via edges, which are completely characterized by Edge-Structures.

As can be seen, the Function has two nodes labeled N1 (For All) and N2 (ASetL).

N1 receives five of its inputs from the boundary and N2 receives one edge from N1 and

an input Literal. N2 also outputs an edge carrying results of the graph, to the boundary.

This graph translates into figure 3.6. Here, the edges are shown.

Big rectangles are used to denote graph-boundary structures, small shaded
rectangles represent Edge-Structures and the circular figures are the actual nodes within

the graphs. Sequential labeling of nodes allows for each node to be a successor to the

previously labeled node. Hence, the main Function Graph has a node-successor (nsucc)

in For All which in turn has a nsucc in ASetL. The For All node is a complex structure and

has subgraphs within its structure. This is reached by the graph-successor (gsucc) link.

Each subgraph is connected with its previous one with a gsucc link. Subgraphs are Node-

Structures, as described above, but they are differentiated from actual IF! nodes by being

interlinked with gsucc. Without Edge-Structures, that is, only with gsucc and nsucc links
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present, this structure can be said to form a skeleton of the program. The skeletal graph is

shown in figure 3.7. It represents the entire matmult.ifl program.

Body vessels that carry data are Edge-Structures, traversing in between the Node-

Structures. All the edges that emanate from a node, are said to be exported from its
structure. Thus, the source (src) of those edges is that node. Edges are imported (imp)

by a node when they carry some value to that Node-Structure.

A B
1 2 3

V

4 5

3 2 4 5

FOR-ALL

TwoD

2ASetL

"1"

TwoD : C[i,

figure 3.5 Function Graph for matmult.ifl (Outer Level)

Accordingly, each of those Edge-Structure's has its destination (dst) as that NS, to

which they carry values. An Edge-Structure is denoted by [e(Ni-Ni);value]. Ni-Nj
implies the edge is exported by Ni and imported by N. The value field indicates the 'data

value' that is being carried by the edge.

In section 3.6 describing Nodes for the .i:f7 file, it was mentioned that each node had

a set of input and output ports on which it received and passed out values respectively.

These ports are numbered. To keep track of the port numbering, the export-successor

(esucc) and import-successor (isucc) fields are added to the Edge-Structure. In the
figure 3.6, there are four out of five edges exported from the Function NS (Node 0) to the
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For All node N1. Each edge is an esucc of the edge emanating from the previous port.

The first edge is exported on port-1 and the others on subsequent ports become the esucc

of its previous one like in a daisy chain. Hence, Edge-Structure ( [e(0-1); y] ) receiving

values from port-3 of Function NS is the esucc to the ES that receives values on port-2

and so on. The same also applies to the import of edges. A good feature that is exhibited

by the import-export fields is the handling of cross-overs. This can be seen in figure 3.5

and figure 3.6. An edge is exported at port-2 of the Function NS and is imported by N1

at port-3 then, such a cross-over in ports can be successfully depicted in the IF1 internal

structure.

Literals are edges that have no source but have a destination node to which they

provide some constant or Called function. This can be seen in the case of the ASetL

receiving a Literal of "1" depicted by the ES [e(L); " .

Figure 3.7 shows the complete IF1 file as it is interpreted from the matmult.ifl file.

Figure 3.8 is the skeleton of this representation.

3.11 Characteristics of the IF1 Structure

1. All Graph Boundaries including the subgraph boundaries are labeled Node 0.

2. Subgraphs of a Complex structure are linked by gsucc in a predefined fashion. That

is, a Body Subgraph of a For All is always a gsucc to the Generator subgraph. The

compound nodes and their predefined subgraphs will be elaborated in chapter 7.

3. When multiple functions are involved in the same .ifl file, then Function-2 is a
gsucc of Function-1 and so on.

4. Edges are exported (isucc) from one Node and imported (imp) by another Node. No

edge has the same NS as its source and destination. Thus, no cycles are permitted.

5. All Edge-Structures have a destination (dst). Excluding Literals, all ES's have a
source (src) in some NS.

6. Export-successor's and import-successor's depict the port numbering of the Node-
Structures to which they apply.

7. All successor fields in the ES and NS have corresponding opposite going
predecessor fields. These predecessor lines are not shown in the figure 3.6 to avoid
confusion. That is, each nsucc line has an opposite going npred line and the same is
true for isucc-ipred, esucc-epred and gsucc-gpred fields.
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figure 3.6 Internal IF1 Structure for the Outer Boundary of matmult.ifl file
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figure 3.7 The Complete IF1 representation of matmult.if I file
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Function Graph
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N2

Outer most graph boundary

gsucc
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figure 3.8 1F1 structure for the entire matmult.ifl file
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8. For a Node-Structure, fields relevant to this discussion are exp, imp, gsucc, nsucc, in

addition to type and label. Each NS is characterized either as a Simple node, a

Complex node or just a Graph Boundary for a Function or subgraphs. The types are

represented as numbers in the IF1 specification. For simple nodes they range from

100 to 160 (inclusive), for complex nodes the types range from 0 to 5 (inclusive)

and for graph boundaries the range is from 1000 to 1003 with 9999 being any type

that is not defined. The label field is assigned in the .if/ file, to sequence the nodes.

Here, the label and type, correspond to same information as seen earlier, in the .ifl

section in figure 3.3.

9. The relevant fields for an Edge-Structure are src, dst, isucc, esucc, in addition to

iport (import port identifier) and eport (export port identifier). The iport and eport

carry the actual port numbers associated with the edges. These identifiers will not

be used in the Automator implementation. Another field called CoNsT is used to
carry the information for a Literal edge. Automator will use the CoNsT field to

calculate the body count of the complex nodes.
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CHAPTER 4. THE AUTOMATOR

4.1 Where does the Automator fit ?

The IF1 stage produces a graph that is acyclic in nature. This graph has nodes and

boundaries that have implicit dependencies. The Automator package preprocesses the

IF1 graph and presents a translated version to the Balanced Layered Allocation Scheme

(BLAS). The Automator converts all the implicit dependencies to actual ones in its
translation. The use of this tool will become more evident in the further discussion on

how it goes about preprocessing. Hence, the Automator sits in between SISAL's IF1
stage and the input to BLAS as shown in the figure 4.1

rSISAL's IFI Graphs Automator BLAS

figure 4.1 Automator presents Linked lists to BLAS

4.2 Why is it required ?

BLAS is a static allocation scheme that partitions graphs to tasks at compile time. It

then assigns these tasks to PEs in a given architecture based on the communication costs

between co-operating PEs. The algorithm and its implementation will be discussed in

chapter 5, on BLAS. In the current context, visualize BLAS as a black-box requiring a
graph in its linked list format at the input. Before the Automator was constructed, only

'simple toy programs' were put to test using BLAS. These 'toy' program graphs consisted

only of simple operations, lacking any of the complex language constructs like if-then-

else, do-all, case and iterative loops. Further, these graphs were hand drawn and were
limited in size to around 200 nodes.

With the Automator in place, 'real life' programs written and compiled in SISAL

have been used to test the effectiveness of the allocation scheme. This has required
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modifications in BLAS's implementation, which will be described later in the discussion

of BLAS Chapter 5. There is virtually no limit to the size of the graph that can be
generated, other than the space and time constraints of the computer running the
Automator. A million node graph takes about 30 hours on a SPARC-10 processor.
However, BLAS algorithm has complexity in the Order of n3 where n is the number of

nodes. This poses a severe limitation on real time allocation of large graphs, limiting the
maximum size to below 10,000 nodes.

The name given to the executable file of the Automator is blast, as it "blasts" open

the intermediate form. The line of commands to run the package and carry out a BLAS
simulation are :

prompt% osc -IFI matmult.sis

The above creates the matmult.ifl file.

prompt% blast matmult.ifl matifl.i
The .ifl file is the input and the output of the Automator is stored into the file matifl.i.

prompt% bias

Above runs the BLAS algorithm. When invoked, it will ask for a file to allocate, and
the user will type in matzfl.i at that prompt.

The user interface for the Automator will be described in a separate section.
BLAS's user interface was re-done and will be described in the discussion on the
Allocation Scheme.

4.3 Implementation

The Automator preprocesses a 41 file for the Allocation scheme. It has to present a
graph in a linked list format readable by the BLAS package. Input format for BLAS is as

follows :

Total_Number_of Nodes

Node_Label Execution_Time Indegree -> Destl Dest2 Destn 0
Node_Label Execution_Time Indegree -> 0

The first line gives the maximum number of nodes that are in a graph. Second line
gives the general format of how the nodes of a graph will be linked. The '->' operator is
a delimiter, to the right of which is a list of destinations 'Dest #' of that node, each
separated by a space. Node_label is a node number assigned by the Automator and is not
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to be confused for any IF1 labeling. End of the linked list is marked by a sentinel '0'. In

the third line it indicates that the node is an exit point for that graph as it has no
destinations. Indegree specifies the number of arcs that are incident to a node. Also, it
gives the number of times a node appears in the destination fields of other nodes.

The Automator reads in the IF1 structure, and reorganizes it by removing all
implicit dependencies that exist between graph boundaries. To examine the
implementation process, the same example of matmult.ifl is taken. Refer first to the
outer block or the Program Function Graph in figure 3.5. It has a For All followed by
ASetL.

Any graph has an entry point called the Root and a single or more end points called

Exits. For BLAS, a graph has to have one Root and one Exit. Such a node may not exist,

as a graph may have multiple exit points. But, in this implementation of the Automator,

all logical end points are forced to converge at a single Exit. The introduced Exit node is

assigned a zero execution time. Hence, the name dummy node. By default the Automator

labels node 1 as the dummy Root and node 2 as the dummy Exit. Thus, labels for the
Root and Exit of a graph are always known in advance.

The graph is organized in an array called Main-Array (also called Main) where

each element of Main is a structure representing a node. The node has fields to indicate

its label, execution, indegree and a pointer to a linked list of destinations. Details of the

package can be referred in the source : 4100 lines of C code with elaborate commentary.

Only the important aspects to aid in the understanding will be mentioned in this
discussion.

The Automator traverses the nsucc line and processes node after node from the IF1

structure. Each node's :

1) imp, isucc and src lines give the indegree information,

2) exp, esucc and dst lines give the destinations of that node and

3) type information gives the IF1 type, namely: Simple or Compound.

The Function Node-Structure is broken down into a Root and an Exit for the
matmult.ifl graph. Once the NS is processed as element 1 of Main, the fields in Main are

manipulated and Root at label 1 and Exit at label 2 are created. Then the Main-Array is

filled as shown in Table 4a. In general, Literals are only considered when a range is
being specified. Range specification occurs when two Literals appear for a

RangeGenerator node. Hence, ASetL has only one indegree here.

