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Fault-Tolerant Ring Embedding 
in De Bruijn Networks 

Chapter 1 

Introduction 

Physical limitations on processing speeds of sequential computers have led high 
performance systems to rely increasingly on exploiting the inherent parallelism in 
problems and implementing their solutions on parallel machines. Recent advances in very 
large scale integrated (VLSI) technology make the design of multicomputers with 
thousands of processors feasible. Processors can be viewed as individual chips, several 
chips on a circuit board or even individual computers interconnected suitably to form 
networks. The study of interconnection networks and their underlying topologies have 
consequently become an integral part of designing high performance architectures. 

As the number of processors in a system increases so to does the probability of a 
processor or communication link malfunctioning. It is therefore important to evaluate 
network performance in the presence of component failures. There are many ways to 
assess the reliability of a network. One widely-used measure is based on the network's 
connectivity. In this approach, a network is assumed to have tolerated a given set of 
component failures if it remains connected (i.e., all nonfaulty processors can still 
communicate with each other). However, even if the faulty network is connected it is not 
always clear how a parallel computation can be performed efficiently since the faulty 
network may bear little resemblance to the original network. A more general approach to 
fault-tolerance involves arranging the nonfaulty processors in some useful pattern such as 
a binary tree or a linear array. 

In this thesis we investigate how the nonfaulty processors in a De Bruijn network can 
be joined in a ring. The goal of the work is to allow a faulty De Bruijn network to 
efficiently support algorithms that make use of a ring or linear array. 
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1.1 Problem Definition 

We assume that an interconnection network is modeled by a graph, the nodes being 
the processors and the edges being the physical links between processors. Henceforth we 
will not make a distinction between a network and its underlying graph, e.g., node and 
processor will be used interchangeably. Component failures are assumed to be total, i.e., 
faulty nodes can neither perform computations nor route messages, and are modeled by 
removing the faulty nodes and/or edges from the graph. 

Let Rk denote a cycle (or ring) of length k. An embedding of Rk into graph G is a 
one-to-one mapping ti that takes the nodes of Rk to the nodes of G and the edges of Rk to 
paths in G. The principal measures of an embedding are its dilation and congestion. The 
dilation of ti is the length of the longest path t(e) taken over all edges e in Rk. The 
congestion of T is the largest number of paths t(e) using a single edge in G. 

This thesis addresses the problem of embedding the largest possible ring Rk in a De 
Bruijn graph so that nodes in Rk are mapped to nonfaulty nodes and edges in Rk are 
mapped to fault-free paths. The proposed embeddings have unit dilation and congestion 
implying that the embedded ring is a subgraph of the faulty graph. 

1.2 The De Bruijn Network 

The De Bruijn interconnection network is modeled by either the directed or undirected 
De Bruijn graph. The d-ary directed De Bruijn graph B(d,n) has nodes corresponding to 
n-tuples over a d-letter alphabet A, and directed edges from each node xi ...xn to nodes 
{x2...xna I a E A} . Each node has indegree and outdegree d, and nodes of the form an 
have loops. 

The undirected De Bruijn graph, denoted UB(d,n), is obtained from B(d,n) by 
deleting loops, removing the orientation of the edges and merging any resulting parallel 
edges. This results in a graph possessing d nodes of degree 2d-2, d(d-1) nodes of 
degree 2d-1 and do d2 nodes of degree 2d [PR82]. The 8-node and 16-node De Bruijn 
graphs on the alphabet {OM are shown in Figure 1.1, and the undirected De Bruijn 
graph UB(2,3) is shown in Figure 1.2. 
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Figure 1.1. Binary De Bruijn graphs (a) B(2,3) and (b) B(2,4).  

100 110 

\ /\010/ 101/
000 

001 011 

Figure 1.2. Undirected binary De Bruijn graph UB(2,3). 



The De Bruijn graph' derives its name from N. G. de Bruijn who used it in 1946 to 
solve a combinatorial problem [Bru46]. The graph was first studied as a communication 
network by Schlumberger [Sch74], and was proposed as a processor interconnection 
network suitable for VLSI implementation by Pradhan in 1981 [Pra81]. The De Bruijn 
topology has also been proposed for implementing large optical-based networks that 
employ lightwave division multiplexing [SR91a, Muk92]. Surveys of De Bruijn graphs 
and networks can be found in papers by Bermond and Peyrat [BP89], Samatham and 
Pradhan [SP89], and in Section 3.3 of Leighton's book [Lei92]. 

The De Bruijn network has much to recommend it as a general purpose architecture. 
For example, any T-step computation on a mesh-of-trees, a k-dimensional mesh, or 
butterfly network can be simulated in 0(T) steps by a like-sized De Bruijn graph [Sch92, 
KLM+89, Sch90]. In addition, B(d,n) contains such useful topologies as a complete 
d-ary tree and a shuffle-exchange as subgraphs. 

While the De Bruijn network cannot simulate the popular hypercube network with 
constant slowdown on arbitrary computations, it can implement the class of highly 
parallel normal or composite hypercube algorithms with a small constant delay [U1184, 
PV81, SP89]. The paradigm of these algorithms is the iterative version of the divide-and-
conquer method, in which a problem is divided into subproblems of equal size, with a 
one-to-one correspondence between the results of the subproblems. A rich set of 
problems, such as permuting, sorting, the fast Fourier transform, and prefix computation 
have efficient solutions in this class. 

The De Bruijn network can also efficiently simulate an idealized parallel computation 
model. Idealized models, such as a PRAM, assess a unit cost for communication between 
processors, making it possible to design parallel algorithms without regard to the network 
topology. Proposed simulations of a PRAM by a De Bruijn network involve probabilistic 
routing techniques developed in [VB81, LMR88]. 

1We follow Van Lint and Wilson in capitalizing the word "de" when omitting the initials of N.G. de 

Bruijn [LW92]. 
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The applications of De Bruijn graphs are not limited to parallel processing. The 
graphs arise in such diverse areas as the search for dense graphs and minimal broadcast 
graphs [DF84, BHL+92, BP88], and the study of cellular automata [Wo184, Sut91]. 

De Bruijn graphs also play an important role in decoding convolutional codes. 
Maximum-likelihood decoding of these codes requires the decoder to find the best match 
between a received stream of symbols and a path in a De Bruijn graph with weighted 
edges. This has led to the implementation of an 8192-processor De Bruijn network in 
VLSI by the Jet Propulsion Laboratory. The network is to be used in conjunction with 
NASA's Galileo mission to Jupiter [DI(M92]. 

1.3 Previous Work 

The fact that the De Bruijn graph admits a Hamiltonian cycle is well-established. The 
properties of these cycles have received much attention, due in large part to their 
relationship to full length shift register sequences (also known as De Bruijn sequences). 
Background on this subject can be found in the surveys by Fredricksen [Fre82] and 
Ralston [Ra182]. 

The ability of the De Bruijn network to tolerate faults has been the subject of 
numerous papers. Work has been done on fault-tolerant routing [EH85, HP89, IS085, 
IS086, Pra81, Lyu93, DLH93], fault-diagnosis [PR82, SR91b], fault-tolerant VLSI 
design [Obr91], and emulation of a nonfaulty network by a faulty network [Ann89, 
BCH92]. The work most closely related to the topic of this thesis is that of Samatham 
and Pradhan who investigated fault-tolerant embeddings of complete d-ary trees [SP89]. 

1.4 Notation and Terminology 

For the most part, our graph-theoretic terminology follows Harary [Har69]. The 
indegree and outdegree of a node X in a directed graph (digraph) G refer to the number of 
edges terminating at and originating from X. If there is an edge from x to Y we say that Y 
is the successor of x, and x is the predecessor of Y. A path is a sequence of vertices V 1, 

Vk, such that (vi, Vii.1) is an edge, 1 i k-1. A cycle is a closed path in which all 
nodes are distinct, and a cycle of length k is called a k-cycle. A circuit is a closed path in 
which all edges are distinct. A cycle that visits all nodes in the graph is said to be 
Hamiltonian, and a circuit that traverses all edges is Eulerian. A digraph is (strongly) 
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connected if there is an oriented path between every pair of nodes. A component of a 
digraph is a maximal connected subgraph. 

The following notation terminology is used throughout this thesis. 

Symbol 

B(d,n) The d-ary De Bruijn digraph with do nodes. 

UB(d,n) The undirected De Bruijn graph. 

A The d-ary alphabet over which the nodes of B(d,n) are defined. 

All The set {xi ...xn I Xi E AI of words of length n (n-tuples) over A. 

A* The set of all words over A, including the empty string. 

Z The set of integers. 

Zj The ring of integers modulo d. 

GF(q) The Galois field with q elements. 

4)(n) The Euler function denoting the number of positive integers 
relatively prime to and not exceeding n. 

alb a divides b. 

LCM(a,b) The least common multiple of integers a and b. 

an The n-tuple a... a. 

a The n-tuple a(3... a(3 when n is even and the n-tuple at3...afla 
when n is odd (the value of n is implicit). 

wt(X) The sum of the digits in x. 

wtec(x) The number of a's in x. 

ni(X) The left rotation of X by i positions. 

N(x) The cycle in B(d,n) obtained by rotating the letters of a node. 

maximal cycle A cycle of length qn1 in B(q,n) corresponding to a linear 
recurrence of period q "-l. 



Chapter 2 

Ring Embedding With Node Failures 

In this chapter, we describe a network-level distributed algorithm that finds a fault-
free cycle in B(d,n) in the presence of an arbitrary number of node failures. We assume 
that the location of the faulty nodes is not known in advance. 

Our approach involves partitioning the nodes of B(d,n) into small cycles called 
necklaces. A necklace is deemed faulty if it contains a faulty node. A large fault-free 
cycle is constructed by joining nonfaulty necklaces. 

The time required to find the fault-free cycle is 0(K + n), where K is the diameter of 
the largest component in the graph obtained by removing the faulty necklaces from 
B(d,n). The length of the fault-free cycle is at least dnn when the number of faults f is 
at most d-2. In addition, a fault-free cycle of length at least 2n(n+1) can be found in the 
binary (d=2) De Bruijn graph when f = 1. In both cases, the number of communication 
steps required to find the cycle is 0(n). 

Our results indicate that the De Bruijn graph is competitive with the hypercube when 
the number of faults is small. It is known that a fault-free cycle of length 2n-2 exists in 
the 2n-node hypercube when f n-2 [WC92, CL91a]. For example, a fault-free cycle of 
length 4092 can be found in the 4096-node hypercube when f = 2. By comparison, when 
there are two faults in the 4096-node De Bruijn graph B(4,6), a fault-free cycle of length 
at least 4084 can be found. It is worth mentioning that the hypercube has 50% more 
edges (24,576) than the De Bruijn graph (16,384) in this instance. 

The remainder of this chapter is organized as follows. In Section 2.1 we introduce 
notation and review some relevant concepts from graph theory. The algorithm is 
described in Section 2.2, followed by a detailed example. A formal proof ofcorrectness 
appears in Section 2.3. The algorithm's implementation and complexity are discussed in 
Sections 2.4 and 2.5. 
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2.1 Preliminaries 

We assume that the nodes of B(d,n) correspond to n-tuples over Zd. Throughout the 
chapter, w and v refer to elements of Zrld-1, a and 13 to d-ary digits, and xi to the i'th digit 

of X. 

