
An Abstract of the Thesis of

Robert A. Rowley for the degree of Doctor of Philosophy in Computer Science
presented on December 2. 1993.

Title: Fault-Tolerant Ring Embedding in De Bruijn Networks

Abstract approved:
Bella Bose

A fault-tolerant embedding of a ring in an interconnection network involves finding a
cycle in the network that avoids a set of faulty processors or links. This thesis deals
primarily with fault-tolerant ring embedding in a d-ary De Bruijn network with dn
processors. It is shown that

(a) A fault-free cycle of length at least dnfn can always be found in the event of f
d-2 processor failures.

(b) A fault-free Hamiltonian cycle can always be found if there are at most d-2 link
failures and d is a prime power.

Both of these results are optimal when a worst-case fault distribution is assumed. The
results on ring embedding in the presence of link failures can be extended, in some cases,
to butterfly networks.

It is also shown that the d-ary De Bruijn digraph admits d-1 disjoint Hamiltonian cycles
when d is a power of 2 and at least (d-1)/2 disjoint Hamiltonian cycles when d is an odd
prime power.

Redacted for Privacy

Fault-Tolerant Ring Embedding in De Bruijn Networks

by

Robert A. Rowley

A Thesis

submitted to

Oregon State University

in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

Completed December 2, 1993

Commencement June 1994

Approved:

Professor of Computer Science in charge of major

Head of Department of Computer Science

Dean of Gr School

Date Thesis is presented December 2. 1993

Typed by Robert Rowley for Robert Rowley

Redacted for Privacy

Redacted for Privacy

Redacted for Privacy

Acknowledgements

I would like to thank my advisor Professor Bella Bose for his support and
kindness over a period of several years. I am grateful to Professors Walter Rudd,
Paul Cull, Burton Fein and David Sullivan for serving on my committee.

I would also like to acknowledge my officemates, past and present, whose
friendship greatly enriched my sojourn at OSU.

Lastly, I thank my parents for their unlimited encouragement and support.

Table of Contents

Chapter 1 Introduction 1

1.1 Problem Definition 2

1.2 The De Bruijn Network 2

1.3 Previous Work 5

1.4 Notation and Terminology 5

Chapter 2 Ring Embedding With Node Failures 7

2.1 Preliminaries 8

2.2 The Fault-Free Cycle Algorithm 8

2.3 Proof of Correctness 11

2.4 Implementation 13

2.5 Complexity Analysis 15

2.5.1 Binary De Bruijn Graphs 17

2.5.2 Simulation Results 18

2.6 Remarks 21

Chapter 3 Ring Embedding With Edge Failures 2 2

3.1 Cycles and Sequences 23

3.2 Disjoint Hamiltonian Cycles 24

3.2.1 Disjoint HCs When d is a Prime Power 24

3.2.2 Disjoint HCs in the General Case 30

3.2.3 Hamiltonian Decompositions 32

3.2.4 Related Work 34

3.3 Ring Embedding 35

3.4 Extensions to the Butterfly Graph 36

Chapter 4 Counting Necklaces 41

4.1 Preliminaries 42

4.2 Counting Necklaces 43

4.3 Examples 45

Chapter 5 Future Work 4 8

Bibliography 50

List of Figures

Figure

1.1. Binary De Bruijn graphs (a) B(2,3) and (b) B(2,4) 3

1.2. Undirected binary De Bruijn graph UB(2,3). 3

2.1. (a) Nodes in N* and (b) corresponding necklaces in B* 9

2.2. (a) Spanning tree T and (b) modified tree D. 10

2.3. Adjacency graph N* for B(3,3) {N(020), N(112)) 10

2.4. (a) Spanning tree and (b) modified tree 11

3.1 Edges used for inserting sn into cycle s + C 26

3.2. Graphical representation of non-disjoint HCs in B(13,n) 29

3.3. Hamiltonian decomposition of UMB(2,3). 34

3.4. Butterfly digraph F(2,3) 38

3.5. Butterfly graph F(2,3) partitioned to resemble B(2,3) 38

List of Tables

Table

2.1. Size of the component containing node R = 0...01 and the eccentricity of
R in B(2,10) with f randomly distributed faulty necklaces 20

2.2. Size of the component containing node R = 0...01 and the eccentricity of
R in B(4,5) with f randomly distributed faulty necklaces. 20

3.1. Values of w(d) for 2 d 5 38. 32

3.2. Values of MAX {w(d)-1, cp(d)} for 2 d S 35 36

Fault-Tolerant Ring Embedding
in De Bruijn Networks

Chapter 1

Introduction

Physical limitations on processing speeds of sequential computers have led high
performance systems to rely increasingly on exploiting the inherent parallelism in
problems and implementing their solutions on parallel machines. Recent advances in very
large scale integrated (VLSI) technology make the design of multicomputers with
thousands of processors feasible. Processors can be viewed as individual chips, several
chips on a circuit board or even individual computers interconnected suitably to form
networks. The study of interconnection networks and their underlying topologies have
consequently become an integral part of designing high performance architectures.

As the number of processors in a system increases so to does the probability of a
processor or communication link malfunctioning. It is therefore important to evaluate
network performance in the presence of component failures. There are many ways to
assess the reliability of a network. One widely-used measure is based on the network's
connectivity. In this approach, a network is assumed to have tolerated a given set of
component failures if it remains connected (i.e., all nonfaulty processors can still
communicate with each other). However, even if the faulty network is connected it is not
always clear how a parallel computation can be performed efficiently since the faulty
network may bear little resemblance to the original network. A more general approach to
fault-tolerance involves arranging the nonfaulty processors in some useful pattern such as
a binary tree or a linear array.

In this thesis we investigate how the nonfaulty processors in a De Bruijn network can
be joined in a ring. The goal of the work is to allow a faulty De Bruijn network to
efficiently support algorithms that make use of a ring or linear array.

2

1.1 Problem Definition

We assume that an interconnection network is modeled by a graph, the nodes being
the processors and the edges being the physical links between processors. Henceforth we
will not make a distinction between a network and its underlying graph, e.g., node and
processor will be used interchangeably. Component failures are assumed to be total, i.e.,
faulty nodes can neither perform computations nor route messages, and are modeled by
removing the faulty nodes and/or edges from the graph.

Let Rk denote a cycle (or ring) of length k. An embedding of Rk into graph G is a
one-to-one mapping ti that takes the nodes of Rk to the nodes of G and the edges of Rk to
paths in G. The principal measures of an embedding are its dilation and congestion. The
dilation of ti is the length of the longest path t(e) taken over all edges e in Rk. The
congestion of T is the largest number of paths t(e) using a single edge in G.

This thesis addresses the problem of embedding the largest possible ring Rk in a De
Bruijn graph so that nodes in Rk are mapped to nonfaulty nodes and edges in Rk are
mapped to fault-free paths. The proposed embeddings have unit dilation and congestion
implying that the embedded ring is a subgraph of the faulty graph.

1.2 The De Bruijn Network

The De Bruijn interconnection network is modeled by either the directed or undirected
De Bruijn graph. The d-ary directed De Bruijn graph B(d,n) has nodes corresponding to
n-tuples over a d-letter alphabet A, and directed edges from each node xi ...xn to nodes
{x2...xna I a E A} . Each node has indegree and outdegree d, and nodes of the form an
have loops.

The undirected De Bruijn graph, denoted UB(d,n), is obtained from B(d,n) by
deleting loops, removing the orientation of the edges and merging any resulting parallel
edges. This results in a graph possessing d nodes of degree 2d-2, d(d-1) nodes of
degree 2d-1 and do d2 nodes of degree 2d [PR82]. The 8-node and 16-node De Bruijn
graphs on the alphabet {OM are shown in Figure 1.1, and the undirected De Bruijn
graph UB(2,3) is shown in Figure 1.2.

3

100 110

/i \E000 010 4=k- 101 j
211.

p
001 011

(a)

1000 1100
Oic

i0100 1010
41

ni.j,30i ii

i
iz '9
0010 0101

PO
0001 0011

(b)

Figure 1.1. Binary De Bruijn graphs (a) B(2,3) and (b) B(2,4).

100 110

\ /\010/ 101/
000

001 011

Figure 1.2. Undirected binary De Bruijn graph UB(2,3).

The De Bruijn graph' derives its name from N. G. de Bruijn who used it in 1946 to
solve a combinatorial problem [Bru46]. The graph was first studied as a communication
network by Schlumberger [Sch74], and was proposed as a processor interconnection
network suitable for VLSI implementation by Pradhan in 1981 [Pra81]. The De Bruijn
topology has also been proposed for implementing large optical-based networks that
employ lightwave division multiplexing [SR91a, Muk92]. Surveys of De Bruijn graphs
and networks can be found in papers by Bermond and Peyrat [BP89], Samatham and
Pradhan [SP89], and in Section 3.3 of Leighton's book [Lei92].

The De Bruijn network has much to recommend it as a general purpose architecture.
For example, any T-step computation on a mesh-of-trees, a k-dimensional mesh, or
butterfly network can be simulated in 0(T) steps by a like-sized De Bruijn graph [Sch92,
KLM+89, Sch90]. In addition, B(d,n) contains such useful topologies as a complete
d-ary tree and a shuffle-exchange as subgraphs.

While the De Bruijn network cannot simulate the popular hypercube network with
constant slowdown on arbitrary computations, it can implement the class of highly
parallel normal or composite hypercube algorithms with a small constant delay [U1184,
PV81, SP89]. The paradigm of these algorithms is the iterative version of the divide-and-
conquer method, in which a problem is divided into subproblems of equal size, with a
one-to-one correspondence between the results of the subproblems. A rich set of
problems, such as permuting, sorting, the fast Fourier transform, and prefix computation
have efficient solutions in this class.

The De Bruijn network can also efficiently simulate an idealized parallel computation
model. Idealized models, such as a PRAM, assess a unit cost for communication between
processors, making it possible to design parallel algorithms without regard to the network
topology. Proposed simulations of a PRAM by a De Bruijn network involve probabilistic
routing techniques developed in [VB81, LMR88].

1We follow Van Lint and Wilson in capitalizing the word "de" when omitting the initials of N.G. de

Bruijn [LW92].

5

The applications of De Bruijn graphs are not limited to parallel processing. The
graphs arise in such diverse areas as the search for dense graphs and minimal broadcast
graphs [DF84, BHL+92, BP88], and the study of cellular automata [Wo184, Sut91].

De Bruijn graphs also play an important role in decoding convolutional codes.
Maximum-likelihood decoding of these codes requires the decoder to find the best match
between a received stream of symbols and a path in a De Bruijn graph with weighted
edges. This has led to the implementation of an 8192-processor De Bruijn network in
VLSI by the Jet Propulsion Laboratory. The network is to be used in conjunction with
NASA's Galileo mission to Jupiter [DI(M92].

1.3 Previous Work

The fact that the De Bruijn graph admits a Hamiltonian cycle is well-established. The
properties of these cycles have received much attention, due in large part to their
relationship to full length shift register sequences (also known as De Bruijn sequences).
Background on this subject can be found in the surveys by Fredricksen [Fre82] and
Ralston [Ra182].

The ability of the De Bruijn network to tolerate faults has been the subject of
numerous papers. Work has been done on fault-tolerant routing [EH85, HP89, IS085,
IS086, Pra81, Lyu93, DLH93], fault-diagnosis [PR82, SR91b], fault-tolerant VLSI
design [Obr91], and emulation of a nonfaulty network by a faulty network [Ann89,
BCH92]. The work most closely related to the topic of this thesis is that of Samatham
and Pradhan who investigated fault-tolerant embeddings of complete d-ary trees [SP89].

1.4 Notation and Terminology

For the most part, our graph-theoretic terminology follows Harary [Har69]. The
indegree and outdegree of a node X in a directed graph (digraph) G refer to the number of
edges terminating at and originating from X. If there is an edge from x to Y we say that Y
is the successor of x, and x is the predecessor of Y. A path is a sequence of vertices V 1,

Vk, such that (vi, Vii.1) is an edge, 1 i k-1. A cycle is a closed path in which all
nodes are distinct, and a cycle of length k is called a k-cycle. A circuit is a closed path in
which all edges are distinct. A cycle that visits all nodes in the graph is said to be
Hamiltonian, and a circuit that traverses all edges is Eulerian. A digraph is (strongly)

6

connected if there is an oriented path between every pair of nodes. A component of a
digraph is a maximal connected subgraph.

The following notation terminology is used throughout this thesis.

Symbol

B(d,n) The d-ary De Bruijn digraph with do nodes.

UB(d,n) The undirected De Bruijn graph.

A The d-ary alphabet over which the nodes of B(d,n) are defined.

All The set {xi ...xn I Xi E AI of words of length n (n-tuples) over A.

A* The set of all words over A, including the empty string.

Z The set of integers.

Zj The ring of integers modulo d.

GF(q) The Galois field with q elements.

4)(n) The Euler function denoting the number of positive integers
relatively prime to and not exceeding n.

alb a divides b.