Consecutive elements in Main-Array do not imply any flow-dependency. That is,

node 2 occurs before node 3 in the array and is the Exit node in the graph. It will be seen

in following figures that, lower node numbers will often be the destinations of higher



49

node numbers. Thus, all the figures, where arrows are not explicitly shown imply a top to

down flow of the graph. Also, in the above Table 5a, Root has 5 arcs going to node 3,

but only one is shown here for clarity as it would mean the same.

Index

Label

Indegree

C., 3131.

flag

Destinations

lastNode

1 2 3 4

1:ROOT 2 : EXIT 3 : ForAll 4 : ASetL

0 1 5 1

0 0 Not Eval. 4

0 0 1: Set 0

3 0 4 2

0 0 0

Table 4a Main-Array Organization.

If a node is Compound, like N1 is a ForAll, then a flag field of element 3 in Main-

Array is set to 1. After all the nodes are traversed in the outer block, the Program Graph

is said to be processed externally. It is time to check and process compound nodes from

within, in the externally processed Graph.

The graph is retraversed and this time only the flag field is checked for compound

nodes. On encountering the first compound node, it is entered using the gsucc lines to get

to all the sub graphs that lie within. Refer to figure 3.7. Each sub graph is then processed

as a fresh graph having nodes within. All sub graphs are not treated the same and this

will get clearer with the discussion in the following sections. A variable called lastNode

keeps track of the last filled element of Main-Array. The first encountered sub graph is

placed after the lastNode in Main and as each node or NS is processed, the lastNode is

incremented. This cycle keeps repeating until all sub graphs and finally all complex
structures have been decomposed from the Main-Array.

4.4 Multiple Instances

A ForAll node has 3 sub graphs : GEN for Generator, BODY and RET for Returns.

The GEN graph produces multiple values, which implies the replication of the BODY
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sub graph. The RET sub graph gathers data from multiple instances of the BODY graph,

to give the final output of a ForAll Node. Its correspondence in SISAL can be seen in the

program segment of figure 3.2:

Cij := for k in 1, y

returns value of sum A[i, k] * B[k, j]

end for

The GEN sub graph generates the range of k from 1 to y, the BODY contains the

expression 'A[i, * B[k, j]' and there are 'y' such bodies. Finally, the RET is indicated

by the statement returns value of sum collecting the results from the 'y' BODY sub
graphs and 'summing' them.

Assume in the matmult.sis program in figure 3.2, that the body-count is 2 indicating

a matrix multiplication of 2x2 matrices. That is x = y = z = 2 in the SISAL program. In

the Main-Array, the lastNode is at label 4. The ForAll is at label 3 so after reading its

flag, the node-to-expand variable is 3. A procedure to expand this ForAll is called. This

procedure will start filling Main from the next empty element, which is 5. This position

is called the RETurn NS. The destination links of label 3 which are destinations of the

original ForAll, now become the destinations of the RETurn node. The indegree of RET

is equal to the body count of the ForAll (which is 2) and its execution is the cumulative

execution of the nodes that are in the RETurn sub graph. This is how the RET sub graph

is treated.

As the ForAll node is being disintegrated into three sections, the implicit
dependencies that existed within each sub graph will now become actual dependency arcs

between nodes. Hence, the destinations of the original ForAll are actually the
destinations of its last sub graph. In a way, the outer shell is being discarded and the
whole complex structure will undergo a metamorphosis.

Indegree of the RET node is equal to the number of body nodes and that is 2. There

is only one simple node AGather in the RETurn sub graph and its execution time
becomes the execution of RET node.

The next two places in Main-Array are reserved for BODY nodes of the ForAll.
They are 6 and 7. Once the RET node is processed, the GEN node is created at the

original position of ForAll, that is, at label 3. The indegree for GEN is that of the original

ForAll node. Its destinations are the two bodies at 6 and 7 and its execution time as

before, is the cumulative execution of the nodes in the GEN sub graph. In this case only
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one node : Range Generator, exists in the GEN sub graph. Any For All structure will have

at most one node in its GEN and RET sub graphs. This is from observation.

Finally, the BODY nodes need to be processed. Bodies of the same compound

structure in question, will have identical internal nodes, each receiving the same number

of inputs (usually one) from the GEN node. However, each BODY is a separate instance.

Also, better described as, the same expression for a different variable, at each instance.

In the figure 3.2, successive values of k will cause successive elements of the matrices to

be evaluated.

The number of inputs to a BODY, from a GEN is one, as all the inputs of a GEN

are routed to its corresponding BODY sub graph and the Automator groups the edges and

considers it as a single edge, without loss of any data in the graph. This is an assumption

based on the premise, that values are readily available at all times at a node and no
memory fetches are explicitly carried out. This assumption is seen to cause one of the

primary limitations when mapping IF1 nodes to actual multicomputer systems. That is

left to a discussion on the Mapping of Nodes in section 4.16.

Indegree of a BODY is 1 and its destination is always the RET node label, as it

evaluates the expression and sends it to the RETurn sub graph for packaging. A BODY

node may contain none, few or many nodes. These nodes may be simple, compound or a

mixture of both types. Thus, 3 cases arise :

Casel. Only Simple Nodes -

In such a case the execution time of the BODY node is the cumulative sum of all

execution times of its internal nodes.

Case2. One Compound Node and None or Multiple Simple Nodes -

The execution time will be ascertained by recursively expanding that compound

node, as has been explained, by traversing its sub graphs via its gsucc and nsucc
links, and placing the processed nodes after label 7. The simple node execution
times will be cumulatively summed and added to any node from the compound

structure that will occupy the present BODY. The present BODY undergoes a

metamorphosis to become a GEN node of a nested ForAll (at Level 2). As seen in

figure 4.2, the execution time for this node is that of the ASetL and the new GEN2.
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Case3. Multiple Compound Nodes and None or Multiple Simple Nodes -

This is a special case. It is treated like a new Function Graph where each of the
simple nodes if any, and compound nodes occupy a distinct place in the Main-
Array. This is analogous to re-processing a new Function Graph as is being done

with a matmult.if 1 in the above example. This case will be elaborated further with

reference to an example in the section 4.6.

The BODY in the above example fits the second case and the program is actually a

three nested-level graph. The complete metamorphosis are shown in the figure 4.2 and

figure 4.3 in Steps I, II, III, IV and V respectively. It is clear from step In and IV that,

after external processing is completed, each compound body is traversed right through all

its nested levels, before expanding the other compound body in the same level. Hence,

on expanding node 6 in level 2, the Automator expands node 9 and node 10 in that order

in level 3, before coming back one level to node 7.

In the above transformation, multiple BODY nodes will replicate the information

processed for the first BODY that is reached from the GEN node. This is possible as the

bodies of a compound structure will be equivalent to each other. In the Automator, a

feature called Automate to do this replication is included. It will be described in the
section of Features.

Thus, the example cited here takes us through a widely used matrix multiplication
algorithm. It has three nested levels that are implemented using the For All Structure.

The actual computation is done in the third nested level. The Automator is capable of

blasting such acyclic, multiple unconnected, IF1 representations into a connected static

graph that can be presented to a system for allocation. Hence, a matmult2.ifl file was

blasted to give a matmult2ifl.i ('i' indicates an input file and 'matmult2' is for 2x2
matrices).

4.5 Concentric Circles

The issue of removing all implicit dependencies is as important as dealing with each

of the complex nodes, their nested levels and the different combinations of nodes, that

exist within each nested level. The Automator treats any program as a composition of
Concentric Circles. Refer to figure 4.4. The outer level may have any simple, compound
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STEP I

For All

ASetL

EXIT

STEP DI

STEP II GEN-1 : Generator Node
at Nested Level 1

B1-1 : Body Node-1 at
Nested Level 1

RET-1 : Return Node at
Nested Level 1

STEP IV

GEN-2 B2-2
For All

B2-2
For All

figure 4.2 STEPs in the metamorphosis of matmult2.if1
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GEN-1 : Generator Node
at Nested Level 1

B1-1 : Body Node-1 at
Nested Level 1

RET-1 : Return Node at
Nested Level 1

figure 4.3 Final STEP V in the metamorphosis of matmult2.if 1
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or a mixture of nodes, and so will any level within it, as shown. This gives rise to a great

number of combinations that can be handled.

A real program graph may look like :

Outer Level ForAll
Nested 1 ForAll

Nested 2 LoopA

Nested 3 Select (has a True sub graph and a False sub graph)

Nested 4 True Graph of Select has 2 nodes : LoopA and a

ForAll

Nested 5 LoopA has a ForAll which has no

more Nests

Nested 6 ForAll from Nest 4 has a Select

Nested 7 True from Select has simple

nodes only

Nested 8 False from Select has simple

nodes only

Nested 9 False Graph of Select at Nest 3 has another Select

Nested 10 True from Select has a ForAll which has

simple nodes only

Nested 11 False from Select has a ForAll

Nested 12 ForAll has another ForAll

Nested 13 ForAll has a LoopA with no

more Nests

Outer Level LoopB
Nested 1 LoopA

Nested 2 ForAll

Nested 3 ForAll

Example of Concentric Circles as shown in figure 4.4
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For All

Select
False

Outer-most and Inner-most levels are shaded

figure 4.4 Concentric Circles.



57

The Outer Level has two nodes : a ForAll and a LoopB. The ForAll has 13 nested

levels and LoopB has 3. The graph can get real complex. IF1 phase creates individual

graphs for every compound node, each with its own boundary wall. The Automator,
using a well known process of recursion, makes a connected static graph from all the
individual graphs. Code for the Automator is well documented, highlighting the aspects
of recursion that are employed.

Any nested level is spawned off only from the body sub graph of a compound node.

Other sub graphs either do a test, initialization, a range generation or return of results and

other such simple operations. In case of Select compound nodes there are True and False

sub graphs. Each may have nested levels. These compound nodes and their behavior as
exploited by the Automator, will be described from section 4.9 onwards..

4.6 A Special Case

A case in which a body sub graph contains multiple compound nodes and none or
multiple simple nodes (refer to Case 3 above), is treated as if it were a new Function
Graph. Consider the example (left) given in figure 4.5. The LoopB body has 2
compound nodes : LoopB and a ForAll, and 3 simple nodes, in the sequence : LoopB;
ForAll, Plus, Minus, Times. Also, unlike above, each of LoopA and ForAll have no more
nested levels within.

The Automator appends two dummy nodes : StartBody and EndBody, analogous to

the Root and Exit of a new Function Graph. The compound nodes are treated and further
nesting is checked as they are approached. An important difference here, is that the
simple nodes enjoy a separate place in the Main-Array. Thus, their execution times is not
just summed up as before.