A directed tree T rooted at R is a directed graph such that: (a) every node other than R 
is the terminal node of some edge in T; (b) R is the terminal node of no edge; (c) for each 
node X R there is a directed path from R to x. If (X,Y) is an edge in T, we say that X is 
the parent of Y and Y is the child of x. T is a spanning tree of G if T includes every node 
in G. 

We use N(x) to denote the cycle (xi ... xn, x2. xnxi, , xnxi x n- ) in B(d,n) 
formed by rotating the digits of node X. Cycles of this form are called necklaces, and are 
represented by [Y] where Y is the minimall node in the necklace. For example, N(1120) 
= [0112] = (1120, 1201, 2011, 0112). The set of necklaces partition the nodes of B(d,n) 
into disjoint cycles of length at most n. The weight of a node X = xi ...xn is xi + x2 + 
+ xn, and is denoted wt(X). In addition, we use wta(X) to denote the number of a's in X. 
For example, when x = 1120, wt(X) = 4, wto(x) = 1, wti(X) = 2 and wt2(X) = 1. Note 
that if N(x) = N(Y) then wt(x) = wt(Y) and wta(X) = wta(Y) for any a E { 0, ..., d-1 

2.2 The Fault-Free Cycle Algorithm 

In this section we present a high-level description of an algorithm to construct a cycle 
in B(d,n) that avoids a set {Fi, Ff} of faulty nodes. Say that necklace [x] is faulty if 
one or more nodes in [X] are faulty. Let B* denote the largest component in the graph 
B(d,n) {N(Fi), N(Ff)) obtained by removing the faulty necklaces from B(d,n). The 
fault-free cycle will correspond to a Hamiltonian cycle in B*. 

Our technique is suggested by a parallel algorithm proposed by Atallah and Vishkin to 
find an Euler tour in an arbitrary graph [AV84]. In that algorithm, an Euler tour was 
constructed by stitching together disjoint circuits. The process was guided by the 

1N-tuples are ordered by viewing them as base-d numbers. 
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connections in a spanning tree of an auxiliary graph in which the disjoint circuits were 
viewed as nodes. 

In our case, we construct a Hamiltonian cycle in B* by stitching together necklaces. 
We use a spanning subgraph of a necklace adjacency graph to determine whether, and 
how, two necklaces should be joined 

Definition: A necklace adjacency graph N* is a directed graph with nodes 
corresponding to necklaces in B*. There is a directed edge labeled w from [X] to [Y] if 
and only if aw is in [x] and f3w is in [Y], for some a, 3 E Zd, a 13. El 

An edge labeled W (a w-edge) from [x] to [Y] can be viewed as exiting [x] at node 
aw and entering [Y] at node w13 (see Figure 2.1). Note that if there is a w-edge from [x] 
to [Y] then there is a corresponding w-edge from [Y] to [x]. (Antiparallel edges are 
depicted as a single edge with arrows at both ends.) 

()cm w/13Thi 
[X] 4--=-AT [y] I°Um 13xU 

(a) (b) 
Figure 2.1. (a) Nodes in N* and (b) corresponding necklaces in B*. 

Node aw (or wa) in a given necklace is uniquely determined by w since aw and 
13w, a * 13, cannot be on the same necklace. 

What follows is a high-level description of the proposed fault-free cycle (FFC) 
algorithm. The network-level implementation is described in Section 2.4. 

FFC Algorithm 
Step 1. Find a spanning tree T of N* such that, for every w E Zild-1, the w-edges in T, 

denoted Tw, have a common initial node, i.e., Tw is a subtree of height one. 

Step 2. Modify T by changing every Tw from a parent and one or more children to a 
directed cycle with edges labeled w. Let D denote the modified tree. The modification of 
an edge-labeled tree is illustrated in Figure 2.2. 
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Figure 2.2. (a) Spanning tree T and (b) modified tree D. 

Note that the modified tree is a spanning subgraph of N* because every pair of necklace-
nodes [X] and [Y] in Tw are connected by a w-edge ([X], [Y]) in N*. 

Step 3. Construct a Hamiltonian cycle H in B* by defining the successor of an arbitrary 
node aw in B* as follows. Assume that aw is in necklace [X]. If there is a W-edge in D 
leading from [x] to [Y] then the successor of law is w13 in [Y]; otherwise the successor of 
aw is wa. 

A formal proof of the correctness of the algorithm appears in the next section. We 
conclude this section with an example. 

Example 2.1 Suppose that nodes 020 and 112 fail in the 27-node De Bruijn graph 
B(3,3). In this case B* = B(3,3) {N(020), N(112)) since the graph remains connected 
after the removal of the faulty necklaces. B* contains 21 nodes so we should be able to 
construct a fault-free cycle of length 21. 

The necklace adjacency graph N* is shown in Figure 2.3. 

[111] 
10 

00 01,10 10 02[ 000] [001] 4- [011] 1 [021] [022] 

201 21 

21 [ 222 ]2}[012] K !: 
22 

[122] 

Figure 2.3. Adjacency graph N* for B(3,3) {N(020), N(112)). 

A spanning tree of N* and the modified tree are shown in Figures 2.4 (a) and (b). 
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101 

00 01 12 22 00 01 12 22[000] -4 [001] -0 [012] -0 [122] -0 [222] [000] 4-0. [001)4. -- [012] 4- [122] 4-4 [222] 

02 10 02[021)-0. [022) [021)4-0. [022) 
(a) (b) 

Figure 2.4. (a) Spanning tree and (b) modified tree. 

The successor of each node in H can be readily obtained from 2.4 (b). For instance, 
node 120 is followed by its necklace successor 201 in H because [012] does not have an 
outgoing edge labeled 20. Conversely, node 101 is in [011] which has an outgoing 01-
edge leading to [012], so 101 is followed in H by its successor in [012], namely 012. 

The entire cycle is H = (000, 001, 011, 111, 110, 101, 012, 122, 222, 221, 212,  
120, 201, 010, 102, 022, 220, 202, 021, 210, 100).  

2.3 Proof of Correctness 

In this section we prove that cycle H constructed in Step 3 of the FFC algorithm is 
indeed a Hamiltonian cycle in B*. 

For each label w, a necklace-node in D either has no incident W- edges, or it has 
exactly one outgoing and one incoming w-edge. If a necklace-node [x] has an outgoing 
and an incoming edge Wedge in D, then nodes aw and Wa in [x] are said to be outgoing 
and incoming nodes respectively. 

Lemma 2.1 Every node in B* lies on exactly one necklace path from an incoming 
node to the next outgoing node. 

PROOF. Every necklace in B* has a corresponding necklace-node in D, so every 
necklace contains at least one outgoing node. If aw is an outgoing node then its necklace 
successor wa is an incoming node, so outgoing and incoming nodes are alternately 
encountered as a necklace is traversed. (If wa is also an outgoing node, it is counted first 
as an incoming node.) Consequently, each node in B* lies on exactly one path between 
an incoming node and the next outgoing node. 

Example 2.2 Suppose that [0122] = (0122, 1220, 2201, 2012) has incident edges 
labeled {012, 201, 220} in D. The incoming nodes are { 0122, 2012, 2201) and the 
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outgoing nodes are {2012, 2201, 1220} . The alternating incoming and outgoing nodes in 
the traversal of [0122] are 0122, 1220, 2201, 2201, 2012, 2012, so the necklace is 
partitioned into three paths: (0122, 1220), (2201) and (2012). El 

Any path in B* can be viewed as a path in D by considering only those edges from 
outgoing to incoming nodes, i.e. that lead from one necklace to another. Replacing each 
edge (aw, w(3), a # (3, by the w-edge ([x], [Y]) where aw is in [x] and wI3 is in [Y] 
yields the desired path in D. 

For instance, the path corresponding to H in Example 2.1 is ([000], [001], [011], 
[111], [011], [012], [122], [222], [122], [012], [001], [021], [022], [021], [001]). Note 
that this path forms an Eulerian circuit in D (see Figure 2.4.b). Lemma 2.2 shows that 
this is true in general. 

Let H be the path in B* constructed in Step 3 of the FFC algorithm, and let J denote 
the corresponding path in D. 

Lemma 2.2 J is an Eulerian circuit in D. 

We will prove that (a) J is a circuit, (b) ifone w-edge is in J then all W-edges are in J, 
(c) if a necklace-node is in J then all of the edges incident to it are in D are in J, and (d) all 
necklace-nodes in D are in J. Properties (a), (c) and (d) insure that every edge appears 
exactly once in J. 

Proof of (a). Let {Lo, Lm_i } be the labels of the edges incident to a necklace-
node [x] in D, and assume that the outgoing and incoming nodes in [X] are aoLo, Loao, 
a1L1, Lial Lm_iam.1 in the order in which they are encountered when traversing 
[x]. For instance, in Example 2.2 we could let GOA) = 1220, a1L1 = 2201 and a2L2 = 
2012. This ordering implies that the (Li)-edge entering [X] is followed in J by the (Li+i)-
edge exiting [x] (subscripts are reduced modulo m). Now, let the sequence of edges in J 
be Eo, E1, E2, . , and assume that t is the smallest integer such that Ei = Et, 0 i t-1. 
From the above discussion, it follows that Ei_1 = Et -1 if i > 0. This contradicts the 
minimality oft, so we conclude that i = 0 and that J = Eo, E1, E" is a circuit. 

Proof of (b). Assume that T is rooted at [R]. Follow H beginning at some outgoing 
edge of [R]. If the first w-edge in J is ([x], [Y]), then the remaining W-edges must be 
traversed to get from [Y] back to [R] because this path must go through [X] (see, e.g., 
Figure 2.2.b). 
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Proof of (c). Assume that [x] is in J, and that the outgoing and incoming nodes in 
[x] are arranged as in the proof of (a). If the (Li)-edge entering [x] is in J then so is the 
(Li+0-edge exiting [X]. In addition, the (1-4+0-edge entering [x] is also in J, since all 
(Li+i)-edges are in J by Property (b). This implies that the (1-4+2)-edge exiting [X] is in J, 
so the (Li+2)-edge entering [x] is in J, and so on. 

Proof of (d). Suppose that [x] is not in J. Then there is some edge ([Y], [Z]) on the 
path from [R] to [X] such that [Y] is in J, and [z] is not in J. Property (c) implies that all 
edges incident to [Y] are in J, so [z] must also be in J, a contradiction. 

Proposition 2.1 H is a Hamiltonian cycle in B*. 

PROOF. Every incoming node is in H since J includes every edge in D by Lemma 
2.2. If an incoming node, say Wa, appears in H then H traverses the necklace containing 
wa until it encounters an outgoing node. Thus, by Lemma 2.1, every node in B* is in H. 
In addition, H is a cycle since a node does not reappear until all other necklace paths from 
incoming to outgoing nodes have been traversed. Consequently, H is Hamiltonian. 

2.4 Implementation 

In this section we describe the network-level implementation of the FFC algorithm 
and analyze its complexity in terms of the number of communication steps needed to 
compute H. We assume that each node can communicate with all of its successors in one 
time step, i.e., multi-port communication. (If single-port communication is used, the time 
complexity increases by at most a factor of d.) The computation is complete when each 
node in B* has computed its successor in H. 

