AN ABSTRACT OF THE THESIS OF

<u>M. Jo Christensen</u> for the degree of <u>Master of Science</u> in <u>Entomology</u> presented on February 9, 1996. Title: <u>Effects of Stream Restoration on Macroinvertebrate</u> <u>Communities in an Oregon Coast Range Stream</u>.

Abstract approved:

Redacted for Privacy

N.H. Anderson

Stream-restoration projects are usually designed to improve habitat quality for fishes. These projects manipulate flow patterns, substrate distribution, and amount and placement of large woody debris. Consequently, they also affect the size and composition of the aquatic macroinvertebrate community. This research evaluates two types of fish habitat restoration: off-channel structures (alcoves) and in-channel structures (log weirs). I compared macroinvertebrate habitats and communities in natural and artificial alcoves in Upper and South Fork Lobster Creeks, Lane Co., and examined the effects of log weirs on in-channel habitat diversity, community composition, drift patterns, and fish consumption of macroinvertebrates. Macroinvertebrate samples were collected from artificial and natural alcoves using hand pumps and D-nets. Within the channel, macroinvertebrates were collected from restored and unrestored reaches with a Hess sampler and using a stratified random sampling scheme. Forty-eight hour invertebrate drift samples were obtained at outlets of log-weir pools. Stomach contents were obtained from coho salmon (*Oncorhynchus kisutch*) and cutthroat trout (*O. clarki*) in restored reaches.

Although natural alcoves differed from artificial in location within the floodplain, morphology, permanence, and degree of interaction with the stream channel, both alcovetypes provided similar habitats and contained similar macroinvertebrate communities. Average densities and diversity within the alcoves depended on habitat and time of year. Average densities were higher in artificial than in natural. Alcoves contained 29% of species richness within Upper Lobster Creek.

Within the stream channel, the diversity of macroinvertebrate habitat was lower in restored than in unrestored sections. Log weirs were associated with reduced taxonomic and functional feeding-group diversity. Composition of drift was not significantly different in restored and unrestored areas; however, drift densities were significantly lower in restored reaches. Diets of fishes in restored areas were composed primarily of organisms produced from outside restored areas. Although in-channel structures may enhance physical habitat for fishes, they may alter or reduce the availability of food for fishes feeding on drifting invertebrates.

Recommendations are given for improving the design of stream restoration projects with respect to macroinvertebrates; however stream restoration should focus on restoring whole-system integrity and function, instead of targeting just one or two types of organisms.

Effects of stream restoration on macroinvertebrate communities in an Oregon Coast Range System

by

M. Jo Christensen

A THESIS

submitted to

Oregon State University

in partial fulfillment of the requirements for the degree of

Master of Science

Presented February 9, 1996 Commencement June, 1996 Master of Science thesis of M. Jo Christensen presented on February 9, 1996

APPROVED:

Redacted for Privacy

Major Professor, representing Entomology

Redacted for Privacy

Chair of Department of Entomology

Redacted for Privacy

Dean of Graduate School

I understand that my thesis will become part of the permanent collection of Oregon State University libraries. My signature below authorizes release of my thesis to any reader upon request.

Redacted for Privacy

M. Jo Christenen, Author

ACKNOWLEDGMENTS

This research was funded by a Challenge Cost Share Grant from the Salem District of the U.S.D.I. Bureau of Land Management. I am grateful for the support of Salem District Office personnel, especially Joe Furnish, Chester Novak, Kirk Apelman, and Greg Tyler. Thanks go to the Eugene District for loans of equipment, and to Coos Bay District Fishery Biologist, Pat "fastest net in the west" Olmstead.

I am grateful for the assistance of Bill Gerth, who helped with identification of Chironomidae and to chase marajuana-growers from the study sites, and to Rene Ripley for long hours of excellent help in the field and lab. George Byers assisted with identification of Tipulidae, and David Larsen helped with identification of Dytiscidae. I have appreciated the advice of Jack Lattin, Judy and Hiram Li, and Barbara Taylor throughout the project. Thanks also to Tracey Anderson for advice and assistance with macroinvertebrate identifications, and to Jane Valencia for continual encouragement.

Special thanks are due to Norm Anderson for serving as my major professor and for his patient help throughout all phases of this project, and to Bret Christensen, who gave all of his weekends.

DEDICATION

This thesis is dedicated to Bret Christensen for giving me the courage to try.

TABLE OF CONTENTS

GENERAL INTRODUCTION
STUDY SITE4
PART I: OFF-CHANNEL STRUCTURES
Introduction7
Methods
Results14
Discussion25
Conclusions
PART II: IN-CHANNEL STRUCTURES
Introduction
Methods
Results45
Discussion55
Conclusions
PART III: GENERAL DISCUSSION AND RECOMMENDATIONS FOR MANAGEMENT
LITERATURE CITED
APPENDICES

•

LIST OF FIGURES

<u>Fi</u>	gure	<u>Page</u>
1.	Richness of stream species in Oregon	2
2.	In-channel structure (log-weir) on Upper Lobster Creek, Lane Co., OR, 1994	5
3.	Off-channel structure (artificial alcove) on Upper Lobster Creek, Lane Co., OR., 1994	6
4.	Habitat types in normal (top) and "perched" (bottom) artificial alcoves	.10
5.	Sampling alcove benthos with a hand pump	.12
6.	Sampling alcove bank habitat with a D-net	.13
7.	Natural alcove in late summer on Upper Lobster Creek, Lane Co., OR., 1994	15
8.	"Perched" artificial alcove on Upper Lobster Creek, Lane Co., OR., 1994	.17
9.	Mean temperature (+SE) in artificial and natural alcoves and adjacent stream	.19
10.	Mean levels (+SE) of dissolved oxygen in artificial and natural alcoves and adjacent stream channel	.19
11.	Mean density (+SE) of invertebrates in various habitats of artificial and natural alcoves	.20
12.	Abundance of Chironomidae compared to other taxa, by habitat, in artificial and natural alcoves	.21
13.	Community diversity in artificial and natural alcoves by season (top) and habitat (bottom)	.23
14.	Wood-created micro-habitat diversity and associated invertebrates	.36
15.	Example of in-channel structure (log weir and pool) in Upper Lobster Creek, Lane Co., OR., 1995	.37

LIST OF FIGURES, CONTINUED

16.	Example of reference (unrestored) reach on East Fork Lobster Creek, Lane Co., OR., 1995
17.	Example of restored reach on Upper Lobster Creek, Lane Co., OR., 199540
18.	Using Hess Sampler to collect benthic macroinvertebrates41
19.	Sampling macroinvertebrates from a log weir42
20.	Extraction of stomach contents from a cutthroat trout using a non-lethal flushing procedure
21.	Habitat diversity in reference and restored reaches
22.	Abundance of various functional feeding groups in reference and restored reaches
23.	Abundance and richness of major invertebrate orders in reference and restored reaches
24.	Average density (+SE) of macroinvertebrates in reference and restored reaches51
25.	Abundance (+SE) of benthic invertebrates important in drift and fish diets in reference and restored reaches
26.	Drift composition (+SE) in restored and unrestored reaches
27.	Composition of fish diets in restored reaches
28.	Example of long series of closely spaced log-weir pools63

LIST OF TABLES

TABLE	
Table 1	Page
	Alcove habitat-types: description and sampling methodology
Table 2.	Location of study alcoves and morphology of adjacent channels
Table 3.	Proportions and mean density of dominant taxa, excluding Chironomidae, in artificial and natural alcoves
Table 4.	Contributions of alcove macroinvertebrates to aquatic biodiversity in Upper Lobster Creek, Lane Co., OR., 1994

•

LIST OF APPENDICES

App. I.	Abundance by Habitat of Macroinvertebrate Taxa in Natural and Artificial Alcoves	.70
App. II.	Abundance by Habitat of Macroinvertebrate Taxa of East Fork Lobster Creek	80
App. III.	Abundance by Habitat of Macroinvertebrate Taxa of Upper Lobster Creek	.86
App. IV.	Macroinvertebrate Habitats in Restored and Unrestored Study Reaches, 1994-1995	.92
App. V.	Locations of Artificial and Natural Study Alcoves in the Upper Lobster Creek Watershed	.95
App. VI.	Locations of Restored and Reference Study Reaches in the Upper and East Fork Lobster Creek Watersheds	.97
App. VII.	Notes on the Effects of the "Flood of 1996" on Natural and Artificial Alcoves of Upper Lobster Creek	.98

Effects of Stream Restoration on Macroinvertebrate Communities in an Oregon Coast Range System

GENERAL INTRODUCTION

Fisheries habitat restoration has grown to a multi-million dollar industry in the Pacific Northwest as government agencies, private organizations and industry attempt to restore depleted spawning and rearing habitat for salmonids. When evaluations of these fishhabitat projects are conducted, they are usually based on fish or geomorphological responses (Solazzi et al. 1987, House et al. 1985, Armantrout 1989). Since these projects manipulate flow patterns, substrate distribution, and amount and placement of large roughness elements, they also may affect macroinvertebrate habitat and, consequently, the size and composition of the aquatic macroinvertebrate community. While a few workers have addressed the effects of these projects on macroinvertebrates, their investigations focused primarily on fish responses, and comparatively little time or resources were devoted to the macroinvertebrates.

The emphasis on fish responses in evaluations of restoration projects is natural because the main purpose of these projects is to enhance fish habitat. Why then should effects of fish habitat restoration on macroinvertebrates be considered? Three reasons for concern are:

1. Biodiversity One of the primary reasons that restoration projects are undertaken is to protect and restore diversity among stream fishes, but most of stream biodiversity is is to protect and restore diversity among stream fishes, but most of stream biodiversity is represented by insects. Comparatively, fish contribute little to system diversity (Fig. 1). Thus, stream projects that alter habitats may significantly affect whole-system biodiversity.

Figure 1. Richness of stream species in Oregon. Only major orders of macroinvertebrates are shown. Invertebrate numbers are estimated by J. Miller, Department of Entomology, Oregon State University. Estimates of fish numbers do not include exotics, and are estimated from Bond, 1994.

2. Ecosystem Function Macroinvertebrates constitute a major component of stream ecosystem function. They play a significant role in degradation of detritus by reducing particle sizes and preventing the accumulation of organic debris in streams (Anderson and Sedell 1979). In the aquatic food web, they are the link between plant material and the rest of the stream ecosystem, freeing stored nutrients from plants and detritus and

releasing these back to the ecosystem. Additionally, filter-feeding insects such as black flies and net-spinning caddisflies clean and clear the water column through filtration of tremendous quantities of organic particles (Wallace and Merritt 1981).

3. *Food Supply* Many terrestrial organisms depend on aquatic macroinvertebrates as their primary food source, including varieties of birds, bats, amphibians, and small mammals. Aquatic insects are also the major food source that sustains most stream fishes. Thus, restoration projects that affect macroinvertebrate diversity and abundance may have serious implications for fish survival and production.

This research seeks to address the effects of fish restoration on macroinvertebrate communities in an Oregon Coast Range stream. First, I collected baseline data on macroinvertebrate habitat and communities in artificial alcoves, a new and little-used method of off-channel stream restoration. With respect to artificial alcoves, my objectives were: (1) to evaluate macroinvertebrate habitat created by artificial alcoves, (2) to measure macroinvertebrate abundance and diversity in the alcoves and to determine the contribution of alcoves to stream biotic diversity, and (3) to compare the above parameters between artificial and natural alcoves. Second, I evaluated the effects of the most commonly-used form of fish habitat restoration, in-stream structures, on macroinvertebrate communities. With respect to in-stream structures, my objectives were: (1) to evaluate their effects on the availability and distribution of macroinvertebrate habitat, (2) to measure their effects on macroinvertebrate abundance (with emphasis on potential fish food organisms), drift abundance, taxonomic diversity and functional feeding group diversity, and (3) to evaluate the contribution of invertebrates produced in restored areas to fish diets.

3

STUDY SITE

The study was conducted during spring and fall in both 1994 and 1995 in Upper Lobster Creek and its tributaries, East Fork and South Fork Lobster Creeks. The watershed is managed by the Bureau of Land Management, and is located in the Oregon Coast Range, about 15 miles SE of Alsea, in Lane Co. The basin lies in the Tyee geological formation, which is resistant to weathering, resulting in steep topography. The basin also lies in the western hemlock (*Tsuga heterophylla* Sarg.) zone (Franklin and Dyrness 1969), but, as a result of forest management practices, is dominated by Douglasfir (*Pseudotsuga menziesii* Mirb).

Ninety-two percent of the Lobster Creek basin has been logged over the last 50 years, and riparian zones have been high-graded for western redcedar (*Thuja plicata* Don). As a result, riparian vegetation is dominated by red alder (*Alnus rubra* Nutt), with occasional big-leaf maples (*Acer macrophyllum* Pursh), western redcedars or Douglas-firs. Additional data on physical features of the study sites are given in later sections. Since 1982, Upper Lobster Cr. has been the subject of intense fish-habitat restoration. Many inchannel structures (log and boulder weirs) have been installed in the stream to trap spawning gravel and to create rearing pools for anadromous salmonids (Fig. 2). Additionally, in 1990, BLM fishery biologists constructed a series of 8 artificial alcoves in off-channel areas along Upper and South Fk. Lobster Cr. (Fig. 3). The alcoves were designed to provide winter rearing habitat for coho salmon (*Oncorhynchus kisutch*). Inchannel structures also were installed in E. Fk. Lobster Cr. in 1981 (House et al. 1986), but most of these structures were installed below my E. Fk. Lobster sites and, by 1994, no but most of these structures were installed below my E. Fk. Lobster sites and by 1994, no evidence of these structures remained.

Figure 2. In-channel structure (log weir) on Upper Lobster Creek, Lane Co., OR., 1994.

Figure 3. Off-channel structure (artificial alcove) on Upper Lobster Creek, Lane Co., OR., 1994.

PART I

OFF-CHANNEL STRUCTURES

INTRODUCTION

An alcove is a stream habitat-type, defined as an area of "slack water along the channel margin, separated from the main current by streambanks or large channel obstructions such that they remain quiet even at high flows" (Bisson et al. 1982). Natural alcoves are created when aggregations of large wood or beaver activity result in impoundment of water along a stream margin (Fig. 7). They may also occur when water is impounded in remnant secondary channels or alluvial fans. Historically, alcoves probably were numerous in Oregon Coast Range streams (Sedell et al. 1982) and especially in coastal valleys where streams meandered across wide floodplains.

Because alcoves are protected from all but extremely high flows, they provide important rearing and overwintering habitat for juvenile coho salmon (Nickelson, et al. 1991a). However, activities such as logging, stream-cleaning, road-building, and extirpation of beaver have eliminated much of this habitat-type in Coast Range streams. Currently, the production of wild coho in Oregon coastal streams is thought to be limited by inadequate winter habitat (Nickelson, et al. 1991b).

The recognition of the importance of off-channel habitats for coho production has resulted in several projects designed to provide or enhance these areas. There have been several evaluations of these projects based on fish responses (Bustard et al. 1975, Peterson 1985, Nickelson, et al. 1991a and 1991b), but use of these projects by other organisms, including macroinvertebrates, has not been investigated. In my research on off-channel structures, I sought to answer the following questions:

(1) how do alcoves function in the Upper Lobster Creek system?

(2) what types of habitats do alcoves provide for aquatic invertebrates?

- (3) what types of macroinvertebrates and communities live in alcoves?
- (4) how do natural and artificial alcoves differ with respect to the above?

(5) do artificial alcoves really mimic the ecological function of natural alcoves?

OFF-CHANNEL METHODS

Alcove Selection

Eight artificial and six natural alcoves were used for study; this represented all natural and artificial alcoves present along Upper and South Fork Lobster Creeks at the time of this study. During sampling periods in September, some of the natural alcoves were dry and unavailable for macroinvertebrate sampling.

Habitat Identification

Macroinvertebrate habitat-types were identified in both natural and artificial alcoves. These were the depositional area, riffle-outflow, benthos, wood, and bank (Table 1; Fig. 4). Those comprising less than 2% of the total alcove area were lumped with others. The number of habitat-types present in an alcove depended on flow level and condition of the alcove inlet.

ALCOVE	DESCRIPTION	DEDTU		
HARITAT TVDE	DESCRIPTION	.DEPIN	AKEA SAMPLED	SAMPLING METHODOLOGY
Depositional Area	Interface between moving and standing water at inlet where coarse particulate organic matter (CPOM) accumulates.	0.15-0.50 m	0.0625 m ² rectangle, randomly-selected, delineated by weighted PVC quadrat	Pumped contents of transect into bucket with hand- operated bilge pump. Filtered material through 500 micron sieve. Material was subsampled in field when volume exceeded that of sieve.
Riffle Outflow	Present in alcoves "perched" above floodplain, where water flows from alcove to stream. Shallow riffle over gravel and cobble.	0.05-0.10 m	0.250 m ² square, randomly- selected, delineated by weighted PVC quadrat	Large substrates were hand washed in D-net (0.60 mm mesh) and removed. Remainder of area was disturbed to 6 cm depth and collected in net. Material was filtered through 500 micron sieve
Benthos	Bottom of alcove	0.25-3.0 m	0.0625 m ² rectangle, randomly-selected, delineated by weighted PVC quadrat	Pumped contents of transect into bucket with hand- operated bilge pump. Filtered material through 500 micron sieve. Material was subsampled in field if volume exceeded that of sieve.
Wood	Large pieces (alder and conifer) placed in alcove. Usually covered by algae and partially buried under sediments.	0.10-3.0 m	0.05 m ² cylinder	Two 0.05 m^2 alder cylinders were conditioned for 4 months and then suspended in each alcove, in a randomly-selected location. At each sampling interval, one cylinder was removed from each alcove, scrubbed in a bucket and replaced. Bucket contents were filtered through 500 micron sieve.
Bank	Alcove edge, characterized by thick emergent macrophytes and bank vegetation (sedges) hanging in water.	0.00-0.30 m	0.15 m ² square, randomly- selected, delineated by weighted PVC pipe quadrat	D-net (0.60 mm mesh) was used to sweep area in transect. Net contents were washed in bucket and filtered through 500 micron sieve.

Table 1. Alcove habitat-types: description and sampling methodology.

.

Figure 4. Habitat-types in normal (top) and "perched" (bottom) artificial alcoves. Habitat-types shown in bold-face. Natural alcove is shown only for scale.

Macroinvertebrate Sampling

Macroinvertebrates were sampled from each habitat in all alcoves during April, July and September of 1994. Refer to Table 1 and Figs. 5-6 for details regarding sampling methods. In artificial alcoves, macroinvertebrate sampling presented a number of logistical difficulties. For example, it was difficult to sample benthos habitats in many areas of artificial alcoves, since the depth was considerably over my head. The accumulation of fine sediments in artificial alcoves was tremendous; in addition to difficulties from becoming trapped in the sediments and having to be rescued by a colleague, each time the sample quadrat was pumped, approximately 5 gallons of "sludge" were collected.

Macroinvertebrates were preserved in 95% ethanol, counted, and identified to subfamily for Chironomidae and genus when possible for other organisms. Each taxon was assigned to a functional feeding-group following Merrit and Cummins (1984) and Armitage, et al. (1995) (for chironomids). Macroinvertebrate community diversity was determined using the Shannon-Weaver Index (natural log), which incorporates taxonomic richness and evenness in a single summary statistic (Washington, 1984).