4.7 Node Packing

Any sub graph is a Node Structure and is translated as a node by the Automator.
The sub graph contains nodes within. The Automator packs up a node by cumulatively

summing all the internal simple node execution times. This feature of the Automator is
also called Grain Packing. The dependency arcs within a sub graph, are dissolved when
packing it. This is done for all cases except when multiple compounds exist in a

particular body (Case 3).
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The idea of grain packing is to combine multiple fine grain nodes into a coarse

grain node if it can eliminate unnecessary communication delays or reduce the overall

scheduling overhead in an allocation scheme. Fine grain nodes are the individual simple

nodes that imply operations. Thus, all fine grain operations within a single coarse grain

node are assigned to the same processor for execution. A fine grain [15] partition of a

program will demand more inter processor communication than that required in a coarse

grain partition. Hence, such packing introduces a tradeoff between parallelism and

scheduling overhead. Coarse grain nodes can also be viewed as Light Weight Threads of

computation. The weight is the summed execution times of the node. A thread is
described as an individual fragment of computation, where a fragment consist of multiple

operations, all linked together.

In the discussion of BLAS, it will be clear, that grain packing also helps in a faster

execution of the BLAS algorithm, as the nodes are fewer.

Thus, sub graphs are treated differently depending on what they contain.

4.8 Execution Costs of IF1 nodes

Since each node implies an operation, it has an associated execution time. The
SISAL group assigned an execution time to each node. These times are an
approximation. A large number of systems, primarily shared memory, were studied for

correspondence between any node and assembly operations involved in executing that

node. These results were averaged out to give the execution times of the nodes. These

times, though representing shared memory processor costs, can be approximated very

closely to message passing processor costs except when referencing memory.

The execution table is organized into two sections : The Cost of doing an operation

and the operation Time of nodes. Thus if an operation is Plus, then depending if it is an

integer or float operation, a corresponding cost is added to the time of operation. That is,

1 cycle for integer and 4 cycles for floating point operation of the same node. Based on

this, each operation has an associated cost. Similarly, an Array Copy Cost is associated

with some node that builds arrays and if the array consists of real elements, then any
operation on the elements will have to bear the real cost. The costs and times may be
referenced in the source for the Automator.

The costs assume a processor architecture. When examined closely, these costs and

times represent RISC (Reduced Instruction Set Computers [14 and 16]) class processors.

Mapping of SISAL nodes to a particular architecture will elaborate on the exact
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LoopB

analogous
to Root

LoopB

For All

Multiple compound nodes in
a BODY node of a LoopB.
Each node occupies an
element in Main-Array.

END
analogous

to Exit

figure 4.5 Special Case.
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processing element to be used. However, one major difference is the memory access
schemes that are prevalent in shared memory vis-a-vis message passing computers. As

the costs are an approximation of the former, performing static scheduling on message

passing systems with these costs will not give a true picture for all cases. Hence,

Mapping becomes a very important next step to this project. Some ideas are presented in

this work for mapping, but its complete treatment is out of scope in this thesis.

4.9 Automator's way with complex constructs

This section will elaborate on the important aspects of compound nodes and their

treatment by the Automator. There are in all 5 complex structures which are relevant to

the Automator's implementation. These are For All, LoopA, LoopB, Select and Tag Case.

The LoopA and LoopB are explained under one heading of Loops. This discussion will

highlight some of the important features built into the Automator and how the User-
Interface looks when preprocessing graphs. The GOAL of the Automator is 'to achieve

vertical connectivity with horizontal expansion using recursion on the philosophy of
Concentric circles.'

4.9.1 For All

The For All node also called product form loop [22] is used to denote independent as

opposed to iterative instances of an expression. It is the most parallelizable construct in
the language. It has three sub graphs : GEN generator, BODY body, RET returns.
The BODY will contain the expression to be evaluated. The generator produces values

for each instance of the body as seen earlier. The nodes, used to generate values are

either the AScatter or RangeGenerate nodes. The AScatter node [33] takes arrays or

streams as its inputs and places its elements at one of its port and the index value to that

element on the other port. The RangeGenerator node [33] generates a sequence of
integers in the inclusive range of its inputs and places them on its output port in a

sequence. Each such integer or element is send to a distinct instance of the body and are

not broadcast to all instances of the body. Thus, the values and the instances are ordered

and the results of the subgraph, RET, will gather it in the same order. This order is not an

order in time, but in semantics specifying the ports.
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4.9.1.1 Body Count

If the RangeGenerate has two constants (numbers) as its inputs then the Automator

figures out the body count of the For All node it is processing. If any input to the
Range Generator is a character implying an integer constant, then the user needs to give

the body count. This requires a user to know the program profile before subjecting it to

the Automator. The feature of automatic calculation of the body count is called RunOff

and is a User-Interface option. It avoids any user interaction with the translation process.

This feature can be used when translating various matmult.sis files where-in replacing

variables x, y, z with actual numbers (all same). The results section for matrix
multiplication was generated this way.

4.9.2 User-Interaction

Interaction with the Automator during preprocessing is enabled in 3 ways :

1. At the processing of each compound ForAll, the user can make a decision of whether

to expand that ForAll or not. For either case the user specifies the body count. This

is a tedious approach and is best suited for experimentation or to study the behavior of

program characteristics. The no-expansion option is also for experimenting on the
choice of grain size during scheduling. The compound structure may not be
expanded but, other nested compound nodes in subsequent levels may be expanded.

This requires that the body count be reflected right through the nested structures. It is

accomplished by multiplying the execution time of every node that lies within the

boundary of a non-expanded compound node, with the body count. Hence, assuring

the right weight of each node.

2. Specifying at start, in the User-Interface, the behavior of compound structure with

respects to expansion or no-expansion. Then, throughout the translation that option

will hold. But, the body count will still be queried each time from the user. The
default on expansions of any compound structure may be enabled in the program code

itself. This will disable user interaction completely for that option. While generating

results for this thesis, the ForAll node was defaulted to 'expand always'.

3. If the RunOff cannot be enabled, but the program profile is known to have a

compound node with a particular body count throughout the program, then that body

count may be entered during the Query-Time phase of the User-Interface. This will

allow the translation to proceed without any interaction. A feature of same body
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count through the program, is usually applicable only with matrix based programs.

All the example simulations presented in the results section are matrix based.

The concepts of user Interaction and Body count, as explained for ForAll nodes are

also applicable to LoopA, LoopB and Select, with some changes. These changes will be

highlighted in their respective discussions.

4.9.3 Loops - LoopA and LoopB

The above two are considered together as they come under the class of Iterative

constructs. These loops introduce carried values in every iteration and are primarily
sequential in nature. Some exceptions exist but, thorough profiles are required to
establish their parallelization.

The Loops have four sub graphs : INIT- Initialization, TEST, BODY, RET
returns. The body and returns sub graph are identical to the ForAll in construct. LoopA

is the iteration compound that tests for termination of the loop after the body has executed

at least once. LoopB, in contrast, performs the termination test immediately after giving

initial values to the loop body. When the result of the TEST is false, the Loops make its

results available at the output ports.

These loops cannot be parallelized most of the time because loop-carried
dependencies are introduced with every iteration. That is, old values from the previous

iteration will be required in the present iteration and this forbids parallel execution of the

loop.

Thus, the Loops need not be expanded by default. But, options are available for
expansion as explained in the section of Interaction in ForAll. However, the body count

(be) of a non-expanded Loop will apply differently depending on the compound Loop.

The execution times are calculated as

LoopA.exec = INIT + loopA_bc . (TEST + BODY + RET)

and

LoopB.exec = INIT + loopB_bc . (TEST) + (loopB_bc-1) . (BODY + RET)

The Automator treats both constructs in separate procedures so that different
variations for each type of loop can be sought, and no generalization for one construct
will apply to the other.
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4.9.4 Select

A Select node is analogous to the if-then-else (conditional branch) construct of any

imperative language with one big difference. In this implementation of IF1, it represents

only a two way selection, that is, no case or elseif constructs are supported.

The Select consists of 3 sub graphs : TEST - selector, TRUE - true alternative,
FALSE false alternative. The selector returns one Boolean value : either a 0 or a 1. The

'0' maps to the false sub graph and '1' maps to true. All input ports to the Select node are

connected to corresponding ports of all its sub graphs and the result ports of each true and

false graphs' become the output ports of the Select node. These implicit dependencies
give rise to 3 cases when implementing a Select node. Each of the three cases are only

possible either if the program profile is already known or if a generic assumption is made.

They are : Referring to figure 4.6.

Based on known program profile :-

1. Select Test outputs a 1. This corresponds to the Selector followed by the True node in

Case I.

2. Select Test outputs a 0. This corresponds to Case II in figure.

Based on generic assumption :-

3. Case m Processing the True and False graphs with probabilities of occurrence [18].

These probabilities are obtained from examining the program profiles with regards to

whether a True or False section was executed.

The probability of a True case occurring is in the range of 0.5 to 0.8. However, in

this project it is assumed that the True graph is executed 80% of the time. In this scheme,

the probabilities are applied right through every nested level of the True and False nodes.

If a True node had three nested levels and its probability of occurrence is 80% then, all

the nodes in the nested levels will have their execution times multiplied by 0.8 and those

in the False node will be multiplied by 0.2.

There is a potential limitation with BLAS in this regard. This probability should

also apply to the edges between the nodes when traversing through the Select structure.

Edges can be assigned a probability just as nodes have been assigned execution times in

the Automator. However, BLAS needs to be revamped to accommodate this feature.

The simulations have been carried out without considering edge probabilities, but future

work must look into this important aspect.

Selects may be treated as non-expanded nodes just like the previous constructs. All

the nested structures however, may be expanded. This is possible for only cases 1 and 2
as no probabilities are assigned in these cases.
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IF1 SELECT Node I consists of 3 subgraphs>

CASE I CASE II

1

TRUE
graph

TEST
graph

1 or 0

CASE In

0

FALSE
graph

probability = p probability = p-1

Execution : 0 cycles

figure 4.6 Automator's implementation of the IF1 Select Structure
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4.9.5 Tag Case

The Automator does not expand this structure by default. No options are available

in the User-Interface, as this structure is a rare occurrence in IF1 files. It is used to access

fields of a union object. Details on its implementation are given in [33] and the source

for the Automator.

4.10 The User-Interface

The User-Interface looks as shown below in figure 4.7. Additional features of the

Automator will be briefly described. Details on all implementation issues can be read in

the comments section of the source code.