We assume that the nonfaulty nodes in faulty necklaces do not participate in the 
computation. Each node can determine if its necklace is faulty by attempting to pass a 
message around the necklace. If a node does not receive its own message in n or fewer 
steps the necklace is assumed to be faulty. This process can be carried out simultaneously 
by each node, so only n steps are required to identify the nodes in B*. 

Step 1.1 Find a spanning tree T' of B*. 

Select a distinguished node R in B* such that N(R) = [R]. Let T' denote the spanning 
tree of B* corresponding to the propagation pattern of a message M broadcast from R. In 
the first step of the broadcast, R sends M to all of its successors. During the next step, the 
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successors pass M along to their successors, and so on. The parent of a node X in T' is 
the predecessor from which X first receives M. In the case of a tie, the minimal 
predecessor is chosen to be the parent. Note that the nodes wa and Wf3 have a common 
parent in T' (assuming neither is R). This is because they have a common set of 
predecessors in B*, and hence receive M at the same time. 

The number of steps required by the broadcast is equal to the maximum distance from 
the root R to any node in B* (the eccentricity of R). The eccentricity of R is bounded by 
the diameter of B* which we will denote by K. 

Step 1.2 Use T' to find a spanning tree T of N*. 

A spanning tree T of N* rooted at [R] can be readily obtained from T'. For each 
necklace [x] choose a node Y in [x] such no other node in [X] received M prior to Y. 
Then let the parent of [X] in T be the necklace, say [4, containing the parent (in T') of Y. 
If Y = wa then the parent of Y in T' is 13w, for some 13 E Zd. The edge ([z], [x]) is 
labeled W. 

The tree Tw consisting of all w-edges in T has height one. To see this, let [x] and [Y] 
be the children in two edges labeled w. Then nodes wa and w13 received M first on [x] 
and [Y] respectively, for some a,13 E Zd. Since wa and wi3 have a common parent in T', 
[x] and [Y] also have a common parent in T. 

The processing in this step is carried out at the necklace level, i.e., nodes 
communicate with nodes in the same necklace. The maximum length of a necklace is n, 
so 0(n) steps are needed. At the end of this step (every node in) each necklace [X] knows 
its incident edges in T. We can also assume that for each W -edge { [x], [Y] }, [x] knows 
the identity of the node aw in [Y]. 

Step 2. Compute the edges in D. 

Each necklace in Tw can determine the identity of the other necklaces in Tw in 0(n) 
steps. Let S = { a I aw is in a necklace in Tw }. The nodes in { aw la E S } can inform 
all of the nodes in { Wa I a E S } of the necklace that contains them in one step. The 
information can then be passed around the necklaces in at most n steps. The necklaces in 
Tw can be ordered according to their representative, i.e., [X] > [Y] if x > Y. Then, for 
each [x] in Tw, there is a w-edge from [X] to [Y] in D where [Y] is the next largest 
necklace in Tw. For example, the necklaces in T01 in Figure 2.4 (a) are ordered [001], 
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[011], [012]. The cycle is closed by inserting a w-edge between the largest and smallest 
necklaces. 

Step 3. Compute, for each node X in B*, the successor of X in H. 

After Step 3 is completed every node has sufficient information to determine if it is an 
outgoing node and, if so, which of its successors in B* is located in necklace [Y] where 
([x], [Y]) is a w-edge in D. 

The total number of steps required to compute H is therefore 0(K + n). The length of 
H is equal to the size of B*. 

2.5 Complexity Analysis 

In this section we derive bounds on the length of the fault-free cycle and the amount 
of time required by the FFC algorithm to find it. It was shown in the previous section that 
these values correspond to the size and diameter of B* respectively. 

If B(d,n) (WO, N(Ff)} is connected then B* = B(d,n) {N(F1), , N(Ff)} 
and the size of B* is do NF, where NF denotes the total number of nodes in faulty 
necklaces. The maximum length of a necklace is n, so NF nf. 

Let P be a path in B(d,n), and let Sp denote the necklaces encountered on path P 
excluding the initial and final nodes of P, i.e., Sp = {N(Z) I Z is an intermediate node in 
P}. Two paths P and Q from node x to node Y are said to be necklace-disjoint if Sp n SQ 
=0. 

Proposition 2.2 The FFC algorithm computes a fault-free cycle of length at least 
do n1 in e(n) steps in the event off d-2 node failures. 

PROOF. For any two nodes X and Y we will prove the existence of a path of length 
8(n) from x to Y that avoids the faulty necklaces. First, consider the d paths (Pa I a E 
Zd} where Pa is 

x = x ...xn --> x2...xna x3...xnaa >...-> xna...a--3 a...a. 

Suppose that N(A) = N(B) for nodes A and B in Pa and Po respectively, a 0. Let A = 
Xs... Xna... a and B = Xt... xn13... for some 2 5 s,t 5 n. Without loss of generality 
assume that s t. Then 

wta(A) = wta(xs...xt..1) + wtdxt...xn_i) + s-1, and 

http:wta(xs...xt
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wta(B) = wta(xt... xn.-1) 

must be equal since A and B are in the same necklace. However, this implies that 
wta(xt...xn_i) + s = 0; a contradiction because s ?. 2. Thus, the paths are necklace-
disjoint, guaranteeing that at least one path, say Pa, is fault-free in the event of d-2 
faults. 

Now consider the d-1 paths {Qi I 1 i d-1} from a...a to Y where Qi is the path 

a... a> a... ot(a+i) > a... ot(a+i)y > . -4 (a+i)y yn_ 1 y yn = Y 

and (a+i) is reduced modulo d. Suppose that N(u) = N(v) for nodes U and V in Qi and 
Qj respectively, i # j. Let U = a... a(a+i)yi...ys and v = a... a(a+j)yi...yt, for some 0 

s,t n-1. Without loss of generality assume that s t. Then 

wta(u) = (n s 1) + wta(yi...ys) and 

wta(V) = (n t 1) + wto(Y Ys) + wta(Ys+1 Yt), 

must be equal. So, wta(Ys+1. .Yt) = ts, i.e., Ys+1. .Yt = a... a. In addition, 

wt(U) = oc(n s 1) + wt(yi...ys) + (a+i) and 

wt(V) = a(n t 1) + wt(yi...ys) + ot(t s) + (a+j) 

must also be equal. This contradicts the assumption that i j, so Qi and Qj are necklace-
disjoint. 

A fault-free path can therefore be found between X and Y by combining a fault-free 
path Pa of length n from X to a... a, with a fault-free path Qi of length n+1 from a... a 
to Y. It is actually not necessary to route through a... a because there is an edge from 
xna... a to a... a(a +i) in B(d,n). Hence, the total length of the path from X to Y is at 
most 2n. Thus, when f < d-1, the size of B* is at least do nf and the diameter of B* is 
at most 2n. 

The length of the cycle found by the FFC algorithm is optimal in a worst case 
analysis. In other words, for some distributions of f d-2 faults, no fault-free cycle 
longer than dnnf exists. The line graph property of De Bruijn graphs can be used to 
verify this assertion. 

A line graph L(G) of a directed graph G is a graph whose nodes correspond to edges 
in G. There is an edge from node (a,b) to node (c,d) in L(G) if and only if (a,b) and (c,d) 

111 
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are adjacent edges in G (i.e., b = c). If the edge from xi ...xn_i to x2...xn in B(d,n-1) is 
labeled xi ...xn, it is easily be seen that B(d,n) is the line graph of B(d,n-1). This gives 
rise to a natural correspondence between circuits in B(d,n-1) and cycles in B(d,n). For 
example, the cycle (012, 122, 221, 212, 120, 201) in B(3,3) corresponds to the circuit 
(01, 12, 22, 21, 12, 20, 01) in B(3,2). 

Assume that the nodes F = {an-1(d -1) I 0 a f-1), f d-2, fail in B(d,n). Let C 
be any cycle in B(d,n) that does not include the faulty nodes and let C' be the 
corresponding circuit in B(d,n-1). Consider the graph H = B(d,n-1) C'. A necessary 
and sufficient condition for a digraph to be Eulerian is that it be connected and balanced 
(i.e., the indegree of each node is equal to its outdegree). The components of H are 
therefore Eulerian because a balanced graph remains balanced after the removal of a 
circuit. Hence, the edges in H can be partitioned into circuits that correspond to Eulerian 
circuits in each component of H. This implies that the nodes in B(d,n) C can be 
partitioned into cycles. 

Suppose that the nodes in B(d,n) C are partitioned into m cycles D = {D1, . , 
Dm}. If cycle Di contains ki faulty nodes, then the length of Di must be at least kin. This 
follows from the observations that the distance between every pair of faulty nodes is n, 
and that the length of the smallest cycle containing a faulty node is also n. Every faulty 
node is contained in some cycle since C avoids the faulty nodes, so the combined lengths 
of all of the cycles in D is at least nf. Consequently, the number of nodes in B(d,n) C 
is at least nf, and the length of C is at most do nf. 

In the best case scenario it is possible to find a cycle that includes all of the nonfaulty 
nodes. This follows from the fact that the De Bruijn graph is pancyclic, i.e., it contains a 
cycle of length t for any 1 t do [Lem71]. Thus, if the faults are favorably distributed, 
a fault-free cycle of length dnf exists for 0 5. f dn-1. 

2.5.1 Binary De Bruijn Graphs 

The binary De Bruijn graph may be disconnected in the event of a single faulty 
necklace. However, at most one node can be isolated in this case. 

Proposition 2.3 The FFC algorithm computes a fault-free cycle of length at least 
211 (n + 1) in 9(n) steps in the binary De Bruijn graph B(2,n) in the event of a single 
node failure. 
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PROOF. We will show that B(2,n) has a component with at least 2n(n+1) nodes and 
diameter 0(n) when at most one necklace is removed. 

Let x = xi ...xn be a faulty node in B(d,n), and let wt(x) = k. Let y = yi...yn and z = 
zi ...zn be nodes in B(d,n) N(x), and suppose that both wt(y) and wt(z) are greater than 
k. Then it is always possible to find a path of length at most 2n from y to z of the form 

Y--> Y2.-Yn-11 "4 Y3..yn_111 > 3 1...1 > 1...1z1 1...1z1z2-4 ... z 

in which every node has weight greater than k. Conversely, if both wt(y) and wt(z) are 
less than k then there is a path of length at most n from y to z in which every node has 
weight less than k. It follows that if wt(x) = 0 (or n) then the 2n 1 nodes of weight > 0 
(or < n) form a connected subgraph of diameter 0(n). Similarly, if wt(x) = 1 (or n-1) the 
2n n 1 nodes of weight >1 (or < n-1) form a connected subgraph of diameter 0(n). 

Now suppose that 2 5 k 5 n-2, and let Wi = { y I wt(y) < k } and W2 = { y I wt(y) > 
k }. We will show that B(d,n) N(x) is connected. Let u be an arbitrary node of weight k 
such that N(u) # N(x). Node u contains at least one 1 and one 0, so there are edges 
connecting nodes in N(u) and nodes of weight kt 1. Thus, each N(u) # N(x) forms a 
bridge between W1 and W2. We can always find at least one N(u) # N(x) because 
N(0...01k) # N(0...0101k-1) for n k+2. It follows that, in this case, B(d,n) N(x) is 
connected, contains at least 2nn nodes, and has diameter 0(n). 