LCM(a,b) The least common multiple of integers a and b.

an The n-tuple a... a.

a The n-tuple a(3... a(3 when n is even and the n-tuple at3...afla
when n is odd (the value of n is implicit).

wt(X) The sum of the digits in x.

wtec(x) The number of a's in x.

ni(X) The left rotation of X by i positions.

N(x) The cycle in B(d,n) obtained by rotating the letters of a node.

maximal cycle A cycle of length qn1 in B(q,n) corresponding to a linear
recurrence of period q "-l.

Chapter 2

Ring Embedding With Node Failures

In this chapter, we describe a network-level distributed algorithm that finds a fault-
free cycle in B(d,n) in the presence of an arbitrary number of node failures. We assume
that the location of the faulty nodes is not known in advance.

Our approach involves partitioning the nodes of B(d,n) into small cycles called
necklaces. A necklace is deemed faulty if it contains a faulty node. A large fault-free
cycle is constructed by joining nonfaulty necklaces.

The time required to find the fault-free cycle is 0(K + n), where K is the diameter of
the largest component in the graph obtained by removing the faulty necklaces from
B(d,n). The length of the fault-free cycle is at least dnn when the number of faults f is
at most d-2. In addition, a fault-free cycle of length at least 2n(n+1) can be found in the
binary (d=2) De Bruijn graph when f = 1. In both cases, the number of communication
steps required to find the cycle is 0(n).

Our results indicate that the De Bruijn graph is competitive with the hypercube when
the number of faults is small. It is known that a fault-free cycle of length 2n-2 exists in
the 2n-node hypercube when f n-2 [WC92, CL91a]. For example, a fault-free cycle of
length 4092 can be found in the 4096-node hypercube when f = 2. By comparison, when
there are two faults in the 4096-node De Bruijn graph B(4,6), a fault-free cycle of length
at least 4084 can be found. It is worth mentioning that the hypercube has 50% more
edges (24,576) than the De Bruijn graph (16,384) in this instance.

The remainder of this chapter is organized as follows. In Section 2.1 we introduce
notation and review some relevant concepts from graph theory. The algorithm is
described in Section 2.2, followed by a detailed example. A formal proof ofcorrectness
appears in Section 2.3. The algorithm's implementation and complexity are discussed in
Sections 2.4 and 2.5.

8

2.1 Preliminaries

We assume that the nodes of B(d,n) correspond to n-tuples over Zd. Throughout the
chapter, w and v refer to elements of Zrld-1, a and 13 to d-ary digits, and xi to the i'th digit

of X.

A directed tree T rooted at R is a directed graph such that: (a) every node other than R
is the terminal node of some edge in T; (b) R is the terminal node of no edge; (c) for each
node X R there is a directed path from R to x. If (X,Y) is an edge in T, we say that X is
the parent of Y and Y is the child of x. T is a spanning tree of G if T includes every node
in G.

We use N(x) to denote the cycle (xi ... xn, x2. xnxi, , xnxi x n-) in B(d,n)
formed by rotating the digits of node X. Cycles of this form are called necklaces, and are
represented by [Y] where Y is the minimall node in the necklace. For example, N(1120)
= [0112] = (1120, 1201, 2011, 0112). The set of necklaces partition the nodes of B(d,n)
into disjoint cycles of length at most n. The weight of a node X = xi ...xn is xi + x2 +
+ xn, and is denoted wt(X). In addition, we use wta(X) to denote the number of a's in X.
For example, when x = 1120, wt(X) = 4, wto(x) = 1, wti(X) = 2 and wt2(X) = 1. Note
that if N(x) = N(Y) then wt(x) = wt(Y) and wta(X) = wta(Y) for any a E { 0, ..., d-1

2.2 The Fault-Free Cycle Algorithm

In this section we present a high-level description of an algorithm to construct a cycle
in B(d,n) that avoids a set {Fi, Ff} of faulty nodes. Say that necklace [x] is faulty if
one or more nodes in [X] are faulty. Let B* denote the largest component in the graph
B(d,n) {N(Fi), N(Ff)) obtained by removing the faulty necklaces from B(d,n). The
fault-free cycle will correspond to a Hamiltonian cycle in B*.

Our technique is suggested by a parallel algorithm proposed by Atallah and Vishkin to
find an Euler tour in an arbitrary graph [AV84]. In that algorithm, an Euler tour was
constructed by stitching together disjoint circuits. The process was guided by the

1N-tuples are ordered by viewing them as base-d numbers.

9

connections in a spanning tree of an auxiliary graph in which the disjoint circuits were
viewed as nodes.

In our case, we construct a Hamiltonian cycle in B* by stitching together necklaces.
We use a spanning subgraph of a necklace adjacency graph to determine whether, and
how, two necklaces should be joined

Definition: A necklace adjacency graph N* is a directed graph with nodes
corresponding to necklaces in B*. There is a directed edge labeled w from [X] to [Y] if
and only if aw is in [x] and f3w is in [Y], for some a, 3 E Zd, a 13. El

An edge labeled W (a w-edge) from [x] to [Y] can be viewed as exiting [x] at node
aw and entering [Y] at node w13 (see Figure 2.1). Note that if there is a w-edge from [x]
to [Y] then there is a corresponding w-edge from [Y] to [x]. (Antiparallel edges are
depicted as a single edge with arrows at both ends.)

()cm w/13Thi
[X] 4--=-AT [y] I°Um 13xU

(a) (b)
Figure 2.1. (a) Nodes in N* and (b) corresponding necklaces in B*.

Node aw (or wa) in a given necklace is uniquely determined by w since aw and
13w, a * 13, cannot be on the same necklace.

What follows is a high-level description of the proposed fault-free cycle (FFC)
algorithm. The network-level implementation is described in Section 2.4.

FFC Algorithm
Step 1. Find a spanning tree T of N* such that, for every w E Zild-1, the w-edges in T,

denoted Tw, have a common initial node, i.e., Tw is a subtree of height one.

Step 2. Modify T by changing every Tw from a parent and one or more children to a
directed cycle with edges labeled w. Let D denote the modified tree. The modification of
an edge-labeled tree is illustrated in Figure 2.2.

10

w w
4---1v

\i Sltih/1°\, 4-04
(a) (b)

Figure 2.2. (a) Spanning tree T and (b) modified tree D.

Note that the modified tree is a spanning subgraph of N* because every pair of necklace-
nodes [X] and [Y] in Tw are connected by a w-edge ([X], [Y]) in N*.

Step 3. Construct a Hamiltonian cycle H in B* by defining the successor of an arbitrary
node aw in B* as follows. Assume that aw is in necklace [X]. If there is a W-edge in D
leading from [x] to [Y] then the successor of law is w13 in [Y]; otherwise the successor of
aw is wa.

A formal proof of the correctness of the algorithm appears in the next section. We
conclude this section with an example.

Example 2.1 Suppose that nodes 020 and 112 fail in the 27-node De Bruijn graph
B(3,3). In this case B* = B(3,3) {N(020), N(112)) since the graph remains connected
after the removal of the faulty necklaces. B* contains 21 nodes so we should be able to
construct a fault-free cycle of length 21.

The necklace adjacency graph N* is shown in Figure 2.3.

[111]
10

00 01,10 10 02[000] [001] 4- [011] 1 [021] [022]

201 21

21 [222]2}[012] K !:
22

[122]

Figure 2.3. Adjacency graph N* for B(3,3) {N(020), N(112)).

A spanning tree of N* and the modified tree are shown in Figures 2.4 (a) and (b).

11

11 11[011]4 [111] [011]4.4 [111]01 01
101

00 01 12 22 00 01 12 22[000] -4 [001] -0 [012] -0 [122] -0 [222] [000] 4-0. [001)4. -- [012] 4- [122] 4-4 [222]

02 10 02[021)-0. [022) [021)4-0. [022)
(a) (b)

Figure 2.4. (a) Spanning tree and (b) modified tree.

The successor of each node in H can be readily obtained from 2.4 (b). For instance,
node 120 is followed by its necklace successor 201 in H because [012] does not have an
outgoing edge labeled 20. Conversely, node 101 is in [011] which has an outgoing 01-
edge leading to [012], so 101 is followed in H by its successor in [012], namely 012.

The entire cycle is H = (000, 001, 011, 111, 110, 101, 012, 122, 222, 221, 212,
120, 201, 010, 102, 022, 220, 202, 021, 210, 100).

2.3 Proof of Correctness

In this section we prove that cycle H constructed in Step 3 of the FFC algorithm is
indeed a Hamiltonian cycle in B*.

For each label w, a necklace-node in D either has no incident W- edges, or it has
exactly one outgoing and one incoming w-edge. If a necklace-node [x] has an outgoing
and an incoming edge Wedge in D, then nodes aw and Wa in [x] are said to be outgoing
and incoming nodes respectively.

Lemma 2.1 Every node in B* lies on exactly one necklace path from an incoming
node to the next outgoing node.

PROOF. Every necklace in B* has a corresponding necklace-node in D, so every
necklace contains at least one outgoing node. If aw is an outgoing node then its necklace
successor wa is an incoming node, so outgoing and incoming nodes are alternately
encountered as a necklace is traversed. (If wa is also an outgoing node, it is counted first
as an incoming node.) Consequently, each node in B* lies on exactly one path between
an incoming node and the next outgoing node.

Example 2.2 Suppose that [0122] = (0122, 1220, 2201, 2012) has incident edges
labeled {012, 201, 220} in D. The incoming nodes are { 0122, 2012, 2201) and the

12

outgoing nodes are {2012, 2201, 1220} . The alternating incoming and outgoing nodes in
the traversal of [0122] are 0122, 1220, 2201, 2201, 2012, 2012, so the necklace is
partitioned into three paths: (0122, 1220), (2201) and (2012). El

Any path in B* can be viewed as a path in D by considering only those edges from
outgoing to incoming nodes, i.e. that lead from one necklace to another. Replacing each
edge (aw, w(3), a # (3, by the w-edge ([x], [Y]) where aw is in [x] and wI3 is in [Y]
yields the desired path in D.

For instance, the path corresponding to H in Example 2.1 is ([000], [001], [011],
[111], [011], [012], [122], [222], [122], [012], [001], [021], [022], [021], [001]). Note
that this path forms an Eulerian circuit in D (see Figure 2.4.b). Lemma 2.2 shows that
this is true in general.

Let H be the path in B* constructed in Step 3 of the FFC algorithm, and let J denote
the corresponding path in D.

Lemma 2.2 J is an Eulerian circuit in D.

We will prove that (a) J is a circuit, (b) ifone w-edge is in J then all W-edges are in J,
(c) if a necklace-node is in J then all of the edges incident to it are in D are in J, and (d) all
necklace-nodes in D are in J. Properties (a), (c) and (d) insure that every edge appears
exactly once in J.

Proof of (a). Let {Lo, Lm_i } be the labels of the edges incident to a necklace-
node [x] in D, and assume that the outgoing and incoming nodes in [X] are aoLo, Loao,
a1L1, Lial Lm_iam.1 in the order in which they are encountered when traversing
[x]. For instance, in Example 2.2 we could let GOA) = 1220, a1L1 = 2201 and a2L2 =
2012. This ordering implies that the (Li)-edge entering [X] is followed in J by the (Li+i)-
edge exiting [x] (subscripts are reduced modulo m). Now, let the sequence of edges in J
be Eo, E1, E2, . , and assume that t is the smallest integer such that Ei = Et, 0 i t-1.
From the above discussion, it follows that Ei_1 = Et -1 if i > 0. This contradicts the
minimality oft, so we conclude that i = 0 and that J = Eo, E1, E" is a circuit.

Proof of (b). Assume that T is rooted at [R]. Follow H beginning at some outgoing
edge of [R]. If the first w-edge in J is ([x], [Y]), then the remaining W-edges must be
traversed to get from [Y] back to [R] because this path must go through [X] (see, e.g.,
Figure 2.2.b).

13

Proof of (c). Assume that [x] is in J, and that the outgoing and incoming nodes in
[x] are arranged as in the proof of (a). If the (Li)-edge entering [x] is in J then so is the
(Li+0-edge exiting [X]. In addition, the (1-4+0-edge entering [x] is also in J, since all
(Li+i)-edges are in J by Property (b). This implies that the (1-4+2)-edge exiting [X] is in J,
so the (Li+2)-edge entering [x] is in J, and so on.

Proof of (d). Suppose that [x] is not in J. Then there is some edge ([Y], [Z]) on the
path from [R] to [X] such that [Y] is in J, and [z] is not in J. Property (c) implies that all
edges incident to [Y] are in J, so [z] must also be in J, a contradiction.

Proposition 2.1 H is a Hamiltonian cycle in B*.

PROOF. Every incoming node is in H since J includes every edge in D by Lemma
2.2. If an incoming node, say Wa, appears in H then H traverses the necklace containing
wa until it encounters an outgoing node. Thus, by Lemma 2.1, every node in B* is in H.
In addition, H is a cycle since a node does not reappear until all other necklace paths from
incoming to outgoing nodes have been traversed. Consequently, H is Hamiltonian.