Habitat Identification

Alcove average temperature was determined at each sampling interval by averaging temperature measurements taken with a hand thermometer from several locations (alcove entrance, benthos, surface). Daily temperature fluctuations from June-September, 1995 were monitored in one artificial alcove using a Ryan Thermograph. Average alcove

11

depth was determined at each sampling interval by averaging depth measurements taken from five locations (entrance, two benthos and two edge locations). Condition of inlet was determined at each sampling interval.

Figure 5. Sampling alcove benthos habitat with hand pump. Upper Lobster Creek, Lane Co., OR., 1994.

Figure 6. Sampling alcove bank habitat with a D-net. Upper Lobster Creek, Lane Co., OR., 1994.

Day and night dissolved oxygen levels in alcoves and adjacent stream -channels were determined in mid-July using a YSI model 58 dissolved oxygen meter. Dissolved oxygen measurements were made in the middle of each alcove, at the half-way point in the water column. The dissolved oxygen meter was re-calibrated before measuring each alcove, using percent saturation of an adjacent riffle in the main channel as a standard.

OFF-CHANNEL RESULTS

Alcove morphology and function

Almost all natural alcoves were located in broad valleys, usually in the old floodplains of stream channels. They were created by fluvial and beaver activity, and were relatively shallow and small (0.10- 0.50 times the active channel width). The position of natural alcoves in relation to the stream channel insured that during periods of adequate flow, the entrance was clear of sediments and water flowed freely from the channel into the alcove. Natural alcoves maintained a dynamic surface connection to the stream channel and conditions within them were closely tied to changes in the adjacent stream. As a result, natural alcoves were also highly seasonal; during the September study-interval, approximately half of natural alcoves were dry (Fig. 7; Table 2).

In contrast, artificial alcoves were constructed in relatively narrow valleys using large equipment (back-hoes and hydraulic excavators) (Table 2). In some cases, the alcoves were situated ("perched") above the floodplain water-table, and in these cases, water flowed out of the alcove, down to the stream below (Fig. 8). All alcoves were extremely deep and large, and in many cases, built on a scale greater than the stream's ability to support them. The position of half of the artificial alcoves in relation to the stream channel resulted in the deposition of sediments at the alcove entrance, eliminating surface connection to the stream for more than 6 months out of the year. Accumulations of these

Figure 7. Natural alcove in late summer on Upper Lobster Creek, Lane Co., OR., 1994. Water levels in alcove are very low and entrance is almost dry.

Alcove	Valley	Valley	Adjacent Land	Channel Form ⁵	Alcove Form ⁶	Alcove
No.1	Width ²	Form'	Form ⁴			Constraint ⁷
1N	broad	MT	Hillslope/High Terrace	Unconstrained-braided channel	Old channel	High terrage
2N	broad	MT	Low Terrace/High Terrace	Unconstrained-single channel	Old channel	High terrace
3N	broad	MT	Low Terrace/High Terrace	Unconstrainedsingle channel	Old channel.beaver	High terrace
4N	broad	MT	High Terrace/High Terrace	Unconstrained-single channel	activity, wood jam Old channel, wood jam	Wood jam, low
5N	broad	MT	High Terrace/High Terrace	Alternating hillslope-terrace	Beaver activity, alluvial	terrace High terrace
1A	narrow	MV	Hillslope/Hillslope	Constrained by billslope	deposition	
2A	narrow	MV	Hillslope/High Terrace	Alternating hillslope-terrace	Artificial construction	Artificial berm Artificial berm
3A	narrow	MV	Hillslope/Hillslope	constrained		
4A	narrow	MV	Hillslope/Hillslope	Constrained by hillslope	Artificial construction	Artificial berm
5A	narrow	MV	High Terrace/Hillslope	Alternating hillslope/terrace	Artificial construction Artificial construction	Artificial berm Artificial berm
61	B 0 B 0 C 1	X 4 X 7	T T 11 T (T T 1 1	constrained		
7 A	narrow		Hillslope/Hillslope	Constrained by hillslope	Artificial construction	Artificial berm
7A 9A	narrow	IVI V	Hillslope/Hillslope	Constrained by hillslope	Artificial construction	Artificial berm
δA	narrow	MV	Hillslope/Hillslope	Constrained by hillslope	Artificial construction	Artificial berm

¹Refers to alcove type: N=natural alcove; A=Artificial Alcove ²Width of valley floor. Narrow < 2.5 times active channel width; broad> 2.5 times active channel width

³Configuration of valley floor. MT=multiple terraces with surfaces varying in height and distance from channel; MV=moderately V-shaped valley (side slopes >30%)

⁴Land form adjacent to active channel margin on left and right sides, looking upstream

⁵Morphology of active channel

⁶Feature forming alcove

⁷Feature maintaining/protecting alcove

Table 2. Location of study alcoves and morphology of adjacent channels. Upper and South Fork Lobster Creeks, Lane Co., OR. 1994-1995.

Figure 8. "Perched" artificial alcove on Upper Lobster Creek, Lane Co., OR., 1994. Water is flowing out of alcove, down to channel below, creating the "riffle-outflow" habitat.

sediments were highest when the adjacent log weir was placed *above* the alcove entrance instead of below. The combination of large size, depth, and presence of these sediments

buffered conditions within the alcove against changes in the adjacent channel and eliminated the alcove's capacity to flush.

In natural and artificial alcoves, several of the habitat-types were lost when water levels dropped. For example, in natural alcoves, water-levels dropped below the level of aquatic and overhanging terrestrial vegetation, eliminating the bank area as habitat for aquatic insects. In artificial alcoves, sediment deposition at the alcove entrance prevented the accumulation of detritus, eliminating depositional areas. Finally, in both alcovetypes, wood was occasionally eliminated as a macroinvertebrate habitat when beavers removed both large pieces of natural wood and the alder cylinders that were placed there for this study.

Temperature differed between the two alcove types. Because the hydrology of natural alcoves was closely linked to that of the stream channel, temperatures generally followed those of the stream. However, average temperatures were higher in September when many natural alcoves were very shallow and, in some cases, isolated from the cooler stream water. In contrast, the large size and depth of artificial alcoves resulted in relatively low water temperatures throughout the year (Fig. 9).

18

Figure 9. Mean temperature (+SE) in artificial and natural alcoves and adjacent stream. Alcove temperature based on average of measurements in several locations. Stream temperatures based on spot measurement in thalweg, upstream from alcove entrance. Upper and South Fork Lobster Creeks, Lane Co., OR, 1994-5.

In both alcove types, dissolved oxygen levels were low compared with those in adjacent stream channels. Surprisingly, during both day and night, dissolved oxygen levels were not significantly different between the two alcove types. Furthermore, among alcoves of the same type, levels of dissolved oxygen at night were not significantly different than day levels (Fig. 10).

Figure 10. Mean levels (+SE) of dissolved oxygen in artificial and natural alcoves and adjacent stream channel. Upper and South Fork Lobster Creeks, Lane Co., OR. July, 1995

Macroinvertebrate Densities

Density of macroinvertebrates varied by alcove-type and habitat, with average densities higher in artificial alcoves than in natural ones. The riffle-outfall in perched artificial alcoves had the highest densities, while wood and bank habitats in both alcove types contained the lowest (Fig. 11).

Figure 11. Mean density (+SE) of invertebrates in various habitats of artificial and natural alcoves. Upper and South Fork Lobster Creeks, Lane Co., OR. 1994. Data shown are combined from April, June, and September sampling intervals.

Community Composition and Diversity

Chironomids were the dominant taxon in all habitat-types in both kinds of alcoves (Fig. 12). After excluding chironomids, the remaining taxa varied by alcove- and habitat-type. Sphaeriid clams (*Pisidium*) were extremely numerous in all habitats of natural alcoves, while ceratopogonid flies were a dominant taxon in artificial alcove habitats (Table 3; Appendix 1).

A. Natural Alcoves

Figure 12. Abundance of Chironomidae compared to other taxa, by habitat, in artificial and natural alcoves. Upper and South Fork Lobster Creeks, Lane Co., OR., 1994. Data combine all seasons and are based on average number/m² of each taxon.

	ARTIFICIAL	%	NATURAL	%
HABITATS				
	Limnephilidae	22	Dytiscidae	3
	Ceratopogonidae	17	Ceratopogonidae	3
Benthos	Tipulidae	19	Culicidae	8
Denuios	Sphaeriidae	21	Pleuroceridae	11
	Misc.	21	Sphaeriidae	66
			Misc.	9
	MEAN DENSITY	675/m ²	MEAN DENSITY	631/m ²
	Limnephilidae	11	Sphaeriidae	24
Bank	Dytiscidae	11	Misc.	76
Dunk	Ceratopogonidae	21		
	Misc.	57		
	MEAN DENSITY	660/m ²		4004 2
·······		000/11	MEAN DENSITY	433/m ²
	Understühlten		a	
	Hydropundae Contonina	15	Ceratopogonidae	8
	Developogonidae	21	Pleuroceridae	11
Depositional Area	Psychodidae	9	Sphaeriidae	35
possional ruoa	Pleuroceridae	4	Misc.	46
	Sphaeriidae	6		
	MISC.	45		
	MEAN DENSITY	1628/m ²	MEAN DENSITY	912/m ²
	Ceratopogonidae	45	Ceratopogonidae	11
Wood	Misc.	55	Sphaeriidae	16
W 000			Misc.	73
	MEAN DENSITY	$584/m^{2}$	MEAN DENSITY	351/m ²
	Nemouridae	24		
	Uenoidae	28		
Diffle Outflee	Ceratopogonidae	4		
KITTE OUTTOW	Pleuroceridae	4		
	Sphaeriidae	6		
	Hydrachnida	3		
	Misc.	31		
<u> </u>	MEAN DENICTOR	2 276/2		
	WIEAN DENSITY	2,3/6/m²		

Table 3. Proportions and mean density of dominant taxa, excluding Chironomidae, in artificial and natural alcoves. Upper and South Fork Lobster Creeks, Lane Co., OR, 1994.

Community taxonomic diversity (Shannon-Weaver H') varied by alcove- and habitattypes, and season (Fig. 13). When all seasons were combined, forming a "comprehensive snapshot" of community diversity, artificial and natural alcoves were quite similar. In April and June, community diversity was considerably higher in artificial alcoves, but the natural alcoves were more diverse in September. Wood habitats had the lowest diversity while bank habitats had the highest. The diversity rating for bank habitats was almost identical in both alcove-types (Fig. 13).

Figure 13. Community diversity in artificial and natural alcoves by season (top) and habitat (bottom). Upper and South Fork Lobster Creeks, Lane Co., OR., 1994.

Contributions to Biotic Diversity

Alcoves contained 28 genera that were very rarely collected or were not found elsewhere in the basin (including E. Fk. Lobster Cr.) in my surveys of 1994 and 1995, nor in surveys conducted earlier by the BLM (Table 4).

Ephemeroptera	Baetidae Callibaetis	Coleoptera	Dytiscidae
Odonata	Odonata Aeshnidae		Agabus
	Aeshna		Hydaticus
	Anax		Hydrovatus
	Coenagrionidae		Hydroporus
	Argia		Liodessus
	Zonagrion		Oreodytes
	Libellulidae Libellula		Sanfilippodytes
Hemiptera	Corixidae		Uvarus
	Corisella		Hydrophilidae spp.
	Hespercorixa	Diptera	Chaoboridae
Gerridae Limnoporus		-	Chaoborus
	Nepidae Ranatra		Mochlonyx
Trichoptera	Leptoceridae Triaenodes		Culicidae
	Limnephilidae		Culex
	Asynarchus		Culiseta
	Halesochila taylori		Dixidae Meringodixa
	Limnephilius		-
•••••	Phyganeidae Ptilostomus		

Table 4. Contributions of alcove macroinvertebrates to aquatic biodiversity in Upper Lobster Creek, Lane Co., OR., 1994. Taxa listed were collected exclusively in alcoves, or found very rarely elsewhere in the basin during 1994 and 1995, nor in earlier surveys conducted by the BLM (Salem District Office, unpublished data).

OFF-CHANNEL STRUCTURES DISCUSSION

Macroinvertebrate Habitat in Alcoves

In aquatic ecosystems, the nature and diversity of available habitats subsequently influences the size and composition of macroinvertebrate communities (Minshall and Rabeni 1977, Statzner and Higler 1986). Alcoves provide diverse macroinvertebrate habitats, delineated by flow condition, depth, substrates, and proximity to vegetation. Differences among the alcoves in the quality and availability in these habitats were reflected by differences in the macroinvertebrate assemblages dwelling within them.

Natural alcoves were relatively small in size, and their position in the floodplain enabled them to maintain a dynamic connection to the adjacent stream channel. As a result, the habitats and communities within them were strongly influenced by incoming flow from the stream channel. For example, when water-levels dropped in the stream, depths also dropped in natural alcoves, and various habitats (such as the bank and depositional area) were reduced or eliminated. In late summer, many natural alcoves were dry. In contrast to the seasonal nature of natural alcoves, habitat quantity and quality in artificial alcoves seemed rarely affected because they were isolated from hydrologic changes in the stream channel.

Macroinvertebrate Community Composition

Because natural alcoves were more profoundly influenced by conditions in the stream channel, they contained greater densities of lotic-associated taxa. Only eight taxa were found exclusively in natural alcoves: *Micrasema* (Brachycentridae), *Meringodixa*
(Dixidae), Uvarus (Dytiscidae), Heterlimnius, Lara, Narpus, (Elmidae), Chrysops (Tabanidae), Antocha, Dicranota (Tipulidae). At least six of these are associated almost exclusively with lotic-erosional habitats (Merritt and Cummins, 1984).

While there were profound differences in geomorphology and hydrologic function between the natural and artificial alcoves, both provided the same habitat-*types*. The primary difference among these habitat types was seasonality. As a result, macroinvertebrate communities in natural and artificial alcoves were similar in many respects.

For example, in April, when water levels were high in natural alcoves and all habitats were present, Shannon-Weaver community diversity was almost identical between natural alcoves. In mid-summer, community diversity was reduced in both alcove-types; however, it was substantially reduced in natural alcoves because low water levels limited habitat abundance. In September, diversity remained low in artificial alcoves, but increased substantially in natural alcoves. The increase in natural alcove community diversity was due to the deposition of a large number of lotic-associated taxa there, specifically first- and second-instar fall shredders and predators(mostly Trichoptera and Plecoptera). In contrast, very few of these taxa were able to penetrate into artificial alcoves, and September community diversity in these alcoves remained low.

In both artificial and natural alcoves, wood habitats contained the lowest community diversity and second lowest macroinvertebrate densities. This may be due to the fact some of the wood cylinders used for sampling often were covered by 1.0-5.0 cm of sediment, precluding their use as habitat for many invertebrates. It is interesting

that of the taxa found on alcove wood, none is known to be wood-associated. Dudley and Anderson (1982) identified 56 taxa closely associated with wood, and 129 facultative users of wood in western streams. With the exception of chironomids, none of the taxa identified by them were commonly found on wood in alcoves. In fact, alcove wood communities more closely resembled alcove benthos communities.

Benthos communities had higher densities of chironomids than did any other habitats, with very little difference between artificial and natural alcoves in proportion of Chironomidae compared to other taxa (88 and 89%, artificial and natural respectively). This is not surprising because of the depths and fine substrates present in benthos habitats. However, of the remaining taxa in benthos areas, artificial alcoves were clearly more diverse than were natural alcoves, containing a mixture of Ceratopogonidae, Limnephilidae, Pleuroceridae (Juga) and others. In contrast, after excluding chironomids, natural alcoves were dominated almost exclusively by sphaeriid clams (Pisidium). The predominance of this clam in benthos habitats of alcoves is not surprising. Pisidium typically occurs in small ponds where water flow is negligible and substrates have low oxygen concentrations and high silt and organic content (McMahon, 1991). Additionally, unlike many macroinvertebrates, sphaeriids are able to filter-feed in deep standing water because of siphons which allow them to create feeding currents. (McMahon, 1991). As a result, they are one of the only filter feeders able to subsist in alcove benthos environments. The relative dominance of sphaeriids in natural alcoves compared with artificial alcoves may be explained by the ease with which they can colonize these habitats. Sphaeriids are often moved by water currents or transported phoretically on

other invertebrates. The small size of natural alcoves combined with their close hydraulic connection to the stream channel facilitates the deposition of *Pisidium* within them.

In both alcove types, bank habitats had among the lowest percentages of chironomids (60 and 58%, artificial and natural, respectively), and the highest number of other taxa (78). In particular, Hemipterans were particularly rich (7 taxa), as were Dixidae (3 taxa), Dytiscidae (8 taxa) and Limnephilidae (8 taxa). Additionally, banks were the only habitat whose densities of collector-filterers, shredders and predators approached or exceeded densities of collector-gatherers.

Richness of taxa and functional feeding-groups in bank habitats may be due to the fact that there were numerous microhabitat-types present within the habitat categorized as bank. These included the overhanging terrestrial vegetation, aquatic macrophytes and floating algal mats, as well as the bank-area benthos, surface film and the water column. High taxonomic and functional feeding-group richness observed in bank habitats may also be due to the fact that sampling in these included both the water column and bankbenthos. In contrast, other benthos and depositional area habitats were sampled primarily the alcove bottom.

Anderson and Wallace (1984) suggested that "the biomass and diversity of invertebrates associated with aquatic macrophytes in lentic or lotic habitats may exceed that of the fauna in the sediments at the same location." My results indicate that invertebrate diversity was higher in these macrophyte-rich habitats, and because larger aquatic invertebrates such as Anisoptera (Odonata), Dytiscidae (Coleoptera), and Hemiptera were numerous here, biomass was propbably high also. However, average densities observed in bank habitats were quite low. This was especially true in natural alcoves, where densities averaged only 400/m². Lower densities of invertebrates in bank habitats may be explained by the fact that I used a larger mesh size (0.60 mm) while sampling bank habitats than was used in other habitats (0.50 mm). Also lower densities in bank samples of natural alcoves may be explained by differences in the quality and quantity of bank habitats between the two alcove-types. In natural alcoves, reductions in water levels eliminated the connection between terrestrial vegetation and aquatic habitats, often leaving only bare soil at the alcove edges. Furthermore, bank areas in natural alcoves were often quite shallow, reducing space for microhabitat diversity. Finally, bank vegetation here was regularly thinned by beavers.

Depositional areas in both artificial and natural alcoves areas were characterized by relatively high community diversity. Chironomids accounted for a lower percentage of total density here (63 and 52%, artificial and natural, respectively) than in benthos, wood or riffle-outflow habitats. After accounting for chironomids, depositional area assemblages contained a mix of insects reflecting the transition from lotic to lentic habitats. For example, taxa typically associated with lotic habitats were common in depositional areas of both alcove-types, including a variety of Ephemeroptera, including *Attenella, Ephemerella, Serratella* (Ephemerellidae) *Cinygmula, Epeorus* (Heptageniidae), *Paraleptophlebia* (Leptophlebiidae), Plecoptera including *Sweltsa* (Chloroperlidae), *Malenka* (Nemouridae) and Perlodidae spp., and Trichoptera, including *Dicosmoecus* (Limnephilidae), *Micrasema* (Brachycentridae), *Neophylax* (Uenoidae), and *Rhyacophila* (Rhyacophilide). At the same time, lentic-associated taxa also made

up a large proportion of depositional-area taxa, including Sphaeriidae and Ceratopogonidae.