2.5.2 Simulation Results 

For an arbitrary number of faults it is difficult to give precise bounds on the size and 
diameter of the faulty graph. However, based on the results of simulations, it seems that 
a fault-free cycle can often be found efficiently even when the number of faults greatly 
exceeds the bounds of Propositions 2.2 and 2.3. The simulations were carried out by 
selecting a fixed source node R and, for each simulation, generating a set of f randomly 
distributed faults. The necklaces containing the faulty nodes were then removed from the 
graph, and the size of the component containing R and the eccentricity of R within the 
component was calculated. (If R was in a faulty necklace, a neighboring node was used 
instead.) These values correspond to the length of the fault-free cycle and the number of 
steps required to form the spanning tree in Step 1.1 respectively. 
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The results of the simulations for 1024-node De Bruijn graphs B(2,10) and B(4,5) 
are summarized in Tables 2.1 and 2.2. As can be seen from the tables, the fault-free cycle 
has length approximately dn f n even when f is quite large. In fact, the average length 
of the cycle begins to noticeably exceed do nf as f increases. This behavior can be 
attributed the fact that the probability of a faulty necklace containing multiple faulty nodes 
increases with the number of faults. The simulation results also suggest that B(d,n) does 
not become severely fragmented even when a large number of necklaces are removed. 
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II f Avg. Size if Max. Size II Min. Size II do -nf II Avg. Ecc. Max. Ecc. Min. Ecc. 11 

0 1024.00 1024 1024 1024 10.00 10 10  
1 1014.13 1019 1013 1014 10.30 12 10  
2 1004.48 1014 1003 1004 10.76 14 10  
3 994.66 1004 993 994 11.10 13 10  
4 985.03 994 982 984 11.40 14 10  
5 975.79 994 972 974 11.65 14 10  
6 966.35 984 963 964 11.95 14 11  
7 956.61 974 952 954 12.28 15 11  
8 948.41 978 942 944 12.45 15 11  
9 938.02 969 933 934 12.68 17 11  
10 928.97 949 922 924 12.81 16 11  
20 843.14 873 822 824 14.59 19 12  
30 762.55 833 723 724 16.50 21 14  
40 686.16 744 11 624 18.48 26 10  
50 622.75 679 565 524 20.28 26 16  

Table 2.1. Size of the component containing node R = 0000000001 and the eccentricity 
of R in B(2,10) with f randomly distributed faulty necklaces. 

11 If if Avg. Size II Max. Size if Min. Size diunf 11 Avg. Ecc. II Max. Ecc. if Min. Ecc. 
0 1024.00 1024 1024 1024 5.00 5 5  
1 1019.00 1019 1019 1019 5.72 6 5  
2 1014.07 1019 1014 1014 5.96 6 5  
3 1009.24 1014 1009 1009 5.99 6 5  
4 1004.35 1009 1003 1004 5.99 6 5  
5 999.33 1004 999 999 6.00 6 6  
6 994.47 1002 994 994 6.01 7 6  
7 989.66 994 989 989 6.01 7 6  
8 984.80 994 984 984 6.01 7 6  
9 979.79 989 979 979 6.03 7 6  
10 975.07 984 974 974 6.08 7 6  
20 928.14 949 924 924 6.41 7 6  
30 882.88 902 874 874 6.82 8 6  
40 840.39 864 824 824 7.15 8 6  
50 798.07 828 779 774 7.38 9 7  

Table 2.2. Size of the component containing node R = 00001 and the eccentricity of R in 
B(4,5) with f randomly distributed faulty necklaces. 
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2.6 Remarks 

Several authors have proposed sequential algorithms that construct Hamiltonian 
cycles in a De Bruijn graph by linking together disjoint cycles [Hua90, Etz86, FM78, 
EL84]. The goal of these efforts is to efficiently generate a subset of De Bruijn 
sequences. Many, but not all, of these approaches exploit the cyclic partition of the De 
Bruijn graph yielded by necklaces. The results in this chapter differ from previous work 
in two important respects: we assume the presence of faulty nodes, and our 
reconfiguration algorithm operates in a distributed manner at the network level. 

The idea of constructing a Hamiltonian cycle in a digraph by joining smaller cycles is 
discussed in a more general context in a paper by Cull which describes a class of 
digraphs for which this approach is applicable [Cul80]. This suggests that the 
reconfiguration algorithm given in this chapter can be adapted to work with other 
interconnection topologies based on digraphs in this class [BP89]. 
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Chapter 3 

Ring Embedding With Edge Failures 

One way to cope with edge failures is to assume that nodes with faulty incident edges 
are themselves faulty, and then use the method described in Chapter 2 for fmding a fault-
free cycle in the presence of node failures. The drawback to this approach is that an 
unnecessarily large number of nonfaulty nodes may be excluded from the cycle. One way 
to overcome this problem as follows. Suppose that B(d,n) contains t edge-disjoint k-
cycles. An edge failure can affect at most one k-cycle, so a fault-free k-cycle is 
guaranteed to exist in the presence of up to t-1 edge failures. Most of the effort in this 
chapter is devoted to establishing the existence of disjoint Hamiltonian cycles (HCs) in 
B(d,n). 

This effort can be viewed as an extension of the original problem investigated by N. 
G. De Bruijn [Bru46]. De Bruijn was interested in circular d-ary sequences of length dn 
in which every subsequence of length n is distinct. These sequences, which are 
sometimes known as De Bruijn sequences, correspond to Hamiltonian cycles in B(d,n). 
Finding a set of disjoint Hamiltonian cycles in B(d,n) amounts to finding a set of De 
Bruijn sequences in which every subsequence of length n+1 is distinct. 

Disjoint HCs can also be beneficial in a fault-free environment. Their presence allows 
computations that use ring-structured communications to spread the message traffic more 
evenly across communication links. 

Consider, for example, the problem of all-to-all broadcasting in which each node 
sends an identical message to all other nodes in the network. A simple all-to-all 
broadcasting algorithm using a ring (Hamiltonian cycle) requires every node to receive a 
new message from its ring predecessor and pass the previous message to its ring 
successor at each step. After N-1 steps, each node in an N-node network will have 
received messages from all other nodes. If the communication time dependson the length 
of the message, then the algorithm can be improved if the network contains t disjoint 
HCs. In this case, each message can be divided into t parts, and each submessage 
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transmitted along a different HC. A related all-to-all broadcasting algorithm using disjoint 
HCs and wormhole routing is described in [LS90]. 

The remainder of this chapter is organized as follows. In Section 3.1 we review the 
relationship between cycles of length k in B(d,n) and d-ary sequences of period k. In 
Section 3.2 we present a method of constructing large edge-disjoint cycles in B(d,n) and 
apply these results to fault-tolerant embedding in Section 3.3. The results obtained in 
Section 3.3 are extended to d-ary butterfly graphs in Section 3.4. 

3.1 Cycles and Sequences 

Throughout this section we will assume that d is a prime power pe and that A = 
GF(d), where GF(d) is the Galois field of order d. 

We use the circular sequence C = [co, ci, ..., ck_i] to denote the closed path of length 
k in B(d,n) in which node cici+i ci+n-i is followed by node ci+ici+2 ci+n (subscripts 
are reduced modulo k). For instance, [0,1,2,1,2] denotes the 5-cycle (012, 121, 212, 
120, 201) in B(3,3). In this representation, ntuples correspond to nodes in B(d,n) and 
(n+1)-tuples to edges. As a consequence, C is a cycle if and only if the n-tuples 
{cici+1...ci+n_i 10 5 i 5 k-1} are distinct. In addition, C and D = [do, di, ..., din_i] are 
edge-disjoint if and only if the sets {cici+1...ci+n I 0 5 i 5. k-1 } and { didi+1...di+n I 0 5. i 
5 m-1} are disjoint. If C and D are both HCs in B(d,n) we will simply say that they are 
"disjoint" rather than "edge-disjoint". 

Let C be the sequence defined by the recurrence 

cn+i = an-icn-i+i + + aoci, i _. 0, (3.1) 
for ai E GF(d), an 0, and nonzero initial conditions. The period of C is the least k > 

0 such that ci = ci+k for i 0. A sequence of period k corresponds to the k-cycle [co, ci,, ck_i] in B(d,n). 

The characteristic polynomial of C is  

p(x) = xn an_ixn-i ao  (3.2) 

If p(x) is irreducible, then the period of C is equal to the order of p(x), where the 
order of p(x) is the least positive integer k such that p(x) divides 1 xk. If p(x) is 
irreducible and has order dn-1 then it is said to be primitive over GF(d). A sequence with 
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a primitive characteristic polynomial corresponds to a cycle of length dn-1 in B(d,n) that 
includes every node except On. 

Definition: A cycle C = [co, ci, cdn-t_1] in B(d,n) is said to be a maximal cycle 
if it satisfies a recurrence of the form (3.1) and its characteristic polynomial (3.2) is 
primitive over GF(d). 

Primitive polynomials of degree n 1 are known to exist for every finite field 
[LP84]. 

Example 3.1 Suppose that we want to construct a cycle of length 52-1 in B(5,2). 
We start with a primitive polynomial of degree 2 over GF(5), say p(x) = x2 - x - 3. The 
sequence with characteristic polynomial p(x) is s2.14 = + 3si. For initial conditions so 
= 0 and si = 1, the corresponding maximal cycle in B(5,2) is [0, 1, 1, 4, 2, 4, 0, 2, 2, 3, 
4, 3, 0, 4, 4, 1, 3, 1,0, 3, 3, 2, 1, 2]. 

3.2 Disjoint Hamiltonian Cycles 

An upper bound on the number of disjoint HCs is d-1 since some nodes in B(d,n) 
have indegree and outdegree d-1 (excluding loop edges). In this section we give a 
constructive proof that d-1 disjoint HCs exist when d is a power of two. We also show 
that at least 2-k H (piei 1), 1 k, disjoint HCs exist in general when p1eip2e2...pkek 
is the prime factorization of d. 

We approach the problem by first considering the case when d is a prime power and 
then generalize the construction to handle arbitrary values of d. We also propose a 
modification of the De Bruijn graph that allows it to admit d disjoint HCs. Related work 
on disjoint HCs in De Bruijn graphs is discussed in 3.2.4. 

3.2.1 Disjoint HCs When d is a Prime Power 

In this subsection we present a method for constructing at least (d-1)/2 disjoint 
Hamiltonian cycles in B(d,n) when d = pe is a prime power. Our approach involves first 
constructing d edge-disjoint cycles of length dn-1, and then modifying these cycles to 
make them Hamiltonian. 
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Let  

def 
S + C = [S+Co, S+Ci, s+Ck-l] 

for s E GF(d). 

Lemma 3.1 If C is a cycle in B(d,n) then s + C is also a cycle in B(d,n). 

PROOF. Assume that C is a cycle and that s + C is not a cycle. Then s + C must 
contain a repeated n-tuple. Suppose that (s+ci)(s+ci+i) (s+ci+n-1) = (s+cj)(s+cj+1)... 
(s+cj+n_i) This implies that cici+1 ci+n-i = cjej+1 cj+n_1, contradicting the 
assumption that C is a cycle. 