2.4 Implementation

In this section we describe the network-level implementation of the FFC algorithm
and analyze its complexity in terms of the number of communication steps needed to
compute H. We assume that each node can communicate with all of its successors in one
time step, i.e., multi-port communication. (If single-port communication is used, the time
complexity increases by at most a factor of d.) The computation is complete when each
node in B* has computed its successor in H.

We assume that the nonfaulty nodes in faulty necklaces do not participate in the
computation. Each node can determine if its necklace is faulty by attempting to pass a
message around the necklace. If a node does not receive its own message in n or fewer
steps the necklace is assumed to be faulty. This process can be carried out simultaneously
by each node, so only n steps are required to identify the nodes in B*.

Step 1.1 Find a spanning tree T' of B*.

Select a distinguished node R in B* such that N(R) = [R]. Let T' denote the spanning
tree of B* corresponding to the propagation pattern of a message M broadcast from R. In
the first step of the broadcast, R sends M to all of its successors. During the next step, the

14

successors pass M along to their successors, and so on. The parent of a node X in T' is
the predecessor from which X first receives M. In the case of a tie, the minimal
predecessor is chosen to be the parent. Note that the nodes wa and Wf3 have a common
parent in T' (assuming neither is R). This is because they have a common set of
predecessors in B*, and hence receive M at the same time.

The number of steps required by the broadcast is equal to the maximum distance from
the root R to any node in B* (the eccentricity of R). The eccentricity of R is bounded by
the diameter of B* which we will denote by K.

Step 1.2 Use T' to find a spanning tree T of N*.

A spanning tree T of N* rooted at [R] can be readily obtained from T'. For each
necklace [x] choose a node Y in [x] such no other node in [X] received M prior to Y.
Then let the parent of [X] in T be the necklace, say [4, containing the parent (in T') of Y.
If Y = wa then the parent of Y in T' is 13w, for some 13 E Zd. The edge ([z], [x]) is
labeled W.

The tree Tw consisting of all w-edges in T has height one. To see this, let [x] and [Y]
be the children in two edges labeled w. Then nodes wa and w13 received M first on [x]
and [Y] respectively, for some a,13 E Zd. Since wa and wi3 have a common parent in T',
[x] and [Y] also have a common parent in T.

The processing in this step is carried out at the necklace level, i.e., nodes
communicate with nodes in the same necklace. The maximum length of a necklace is n,
so 0(n) steps are needed. At the end of this step (every node in) each necklace [X] knows
its incident edges in T. We can also assume that for each W -edge { [x], [Y] }, [x] knows
the identity of the node aw in [Y].

Step 2. Compute the edges in D.

Each necklace in Tw can determine the identity of the other necklaces in Tw in 0(n)
steps. Let S = { a I aw is in a necklace in Tw }. The nodes in { aw la E S } can inform
all of the nodes in { Wa I a E S } of the necklace that contains them in one step. The
information can then be passed around the necklaces in at most n steps. The necklaces in
Tw can be ordered according to their representative, i.e., [X] > [Y] if x > Y. Then, for
each [x] in Tw, there is a w-edge from [X] to [Y] in D where [Y] is the next largest
necklace in Tw. For example, the necklaces in T01 in Figure 2.4 (a) are ordered [001],

15

[011], [012]. The cycle is closed by inserting a w-edge between the largest and smallest
necklaces.

Step 3. Compute, for each node X in B*, the successor of X in H.

After Step 3 is completed every node has sufficient information to determine if it is an
outgoing node and, if so, which of its successors in B* is located in necklace [Y] where
([x], [Y]) is a w-edge in D.

The total number of steps required to compute H is therefore 0(K + n). The length of
H is equal to the size of B*.

2.5 Complexity Analysis

In this section we derive bounds on the length of the fault-free cycle and the amount
of time required by the FFC algorithm to find it. It was shown in the previous section that
these values correspond to the size and diameter of B* respectively.

If B(d,n) (WO, N(Ff)} is connected then B* = B(d,n) {N(F1), , N(Ff)}
and the size of B* is do NF, where NF denotes the total number of nodes in faulty
necklaces. The maximum length of a necklace is n, so NF nf.

Let P be a path in B(d,n), and let Sp denote the necklaces encountered on path P
excluding the initial and final nodes of P, i.e., Sp = {N(Z) I Z is an intermediate node in
P}. Two paths P and Q from node x to node Y are said to be necklace-disjoint if Sp n SQ
=0.

Proposition 2.2 The FFC algorithm computes a fault-free cycle of length at least
do n1 in e(n) steps in the event off d-2 node failures.

PROOF. For any two nodes X and Y we will prove the existence of a path of length
8(n) from x to Y that avoids the faulty necklaces. First, consider the d paths (Pa I a E
Zd} where Pa is

x = x ...xn --> x2...xna x3...xnaa >...-> xna...a--3 a...a.

Suppose that N(A) = N(B) for nodes A and B in Pa and Po respectively, a 0. Let A =
Xs... Xna... a and B = Xt... xn13... for some 2 5 s,t 5 n. Without loss of generality
assume that s t. Then

wta(A) = wta(xs...xt..1) + wtdxt...xn_i) + s-1, and

http:wta(xs...xt

16

wta(B) = wta(xt... xn.-1)

must be equal since A and B are in the same necklace. However, this implies that
wta(xt...xn_i) + s = 0; a contradiction because s ?. 2. Thus, the paths are necklace-
disjoint, guaranteeing that at least one path, say Pa, is fault-free in the event of d-2
faults.

Now consider the d-1 paths {Qi I 1 i d-1} from a...a to Y where Qi is the path

a... a> a... ot(a+i) > a... ot(a+i)y > . -4 (a+i)y yn_ 1 y yn = Y

and (a+i) is reduced modulo d. Suppose that N(u) = N(v) for nodes U and V in Qi and
Qj respectively, i # j. Let U = a... a(a+i)yi...ys and v = a... a(a+j)yi...yt, for some 0

s,t n-1. Without loss of generality assume that s t. Then

wta(u) = (n s 1) + wta(yi...ys) and

wta(V) = (n t 1) + wto(Y Ys) + wta(Ys+1 Yt),

must be equal. So, wta(Ys+1. .Yt) = ts, i.e., Ys+1. .Yt = a... a. In addition,

wt(U) = oc(n s 1) + wt(yi...ys) + (a+i) and

wt(V) = a(n t 1) + wt(yi...ys) + ot(t s) + (a+j)

must also be equal. This contradicts the assumption that i j, so Qi and Qj are necklace-
disjoint.

A fault-free path can therefore be found between X and Y by combining a fault-free
path Pa of length n from X to a... a, with a fault-free path Qi of length n+1 from a... a
to Y. It is actually not necessary to route through a... a because there is an edge from
xna... a to a... a(a +i) in B(d,n). Hence, the total length of the path from X to Y is at
most 2n. Thus, when f < d-1, the size of B* is at least do nf and the diameter of B* is
at most 2n.

The length of the cycle found by the FFC algorithm is optimal in a worst case
analysis. In other words, for some distributions of f d-2 faults, no fault-free cycle
longer than dnnf exists. The line graph property of De Bruijn graphs can be used to
verify this assertion.

A line graph L(G) of a directed graph G is a graph whose nodes correspond to edges
in G. There is an edge from node (a,b) to node (c,d) in L(G) if and only if (a,b) and (c,d)

111

17

are adjacent edges in G (i.e., b = c). If the edge from xi ...xn_i to x2...xn in B(d,n-1) is
labeled xi ...xn, it is easily be seen that B(d,n) is the line graph of B(d,n-1). This gives
rise to a natural correspondence between circuits in B(d,n-1) and cycles in B(d,n). For
example, the cycle (012, 122, 221, 212, 120, 201) in B(3,3) corresponds to the circuit
(01, 12, 22, 21, 12, 20, 01) in B(3,2).

Assume that the nodes F = {an-1(d -1) I 0 a f-1), f d-2, fail in B(d,n). Let C
be any cycle in B(d,n) that does not include the faulty nodes and let C' be the
corresponding circuit in B(d,n-1). Consider the graph H = B(d,n-1) C'. A necessary
and sufficient condition for a digraph to be Eulerian is that it be connected and balanced
(i.e., the indegree of each node is equal to its outdegree). The components of H are
therefore Eulerian because a balanced graph remains balanced after the removal of a
circuit. Hence, the edges in H can be partitioned into circuits that correspond to Eulerian
circuits in each component of H. This implies that the nodes in B(d,n) C can be
partitioned into cycles.

Suppose that the nodes in B(d,n) C are partitioned into m cycles D = {D1, . ,
Dm}. If cycle Di contains ki faulty nodes, then the length of Di must be at least kin. This
follows from the observations that the distance between every pair of faulty nodes is n,
and that the length of the smallest cycle containing a faulty node is also n. Every faulty
node is contained in some cycle since C avoids the faulty nodes, so the combined lengths
of all of the cycles in D is at least nf. Consequently, the number of nodes in B(d,n) C
is at least nf, and the length of C is at most do nf.

In the best case scenario it is possible to find a cycle that includes all of the nonfaulty
nodes. This follows from the fact that the De Bruijn graph is pancyclic, i.e., it contains a
cycle of length t for any 1 t do [Lem71]. Thus, if the faults are favorably distributed,
a fault-free cycle of length dnf exists for 0 5. f dn-1.

2.5.1 Binary De Bruijn Graphs

The binary De Bruijn graph may be disconnected in the event of a single faulty
necklace. However, at most one node can be isolated in this case.

Proposition 2.3 The FFC algorithm computes a fault-free cycle of length at least
211 (n + 1) in 9(n) steps in the binary De Bruijn graph B(2,n) in the event of a single
node failure.

18

PROOF. We will show that B(2,n) has a component with at least 2n(n+1) nodes and
diameter 0(n) when at most one necklace is removed.

Let x = xi ...xn be a faulty node in B(d,n), and let wt(x) = k. Let y = yi...yn and z =
zi ...zn be nodes in B(d,n) N(x), and suppose that both wt(y) and wt(z) are greater than
k. Then it is always possible to find a path of length at most 2n from y to z of the form

Y--> Y2.-Yn-11 "4 Y3..yn_111 > 3 1...1 > 1...1z1 1...1z1z2-4 ... z

in which every node has weight greater than k. Conversely, if both wt(y) and wt(z) are
less than k then there is a path of length at most n from y to z in which every node has
weight less than k. It follows that if wt(x) = 0 (or n) then the 2n 1 nodes of weight > 0
(or < n) form a connected subgraph of diameter 0(n). Similarly, if wt(x) = 1 (or n-1) the
2n n 1 nodes of weight >1 (or < n-1) form a connected subgraph of diameter 0(n).

Now suppose that 2 5 k 5 n-2, and let Wi = { y I wt(y) < k } and W2 = { y I wt(y) >
k }. We will show that B(d,n) N(x) is connected. Let u be an arbitrary node of weight k
such that N(u) # N(x). Node u contains at least one 1 and one 0, so there are edges
connecting nodes in N(u) and nodes of weight kt 1. Thus, each N(u) # N(x) forms a
bridge between W1 and W2. We can always find at least one N(u) # N(x) because
N(0...01k) # N(0...0101k-1) for n k+2. It follows that, in this case, B(d,n) N(x) is
connected, contains at least 2nn nodes, and has diameter 0(n).

2.5.2 Simulation Results

For an arbitrary number of faults it is difficult to give precise bounds on the size and
diameter of the faulty graph. However, based on the results of simulations, it seems that
a fault-free cycle can often be found efficiently even when the number of faults greatly
exceeds the bounds of Propositions 2.2 and 2.3. The simulations were carried out by
selecting a fixed source node R and, for each simulation, generating a set of f randomly
distributed faults. The necklaces containing the faulty nodes were then removed from the
graph, and the size of the component containing R and the eccentricity of R within the
component was calculated. (If R was in a faulty necklace, a neighboring node was used
instead.) These values correspond to the length of the fault-free cycle and the number of
steps required to form the spanning tree in Step 1.1 respectively.

19

The results of the simulations for 1024-node De Bruijn graphs B(2,10) and B(4,5)
are summarized in Tables 2.1 and 2.2. As can be seen from the tables, the fault-free cycle
has length approximately dn f n even when f is quite large. In fact, the average length
of the cycle begins to noticeably exceed do nf as f increases. This behavior can be
attributed the fact that the probability of a faulty necklace containing multiple faulty nodes
increases with the number of faults. The simulation results also suggest that B(d,n) does
not become severely fragmented even when a large number of necklaces are removed.