The Automator uses the IF1OPT stage for translation because :

1. The optimizations are machine independent.

2. Multiple functions of the program are expanded out into one 'main' function. That is,

CALL nodes are replaced by the function module it calls. The Automator does not

have to deal with multiple functions and it translates one monolith function file.

3. Since optimized, the number of nodes are reduced and this is advantageous when
applying BLAS.

4.11 Features

1. As the Automator progresses, the trace of the translation flashes by on the screen and

a hard copy file.tr may be obtained for verification with the interface option. This is

very helpful in debugging and verifying the correct translation. It states every node
that is encountered and processed. The output of the Automator will give the
connectivity of nodes and the trace file will show the node's type, label and which

nested level it is in. The above information saves one the trouble to decipher the .ifl

files in any case.

2. Addition to Grain packing, a feature called Compaction can be enabled during
translation. Nodes A and B may be compacted only if Node A has one destination in

Node B and Node B has only one indegree that coming from Node A (in short, Node

B is the only successor to Node A). Thus, a series of nodes obeying the above
conditions may be compacted into one node. The compaction process is done
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/************************************************************************/
AutoMator
Revision 131 1993/Dec/01 MANOJ RAISINGHANI

/************************************************************************/
LOOK FOR .opt FILES IN THE opt SUB-DIRECTORY

DID you want a Trace File of this Run ? (y/n) : y
If YES then give the Trace File Name : 1u5
The Trace will be in file 1u5.tr

ENABLE COMPACTING of GRAPH (y/n) : y

If this is a mat#.opt or mat#.ifl file then ....
USE 'runoff feature to avoid user-interaction with the RUN
Type 1 for a runoff OR 0 for Normal Interaction : 0

THE runoff feature is OFF

Do you want to CHANGE QUERY-TIME parameters ? (y/n) : y

QUERY TIME Elements

Element0 '0' for ASK QUESTIONS
'1' for NO yin Questions

Elementl '0' equates to 'n' NO EXPansion
'1' equates to 'y' YES EXPansion

Element2 '0' NO BODY COUNT so ASK
'#' Take this BodyCount

Input Values in 1 and 0 only

SELECT ... Should Expand Always

SEL[2]={ 1,1} .... CHANGE (y/n) : y
Input SEL[0] ...0-ASK Questions, 1-NO ASK : 1
Input SELI 1 ...0-NO EXP, 1-YES EXP : 1
SELprob = {0.80,0.20) .... Is I TRUE,FALSEI Probability ok ? (y/n) : y

LoopA ... Avoid Expanding

LpA[3]={1,0,0 } .... CHANGE (y/n) : y
Input LpA[0] ...0-ASK Questions, 1-NO ASK : 1
Input LpA[1] ...0-NO EXP, 1-YES EXP : 0
Input LpA[2] ...0-ASK BdyCnt, #-BdyCnt : 5

LoopB ... Avoid Expanding

LpB[3]=11,0,01 .... CHANGE (y/n) : y
Input LpB[0] ...0-ASK Questions, 1-NO ASK : 1
Input LpB[1] ...0-NO EXP, 1-YES EXP : 0
Input LpB[2] ...0-ASK BdyCnt, #-BdyCnt : 5

FOR-ALL ... Should be expanded always

FA[3] ={ 1,1,0) .... CHANGE (y/n) : y
Input FA[2] ...0-ASK BdyCnt, #-BdyCnt : 5

Press another RETURN :

figure 4.7 User Interface of the Automator tool
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externally, that is, after the first pass of the translation and before the target for BLAS

is output. Figure 4.8 shows how it is effected.

3. The target for input to BLAS is checked for any indegree mismatch or any cycles in
the graph. These checks are performed before and after Compaction to validate the

compacting of nodes. An example print out of the compaction when translating a
program : simple 16.opt is shown in figure 4.8.

4. Query-Time : The Query-Time feature is described in the code for the Automator.

It is shown in figure 4.7 and forms a major part of the User-Interface. It is organized

into small arrays of 2 elements for Select and 3 elements for Loops and ForAll. This

option allows a user to specify almost any combination to avoid interaction with the

translation. The 'ASK' statements imply ask when translating. The default values are

given in curly brackets. Recommendations are included with each name of
compound structure, namely 'Avoid Expanding LoopA' and the like. Further,

different probabilities can be assigned to the True and False nodes of a Select
Structure for various runs based on actual program profiles or experimental needs.

As many as 8689 nodes maybe compacted...Thats a Good 12.18% !

SEQUENTIAL EXECUTION TIME BEFORE compacting : 55950479
TOTAL NODES is 71318

CHECKING FOR NODE CYCLES No Cycles :)
CHECKING FOR INDEGREE MISMATCH FILE is OK :)

COMPACTED Nodes = 8689 (12.18% of total nodes.)

Once again CHECK after COMPACTING

SEQUENTIAL EXECUTION TIME AFTER compacting : 55950479
TOTAL NODES is 62629

CHECKING FOR NODE CYCLES No Cycles :)
CHECKING FOR INDEGREE MISMATCH FILE is OK :)

COMPACTED GRAPH is PRINTING

figure 4.8 Trace of compaction for the program simple16.opt
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5. Auto Mate : A complex structure has additional fields associated with it in Main-
Array. These fields keep record of the choices for 'expansion' and 'body counts' taken

for the nested levels in the first body of that compound node. This enables each body

to replicate the behavior of the first body with respect to all its nested levels. Here is

a real significance of the name 'Automator'.

4.12 MAPPING

Mapping IF nodes to a message passing architecture is the next important area of

research. A correct mapping will validate the results obtained from simulations of BLAS

on the Automator outputs. The mapping problem involves the actual implementation

and operations of each of the IF1 nodes in that particular architecture.

The architecture assumed here is that of a nCUBE 3E series. It supports broadcast

of values to different PEs from a particular PE. This saves on the startup costs when

doing any array manipulation. That is, the array does not have to be sent to each forked

process on a different PE, one after the other. All PEs can receive it at the same time.

The hardware and the compiler play a vital role in the mapping issues. For instance

in a matrix multiplication program, the matrices have to be dispersed over different PEs

for the various operations that need be performed. This may be achieved by the compiler

doing a striped partitioning of the matrix or a checkerboard partitioning. In striped
partitioning the matrix is divided by the compiler into groups of complete rows or
columns and each processor is assigned one such group. Thus, a nxn matrix can be
striped over n processors. Checkerboard partitioning involves the compiler to divide the

matrix into smaller square or rectangular blocks [35] or submatrices that are distributed

amongst PEs. No processor is assigned a complete row or a column. A nxn matrix, can

be at most, distributed over n2 processors. This will allow for more concurrency to be

exploited, but the topology best suited to it will be a mesh interconnection. The nCUBE

hypercube can embed a mesh topology.

Based on the above general concepts, two nodes will be mapped onto this
architecture using two techniques : one without broadcast and the other with broadcast.
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4.12.1 AScatter

The function of AScatter requires it to generate the various elements of an array
together with their indices. This function has to be carried out by a processor, in which

the complete array may be read from memory and each index with its value is given out

in a sequence to multiple instances, and not broadcasted. With every element-index pair,

the processor forks off a process containing that pair. If communication delays are
permissible, the forked process is executed on another processor, which after completion

of computation will send back the results.

The above mapping can be made more efficient if broadcast is made use of. In that,

the processor that holds the AScatter node will broadcast the array to all other PEs and

the compiler will cause each PE to generate its own index depending on the section of the

array it will operate on. The index is generated based on a precalculati on done by the

compiler and it need not be passed by the processor that has broadcasted the array. Thus,

a processor forks different instances and broadcasts the array to all PEs with each PE
extracting the element based on the index it holds.

4.12.2 Range Generate

This node is a fictitious node. It implies that a processor calculates the range or the

number of instances and actually no real data is passed on the edges to the multiple
instances. The processor spawns or forks as many multiple instances in a sequence as the
range indicates. Each instance, based on the sequence in which it is spawned off,
evaluates the expression. This allows the processor to fork many instances and let them

execute in parallel. This will cause the first instance to complete first and send its value

to the processor that is responsible for packing. As results come in from each completing

process, they are packed in order by the processor holding the RET node. BLAS will

always have one processor hold the range generator and the collector nodes, by very
nature of the graph and algorithm.

The above method introduces some sequentiality. This can be done away with
completely. The compiler will cause each of the PEs to hold their respective index. This

index calculation is done based on some operation on the processor id (Identification)
number. The Array is broadcast by the PE that originally held the RangeGenerate. Thus,

the RangeGenerate will be dissolved and as shown in figure 4.9.
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(Range Gen)

ii

i=

PE1

i=

PE2

i=

PEx

Shaded boxes represent a constant in local memory of a PE

(Above : BLAS allocates x indices to x PEs)
(Below : BLAS allocates 5 indices to only two PEs)

i= i=

PE1

= i= i=

PE2

figure 4.9 Mapping of an 1F1 Range-Generator Node to a multicomputer.
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If the BLAS allocates two of the five indices (for example) to a single PE1 and

other three indices to PE2, then the compiler will generate 2 constants for PE1 and 3 for

PE2. This will require an array broadcast to only two PEs.

This outline needs to be further elaborated and an actual implementation of the
mapping needs to be carried out.
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CHAPTER 5. BLAS and SIMULATION RESULTS

5.1 Static Scheduling

Static scheduling means allocating tasks to processors at compile time. This thesis

involves static scheduling of independent tasks to various PEs in a hypercube network.

Extensive work has already been done in this area and many instances of these problems

are proved to be NP-Complete (cannot be solved in polynomial time [25 and 26]).
However, with increased research, time consuming optimal solutions are being traded off

for more practical heuristic approaches to an optimal solution. The Balanced Layered
Allocation Scheme (BLAS) is such a heuristic approach towards an optimal solution. By

considering the nature of tasks that occur in real programs one is able to design heuristic

approximations that can be used efficiently in practice.

The only scheduling problem that has been solved optimally in polynomial time is

the case where the number of processors is 2 and all tasks have a unit execution time [25

and 26]. Such a case is impractical. A family of heuristic algorithms that have been
developed for general cases are the 'list scheduling' algorithms. The most popular is the

'critical path' heuristic. The basic concept behind 'list scheduling' is to arrange the tasks

of a given graph in a priority list and assign tasks with the highest priority, each time a

processor becomes idle [25]. The 'critical path' heuristic finds a critical path of the graph,

and gives priority to those tasks that compose the critical path. BLAS is a modified and
improved version of the 'critical path' method.