Let C be a maximal cycle in B(d,n) satisfying recurrence (3.1). 

Lemma 3.2 For any s E GF(d), s + C = Ida ..., 44 satisfies the recurrence 
dn+i = an-idn-i+i + + aodi + s(1co), i 0, 

where co = ao + + an-i 

PROOF. Observe that dn+i = s + cn+i = s + + + aoci. Substituting clj 
s for cj yields 

dn+i = an-On-1+i s)+ + ao(ci s)+ s 

= an-On-1+i + + aodi s(ao + + an -1) + s 

= an-idn-i+i + + aodi + s(1 co) 

Lemma 3.3 The cycles in Is + C I s E GF(d)) are pairwise edge-disjoint. 

PROOF. Suppose that the (n+1)-tuple vo...vn appears in both y + C and z + C, y # z. 
Then 

vn = an-orn-i+i + + aovo + y.(1--co), and 

vn = an-ivn-i+i + + aovo + z(1co). 

So, y(1co) = z(1co). This implies that (1co) = 0 since y # z. However, if this 
were the case then p(1) = 0 and (x-1) would divide (3.2). But p(x) is assumed to be 
primitive, and hence irreducible. 

Note that every node except sn appears in s + C because every node except 011 
appears in C. Node sn can be inserted into s + C by replacing any (n+1)-tuple of the 
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form asn-la by the (n+2)-tuple asna. In terms of B(d,n) this is equivalent to replacing 
edge asn-let by two edges: asn and Oa (see Figure 3.1). 

Figure 3.1 Edges used for inserting sn into cycle s + C. 

Node sn can be inserted into cycle s + C in d-1 different ways since every node in the 
set {sn-la I a # s} appears in s + C. Note that a is fixed once a is selected because, by 
Lemma 3.2, a must satisfy 

A
a = S*(W - ao) + aoa + s.(1 - o)) (3.3) 

The cycles {x + C I x E GF(d)} partition the d(dn-1) non-loop edges of B(d,n), so 
the edges asn and sna used to make s + C Hamiltonian must appear in cycles k + C and 
k' + C respectively, for some k and k' not equal to s. We next derive a relationship 
between k and k'. By Lemma 3.2, 

s = - ao) + aoa + 101 - 0)) (3.4) 

and 
Aa = so) + k'(1-o)). (3.5) 

Subtracting (3.4) from (3.3) yields 13 - s = s-(1 - (0) - k.(1 - o)), so 
Aa = S(1 - 03) k.(1 - co) + s. (3.6) 

It follows from (3.5) and (3.6) that so) + k'(1-(o) = s-(1 - o)) k-(1 co) + s, so k' = 2s 
- k. This implies that, for any k s, cycle s + C can be made Hamiltonian by adding two 
edges such that one edge is in k + C and the other edge is in (2s - k) + C. 

Let f: GF(d) GF(d) be any function such that f(x) * x for all x. 

Definition: For a given f, define Hs to be the Hamiltonian cycle obtained by 
replacing asn-la with asna in s + C, where a = SO3 + f(s)(1-0)). 

Lemma 3.4 H, and Hy have a common edge if and only if y E (f(x), 2x - f(x)] or 
6 if(Y)) 2Y -1(y)). 
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PROOF. Assume that Hx and Hy have edge E in common. By Lemma 3, x + C and y 
+ C are edge-disjoint, so E must be one of the edges used to extend x + C or y + C. 
Suppose that E was used to extend x + C, i.e., E E {aXn, xnte} . Since ec = xo.) + f(x)(1 
co), we know from Lemma 2 that xnec is in f(x) + C. From the above discussion, this 
implies that ax" is in (2x f(x)) + C. The edges used to extend x + C and y + C are 
distinct when n > 1, so E must also be in y + C. Hence, y E {f(x), 2x f(x)}. Similarly, 
x E { f(y), 2y f(y) } if E was used to extend y + C. Conversely, if y E { f(x), 2x f(x) } 
or x f(y), 2y f(y) } it is easily seen that Hx and Hy have a common edge. 

Our task now is to choose a function f so that the set {Hs I s E GF(d)} contains a 
large number of (pairwise) disjoint HCs. We will present three techniques for 
accomplishing this. The methods vary according to properties of p (recall that d = pe). 
We begin with a lemma designed to show that, for every prime p, at least one of our 
strategies applies. 

An element X of Zp is said to be a primitive root if every nonzero element of Zp can be 
expressed as a power of X. 

Lemma 3.5 Let p be an odd prime and let R be any primitive root of Z. At least 
one of the following is true in Zp: 

(a) 2 = AA and A is odd. 

(b) 2 = AA + A,I3 and both A and B are odd. 

PROOF. Suppose that 2 = XA and that A is even. Let T = {1, 2, ..., p-1} \ {A }, and 
define a: T > T such that Xi + Xa(i) = 2. Since A is assumed to be even, T contains more 
odd than even elements. Function a is one-to-one, so a must map an odd to an odd. 

Condition (a) is equivalent to saying that 2 is a quadratic nonresidue of p. This 
situation occurs if and only if p a ± 3 (mod 8) [Ros84, Theorem 9.4]. Consequently, 
Condition (b) holds if p a ±1 (mod 8). A prime can satisfy both conditions or only one. 
For instance, when p is 13 both (a) and (b) are satisfied since 7 is a primitive root of Z13, 
and 2 a 711- 7 + 79 (mod 13); conversely, in Z5 only (a) is satisfied. 

Strategy 1 Assume that p = 2, and let 

f(x) = 0, x O. 
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(The value of f(0) is left undefined because H0 will not be included in the set of disjoint 
HCs.) By Lemma 3.4, if Hx and Hy have a common edge then x E {2y, 0} or y E {2x, 
0 }. However, 2 = 0 in a field of characteristic 2, so Hx and Hy have a common edge only 
if x or y is zero. Hence, the d-1 HCs {Hs I s E GF(d) \ {0} } are disjoint. 

Example 3.2 Let GF(22) = {0, 1, C, C2} where C is a root of x2 + x + 1 over 
GF(2). In this event, 1 + = C2, 1 + C2= C, + C2= 1 and C3 = 1. To construct a cycle 
C of length 42-1 in B(4,2) we can use the recurrence 

c2+i = + Cci, i 0, 

because x2 x C is primitive over GF(4). With initial conditions co = 0 and cl = 1 we 
get 

C = [0,1,142,1,044,1,C,042, 
In this case, 0.) = c + 1 = C2, 1 w = and ao-1 = C-1 = C2. So, Hs is obtained by 

replacing as& with ass& in s + C where & = sC2 and a = 0. Specifically, 042 is 
replaced by 011C2 in 1 + C, (41 is replaced by OCC1 in C + C and 0C2C is replaced by 
0C2C2C in C2 + C. All of the replacement edges are in C, so 

H1 = [1,0,04,0,1,14242,042,1,C,C,C24] 

1.1/4 = [ ,c2,V,1,V4,0,042,044,1,1,0,1] 
= [2,2,c,,0,2,1,19c, 142,090,1,0] 

are disjoint HCs in B(4,2). 0 
Strategy 2 Assume that 2 = XA XB in Zp for some primitive root A. and odd integers 
A and B. Let 

={ AAx if x 0f(x) 
X if x = O. 

Assume that neither x nor y is zero. By Lemma 3.4, if Hx and Hy have a common edge 
then either y E XAX, (2-21,A)X = ABx) or x E yi Hence, y E 
x.X±B }. 

Let J = {1, A, A2, ..., AP-2}. The nonzero elements of GF(d) can be partitioned into 
r = (d-1)/(p-1) cosets {gi.J, g.!} where gJ = {g, gA, g2, gAP-2}. Let Ai 
= {Hx I x E giJ} denote the HCs corresponding to the elements of 1 S i r. 
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If Hx E Ai has an edge in common with Hy E Ai then i = j. This is due to the fact that 
x = giXm for some m. Consequently, y E {gi.Xm-±A, giXm±-13} C giJ. In addition, if m 
is even (resp. odd) then both m ± A and m ± B are odd (resp. even) since A and B are 
odd. Thus, Hx and Hy are disjoint if x = giX.i, y = giXk, and j and k have the same 
parity. Therefore, the (p-1)/2 HCs 

Li = {Hx x = k E {1,...,(p- 1)/2}} 

are disjoint. The HCs in Li are disjoint to the HCs in Li, i j, because Li c Ai and Lj 
N, so we can obtain r(p-1)/2 = (d--1)12 disjoint HCs by taking the union L = L1 u L2 

Lr. 

If (p-1)12 is even, 110 can be added to L. By Lemma 3.4, 110 has edges in common 
only with fix and H-A, since f(0) = X. Note that X(P-1) /2 = 1 since XP-1 = 1. Hence, X = 
(-1)X = ?JP- 1)/2 +1 is an odd power of X when (p-1)/2 is even. If gi = 1, then L does not 
include any Hx where x is an odd power of X, so Ho does not conflict withany HC in L. 
The addition of Ho brings the total number of disjoint HCs to (d+1)/2. 

Example 3.3 Let d = 13. In Z13, 7 is a primitive root and 2 = 7 + 79. In addition 
12/2 is even, so we can find 7 disjoint HCs by taking f(x) = 7x, x 0, and f(0) = 7. In 
this case, Hx has an edge in common with Hy, y E {7x, 79x, 7-1x, 7-9x}. This 
relationship is depicted graphically in Figure 3.2 where vertices x and y are connected if 
Hx and Hy have a common edge. 

Figure 3.2. Graphical representation of non-disjoint HCs in B(13,n). 

In addition, Ho has an edge in common only with S7 and S_7 = S77. Thus, {Ho, H1,  
H72, H74, H76, H78, H7io} are disjoint.  

Strategy 3. Assume that 2 = XA in Zp for some primitive root X and odd integer A. Let  
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XA x if x * 0f(x)_ 
X if x = 0. 

This approach is almost identical to Strategy 2, except that H., x = gi.X.m, has an 
edge in common with Hy, where y E 0). As in Strategy 2, the (d-1)/2 HCs 

L={H.lx = gi.x2k}, 1..1c(p-1)/2, 

are disjoint. Note that Strategy 2 is superior to Strategy 3 when (p-1)/2 is even because 
Ho cannot be added to L in the latter approach. 

Example 3.4 Suppose that d = 5 and n = 2. Let C be the maximal cycle of length 
24 in B(5,2) from Example 3.1. Since 3 is a primitive root of Z5 and 2 = 33, we can fmd 
2 disjoint HCs in B(5,2) using f(x) = 3x, x * 0. Hs is obtained by replacing asa by 

A Aassa in s + C, where a = so) + 2s(1o)) and a satisfies equation (3). In this example, o) 
= 4 and ao-1 = 3-1= 2, so te = 4s + 2s(2) = 3s and a = 0. Since J = {3, 32 = 4, 33 = 2, 
34 = 1), the HCs 

H1 = [1,2,2,0,3,0.1.1.3,3, 4,0,4,1,0,0,2,4,2,1,4,4,3,2,3], 

H4 = [4,0,0,3,1,3,4,1,1,2,3,2,4,3,3,0,2,0.4.4.2,2,1,0,1] 

are disjoint. 