20

II f Avg. Size if Max. Size II Min. Size II do -nf II Avg. Ecc. Max. Ecc. Min. Ecc. 11

0 1024.00 1024 1024 1024 10.00 10 10
1 1014.13 1019 1013 1014 10.30 12 10
2 1004.48 1014 1003 1004 10.76 14 10
3 994.66 1004 993 994 11.10 13 10
4 985.03 994 982 984 11.40 14 10
5 975.79 994 972 974 11.65 14 10
6 966.35 984 963 964 11.95 14 11
7 956.61 974 952 954 12.28 15 11
8 948.41 978 942 944 12.45 15 11
9 938.02 969 933 934 12.68 17 11
10 928.97 949 922 924 12.81 16 11
20 843.14 873 822 824 14.59 19 12
30 762.55 833 723 724 16.50 21 14
40 686.16 744 11 624 18.48 26 10
50 622.75 679 565 524 20.28 26 16

Table 2.1. Size of the component containing node R = 0000000001 and the eccentricity
of R in B(2,10) with f randomly distributed faulty necklaces.

11 If if Avg. Size II Max. Size if Min. Size diunf 11 Avg. Ecc. II Max. Ecc. if Min. Ecc.
0 1024.00 1024 1024 1024 5.00 5 5
1 1019.00 1019 1019 1019 5.72 6 5
2 1014.07 1019 1014 1014 5.96 6 5
3 1009.24 1014 1009 1009 5.99 6 5
4 1004.35 1009 1003 1004 5.99 6 5
5 999.33 1004 999 999 6.00 6 6
6 994.47 1002 994 994 6.01 7 6
7 989.66 994 989 989 6.01 7 6
8 984.80 994 984 984 6.01 7 6
9 979.79 989 979 979 6.03 7 6
10 975.07 984 974 974 6.08 7 6
20 928.14 949 924 924 6.41 7 6
30 882.88 902 874 874 6.82 8 6
40 840.39 864 824 824 7.15 8 6
50 798.07 828 779 774 7.38 9 7

Table 2.2. Size of the component containing node R = 00001 and the eccentricity of R in
B(4,5) with f randomly distributed faulty necklaces.

21

2.6 Remarks

Several authors have proposed sequential algorithms that construct Hamiltonian
cycles in a De Bruijn graph by linking together disjoint cycles [Hua90, Etz86, FM78,
EL84]. The goal of these efforts is to efficiently generate a subset of De Bruijn
sequences. Many, but not all, of these approaches exploit the cyclic partition of the De
Bruijn graph yielded by necklaces. The results in this chapter differ from previous work
in two important respects: we assume the presence of faulty nodes, and our
reconfiguration algorithm operates in a distributed manner at the network level.

The idea of constructing a Hamiltonian cycle in a digraph by joining smaller cycles is
discussed in a more general context in a paper by Cull which describes a class of
digraphs for which this approach is applicable [Cul80]. This suggests that the
reconfiguration algorithm given in this chapter can be adapted to work with other
interconnection topologies based on digraphs in this class [BP89].

22

Chapter 3

Ring Embedding With Edge Failures

One way to cope with edge failures is to assume that nodes with faulty incident edges
are themselves faulty, and then use the method described in Chapter 2 for fmding a fault-
free cycle in the presence of node failures. The drawback to this approach is that an
unnecessarily large number of nonfaulty nodes may be excluded from the cycle. One way
to overcome this problem as follows. Suppose that B(d,n) contains t edge-disjoint k-
cycles. An edge failure can affect at most one k-cycle, so a fault-free k-cycle is
guaranteed to exist in the presence of up to t-1 edge failures. Most of the effort in this
chapter is devoted to establishing the existence of disjoint Hamiltonian cycles (HCs) in
B(d,n).

This effort can be viewed as an extension of the original problem investigated by N.
G. De Bruijn [Bru46]. De Bruijn was interested in circular d-ary sequences of length dn
in which every subsequence of length n is distinct. These sequences, which are
sometimes known as De Bruijn sequences, correspond to Hamiltonian cycles in B(d,n).
Finding a set of disjoint Hamiltonian cycles in B(d,n) amounts to finding a set of De
Bruijn sequences in which every subsequence of length n+1 is distinct.

Disjoint HCs can also be beneficial in a fault-free environment. Their presence allows
computations that use ring-structured communications to spread the message traffic more
evenly across communication links.

Consider, for example, the problem of all-to-all broadcasting in which each node
sends an identical message to all other nodes in the network. A simple all-to-all
broadcasting algorithm using a ring (Hamiltonian cycle) requires every node to receive a
new message from its ring predecessor and pass the previous message to its ring
successor at each step. After N-1 steps, each node in an N-node network will have
received messages from all other nodes. If the communication time dependson the length
of the message, then the algorithm can be improved if the network contains t disjoint
HCs. In this case, each message can be divided into t parts, and each submessage

23

transmitted along a different HC. A related all-to-all broadcasting algorithm using disjoint
HCs and wormhole routing is described in [LS90].

The remainder of this chapter is organized as follows. In Section 3.1 we review the
relationship between cycles of length k in B(d,n) and d-ary sequences of period k. In
Section 3.2 we present a method of constructing large edge-disjoint cycles in B(d,n) and
apply these results to fault-tolerant embedding in Section 3.3. The results obtained in
Section 3.3 are extended to d-ary butterfly graphs in Section 3.4.

3.1 Cycles and Sequences

Throughout this section we will assume that d is a prime power pe and that A =
GF(d), where GF(d) is the Galois field of order d.

We use the circular sequence C = [co, ci, ..., ck_i] to denote the closed path of length
k in B(d,n) in which node cici+i ci+n-i is followed by node ci+ici+2 ci+n (subscripts
are reduced modulo k). For instance, [0,1,2,1,2] denotes the 5-cycle (012, 121, 212,
120, 201) in B(3,3). In this representation, ntuples correspond to nodes in B(d,n) and
(n+1)-tuples to edges. As a consequence, C is a cycle if and only if the n-tuples
{cici+1...ci+n_i 10 5 i 5 k-1} are distinct. In addition, C and D = [do, di, ..., din_i] are
edge-disjoint if and only if the sets {cici+1...ci+n I 0 5 i 5. k-1 } and { didi+1...di+n I 0 5. i
5 m-1} are disjoint. If C and D are both HCs in B(d,n) we will simply say that they are
"disjoint" rather than "edge-disjoint".

Let C be the sequence defined by the recurrence

cn+i = an-icn-i+i + + aoci, i _. 0, (3.1)
for ai E GF(d), an 0, and nonzero initial conditions. The period of C is the least k >

0 such that ci = ci+k for i 0. A sequence of period k corresponds to the k-cycle [co, ci,, ck_i] in B(d,n).

The characteristic polynomial of C is

p(x) = xn an_ixn-i ao (3.2)

If p(x) is irreducible, then the period of C is equal to the order of p(x), where the
order of p(x) is the least positive integer k such that p(x) divides 1 xk. If p(x) is
irreducible and has order dn-1 then it is said to be primitive over GF(d). A sequence with

24

a primitive characteristic polynomial corresponds to a cycle of length dn-1 in B(d,n) that
includes every node except On.

Definition: A cycle C = [co, ci, cdn-t_1] in B(d,n) is said to be a maximal cycle
if it satisfies a recurrence of the form (3.1) and its characteristic polynomial (3.2) is
primitive over GF(d).

Primitive polynomials of degree n 1 are known to exist for every finite field
[LP84].

Example 3.1 Suppose that we want to construct a cycle of length 52-1 in B(5,2).
We start with a primitive polynomial of degree 2 over GF(5), say p(x) = x2 - x - 3. The
sequence with characteristic polynomial p(x) is s2.14 = + 3si. For initial conditions so
= 0 and si = 1, the corresponding maximal cycle in B(5,2) is [0, 1, 1, 4, 2, 4, 0, 2, 2, 3,
4, 3, 0, 4, 4, 1, 3, 1,0, 3, 3, 2, 1, 2].

3.2 Disjoint Hamiltonian Cycles

An upper bound on the number of disjoint HCs is d-1 since some nodes in B(d,n)
have indegree and outdegree d-1 (excluding loop edges). In this section we give a
constructive proof that d-1 disjoint HCs exist when d is a power of two. We also show
that at least 2-k H (piei 1), 1 k, disjoint HCs exist in general when p1eip2e2...pkek
is the prime factorization of d.

We approach the problem by first considering the case when d is a prime power and
then generalize the construction to handle arbitrary values of d. We also propose a
modification of the De Bruijn graph that allows it to admit d disjoint HCs. Related work
on disjoint HCs in De Bruijn graphs is discussed in 3.2.4.

3.2.1 Disjoint HCs When d is a Prime Power

In this subsection we present a method for constructing at least (d-1)/2 disjoint
Hamiltonian cycles in B(d,n) when d = pe is a prime power. Our approach involves first
constructing d edge-disjoint cycles of length dn-1, and then modifying these cycles to
make them Hamiltonian.

25

Let

def
S + C = [S+Co, S+Ci, s+Ck-l]

for s E GF(d).

Lemma 3.1 If C is a cycle in B(d,n) then s + C is also a cycle in B(d,n).

PROOF. Assume that C is a cycle and that s + C is not a cycle. Then s + C must
contain a repeated n-tuple. Suppose that (s+ci)(s+ci+i) (s+ci+n-1) = (s+cj)(s+cj+1)...
(s+cj+n_i) This implies that cici+1 ci+n-i = cjej+1 cj+n_1, contradicting the
assumption that C is a cycle.

Let C be a maximal cycle in B(d,n) satisfying recurrence (3.1).

Lemma 3.2 For any s E GF(d), s + C = Ida ..., 44 satisfies the recurrence
dn+i = an-idn-i+i + + aodi + s(1co), i 0,

where co = ao + + an-i

PROOF. Observe that dn+i = s + cn+i = s + + + aoci. Substituting clj
s for cj yields

dn+i = an-On-1+i s)+ + ao(ci s)+ s

= an-On-1+i + + aodi s(ao + + an -1) + s

= an-idn-i+i + + aodi + s(1 co)

Lemma 3.3 The cycles in Is + C I s E GF(d)) are pairwise edge-disjoint.

PROOF. Suppose that the (n+1)-tuple vo...vn appears in both y + C and z + C, y # z.
Then

vn = an-orn-i+i + + aovo + y.(1--co), and

vn = an-ivn-i+i + + aovo + z(1co).

So, y(1co) = z(1co). This implies that (1co) = 0 since y # z. However, if this
were the case then p(1) = 0 and (x-1) would divide (3.2). But p(x) is assumed to be
primitive, and hence irreducible.

Note that every node except sn appears in s + C because every node except 011
appears in C. Node sn can be inserted into s + C by replacing any (n+1)-tuple of the

26

form asn-la by the (n+2)-tuple asna. In terms of B(d,n) this is equivalent to replacing
edge asn-let by two edges: asn and Oa (see Figure 3.1).

Figure 3.1 Edges used for inserting sn into cycle s + C.

Node sn can be inserted into cycle s + C in d-1 different ways since every node in the
set {sn-la I a # s} appears in s + C. Note that a is fixed once a is selected because, by
Lemma 3.2, a must satisfy

A
a = S*(W - ao) + aoa + s.(1 - o)) (3.3)

The cycles {x + C I x E GF(d)} partition the d(dn-1) non-loop edges of B(d,n), so
the edges asn and sna used to make s + C Hamiltonian must appear in cycles k + C and
k' + C respectively, for some k and k' not equal to s. We next derive a relationship
between k and k'. By Lemma 3.2,

s = - ao) + aoa + 101 - 0)) (3.4)

and
Aa = so) + k'(1-o)). (3.5)

Subtracting (3.4) from (3.3) yields 13 - s = s-(1 - (0) - k.(1 - o)), so
Aa = S(1 - 03) k.(1 - co) + s. (3.6)

It follows from (3.5) and (3.6) that so) + k'(1-(o) = s-(1 - o)) k-(1 co) + s, so k' = 2s
- k. This implies that, for any k s, cycle s + C can be made Hamiltonian by adding two
edges such that one edge is in k + C and the other edge is in (2s - k) + C.

Let f: GF(d) GF(d) be any function such that f(x) * x for all x.

Definition: For a given f, define Hs to be the Hamiltonian cycle obtained by
replacing asn-la with asna in s + C, where a = SO3 + f(s)(1-0)).

Lemma 3.4 H, and Hy have a common edge if and only if y E (f(x), 2x - f(x)] or
6 if(Y)) 2Y -1(y)).

27

PROOF. Assume that Hx and Hy have edge E in common. By Lemma 3, x + C and y
+ C are edge-disjoint, so E must be one of the edges used to extend x + C or y + C.
Suppose that E was used to extend x + C, i.e., E E {aXn, xnte} . Since ec = xo.) + f(x)(1
co), we know from Lemma 2 that xnec is in f(x) + C. From the above discussion, this
implies that ax" is in (2x f(x)) + C. The edges used to extend x + C and y + C are
distinct when n > 1, so E must also be in y + C. Hence, y E {f(x), 2x f(x)}. Similarly,
x E { f(y), 2y f(y) } if E was used to extend y + C. Conversely, if y E { f(x), 2x f(x) }
or x f(y), 2y f(y) } it is easily seen that Hx and Hy have a common edge.