The riffle-outflow was present only in alcoves where direct connection to the stream channel had been eliminated by the formation of large sediment berms. Habitat in this area was characterized by shallow water running over relatively coarse substrates (gravel and cobble) and fairly dense macrophyte growth. As a result, macroinvertebrate communities in this habitat were a mix between lentic- and lotic-associated forms. For example, lentic Dytiscidae and Ceratopogonidae were fairly common (136 and 319/m², respectively), while lotic taxa such as *Malenka* (Nemouridae) and *Neophylax* (Uenoidae) also occured in high numbers (1742 and 2064/m², respectively). Riffle-outflows also contained the highest invertebrate densities of all alcove habitats, as well as the greatest proportions of collector-filterers, predators and generalists. High density and diversity of collector-gatherers in these areas is probably due to the range of microhabitats among the coarse substrates, which provides heterogeneous micro-sites for insect attachment and enable a variety of niches to co-exist (Ward, 1992).

In general, most alcove habitats were characterized by deep water with fine substrates, providing unsuitable conditions for many macroinvertebrate taxa and functional feeding groups. In these habitats, filter-feeding is ineffective for most insect taxa because of insufficient current, and low light and unsuitable substrates prevent algal growth necessary to support scrapers. Microbial respiration on accumulated organic sediments may create low oxygen concentrations at the sediment-water interface (Ward 1992, Pinder 1995). As a result, all alcoves habitats are dominated by one ecological guild (collector-gatherer FPOM feeders) and chironomids as the one taxon. Some chironomids are uniquely adapted to survive in conditions provided by alcoves. Their tubes allow them to live a few millimeters above anoxic sediments and allow for specialized respiration movements (Elliott 1971, Pinder 1995). Additionally, some chironomid taxa, including those in the Chironomini and Tanytarsini, possess respiratory pigments, allowing them to provide oxygen to tissues when external oxygen sources are depleted (Walshe 1947, 1948; Eriksen et al. 1984).

Dissolved Oxygen

The lack of difference in dissolved oxygen between day and night in the alcoves is surprising. Typically, water bodies with well developed aquatic plant communities exhibit reduced oxygen levels at night when photosynthesis is exceeded by community respiration (Hynes 1970, Eriksen 1984). For example, Kushlan (1979) reported diel fluctuations in dissolved oxygen saturation from 200% (midday) to 4% (midnight) in a pond. In the alcoves, it is possible that water flowing in from the channel mixes with alcove water and replenishes oxygen. However, in perched artificial alcoves (where there is no surface link to the stream channel) concentrations of dissolved oxygen also remained high at night, indicating that subsurface flow from adjacent hillsides and hyporheic flow from the floodplain also may replenish and maintain oxygen levels.

In summary, artificial and natural alcoves were most different in terms of size, degree of hydraulic connection to the stream channel, and seasonality. Natural alcoves were more strongly characterized by lotic features and correspondingly, had a greater percentage of lotic-associated taxa. Artificial alcoves were more isolated from the stream-channel. Despite substantial differences in hydrology and function, however, both provided the same habitat-types; as a result, macroinvertebrate communities between the stream-channel. Despite substantial differences in hydrology and function, however, both provided the same habitat-types; as a result, macroinvertebrate communities between the two were not substantially different.

OFF-CHANNEL STRUCTURES CONCLUSIONS

Do artificial alcoves mimic the ecological function of natural alcoves? The answer to this question, like most questions of ecology, lies in the interests and perspective of the one asking the question.

From a fisheries perspective, the primary ecological function of an alcove is to provide overwintering and rearing habitat for fish, and in particular, coho salmon. In this respect, artificial alcoves appear to closely mimic natural ones.

From a hydrologic perspective, natural alcoves are relatively small, shallow, transient features in aquatic ecosystems. They are present only at high and moderate flows, and maintain a dynamic surface connection to the stream channel. As a result, conditions in natural alcoves are closely tied to conditions in the stream channel. In contrast, the artificial alcoves of Upper Lobster Creek are extremely large, deep, permanent features, constructed in areas where alcoves would not exist naturally. In some cases they have been built on a size and scale greater than the stream's ability to support them, resulting in the elimination of both surface flow from the channel and the capacity to flush. As a result, conditions in artificial alcoves are independent of changes in the stream channel. Therefore, artificial alcoves do not mimic natural alcoves from a hydrologic standpoint.

The results of this study indicate that the macroinvertebrate communities of artificial alcoves do mimic the communities of natural alcoves in many respects. Artificial alcoves provided the same types of habitats for macroinvertebrate as do natural alcoves. These differed between the two alcove-types in size and lifespan, which resulted in differences in macroinvertebrate density and community composition. However, natural alcoves contained few taxa that were not found in artificial alcoves, and overall community diversity was almost identical between the two.

Artificial alcoves created or enhanced lentic habitats that have been eliminated from Upper and South Fork Lobster Creeks by the removal of alcove-forming elements (large wood jams and beaver) from the system. They contained organisms not found or rarely collected elsewhere in the basin. In so doing, artificial alcoves contributed substantially to biotic diversity in the Lobster Creek watershed.

PART II

IN-STREAM STRUCTURES

INTRODUCTION

Habitat for fishes in stream channels is created when large roughness elements (i.e., wood, boulders) provides physical structure that breaks up streamflow, traps sediments for spawning, and creates complex pools for rearing young fish. Likewise, large wood and boulders provide hydraulic and sediment complexity that, in turn, create a diverse assemblage of macroinvertebrate habitats (Fig. 14). Historically, stream channels in the Pacific Northwest were dominated by the presence of large woody debris (Sedell and Luchessa 1982, Sedell and Swanson 1984).

Programs of timber harvest and wood-debris removal over the last century have eliminated much in-stream structure, as well as riparian trees and snags that would provide future wood debris. Most stream restoration projects have attempted to recreate natural habitat conditions by installing in-stream, channel-spanning structures such as gabions, log and boulder weirs, log deflectors, etc. (Meehan 1991, Nickelsen et al. 1991b). The log weirs installed on Upper Lobster Creek are a typical example of these widely used structures (Fig. 15).

The use of these structures for stream habitat "improvement" is now widely accepted by land- and fisheries-management agencies in the western United States and Canada, and is an accepted management technique in the Pacific Northwest (Hall and Baker, 1982; Reeves et al. 1990). It is therefore important to evaluate the effects of these projects on non-target organisms, such as benthic macroinvertebrates. With respect to these in-stream structures, the objectives of my study were: (1) to evaluate their effects on the availability and distribution of macroinvertebrate habitat, (2) to measure their effects on macroinvertebrate abundance (with emphasis on potential fish-food organisms), drift abundance, taxonomic diversity, and functional feeding-group diversity, and (3) to measure the contribution to fish diets of invertebrates produced in these restored areas.

Figure 14. Wood-created micro-habitat diversity and associated invertebrates. From

(I-2 ORDER) VERY SMALL STREAMS

Anderson and Sedell, 1979.

(3-4 ORDER) SMALL-INTERMEDIATE STREAMS

Figure 15. Example of in-channel structure (log weir and pool) in Upper Lobster Creek, Lane Co., OR., 1995.

IN-STREAM STRUCTURES METHODS

I selected E. Fk. Lobster Cr. as a reference site because no pre-restoration macroinvertebrate data are available for Upper Lobster Cr. To evaluate the effects of restoration on macroinvertebrates, I compared post-restoration conditions in Upper Lobster Cr. to conditions in the unrestored reference, E. Fk. Lobster. Discharge, land use, proximity to roads, topography, and geological character are similar in both Upper and East Fork Lobster Creek, so any differences between the two in macroinvertebrate habitat and communities could be attributed to restoration.

Reach Selection

I conducted extensive physical inventories along the Upper and E. Fk. Lobster to locate study sections that were geomorphically analogous, based on such criteria as stream gradient, adjacent hillslope angle, active channel width, adjacent land use, proximity to roads, percent riparian canopy cover. From these sections, I randomly selected 30-meter study reaches: eight restored reaches on Upper Lobster and eight reference reaches on E. Fk. Lobster. These reaches were similar in terms of gradient (ranging from 2-3%), hillslope angle (12-25°), and canopy cover (60-85%) (Figs. 16-17).

Evaluation of Macroinvertebrate Habitat

I identified macroinvertebrate habitats in each reach according to flow condition and substrate type. Habitats identified included such areas as boulders, riffles over gravel, glides over cobble/gravel, backwater pool/depositional areas, boulders, log- weirs, and log-weir pools. For each reach, the number of different habitats and percent contributed by each habitat was calculated (Appendix 4).

Figure 16. Example of reference (unrestored) reach on East Fork Lobster Creek, Lane Co., OR, 1995.

Figure 17. Example of restored reach on Upper Lobster Creek, Lane Co., OR., 1995. Note construction of a beaver dam above log weir.

Macroinvertebrate Benthos Sampling

Macroinvertebrates were sampled in May and September, 1994, from one reach in each of the two streams. In 1995, the study was expanded and samples were collected from eight reaches in each stream. Samples were collected twice yearly, in May and September. In each reach, samples were taken from all of the macroinvertebrate habitats previously identified using a stratified random sampling scheme. I sampled benthos and boulder habitats with a 0.05 m^2 Hess sampler with 500-micron mesh (Fig. 18). For each log weir, a 0.09 m^2 area was sampled by suspending a 500 micron sieve under the water column while the scrubbing the log immediately above (Fig. 19).

Figure 18. Using Hess Sampler to collect benthic macroinvertebrates. East Fork Lobster Creek, Lane Co., OR., 1995.

Macroinvertebrates were preserved in 95% ethanol, counted and identified to subfamily (for Chironomidae) and genus when possible (other organisms). Each taxon was assigned to a functional feeding group according to information provided by Merrit and Cummins (1984) and Armitage, et al., (1995) (for chironomids). Macroinvertebrate community diversity was determined using the Shannon-Weaver Index, which incorporates abundance, taxonomic richness, and evenness in a single summary statistic (Washington, 1984).

Macroinvertebrate Drift Sampling

Drift samples were taken from four restored reaches in June, July, August, and September of 1995. Nets were placed at the outlets of log-weir pools, anchored immediately above the weir, to collect drift coming from the pools above. Placement sites across the channel were chosen randomly. When water level in September was insufficient to pour over some weirs, nets were re-positioned to collect drift flowing into "suck holes" forming above them. Forty-eight hour continuous drift samples were taken using 0.0625m² nets with 250 micron mesh. Nets were placed at depths ranging from 12-14 cm. Adequacy of flow through the nets was evaluated using dye. Net contents were emptied when necessary, approximately every 12 hours or less, depending on location and conditions.

Invertebrates and data from a 1991 study of E. Fk. Lobster Cr. drift (Steve Fieth, unpublished data) were used for comparison with 1995 Upper Lobster Cr. drift. The 1991 study had similar flow conditions and used similar methodology. Samples from the 1991 study selected for comparison with the present were randomly chosen from samples taken in habitats matching those of unrestored reaches (i.e., riffles, glides).

Fish Gut Sampling

In early July, 1995, 76 juvenile coho and 84 cutthroat trout (*Oncorhynchus clarki*) were captured from five randomly-selected restored reaches using a backpack electrofisher. Captured fish were immediately placed in a holding bucket and anaesthetized with FinquelTM. Stomach contents were obtained by a non-lethal, mouthflushing procedure and were preserved in 95% ethanol. After identification to the level of subfamily (for Chironomidae), genus when possible (for other aquatic insects), and order (for terrestrial insects), the stomach contents from all fishes were combined, dried and weighed (Fig. 20).

Figure 20. Extraction of stomach contents from a cutthroat trout using a non-lethal flushing procedure. Upper Lobster Creek, Lane Co., OR., 1995.

IN-STREAM STRUCTURES RESULTS

Macroinvertebrate Habitat

Restored and reference streams differed in terms of substrate distribution, flow conditions, and average depth. As a result, they contained different macroinvertebrate habitat assemblages. In both sampling intervals, the number of habitat types observed in restored reaches varied from two to five habitats per reach. Reaches with only two habitats had a log-weir and the pool behind it ("log-weir pool"). Other restored reaches were more complex, containing areas rich with organic deposits, and small riffles and glides. While all reaches contained log-weirs, some weirs were unavailable as macroinvertebrate habitat during periods of low flow, due to undercutting and drying around the weir.

In restored reaches, overall habitat diversity was low due to dominance of log-weir pools which accounted for about 73% of total habitat (Fig. 21). Consequently, average depths throughout the year in restored reaches remained fairly high (0.68 m, +/- 0.15 m) and substrates were homogeneous, comprised primarily of fine particles (silt and sand) under slowly moving or pooled water.

In reference reaches, the number of habitat types varied from two to five per reach. They were dominated by a heterogeneous mixture of relatively coarse substrates (gravel, cobble and rubble) and shallow, moving water (riffles, rapids and glides). Backwater pools and depositional areas were fairly uncommon, contributing only 7-8% of total habitat (Fig. 21). Average depth remained relatively shallow throughout the year (0.24 m).

Reference Reaches-E. Fk. Lobster Cr.

Restored Reaches-Upper Lobster Cr.

Figure 21. Habitat diversity in reference and restored reaches. East Fork and Upper Lobster Creeks, Lane Co., OR, May and September in 1994 and 1995.

During the fall sampling interval, reduction in water levels and corresponding changes in flow patterns reduced the number of habitat-types in both streams.

Abundance and Diversity of Functional Feeding Groups

Large differences were noted between the two streams in terms of abundance and diversity of functional feeding groups (classification of organisms based on mode of feeding). Restored reaches were dominated by collector-gatherers, which reached an average abundance of 1,782 and 1744 per m² in May and September, respectively, and made up 82% of the fauna present (Fig. 22). Of these collector-gatherers, 90-95% were chironomids in log-weir pools.

In the reference stream, mean densities of collector-gatherers reached average abundances of 1,392 and 1,284/m² in May and September, respectively, and accounted for 52-60% of total density. However, compared with restored reaches, the collector-gatherer community was more taxonomically diverse. Only 50-52% of all reference streams collector-gatherers were chironomids, while *Baetis* (Baetidae), *Paraleptophlebia* (Leptophlebiidae), and various genera of Ephemerellidae comprised most of the rest. Reference reaches also contained a greater abundance of shredders and scrapers than was found in restored reaches (Fig. 22).

Figure 22. Abundance of various functional feeding groups (+SE) in reference and restored reaches. East Fork and Upper Lobster Creeks, Lane Co., OR., 1994-1995. Values are averages for all reaches.

Richness and Taxonomic Diversity of Macroinvertebrates

The restored stream reaches contained substantially lower generic richness (85 taxa) than did the reference reaches (106 taxa). Chironomids dominated taxonomic diversity in restored reaches, while in reference reaches, richness was distributed more evenly across all genera (Fig. 23). Community diversity, as expressed by the Shannon-Weaver index (ln), was substantially lower in restored reaches (3.45 and 2.88, May and September, respectively) than in reference reaches (5.58 and 5.42, May and September, respectively).

Density of Macroinvertebrates

Abundance (average no/m²) of invertebrates was not significantly different between the two streams during either sampling period (p= 0.064 and 0.378, May and September, respectively; Fig. 24). In both reaches, there was considerable variation in densities among different habitats and among seasons (Fig. 24). In reference reaches, riffles over cobble-gravel contained the highest density, followed by glides over gravel. In restored reaches, the highest abundance was in riffles over gravel, followed by log-weir pools. Average densities on log weirs appeared to relate to the presence or absence of bark. Weirs with bark had 2-3 times more insects than weirs without bark. Average density of benthic invertebrates important in drift and fish diets (see following sections) was significantly higher in reference than in restored reaches (Fig. 25). **REFERENCE REACHES**

RESTORED REACHES

TOTAL TAXA=106

TOTAL TAXA=85

Figure 23. Abundance and richness of major invertebrate orders in reference and restored reaches. Upper and East Fork Lobster Creeks, Lane Co., OR., 1994-1995.

50

Figure 24. Average density (+SE) of macroinvertebrates in reference and restored reaches. East Fork and Upper Lobster Creeks, 1994-1995. TOP: All habitats combined. BOTTOM: Mean density by habitat. BOUL=boulder, GLCG=glide over cobble-gravel, GLGR=glide over gravel, RICG=riffle over cobble-gravel, RIGR=riffle over gravel, DEPO=depositional area, GLCO=glide over cobble, LOPO=log-weir pool, LOWE=log-weir w/o bark, LOWE-B=log-weir with bark. Habitats without SE had a sample size of 1.

Figure 25. Abundance (+SE) of benthic invertebrates important in drift and fish diets in reference and restored reaches. East Fork and Upper Lobster Creeks, Lane Co., OR., 1994-5. Values are averages for all reaches. Average densities of Ephemeroptera, Orthocladiinae (Chironomidae), Plecoptera and Other Aquatic are significantly higher in reference reaches (respectively, p=0.0002, 0.035, 0.0001 and 0.0002).

Macroinvertebrate Drift

I observed substantial differences in drift abundance between restored and reference reaches. After accounting for differences in net sizes, average number of organisms drifting per hour/m² (of water column) in reference reaches ranged from 1,023 to 17,422 and averaged 6,923 (SE 1334). Drift abundance in restored reaches ranged from 2 to 1,121 organisms/hour and averaged only 32 (SE 10.21) organisms/hour/m².

Composition of drift, however, was not substantially different between the two

streams. Ephemeroptera, Chironomidae (Orthocladiinae), and other Diptera taxa comprised approximately 75% of drift in both areas. Tanytarsini chironomids contributed less than 1% of drift in restored areas, and 9% in unrestored reaches. Proportions of terrestrial organisms and Hydracarina were significantly different between the two (Fig. 26).

Figure 26. Drift composition (+SE) in restored and unrestored reaches. East Fork and Upper Lobster Creeks, Lane Co., OR. Data from restored reaches are from 1995; unrestored data are from 1991,courtesy of S. Fieth. Percentages of Ephemeroptera, Chironomidae, Diptera, and Plecoptera are not significantly different (p=0.73, 0.489, 0.361, 0.892, respectively). Percentages of Other Aquatic, Terrestrial and Hydracarina are significantly different (p=0.023, 0.015 and 0.035, respectively).

Fish Diet Analysis

Diets of fish in restored areas were composed primarily of terrestrial invertebrates and aquatic organisms produced in habitats that are characteristic of unrestored areas (i.e., riffles and glides over coarse substrates). The composition of diet closely resembled that of drift. Orthocladiinae (Chironomidae) were most abundant followed by Ephemeroptera (*Baetis, Serratella*), terrestrial organisms (Hymenoptera, beetle larvae, mycetophilid flies), and other aquatic Diptera (primarily Dixidae: *Dixa*) (Fig. 27). By weight, Chironomids accounted for a very small proportion fish diets (1.10 mg) as opposed to terrestrial organisms and mayflies, which contributed 8.60 gr.

Figure 27. Composition by of fish diets in restored reaches. Upper Lobster Creek, Lane Co., OR. Data are from July, 1995, and are based on numerical abundance of taxa in diets of coho salmon and cutthroat trout (sample size: 589 invertebrates).