The number of disjoint HCs found by the strategies presented in this section is 
summarized in Proposition 3.1. 

Proposition 3.1 The number of disjoint HCs in B(pe,n) is at least vi(pe) where 
ip(pe) is 

(i) pe 1 when p = 2, 

(ii) (pe + 1)12 when (p-1)12 is even and p satisfies condition (b) of Lemma 3.5, 

(pe 1)/2 in all other cases. 

3.2.2 Disjoint HCs in the General Case 

In this section we use the disjoint HCs of the previous section to construct disjoint 
HCs in B(d,n) for any value of d. We now assume that the alphabet over which the De 
Bruijn graph is defined is Zd. The cycles of the previous section can be readily mapped to 
this representation using any one-to-one mapping of the elements of GF(d) to Zd. 
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Let A = [a°, ..., asn-I] be an HC in B(s,n) and let B = [b0, , btn-1] be an HC in 
B(t,n). Let (A,B) denote the cycle whose i'th element is ait + bi, 0 5 i 5 (st)n-1, where 
the subscripts of the ai's and bi's are reduced modulo sn and to respectively. The 
following lemma is due to Rees ([Ree46], Lemma 3). 

Lemma 3.6 Ifs and t are relatively prime then (A,B) is a Hamiltonian cycle in 
B(st, n). 

Example 3.5 A = [0,0,1,1] and B = [0,0,2,2,1,2,0,1,1] are Hamiltonian cycles in 
B(2,2) and B(3,2) respectively, so 

(A,B) = [0,0,5,5,1,2,3,4,1,0,3,5,2,1,5,3,1,1,3,3,2,2,4,5,0,1,4,3,0,2,5,4,2,0,4,4] 

is a Hamiltonian cycle in B(6,2). 

Let A and A' be HCs in B(s,n) and let B and B' be HCs in B(t,n), with s relatively 
prime to t. 

Lemma 3.7 (A, B) and (A, B) are disjoint i f A and A' are disjoint or if B and B' 
are disjoint. 

PROOF. Suppose that A and A' or B and B' are disjoint. If (A, B) and (A', B') have 
a common edge then, for some i and j, 

ait + bi = aj' + b'j 
ai+it + bi+1 = ej+rt + b-j+1 

ai+nt + bi+n = eji-n.t + b"j+n 

This implies that the edge aiai+i ai+n = aj'ej+i ej+n appears in both A and A', and 
the edge bibi+1...bi+n = bj'b'j+1 b-j+n appears in both B and B', contradicting the 
assumption that at least one pair is disjoint. 

Let d = p1etp2e2... pkek be the prime factorization of d, and let v (d) = 
igpleimp2e2)...v(--pk ek), where w() is defined for prime powers in Proposition 3.1. 

Proposition 3.2 There are at least vi(d) disjoint HCs in B(d,n). 

PROOF. We use induction on k. When k = 1, d = pe and we can find w(pe) disjoint 
HCs by definition. Suppose that k > 1, and let d' = p1elp2e2pk_1ek-1. By induction there 
are Ni(d') disjoint HCs in B(d',n), say {Ai I 1 .5 i 5 tv(d-)}. There are also W(pkek) 
disjoint HCs in B(pkek,n), say {Bj I 1 5 j 5 W(pkek) }. Consider the set r = {(Ai,B;) I 1 i 
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5. w(d'), 1 5 j Ni(Pkek)}. The elements of r are HCs in B(d,n) by Lemma 3.6. In 
addition, if (Ai,Bj) and (Au,By) are not equal then they are disjoint by Lemma 3.7 since 
either Ai and Au, or Bj and By, are disjoint. We can therefore find w(d')w(pkek) = w(d) 
disjoint HCs in B(d,n). 

Corollary 3.1 The number of in B(d,n) is at least 

2k vr 

PROOF. The proof follows directly from Propositions 3.1 and 3.2. 

Corollary 3.2 The number of disjoint Hamiltonian cycles in B(d,n) is at least 
tfr(d)/2k where OH is the Euler function. 

PROOF. Corollary 3.2 follows from Corollary 3.1 and the fact that 4)(d) = 
pe-15 pe 1.0(Ple9VP2e2)...4(Pkek) and 449 = pe 

We conclude this section by listing the values of Ngd) for d = 2, ..., 38 in Table 3.1. 

d 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 ,19 20 

W(d) 1 1 3 2 1 3 7 4 2 5 3 7 3 2 15 9 4 9 6 

d 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 

iii(d) 3 5 11 7 12 7 13 9 15 2 15 31 5 9 6 12 19 9 

Table 3.1. Values of w(d) for 2 5 d 5 38. 

3.2.3 Hamiltonian Decompositions 

A digraph is said to admit a Hamiltonian decomposition if its edge set can be 
partitioned into disjoint HCs [ABS90]. This occurs if and only if every node has indegree 
and outdegree d, and there exist d disjoint HCs. 

It is impossible to partition the edges of B(d,n) into HCs because of the presence of 
loop edges. Even in the best of circumstances only d-1 disjoint HCs exist, accounting for 
dn(d-1) edges. Consequently, at least do edges do not appear in any HC. In this section, 
we propose to modify B(d,n) to enable it to admit d disjoint HCs when n > 1 and d = pe 
for any odd prime p. We also propose modifying the binary De Bruijn graph B(2,n) to 
enable it to admit two disjoint HCs. As in B(d,n), the nodes of the modified graph 



33 

MB(d,n) will have indegree and outdegree d, so MB(d,n) will admit a Hamiltonian 
decomposition. The modified graph retains most of the nice graph-theoretic properties of 
B(d,n); in fact, the undirected version of MB(d,n) contains UB(d,n) as a subgraph. 

THE CASE WHEN D IS AN ODD PRIME POWER. 

Assume that d = pe for some odd prime p and let C be a maximal cycle in B(d,n). Recall 
that the cycles { s + C I s E GF(d) I are pairwise edge-disjoint and that s + C includes 
every node save sn. 

Let ra, a, 13 E GF(d), denote the n-tuple a(3... a43 when n is even and the n-tuple 
a13... a13a when n is odd. When a 0, we say that ( :41, D.2) is a parallel edge (or p-
edge) in B(d,n) since there is a corresponding edge from lict to a. 

Let E = (A, J) be any p-edge in cycle C, and let Es denote the p-edge ((a+s)((i+s), 
(0-1-s)(a+s)) in s + C. Let Hs denote the Hamiltonian cycle obtained from s + C by 
replacing Es by edges ((a+s)([3+s), sn) and (sn, (D+s)(a+s)). Note that these new edges 
may not be in B(d,n). Define MB(d,n) to be the directed graph obtained by taking the 
union of the edges in { Hs I S E GF(d) } 

Clearly MB(d,n) admits a Hamiltonian decomposition because the new edges are 
distinct when n > 1. We claim additionally that (i) every node in MB(d,n) has indegree 
and outdegree d, and (ii) the undirected graph UM(B(d,n) obtained by removing the 
orientation of the edges in MB(d,n) contains UB(d,n). 

The first claim follows from the fact that every node appears exactly once in each of 
the d disjoint HCs. To prove that UMB(d,n) contains UB(d,n), we will argue that every 
pair of nodes that are adjacent in UB(d,n) are also adjacent in UMB(d,n). The only edges 
replaced in the modification of B(d,n) are p-edges, so it is sufficient to prove that at most 
one of each pair of p-edges is replaced, e.g., if (01, 1.9.) is replaced then (IQ, cw must be 
left intact. 

Suppose that both )(1y, yi)c. and (yx, y) are replaced in cycles Hs and Ht respectively 
for some s and t, s t. This implies that (9c +s)(13+s) = (13+t)(a+t) = icy. So, a+s = 13 +t 
= x and 13-Fs = a+t = y. Then, (a+s) + ((3 +s) = (13+t)+ (a+t ) 2s = 2t, a contradiction 
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since GF(d) does not have characteristic 2. Thus, there is at least one undirected edge 
between Ly and y3 in UMB(d,n)1. 

THE CASE WHEN D = 2. 

When d = 2 the modification is slightly different. Let C be a maximal cycle in B(2,n). 
Note that C contains the edge (10n-1, On-11) because it omits node On. We first add On to 
C by inserting it between 10n-1 and On-11; then remove On from 1+C. Without loss of 
generality, assume that 1+C contains the p-edge (Q1, LQ). If this edge is replaced with 
new edges (Q1, On), (on, 1n), and ,1n, M, then C and 1+C will form disjoint HCs. 
When loops are deleted, each node has indegree and outdegree 2. As before, UMB(2,n) 
contains UB(2,n) as a subgraph. 

Example 3.6 Let d=2, and n=3. The maximal cycle C that satisfies the recurrence 
ci+3 = ci+2 + ci, with initial conditions co = ci = 0 and Q = 1, is [0, 0, 1, 1, 1, 0, 1]. C 
is extended by inserting 000 between 100 and 001. In 1+C = [1, 1, 0, 0, 0, 1, 0], node 
000 is removed and the p-edge (010, 101) is replaced by new edges (010, 000), (000, 
111) and (111, 101). The disjoint HCs in UMB(2,3) are shown in Figure 3.3. 

000 111 

001 011 

Figure 3.3. Hamiltonian decomposition of UMB(2,3). 

3.2.4 Related Work 

We have presented a constructive proof that most De Bruijn graphs contain multiple 
disjoint Hamiltonian cycles. Our results are provably optimal only when d is a power of 
2, in which case we are able to find d-1 disjoint HCs in B(d,n). 

'There may be two edges between Ay and xx, so UMB(d,n) is actually a multigraph. 
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Related work in this area exploits the fact that B(d,1) is the complete digraph on d 
nodes with loops at each node, denoted 1(d**. In [BBR93}, Barth, Bond and Raspaud 
proved that there are at least (1)(d) pairwise compatible Eulerian circuits in K. Two 
circuits are said to be compatible if they do not share any pair of consecutive edges. 
Compatible Eulerian circuits in 4* correspond to disjoint HCs in B(d,2) since B(d,2) is 
the line graph of B(d,1). Consequently, B(d,2) admits (1)(d) disjoint HCs for any choice 
of d. This approach yields d-1 disjoint HCs when d is prime. 

3.3 Ring Embedding 

We now apply the results of the previous section to the problem of embedding a fault-
free Hamiltonian cycle in B(d,n) in the presence of edge failures. At best, d-2 failures 
can be tolerated since it is possible to render B(d,n) non-Hamiltonian by removing a set 
of d-1 edges (e.g., the d-1 non-loop edges terminating at node 0...0). 

Let 

cp(d) p2e2 + pkek 2k 

where pielp2e2...pkek is the prime factorization of d. 

Proposition 3.3 There is a fault free Hamiltonian cycle in B(d,n) when f op(d). 