5.2 BLAS

BLAS finds a balance between computation and communication costs when
assigning tasks to processors. Originally developed by Lee et al [18], it was called the

Vertically Layered Allocation scheme. The VL scheme was subsequently extended by

Freytag [12] and called BLAS. The limitations of the VL scheme and details of the
proposed BLAS algorithm are outlined in Freytag's thesis. The previous work laid the

base for the present research. A brief overview is presented here with an actual
calculation for the matrix multiplication example that has been followed in this text.
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5.2.1 Objectives of BLAS

The Allocation problem is one of maximizing the inherent concurrence of a
program while minimizing the contention for processing resources. The Balance Layered

algorithm is based on three general objectives [12] and is a compile time method :

(1) assign concurrently executable nodes to separate PEs,

(2) assign data dependent nodes to the same processing element, and

(3) assign nodes to PEs that lead to an earlier completion time of the program.

Objective (1) maximizes concurrence and (2) minimizes communication costs.

Both these objectives seem to conflict, but are compromised by (3), which requires to

take into account the effects of inter PE communication costs and execution times, before

assigning the nodes to a PE. This trade off provides a heuristic to the algorithm.

5.3 Overview

BLAS can be viewed as composed of two main blocks : 1) The Partitioning block

that initially takes a data flow graph and separates it out into vertical layers. 2)
Assignment Block that allocates these layers to processors in a system. The vertical

layers are determined by first identifying a critical path (CP) for the graph. The
remaining layers are found by recursively determining the Longest Directed Path (LDP)

from the nodes that have already been allocated, using the same approach as that was
used in determining the CP. Thus, the program is broken down into modules based on

two parameters: execution times and communication delays. The modules are then
allocated to PEs only after iteratively considering these parameters on all the processors.

The CP dictates the earliest execution time [12] of a program and thus is given the

highest priority in assignment. It is determined in two passes : the forward pass
determines the earliest time a node can finish and the backward pass gives the latest time

that node finishes execution. CP time gives a lower bound to the execution of a graph.

The recursive determining of LDPs is also done in two passes as above.

A Horizontal block has been introduced before the partitioning phase, in this
project, to divide the graph into horizontal layers and keep an account of which nodes

occupy a given horizontal layer. This introduction has been made in order to correct
some major bugs in the implementation code of BLAS. These bugs had never surfaced

earlier, as BLAS was not tried with real life program cases till the Automator got into
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shape. An overview of the changes will be discussed in a later section and their details

are well commented in the program code (BLAS version 5.0).

5.3.1 Examples of Allocation

Two cases for allocation of graphs will be presented. The first one is a small
example graph that is to be allocated in a 2 processor system with no communication

delays. The second will be the allocation of matmult2ifl.i (from the discussion of the
Automator in Chapter 4). The matrix multiplication program is allocated on a 4
processor or 2-dimension Hypercube system.

Example 1 : Refer to figure 5.1 and the following trace file in figure 5.2.

The CP is determined first and dictates a lower bound time on the execution of a

graph. For one processor case, the execution time represents the serial execution of the

graph. This entails an addition of all the node execution times. BLAS divides the graph

into Horizontal layers. The H in the adjacency list of a graph G having N nodes and A

arcs, is the horizontal layer within which a node lies. See above mentioned figures.

For the 2 processor case, the CP is allocated to layer 1 which corresponds to PE1

and is indicated in the trace as L 1. After this assignment, LDP1 having Root N9 and

Exit N12 is allocated to PEO. The question is that 'which PE will N8 be placed ?'. If

placed in PEI, the overall execution time of the graph becomes 60 cycles. Node 6 cannot

execute before N8 has completed. As there are no communication costs to be considered,

assume N8 is placed in PEO.

Then, the time spent in execution may be calculated for purposes of analysis at the

end of each Horizontal layer for both PEs. At the start of H4, it is 20 cycles for PE1 and

only 15 cycles for PEO, indicating that N11 has started execution 5 cycles earlier on PEO,

than N5 has on PE1. Hence, it will complete at time = 25 cycles and N8 being in the

same PE, can start execution and will be halfway through, when N5 completes. N6 will

have to wait only an extra 5 cycles. Thus, total completion time of the graph is 55 cycles,

saving 5 cycles if N8 was with PEO.

The execution cycles of each node is taken arbitrarily for explaining how the
allocation scheme works. Also, this is a typical case when the communication delays are

not taken into account.
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Horizontal
Layers

H=1

H=2

H=3
Critical Path (Shaded nodes)
CP : N1->N3->N4->N5->N6->N7->N2
Execution time = 50 cycles

LDP-1 : N9->N10->N11->N12

LDP-2 : N8

Maximum parallelism = 3

figure 5.1 Example 1 demonstrating BLAS.



76

LDP TRACE FILE : Examplel.Tany
ALLOCATION : Any Processor

Maximum parallelism is 3

PARTITIONING PHASE
###########

adjacency list of G(N,A)
NI t=0 H=1 indegree=0 -> 3 9
N2 t=0 H=7 indegree=2 ->
N3 t=10 H=2 indegrel -> 4
N4 t=10 H=3 indegrel -> 5 8
N5 t=10 H=4 indegrel -> 6
N6 t=10 H=5 indegree=2 -> 7
N7 t=10 H=6 indegrel -> 2
N8 t=10 H=4 indegree=1 -> 6
N9 t=5 H=2 indegree =l -> 10
N10
NI1
N12

t=10 H=3 indegree=1 ->
t=10 H=4 indegree=1 ->
t=10 H=5 indegree=1 ->

Determining Critical Path
Root = 1, Exit = 2
LDP ->l ->3 ->4 ->5 ->6 ->7 ->2

11

12
2

Starting LDPs (Longest Directed Paths)
Root = 9, Exit = 12
LDP->9 ->10 ->11 ->12

Root = 8, Exit = 8
LDP->8

All LDPs are Done .... LDP COUNT is CP + 2

Lower bound time = 50.000 (Critical Path Time)

#4############I######################
NUMBER OF PROCESSORS IS 1

#41###########################It####14##
Total execution time with communication is 95.0.
LO

I 3 4 5 6 7 2
9 10 11 12

8

##################################0
NUMBER OF PROCESSORS IS 2

##############1########/##############
Total execution time with communication is 55.0.
LO

9 10 11 12
8

L1
1 3 4 5 6 7 2

figure 5.2 Trace file for Example 1 obtained when executing BLAS.
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The key features to be noted here are that :

1) Once a node is assigned, it is marked and never gets processed by any PE during

further allocation.

2) Each node other than those belonging to CP, are iteratively assigned for

examining a best possible completion time of the graph.

3) Horizontal layering exposes the ordering of a graph and any other dependencies.

Example 2 : Refer to figure 5.3 for the trace of LDPs and figure 5.4 for an allocation

on 2-dimension hypercube. The allocation in figure 5.3 is from a simulation. The

execution times in this example are real and from the SISAL code. An example
calculation verifying above follows:

The CP is assigned arbitrarily to PE2. The CP nodes are marked and each of the

LDPs is assigned iteratively to each PE layer. In this manner, effects of execution times

and communications costs can be weighted against different layer assignments for each

LDP. An LDP is assigned to a layer, after weighing its effect in each PE layer and
according to the objectives of BLAS.

Consider LDP1 : The completion times (in cycles) of each PE layer, when LDP1 is

assigned to it can be given in a layer-set format as { to, t1, t2, t3 }.

given below when LDP1 is assigned to

layer 0 = { 159 +26 +26, 0, 159, 0}

layer 1 = {0, 159+27+27, 159, 0}

layer 2 = {0, 0, 159+95, 0}

layer 3 = {0, 0, 159, 159+26+26}

Notes :

These layer-sets are

1. t2 equals 159 cycles, indicating the Critical Path which was initially assigned.

2. The communication latencies that are produced when dependencies cross the layers
are 26 or 27 cycles. That is, in layer 0 : 25+1, for N3 to send data to N7 and 25+1, for

N17 to return data to N5, since, layer 0 and 2 are adjacent. For non-adjacent layers,

communication is the Start up time + hop distance . interhop latency.
3. The maximum of each layer-set gives the maximum completion time ofa graph when

the LDP is assigned to that layer.
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LDP TRACE FILE : matmult2ifl.Tany
ALLOCATION : Any Processor
Maximum parallelism is 8

Determining Critical Path
Root = 1, Exit = 2
LDP->1 ->3 ->6 ->9 ->12 ->11 ->8 ->5 ->4 ->2

Critical Path Time = 159 cycles

Longest Directed Paths
1) Root = 7, Exit = 17

LDP->7 ->18 ->21 ->20 ->17

2) Root = 10, Exit = 14
LDP->10 ->15 ->14

3) Root = 13, Exit = 13
LDP->13

4) Root = 19, Exit = 23
LDP->19 ->24 ->23

5) Root = 22, Exit = 22
LDP->22

6) Root = 16, Exit = 16
LDP->16

7) Root = 25, Exit = 25
LDP->25

Serial Execution Time = 386.0 cycles

Communication Latencies :
Start Up Time = 25 cycles

Inter PE communication delay = 1 cycle

##########################I4t#
NUMBER OF PROCESSORS IS 4

#144###M#Ht###########################
Total execution time with communication is 271.0.
LO

L1

L2
1

L3

3

16

25

6 9 12
10 15

13

7 18 21
19 24

11

14

20
23

8

17

5 4 2

22

figure 5.3 Trace file indicating the allocation of nodes of matmultifl.i



79

figure 5.4 Allocation of matmult2.if1 to PE layers in a 2-dim Hypercube
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4. All the layer-set maximums are collected in a graph-set. So, for the given layer-sets,

the graph-set is : {211, 213, 256, 211

5. Finally, the LDP is assigned to a layer which yields lowest completion time in the

graph-set. That is, assign LDP to a layer which yields min[graph-set]

Similarly,

For LDP2 :graph-set = {211,

or PE2 and,

For LDP3 : graph-set = { 211,

213,

213,

194,

209,

360) ; LDP2 should be assigned to PE layer2

298} ; LDP3 is assigned to PE2

For LDP4 : graph-set = {213, 211, 422, 184) ; LDP4 is assigned to PE3

For LDP5 : graph-set = {213, 211, 343, 209) ; LDP5 is assigned to PE3

For LDP6 : graph-set = {211, 213, 224, 410) ; LDP6 is assigned to PEO

For LDP7 : graph-set = {280, 211, 420, 2141 ; LDP7 is assigned to PE1

Further explanation for the algorithm is to be referenced in [12]. However, if in

the above example calculations, the start up time and inter PE delay was increased by a

factor of 10 as is the case with the nCUBE 3E systems then, the allocation of all LDPs

would be on a single processor PE2 where the CP was arbitrarily assigned.