Our task now is to choose a function f so that the set {Hs I s E GF(d)} contains a
large number of (pairwise) disjoint HCs. We will present three techniques for
accomplishing this. The methods vary according to properties of p (recall that d = pe).
We begin with a lemma designed to show that, for every prime p, at least one of our
strategies applies.

An element X of Zp is said to be a primitive root if every nonzero element of Zp can be
expressed as a power of X.

Lemma 3.5 Let p be an odd prime and let R be any primitive root of Z. At least
one of the following is true in Zp:

(a) 2 = AA and A is odd.

(b) 2 = AA + A,I3 and both A and B are odd.

PROOF. Suppose that 2 = XA and that A is even. Let T = {1, 2, ..., p-1} \ {A }, and
define a: T > T such that Xi + Xa(i) = 2. Since A is assumed to be even, T contains more
odd than even elements. Function a is one-to-one, so a must map an odd to an odd.

Condition (a) is equivalent to saying that 2 is a quadratic nonresidue of p. This
situation occurs if and only if p a ± 3 (mod 8) [Ros84, Theorem 9.4]. Consequently,
Condition (b) holds if p a ±1 (mod 8). A prime can satisfy both conditions or only one.
For instance, when p is 13 both (a) and (b) are satisfied since 7 is a primitive root of Z13,
and 2 a 711- 7 + 79 (mod 13); conversely, in Z5 only (a) is satisfied.

Strategy 1 Assume that p = 2, and let

f(x) = 0, x O.

28

(The value of f(0) is left undefined because H0 will not be included in the set of disjoint
HCs.) By Lemma 3.4, if Hx and Hy have a common edge then x E {2y, 0} or y E {2x,
0 }. However, 2 = 0 in a field of characteristic 2, so Hx and Hy have a common edge only
if x or y is zero. Hence, the d-1 HCs {Hs I s E GF(d) \ {0} } are disjoint.

Example 3.2 Let GF(22) = {0, 1, C, C2} where C is a root of x2 + x + 1 over
GF(2). In this event, 1 + = C2, 1 + C2= C, + C2= 1 and C3 = 1. To construct a cycle
C of length 42-1 in B(4,2) we can use the recurrence

c2+i = + Cci, i 0,

because x2 x C is primitive over GF(4). With initial conditions co = 0 and cl = 1 we
get

C = [0,1,142,1,044,1,C,042,
In this case, 0.) = c + 1 = C2, 1 w = and ao-1 = C-1 = C2. So, Hs is obtained by

replacing as& with ass& in s + C where & = sC2 and a = 0. Specifically, 042 is
replaced by 011C2 in 1 + C, (41 is replaced by OCC1 in C + C and 0C2C is replaced by
0C2C2C in C2 + C. All of the replacement edges are in C, so

H1 = [1,0,04,0,1,14242,042,1,C,C,C24]

1.1/4 = [,c2,V,1,V4,0,042,044,1,1,0,1]
= [2,2,c,,0,2,1,19c, 142,090,1,0]

are disjoint HCs in B(4,2). 0
Strategy 2 Assume that 2 = XA XB in Zp for some primitive root A. and odd integers
A and B. Let

={ AAx if x 0f(x)
X if x = O.

Assume that neither x nor y is zero. By Lemma 3.4, if Hx and Hy have a common edge
then either y E XAX, (2-21,A)X = ABx) or x E yi Hence, y E
x.X±B }.

Let J = {1, A, A2, ..., AP-2}. The nonzero elements of GF(d) can be partitioned into
r = (d-1)/(p-1) cosets {gi.J, g.!} where gJ = {g, gA, g2, gAP-2}. Let Ai
= {Hx I x E giJ} denote the HCs corresponding to the elements of 1 S i r.

29

If Hx E Ai has an edge in common with Hy E Ai then i = j. This is due to the fact that
x = giXm for some m. Consequently, y E {gi.Xm-±A, giXm±-13} C giJ. In addition, if m
is even (resp. odd) then both m ± A and m ± B are odd (resp. even) since A and B are
odd. Thus, Hx and Hy are disjoint if x = giX.i, y = giXk, and j and k have the same
parity. Therefore, the (p-1)/2 HCs

Li = {Hx x = k E {1,...,(p- 1)/2}}

are disjoint. The HCs in Li are disjoint to the HCs in Li, i j, because Li c Ai and Lj
N, so we can obtain r(p-1)/2 = (d--1)12 disjoint HCs by taking the union L = L1 u L2

Lr.

If (p-1)12 is even, 110 can be added to L. By Lemma 3.4, 110 has edges in common
only with fix and H-A, since f(0) = X. Note that X(P-1) /2 = 1 since XP-1 = 1. Hence, X =
(-1)X = ?JP- 1)/2 +1 is an odd power of X when (p-1)/2 is even. If gi = 1, then L does not
include any Hx where x is an odd power of X, so Ho does not conflict withany HC in L.
The addition of Ho brings the total number of disjoint HCs to (d+1)/2.

Example 3.3 Let d = 13. In Z13, 7 is a primitive root and 2 = 7 + 79. In addition
12/2 is even, so we can find 7 disjoint HCs by taking f(x) = 7x, x 0, and f(0) = 7. In
this case, Hx has an edge in common with Hy, y E {7x, 79x, 7-1x, 7-9x}. This
relationship is depicted graphically in Figure 3.2 where vertices x and y are connected if
Hx and Hy have a common edge.

Figure 3.2. Graphical representation of non-disjoint HCs in B(13,n).

In addition, Ho has an edge in common only with S7 and S_7 = S77. Thus, {Ho, H1,
H72, H74, H76, H78, H7io} are disjoint.

Strategy 3. Assume that 2 = XA in Zp for some primitive root X and odd integer A. Let

30

XA x if x * 0f(x)_
X if x = 0.

This approach is almost identical to Strategy 2, except that H., x = gi.X.m, has an
edge in common with Hy, where y E 0). As in Strategy 2, the (d-1)/2 HCs

L={H.lx = gi.x2k}, 1..1c(p-1)/2,

are disjoint. Note that Strategy 2 is superior to Strategy 3 when (p-1)/2 is even because
Ho cannot be added to L in the latter approach.

Example 3.4 Suppose that d = 5 and n = 2. Let C be the maximal cycle of length
24 in B(5,2) from Example 3.1. Since 3 is a primitive root of Z5 and 2 = 33, we can fmd
2 disjoint HCs in B(5,2) using f(x) = 3x, x * 0. Hs is obtained by replacing asa by

A Aassa in s + C, where a = so) + 2s(1o)) and a satisfies equation (3). In this example, o)
= 4 and ao-1 = 3-1= 2, so te = 4s + 2s(2) = 3s and a = 0. Since J = {3, 32 = 4, 33 = 2,
34 = 1), the HCs

H1 = [1,2,2,0,3,0.1.1.3,3, 4,0,4,1,0,0,2,4,2,1,4,4,3,2,3],

H4 = [4,0,0,3,1,3,4,1,1,2,3,2,4,3,3,0,2,0.4.4.2,2,1,0,1]

are disjoint.

The number of disjoint HCs found by the strategies presented in this section is
summarized in Proposition 3.1.

Proposition 3.1 The number of disjoint HCs in B(pe,n) is at least vi(pe) where
ip(pe) is

(i) pe 1 when p = 2,

(ii) (pe + 1)12 when (p-1)12 is even and p satisfies condition (b) of Lemma 3.5,

(pe 1)/2 in all other cases.

3.2.2 Disjoint HCs in the General Case

In this section we use the disjoint HCs of the previous section to construct disjoint
HCs in B(d,n) for any value of d. We now assume that the alphabet over which the De
Bruijn graph is defined is Zd. The cycles of the previous section can be readily mapped to
this representation using any one-to-one mapping of the elements of GF(d) to Zd.

31

Let A = [a°, ..., asn-I] be an HC in B(s,n) and let B = [b0, , btn-1] be an HC in
B(t,n). Let (A,B) denote the cycle whose i'th element is ait + bi, 0 5 i 5 (st)n-1, where
the subscripts of the ai's and bi's are reduced modulo sn and to respectively. The
following lemma is due to Rees ([Ree46], Lemma 3).

Lemma 3.6 Ifs and t are relatively prime then (A,B) is a Hamiltonian cycle in
B(st, n).

Example 3.5 A = [0,0,1,1] and B = [0,0,2,2,1,2,0,1,1] are Hamiltonian cycles in
B(2,2) and B(3,2) respectively, so

(A,B) = [0,0,5,5,1,2,3,4,1,0,3,5,2,1,5,3,1,1,3,3,2,2,4,5,0,1,4,3,0,2,5,4,2,0,4,4]

is a Hamiltonian cycle in B(6,2).

Let A and A' be HCs in B(s,n) and let B and B' be HCs in B(t,n), with s relatively
prime to t.

Lemma 3.7 (A, B) and (A, B) are disjoint i f A and A' are disjoint or if B and B'
are disjoint.

PROOF. Suppose that A and A' or B and B' are disjoint. If (A, B) and (A', B') have
a common edge then, for some i and j,

ait + bi = aj' + b'j
ai+it + bi+1 = ej+rt + b-j+1

ai+nt + bi+n = eji-n.t + b"j+n

This implies that the edge aiai+i ai+n = aj'ej+i ej+n appears in both A and A', and
the edge bibi+1...bi+n = bj'b'j+1 b-j+n appears in both B and B', contradicting the
assumption that at least one pair is disjoint.

Let d = p1etp2e2... pkek be the prime factorization of d, and let v (d) =
igpleimp2e2)...v(--pk ek), where w() is defined for prime powers in Proposition 3.1.

Proposition 3.2 There are at least vi(d) disjoint HCs in B(d,n).

PROOF. We use induction on k. When k = 1, d = pe and we can find w(pe) disjoint
HCs by definition. Suppose that k > 1, and let d' = p1elp2e2pk_1ek-1. By induction there
are Ni(d') disjoint HCs in B(d',n), say {Ai I 1 .5 i 5 tv(d-)}. There are also W(pkek)
disjoint HCs in B(pkek,n), say {Bj I 1 5 j 5 W(pkek) }. Consider the set r = {(Ai,B;) I 1 i

32

5. w(d'), 1 5 j Ni(Pkek)}. The elements of r are HCs in B(d,n) by Lemma 3.6. In
addition, if (Ai,Bj) and (Au,By) are not equal then they are disjoint by Lemma 3.7 since
either Ai and Au, or Bj and By, are disjoint. We can therefore find w(d')w(pkek) = w(d)
disjoint HCs in B(d,n).

Corollary 3.1 The number of in B(d,n) is at least

2k vr

PROOF. The proof follows directly from Propositions 3.1 and 3.2.

Corollary 3.2 The number of disjoint Hamiltonian cycles in B(d,n) is at least
tfr(d)/2k where OH is the Euler function.

PROOF. Corollary 3.2 follows from Corollary 3.1 and the fact that 4)(d) =
pe-15 pe 1.0(Ple9VP2e2)...4(Pkek) and 449 = pe

We conclude this section by listing the values of Ngd) for d = 2, ..., 38 in Table 3.1.

d 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 ,19 20

W(d) 1 1 3 2 1 3 7 4 2 5 3 7 3 2 15 9 4 9 6

d 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

iii(d) 3 5 11 7 12 7 13 9 15 2 15 31 5 9 6 12 19 9

Table 3.1. Values of w(d) for 2 5 d 5 38.

3.2.3 Hamiltonian Decompositions

A digraph is said to admit a Hamiltonian decomposition if its edge set can be
partitioned into disjoint HCs [ABS90]. This occurs if and only if every node has indegree
and outdegree d, and there exist d disjoint HCs.

It is impossible to partition the edges of B(d,n) into HCs because of the presence of
loop edges. Even in the best of circumstances only d-1 disjoint HCs exist, accounting for
dn(d-1) edges. Consequently, at least do edges do not appear in any HC. In this section,
we propose to modify B(d,n) to enable it to admit d disjoint HCs when n > 1 and d = pe
for any odd prime p. We also propose modifying the binary De Bruijn graph B(2,n) to
enable it to admit two disjoint HCs. As in B(d,n), the nodes of the modified graph

33

MB(d,n) will have indegree and outdegree d, so MB(d,n) will admit a Hamiltonian
decomposition. The modified graph retains most of the nice graph-theoretic properties of
B(d,n); in fact, the undirected version of MB(d,n) contains UB(d,n) as a subgraph.

THE CASE WHEN D IS AN ODD PRIME POWER.

Assume that d = pe for some odd prime p and let C be a maximal cycle in B(d,n). Recall
that the cycles { s + C I s E GF(d) I are pairwise edge-disjoint and that s + C includes
every node save sn.

Let ra, a, 13 E GF(d), denote the n-tuple a(3... a43 when n is even and the n-tuple
a13... a13a when n is odd. When a 0, we say that (:41, D.2) is a parallel edge (or p-
edge) in B(d,n) since there is a corresponding edge from lict to a.