PROOF. The proof is through induction on k. When k = 1, d is a prime power so 
there exists a maximal (dn-1)-cycle C in B(d,n). The cycles { s + C I s E GF(d) } are 
pairwise edge-disjoint so at least one, say s + C, is fault-free when f 5 cp(d) = d-2. As 
was noted in Section 3.2.1, s + C can be made Hamiltonian by replacing any edge of the 
form asn-1& by edges asn and snot, where a and tc satisfy Equation (3.3) and a s. Let 
aisn, sneci I 1 5 i S d-1 } be the set of pairs of replacement edges. If n > 1 then i#j 

aisn # snetj so a faulty edge affects at most one pair. Thus when f cp(d), at least one 
fault-free pair of edges can be found to make s + C Hamiltonian. 

Now assume that k > 1, and let s = d/pkek and t = pkek. It was shown in Section 3.2.2 
that an HC (A,B) in B(d,n) can be formed from HCs A and B in B(s,n) and B(t,n) 
respectively. Every edge in (A,B) corresponds to a unique pair of edges; one from A and 
one from B. More precisely, edge vo... vn in (A,B) corresponds to ao... an in A and 
bo...bn in B, where vi = ait + bi. Consequently, we can construct an HC in B(d,n) that 
avoids vs...vn by finding HCs A and B in B(s,n) and B(t,n) respectively such that (i) A 
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does not include ao...an or (ii) B does not include bo...bn. By induction, A can avoid any 
set of 9(s) edges and B can avoid any set of y(t) edges. Hence, we can construct a 
Hamiltonian cycle in B(d,n) that avoids any set of 9(s) + 9(0 = cp(d) edges. 

Proposition 3.3 implies that B(d,n) admits an HC in the presence of the maximum 
number of edge faults when d is a prime power because cp(pe) = pe-2. Note also that cp(d) 

1 when d > 2, so every non-binary De Bruijn graph admits an HC in the presence of a 
single edge failure. For some values of d it is possible to tolerate a larger number of edge 
faults by directly applying the results of Proposition 3.2. The two approaches are 
combined in the following proposition. 

Proposition 3.4 B(d,n) admits a fault free Hamiltonian cycle in the event of at 
most MAX(V/(d) -1, cp(d)] edge failures. 

PROOF. B(d,n) admits v(d) disjoint HCs by definition, so at least one HC is 
guaranteed to be fault-free in the event of w(d) 1 edge faults. Proposition 3.3 insures 
that a fault-free HC exists in the event of cp(d) edge faults. 

We conclude this section by listing the values of mAx{w(d)-1, cp(d)} for d = 2, ..., 
35 in Table 3.2. For most of the tabulated values, MAX{1I1(d)-1, 9(d)} = 9(d). The sole 
exception occurs when d = 28. 

d 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

MAXI p(d) -1, (p(d)) 0 1 2 1 5. 6 7 3 9 3 11 5 4 14 15 7 

d _19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 
MAXI w(d)-1, cp(d)} 17 5 6 9 21 7 23 11 25 8 27 4 29 30 10 15 8 

Table 3.2. Values of mAx{v(d)-1, cp(d)} for 2 5 d 35. 

3.4 Extensions to the Butterfly Graph 

In this section we exploit a structural relationship between De Bruijn graphs and 
butterfly graphs to obtain results on fault-tolerant ring embedding in butterflies. 
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The d-ary butterfly digraph F(d,n) has node set 4 X Z Id and edges from each node 
(k, xox2...xn_1) to (k+1 (mod n), xoxi...xk_iaxk+1xn_1), for all a E Zd. It is 
conventional to think of vertex (k, x) as being at level k and column x. The binary 
butterfly digraph F(2,3) is depicted in Figure 3.4 (the first row is replicated to aid in 
visualization). 

In [ABR90] it was demonstrated that the node set of F(d,n) can be partitioned into do 
subsets in such a way that when the nodes in each subset are combined into a single 
node, and parallel edges are merged, the resulting graph is (isomorphic to) B(d,n). 

More precisely, each node X in B(d,n) is associated with the set of butterfly nodes Sx 
= { (0,X), (1, 7t-1(X)), (2, n-2(X)), ..., (n-1, n-(n-1)(x))), where ni(X) denotes the left 
rotation of X by i positions (e.g., n3(1202) = ir1(1202) = 2120). Each De Bruijn edge is 
consequently associated with n butterfly edges. This is formally proven in Lemma 3.8, 
and illustrated in Figure 3.5. 
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(0,000) (0,100) (0,010) (0,110) (0,001) (0,101) (0,011) (0,111) 

(2,000) (2,100) (2,010) (2,110) (2,001) (2,101) (2,011) 

(1,000) (1,100) (1,010) (1,110) (1,001) 

(0,000) (0,100) (0,010) (0,110) (0,001) (0,101) (0,011) 

Figure 3.4. Butterfly digraph F(2,3). 

(0,100) (0,110)4 (1,010) (1,011) 
(2,001) (2,101) 

III  
(0,000) (0,010) 4_1. (0,101) \(01:1,11111)) 
(1,000) (1,001) 4-* (1,110) (1,111) 
(2,000) (2,100) (2,011) El 

1 
(0,001) (0,011) /
(1,100) (1,101) 
(2,010) }- (2,110) 

Figure 3.5. Butterfly graph F(2,3) partitioned to resemble B(2,3). 
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Lemma 3.8 If there is an edge from node x to node Y in B(d,n) then there is an 
edge from the level i butterfly node in Sx to the level i+1 butterfly node in Syfor i = 0, 

., n-1. 

PROOF. It suffices to show that tri(x) and 11-(i 4-1)(Y) differ at most in the i'th digit. 
(x,Y) is an edge in B(d,n), so Y = x2...xna for some a, and it-1(Y) = ax2...xn. Since x 
and 7[-1(y) differ at most in the first digit, it follows that 7c-i(x) and 7c-i(7c-1(Y)) differ at 
most in the i'th digit. 

Let SI = (i, ici(X)) denote the butterfly node at level i in the set corresponding to De 
Bruijn node x. Note that every butterfly node can be expressed as SI for some X and i. 
For any k-cycle C = (V0, ..., vk_i) in B(d,n) let 

def 0 1 

where t = LCM(k,n). Recall that the superscripts (butterfly levels) are reduced mod n and 
the subscripts of the V's are reduced mod k. 

Lemma 3.9 0(C) is a cycle in F(d, n). 

PROOF. Since t = LCM(k,n), we have t-1 a n-1 (mod n) and t-1 = k-1 mod k. So, 
qt--vti Then by Lemma 3.8, there is an edge from S;-11 to S,90, so (1)(C) is a 
closed path in F(d,n). If 4:11(C) is not a cycle then S, = l for some 0 i < j 5 t-1. In 
this case, we have j = i (mod n) and j = i (mod k) = j-i = 0 (mod n) and j-i = 0 (mod k). 
So, j-i LCM(k,n), a contradiction since j-i < t. 

To illustrate Lemma 3.9, consider the 4-cycle C = (110, 100, 001, 011) in B(2,3). 
Since LCM(4,3) = 12, C is mapped by cto to a 12-cycle in F(2,3): ( (0,110), (1,010), 
(2,010), (0,011), (1,011), (2,001), (0,001), (1,101), (2,101), (0,100), (1,100), 
(2,110) ). 

Lemma 3.10 A fault-free cycle of length LCM(k,n) exists in F(d,n) in the presence 
of f faulty edges i f a fault-free cycle of length k exists in B(d,n) in the presence offfaulty 
edges. 

PROOF. Suppose edges {El, Ef} fail in F(d,n), where Ei denote the butterfly 
edge SLiji-+S ;i1-il. Assume that it is always possible to find a cycle of length k in B(d,n) 
that avoids any set of f faulty edges. If a cycle C in B(d,n) does not include edge U -+ V 
then 41(C) does not include edge Sfj > SV.1 for any r. Consequently, if C is a k-cycle in 

http:ax2...xn
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B(d,n) that avoids edges {u1-4 v1, ..., Uf-+ Vf}, then 4:13(C) avoids edges {El, ..., Ed. 
The length of (1)(C) is LCM(k,n) by Lemma 3.9 . 

The preceding development allows the results on ring embedding in the presence of 
edge faults to be extended to butterfly graphs when d and n are relatively prime. Note that 
in this case cl) maps HCs in B(d,n) to HCs in F(d,n) since LCM(dn,n) = ndn. 

Proposition 3.5 F(d,n) admits a fault free Hamiltonian cycle in the event of at 
most mAxtvi(d)-1, cp(d)) edge failures when d and n are relatively prime. 

PROOF. The proof follows from Proposition 3.4, and Lemma 3.10. 

It is also a simple matter to show that (I) maps edge-disjoint cycles in B(d,n) to edge-
disjoint cycles in F(d,n). To see this, let C and D be edge-disjoint cycles in B(d,n). If 
(I)(C) and (I)(D) have a common edge, say Slj>Sitil, then C and D have edge U > V in 
common, contradicting the assumption that C and D are edge-disjoint. 

Proposition 3.6 F(d,n) admits yf(d) disjoint Hamiltonian cycles when d and n are 
relatively prime. 

PROOF. The proof follows from Proposition 3.2 and the above discussion. 
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Chapter 4 

Counting Necklaces 

The necklace structure of De Bruijn and shuffle-exchange graphs has been studied 
and exploited by several authors. The results of these investigations include: 

A permutation routing scheme for the N-node shuffle-exchange graph that 
requires O(logN) steps with high probability [LMR88]. In this approach, necklaces are 
used as an analogue to the levels of a butterfly network. 

An optimal 0(N2/log2N) area VLSI layout for the N-node shuffle-exchange 
graph which involves mapping necklaces to the complex plane [Lei83]. The same 
approach can be used for the De Bruijn graph [SP89]. 

An efficient algorithm for constructing Hamiltonian cycles in De Bruijn graphs by 
joining necklaces is described in references [FM78, Ra181]. The technique is similar to 
that used in Chapter 3 to construct a fault-free cycle. Related work includes an attempt to 
count the number of distinct Hamiltonian cycles that can be constructed by joining 
necklaces [LHC89]. 

In [LHC89] the authors derive a recurrence for the number of necklaces made up of 
nodes of a given weight in the binary De Bruijn graph, and in [PI92] Prasad and Iyengar 
compute asymptotic bounds on the number of necklaces of a given length. In this chapter 
we derive exact formulae for both of these values en route to developing a general 
technique for counting necklaces consisting exclusively of nodes that satisfy a wide range 
of given conditions. 

It should be noted that the problem of counting necklaces is not new; P.A. 
Mac Mahon derived an expression for the number of d-ary necklaces more than a hundred 
years ago [Mac92]. In addition, Polya's theorem provides a powerful mechanism for 
counting necklaces by weight [Liu68]. 
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4.1 Preliminaries 

We assume that the nodes of B(d,n) correspond to n-tuples over Zd. If x is a d-ary n-
tuple, then lxi denotes the length of x, and iti(x) denotes the left rotation of X by i 
positions, e.g., n2(0001) = 0100. 

Note that ni+j(x) = ni(iti(x)) and, if X = wk and Iwl = t, then ICt(X) = X. An n-tuple 
(or node) X is in a necklace of length t if and only if t is the smallest positive integer such 
that nt(x) = X. In this case we say that the period of x is t, and write period(x) = t. If 
period(x) = IXI we say that X is aperiodic. 