IN-CHANNEL STRUCTURES DISCUSSION

Benthic macroinvertebrate habitat is created through the interaction of stream hydraulics and substrates. The nature and diversity of available habitat subsequently influences the size and composition of macroinvertebrate communities (Minshall and Rabeni 1977, Statzner and Higler 1986). Results from my study indicate that in-channel fish habitat structures substantially reduced the abundance of macroinvertebrate habitats in Upper Lobster Creek. Although the reference stream reaches did not contain habitat that would be considered adequate from a fisheries standpoint (that is, having numerous, complex pools), a mosaic of hydraulic patterns and substrates in reference reaches created a varied assortment of macroinvertebrate habitat-types. In contrast, the placement of channel-spanning weirs in restored reaches has created large pools, but eliminated most of the hydraulic and substrate complexity important for macroinvertebrate communities.

Greater taxonomic and functional feeding-group diversity in reference reaches was likely due to diverse and abundant habitat-types and to the predominance of cobble habitats. These typically have diverse macroinvertebrate communities because cobble provides heterogeneous micro-sites for insect attachment and refuge (Ward, 1992) as well as permiting a wide variety of niches to exist. For example, organic material may fall out into the interstices between particles, providing fine particulate organic matter (FPOM) for the collector-gatherer guild; cobbles also provide relatively stable substrate, allowing algal growth for scrapers and stability for filter-feedinginvertebrates. In E. Fk. Lobster Cr., cobble habitats contained the highest macroinvertebrate densities and taxonomic diversity. Low taxonomic diversity in restored reaches was due not only to habitat simplification, but to the fact that the dominant habitat (deep pools with fine substrates) is unsuitable for many macroinvertebrate taxa and functional feeding groups. In log weirpools, filter-feeding is ineffective because of insufficient current and low light, and unsuitable substrates prevent the algal growth necessary to support scrapers. Microbial respiration in accumulated organic sediments may create 1 ow oxygen concentrations at the sediment-water interface (Ward 1992, Pinder 1995). Furthermore, the undifferentiated silt bottom provides fewer refuges from fish and invertebrate predators. As a result, log-weir pools are dominated by one ecological guild (collector-gatherer FPOM feeders), and Tanytarsini chironomids as the single taxon.

Tube-building chironomids, such as Tanytarsini, are adapted to survive in conditions provided by log-weir pools. Tubes provide refuge from predators, which accounts for heavier predation losses of free-living chironomids (Armitage et al. 1995). Tubes also allow chironomids to live a few millimeters above anoxic sediments as well as allow for specialized respiration movements (Elliott 1971, Pinder 1995); as a result, these chironomids are able to thrive in low-oxygen areas.

The data showed differences in drift patterns between reaches in restored Upper Lobster and unrestored E. Fk. Lobster. Drift abundance was significantly lower in restored areas than in unrestored areas. This difference may be due to variation in invertebrate production between 1991 and 1995. Drift abundances observed in restored reaches, however, were also substantially lower than abundances commonly reported in the literature (Mundie 1974, Allan 1978, Wilzbach et al. 1989), including two studies that used the same nets (Anderson 1966, Reed 1995).

Low drift abundances observed in restored reaches may be due to a combination of factors. First, invertebrates drifting into the log-weir pool from upstream may fall out of drift in the extensive pool; as a result, they may not reach drift nets. This explanation is consistent with the findings of Waters (1962) and Smith and Li (1983), who reported significant reductions in drift density in areas with low water velocities. Secondly, drift passing through log-weir pools could have been intercepted by fish before it reached the nets. Data from the Oregon Department of Fish and Wildlife showed high densities of fish in the log weir pools when the study was conducted (S. Johnson, pers. comm.). Finally, low drift densities recorded from log-weir pools may be because these pools are producing primarily tube-building Tanytarsini chironomids. I would argue that organisms such as Tanytarsines, that invest time and energy to build an immobile retreat, are less likely than free-living or portable tube-building forms to abandon that retreat and to enter drift. My data, showing that Tanytarsini chironomids composed a very small fraction of the total drift in both reaches (<1% and 8%, restored and reference reaches, respectively) are consistent with this argument.

Regardless of the underlying mechanism(s), low drift densities at outlets of log-weir pools restrict the supply of drift to downstream fishes, especially if another log weir exists immediately downstream with insufficient invertebrate production in between to replenish drift. This is consistant with the findings of J. and H. Li (unpublished data) of Oregon State University, who reported food limitation for fish residing in downstream sections of a series of a log weir pools. Although *abundances* of drift were lower in restored reaches than in unrestored reaches, the *composition* of the drift was similar in both streams. Drift in both streams was primarily invertebrates produced in riffles and glides over coarse substrates (cobbles), or terrestrial insects (caterpillars, beetle larvae, winged adults). Correspondingly, fishes residing in restored reaches relied heavily on invertebrates produced outside of restored areas for food. The relative abundance of terrestrial organisms in the diets of fishes in restored reaches demonstrates that riparian vegetation provides much more than shade and structure to aquatic biota.

The effects of restoration observed in this study were localized, and restricted only to that section of stream affected by the installation of a restoration structure. Furthermore, the effects of restoration assessed here relate to the creation of log-weir pools in a relatively gravel-rich stream. A similar restoration project performed on a bedrock stream would be expected to yield different results.

IN-STREAM STRUCTURES CONCLUSIONS

Habitat quantity (i.e., number of pools) and quality (amount of cover) are often considered as the primary factors limiting survival and production of fishes in Coast Range streams. However, food abundance is also a factor determining carrying capacity for fish. The supply of incoming drift-food can increase the carrying capacity of pools (Mason and Chapman 1965, Peterson 1966), and may override cover in determining fish abundance in summer months (Murphy and Meehan 1991). Results from this study indicate that in-channel restoration alters stream ecosystems in a manner that has potential implications for fish production, especially in streams where high temperature increases metabolism in fishes and, subsequently, increases their food requirements. In Upper Lobster Cr., fishes feeding in restored areas relied primarily on invertebrates produced in unrestored areas. In-channel structures eliminated the habitats that produced most drifting organisms. Log-weir pools primarily produced Tanytarsini chironomids that contributed little to drift and that may avoid epi-benthic fish predation through tubebuilding. Low drift abundance in log-weir pools, whether from the falling-out of drift, from predation, or from insufficient production of drifting organisms, restricts the supply of drift-food to downstream fish. As a result, these in-channel structures may not only affect macroinvertebrates, but the fishes that the structures were trying to help in the first place.

PART III

GENERAL DISCUSSION AND RECOMMENDATIONS FOR MANAGEMENT

The dominant habitat created by both in- and off-channel restoration is the pool, so it is interesting to note the differences in macroinvertebrate communities between them. Average macroinvertebrate density in the benthos of artificial alcoves (approx. 4,500/m²) is considerably higher than in log-weir pools (approx. 2,600/m²). This is unexpected because habitat conditions in artificial alcoves (large depths over anoxic organic sediments) appear much less favorable than the comparatively benign conditions in the benthos of log-weir pools. I speculate that higher benthic densities recorded from artificial alcoves are the result of differences in sampling efficiency between two sampling methods. The hand-pump used in alcoves created a relatively powerful suction, the while the Hess sampler used in log-weir pools used less powerful, hand-created currents to move insects and sediments through the net. Average densities of benthos invertebrates in log-weir pools are probably much higher than observed in this study.

The supposition that better habitat conditions exist for macroinvertebrates within the benthos of log-weir pools than in artificial alcoves is supported by differences between the two in community diversity and in dominant taxa. Benthic community diversity in log-weir pools is more than twice that of alcove pools. While taxa in the benthos of both pool types were dominated by Chironomidae, the dominant chironomid taxon in each was different. Tanytarsini was most numerous in the benthos of log-weir pools, whereas Chironomini (predominately *Chironomus*) was clearly dominant in artificial alcoves.

Both chironomid taxa are adapted to life in habitats with low oxygen levels, but Chironomini, particularly the genus *Chironomus*, are known to be most tolerant of severe anoxic conditions (Armitage et al. 1995).

Neither type of restoration structure effectively mimics the hydrologic function or the relative density and distribution of the natural stream features that they were intended to enhance or replace. For example, within the Lobster Cr. system, most natural pools (which log-weir pools attempt to imitate) are small, transient features, that move and change with stream hydraulics. In the unrestored E. Fk. Lobster Cr., pool habitats may be numerous within a reach but are relatively small and rarely span the channel. In contrast, log-weir pools are large, created by permanently-anchored structures that limit hydrological complexity and simplify stream habitats where they are installed. Likewise, artificial alcoves are large, permanent structures. They are installed in narrow valleys where alcoves would normally not exist and are thus removed from the hydrologic inputs of the floodplain water table and the stream channel. In contrast, natural alcoves are small, dynamic features which change with stream hydraulics, and are located exclusively in areas where floodplain water tables and streamflow provide hydrologic inputs.

Macroinvertebrate habitats and communities are affected very differently by the two types of fish-habitat structures. Artificial alcoves increase macroinvertebrate habitat diversity within a reach because they are constructed in off-channel areas and create habitats that are absent from or were not originally present in the reach. Conversely, in the reaches where log weirs are installed, the log-weir pools eliminate existing habitats, which decreases macroinvertebrate habitat and community diversity, as well as reduces production of drifting organisms and the abundance of drift.
It is important to note that the effects of in-channel structures on macroinvertebrate habitat and communities observed in this study are restricted to the reaches where those structures are installed. Log-weir pools in Upper Lobster Cr., while large in scale, are found in low numbers, are well-spaced, and have not substantially affected macroinvertebrate habitat or communities on a drainage level. However, when in-stream structures are installed close together in large scale projects (Fig. 28), they have the potential not only to affect macroinvertebrate communities, but the survival of the fish who rely on those macroinvertebrates for food.

The ultimate effect of fish habitat restoration on macroinvertebrate communities depends on the initial condition of the stream (i.e., bedrock-dominated vs. gravel-rich), and on the scale (size of structures), and intensity (number of structures) with which these projects are applied. Furthermore, while structures such as artificial alcoves increase macroinvertebrate habitat and community diversity where they were constructed, I question the wisdom of installing off-channel structures in narrow valleys where such habitats probably never existed naturally and where the adjacent stream channels cannot support them. Thus, if stream restoration is to be successful, installed structures should closely imitate the hydrologic function, density and distribution across the landscape of the habitats that they attempt to replace/enhance. The most successful stream restoration, for macroinvertebrates, fishes, and other aquatic organisms will attempt to restore whole-system integrity instead of targeting just fish.

Figure 28. Example of long series of closely spaced log-weir pools. Photograph of Camp Creek in Eastern Oregon is courtesy of H. Li, Oregon State University.

RECOMMENDATIONS FOR MANAGEMENT

1) Before restoration planning and implementation, fishery managers should survey the availability of macroinvertebrate habitats. If habitats important for macroinvertebrate abundance, biodiversity, and production of drift are limited in proposed areas, then structures should be installed in a manner that avoids eliminating them.

2) The design of installed structures should mimic the hydrologic complexity of the natural features they intend to imitate. Bark should be retained on logs to be installed in streams.

3) This study highlighted the relative importance of terrestrial insects in the diets of fishes in restored areas. Disturbance to terrestrial vegetation should be minimized during installation of fish habitat structures.

4) Long series of log-weir pools should not be created without sufficient space between them to retain the riffle habitats that are important for supplying food to fish in those pools.

5) Restoration should work towards restoring whole-system integrity and function, instead of targeting just fish.

64

LITERATURE CITED

- Allan, J.D. 1978. Trout predation and the size composition of stream drift. Limnol. Oceanogr. 23(6): 1231-1237.
- Anderson, N.H. 1966. Depressant effect of moonlight on activity of aquatic insects. Nature 209 (5020): 319-320.
- Anderson, N.H. and J.R. Sedell. 1979. Detritus processing by macroinvertebrates in stream ecosystems. Ann. Rev. Entomol. 24:351-77.
- Anderson, N.H. and J.B. Wallace. Habitat, life history and behavioral adaptations of aquatic insects. *In* Merritt, R.W. and K.W. Cummins, eds. An Introduction to the Aquatic Insects of North America. 2nd ed. Kendall/Hunt Pub. Co., Dubuque, IA. 722 pp.
- Armantrout, N.B. 1989. Use of various types of habitat improvements by salmonids in winter. In B.G. Sheperd, ed. Proceedings of the 1988 Northwest Pacific Chinook and Coho Workshop. American Fisheries Society, North Pacific International Chapter. (Available from the B.C. Ministry of the Environment, Penticton, B.C.)
- Armantrout, N.B. 1991. Restructuring streams for anadromous salmonids. *In* Armantrout, N.B., ed. Proc. of American Fisheries Society Symposium 10:136-149.
- Armitage, P., P.S. Cranston, and L.C.V. Pinder. 1995. The Chironomidae. Chapman and Hall, London. 572 pp.
- Bisson, P.A., J.L. Nielson, R.A. Palmason, and L.E. Grove. 1982. A system of naming habitat types in small streams, with examples of habitat utilization by salmonids during low stream flow. Pages 62-73 in N.B. Armantrout, ed. Acquisition and utilization of aquatic habitat inventory information. American Fisheries Society, Bethesda, Maryland. 376 pp.
- Bond, C. 1994. Key to Oregon Freshwater Fishes. O.S.U. Bookstores, Inc. Corvallis, OR.
- Bustard, D.R. and D.W. Narver. 1975. Preferences of juvenile coho salmon (*Oncorhynchus kisutch*) and cutthroat trout (*Salmo clarki*) relative to simulated alteration of winter habitat. J. Fish. Res. Board Can. 32:681-687.

- Dudley, T. and N.H. Anderson. 1982. A survey of invertebrates associated with wood debris in aquatic habitats. Melanderia 39:1-22.
- Eriksen, C.H., V.H. Resh, S.S. Balling, and G.A. Lamberti. 1984. Aquatic insect respiration. *In* Merritt, R.W. and K.W. Cummins, eds. An Introduction to the Aquatic Insects of North America. 2nd ed. Kendall/Hunt Pub. Co., Dubuque, IA. 722 pp.
- Franklin, J. and C.T. Dyrness. 1969. Vegetation of Oregon and Washington. U.S.D.A. Forest Service Research Paper PNW-80. 216 pp.
- Hall, J.D. and C.O. Baker. 1982. Rehabilitating and enhancing stream habitat. 1. Review and evaluation. U.S. Forest Service General Technical Report PNW-138.
- House, R.A. and P.L. Boehne. 1985. Evaluation of instream structures for salmonid spawning and rearing in a coastal Oregon stream. North American Journal of Fisheries Management 5:283-295.
- House, R. and P. Boehne. 1986. Upper Lobster Creek habitat and fish use-analysis report. U.S.D.I. Bureau of Land Management, Salem District Office Doc. 0024r. 55 pp.
- Hynes, H.B.N. 1970. The Ecology of Running Waters. University of Toronto Press, Toronto, Ontario. 555 pp.
- Kushlan, J.A. 1979. Temperature and oxygen in an Everglades alligator pond. Hydrogiologia 67:267-271.
- Mason, J.C. and D.W. Chapman. 1965. Significance of early emergence, environmental rearing capacity, and behavioral ecology of juvenile coho salmon in stream channels. J. Fish. Res. Board Can., 22: 173-190.
- McMahon. R.F. 1991. Mollusca: Bivalvia. In Thorp J.H. and A.P. Covich, eds. Ecology and Classification of North American Freshwater Invertebrates. Academic Press, Inc. San Diego, CA. 911 pp.
- Meehan, W.R. 1991. Introduction and Overivew. In Meehan, W.R., ed. Influences of Forest Rangeland Management on Salmonid Fishes and their Habitats. American Fisheries Society Special Publication 19:1-15.
- Merritt, R.W. and K.W. Cummins, eds. 1984. An Introduction to the Aquatic Insects of North America. 2nd ed. Kendall/Hunt Pub. Co., Dubuque, IA. 722 pp.

- Minshall, G.W. and C.F. Rabeni. 1977. Factors affecting microdistribution of stream benthic insects. Oikos 29:33-34.
- Mundie, J.H. 1974. Optimization of the salmonid nursery stream. J. Fish. Res. Bd. Can., 31(11): 1827-1837.
- Murphy, M.L. and W.R. Meehan. 1991. Stream ecosystems. In Meehan, W.R. Ed. Influences of Forest and Rangeland Management on Salmonid Fishes and their Habitats. American Fisheries Society Special Publication 19:17-46.
- Nickelsen, T.E., J.D. Rodgers, S.L. Johnson and M. F. Solazzi. 1991a. Seasonal changes in habitat use by juvenile coho salmon (*Oncorhynchus kisutch*) in Oregon coastal streams. Can. J. Fish. Aquat. Sci., 49:783-789.
- Nickelsen, T.E., M.F. Solazzi, S.L. Johnson, and J.D. Rodgers. 1991b. Effectiveness of selected stream improvement techniques to create suitable summer and winter rearing habitat for juvenile coho salmon (*Oncorhynchus kisutch*) in Oregon coastal streams. Can. J. Fish. Aquat. Sci., Vol 49:790-794.
- Peterson, N.P. Riverine pond enhancement project: October 1982-December 1983.
 Wash. Dept. Fish. and Wash. Dept. Nat. Resour. Progress Report 233, Olympia, WA. 48 pp.
- Pinder, L.C.V. 1995. The habitats of chironomid larvae. *In* Armitage, P., P.S. Cranston, and L.C.V. Pinder, eds. The Chironomidae. Chapman and Hall, London. 572 pp.
- Reed, T. 1995. Drift, wood and grazing cattle: Macroinvertebrates in managed streams. M.S. Thesis, Oregon State University, Corvallis, OR. 107 pp.
- Reeves, G.H., F.H. Everest, and D.B. Hohler. 1990. Influence of habitat modifications on habitat composition and anadromous salmonid populations in Fish Creek, OR. Annual Report, USDE Bonneville Power Administration, Division of Fish and Wildlife, Portland, OR.
- Sedell, J.R. and K.J. Luchessa. 1982. Using the historical record as an aid to salmonid enhancement. Pages 210-223 in Armantrout, N.B., ed. Aquisition and utilization of aquatic habitat inventory information. American Fisheries Society, Western Division, Bethesda, Maryland. 376 pp.
- Sedell, J.R. and F.J. Swanson. 1984. Ecological characteristics of streams in oldgrowth forests of the Pacific Northwest. *In* Meehan, W.R., T.R. Merrel, and T.A. Hanley, eds. Fish and wildlife relationships of old-growth forests. American Institute of Fishery Research Biologists, Morehead City, NC. 425 pp.