5.4 Order of the BLAS algorithm

The critical path can be determined with a complexity of 0(N2) [12]. The

complexity of determining the LDPs decreases with each iteration, but the worst case will

occur for one node at a time. This gives an order of 0(N3) for determining the CP and

LDPs. As this is done p times for each LDP, where p is the number of PEs or PE layers,
the complexity order worsens to 0(pN3) for p N. This poses a time and cpu-memory
limitation on graph sizes. That is, it takes more than 30 days to run a 70,000 nodes graph

with 64 processors on a SUN Sparc10 system. Graph sizes have been limited to a
maximum of 10,000 nodes. In addition, the use of optimized files from SISAL's
compilation, instead of IF1 files helped towards this end. The IF1OPT phase is discussed
in chapter 3.
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5.5 Summary of Changes that were made to the BLAS source code

1. Code for BLAS was originally written in ThinkC for the MACs. This has been
ported to UNIX on the SUNs.

2. A choice for running simulations over variable number of PEs in a Hypercube

topology is given. A user may choose the dimension of the Hypercube topology and

the simulation will run for the complete range of PEs for that dimension. Also, a
feature for a single run of PEs has been added. This saves time for incremental
simulations. Previous Macintosh versions required to go through an entire range of

PEs everytime a simulation was started.

3. The user interface has been completely overhauled. There are 3 output files that

BLAS produces with each run. The Trace file (file.T) is the actual trace of the
simulation and is useful in debugging. The Speed Up file (file.D) gives the
information for speed-ups, efficiency and other parameters of the run. The Graph file

(file.E) gives an ASCII output of speed up, efficiency and speed-up ratios for each

PE, to enable automatic graphing in Microsoft's Excel package. All these files may

have suffixes called any (file.Tany) indicating it is for Any Processor Allocation.

There are two schemes available in BLAS: one forces the allocation of each LDP

to adjacent processors only, and the other is the regular 'any' PE allocation. An
example of .D file is given in figure 5.5 for a LU decomposition with pivot
(lu5piv.Dany).

The 16 processor case was simulated in a 'single run' mode and is included here to

show the saved time.

4. The Partitioning phase was altered as it had some hidden bugs. These bugs did

not allow for correct partitioning of all graphs. An example of the flaw and its
correction is presented below. Consider figure 5.6. Assume that the Critical Path has

been determined. Nodes N1, N3, N4 and N2 are marked.

Flaw : All nodes emanating from N1 are checked for building the subsequent LDPs.

Let N5 be the first choice. BLAS maintains a stack of nodes to be processed.
Originally, the Root node (N5 in this case) is pushed on the stack. Then, the node's

output arcs are processed, and a copy of the indegree count (variable:keep_count) for

each successor node is decremented. If the count reaches 0, that node is pushed on

the stack, to be processed later. A node is not processed until its indegree count
reaches 0 to insure that all of its predecessor nodes are processed first and that no

node is processed more than once.
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SPEED-UP AND DATA FILE : lu5piv.Dany Sun Nov 28 22:26:51 1993
Manoj Raisinghani

ALLOCATION : Any Processor

EXECUTION :
Sequential Execution = 11748
Total Nodes = 228
Average Execution Base (Seq.Exec/Tot.Nodes) : 51.526

COMMUNICATION Costs for a 50 Mhz processor for nCUBE 3:
Max. StartUpTime = 250 cycles with HyperCube topology
Max. InterProcessor Communication is 10 cycles

DEPTH in horizontal layers = 43
MAXimum PARallelism = 55

Computation STARTs at Sun Nov 28 22:26:55 1993

COMMUNICATION to EXECUTION TIME RATIO (C/T) is 10/51.526
Comm Latency = StartUpTime + (No. of Hops * 10)

Critical Path Time (Lower Bound Time) = 2846.000
Average Parallelism (Ideal SpeedUp) is :

SequentialTime/CriticalPathTime = 4.128

1 PROCESSOR(s)
(a) Total execution time with communication is 11748.0.
(b) SpeedUp = 1.000
(c) Efficiency = 1.000 or 100.0 percent
(d) Performance Ratio = 0.242 or 24.2 percent of Ideal SpdUp

2 PROCESSOR(s)
(a) Total execution time with communication is 7022.0.
(b) SpeedUp = 1.673
(c) Efficiency = 0.837 or 83.7 percent
(d) Performance Ratio = 0.405 or 40.5 percent of Ideal SpdUp

4 PROCESSOR(s)
(a) Total execution time with communication is 5096.0.
(b) SpeedUp = 2.305
(c) Efficiency = 0.576 or 57.6 percent
(d) Performance Ratio = 0.558 or 55.8 percent of Ideal SpdUp

8 PROCESSOR(s)
(a) Total execution time with communication is 3934.0.
(b) SpeedUp = 2.986
(c) Efficiency = 0.373 or 37.3 percent
(d) Performance Ratio = 0.723 or 72.3 percent of Ideal SpdUp

Computation ENDs at Sun Nov 28 22:27:23 1993

Computation Starts at Sun Nov 28 22:45:23 1993

16 PROCESSOR(s)
(a) Total execution time with communication is 3914.0.
(b) SpeedUp = 3.002
(c) Efficiency = 0.188 or 18.8 percent
(d) Performance Ratio = 0.727 or 72.7 percent of Ideal SpdUp

Computation ENDs at Sun Nov 28 22:45:55 1993

figure 5.5 An example speed-up file when simulating a 5x5 LU problem.
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Once the root node (N5) is finished, the next node on the stack is processed in the

same manner. This continues until the stack is empty.

The problem with this scheme is that a node is only processed if all of its
predecessors are processed. If any of its predecessors cannot be reached from the root

node, or are marked, the node won't be processed.

For example, node N6 has three incoming arcs, one from each of nodes N5, N3,

and N7, giving it an indegree of 3. Node N5 is processed first, and its output arc to

N6 is evaluated, reducing node N6's indegree count to 2. However, N3 and N7 are

never processed in determining this LDP; node N3 is already marked and N7 can't be

reached from N5. Therefore, node 6's other incoming arcs aren't processed, its
indegree remains 2. It is not pushed on the stack, and therefore, isn't considered for

further processing in this LDP. The final result is that N5 becomes its own LDP,
while N5 and N6 should have made up one LDP.

Thus, this 'bug' was missed in the MAC version and had to be cleared to run with

the present programs.

Correction : Use of Horizontal layering of the graph has been made. The graph is

divided into Horizontal Layers (as was done in the Macintosh versions) and now,

arrays consisting of nodes present in each layer is maintained. That is, an array is

dynamically created for each Horizontal layer and it contains the node numbers
within that layer. The graph is then traversed layer by layer. The CP is determined as

before and its nodes are marked. Consider N5 as the new Root for forming an LDP.

In this correction process, the indegree-count for each node is not used and the node is

never stacked either (when indegree-count equal to zero) for latter processing. Infact,

a new array (of type : Boolean) called on_path[] is introduced which indicates

whether a node is on the path that is being considered currently, or not.

N5 is in layer H2 and all its successors will lie in layers H3 and above (in
ascending order). The Root-N5 is marked as on-path. Layer 3 is investigated for
nodes that obey 2 conditions : 1) The nodes in the layer should be successors to a
node on the path and 2) The successor nodes should not have been marked already.

N6 and N8 obey above conditions and N4 is a successor but, is a marked node.
Hence, N6 and N8 are now marked as on-path and the output arcs of these nodes are

considered. As can be seen from the graph, the output arcs of N6 and N8 point to
successor nodes that are already marked.

This implies that N6 or N8 may be the Exit node for the LDP with Root N5. The

condition for ascertaining the Exit node is 3) It should have no successors at all, or

its successors are only the marked nodes and it should have the highest accumulated
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time during this pass. N6 obeys the above condition and is considered the Exit node

for that LDP as it has the highest accumulated time as compared to N8. This makes

an LDP: N5->N6. Similarly, the LDP: N7->N8 is determined as above. All nodes in

a layer are considered first before processing any subsequent layers.

Horizontal
Layers

H1

H2

H3

H4

Critical Path (Shaded nodes)
CP : N1->N3->N4->N5->N6->N7->N2
Execution time = 50 cycles

LDP-1 : N9->N10->N11->N12

LDP-2 : N8

Maximum parallelism = 3

figure 5.6 Example to demonstrate the Flaw and Correction made in BLAS.

5.6 Modified BLAS

The time complexity of BLAS assignment drastically increases for large graphs

over large number of processors. Freytag [12] proposed a variation in the allocation
algorithm. The time to allocate a program to processors can be reduced efficiently by



85

considering the allocation of each set of nodes or LDPs to a layer that is at most one

processor away from a parent thread. This change was based on the complexity analysis

and the algorithm was called Modified BLAS. The time complexity for Modified BLAS

is reduced and is of the Order

log2(2p)O(N2) for p N

As expected, the total execution time for an assignment using Modified BLAS decreases

as the number of PEs increases. This is a relative merit vis-a-vis BLAS (Any PE)
assignment.

5.6.1 Effectiveness of Modified BLAS

Freytag [12] in his work, cited simulation results on hand drawn sample graphs
which indicated that :

1) Modified BLAS does not perform as well as the BLAS for small Communication to

Execution ratios (C/T) but,

2) Modified BLAS performs as well as BLAS for larger C/T ratios.

In this thesis, it is apparent from the results taken for matrix multiplication and LU

decomposition, that the original BLAS allocation outweighs Modified BLAS for
increasing sizes of the graphs or increase in the number of LDPs. Refer to graphs in the

results section. An option is provided in the user interface for BLAS to either run the

simulation for 'Adjacent Processor' or 'Any Processor' allocation. The former will give

output files with .T, .D or .E extensions and the latter will attach a suffix 'any' as
described earlier.

However, Modified BLAS has to be used for very large programs having more than

4000 nodes. As, it is the only option that will complete the simulation in practical time.

BLAS code needs to be optimized so as to run faster and also remove any
redundancy and unrequired computation in the assignment phase of the code.

5.7 Simulations and Results

The previous chapters have described the process that allows one to actually
simulate a program graph's allocation on multiple PEs. When parallelizing a graph,
performance parameters and concepts of routing with associated delays will be best
evident with simulations of that graph on a target architecture. The target system is the



86

nCUBE 3E series having a hypercube topology with a PE-Start up time of 250 cycles at

50 MHz operation. The interhop latencies between two adjacent PEs is 10 cycles. Based

on these parameters, the simulation results for three programs, each with different sizes,

are presented. The number of PEs for each simulation has been varied depending on the

time of run and available parallelism.