Suppose that x is in a necklace of length t. We can write n as tq + r with 0 r < t, so 
70(x) = eq+r(x) = icr(ntq(x)) = nr(x) = x. It follows that r = 0 because of the minimality 
of t. Consequently, the length of any necklace in B(d,n) must divide n. 

Observation. An n-tuple X is in a necklace of length t if and only if x = wnit and w 
is aperiodic. 

To verify this, first suppose that x is in a necklace of length t. Then nt(x) = X and 
tin. We can write x as w1W2...Wnid where iwil = t for all i. Then nt(X) = W2. Wn/dW1 = 

W1W2 Wn/t, SO W1 = W2 = .= Wnit = W, and x = WM. If w = zk for IA < iwi then x = 
zkn/t and itizI(x) = X, which contradicts the minimality of t. Thus, w is aperiodic. Next, 
suppose that X = wrilt and that w is aperiodic. If x is in a necklace of length k we must 
show that t is equal to k. If d = kq + r with 0 S r < k, we have Ict(X) = nr(nkci(X)) = 
ICI(X) = x. But k is minimal, so r = 0, and k divides t. We know that x = Vilk for some 
z. But x is also equal to IVA and kit, so W = Ztik = zq. Since w is aperiodic, q must be 
1 and hence t = k. 

Our counting technique makes use of the MObius inversion which is definedas 

f(n) = g(t) g(n) = f(t)1.(n/t) 
tin tin 

where 
1 i f x = 1 

11(x) = {(-1)k if x is a product of k distinct primes 
0 if x has a repeated prime factor. 
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4.2 Counting Necklaces 

In this section we derive a formula for the number of necklaces of length tin in a 
given subgraph of B(d,n). 

Specifically, let f be any function defined on Zd and let g be any function defined on 
positive integers. Our goal is to count the number of necklaces in the subgraph ofB(d,n) 
consisting of the nodes T(n) that satisfy f(x) = g(n), i.e., 

T(n) = fx E 4 I f(X) = g(n)}. 

We assume that f and g satisfy the following conditions: 

Condition A. If X and Y are in the same necklace then f(x) = g(n) = f(Y) = g(n). 

Condition B. If X E r such that x = wnit and W is aperiodic, then f(x) = g(n)d 
a f(w) = g(t). 

Condition A insures that r(n) can be partitioned into necklaces. The importance of 
Condition B will be demonstrated shortly. 

Let 

A(n,t) = Ix E Zicl f(x) = g(n); period(X) = t}I 

denote the nodes in I(n) of period t. Since A(n,t) = 0 if t does not divide n, we have the 
following identity 

I #A(n,t) = #c(n) 
tin 

Applying the Mobius inversion yields an expression 

1, #r(t)ign/t) = #A(n,n). (4.1) 
tin 

for the number of aperiodic nodes in r(n). 

Proposition 4.1 The number of necklaces of length tin in B(d,n) containing nodes 
that satisfy f(x) = g(n) is 

1 2 v,I #1-0).1-1(t/j). (4.2) 
jlt 
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PROOF. The desired value can be obtained by dividing #A(n,t) the number of 
nodes in necklaces of length t by t. Using Equation 4.1 we can compute 

#A(t,t) =1 #I-(j).11(t/j) 
j It 

where A(t,t) = {X E zd I f(X) = g(t); period(X) = O. We conclude the proof by showing 

that #A(t,t) = #A(n,t) when tin. 

If X E A(n,t) then X = VIA for some aperiodic t-tuple W. For each X E A(n,t) let the 
appropriate w be denoted h(X), and let H = { h(x) I x E A(n,t)}. Clearly if x and Y are in 
A(n,t) and X * Y , then h(X) * h(Y ). Thus, #A(n,t) = #H. Note that f(w) = g(t) for all w 
E H, since f(X) = g(n) f(h(x)) = g(t) by Condition B. Therefore, H C A(t,t). In 
addition, w E A(t,t) f(wnit) = g(n), by Condition B, so A(t,t) g H. Consequently, 
#A(t,t) = #H = #A(n,t). 

Proposition 4.2 The total number of necklaces in B(d,n) containing nodes that 
satisfy f(x) = g(n) is 

1 1 #r(j)4(n/j) (4.3) 
n jin 

where (1) is the Euler function. 

PROOF. To find the total number of necklaces we sum 1/t #A(n,t) over all t dividing 
n. By Proposition 4.2 this value is 

1 t I #C)1(t/j) (4.4) 
tin jlt 

To simplify Equation (4.4) we will use the following identities, the proofs of which 
can be found in [McE87]. 

(i) I 1 f(j,t) = I I f(j,tj), 
tin jlt jin tin/j 

(ii) y got = 4(n)/n. 
tin 

Applying first Identity (i) and then Identity (ii) to Equation (4.4) yields 

11 #r(j) I µ(t) /t = 1 I, #ra)00,1D. 
jin j tin/j jin 
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4.3 Examples 

In this section we illustrate the usefulness of the Propositions 4.1 and 4.2 with some 
concrete examples. 

Counting by Length 

To determine the number of necklaces of length t in B(d,n) we can let f(X) = 0 for all 
X, so that #F(m) = # {x E ZnP = dm. Then, by Proposition 4.1, the number of necklaces 

of length tin in B(d,n) is 
1 x-,
t 2, di11(t/j),  

jlt  

and, by Proposition 4.2, the total number of necklaces in B(d,n) is 

n I di4(n/j) 

For instance, the number of necklaces of length 6 in B(2,12) is  

6 I 2i.g(6/j) = [211(6)+221.(3)+2311(2)+26(1)]  
j16 

1= -6 [2 - 4 - 8+64] = 9, 

and the total number of necklaces in B(2,12) is 

I 2j4(12rj) = [24(12)+224(6)+234(4)+244(3)+264(2)+2124(1)]
12 12 

jI12 

= .--2- [8 + 8 + 16 + 32 + 64 + 4096] = 352. 

Counting by Weight in B(2,n) 

The number of necklaces of length t in B(2,n) made up of nodes of weight k can be 
counted by choosing f(x) to be wt(X) and g(m) to be (k/n)m. 

The weight function clearly satisfies Property A. To verify that Property B also 
holds, suppose that wt(X) = g(m) for some m-tuple x. If x = Wm't, then wt(W) = 
(t/m)wt(X) = (t/m)(k/n)m = (k/n)t = g(t). Conversely, if wt(W) = g(t) then wt(X) = g(m). 

The number of binary m-tuples of weight km/n is 
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#F(m) = #{X E Z2 I Wt(X) = mk/n} = Gum 3. 

Thus, by Proposition 4.1, the number of necklaces of weight k and length t is 

I (ilan)lt(t/i)'
jlt 

and by Proposition 4.2, the total number of necklaces of weight k 

ri / (jic/n).4)(111D 

For instance, the number of necklaces of weight 4 and length 6 in B(2,12) is  

03).1.46/j) = 6- [(2)1.41) + (1)11(2)] = [15 3] = 2,  
jI6  

and the total number of necklaces of weight 4 in B(2,12) is  

[(142)0(1) + (26)0(2) + (31)0(4)] = [495 + 15 + 6] = 43.  

Counting by Weight in B(d,n) 

When d > 2 we use the same f and g; however, A(m) is different. Let cd(n,k) denote 
the number of d-ary n-tuples of weight k, so that #r(m) = E Zd I wt(X) = km/n} = 
cd(m,km/n). 

An expression for d(n,k) can be found by observing that d(n,k) is the number of 
ways to choose k out of n objects subject to the restriction that each object may be chosen 
at most d-1 times. The generating function for this value is given in [Knu73] as 

n(d-1)  
g(z) = cd(n,k)zk = (1 + z + + zd-1)n = (i_zd)n (1_z) -n  

k4  

.Recalling that (1-zd)n = n ) zdi and (1z)-n = i(n-!+i)zi, and equating theii=o i=o 
coefficients of like powers, we get 

k/d (n) inl+kdi\Ni ki/ n-1 /' 
For instance, the number of necklaces of weight 4 and length 4 in B(3,4) is 

http:6-[(2)1.41
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1 x--, 1Tt L C30,j)-1.44/j) = -,--4 K3(4,4)µ41)+ c3(2,2)µ42)+ C3(1,1)44)] = 
4 [19 3] = 4. 

j14 

Counting by Type 

Nodes of a given weight in B(d,n) can be further partitioned by defining the type of a 
node X to be a d-tuple K = [k0, ..., kd..1] where a appears ka times in X. For example, 

n!312211 is of type [0,3,2,1]. The number of d-ary n-tuples of type K is 1 

1{d -1 

We can count the number of necklaces of type K in B(d,n) in much the same way that 
we counted necklaces of a given weight. Let f(x) denote the type of X, and let g(m) = 
[mko/n, ..., mk,14/n]. It is easy to verify that f and g satisfy Conditions A and B. 

By Proposition 4.1, the number of necklaces in B(d,n) of length t and type K is 
1 x-,
t 2., #1-0)-L(t/j)-

jlt 

where #1T(j) - .i ! 

(jko/n)!... (jk,i_i/n)! 

Note that when d = 2, type(x) = [n k, k] if and only if wt(x) = k. In this event, 
#r(j) becomes () as expected. 
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Chapter 5 

Future Work 

Numerous authors have assessed the reliability of De Bruijn networks using 
connectivity-based arguments. In this approach the d-ary De Bruijn network is said to be 
able to tolerate at most d-2 node or edge failures because the network may be 
disconnected if more failures occur. The results of this thesis indicate that the De Bruijn 
network can also efficiently support algorithms requiring ring-structured communication 
in the event of d-2 component failures. 

In particular, it has been shown that when f 5 d-2 nodes fail, a fault-free cycle of 
length at least dn nf can always be found in B(d,n). It was also shown that a fault-free 
Hamiltonian cycle exists in the event of d-2 edge failures when d is a prime power. Both 
results are optimal when a worst-case distribution of faults is assumed. 

The results on ring embedding in the presence of edge failures are difficult to 
generalize because they rely on properties of finite fields of size d. A different approach 
may be required to answer the following questions: 

1) Does B(d,n) admit a fault-free Hamiltonian cycle in the presence of d-2 edge 
failures for all values of d? 

2) Does B(d,n) admit d-1 disjoint Hamiltonian cycles? 

Question 2 was answered affirmatively in Section 3.2 for the case when d is a power of 
2. 

Another line of inquiry is motivated by the fact that the undirected De Bruijn graph 
UB(d,n) is more appropriate than B(d,n) as a model for interconnection networks with 
bidirectional communication links. This raises the question of whether significantly 
longer fault-free cycles can be embedded in UB(d,n) in the presence of component 
failures? Of particular interest in light of the fact that the connectivity of UB(d,n) is twice 
that of B(d,n) [EH85]: 
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3) Does UB(d,n) admit a fault-free cycle of length at least dn nf in the presence of 
f < 2(dl) node failures? This is the undirected version of Proposition 2.2. 

4) Does UB(d,n) admit a fault-free Hamiltonian cycle in the presence of 2(d-2) edge 
failures? If more than 2(d-2) edges fail it is possible that a node may not have at 
least two nonfaulty incident edges. 

Other areas of research include determining the maximum number of disjoint 
Hamiltonian cycles present in other bounded degree graphs, such as butterfly graphs and 
Kautz graphs [BP89]. 
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