-

- Smith, J.J. and H.W. Li. 1983. Energetic factors influencing foraging tactics of juvenile steelhead trout, Salmo gairdneri. pp. 173-180 in Noakes, D.L.G. (ed.) Predators and Prey in Fishes. Dr. W. Junk Publishers, The Hague, Netherlands.
- Statzner, B. and B. Higler. 1986. Stream hydraulics as a major determinant of benthic invertebrate zonation patterns. Freshwat. Biol. 16:127-139.
- Wallace, G.B. and R.W. Merritt. 1981. Filter-feeding ecology of aquatic insects. Ann. Rev. Entomol. 25:103-132. Annual Reviews, Inc. Palo Alto, CA.
- Walshe, B.M. 1947. On the function of haemoglobin in *Chironomus* after oxygen lack. J. Exp. Biol. 24:329-342.
- Walshe, B.M. 1948. The function of haemoglobin in *Tanytarsus* (Chironomidae). J. Exp. Biol. 25:35-44.
- Ward, J.V. 1992. Aquatic Insect Ecology Vol. 1: Biology and Habitat. John Wiley and Sons, New York, NY. 438 pp.
- Waters, T.F. 1962. A method to estimate the production rate of a stream bottom invertebrate. Trans. Am. Fisheries Soc. 91: 243-250.
- Washington, H.G. 1984. Review -Diversity, Biotic and Similarity indices. Water Res. 18(6):653-694.
- Wilzbach, M.A. and K.W. Cummins. 1989. An assessment of short-term depletion of stream macroinvertebrate benthos by drift. Hydrobiologia 185: 29-39.

APPENDICES

APPENDIX I

ABUNDANCE BY HABITAT OF TAXA IN ARTIFICIAL AND NATURAL ALCOVES

Numbers are based on average densities/meter² from all sample intervals and alcoves of each type combined.

	ORDER (or other taxon)	FAMILY (or other taxon)	GENUS (or other taxon)	No/m ² Artificial	No/m ² Natural
INSECTA	EPHEMEROPTERA	Baetidae	Callibaetis	0	
MOLCIA	ET HEMEROT TERA	Baetidae	Univers	9	0
		Enhamorallidaa	Unknown Dmus elle	7	0
		Hentageniidaa	Cimena	4	0
			Cinygma	0	4
		Leptopniebiidae	Paraleptophlebia	12	4
		Sipnionuridae	Siphlonurus	16	0
	7 1	Unknown	Unknown	8	0
	Totals			48	8
	ODONATA	Aeshnidae	Aeshna	5	0
		Aeshnidae	Anax	4	0
		Coenagrionidae	Argia	16	0
		Coenagrionidae	Unknown	4	8
		Coenagrionidae	Zoniagrion	21	0
		Gomphidae	Octogomphus	8	4
		Libellulidae	Unknown	8	0
	Totals			75	12
	PLECOPTERA	Leuctridae	Moselia	4	0
		Leuctridae	Unknown	0	4
		Nemouridae	Malenka	12	0
		Unknown	Unknown	4	0
	Totals			20	4
	HEMIPTERA	Corixidae	Corisella	80	0
		Corixidae	Hesperocorixa	4	0 0
		Gerridae	Gerris	8	4
		Gerridae	Limnoporus	4	0
		Nepidae	Ranatra	56	ů 0
		Veliidae	Microvelia	14	0 0
	Totals			166	4
	MEGALOPTERA	Sialidae	Sialis	4	0
	MECALOI IEKA		Utititia	4	U

BANK

.

TRICHOPTERA Hydroptilidae Hydroptilia 4 0 Lepidostomatidae Lepidostomatidae Lepidostomatidae 22 Limnephilidae Asynarchus 33 0 Limnephilidae Halesochila taylori 32 0 Limnephilidae Homophylax 16 0 Limnephilidae Homophylax 16 0 Limnephilidae Unnephilidae Unnephilidae 28 0 Limnephilidae Unknown 8 4 0 Limnephilidae Unknown 8 4 0 Totals 258 66 0	ORDER (or other taxon)	FAMILY (or other taxon)	GENUS (or other taxon)	No/m² Artificial	No/m ² Natura
Lepidostomatidae Lepidostoma 43 22 Limmephilidae Asynarchus 33 0 Limmephilidae Asynarchus 33 0 Limmephilidae Dicosmoecus 4 16 Limmephilidae Hatesochila taylori 32 0 Limnephilidae Limnephilus 28 0 Limnephilidae Limnephilus 28 0 Limnephilidae Onocosmoecus unicolor 26 24 Limnephilidae Onocosmoecus unicolor 26 24 Limnephilidae Unknown 8 4 Phryganeidae Ptilostomis 16 0 Dytiscidae Agabus 49 7 COLEOPTERA Dytiscidae Agabus 56 0 Dytiscidae Hydrovatus 16 0 Dytiscidae Hydrovatus 16 0 Dytiscidae Unknown 27 10 Elmidae Zaitzevia 4 0 Dytiscidae Unknown 27 10 Elmidae Gyrinus 28 0 Hydrophilidae Unknown 0 16 Totals 236 65 Dytiscidae Coreodytes 8 0 Dytiscidae Unknown 27 10 Elmidae Zaitzevia 4 0 Gyrinidae Gyrinus 28 0 Hydrophilidae Unknown 0 16 Totals 236 65 DiPTERA- NEMATOCERA Ceratopogonidae Culicoidinae 268 4 Chironomidae Tanypodinae 121 32 Chironomidae Tanypodinae 121 32 Chironomidae Unknown 771 53 Culicidae Dical 40 0 Dytiscidae Dical 40 0 Chironomidae Tanypodinae 121 32 Chironomidae Dixa 40 Dixidae Dical 40 0 Dixidae Dical 40 0	TRICHOPTERA	Hydroptilidae	Hydroptila	4	
Limnephilidae Asynarchus 33 0 Limnephilidae Dicasmoecus 4 16 Limnephilidae Halesochila taylori 32 00 Limnephilidae Halesochila taylori 32 00 Limnephilidae Limnephilus 28 0 Limnephilidae Unknown 8 4 Phryganeidae Psychoglypha 4 00 Limnephilidae Unknown 8 4 Phryganeidae Hydaticus 56 0 Dytiscidae Hydaticus 56 0 Dytiscidae Hydaticus 56 0 Dytiscidae Hydaticus 16 0 Dytiscidae Unknown 27 10 Elmidae Zaitzevia 4 02 Dytiscidae Unknown 27 10 Elmidae Zaitzevia 4 0 Hydrophilidae Unknown 0 16 Totals 28 0 Dytiscidae Unknown 27 10 Elmidae Zaitzevia 4 0 Chrionomidae Chitonomini 423 848 Chitonomidae Tanytasini 156 65 Chitonomidae Tanytasini 156 61 Chitonomidae Tanytasini 156 61 Chitonomidae Dixel 4 0 Dixidae Dixel 4 0 Dixidae Unknown 771 53 Culicidae Culex 0 4 Dixidae Dixel 36 114 Dixidae Dix		Lepidostomatid	ae Lepidostoma	43	22
Limnephilidae Dicosmoecus 4 16 Limnephilidae Halesochila taylori 32 0 Limnephilidae Homophylax 16 0 Limnephilidae Limnephilius 28 0 Limnephilidae Onocosmoecus unicolor 26 24 Limnephilidae Onocosmoecus unicolor 26 24 Limnephilidae Onocosmoecus unicolor 26 0 Limnephilidae Unknown 8 4 Phryganeidae Psychoglypha 4 0 Limnephilidae Unknown 8 4 Phryganeidae Psychoglypha 36 0 Dytiscidae Hydaticus 56 0 Dytiscidae Hydaticus 56 0 Dytiscidae Hydaticus 56 0 Dytiscidae Hydroporus 36 0 Dytiscidae Hydroporus 36 0 Dytiscidae Oreodytes 8 0 Dytiscidae Coreodytes 8 0 Dytiscidae Coreodytes 8 0 Dytiscidae Coreodytes 8 0 Dytiscidae Coreodytes 8 0 Dytiscidae Gyrinus 8 0 Dytiscidae Gyrinus 8 0 Dytiscidae Gyrinus 8 0 Dytiscidae Gyrinus 8 0 Sold Chironomidae Culicoidinae 398 35 Chaoboridae Mochlonyx 8 0 Chironomidae Culicoidinae 268 4 Chironomidae Culicoidinae 121 32 Chironomidae Tanypodinae 121 32 Chironomidae Tanypodinae 121 32 Chironomidae Tanypodinae 121 32 Chironomidae Tanypodinae 121 32 Chironomidae Dixella 36 14 Dixidae Dixel 36 14 Dixidae Meringodixa 0 8 Simuliidae Simulium 8 0 Tipulidae Limonia 32 0 Tipulidae Unknown 16 0		Limnephilidae	Asynarchus	33	0
Limnephilidae Halesochila taylori 32 0 Limnephilidae Limnephilius 28 0 Limnephilidae Limnephilius 28 0 Limnephilidae Onocosmoecus unicolor 26 24 Limnephilidae Psychoglypha 4 0 Limnephilidae Unknown 8 4 Phryganeidae Psychoglypha 16 0 Totals 258 66 COLEOPTERA Dytiscidae Agabus 49 7 Dytiscidae Hydaticus 56 0 Dytiscidae Hydroporus 36 0 Dytiscidae Hydroporus 36 0 Dytiscidae Hydroporus 8 0 Dytiscidae Uvarus 8 0 Dytiscidae Unknown 27 10 Elmidae Zaitzevia 4 0 Gyrinidae Gyrinus 28 0 Hydrophilidae Unknown 236 65 DIPTERA- NEMATOCERA Ceratopogonidae Culicoidinae 398 35 Chaoboridae Mochlonyx 8 0 Chironomidae Orthoclainae 268 4 Chironomidae Chironomini 423 848 Chironomidae Culicoidinae 121 32 Chironomidae Unknown 771 53 Culicidae Dixa 4 0 Chironomidae Orthoclainae 36 14 Dixidae Dixa 0 8 Simuliidae Simulium 8 0 Tipulidae Limonia 32 0 Tipulidae Unknown 16 0		Limnephilidae	Dicosmoecus	4	16
Limnephilidae Homophylax 16 0 Limnephilidae Limnephilius 28 0 Limnephilidae Onocosmoecus unicolor 26 24 Limnephilidae Psychoglypha 4 0 Limnephilidae Unknown 8 4 Phryganeidae Psilostomis 16 0 Totals 258 66 COLEOPTERA Dytiscidae Agabus 49 7 Dytiscidae Hydaticus 56 0 Dytiscidae Hydrovatus 16 0 Dytiscidae Oreodytes 8 0 Dytiscidae Oreodytes 8 0 Dytiscidae Uvarus 8 0 Dytiscidae Uvarus 8 0 Dytiscidae Uvarus 8 0 Dytiscidae Gyrinus 28 0 Hydrophilidae Unknown 0 16 Elmidae Gyrinus 28 0 Hydrophilidae Unknown 0 16 State Dipterer 236 65 DIPTERA- NEMATOCERA Ceratopogonidae Culicoidinae 268 4 Chironomidae Chironomini 423 848 Chironomidae Chironomini 423 848 Chironomidae Unknown 771 53 Culicidae Diza 4 0 Chironomidae Unknown 771 53 Culicidae Diza 4 0 Chironomidae Unknown 771 53 Culicidae Diza 4 0 Dixidae Diza 4 0 Chironomidae Unknown 771 53 Culicidae Culex 0 4 Dixidae Diza 4 0 Dixidae Diza 4 0 Dixidae Diza 4 0 Chironomidae Chironomini 16 0 Chironomidae Dixa 4 0 Chironomidae Unknown 771 53 Culicidae Culex 0 Dixidae Diza 4 Dixidae Diza 0 Tipulidae Limonia 32 Dixidae Diza 0 Tipulidae Limonia 16 Dixidae Diza 0 Dixidae Diza 0 Dixidae Dizella 36 Dixidae Dixell		Limnephilidae	Halesochila taylori	32	0
Limnephilidae Limnephilius 28 0 Limnephilidae Onocosmoecus unicolor 26 24 Limnephilidae Psychoglypha 4 0 Limnephilidae Unknown 8 4 Phryganeidae Ptilostomis 16 0 Totals 258 66 COLEOPTERA Dytiscidae Agabus 49 7 Dytiscidae Hydaticus 56 0 Dytiscidae Hydroporus 36 0 Dytiscidae Hydroporus 36 0 Dytiscidae Uvarus 8 0 Dytiscidae Uvarus 8 0 Dytiscidae Uvarus 8 0 Dytiscidae Gyrinus 28 0 Hydrophilidae Gyrinus 28 0 Hydrophilidae Gyrinus 28 0 Hydrophilidae Culicoidinae 398 35 DIPTERA- NEMATOCERA Ceratopogonidae Culicoidinae 268 4 Chironomidae Chironomini 423 848 Chironomidae Chironomini 156 6 Chironomidae Unknown 771 53 Culicidae Dixa 4 0 Chironomidae Unknown 771 53 Culicidae Dixa 4 0 Dixidae Dixa 4 0 Chironomidae Unknown 771 53 Culicidae Dixa 4 0 Dixidae Dixa 4 0 Dixidae Dixa 4 0 Chironomidae Unknown 771 53 Culicidae Culex 0 4 Dixidae Dixa 4 0 Dixidae Dixa 4 0 Dixidae Dixa 4 0 Dixidae Dixa 0 88 Simuliidae Simulium 8 0 Tipulidae Limonu 16 0		Limnephilidae	Homophylax	16	0
Limnephilidae Onocosmoecus unicolor 26 24 Limnephilidae Psychoglypha 4 0 Limnephilidae Unknown 8 4 Phryganeidae Ptilostomis 16 0 Totals 258 66 COLEOPTERA Dytiscidae Agabus 49 7 Oytiscidae Hydaticus 56 0 Dytiscidae Hydroparus 36 0 Dytiscidae Hydroparus 16 0 Dytiscidae Oreodytes 8 0 Dytiscidae Sanfilippodytes 4 32 Dytiscidae Unknown 27 10 Elmidae Zaitzevia 4 0 Gyrinudae Gyrinus 28 0 Hydrophilidae Unknown 0 16 Totals 236 65 DIPTERA- NEMATOCERA Ceratopogonidae Culicoidinae 398 35 Chironomidae Chironomini 423 848 Chironomidae Tanypodinae 121 32 Chironomidae Tanypodinae 121 32 Chironomidae Unknown 771 53 Culicidae Dixa 4 0 Dytiscidae Unknown 1771 53 Culicidae Culex 0 4 Dixidae Dixa 4 0 Chironomidae Tanypodinae 121 32 Chironomidae Dixa 4 0 Dixidae Dixa 4 0 Dixidae Dixa 36 14 Dixidae Dixa 36 14 Dixidae Meringodixa 0 Simuliidae Simulium 8 O Tipulidae Unknown 16 8		Limnephilidae	Limnephilus	28	0
Limnephilidae Psychoglypha 4 0 Limnephilidae Unknown 8 4 Phryganeidae Ptilostomis 16 0 Totals 258 66 COLEOPTERA Dytiscidae Agabus 49 7 Dytiscidae Hydaticus 56 0 Dytiscidae Hydroporus 36 0 Dytiscidae Unknown 36 0 Dytiscidae Oreodytes 8 0 Dytiscidae Uvarus 8 0 Dytiscidae Gyrinus 28 0 Hydrophilidae Unknown 0 16 Elmidae Gyrinus 28 0 Hydrophilidae Unknown 8 Totals 236 65 DIPTERA- NEMATOCERA Ceratopogonidae Culicoidinae 398 35 Chaoboridae Mochlonyx 8 0 Chironomidae Tanytarsini 156 6 Chironomidae Tanytarsini 156 6 Chironomidae Tanytarsini 156 6 Chironomidae Dixa 4 Dixidae Dixa 0 Simuliidae Simulium 8 O Tipulidae Unknown 16 Nenown 16 Simuliidae Dixnown 16 Chironomi 16 Ch		Limnephilidae	Onocosmoecus unicolor	26	24
Limnephilidae Unknown 8 4 Phryganeidae Ptilostomis 16 0 Totals 258 66 COLEOPTERA Dytiscidae Agabus 49 7 Dytiscidae Hydaticus 56 0 Dytiscidae Hydroporus 36 0 Dytiscidae Hydroporus 36 0 Dytiscidae Oredytes 8 0 Dytiscidae Oredytes 8 0 Dytiscidae Uvarus 8 0 Dytiscidae Gyrinus 28 0 Hydrophilidae Unknown 0 16 Totals 236 65 DIPTERA- NEMATOCERA Ceratopogonidae Culicoidinae 398 35 Chaoboridae Mochlonyx 8 0 Chironomidae Chironomini 423 848 Chironomidae Chironomini 423 848 Chironomidae Culicoidinae 268 4 Chironomidae Tanytarsini 156 6 Chironomidae Dixa 4 0 Dixidae Dixa 0 8 Simuliidae Simulium 8 0 Tipulidae Unknown 16 Simuliidae Simulium 16 0		Limnephilidae	Psychoglypha	4	2-T 0
PhryganeidaePtilostomis160Totals25866COLEOPTERADytiscidaeAgabus497DytiscidaeHydaticus560DytiscidaeHydroporus360DytiscidaeHydrovatus160DytiscidaeOreodytes80DytiscidaeOreodytes432DytiscidaeUvarus80DytiscidaeUvarus80DytiscidaeGyrinus280HydrophilidaeUnknown016Totals236655DIPTERA-CeratopogonidaeCulicoidinae39835OchironomidaeChironomini423848ChironomidaeChironomini423848ChironomidaeTanytarsini1566ChironomidaeTanytarsini1566ChironomidaeDixa40DixidaeDixella3614DixidaeDixella3614DixidaeMeella3614DixidaeMeella320TipulidaeSimulium80TipulidaeSimulium68Unknown16Simulium6		Limnephilidae	Unknown	8	4
Totals25866COLEOPTERADytiscidaeAgabus497DytiscidaeHydaticus560DytiscidaeHydroporus360DytiscidaeHydroporus360DytiscidaeOreodytes80DytiscidaeOreodytes432DytiscidaeUvarus80DytiscidaeUvarus80DytiscidaeUvarus80DytiscidaeGyrinus280HydrophilidaeUnknown016Totals236655DIPTERA-CeratopogonidaeCulicoidinae39835ChaoboridaeMochlonyx80ChironomidaeChironomini423848ChironomidaeTanypodinae12132ChironomidaeTanypodinae12132ChironomidaeDixa40DixidaeDixella3614DixidaeDixella3614DixidaeMeringodixa08SimuliidaeSimulium80TipulidaeFilaria012TipulidaeUnknown168UnknownUnknown168		Phryganeidae	Ptilostomis	16	4
COLEOPTERADytiscidaeAgabus497DytiscidaeHydaticus560DytiscidaeHydroporus360DytiscidaeHydrovatus160DytiscidaeOreodytes80DytiscidaeOreodytes432DytiscidaeUvarus80DytiscidaeUvarus80DytiscidaeUvarus80DytiscidaeUnknown2710ElmidaeZaitzevia40GyrinidaeGyrinus280HydrophilidaeUnknown016DIPTERA-CeratopogonidaeCulicoidinae39835NEMATOCERACeratopogonidaeCulicoidinae39835ChironomidaeChironomini423848ChironomidaeOrthocladinae2684ChironomidaeTanypodinae12132ChironomidaeDixa40DixidaeDixa40DixidaeDixa40DixidaeDixella3614DixidaeMeringodixa08SimuliidaeSimulium80TipulidaeJinai012TipulidaeUnknown168UnknownUnknown160	Totals			258	66
DytiscidaeHydaticus560DytiscidaeHydroporus360DytiscidaeHydrovatus160DytiscidaeOreodytes80DytiscidaeSanfilippodytes432DytiscidaeUvarus80DytiscidaeUvarus80DytiscidaeUvarus80DytiscidaeUurus280HydrophilidaeGyrinus280HydrophilidaeUnknown016DIPTERA-23665DIPTERA-CeratopogonidaeCulicoidinae39835ChaoboridaeMochlonyx80ChironomidaeChironomini423848ChironomidaeTanypodinae12132ChironomidaeTanypodinae12132ChironomidaeDixa40DixidaeDixella3614DixidaeDixella3614DixidaeDixella320TipulidaeLimonia320TipulidaeLimonia320TipulidaeLimonia320TipulidaeUnknown168UnknownUnknown168	COLEOPTERA	Dytiscidae	Agabus		
DytiscidaeHydroporus360DytiscidaeHydroporus360DytiscidaeOreodytes80DytiscidaeSanfilippodytes432DytiscidaeUvarus80DytiscidaeUvarus80DytiscidaeUvarus80DytiscidaeUnknown2710ElmidaeZaitzevia40GyrinidaeGyrinus280HydrophilidaeUnknown016Totals23665DIPTERA-CeratopogonidaeCulicoidinae39835ChaoboridaeMochlonyx80ChironomidaeChironomini423848ChironomidaeChironomini123848ChironomidaeTanytarsini1566ChironomidaeTanytarsini1566ChironomidaeUnknown77153Culicidae <i>Dixia</i> 40Dixidae <i>Dixella</i> 3614Dixidae <i>Dixella</i> 3614Dixidae <i>Simulium</i> 80Tipulidae <i>Limonia</i> 320Tipulidae <td< td=""><td></td><td>Dytiscidae</td><td>Hydaticus</td><td>56</td><td>0</td></td<>		Dytiscidae	Hydaticus	56	0
DytiscidaeHydrovatus160DytiscidaeOreodytes80DytiscidaeSanfilippodytes432DytiscidaeUvarus80DytiscidaeUnknown2710ElmidaeZaitzevia40GyrinidaeGyrinus280HydrophilidaeUnknown016Totals23665DIPTERA-CeratopogonidaeCulicoidinae39835ChaoboridaeMochlonyx80ChironomidaeChironomini423848ChironomidaeOrthocladinae2684ChironomidaeTanytarsini1566ChironomidaeTanytarsini1566ChironomidaeDixa40DixidaeDixa40DixidaeDixa40DixidaeMeringodixa08SimuliidaeSimulium80TipulidaeLimonia320TipulidaeLimonia320TipulidaeLimonia320TipulidaeLimonia320TipulidaeLimonia320TipulidaeUnknown168UnknownUnknown160		Dytiscidae	Hydroporus	36	0
DytiscidaeOreodytes80DytiscidaeSanfilippodytes432DytiscidaeUvarus80DytiscidaeUnknown2710ElmidaeZaitzevia40GyrinidaeGyrinus280HydrophilidaeUnknown016Totals23665DIPTERA-CeratopogonidaeCulicoidinae39835NEMATOCERACeratopogonidaeChironomini423848ChironomidaeOrthocladinae2684ChironomidaeTanytarsini1566ChironomidaeTanytarsini1566ChironomidaeDixa40DixidaeDixa40DixidaeDixa40DixidaeMeringodixa08SimuliidaeSimulium80TipulidaeLimonia320TipulidaeLimonia320TipulidaeLimonia320TipulidaeLimonia168Unknown168		Dytiscidae	Hydrovatus	50 16	0
DytiscidaeSanfilippodytes432DytiscidaeUvarus80DytiscidaeUnknown2710ElmidaeZaitzevia40GyrinidaeGyrinus280HydrophilidaeUnknown016DIPTERA-23665DIPTERA-CeratopogonidaeCulicoidinae39835ChaoboridaeMochlonyx80ChironomidaeChironomini423848ChironomidaeOrthocladinae2684ChironomidaeTanypodinae12132ChironomidaeTanypodinae12132ChironomidaeDixa40DixidaeDixa40DixidaeDixella3614DixidaeSimulium80TipulidaeLimonia320TipulidaeLimonia320TipulidaeLimonia320TipulidaeLimonia320TipulidaeLimonia320TipulidaeUnknown168		Dytiscidae	Oreodytes	8	0
DytiscidaeUvarus80DytiscidaeUnknown2710ElmidaeZaitzevia40GyrinidaeGyrinus280HydrophilidaeUnknown016Totals23665DIPTERA-CeratopogonidaeCulicoidinae39835NEMATOCERACeratopogonidaeCulicoidinae39835ChaoboridaeMochlonyx800ChironomidaeChironomini423848ChironomidaeOrthocladinae2684ChironomidaeTanytarsini1566ChironomidaeTanytarsini1566ChironomidaeUnknown77153CulicidaeCulex04DixidaeDixella3614DixidaeDixella3614DixidaeSimulium80TipulidaeLimonia320TipulidaeLimonia320TipulidaeVinknown168UnknownUnknown160		Dytiscidae	Sanfilippodytes	8	22
DytiscidaeUnknown2710ElmidaeZaitzevia40GyrinidaeGyrinus280HydrophilidaeUnknown016Totals23665DIPTERA-CeratopogonidaeCulicoidinae39835NEMATOCERACeratopogonidaeCulicoidinae39835ChaoboridaeMochlonyx800ChironomidaeChironomini423848ChironomidaeOrthocladinae2684ChironomidaeTanypodinae12132ChironomidaeTanypodinae12132ChironomidaeUnknown77153CulicidaeCulex04DixidaeDixella3614DixidaeDixella3614DixidaeSimulium80TipulidaeLimonia320TipulidaePilaria012TipulidaeUnknown168UnknownUnknown168		Dytiscidae	Uvarus	8	52
ElmidaeZaitzevia40GyrinidaeGyrinus280HydrophilidaeUnknown016Totals23665DIPTERA- NEMATOCERACeratopogonidaeCulicoidinae39835ChaoboridaeMochlonyx80ChironomidaeChironomini423848ChironomidaeOrthocladinae2684ChironomidaeTanypodinae12132ChironomidaeTanypodinae12132ChironomidaeDixa40DixidaeDixa40DixidaeDixella3614DixidaeMeringodixa08SimuliidaeSimulium80TipulidaeLimonia320TipulidaePilaria012TipulidaeUnknown168UnknownUnknown168		Dytiscidae	Unknown	27	10
Gyrinidae HydrophilidaeGyrinus Unknown28 0 16 2360 16 5Totals23665DIPTERA- NEMATOCERACeratopogonidaeCulicoidinae39835ChaoboridaeMochlonyx80 Chironominia423848 44ChironomidaeChironominia423848 44 Chironomidae12132 55ChironomidaeTanypodinae12132 5632 66ChironomidaeTanytarsini15666 66 Chironomidae61 44 00DixidaeDixa40 044 0 014 0DixidaeDixa40 014 0DixidaeDixella3614 014 0DixidaeSimulium80 12 Tipulidae121 120TipulidaeLimonia320 12 Tipulidae16UnknownUnknown168 0		Elmidae	Zaitzevia	4	0
HydrophilidaeUnknown016Constraint23665DIPTERA- NEMATOCERACeratopogonidaeCulicoidinae39835ChaoboridaeMochlonyx80ChironomidaeChironomini423848ChironomidaeOrthocladinae2684ChironomidaeTanypodinae12132ChironomidaeTanypodinae12132ChironomidaeTanytarsini1566ChironomidaeUnknown77153CulicidaeCulex04DixidaeDixal40DixidaeDixella3614DixidaeSimulium80TipulidaeLimonia320TipulidaePilaria012TipulidaeUnknown168UnknownUnknown160		Gyrinidae	Gvrinus	78	0
Totals23665DIPTERA- NEMATOCERACeratopogonidaeCulicoidinae39835ChaoboridaeMochlonyx80ChironomidaeChironomini423848ChironomidaeOrthocladinae2684ChironomidaeTanypodinae12132ChironomidaeTanytarsini1566ChironomidaeUnknown77153CulicidaeCulex04DixidaeDixa40DixidaeDixella3614DixidaeSimulium80TipulidaeLimonia320TipulidaePilaria012TipulidaeUnknown168UnknownUnknown168		Hydrophilidae	Unknown	20	16
DIPTERA- NEMATOCERACeratopogonidaeCulicoidinae39835ChaoboridaeMochlonyx80ChironomidaeChironomini423848ChironomidaeOrthocladinae2684ChironomidaeTanypodinae12132ChironomidaeTanypodinae12132ChironomidaeTanytarsini1566ChironomidaeUnknown77153CulicidaeCulex04DixidaeDixella3614DixidaeMeringodixa08SimuliidaeSimulium80TipulidaeLimonia320TipulidaePilaria012TipulidaeUnknown168UnknownUnknown160	Totals			236	10
NEMATOCERACeratopogonidaeCulicoidinae39835ChaoboridaeMochlonyx80ChironomidaeChironomini423848ChironomidaeOrthocladinae2684ChironomidaeOrthocladinae2684ChironomidaeTanypodinae12132ChironomidaeTanytarsini1566ChironomidaeUnknown77153CulicidaeCulex04DixidaeDixella3614DixidaeMeringodixa08SimuliidaeSimulium80TipulidaeLimonia320TipulidaePilaria012TipulidaeUnknown168UnknownUnknown160	DIPTERA-				
ChaoboridaeMochlonyx80ChironomidaeChironomini423848ChironomidaeOrthocladinae2684ChironomidaeTanypodinae12132ChironomidaeTanytarsini1566ChironomidaeTanytarsini1566ChironomidaeUnknown77153CulicidaeCulex04DixidaeDixa40DixidaeDixella3614DixidaeMeringodixa08SimuliidaeSimulium80TipulidaePilaria012TipulidaeUnknown168UnknownUnknown160	NEMATOCERA	Ceratopogonidae	Culicoidinae	398	35
ChironomidaeChironomini423848ChironomidaeOrthocladinae2684ChironomidaeTanypodinae12132ChironomidaeTanytarsini1566ChironomidaeTanytarsini1566ChironomidaeUnknown77153CulicidaeCulex04DixidaeDixa40DixidaeDixella3614DixidaeMeringodixa08SimuliidaeSimulium80TipulidaeLimonia320TipulidaePilaria012TipulidaeUnknown168UnknownUnknown160		Chaoboridae	Mochlonyx	8	0
ChironomidaeOrthocladinae2684ChironomidaeTanypodinae12132ChironomidaeTanytarsini1566ChironomidaeUnknown77153CulicidaeCulex04DixidaeDixa40DixidaeDixella3614DixidaeMeringodixa08SimuliidaeSimulium80TipulidaeLimonia320TipulidaePilaria012TipulidaeUnknown168UnknownUnknown160		Chironomidae	Chironomini	423	848
ChironomidaeTanypodinae12132ChironomidaeTanytarsini1566ChironomidaeUnknown77153CulicidaeCulex04DixidaeDixa40DixidaeDixella3614DixidaeMeringodixa08SimuliidaeSimulium80TipulidaeLimonia320TipulidaePilaria012TipulidaeUnknown168UnknownUnknown160		Chironomidae	Orthocladinae	268	4
ChironomidaeTanytarsini1566ChironomidaeUnknown77153CulicidaeCulex04DixidaeDixa40DixidaeDixella3614DixidaeMeringodixa08SimuliidaeSimulium80TipulidaeLimonia320TipulidaePilaria012TipulidaeUnknown168UnknownUnknown160		Chironomidae	Tanypodinae	121	32
ChironomidaeUnknown77153CulicidaeCulex04DixidaeDixa40DixidaeDixella3614DixidaeMeringodixa08SimuliidaeSimulium80TipulidaeLimonia320TipulidaePilaria012TipulidaeUnknown168UnknownUnknown160		Chironomidae	Tanytarsini	156	6
CulicidaeCulex04DixidaeDixa40DixidaeDixella3614DixidaeMeringodixa08SimuliidaeSimulium80TipulidaeLimonia320TipulidaePilaria012TipulidaeUnknown168UnknownUnknown160		Chironomidae	Unknown	771	53
DixidaeDixa40DixidaeDixella3614DixidaeMeringodixa08SimuliidaeSimulium80TipulidaeLimonia320TipulidaePilaria012TipulidaeUnknown168UnknownUnknown160		Culicidae	Culex	0	4
DixidaeDixella3614DixidaeMeringodixa08SimuliidaeSimulium80TipulidaeLimonia320TipulidaePilaria012TipulidaeUnknown168UnknownUnknown160		Dixidae	Dixa	4	0
DixidaeMeringodixa08SimuliidaeSimulium80TipulidaeLimonia320TipulidaePilaria012TipulidaeUnknown168UnknownUnknown160		Dixidae	Dixella	36	14
SimuliidaeSimulium80TipulidaeLimonia320TipulidaePilaria012TipulidaeUnknown168UnknownUnknown160		Dixidae	Meringodixa	0	8
TipulidaeLimonia320TipulidaePilaria012TipulidaeUnknown168UnknownUnknown160		Simuliidae	Simulium	8	0
TipulidaePilaria012TipulidaeUnknown168UnknownUnknown160		Tipulidae	Limonia	32	0
Tipulidae Unknown 16 8 Unknown Unknown 16 0		Tipulidae	Pilaria	0	12
Unknown Unknown 16 0		Tipulidae	Unknown	16	8
		Unknown	Unknown	16	0

