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To learn more about transcription in baculovirus-infected Spodoptera frugi-

perda cells (Sf9), the cDNA clone encoding the Sf9 TATA-binding protein (307

amino acids; 34 Kda) was isolated, sequenced and its expression in response to

baculovirus infection monitored. Northern analysis showed that SfTBP tran-

scription, like other host genes, was inhibited by baculovirus infection. Phyloge-

netic analysis indicated that TBP is a reasonable macromolecule to use to infer

phylogenetic relationships though it may be more informative within kingdoms

or phyla.

An in vitro transcription system, using nuclear extracts prepared from Sf9

cells at various times post-infection transcribed early, late and very late bac-

ulovirus gene promoters in a temporal manner similar to that seen during bac-

ulovirus infection. Nuclear extracts prepared at 16 hr p.i. were optimal for

baculovirus late gene transcription and contained SfTBP and AcMNPV IE-1, a

viral transactivator required for baculovirus DNA replication. Deletion analysis

of the baculovirus late promoter, vp39, identified a minimal late promoter but

failed to identify late promoter-specific DNA binding in gel retardation assays.

IE-1 was shown to specifically bind to the ie-2 and pe38 promoters and hrla,

one of eight regions in the AcMNPV genome that contains repeated imperfect

palindromes that function as transcriptional enhancers and origins of baculovirus
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replication. Comparison of the IE-1 binding sites revealed a putative IE-1 nu­

cleotide binding sequence, 5'ACBYGTAA-3'. 

Since palindromic DNA sequences can potentially form cruciform structures, 

the relationship between cruciform formation, IE-1 binding and hr transcrip­

tional activity was examined using twodimensional gel electrophoresis of topoi­

somers, nuclease P 1 , ,3 glucuronidase reporter gene and gel retardation assays. 

An altered 42bp hr palindrome containing no mismatches required 9.6 kcal/mole 

to form a cruciform whereas cruciform formation was not observed with the 42 

bp AcMNPV consensus hr palindrome. Both the consensus hr and the altered hr 

bound 1E-1 and functioned as enhancers of transcription equally well. The 42 

bp sequence AcMNPV consensus hr palindrome is the smallest DNA sequence 

reported to date that binds IE-1 and functions as an enhancer indicating that 

the 42bp encompassing the AcMNPV hr palindrome is all that is required for 

enhancer function. 
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Cis- and Trans-acting Sequences involved in Baculuovirus
 
Transcription and Replication
 

Chapter 1
 
Introduction
 

Baculoviruses are a diverse group of large double-stranded DNA viruses 

that infect holometabolus insects primarily of the order Lepidoptera [87]. Since 

some members of this insect order are economically important pests, the vir­

ulence of certain baculoviruses for specific insects has created interest in their 

use as biological pesticides (for review see [168]). More recently, interest in 

baculovirus biology has increased due to the development of baculovirus ex­

pression systems that produce large quantities of foreign proteins in insect cells 

(for review see [188, 13, 131, 227]). The major advantage of baculovirus ex­

pression systems over bacterial expression systems is the abundant expression 

of recombinant proteins that in many cases are functionally similar to their au­

thentic counterparts [188]. In addition, baculovirus expression systems produce 

large quantities of recombinant protein when compared to yeast and mammalian 

expression systems. Baculovirus expression systems utilize recombinant forms 

of the mostintensively studied baculovirus, Autographa californica multinucle­

ocapsid nuclear polyhedrosis virus (AcMNPV), which grows to high titer in 

Spodoptera frugiperda cells [13]. 

1.1 Baculovirus Structure 

Baculoviruses are characterized by enveloped, rod-shaped virions that contain 

covalently closed double-stranded viral DNA ranging in size from 88 to greater 

than 166 kbp [273, 7]. Within the genus Baculoviridae, morphologically distinct 

types of baculoviruses have been characterized. The occluded viruses consist 
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of the nuclear polyhedrosis viruses (NPVs), and the granulosis viruses (GVs). 

NPVs are composed of a viral nucleoprotein complex that is encased by capsid 

proteins forming the nucleocapsid. The nucleocapsid is surrounded by an enve­

lope and embedded in a crystalline structure composed primarily of the protein, 

polyhedrin. The occlusion bodies or polyhedra, protect the virions from a num­

ber of environment agents, and as a result, occluded viruses are very stable in 

the soil. NPVs have many virions occluded within each single crystal of polyhe­

dra. NPVs can be subdivided into SNPVs which contain a single nucleocapsid 

within an envelope, and MNPVs which have multiple nucleocapsids within a sin­

gle envelope. Granulosis viruses are similar in morphology to NPVs except that 

a single virion is occluded within a crystalline matrix composed of the protein, 

granulin. 