Let E = (A, J) be any p-edge in cycle C, and let Es denote the p-edge ((a+s)((i+s),
(0-1-s)(a+s)) in s + C. Let Hs denote the Hamiltonian cycle obtained from s + C by
replacing Es by edges ((a+s)([3+s), sn) and (sn, (D+s)(a+s)). Note that these new edges
may not be in B(d,n). Define MB(d,n) to be the directed graph obtained by taking the
union of the edges in { Hs I S E GF(d) }

Clearly MB(d,n) admits a Hamiltonian decomposition because the new edges are
distinct when n > 1. We claim additionally that (i) every node in MB(d,n) has indegree
and outdegree d, and (ii) the undirected graph UM(B(d,n) obtained by removing the
orientation of the edges in MB(d,n) contains UB(d,n).

The first claim follows from the fact that every node appears exactly once in each of
the d disjoint HCs. To prove that UMB(d,n) contains UB(d,n), we will argue that every
pair of nodes that are adjacent in UB(d,n) are also adjacent in UMB(d,n). The only edges
replaced in the modification of B(d,n) are p-edges, so it is sufficient to prove that at most
one of each pair of p-edges is replaced, e.g., if (01, 1.9.) is replaced then (IQ, cw must be
left intact.

Suppose that both)(1y, yi)c. and (yx, y) are replaced in cycles Hs and Ht respectively
for some s and t, s t. This implies that (9c +s)(13+s) = (13+t)(a+t) = icy. So, a+s = 13 +t
= x and 13-Fs = a+t = y. Then, (a+s) + ((3 +s) = (13+t)+ (a+t) 2s = 2t, a contradiction

34

since GF(d) does not have characteristic 2. Thus, there is at least one undirected edge
between Ly and y3 in UMB(d,n)1.

THE CASE WHEN D = 2.

When d = 2 the modification is slightly different. Let C be a maximal cycle in B(2,n).
Note that C contains the edge (10n-1, On-11) because it omits node On. We first add On to
C by inserting it between 10n-1 and On-11; then remove On from 1+C. Without loss of
generality, assume that 1+C contains the p-edge (Q1, LQ). If this edge is replaced with
new edges (Q1, On), (on, 1n), and ,1n, M, then C and 1+C will form disjoint HCs.
When loops are deleted, each node has indegree and outdegree 2. As before, UMB(2,n)
contains UB(2,n) as a subgraph.

Example 3.6 Let d=2, and n=3. The maximal cycle C that satisfies the recurrence
ci+3 = ci+2 + ci, with initial conditions co = ci = 0 and Q = 1, is [0, 0, 1, 1, 1, 0, 1]. C
is extended by inserting 000 between 100 and 001. In 1+C = [1, 1, 0, 0, 0, 1, 0], node
000 is removed and the p-edge (010, 101) is replaced by new edges (010, 000), (000,
111) and (111, 101). The disjoint HCs in UMB(2,3) are shown in Figure 3.3.

000 111

001 011

Figure 3.3. Hamiltonian decomposition of UMB(2,3).

3.2.4 Related Work

We have presented a constructive proof that most De Bruijn graphs contain multiple
disjoint Hamiltonian cycles. Our results are provably optimal only when d is a power of
2, in which case we are able to find d-1 disjoint HCs in B(d,n).

'There may be two edges between Ay and xx, so UMB(d,n) is actually a multigraph.

35

Related work in this area exploits the fact that B(d,1) is the complete digraph on d
nodes with loops at each node, denoted 1(d**. In [BBR93}, Barth, Bond and Raspaud
proved that there are at least (1)(d) pairwise compatible Eulerian circuits in K. Two
circuits are said to be compatible if they do not share any pair of consecutive edges.
Compatible Eulerian circuits in 4* correspond to disjoint HCs in B(d,2) since B(d,2) is
the line graph of B(d,1). Consequently, B(d,2) admits (1)(d) disjoint HCs for any choice
of d. This approach yields d-1 disjoint HCs when d is prime.

3.3 Ring Embedding

We now apply the results of the previous section to the problem of embedding a fault-
free Hamiltonian cycle in B(d,n) in the presence of edge failures. At best, d-2 failures
can be tolerated since it is possible to render B(d,n) non-Hamiltonian by removing a set
of d-1 edges (e.g., the d-1 non-loop edges terminating at node 0...0).

Let

cp(d) p2e2 + pkek 2k

where pielp2e2...pkek is the prime factorization of d.

Proposition 3.3 There is a fault free Hamiltonian cycle in B(d,n) when f op(d).

PROOF. The proof is through induction on k. When k = 1, d is a prime power so
there exists a maximal (dn-1)-cycle C in B(d,n). The cycles { s + C I s E GF(d) } are
pairwise edge-disjoint so at least one, say s + C, is fault-free when f 5 cp(d) = d-2. As
was noted in Section 3.2.1, s + C can be made Hamiltonian by replacing any edge of the
form asn-1& by edges asn and snot, where a and tc satisfy Equation (3.3) and a s. Let
aisn, sneci I 1 5 i S d-1 } be the set of pairs of replacement edges. If n > 1 then i#j

aisn # snetj so a faulty edge affects at most one pair. Thus when f cp(d), at least one
fault-free pair of edges can be found to make s + C Hamiltonian.

Now assume that k > 1, and let s = d/pkek and t = pkek. It was shown in Section 3.2.2
that an HC (A,B) in B(d,n) can be formed from HCs A and B in B(s,n) and B(t,n)
respectively. Every edge in (A,B) corresponds to a unique pair of edges; one from A and
one from B. More precisely, edge vo... vn in (A,B) corresponds to ao... an in A and
bo...bn in B, where vi = ait + bi. Consequently, we can construct an HC in B(d,n) that
avoids vs...vn by finding HCs A and B in B(s,n) and B(t,n) respectively such that (i) A

36

does not include ao...an or (ii) B does not include bo...bn. By induction, A can avoid any
set of 9(s) edges and B can avoid any set of y(t) edges. Hence, we can construct a
Hamiltonian cycle in B(d,n) that avoids any set of 9(s) + 9(0 = cp(d) edges.

Proposition 3.3 implies that B(d,n) admits an HC in the presence of the maximum
number of edge faults when d is a prime power because cp(pe) = pe-2. Note also that cp(d)

1 when d > 2, so every non-binary De Bruijn graph admits an HC in the presence of a
single edge failure. For some values of d it is possible to tolerate a larger number of edge
faults by directly applying the results of Proposition 3.2. The two approaches are
combined in the following proposition.

Proposition 3.4 B(d,n) admits a fault free Hamiltonian cycle in the event of at
most MAX(V/(d) -1, cp(d)] edge failures.

PROOF. B(d,n) admits v(d) disjoint HCs by definition, so at least one HC is
guaranteed to be fault-free in the event of w(d) 1 edge faults. Proposition 3.3 insures
that a fault-free HC exists in the event of cp(d) edge faults.

We conclude this section by listing the values of mAx{w(d)-1, cp(d)} for d = 2, ...,
35 in Table 3.2. For most of the tabulated values, MAX{1I1(d)-1, 9(d)} = 9(d). The sole
exception occurs when d = 28.

d 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

MAXI p(d) -1, (p(d)) 0 1 2 1 5. 6 7 3 9 3 11 5 4 14 15 7

d _19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
MAXI w(d)-1, cp(d)} 17 5 6 9 21 7 23 11 25 8 27 4 29 30 10 15 8

Table 3.2. Values of mAx{v(d)-1, cp(d)} for 2 5 d 35.

3.4 Extensions to the Butterfly Graph

In this section we exploit a structural relationship between De Bruijn graphs and
butterfly graphs to obtain results on fault-tolerant ring embedding in butterflies.

37

The d-ary butterfly digraph F(d,n) has node set 4 X Z Id and edges from each node
(k, xox2...xn_1) to (k+1 (mod n), xoxi...xk_iaxk+1xn_1), for all a E Zd. It is
conventional to think of vertex (k, x) as being at level k and column x. The binary
butterfly digraph F(2,3) is depicted in Figure 3.4 (the first row is replicated to aid in
visualization).

In [ABR90] it was demonstrated that the node set of F(d,n) can be partitioned into do
subsets in such a way that when the nodes in each subset are combined into a single
node, and parallel edges are merged, the resulting graph is (isomorphic to) B(d,n).

More precisely, each node X in B(d,n) is associated with the set of butterfly nodes Sx
= { (0,X), (1, 7t-1(X)), (2, n-2(X)), ..., (n-1, n-(n-1)(x))), where ni(X) denotes the left
rotation of X by i positions (e.g., n3(1202) = ir1(1202) = 2120). Each De Bruijn edge is
consequently associated with n butterfly edges. This is formally proven in Lemma 3.8,
and illustrated in Figure 3.5.

38

(0,000) (0,100) (0,010) (0,110) (0,001) (0,101) (0,011) (0,111)

(2,000) (2,100) (2,010) (2,110) (2,001) (2,101) (2,011)

(1,000) (1,100) (1,010) (1,110) (1,001)

(0,000) (0,100) (0,010) (0,110) (0,001) (0,101) (0,011)

Figure 3.4. Butterfly digraph F(2,3).

(0,100) (0,110)4 (1,010) (1,011)
(2,001) (2,101)

III
(0,000) (0,010) 4_1. (0,101) \(01:1,11111))
(1,000) (1,001) 4-* (1,110) (1,111)
(2,000) (2,100) (2,011) El

1
(0,001) (0,011) /
(1,100) (1,101)
(2,010) }- (2,110)

Figure 3.5. Butterfly graph F(2,3) partitioned to resemble B(2,3).

39

Lemma 3.8 If there is an edge from node x to node Y in B(d,n) then there is an
edge from the level i butterfly node in Sx to the level i+1 butterfly node in Syfor i = 0,

., n-1.

PROOF. It suffices to show that tri(x) and 11-(i 4-1)(Y) differ at most in the i'th digit.
(x,Y) is an edge in B(d,n), so Y = x2...xna for some a, and it-1(Y) = ax2...xn. Since x
and 7[-1(y) differ at most in the first digit, it follows that 7c-i(x) and 7c-i(7c-1(Y)) differ at
most in the i'th digit.

Let SI = (i, ici(X)) denote the butterfly node at level i in the set corresponding to De
Bruijn node x. Note that every butterfly node can be expressed as SI for some X and i.
For any k-cycle C = (V0, ..., vk_i) in B(d,n) let

def 0 1

where t = LCM(k,n). Recall that the superscripts (butterfly levels) are reduced mod n and
the subscripts of the V's are reduced mod k.

Lemma 3.9 0(C) is a cycle in F(d, n).

PROOF. Since t = LCM(k,n), we have t-1 a n-1 (mod n) and t-1 = k-1 mod k. So,
qt--vti Then by Lemma 3.8, there is an edge from S;-11 to S,90, so (1)(C) is a
closed path in F(d,n). If 4:11(C) is not a cycle then S, = l for some 0 i < j 5 t-1. In
this case, we have j = i (mod n) and j = i (mod k) = j-i = 0 (mod n) and j-i = 0 (mod k).
So, j-i LCM(k,n), a contradiction since j-i < t.

To illustrate Lemma 3.9, consider the 4-cycle C = (110, 100, 001, 011) in B(2,3).
Since LCM(4,3) = 12, C is mapped by cto to a 12-cycle in F(2,3): ((0,110), (1,010),
(2,010), (0,011), (1,011), (2,001), (0,001), (1,101), (2,101), (0,100), (1,100),
(2,110)).

Lemma 3.10 A fault-free cycle of length LCM(k,n) exists in F(d,n) in the presence
of f faulty edges i f a fault-free cycle of length k exists in B(d,n) in the presence offfaulty
edges.

PROOF. Suppose edges {El, Ef} fail in F(d,n), where Ei denote the butterfly
edge SLiji-+S ;i1-il. Assume that it is always possible to find a cycle of length k in B(d,n)
that avoids any set of f faulty edges. If a cycle C in B(d,n) does not include edge U -+ V
then 41(C) does not include edge Sfj > SV.1 for any r. Consequently, if C is a k-cycle in

http:ax2...xn

40

B(d,n) that avoids edges {u1-4 v1, ..., Uf-+ Vf}, then 4:13(C) avoids edges {El, ..., Ed.
The length of (1)(C) is LCM(k,n) by Lemma 3.9 .

The preceding development allows the results on ring embedding in the presence of
edge faults to be extended to butterfly graphs when d and n are relatively prime. Note that
in this case cl) maps HCs in B(d,n) to HCs in F(d,n) since LCM(dn,n) = ndn.

Proposition 3.5 F(d,n) admits a fault free Hamiltonian cycle in the event of at
most mAxtvi(d)-1, cp(d)) edge failures when d and n are relatively prime.

PROOF. The proof follows from Proposition 3.4, and Lemma 3.10.

It is also a simple matter to show that (I) maps edge-disjoint cycles in B(d,n) to edge-
disjoint cycles in F(d,n). To see this, let C and D be edge-disjoint cycles in B(d,n). If
(I)(C) and (I)(D) have a common edge, say Slj>Sitil, then C and D have edge U > V in
common, contradicting the assumption that C and D are edge-disjoint.