BANK, continued

	ORDER (or other taxon)	FAMILY (or other taxon)	GENUS (or other taxon)	No/m ² Artificial	No/m ² Natural
	DIPTERA-		- <u> </u>	<u></u>	
	BRACHYCERA	Empididae	Clinocera	o	0
		Stratiomyiidae	Unknown	° 8	0
		Tabanidae	Chrysops	68	0
		Tabanidae	Unknown	4	8
		Unknown (Orthorhapha)	Unknown	8	0
		Unknown (pupae)	Unknown	195	86
	Totals			2548	1125
GASTROPODA	PROSOBRANCHIA	Pleuroceridae	Juga	31	92
BIVALVIA	PELECYPODA	Sphaeriidae	Pisidium	39	141
HYDRACHNIDA	UNKNOWN	Unknown	Unknown	41	8
EUMALACOSTRACA	ISOPODA	Unknown	Unknown	0	8
					°,
BRANCHIOPODA	CLADOCERA	Daphniidae	Unknown	16	0
		Unknown	Unknown	32	0
	Totals			48	0
COPEPODA	COPEPODA	Unknown	Unknown	40	0

BANK, continued

BENTHOS

	ORDER FAMILY GENUS	GENUS	No/m ²	No/m ²	
	(or other taxon)	(or other taxon)	(or other taxon)	Artificial	Natura
INSECTA	FPHEMEDODTED	A Baetidae	Callibardia		
INDECIA	EI HEMEROI TERA	Enhomorallidae	Cambaens	144	0
		Lentophlabiidae	Serratella Develo de la la	0	16
	Totals	Ecolophicolidae	Paraleptophlebia	32	0
		Acabridae		176	16
	ODONATA	Gomphidae	Aeshna	32	0
		Libollulidae	Octogomphus	128	18
	Totals	Libenundae	Unknown	0	4
	DI ECODITED A	NT T		160	22
	PLECOPIERA	Nemouridae	Malenka	0	8
	Totals			0	8
	MEGALOPTERA	Sialidae	Sialis	152	0
	TRICHOPTERA	Hydroptilidae	Hydroptila	64	0
		Lepidostomatidad	e Lepidostoma	0	26
		Limnephilidae	Asynarchus	48	32
		Limnephilidae	Dicosmoecus	0	4
		Limnephilidae	Halesochila taylori	253	0
		Limnephilidae	Hydatophylax	0	4
		Limnephilidae	Limnephilus	32	0
		Limnephilidae	Onocosmoecus	0	9
		Limnephilidae	Pseudostenophylax edwardsi	32	0
		Limnephilidae	Psychoglypha	4	4
		Uenoidae	Neophylax	0	4
	Totals			433	83
	COLEOPTERA	Dytiscidae	Agabus	12	14
		Dytiscidae	Hydaticus	16	12
		Dytiscidae	Oreodytes	32	0
		Dytiscidae	Uvarus	0	32
		Dytiscidae	Unknown	32	34
		Elmidae	Heterlimnius	0	4
		Elmidae	Narpus	0	16
		Elmidae	Optioservus	0	8
	Totals			92	120
	DIPTERA-	Ceratopogonidae	Culicoidinae	276	111
	NEWIATUUERA	Chironomidae	Chironomini	270	111
		Chironomidae	Orthogladinas	1567	1397
		Chironomidae		142	74
		Chironomidae	Trodiamesinae	0	16
		Chironomidae	Tanypodinae	1408	406
		Chironomidae	Lanytarsini	48	64
		Unironomidae	Unknown	4488	2489

.