5.8 Programs for the Simulation

The three programs chosen for presentation in this thesis are matrix multiplication,

LU decomposition and the Simple benchmark. Material, for matrix multiplication and

LU decomposition is available in [34]. Information on Simple can be obtained from
LLNL and [9]. There were a large number of programs that were obtained from the

SISAL group at LLNL and simulated. However, the above three will be described
shortly before going into the discussion of the results.

5.8.1 Matrix Multiplication

The algorithm is widely used in various areas of research. It consists of multiplying

two square matrices A[i, k] and B[k, j] to give a third matrix C[i, j]. It is represented as

C[i, j] = A[i, k] * B[k, j]

If A and B are 3x3 square matrices having elements a11, a12, a33, b11, b12, ...,b33,

then, element c11 = a1 1b11 + a12b21 + a13b31 and so on. This says that, each row of A is

iteratively multiplied by all columns of B to produce the corresponding row of C. It

implies that a large amount of parallelism can be exploited from the algorithm. This is

because each operation is independent of any other computation and all computations can

be undertaken simultaneously if the matrices can be accessed at the same time.

The sequential order of the algorithm is n3 (as there are three nested loops) where

nxn is the size of the two matrices. The matmult.sis program presented in the discussion

of IF1 (in chapter 3), indicate its sequential order of n3 by the 3 nested loops. For larger

size matrices, the corresponding matmult.ifl files, when passed through the Automator,

give large number of nodes. This can make the allocation time very high. To avoid large

number of nodes, the optimized version is chosen. A 5x5 matrix multiplication is
transformed by the Automator to 140 nodes for the .ifl file and only 39 nodes for .opt



87

file; a remarkable savings in time! The trick is the reduced number of nested levels in the

.opt file; in fact only one level of For All is present.

The SISAL compilation in its optimization phase (IFIOPT), expands the graph. It

does so by opening the innermost k For All and the middle level j For All structures, to

extract the elements of the B[k, j] matrix before presenting it to the outer most For All

with i iterations. The optimized file mat 3x3.opt is transformed by the Automator to give

mat 3x3.i file which is shown in figure 5.7.

At this point it is interesting to see how the algorithm behaves with respect to the

graph. The graph is essentially divided into two : top half called the Extraction Phase (in

figure 5.7) with more nodes than the bottom half Computation Phase. An analysis
follows - The top half consists of nodes from the Root N1 to before the For All at N15.

These in-between nodes are AElement structures. An AElement node [31] extracts the

element of an input array at the index position given on its other input port. The first set

of nodes from the Root (N3, N5 and N7) extract a row each for k = 1 to 3, from the B
matrix. Each row is then presented to another set of AElements to extract each of the
three elements from that row for j = 1 to 3. All rows are treated similarly. The extracted

elements from the B matrix, are presented to a ForAll structure in the lower half.

Each body of the ForAll receives a single column of B and comprises of simple

nodes to carry out the computation such that the first row for the C matrix is produced at

its output. All 3 elements of a particular row depending on the value of i, are computed

and assembled. These rows are then gathered by the Return node containing the AGather

structure, that assembles the entire matrix and exports it to the Exit.

The execution time of the ForAll generator node is 4*3 = 12 cycles, since, it will
spawn off 3 bodies and the individual execution time of the RangeGenerate node in this

case is 4 cycles. The same is true for the A Gather whose execution is 75 cycles, as it

collects from 3 nodes. Each Body execution time is a cumulative addition of all simple

nodes that are contained in it. An example of computing the first element of C (c11) is

shown in figure 5.8. The execution times of each of the simple nodes are small enough.

If they were not contained in one node in the graph, they would still be grouped
under one PE by BLAS because of their interdependencies. This is a good example of
how Node Packing is effected. To get different sizes for the matrix multiplication case,
variables x, y and z in the program described in IF1 Language need to be replaced by the
value of n.
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5.8.2 LU Decomposition

This method is based on the fact that a square matrix A can be factorized into the

form LU where L is the unit lower triangular matrix and U is the upper triangular matrix,

if all the principal minors of A are non-singular. A linear system of equations consisting

of three variables is given as :

a1 1x1 + a12x2 + a13x3 = b1

a21x1 + a22x2 + a23X3 = b2 and can be written as AX=B (1)

a31 xi + a32x2 + a33X3 = b3

A is non-singular implies all not 0 and minors of A not 0 [34]. It is a standard
result of algebra that, when such a result exists, it is unique. Also, B is column vector.

Let A = LU (2) where:

1 0 0 U11 U12 U13

L=
121 1 0 and U = 0 U22 U23

131 132 1 0 0 U33

Hence (1) becomes LUX = B (3)
Setting Y = UX (4)

LY = B (5)
Which is now equivalent to finding Y's from :

yl = b1

121Y1 + Y2 = b2

131Y1 + 132Y2 + Y3 = b3

This can be solved using forward substitution. When Y is known, the system (4)
becomes

yi = unxi + u12x2 + u13x3

Y2 = b22X2 + U23X3

y3 = u33x3

The above can be solved for x1, x2 and x3 by backward substitution which involves

pivotal condensation.

For the simulations, A is a nxn array and B is a n element vector. To get different

sizes, the value for n is set to n = 5, n = 10 and n = 20 and the corresponding output from

the Automator is simulated. If values are known (may be random) for A and B such that
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the A matrix is non-singular, then these values may be fitted into the SISAL program

lu.piv.sis, subsequently compiled and passed through the Automator preparing it for
BLAS.

5.8.3 Simple

The Simple benchmark was developed at LLNL to represent large scale scientific

code which is executed on supercomputers today. It is a hydrodynamics [9 and 20] and

heat conduction application which simulates the behavior of a fluid in a sphere, using
Lagrangian formulation and equations.

It primarily consists of three main procedures : velocity-position, hydrodynamics

and conduction. All other procedures [9 and 20] are run only once or are called by one of

the above. The description is out of scope for this work. Details of the algorithm are

available with the SISAL group. Simple benchmark too, is matrix based and its '.opt' file

from SISAL compilation results in very large number of nodes even for small sized
programs.

This benchmark can be rescaled in the simple.sis stage itself. At the very beginning

of the function main in SISAL code, the following five names are defined,

tmax

kmn, krnx

imx

maximum time. Increasing or decreasing this value will increase or

decrease the number of iterations

the lower and upper bounds of the number of rows in the matrix.

the lower and upper bounds of the number of columns in the matrix.

If an array size of 10x10 is required then set: kinn = 2; kmx = 9 and /mil = 2; /nix = 9.

Also, the default for tmax is 4.999 which indicates 60 iterations. The loop body

counts for the Automator are simply the value of the matrix size.

5.9 Simulation Results

For the matrix multiplication program, the Any Processor allocation was simulated

over a maximum of 1024 processors. The matrix sizes were varied as explained above.

The graph mat nxn indicates a curve for the size nxn.

The LU decomposition program was tried over 3 sizes and the curves are called lu
nxn. The above algorithm can also be evaluated using no pivotal condensation during
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back substitution. This case has been graphed and curves are called luN nxn. Both lu and

luN are simulated for the 'Any Processor' allocation scheme in BLAS. In general, the LU

decomposition graphs have fared real well in the simulations.

Finally, the Simple program was tried over the 'Adjacent Processor' allocation
scheme. It gave very high number of nodes for small size graphs. Hence the 'adjacent'

option saved immense time in simulations. Even then, a 16x16 size problem transforms

to 62,629 nodes which takes a minimum of 3 weeks on a Sparc10 Sun system.

For all above cases, Speed-up, Efficiency and Performance Ratio graphs are
presented. Performance Ratio is a figure of merit for the algorithms behavior with
respect to BLAS. As can be seen the LU algorithm fares the best. This parameter
indicates how fast the program graph reaches its ideal speed-up value. However such a

merit has significance only if the number of PEs over which the run is being taken is

greater than the Maximum parallelism of the graph. Refer to Table 6a for the various
parameters obtained during the simulation run.

As the number of nodes increases, so does the LDP count. As a result the
maximum parallelism also increases. For regular graphs like matrix multiplication and

LU with No pivot, the LDP count is almost similar to the maximum parallelism that is

present. This is not the case with graphs like LU with pivot and Simple, as these have all

the complex structures and various combinations of serial and concurrent sections within
each.

In the Table 5a, Horizontal Layers for any given program is almost same for
varying sizes. This depicts the goal of the Automator which is to achieve vertical
connectivity with horizontal expansion.

The graphs for all algorithms show a steady increase in the Performance ratio which

implies better speed-ups for larger sized problems. The cost of a system is the processor-

time product as described earlier, and is inverse of efficiency. As the number of PEs is

increased for the same problem size, the cost also rises with a decline in efficiency. But,
for the same algorithm, efficiency increases for the same number of PEs, over larger
problem sizes.
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figure 5.10 Matrix Multiplication Corresponding Efficiency curves
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LU with pivot (a)
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Matrix Multiplication

Size 10x10 15x15 20x20 25x25 30x30

C/T(av) 2.61 1.71 1.3 1.04 0.87
Number of Nodes 134 274 464 704 994
Sequential Exec. 13330 40995 92660 175825 297990
Ideal Speed-up 18.488 37.923 64.3 97.626 137.89
Max. Parallelism 100 225 400 625 900
LDP Count CP+108 CP+238 CP+418 CP+648 CP+928
Horizontal Layers 8 8 8 8 8

LU with Pivot
Size 1 5x5 10x10 20x20

C/T(av) 5.05 1.42 0.41

Number of Nodes 228 613 1983
Sequential Exec. 11748 112018 1268358
Ideal Speed-up 4.128 8.874 21.049
Max. Parallelism 55 210 820
LDP Count CP+131 CP+456 CP+1706
Horizontal Layers 43 43 43

LuN with No Pivot
Size I 5x5 10x10 20x20

C/T(av) 3.55 1.12 0.35
Number of Nodes 85 265 925
Sequential Exec. 6221 61336 689606
Ideal Speed-up 3.013 5.186 9.378
Max. Parallelism 50 200 800
LDP Count CP+49 CP+199 CP+799
Horizontal Layers 10 10 10

Simple Bench Mark
Size H 4x4 5x5 6x6

C/T(av) 8.33 7.73 3.75
Number of Nodes 1375 3135 5547
Sequential Exec. 42903 105435 384953
Ideal Speed-up 1.812 3.546 5.355
Max. Parallelism 59 152 256
LDP Count CP+486 CP+1211 CP+2056
Horizontal Layers 323 325 335

Table 5a Parameter values from Simulations
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5.10 C/T

The Communication to Execution Ratio is given as C/Tav in the Table 5a. This
ratio indicates the granularity of the program that is being run. The Communication
parameter : C, is averaged out as a constant, and is equal to 'Startup time + One Hop
Time' (i.e., 260 cycles). The execution time Tav (also referred as T) is the average
execution time of a particular node in that problem and is equal to the ratio of sequential

time of a graph to the number of nodes in that graph.