Proposition 3.6 F(d,n) admits yf(d) disjoint Hamiltonian cycles when d and n are
relatively prime.

PROOF. The proof follows from Proposition 3.2 and the above discussion.

41

Chapter 4

Counting Necklaces

The necklace structure of De Bruijn and shuffle-exchange graphs has been studied
and exploited by several authors. The results of these investigations include:

A permutation routing scheme for the N-node shuffle-exchange graph that
requires O(logN) steps with high probability [LMR88]. In this approach, necklaces are
used as an analogue to the levels of a butterfly network.

An optimal 0(N2/log2N) area VLSI layout for the N-node shuffle-exchange
graph which involves mapping necklaces to the complex plane [Lei83]. The same
approach can be used for the De Bruijn graph [SP89].

An efficient algorithm for constructing Hamiltonian cycles in De Bruijn graphs by
joining necklaces is described in references [FM78, Ra181]. The technique is similar to
that used in Chapter 3 to construct a fault-free cycle. Related work includes an attempt to
count the number of distinct Hamiltonian cycles that can be constructed by joining
necklaces [LHC89].

In [LHC89] the authors derive a recurrence for the number of necklaces made up of
nodes of a given weight in the binary De Bruijn graph, and in [PI92] Prasad and Iyengar
compute asymptotic bounds on the number of necklaces of a given length. In this chapter
we derive exact formulae for both of these values en route to developing a general
technique for counting necklaces consisting exclusively of nodes that satisfy a wide range
of given conditions.

It should be noted that the problem of counting necklaces is not new; P.A.
Mac Mahon derived an expression for the number of d-ary necklaces more than a hundred
years ago [Mac92]. In addition, Polya's theorem provides a powerful mechanism for
counting necklaces by weight [Liu68].

42

4.1 Preliminaries

We assume that the nodes of B(d,n) correspond to n-tuples over Zd. If x is a d-ary n-
tuple, then lxi denotes the length of x, and iti(x) denotes the left rotation of X by i
positions, e.g., n2(0001) = 0100.

Note that ni+j(x) = ni(iti(x)) and, if X = wk and Iwl = t, then ICt(X) = X. An n-tuple
(or node) X is in a necklace of length t if and only if t is the smallest positive integer such
that nt(x) = X. In this case we say that the period of x is t, and write period(x) = t. If
period(x) = IXI we say that X is aperiodic.

Suppose that x is in a necklace of length t. We can write n as tq + r with 0 r < t, so
70(x) = eq+r(x) = icr(ntq(x)) = nr(x) = x. It follows that r = 0 because of the minimality
of t. Consequently, the length of any necklace in B(d,n) must divide n.

Observation. An n-tuple X is in a necklace of length t if and only if x = wnit and w
is aperiodic.

To verify this, first suppose that x is in a necklace of length t. Then nt(x) = X and
tin. We can write x as w1W2...Wnid where iwil = t for all i. Then nt(X) = W2. Wn/dW1 =

W1W2 Wn/t, SO W1 = W2 = .= Wnit = W, and x = WM. If w = zk for IA < iwi then x =
zkn/t and itizI(x) = X, which contradicts the minimality of t. Thus, w is aperiodic. Next,
suppose that X = wrilt and that w is aperiodic. If x is in a necklace of length k we must
show that t is equal to k. If d = kq + r with 0 S r < k, we have Ict(X) = nr(nkci(X)) =
ICI(X) = x. But k is minimal, so r = 0, and k divides t. We know that x = Vilk for some
z. But x is also equal to IVA and kit, so W = Ztik = zq. Since w is aperiodic, q must be
1 and hence t = k.

Our counting technique makes use of the MObius inversion which is definedas

f(n) = g(t) g(n) = f(t)1.(n/t)
tin tin

where
1 i f x = 1

11(x) = {(-1)k if x is a product of k distinct primes
0 if x has a repeated prime factor.

43

4.2 Counting Necklaces

In this section we derive a formula for the number of necklaces of length tin in a
given subgraph of B(d,n).

Specifically, let f be any function defined on Zd and let g be any function defined on
positive integers. Our goal is to count the number of necklaces in the subgraph ofB(d,n)
consisting of the nodes T(n) that satisfy f(x) = g(n), i.e.,

T(n) = fx E 4 I f(X) = g(n)}.

We assume that f and g satisfy the following conditions:

Condition A. If X and Y are in the same necklace then f(x) = g(n) = f(Y) = g(n).

Condition B. If X E r such that x = wnit and W is aperiodic, then f(x) = g(n)d
a f(w) = g(t).

Condition A insures that r(n) can be partitioned into necklaces. The importance of
Condition B will be demonstrated shortly.

Let

A(n,t) = Ix E Zicl f(x) = g(n); period(X) = t}I

denote the nodes in I(n) of period t. Since A(n,t) = 0 if t does not divide n, we have the
following identity

I #A(n,t) = #c(n)
tin

Applying the Mobius inversion yields an expression

1, #r(t)ign/t) = #A(n,n). (4.1)
tin

for the number of aperiodic nodes in r(n).

Proposition 4.1 The number of necklaces of length tin in B(d,n) containing nodes
that satisfy f(x) = g(n) is

1 2 v,I #1-0).1-1(t/j). (4.2)
jlt

44

PROOF. The desired value can be obtained by dividing #A(n,t) the number of
nodes in necklaces of length t by t. Using Equation 4.1 we can compute

#A(t,t) =1 #I-(j).11(t/j)
j It

where A(t,t) = {X E zd I f(X) = g(t); period(X) = O. We conclude the proof by showing

that #A(t,t) = #A(n,t) when tin.

If X E A(n,t) then X = VIA for some aperiodic t-tuple W. For each X E A(n,t) let the
appropriate w be denoted h(X), and let H = { h(x) I x E A(n,t)}. Clearly if x and Y are in
A(n,t) and X * Y , then h(X) * h(Y). Thus, #A(n,t) = #H. Note that f(w) = g(t) for all w
E H, since f(X) = g(n) f(h(x)) = g(t) by Condition B. Therefore, H C A(t,t). In
addition, w E A(t,t) f(wnit) = g(n), by Condition B, so A(t,t) g H. Consequently,
#A(t,t) = #H = #A(n,t).

Proposition 4.2 The total number of necklaces in B(d,n) containing nodes that
satisfy f(x) = g(n) is

1 1 #r(j)4(n/j) (4.3)
n jin

where (1) is the Euler function.

PROOF. To find the total number of necklaces we sum 1/t #A(n,t) over all t dividing
n. By Proposition 4.2 this value is

1 t I #C)1(t/j) (4.4)
tin jlt

To simplify Equation (4.4) we will use the following identities, the proofs of which
can be found in [McE87].

(i) I 1 f(j,t) = I I f(j,tj),
tin jlt jin tin/j

(ii) y got = 4(n)/n.
tin

Applying first Identity (i) and then Identity (ii) to Equation (4.4) yields

11 #r(j) I µ(t) /t = 1 I, #ra)00,1D.
jin j tin/j jin

45

4.3 Examples

In this section we illustrate the usefulness of the Propositions 4.1 and 4.2 with some
concrete examples.

Counting by Length

To determine the number of necklaces of length t in B(d,n) we can let f(X) = 0 for all
X, so that #F(m) = # {x E ZnP = dm. Then, by Proposition 4.1, the number of necklaces

of length tin in B(d,n) is
1 x-,
t 2, di11(t/j),

jlt

and, by Proposition 4.2, the total number of necklaces in B(d,n) is

n I di4(n/j)

For instance, the number of necklaces of length 6 in B(2,12) is

6 I 2i.g(6/j) = [211(6)+221.(3)+2311(2)+26(1)]
j16

1= -6 [2 - 4 - 8+64] = 9,

and the total number of necklaces in B(2,12) is

I 2j4(12rj) = [24(12)+224(6)+234(4)+244(3)+264(2)+2124(1)]
12 12

jI12

= .--2- [8 + 8 + 16 + 32 + 64 + 4096] = 352.

Counting by Weight in B(2,n)

The number of necklaces of length t in B(2,n) made up of nodes of weight k can be
counted by choosing f(x) to be wt(X) and g(m) to be (k/n)m.

The weight function clearly satisfies Property A. To verify that Property B also
holds, suppose that wt(X) = g(m) for some m-tuple x. If x = Wm't, then wt(W) =
(t/m)wt(X) = (t/m)(k/n)m = (k/n)t = g(t). Conversely, if wt(W) = g(t) then wt(X) = g(m).

The number of binary m-tuples of weight km/n is

46

#F(m) = #{X E Z2 I Wt(X) = mk/n} = Gum 3.

Thus, by Proposition 4.1, the number of necklaces of weight k and length t is

I (ilan)lt(t/i)'
jlt

and by Proposition 4.2, the total number of necklaces of weight k

ri / (jic/n).4)(111D

For instance, the number of necklaces of weight 4 and length 6 in B(2,12) is

03).1.46/j) = 6- [(2)1.41) + (1)11(2)] = [15 3] = 2,
jI6

and the total number of necklaces of weight 4 in B(2,12) is

[(142)0(1) + (26)0(2) + (31)0(4)] = [495 + 15 + 6] = 43.

Counting by Weight in B(d,n)

When d > 2 we use the same f and g; however, A(m) is different. Let cd(n,k) denote
the number of d-ary n-tuples of weight k, so that #r(m) = E Zd I wt(X) = km/n} =
cd(m,km/n).

An expression for d(n,k) can be found by observing that d(n,k) is the number of
ways to choose k out of n objects subject to the restriction that each object may be chosen
at most d-1 times. The generating function for this value is given in [Knu73] as

n(d-1)
g(z) = cd(n,k)zk = (1 + z + + zd-1)n = (i_zd)n (1_z) -n

k4

.Recalling that (1-zd)n = n) zdi and (1z)-n = i(n-!+i)zi, and equating theii=o i=o
coefficients of like powers, we get

k/d (n) inl+kdi\Ni ki/ n-1 /'
For instance, the number of necklaces of weight 4 and length 4 in B(3,4) is

http:6-[(2)1.41

47

1 x--, 1Tt L C30,j)-1.44/j) = -,--4 K3(4,4)µ41)+ c3(2,2)µ42)+ C3(1,1)44)] =
4 [19 3] = 4.

j14

Counting by Type

Nodes of a given weight in B(d,n) can be further partitioned by defining the type of a
node X to be a d-tuple K = [k0, ..., kd..1] where a appears ka times in X. For example,

n!312211 is of type [0,3,2,1]. The number of d-ary n-tuples of type K is 1

1{d -1

We can count the number of necklaces of type K in B(d,n) in much the same way that
we counted necklaces of a given weight. Let f(x) denote the type of X, and let g(m) =
[mko/n, ..., mk,14/n]. It is easy to verify that f and g satisfy Conditions A and B.

By Proposition 4.1, the number of necklaces in B(d,n) of length t and type K is
1 x-,
t 2., #1-0)-L(t/j)-

jlt

where #1T(j) - .i !

(jko/n)!... (jk,i_i/n)!

Note that when d = 2, type(x) = [n k, k] if and only if wt(x) = k. In this event,
#r(j) becomes () as expected.

48

Chapter 5

Future Work

Numerous authors have assessed the reliability of De Bruijn networks using
connectivity-based arguments. In this approach the d-ary De Bruijn network is said to be
able to tolerate at most d-2 node or edge failures because the network may be
disconnected if more failures occur. The results of this thesis indicate that the De Bruijn
network can also efficiently support algorithms requiring ring-structured communication
in the event of d-2 component failures.

In particular, it has been shown that when f 5 d-2 nodes fail, a fault-free cycle of
length at least dn nf can always be found in B(d,n). It was also shown that a fault-free
Hamiltonian cycle exists in the event of d-2 edge failures when d is a prime power. Both
results are optimal when a worst-case distribution of faults is assumed.

The results on ring embedding in the presence of edge failures are difficult to
generalize because they rely on properties of finite fields of size d. A different approach
may be required to answer the following questions:

1) Does B(d,n) admit a fault-free Hamiltonian cycle in the presence of d-2 edge
failures for all values of d?

2) Does B(d,n) admit d-1 disjoint Hamiltonian cycles?

Question 2 was answered affirmatively in Section 3.2 for the case when d is a power of
2.

Another line of inquiry is motivated by the fact that the undirected De Bruijn graph
UB(d,n) is more appropriate than B(d,n) as a model for interconnection networks with
bidirectional communication links. This raises the question of whether significantly
longer fault-free cycles can be embedded in UB(d,n) in the presence of component
failures? Of particular interest in light of the fact that the connectivity of UB(d,n) is twice
that of B(d,n) [EH85]:

49

3) Does UB(d,n) admit a fault-free cycle of length at least dn nf in the presence of
f < 2(dl) node failures? This is the undirected version of Proposition 2.2.

4) Does UB(d,n) admit a fault-free Hamiltonian cycle in the presence of 2(d-2) edge
failures? If more than 2(d-2) edges fail it is possible that a node may not have at
least two nonfaulty incident edges.