	ORDER FAM (or other taxon) (or oth		GENUS (or other taxon)	No/m ² Artificial	No/m ² Natural	
	DIPTERA-					
	NEMATOCERA, continued	Culicidae	Culista	0	278	
		Diptera	Unknown	87	53	
		Dixidae	Dixella	16	0	
		Ptychopteridae	Bittacomorpha	0	32	
		Ptychopteridae	Ptychoptera	0	269	
		Tipulidae	Antocha	320	0	
		Tipulidae	Unknown	0	18	
	DIPTERA- BRACHYCERA	Stratiomyiidae	Allognosta	0	4	
		Tabanidae	Chrysops	64	0	
		Tabanidae	Unknown	160	16	
	Totals	Unknown- Orthorrhapha	Unknown	0 8577	10 5237	
GASTROPODA	PROSOBRANCHIA	Pleuroceridae	Juga	77	465	
		Hydrobiidae	Fontelicella	0	16	
		Hydrobiidae	Gyralus	0	4	
		Hydrobiidae	Unknown	0	4	
		Planorbiidae	Unknown	16	16	
	Totals			93	505	
BIVALVIA	PELECYPODA	Sphaeriidae	Pisidium	352	2191	
HYDRACHNIDA	UNKNOWN	Unknown	Unknown	170	35	
COPEPODA	UNKNOWN	Unknown	Unknown	69	22	

BENTHOS, continued

	ORDER (or other taxon)	FAMILY (or other taxon)	GENUS (or other taxon)	No/m ² Artificial	No/m ² Natural
NEECTA		Dootidoo			
INSECTA	EPHEMEKOPIEKA	Baetidae	Baetis	22	18
		Baetidae	Unknown	36	4
		Ephemerellidae	Attenella	0	4
		Ephemerellidae	Ephemerella	12	24
		Ephemerellidae	Serratella	0	8
		Ephemerellidae	Unknown	24	0
		Heptageniidae	Cinygmula	0	16
		Heptageniidae	Epeorus	0	12
		Leptophlebiidae	Leptophlebia	0	12
		Leptophlebiidae	Paraleptophlebia	27	40
		Leptophlebiidae	Unknown	19	0
		Siphlonuridae	Ameletus	32	12
		Unknown	Unknown	0	28
	Totals			171	178
	ODONATA	Gomphidae	Octogomphus	44	33
		Libellulidae	Unknown	0	16
	Totals			44	49
	PLECOPTERA	Chloroperlidae	Unknown	0	12
		Nemouridae	Malenka	16	76
		Perlodidae	Unknown	0	34
		Unknown	Unknown	0	18
	Totals			16	140
	MEGALOPTERA	Sialidae	Sialis	48	0
	TRICHOPTERA	Hydroptilidae	Orthotrichia	800	
		Lepidostomatidae	Lepidostoma	24	27
		Leptoceridae	Unknown	0	8
		Limnephilidae	Dicosmoecus	12	12
		Limnephilidae	Homophylax	0	8
		Limnephilidae	Limnephilus	32	0
		Limnephilidae	Onocosmoecus	32	10
		Limnephilidae	Psychoglypha	93	12
		Limnephilidae	Unknown	0	11
		Rhyacophilidae	Rhvacophila	0	17
		Uenoidae	Neophylax	8	6
	Totals			1001	111

DEPOSITIONAL AREA

	ORDER (or other taxon)	FAMILY (or other taxon)	GENUS (or other taxon)	No/m ² Artificial	No/m ² Natural
					
	COLEOPTERA	Dytiscidae	Hydrovatus	16	0
		Dytiscidae	Liodessus	16	0
		Dytiscidae	Oreodytes	15	20
		Dytiscidae	Unknown	0	4
		Dytiscidae	Uvarus	4	0
		Elmidae	Heterlimnius	6	0
		Elmidae	Optioservus	0	16
		Elmidae	Unknown	0	112
		Hydrophilidae	Unknown	16	0
	_	Unknown	Unknown	64	0
	Totals			138	152
	DIPTERA- NEMATOCERA	Ceratopogonidae	Culicoidinae	1151	148
		Chironomidae	Chironomini	547	226
		Chironomidae	Orthocladinae	547 64	230
		Chironomidae	Tanypodinae	83	26
		Chironomidae	Tanytarsini	16	30
		Chironomidae	Unknown	2056	617
		Dixidae	Dixella	16	017
		Empididae	Clinocera	0	0
		Psychodidae	Pericoma	504	4
		Ptychopteridae	Bittacomornha	37	0
		Ptychopteridae	Ptychontera	12	0
		Simuliidae	Simulium	8	23
		Simuliidae	Unknown	16	0
		Tipulidae	Antocha	64	0
		Tipulidae	Hexatoma	5	0
		Tipulidae	Pilaria	0	4
		Tipulidae	Unknown	0	32
		Unknown	Unknown	165	24
	DIPTERA-			105	75
	BRACHYCERA	Stratiomyiidae	Unknown	64	0
		Tabanidae	Chrysops	32	4
		Tabanidae	Unknown	48	48
		Unknown-	Unknown		
	Totala	Orthorrhapha		32	0
GASTROPODA	DDOSODD A NOTITA	Discussion		4916	1317
UASIKUIUDA	PROSOBRANCHIA	Pleurocendae	Juga	232	215
	Totals	nyurobiidae	Fluminicola	0	16
RIVAT VIA		Sphoonid		232	231
	FELEC I PODA	spnaeriidae	PISIdium.	358	672
HYDRACHNIDA	Unknown	Unknown	Unknown	83	16
COPEPODA	Unknown	Unknown	Unknown	12	16

DEPOSITIONAL AREA, continued

WOOD

	ORDER	FAMILY (or other taxon)	GENUS (or other taxon)	No/m ² Artificial	No/m ² Natura	
INSECTA	ODONATA	Aeshnidae	Aeshna	0	22	
	PLECOPTERA	Nemouridae	Malenka	0	67	
	TRICHOPTERA	Brachycentridae	Micrasema	0	89	
		Lepidostomatidae	Lepidostoma	33	56	
		Limnephilidae	Asynarchus	22	0	
		Limnephilidae	Halesochila taylori	0	22	
		Limnephilidae	Limnephilus	0	22	
		Limnephilidae	Onocosmoecus unicolor	22	22	
		Limnephilidae	Unknown	22	0	
	Totals			99	211	
	COLEOPTERA	Dytiscidae	Agabus	22	0	
		Dytiscidae	Sanfilippodytes	0	22	
		Dytiscidae	Unknown	45	22	
		Elmidae	Lara	0	22	
		Elmidae	Unknown	22	22	
		Unknown1	Unknown	22	0	
		Unknown2	Unknown	0	22	
	Totals			111	110	
	DIPTERA- NEMATOCERA	Ceratopogonidae	Culicoidinae	458	133	
		Chaoboridae	Mochlonyx	22	0	
		Chironomidae	Chironomini	401	2606	
		Chironomidae	Orthocladinae	1269	0	
		Chironomidae	Tanypodinae	59	490	
		Chironomidae	Tanytarsini	33	0	
		Chironomidae	Unknown	876	783	
		Dixidae	Dixa	0	22	
		Dixidae	Dixella	22	0	
		Muscidae	Unknown	22	0	
		Ptychopteridae	Ptychoptera	0	134	
		Tipulidae	Antocha	0	89	
		Tipulidae	Pilaria	0	56	
		Tipulidae	Unknown	0	22	
	DIPTERA-	NC	•• •			
	BRACHYCERA	NUSCIDAE	Unknown	22	0	
	~ .	Unknown	Unknown	120	29	
	Totals			3304	4364	
ASTROPODA	Prosobranchia	Pleuroceridae	Juga	0	45	
IVALVIA	Pelecypoda	Sphaeriidae	Pisidium	89	196	
VDRACHNIDA	Unknown	Unknown	Unknown	16	70	

Otals DONATA LECOPTERA	RA Heptageniidae Leptophlebiidae Leptophlebiidae Gomphidae Nemouridae	Cinygma Leptophlebia Paraleptophlebia Octogomphus Malarka	4 16 126 146 4
Totals DOONATA LECOPTERA	Leptophlebiidae Leptophlebiidae Gomphidae Nemouridae	Leptophlebia Paraleptophlebia Octogomphus Malarka	4 16 126 146 4
[°] otals DDONATA LECOPTERA IEMIPTERA	Leptophlebiidae Leptophlebiidae Gomphidae Nemouridae	Leptophlebia Paraleptophlebia Octogomphus Malarka	16 126 146 4
Totals DONATA LECOPTERA IEMIPTERA	Gomphidae	Paraleptophlebia Octogomphus Malarka	126 146 4
OTAIS DDONATA LECOPTERA IEMIPTERA	Gomphidae Nemouridae	Octogomphus Malarka	<u> </u>
LECOPTERA IEMIPTERA	Gomphidae Nemouridae	Octogomphus	4
LECOPTERA IEMIPTERA	Nemouridae	Malanka	
IEMIPTERA		тинепка	1742
	Veliidae	Microvelia	6
RICHOPTERA	Lepidostomatidae	Lepidostoma	13
	Limnephilidae	Asynarchus	16
	Limnephilidae	Onocosmoecus	4
	Limnephilidae	Pseudostenophylax	48
	Limnephilidae	Psychoglypha	24
	Rhyacophilidae	Rhyacophila	8
	Uenoidae.	Neophylax	2064
otals			2177
OLEOPTERA	Dytiscidae	Agabus	96
	Dytiscidae	Oreodytes	10
	Dytiscidae	Sanfilippodytes	4
	Dytiscidae	Unknown	16
	Elmidae	Optioservus	6
	Elmidae	Unknown	16
otals			148
PTERA-	······································		
EMATOCERA	C		
	Ceratopogonidae	Culicoidinae	319
	Chironomidae	Orthogladings	200
	Chironomidae	Tanypodinae	384
	Chironomidae	Linknown	80
	Unknown Nematocera	Unknown	3216
	Ptychopteridae	Ptychontera	231
	Simuliidae	Prosimulium	12
	Tipulidae	I imnonhila	48
	Tipulidae	Pilaria	4
	Tipulidae	Unknown	208
	Simuliidae	Unknown	208
PTERA-	Empididae	Clinocara	16
ACHYCERA	-inpluidae	Cunocera	04
	Tabanidae	Chrysons	4
als		S. 11 930/13	4
P	TERA- ACHYCERA als	Chironomidae Chironomidae Unknown Nematocera Ptychopteridae Simuliidae Tipulidae Tipulidae Simuliidae YTERA- ACHYCERA Tabanidae als	Chironomidae Tanypodinae Chironomidae Unknown Unknown Nematocera Unknown Ptychopteridae Ptychoptera Simuliidae Prosimulium Tipulidae Limnophila Tipulidae Pilaria Tipulidae Unknown Simuliidae Unknown Simuliidae Clinocera ACHYCERA- Tabanidae Chrysops

RIFFLE OUTFLOW

RIFFLE OUTFLOW, continued

	ORDER (or other taxon)	FAMILY (or other taxon)	GENUS (or other taxaon	No/m ² Artificial
GASTROPODA	PROSOBRANCHIA	Pleuroceridae	Juga	302
BIVALVIA	PELECYPODA	Sphaeriidae	Pisidium	424
HYDRACHNIDA	UNKNOWN	Unknown		239
	OSTRACODA	Ostracoda	Unknown	4
COPEPODA	CLADOCERA	Copepoda	Copepoda	16

APPENDIX II

ABUNDANCE BY HABITAT OF MACROINVERTEBRATE TAXA OF EAST FORK LOBSTER CREEK

Numbers are based on average densities/meter² from all habitat-types and sample intervals combined.

.

	Order (or other taxon)	Family (or other taxon)	Genus (or other taxon)	BOUL	BWDE	GLCG	GLCO	GLGR	RABR	RARU	RICG	RICO	RIGR	TOTALS
INSECTA	EPHEMEROPTERA	Baetidae	Raetis	270	201	120								
		Enhemerellidae	Attenella	270	391	130	235	225	900	80	668	402	224	3235
		Sphemelemoae	Caudatella	0	0	160	0	280	0	0	680	0	0	1120
				20	33	40	0	27	20	0	26.7	30	30	227
			Drunella	20	0	60	25	20	100	0	60	50	0	335
			Ephemerella	100	100	60	0	40	40	0	70	0	0	410
			Eurylophella	0	20	40	0	40	0	0	60	0	80	240
			Serratella	60	174	68	40	173	140	20	190	160	356	1391
			Timpanoga	20	20	50	40	30	0	0	40	0	0	200
		Heptageniidae	Cinygma	0	20	0	53.33	0	0	0	0	0	0	200
			Cinygmula	20	0	99	720	141	0	ů 0	211	167	225	13
			Epeorus	20	58	40	68	73	0	40	511	157	225	1668
			Ironodes	30	0	0	0	0	0	40	144	187	80	710
			Rithrogena	30	20	0	0	70	0	20	20	27	0	97
			Unknown	0	40	0	0	70	0	0	227	316	40	703
		Leptophlebiidae	Paralantonklahia	0	40	0	0	0	0	0	0	0	40	80
		Loptophicondae	bicornuta	U	0	20	0	67	0	0	120	0	60	267
			Paraleptophlebia	0	1028	50	260	236	20	0	100	100		
		Siphlonuridae	Ameletus	0	15	20	200	230	20	0	160	103	311	2168
			Siphlonurus	0	20	0	20	243	0	0	47	30	80	457
			TOTALS	500	1020	027		80	U	0	0	100	0	200
				390	1939	837	1401	1737	1220	160	2829	1562	1562	13861

 Order (or other taxon)	Family (or other taxon)	Genus (or other taxon)	BOUL	BWDE	GLCG	GLCO	GLGR	RABR	RARU	RICG	RICO	RIGR	TOTALS
ODONATA	Aeshnidae	Aeshna	0	10	0	0	0	0	0	0	0	0	10
	Gomphidae	Octogomphus	0	6.3	20	20	50	0	0	40	60	22	10
		TOTALS	0	16	20	20	50	0	0	40	60	33	229
PLECOPTERA	Chloroperlidae	Unknown	0	0	0	0	40		0	40		- 33	239
		Haploperla	0	1072	76	03	110	0	0	120	0	0	40
		Kathroperla	0	0	0	0	0	0	0	130	60	40	1581
		Sweltsa	0	25	ů 0	80	00	0	0	80	0	240	320
	Leuctridae	Leuctridae	0	20 7	30	80	90 70	0	0	0	60	0	255
	Nemouridae	Malenka	Ő	266	50	50	0	0	0	80	40	53	360
		Zapada	20	, 0	60	200	80	0	40	270	48	148	952
	Peltoperlidae	Unknown	0	80	00	200	00	0	0	173	60	580	1173
		Unknown	0	0	0	0	0	0	0	0	0	0	80
	Perlidae	Calineuria	0	0	25	0	0	20	0	0	0	0	20
		Doroneuria	0	0	23	30	0	0	0	0	20	40	115
		Hesperanerla	0	0	20	0	0	0	0	0	0	0	20
	Perlodidae	Frisonia	0	0	40	0	0	0	0	80	0	100	220
	- moundae	Isonaria	0	20	0	0	0	0	0	0	0	0	20
		Slovele	0	80	40	20	47	0	0	120	20	100	427
		Jula	0	110	64	60	104	0	20	87	55	55	555
	Dissonancesida	Unknown	0	210	0	20	0	0	0	0	60	40	330
	Heronarcyroae	Pteronarcella	0	20	0	0	0	0	0	0	0	0	20
	Unknown	Unknown	0	0	0	0	20	0	0	0	0	0	20
		TOTALS	20	1890	405	633	641	20	60	1020	423	1396	6508
MEGALOPTERA	Stalidae	Sialis	0	7	40	0	0	0	0	40	0	0	87

 Order (or other taxon)	Family (or other taxon)	Genus (or other taxon)	BOUL	BWDE	GLCG	GLCO	GLGR	RABR	RARU	RICG	RICO	RIGR	TOTALS
TRICHOPTERA	Brachycentridae	Micrasema	148	53	140	60	80	0	40	167	47		TOTALS
	Calamoceratidae	Heteroplectron	0	10	0	0	0	0	40	107	47	150	885
	Glossosomatidae	Glossosoma	0	0	40	20	0	0	0	40	0	0	10
	Hydropsychidae	Hydropsyche	0	0	73	0	0	0	0	40	33	0	133
	Hydropsychidae	Parapsyche	0	0	0	20	0	0	20	240	80	0	393
	Hydroptilidae	Hydroptila	0	227	240	60	0	0	20	80	20	0	140
	Hydroptilidae	Orthotrichia	0	140	40	0	0	0	0	0	20	620	1167
	Hydroptilidae	Unknown	Ő	0	-10	0	0	0	0	0	0	20	200
	Lepidostomatidae	Lepidostoma	0	28	0	20	50	0	0	0	0 0	20 0	20 98
	Lepidostomatidae	Lepidostoma	0	1720	70	32	248	0	0	(0)	•		
	Lepidostomatidae	Lepidostoma	ů 0	59	20	0	240	0	0	60	30	20	2180
	• • • • • •	unicolor		07	20	0	U	0	0	0	0	20	99
	Limnephilidae	Apatania	60	20	20	0	65	0	80	153	80	105	583
	Limnephilidae	Dicosmoecus	0	0	50	50	20	0	0	60	0	20	200
	Limnephilidae	Hydatophylax hesperus	0	45	20	0	0	0	0	0	0	0	65
	Limnephilidae	Limnephilidae	0	0	0	60	100	0	0	0	0	0	160
	Limnephilidae	Limnephilus	0	60	0	0	0	0	0	õ	0	0	60
	Limnephilidae	Onocosmoecus unicolor	0	20	0	20	20	0	0	0	0	0	60 60
	Limnephilidae	Pseudostenophylax edwardsi	0	0	0	0	30	0	0	60	0	0	90
	Limnephilidae	Psychoglypha	0	413	60	0	80	0	0	0	0	0	550
	Polycentropodidae	Polycentropus	0	0	0	50	0	õ	0	0	0	0	553
	Psychomyiidae	Psychomyiia	0	0	40	20	õ	0	0	100	0	0	50
		-		-		20	v	v	U	100	20	20	200

Order (or other taxon)	Family (or other taxon)	Genus (or other taxon)	BOUL	BWDE	GLCG	GLCO	GLGR	RABR	RARU	RICG	RICO	RIGR	TOTALS
	Rhyacophilidae	Himalopsyche	0	20	0	0	0	0	0	0	20	0	40
	Rhyacophilidae	phryganea Rhyacophila sp 1	20	81.7	44	45	33	0	40	90	42.5	107	503
	Rhyacophilidae	Rhyacophila sp 2	0	0	0	0	0	0	0	0	0	50	50
	Uenoidae	Neophylax	0	0	130	80	220	60	0	0	40	20	550
	Unknown	Unknown	0	70	40	60	20	0	0	20	0	20	230
		TOTALS	228	2967	1027	597	966	60	180	1070	433	1192	8719
COLEOPTERA	Dytiscidae	Unknown	0	20	0	0	0	0	0	0	0		
1	Elmidae	Dubiraphia	0	0	0	0	40	0	ñ	40	0	0	20
1	Elmidae	Elmidae	0	71	77	64	73	0 0	Ô	64	44	277	80
1	Elmidae	Heterlimnius	0	340	27	40	315	ő	0	20	44	277	670
Ι	Elmidae	Lara	0	553	0	20	0	Ň	0	20	47	40	829
I	Elmidae	Narpus	0	0	0	0	20	0	0	0	0	0	573
E	Elmidae	Optioservus	0	0	80	30	20	0	0	00	40	0	120
E	Elmidae	Zaitzevia	0	2	40	47	80	0	0	20	70	140	420
H	Hydrophilidae	Unknown	0	5	40	47	80	0	0	50	40	27	286
		TOTALS	0	001	0	20	0	0	0	0	0	20	45
				991	224	221	608	0	0	254	241	504	3043

Order (or other taxon)	Family (or other taxon)	Genus (or other taxon)	BOUL	BWDE	GLCG	GLCO	GLGR	RABR	RARU	RICG	RICO	RIGR	TOTALS
DIPTERA-													241
NEMATOCERA	Ceratopogonidae	Culicoidinae	0	47.8	20	60	40	0	0	0	0	73	241
	Chironomidae	Unknown	140	3800	184	280	597	0	0	255	296	529	6081
	Chironomidae	Chironomini	0	124	213	105	73	0	0	93	96	40	744
	Chironomidae	Orthocladinae	53	167	147	380	160	440	80	700	257	97	2481
	Chironomidae	Podonominae	0	0	0	0	0	0	0	0	0	20	2481
	Chironomidae	Tanypodinae	20	88	48	20	70	39	0	90	20	155	550
	Chironomidae	Tanytarsini	40	262	130	112	368	0	40	136	80	303	1561
	Pelecorhynchidae	Glutops	0	60	0	40	60	0	0	0	20	0	1901
	Psychodidae	Pericoma	0	20	0	60	40	0	0	0	20 60	110	200
	Ptychopteridae	Ptychoptera	0	308	0	20	0	0	0	0 0	0	0	290
	Simuliidae	Twinnia	0	0	0	0	0	0	0 0	80	0	0	320
	Simuliidae	Prosimulium	0	0	0	0	20	0	0	140	40	40	240
	Simuliidae	Pupae	0	0	0	0	0	0	0	0	20	40	240
	Simuliidae	Unknown	0	0	0	0	20	0	0 0	0	20	0	20
	Stratiomyiidae	Nemoletus	0	0	0	0	0	0	0	0	0	20	110
	Tipulidae	Antocha	20	29	40	500	50	0	0	40	60	20	20
	Tipulidae	Dicranota	20	53	20	50	35	0	0	40	30	50	800
	Tipulidae	Hexatoma	0	10	20	0	20	0	Ô	-10	50	20	298
	Tipulidae	Holorusia	0	10	0	0	0	0	0	0	0	20	70
	Tipulidae	Limonia	0	10	0	0	20	ů 0	0	0	0	0	10
	Tipulidae	Tipula	0	0	20	0	20	0	0	0	0	60	90
	Tipulidae	Unknown	0	5	0	20	20	0	0	0	0	50	90
	Unknown-pupae	Unknown	60	250	190	93	20 60	0	0	0 240	0 75	0 170	45 1138

Abundance of Taxa in East Fork Lobster Creek

	Order	Family	Genus											
	(or other taxon)	(or other taxon)	(or other taxon)	BOUL	BWDE	GLCG	GLCO	GLGR	RABR	RARU	RICG	RICO	RIGR	TOTALS
	DIPTERA- BRACHYCERA	Empididae Tabanidae	Chelifera Chrysops	0 0	0 40	0 0	400 0	0 0	0 0	0 0	0	0	20	420
		Unknown- Orthorrhapha	Unknown TOTALS	0 353	0 5304	0 1032	0 2140	0 1713	0 479	0 120	20 1834	0 1144	20 1994	40 16113
GASTROPODA	PROSOBRANCHIA	Hydrobiidae Hydrobiidae Pleuroceridae	Hespericola Unknown Juga TOTALS	0 0 10 20	0 0 1 20	20 0 9 60	0 20 0 20	33 0 4 93	0 0 10 0	0 0 2 0	0 0 1 0	0 0 2 20	50 0 0 50	103 20 39 322
MALACOSTRACA	AMPHIPODA	Gammaridae	Gammaridae	0	0	0,	. 0	0	0	0	.0	0	60	60
HYDRACHNIDA	UNKNOWN	Unknown	Unknown	20	177	330	100	204	20	0	47	30	475	1403
COPEPODA	UNKNOWN	Unknown	Unknown	0	2	0	20	0	0	0	0	0	0	20

BOUL=Boulder, BWDE=Backwater pool/Depositional rea, GLCG=Glide over cobble-gravel, GLCO=Glide over cobble, GLGR=Glide over gravel, RABR=Rapid over bedrock, RARU=Rapid over rubble, RICG=Riffle over cobble-gravel, RIGR=Riffle over gravel.