For the same problem, the C/Tav decreases for larger sizes, but for a given PE, the

speed-up and efficiency increases. Thus, smaller the grain and larger the size of the
program, better it is suited for allocation over parallel processors. This is only an
approximation and each case may be validated for the right number of hops when
deducing the Tav parameter.

Consider the 3 cases of `1_,U with pivot' algorithm being allocated over 64 PEs. The
performance tables for 'Any' and 'Adjacent' assignment is as given.

lu 5x5 lu 10x10 lu 20x20

C/Tav 5.05 1.42 0.41

Adj. PE Speed-up 2.52 5.6 9.47

Any PE Speed-up 3.00 6.97 19.4

Table 5b Speed up for the lu nxn at 64 PEs

Modified BLAS or Adj. PE allocation does not perform as well as the BLAS (Any
allocation) for small Communication to Execution ratios (C/T) but, performs as well as
BLAS for larger C/T ratios. This is in congruence with the findings in [12]. A
comparative effect of running the simulations with Adjacent and Any allocation is
presented below.
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5.11 Adjacent versus Any

The 'Any Processor' allocation scheme has far outweighed the Adjacent scheme in

the simulation results. The performance curves for an 'adjacent' allocated mat 30x30
program in comparison to 'any' allocated 15x15, 20x20 and 25x25 is shown in figure
5.21. These curves indicate that BLAS performs well, as it attempts to find the best
allocation for each LDP over all the different PEs, by considering the effects of
communication costs on execution times. Modified BLAS, has one important difference,

each LDP is assigned in an iterative fashion to a PE layer that is at most one processor

away from its parent thread.

Comparing LU (with Pivot) with matrix multiplication brings to surface an
important aspect of parallelism. The LU for a size of 20x20 allocated over 64 PEs,
reaches 92.2% of its ideal speed-up. For the same case in matrix multiplication, the
speed-up ratio is as low as 40% of the ideal. A plausible explanation is that matmult
problems have a very high ideal speed-up and lower number of LDPs to distribute over

PEs. In contrast, the LU problem has low ideal speed-ups and many more LDPs in
comparison to allocate. Ideal speed-up for LU is nearly a third of the number of PEs (i.e.

21) in contrast to mat 20x20 which has almost the same ideal speed-up as the number of

processors over which it is being allocated (i.e., 64.3 over 64 PEs).

Hence, if an algorithm has a higher ideal speed-up it must have a large number of

LDPs so as to saturate faster over increasing number of PEs. However, this is not the

case with the Simple benchmark. The only explanation to this anomaly is that the results

are taken for 'Adjacent' allocation and the above is true for 'Any Processor' allocation.

Also, from the discussion on C/T, Adjacent schemes give better speed-ups only for

high C/T ratios. But, in these current simulations, C/T is high for smaller sized problems,

which any way compile in less time using 'Any' PE allocation. Hence, using 'Adjacent'

schemes has the advantage of saving time during the assignment phase of large sized
problems.
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CHAPTER 6. CONCLUSIONS and FUTURE WORK

6.1 A Review

In this work, concepts of parallelism have been described in terms of the available

parallel architectures and their interconnect and routing issues. The characteristics of
parallelism have prompted researchers to augment available high level languages to
describe parallelism within a code. Alternatively, many have tried bestowing the power

of automatic restructuring to a compiler, which transforms a given sequential algorithm

into its parallel form using compilation and optimization techniques. This desire for

expressing parallelism finally led to the making of parallel functional languages. Though

these languages for example SISAL are still in their infancy, the future is promising.
This thesis was developed around the compilation of SISAL programs.

Once the expression for parallelism is achieved, the next step is to partition the
program into tasks and then assign these tasks to different PEs interconnected in a
particular topology. The aspect of presenting a parallel program to a system of PEs in a
hypercube topology is where this thesis takes root.

The IF1 graphs are processed by the Automator package developed for this project.

It takes into account all implied dependencies between IF1 function graphs and produces

a single graph with actual dependencies between the all the nodes. The IF1OPT files
serve better for the metamorphosis of multiple acyclic unconnected graphs to a static

connected graph. Many features have been incorporated into the graph preprocessor tool,
to help experiment with different algorithms and various graph cases.

The Automator tool has opened new avenues to continue research of the Balanced

Layered Allocation Scheme that was proposed by [12 and 18]. However, any research is
open ended, and its openness lies in the limitations of the current work. BLAS was

ported to UNIX and changes were made in the code and the user-interface, resulting in a

newer version 5.0. Important routines of partitioning-phase were changed, making it
more stable over all cases of graphs.

Finally, simulations were carried out with various algorithms each with different

sizes. These simulations were timed to see the effective preprocessing time that will be

associated when doing a practical static scheduling for any graph. The 'Any' PE
allocation fares better for performance and efficiency considerations, but Adjacent
assignment becomes a default requirement for very large graphs.
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6.2 Future Study

The static allocation scheme needs to be compared with existing and new dynamic

allocation approaches. The pragmatics of both have to be further investigated. This will

involve focusing on their implementations. In dynamic scheduling, the critical aspect is
the run time overhead, which dictates program and machine performance as well as the
allowable level of task granularity.

An important issue in parallelization is that of task definition and size. Should they

be defined at compile time as was done in BLAS or should they be formed during run
time or else can both be used, with defining the tasks at compile time and doing effective

resizing during run time to balance the load on the system ?. Also, the larger the task
granularity, more significant is the load balancing issue and if the overhead of
dispatching a task to a PE is significant then larger grain size is practical to shadow this
overhead with gains in execution speed. This has been seen in the case of mat 3x3.i in
figure 5.7 and figure 5.8, where the bodies were subjected to node packing by the
Automator before presenting for allocation. Minimizing the overhead incurred from
communication, synchronization and scheduling, is a non-trivial optimization problem

and is proved to be NP-Complete [25, 26 and 30]. Moreover, attempting to minimize the
communication costs by merging nodes of a graph to avoid the communication overhead,

often reduces the degree of available vertical parallelism. Hence, many tradeoffs have to
be made for optimality.

6.3 Improvements

The ForAll node is well defined structure of a parallel loop. The parallel loops
account for the greatest percentage of program parallelism [25].

The loops : LoopA and LoopB have loop-carried dependencies and so, cannot be
parallelized. However, the dependencies are not unknown. They are manifest in the
code. A dependency exists wherever the key word "old" is used. "old x" refers to the
value of x on the previous iteration, while x refers to the value on the current iteration.
SISAL being a functional language, there are NO unknown dependencies [8 and 33]. By
unrolling LoopA and LoopB constructs, one can realize a type of pipeline parallelism.
That is, instructions on the next iteration may execute as soon as the "old" values they
reference are available, and do not have to wait for all of the previous iterations to finish.
Such an implementation requires hardware control to fire off instructions. On
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conventional machines such hardware does not exist and is very expensive to implement

in software. Multithreaded machines can support pipeline parallelism.

The Automator does encourage some approximations, or alternatively, heavy user
interaction with respects to Loop structures. When a body count is not known in advance

some technique should be incorporated in the Automator to compute the body count
automatically for a given case. The feasibility of this change needs more attention.

When assigning probability to a Select structure, all the nested levels within its True

and False graphs have their execution-times multiplied by the probability factor assigned

to that True or False node respectively. This probability factor is also applicable to the

edges, but BLAS has to be enhanced to indicate that. Within the Automator, an
additional field in the Node structure can be assigned to indicate the probability of the

incoming edge to that node. A node cannot have both edges, i.e., with True and False as

its imports. It will have only one of them. With this implementation in place, the node

execution-times need not be multiplied with the probability factor but instead have their

actual costs considered during allocation. BLAS will utilize the edge information to

allocate the nodes to different PE layers using C/T ratios. This will affect the priority in
the assignment phase.

Finally, mapping of IF1 nodes to a message passing system will give a better
picture about how effective is the transformation and whether BLAS is at all a good
scheme for multicomputers. As of now, the results look good in the simulations. Here, it

is to be noted that SISAL and IF1 were originally written with shared memory processor
systems in mind, even though the intermediate compilation produced a machine
independent graphical form.

6.3 Similar Work

Parallel work has excited researchers to explore different angles with which to get
optimal results for a given problem. The contributions of the data flow community has
been immense. Lubomir et al [20] describe in their paper, a scheme to subdivide a data
flow graph generated using Id, into Subcompact Processes (SP) and then assign these SPs
to a target architecture like Intel's iPSC/2. The dataflow program is executed as a
collection of SPs and this system is called PODS or Process Oriented Dataflow System.

Similarly Santosh and his group [31] have worked on a scheduler that allocates 1F2
graphs [35] generated from SISAL, to an Intel Touchstone i860 system. The above two
[20, 31] and [10, 11 and 21] are steps towards proving how data flow concepts can be
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utilized on available von Neumann systems using shared memory architecture. Where as
this thesis addresses the distributed memory architecture systems.

The simulation results obtained in this project, were compared (by Dr. Lee :
Electrical and Computer Engineering Dept., OSU) with hand analysis calculations. The

calculations, were obtained from Striped partitioning concepts explained in chapter 4
(section 4.12) of the matrix multiplication program implemented on a hypercube network
[35]. The computations were done for an order of n2, and they match quite closely to the

Simulation results as shown. The IF1OPT phase during compilation, reduces the order of
the program from n3 to n2 for large sizes (i.e., for 15x15 and upwards upto 30x30). After
matrix size of 30x30, the fFlOPT leaves the three nested levels as is. This is because, the
SISAL group incorporated some checks within the compilation steps to limit the size of
the output files when any nested levels are opened and expanded. Table 7a shows a good
matching of the simulation results with hand calculations using Striped Partitioning
concepts.:

mat 15x15 mat 20x20 mat 30x30
PEs Cale. Simul. Ca lc. Simul. Ca lc. Simul.

1 1.0 1.0 1.0 1.0 1.0 1.0

2 2.0 1.95 2.0 1.97 2.0 1.98

4 3.7 3.7 3.9 3.84 3.0 3.9

8 6.6 6.7 7.3 7.28 7.6 7.55

16 10.4 10.59 12.9 12.81 14.2 14.0

32 13.8 13.9 20.3 19.83 24.5 23.79
64 15.5 16.4 27.1 26.0 37.3 34.3

128 15.6 17.55 31.1 31.17 48.5 44.66
256 14.8 18.56 31.9 33.62 54.6 51.37

Table 6a Calculated values for Verification
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