Other areas of research include determining the maximum number of disjoint
Hamiltonian cycles present in other bounded degree graphs, such as butterfly graphs and
Kautz graphs [BP89].

50

Bibliography

[ABR90] F. Annexstein, M. Baumslag, and A. L. Rosenberg, "Group action graphs
and parallel architectures," SIAM J. Computing, 19 (June 1990) pp. 544-569.

[ABS90] B. Alspach, J.-C. Bermond, and D. Sotteau, "Decomposition into cycles I:
Hamiltonian decompositions," in Cycles and Rays, G. Hahn, G Sabidussi, and R. E.
Woodrow (eds.), Kluwer Academic, 1990, pp. 9-18.

[Ann89] F. Annextein, "Fault-tolerance of hypercube-derivative networks," in Proc. 1st
ACM Symposium on Parallel Algorithms and Architectures (1989), pp. 179-188.

[AV84] M. Atallah and U. Vishkin, "Finding Euler tours in parallel," J. Systems and
Sciences, vol. 29 (1984), pp. 330-337.

[BBR93] D. Barth, J. Bond, and A. Raspaud, "Compatible Eulerian Circuits in
Kr," Technical Report 93-13, LaBri-Universite Bordeaux I.

[BCH92] J. Bruck, R. Cypher, and C.-T. Ho, "Fault-tolerant De Bruijn and shuffle
exchange networks," Proc. of the 1992 International Conference on Parallel Processing,
vol. III (1992), pp. 46-50.

[BHL+92] J-C. Bermond, P. Hell, A. L. Liestman and J. G. Peters, "Broadcasting in
bounded degree graphs," SIAM J. Discrete Math. 5 (1992), pp. 10-24.

[BP88] J-C. Bermond and C. Peyrat, "Broadcasting in de Bruijn networks," in Proc.
19-th Southeastern Conference on Combinatorics, Graph Theory and Computing, 1988.

[BP89] J-C. Bermond and C. Peyrat, "De Bruijn and Kautz networks: a competitor for
the hypercube?," in Hypercube and Distributed Computers, edited by F. Andre and J.P.
Verjus, Holland: Elsevier, 1989.

[Bru46] N. G. de Bruijn, "A combinatorial problem," Proc. Koninklijke Nederlandsche
Akademie van Wetenschappen, vol. 49 (1946) pp. 758-764.

[CL91a] M.Y. Chan and S.-J. Lee, "Distributed fault-tolerant embeddings of rings in
hypercubes," J. Parallel and Distributed Computing 11 (1991), pp. 63-71.

[CL91b] M.Y. Chan and S.-J. Lee, "On the existence of Hamiltonian circuits in faulty
hypercubes," SIAM J. Discrete Math. vol. 4 (November 1991), pp. 511-527.

51

[Cu180] P. Cull, "Tours of graphs, digraphs, and sequential machines," IEEE Trans.
Computers, vol. C-29 (January 1980), pp. 50-54.

[DF84] C. Delorme and G. Farhi, "Large graphs with given degree and diameter - Part
1," IEEE Trans. Computers, vol. C-33 (May 1984), pp. 857-860.

[DKM92] S. Dolinar, T.-M. Ko and R. McEliece, "Some VLSI decompositions of the
de Bruijn graph," Discrete Mathematics 106/107 (1992), pp. 189-198.

[DLH93] D-.Z. Du, Y-.D. Lyuu, D. F. Hsu, "Line graph iterations and connectivity
analysis of De Bruijn and Kautz graphs," IEEE Trans. Computers, vol. 42 (May 1993),
pp. 612-616.

[EH85] A.-H. Esfahanian and S. L. Hakimi, "Fault-tolerant routing in De Bruijn
communication networks," IEEE Trans. Comput., C-34 (September 1985) pp. 777-788.

[EL84] T. Etzion and A. Lempel, "Algorithms for the generation of full-length shift-
register sequences," IEEE Trans. Information Theory, vol. 30 (May 1984), pp. 480-484.

[Etz86] T. Etzion, "An algorithm for constructing m-ary de Bruijn sequences," J.
Algorithms, 7 (1986), pp. 331-340.

[FM78] H. Fredricksen and J. Maiorana, "Necklaces of beads in k colors and k-ary De
Bruijn sequences," Discrete Math., 23 (1978), pp. 207-210.

[Fre82] H. Fredricksen, "A survey of full length nonlinear shift register cycle
algorithms," SIAM Review, 24 (1982), pp. 195-221.

[Go182] S. W. Golomb, Shift Register Sequences, Laguna Hills, CA: Aegean Park
Press, 1982.

[Har69] F. Harary, Graph Theory, Reading, Mass: Addison-Wesley, 1969.

[HP89] N. Homobono and C. Peyrat, "Fault tolerant routings in De Bruijn and Kautz
networks," Discrete Applied Mathematics, vol. 24 (1989), pp. 179-186.

[Hua90] Y. Huang, "A new algorithm for the generation of binary de Bruijn sequences,"
J. Algorithms, 11 (1990), pp. 44-51.

[IS085] M. Imase, T. Soneoka and K. Okada, "Connectivity of regular directed graphs
with small diameters,' IEEE Trans. Comput., vol. C-34 (March 1985), pp. 267-273.

52

[IS086] M. Imase, T. Soneoka and K. Okada, "Fault-tolerant processor interconnection
networks," Systems and Computers in Japan, 17 (1986), pp. 21-30.

[Knu73] D. E. Knuth, The Art of Computer Programming, vol. 1: Fundamental
Algorithms, 2nd ed. Reading, MA: Addison-Wesley, 1973.

[KLM+89] R. Koch, T. Leighton, B. Maggs, S. Rao, and A. Rosenberg, "Work-
preserving emulations of fixed-connection networks," Proc. 21st ACM Symp. on Theory
of Computing (1989), pp. 227-240.

[Lei83] F. T. Leighton, Optimal Layouts for the Shuffle-Exchange Graph and Other
Networks. Cambridge, Mass.: The MIT Press, 1983.

[Lei92] F. T. Leighton, Introduction to Parallel Algoriths and Architectures: Arrays,
Trees, Hypercubes. San Mateo, CA: Morgan Kaufmann, 1992.

[Lem71] A. Lempel, "M-ary closed sequences," J. Combinatorial Theory vol. 10,
1971, pp. 253-258.

[LHC89] W. Liu, T.H. Hildebrandt, and R. Cavin III, "Hamiltonian cycles in the
shuffle-exchange network," IEEE Trans. Comput., vol. C-38 (May 1989), pp. 745-750.

[Liu68] C. L. Liu, Introduction to Combinatorial Mathematics. New York: McGraw-
Hill, 1968.

[LMR88] T. Leighton, B. Maggs, and S. Rao, "Universal packet routing," Proc. 29th
Symp. Foundations of Computer Science (1988), 256-268.

[LP84] R. Lidl and G. Pilz, Applied Abstract Algebra, New York: Springer-Verlag,
1984.

[LS90] S. Lee and K. G. Shin, "Interleaved all-to-all reliable broadcast on meshes and
hypercubes," in Proc. 1990 Int. Conf Parallel Processing, vol. 3 (1990), pp. 110-113.

[LW92] J. H. van Lint and R. M. Wilson, A Course in Combinatorics. Cambridge
University Press, 1992.

[Lyu93] Y.-D. Lyuu, "Fast fault-tolerant parallel communication for de Bruijn and digit-
exchange networks using information dispersal," Networks, Vol. 23 (1993), 365-378.

53

[LZB92] S. Latifi, S.-Q. Zheng and N. Bagherzadeh, "Optimal ring embedding in
hypercubes with faulty links," Proc. Int'l Symposium on Fault-Tolerant Computing
(1992), pp. 178-184.

[Mac92] P. A. Mac Mahon, "Applications of a theory of permutations in circular
procession to the theory of numbers," in Proc. London Mathematical Society, vol. XXII,
pp. 305-313, 1892.

[McE87] R. J. McEliece, Finite Fields for Computer Scientists and Engineers, Boston,
Mass: Kluwer Academic, 1987.

[Muk92] B. Mukherjee, "WDM-based local lightwave networks part II: multihop
systems," IEEE Network (July 1992), pp. 20-32.

[Obr91] B. Obrenic , "Embedding De Bruijn and shuffle-exchange graphs in five
pages," in Proc. 3rd ACM Symposium on Parallel Algorithms and Architectures (1991),
pp. 137-146.

[Pra81] D. K. Pradhan, "Interconnection topologies for fault-tolerant parallel and
distributed architectures," Proc. 10th Int'l. Conf Parallel Processing (1981), pp. 238-
242.

[PI92] L. Prasad and S.S. Iyengar, "An asymptotic equality for the number of necklaces
in a shuffle-exchange network," Theoretical Computer Science 102 (1992), pp. 355-365.

[PR82] D. K. Pradhan and S. M. Reddy, "A fault-tolerant communication architecture
for distributed systems," IEEE Trans. Comput., vol. C-31, pp. 863-869, September
1982.

[PV81] F. P. Preparata and J. Vuillemin, "The cube-connected cycles: a versatile
network for parallel computation," Communications of the ACM, May 1981, pp. 300-
309.

[Ra181] A. Ralston, "A new memoryless algorithm for De Bruijn sequences," J.
Algorithms, 2 (1981), pp. 50-62.

[Ra182] A. Ralston, "De Bruijn sequences a model example of the interaction of
discrete mathematics and computer science," Mathematics Magazine, vol. 55 (May
1982), pp. 131-143.

54

[RB90] R. Rowley and B. Bose, "On necklaces in shuffle-exchange and de Bruijn
networks," in Proc. 1990 Int. Conf Parallel Processing, vol.1, August 1990, pp. 347-
350.

[RB91a] R. Rowley and B. Bose, "Edge-disjoint Hamiltonian cycles in de Bruijn
networks," Proc. Sixth Distributed Memory Computing Conference, 1991, pp. 707-709.

[RB93a] R. Rowley and B. Bose, "On the Number of Arc-Disjoint Hamiltonian Circuits
in the De Bruijn Graph," Parallel Processing Letters, Special Issue on Algorithmic and
Structural Aspects of Interconnection Networks (December 1993).

[RB93b] R. Rowley and B. Bose, "A distributed algorithm for finding a fault-free cycle
in a De Bruijn network," Proc. ISCA International Conference on Parallel and Distributed
Computing and Systems (1993), pp. 263-266.

[RB93c] R. Rowley and B. Bose, "Fault-tolerant ring embedding in de Bruijn
networks," IEEE Trans. Computers, vol 42 (December 1993), pp. 1480-1486. (see also
Proc. 1991 Int. Conf. Parallel Processing, vol 1, August 1991, pp. 710-711.

[Ree46] D. Rees, "A note on a paper by I. J. Good," J. London Math. Soc., vol. 21
(1946), pp. 169-172.

[Ros84] K.H. Rosen, Elementary Number Theory and its Applications, Reading, Mass:
Addison-Wesley, 1984.

[Sch74] M. L. Schlumberger, "De Bruijn communication networks," Ph.D. dissertation,
Department of Computer Science, Stanford Univ., 1974.

[Sch92] E. J. Schwabe, "Embedding meshes of trees into deBruijn graphs," Information
Processing Letters 43 (1992), pp. 237-240.

[SP89] M. R. Samatham and D. K. Pradhan, "The De Bruijn multiprocessor network: a
versatile parallel processing and sorting network for VLSI," IEEE Trans. Comput., vol.
C-38 (April 1989), pp. 567-581.

[SP91] M. R. Samatham and D. K. Pradhan, "Corrections to the De Bruijn
multiprocessor network: a versatile parallel processing and sorting network for VLSI,"
IEEE Trans. Comput., vol. C-40 (January 1991), pp. 122-123.

[SR91a] K. Sivarajan and R. Ramaswami, "Multihop lightwave networks based on de
Bruijn graphs ," in Proc. IEEE Infocom (1991), pp. 1001-1011.

55

[SR91b] M. A. Sridhar and C. S. Raghavendra, "Fault-tolerant networks based on the
de Bruijn graph," IEEE Trans. Comput., vol. 40 (October 1991) pp. 1167-1174.

[Sut91] K. Sutner, "De Bruijn graphs and linear cellular automata," Complex Systems,
vol. 5 (1991), pp. 19-30.

[U1184] J. D. Ullman, Computational Aspects of VLSI. Rockville, MD: Computer
Science Press, 1984.

[VB81] L. G. Valiant and G. J. Brebner, "Universal schemes for parallel
communication," in Proc. 13th Symp. Theory Comp. (1981) 263-277.

[WC92] A. Wang and R. Cypher, "Fault-tolerant embeddings of rings, meshes, and tori
in hypercubes," Proc. 4th IEEE Symp. on Parallel and Distributed Computing, 20-29
(1992).

[Wo184] S. Wolfram, "Computation theory of cellular automata," Communications in
Mathematical Physics, vol. 96 (1984), pp. 15-57.