APPENDIX III

ABUNDANCE BY HABITAT OF TAXA IN UPPER LOBSTER CREEK

Numbers are based on average densities/meter² from all habitat-types and sample intervals combined.

	ORDER (or other taxon)	Family (or other taxon)	Genus (or other taxon)	POII	DEBO	CL CO	LORO		_		
INSECTA	EPHEMEROPTERA	Baetidae	Raetis	BUUL	DEPO	GLCO	LOPO	LOWE	PLPO	RIGR	TOTALS
		Enhamonallidaa		0	0	124	45	370	120	147	806
		Ephemeterindae	Attenella	0	0	0	0	4	0	0	4
			Caudatella	0	0	20	0	70	0	0	90
			Drunella	0	0	0	0	18	0	0	18
			Eurylophella	0	0	60	91.25	15	60	õ	226
			Serratella	0	0	64	20	179	0	0	220
			Timpanoga	0	0	20	20	0	0	20	203
		Heptageniidae	Cinygmula	0	0	93	20	0	20	20	60
			Epeorus	0	Ô	126	20	12	20	100	233
			Ironodes	Õ	0	150	0	13	80	40	269
			Bidana	0	0	0	0	49	0	0	49
			Kunrogena	0	0	0	0	73	0	160	133
		• • • • • • • •	Unknown	0	0	0	0	0	60	0	60
		Leptophlebiidae	Paraleptophlebia	0	22	134	47	37	100	1247	1587
		Siphlonuridae	Ameletus	0	0	30	60	0	0	0	90
			TOTALS	0	22	681	303	828	440	1714	20
	ODONATA	Gomphidae	Octogomphus	0	15	40	26			1/14	3988
			0 1	Ū	.5	70	20	U	30	0	111

.

 (or other taxon)	Family (or other taxon)	Genus (or other taxon)	BOUL	DEPO	GLCO	LORO	LOWE	DI DO	DIGD	
PLECOPTERA	Chloroperlidae	Haploperla	0	0	58	LUFU	LOWE	PLPO	RIGR	TOTALS
		Sweltsa	ů 0	Ň	40	0	11	100	0	169
		Unknown 1	Ô	0	40	0	0	0	0	40
		Unknown 2	0	0	0	0	39	0	40	79
	Leuctridae	Unknown 2	0	0	0	0	22	0	0	22
	Nemouridae	Malaula	0	5	27	0	0	0	0	32
	remoundae	Malenka	0	10	104	20	53	0	20	207
		Zapada	0	0	540	20	24	20	120	724
	Peltoperlidae	Yoraperla	0	0	0	0	4	0	0	4
	Peltoperlidae	Unknown	0	0	0	0	16	0	0	16
	Perlidae	Calineuria	0	0	0	0	0	0	40	40
		Hesperoperla	0	0	0	0	0	0	60	40 60
		Unknown	20	0	0	0	0	0 0	0	00
	Perlodidae	Isoperla	0	10	20	0	1	0	0	20
		Skwala	0	5	80	20	12	0	0	34
		TOTALS	20	30	860	20	15	0	40	158
MEGALOPTERA	Sialidae	Sialis					186	120	320	1605
	-	0.4115	0	U	20	20	0	0	0	40

 ORDER (or other taxon)	Family (or other taxon)	Genus (or other taxon)	ROUI	DEDO	CLCO	LODO	Louis			
TRICHOPTERA	Brachycentridae	Micrasema	0		<u>GLCU</u>		LOWE	PLPO	RIGR	TOTALS
	Glossosomatidae	Glossosoma	0 0	0	20	20	128	0	20	188
	Hydropsychidae	Hydronsyche	0	0	0	0	0	0	20	20
		Paransyche	0	0	0	0	11	0	40	51
		Unknown	0	0	0	0	11	0	0	11
	Hydrontilidae		0	0	0	0	45	40	0	85
	Hydroptilidae	nyaropula Owtowicki	0	0	20	130	0	0	0	150
	Lapidostomatida-	Ormotrichia	0	0	0	90	0	0	0	90
	Lepidosiomatidae	Lepidostoma cascadense	0	30	0	0	0	0	0	30
		Lepidostoma unicolor	0	30	0	0	0	0	0	30
	Limnauhitit	Lepidostoma	0	25	130	137	11	1020	0	1323
	Linnephilidae	Apatania	0	0	40	10	0	0	0	50
		Dicosmoecus	0	0	110	0	0	0	0	110
		Hydatophylax hesperus	0	12	0	0	11	20	0	43
		Onocosmoecus unicolor	0	0	30	0	11	0	0	41
		Psychoglypha	0	27	0	43	0	0	0	70
	Rhyacophilidae	Rhyacophila	0	0	49	20	ů.	20	60	70
	Uenoidae	Neophylax	80	0	30	0	0	20	00	160
	Unknown	Unknown	0	15	0	Ő	0	20	0	130
		TOTALS	80	139	429	450	220	0	U	15
							239	1120	140	2597

ORDER (or other taxon)	Family (or other taxon)	Genus (or other taxon)	BOUL	DFPO	CLCO		LOWE	DI DO	bios	
COLEOPTERA	Dytiscidae	Unknown	0	0	0100	LUFU	LOWE	PLPO	RIGR	TOTALS
	Elmidae	Heterlimnius	0	17	49	50	22	20	0	20
		Narpus	0	0	20	0	33	720	40	909
		Optioservus	0	0	20 57	35	0	0	0	20
		Stenelmis	0	20	0	20	00	60	100	340
		Zaitzevia	0	0	33	20	0	0	0	40
		Unknown	0	13	103	04	22	0	0	33
	Hydraenidae	Hydraena	0	0	0	94	33	0	0	333
	Hydrophilidae	Unknown	ů 0	5	0	0	4	0	0	4
		TOTALS	0	55	352	100	159	0	0	5
COPEPODA	Unknown	Unknown						800	140	1905
			Ū	40	0	40	0	0	0	80
DIPTERA-Nematoce	era	<u></u>								
	Athericidae Ceratopogonidae	<i>Atherix</i> Culicoidinae	0	0 22	0	0 74	33	0	0	33
	Chironomidae	Chironomini	0	5	53	10	22	0	0	116
	Chironomidae	Orthocladiinae	ů 0	42	158	19	22	0	0	99
	Chironomidae	Tanypodinae	ů 0	0	130	90	884	0	0	1174
	Chironomidae	Tanytarsini	Ő	143	44	1474	120	103	0	267
	Chironomidae	Unknown	0 0	121	412	1474	33	0	0	2062
	Dixidae	Dira	0	121	197	927	182	220	20	1667
	Dixidae	Dixella	0	0	0	0	4	0	0	4
	Dixidae	Maringodiya	0	0	0	0	12	0	0	12
	Empididae	Chalifara	0	0	0	20	0	0	0	20
		Cheujera	0	5	20	0	22	0	0	47

	ORDER (or other taxon)	Family (or other taxon)	Genus (or other taxon)	ROUI	DEDO	CLCO	LORO	LOWE	DIRO		
	DIPTERA-Nematocera			DOOL	DEIO	GLU	LUPU	LOWE	PLPO	RIGR	TOTALS
	continued	Pelecorhynchidae	Glutops	0	0	0	28	0	0	0	28
		Psychodidae	Pericoma	0	0	90	131	0	120	0	20
		Ptychopteridae	Ptychoptera	0	10	20	20	Õ	0	0	341
		Simuliidae	Prosimulium	0	0	20	0	62	0	0	50
		Simuliidae	Unknown	20	0	0	0	250	20	0	82
		Tipulidae	Antocha	0	0	0	50	0	20	20	290
		Tipulidae	Dicranota	0	0	30	20	0	0	20	70
		Tipulidae	Limonia	0	0	20	0	ů 0	0	0	30
		Tipulidae	Pilaria	0	0	0	5	0	0	0	20
		Tipulidae	Tipula	0	0	0	40	0	0	0	40
		Tipulidae	Unknown	0	0	0	0	ů	0	0	40
		Unknown-pupae	Unknown	0	5	110	410	51	ů 0	0	576
	DIPTERA-Brachycera	Tabanidae	Chrysops	0	5	20	40	11	0	0	376
			TOTALS	20	353	1194	3308	1686	463	40	7064
GASTROPODA	PROSOBRANCHIA	Pleuroceridae	Juga	510	13	96	70	20	280	87	1076
										07	1070
BIVALVIA	PELECYPODA	Sphaeriidae	Pisidium	0	10	40	133.8	0	0	0	183
THIDD & OTTAINED									-		105
HYDRACHNIDA	UNKNOWN	Unknown	Unknown	0	52	100	229	15	40	0	436
MALAGOODDAGA										-	150
MALACOSTRACA	AMPHIPODA	Gammaridae	Unknown	0	0	20	0	0	0	0	20
										-	20

Abundance of Taxa in Upper Lobster Creek

BOUL=boulder, DEPO=depositional area, GLCO=glide over cobble, LOPO=log-weir pool, LOWE=log weir, PLPO=plunge pool, RIGR=riffle over gravel

.

APPENDIX IV

PROPORTIONS OF VARIOUS MACROINVERTEBRATE HABITAT-TYPES IN REFERENCE AND RESTORED REACHES, 1994-1995

·	REFE	RES	STORED	
REACH NO.	HABITATS- TYPES	PERCENT OF TOTAL HABITAT	HABITAT- TYPES	PERCENT OF TOTAL HABITAT
	_	MAY, 1994		
1	Boulder	10	Log-weir	5
	Riffle over cobble	25	Log-weir pool	85
	Riffle over cobble-gravel	15	Glide over cobble	5
	Glide over cobble-gravel	35	Rapid over rubble	3
	Backwater Pool/ Depositional Area	15	Riffle over gravel	2
		SEPTEMBER, 19	994	
1	Boulder	5	t	
•	Riffle over gravel	20	Log-weir	2
	Glide over cobble-gravel	20	Log weir pool	95
	Glide over gravel	15	Glide over cobble	3
	Backwater Pool/ Depositional Area	5		
		MAY, 1995		
1	Backwater Pool/Depositional Area	15	Log-weir	5
	Rapid over bedrock	10	Log-weir pool	50
	Riffle over cobble-gravel	10	Glide over cobble	40
	Glide over cobble-gravel	65	Depositional area	5
2	Riffle over cobble-gravel	90	Log-weir	5
	Glide over gravel	5	Log-weir pool	95
	Backwater Pool/Depositional Area	5		
3	Riffle over cobble-gravel	30	Log-weir	5
	Glide over cobble-gravel	60	Log-weir pool	50
	Backwater Pool/Depositional Area	10	Glide over cobble	45

Upper and East Forks Lobster Creek, Lane Co., OR. 1994-1995

PROPORTIONS OF VARIOUS HABITAT-TYPES

REFERENCE

RESTORED

REACH NO.	HABITATS- TYPES	PERCENT OF TOTAL HABITAT	HABITAT- TYPES	PERCENT OF TOTAL HABITAT
4	Riffle over cobble	60	Log-weir	5
	Glide over gravel	10	Log-weir pool	80
	Boulder	10	Glide over cobble	10
	Backwater Pool/ Depositional Area	20	Depositional area	5
5	Boulder	20	Log-weir	5
	Riffle ver cobble/gravel	65	Log-weir Pool	· 05
	Rapid over rubble	10		23
	Glide over gravel	5		
6	Riffle over cobble	40	Log-weir	5
	Riffle over gravel	5	Log-weir pool	5
	Glide over gravel	10	log won poor	95
	Glide over cobble	45		
7	Riffle over cobble	50	Log-weir	5
	Glide over cobble-gravel	30	Log-weir pool) 05
	Glide over gravel	15	Depositional area	5
	Backwater Pool/ Depositional Area	5	Glide over cobble-rubble	5
8	Glide over cobble	40	Log-weir	5
	Riffle over cobble	50	Log-weir pool	95
	Riffle over gravel	5	- F	25
	Glide over gravel	5		

SEPTEMBER, 1995

1	Glide over cobble-gravel Riffle over cobble-gravel Backwater Pool/ Depositional Area Glide over gravel	25 45 15 15	Log-weir-sidecut Log-weir pool Glide over cobble	0 60 40
2	Glide over cobble-gravel Riffle over gravel Backwater Pool/ Depositional Area	30 35 35	Log-weir Log-weir pool Glide over cobble	2 58 40

PROPORTIONS OF VARIOUS HABITAT-TYPES

REFERENCE

.

.

RESTORED

REACH NO.	HABITATS- TYPES	PERCENT OF TOTAL HABITAT	HABITAT- TYPES	PERCENT OF TOTAL HABITAT
3	Riffle over cobble	75	Log-weir pool	50
	Boulder	5	Glide over coble	40
	Backwater Pool Depositional Area	10		10
	Riffle over gravel	10		
4	Glide over cobble-gravel	90	Log-weir	2
	Riffle over gravel	10	Log-weir pool	50
			Glide over cobble	48
5	Riffle over cobble	70	Log-weir	2
	Rapid over rubble	10	Log weir pool	90
	Boulder	20	Glide over cobble	8
6	Riffle over cobble	50	Log-weir	2
	Riffle over gravel	15	Log-weir pool	48
	Backwater Pool/ Depositional Area	5		50
	Glide over cobble/gravel	30		
7	Glide over cobble-gravel	45	Log-weir	2
	Riffle over cobble-gravel	45	Log-weir pool	90
	Boulder	10	Glide over cobble	8
8	Riffle over cobble-gravel	50	Log-weir	2
	Glide over cobble-gravel	35	Log-weir pool	2 90
	Glide over gravel	15	Glide over cobble	8

APPENDIX V

LOCATIONS OF ARTIFICIAL AND NATURAL STUDY ALCOVES IN THE UPPER LOBSTER CREEK WATERSHED

.

 \bigstar = Locations of Natural Alcoves

APPENDIX VI

LOCATIONS OF RESTORED AND REFERENCE STUDY REACHES IN THE UPPER AND EAST FORK LOBSTER CREEK WATERSHEDS

APPENDIX VII

NOTES ON THE EFFECTS OF THE "FLOOD OF 1996" ON NATURAL AND ARTIFICIAL ALCOVES OF UPPER LOBSTER CREEK

During the week of February 2-9, record rainfall combined with rain-on-snow events throughout the Coast and Cascade Ranges resulted in extremely high flows in streams and rivers throughout northwestern coastal Oregon and in the Willamette Valley. Lobster Creek hydrographs for this period were not available from the U.S.G.S. by the time this thesis was going to press, but I thought it was important to at least include informal observations on the effects of this high flow event on the natural and artificial alcoves of Upper Lobster Creek. These observations were made during a visit to Upper Lobster Creek on February 24, 1996.

All of the natural alcoves in the lower study reaches (where Upper Lobster Cr. flows unconstrained through a wide valley) were elminated when the stream cut an entirely new channels adjacent to the old one. However, it appears that several new alcoves were formed in the vicinity. At the time of this visit, water was backing up into a few of the high-flow side channels remnant from the flood, and fish were observed in these pools.

The natural alcoves in the middle study reaches (4N and 5N) appeared unaffected by the flood. If anything, they were slightly deeper (possibly the result of high flows scouring the entrance and permitting greater surface flow from the stream channel into the alcove).

The first two artificial alcoves (1A and 2A) were substantially impacted by the high water levels. A tremendous quantity of fine sediment had been deposited by high flows

in these alcoves. These sediments were deep enough to completely cover the alder bundles and large conifer boles that had been placed in the artificial alcoves as cover for fish. At the time of this visit, average depths in these alcoves were only about 0.25 m, and surface interchange between the alcoves and stream channel was completely eliminated. The retention of sediments within the artificial alcoves (in contrast to the natural ones) was probably due to the lack of dynamic suface water exchange between artificial alcoves and the stream channel and the subsequent inability of the alcove to flush.

The fate of artificial alcove 3A is ironic because, of all the artificial alcoves monitored in this study, 3A appeared to be the best-designed alcove in terms of maintaining an intimate hydrologic connection to the stream channel, a consistently clear entrance, and substantial water depths throughout the year. The close association of 3A to the stream channel appeared to be its undoing, as high flows breached the upstream berm of this alcove and completely eliminated it. The alcove was replaced by a huge debris jam, measuring about 25 m wide and 200+ m long.

I was unable to view the other artificial alcoves in the watershed because the Lobster Creek road was blocked by downed trees.

The effects of the "Flood of 1996" on the natural and artificial alcoves of Upper Lobster Cr. highlight the fundamental differences in hydrologic function between natural and artificial alcoves. During the flood, natural alcoves were eliminated due to major channel changes in the wide valley where the natural alcoves were located; however, the dynamic nature of the channel in this area also facilitated the creation of new natural alcoves. In contrast, artificial alcoves were also eliminated but no new ones were created, either because the artificial ones were located along constrained reaches, where channel adjustments were not possible, or because insufficient surface connection to the stream channel prevented the flushing of the deposited sediments.