1.2 Baculovirus Infection Cycle 

The archetype baculovirus, Autographa californica multinucleocapsid nuclear 

polyhedrosis virus, (AcMNPV) infects at least 32 species of insects including 

Autographa californica or the alfalfa looper [128]. AcMNPV, and all other oc­

cluded baculoviruses, begin their infection cycle [87, 17] upon ingestion of the 

occluded viruses by a susceptible insect. Upon ingestion, the high pH of the 

midgut dissolves the polyhedra and releases infectious virions. The virions then 

fuse with the midgut epithelial cells releasing nucleocapsids into the cells. Once 

inside the cell, nucleocapsids are transported to the nucleus where uncoating ex­

poses the viral DNA to the host cell machinery. The viral DNA then undergoes 

a primary round of replication and the replicated DNA is packaged into progeny 

virions. The virions then bud through the nuclear membrane and travel through 

the cytoplasm to bud through the plasma membrane before being released into 

the tracheal system of the insect host [63, 143, 139]. The budded virus (BV) 

then infects many host cells producing a systemic infection resulting in a second 
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round of replication. 

Approximately 24 hours post-infection, a second viral phenotype, polyhe­

dra derived virus (PDV), is produced. The nucleocapsids produced at this time 

are enveloped de novo within the nucleus and occluded within polyhedra. The 

infection progresses producing large quantities of virus resulting in the death of 

the insect and subsequent release of occluded viruses (PDVs) into the environ­

ment. A typical baculovirus infection cycle is diagrammatically represented in 

Figure 1.1. 

1.3 Structural Components of Baculoviruses 

As described above, the infection of insect cells with a baculovirus results in 

the production of two viral phenotypes, BV and PDV, that have specific roles 

in baculovirus infection. The BV phenotype, produced early in infection, is 

responsible for the systemic spread of the infection within the insect. The PDVs, 

produced late in the infection cycle, are responsible for horizontal spread of 

the virus within an insect population. PDVs are capable of persisting in the 

environment for extended periods of time and therefore may be responsible for 

future disease outbreaks. 

PDVs and BVs are structurally distinct [313] containing both common and 

phenotype-specific virion components (see Figure 1.2). Their nucleocapsids ap­

pear to be identical whereas their envelopes are distinctly different. Nucleocap­

sids consist a viral DNA core that is complexed with a 6.9 kDA arginine-rich 

DNA binding protein [324, 267, 189]. The viral capsid surrounding the nu­

cleoprotein core is composed of at least two proteins of molecular weight 39 

(vp39) [238, 266, 16, 302] and 87 kDA (p87) [212]. 

Nucleocapsids from both BVs and PDVs are enveloped. In BVs, the en­

velopes are derived from the viral-modified plasma membrane of the insect cells 

which contains the viral protein, gp64 (gp67) [19]. gp64 appears to function as 
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NUCLEAR PORE 
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Polyhedra Derived 
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Figure 1.1. The Baculovirus Infection Cycle. This diagram is modified 
from [17]. 
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a pHdependent fusion protein [19, 204] facilitating BV entry into cells through 

endocytosis. PDVs are encased in polyhedrin, an alkalisoluble 29 kDa pro­

tein that forms the crystalline matrix surrounding the nucleocapsid (for review 

see [261]). Polyhedrin can represent up to 15% of the total coomassie stain­

able protein synthesized by baculovirus infected insects [247]. This high level 

of expression is the basis of the aforementioned baculovirus expression systems. 

Electron microscopy (EM) studies indicate that polyhedra are surrounded by 

electron dense envelope containing the polyhedron envelope protein [84, 321]. 

The p10 gene product is thought to be involved in the formation of extensive 

fibrillar structures found in the cytoplasm and nucleus of infected cells [309]. 

Williams et al. [323] have shown that deletion of the p10 gene resulted in the 

absence of the fibrillar structures and in the production of polyhedra that lacked 

or had fragmented polyhedron envelopes. Furthermore, in viral mutants that 

lack the p10 gene, polyhedra are fragile and have irregular pitted surfaces [89] 

suggesting that p10 may have a role in the stability of polyhedra. The structural 

components of the two viral phenotypes of baculoviruses are shown in Figure 1.2. 

1.4 Genome Organization 

Physical maps showing the cleavage sites of a variety of different restriction en­

donucleases for a number of baculoviruses including AcMNPV [310, 150], Born­

byx mori MNPV (BmMNPV) [190], and Orygia pseudotsugata MNPV (OpM-

NPV) [171, 35] have been constructed. Subsequent determination of the location 

and sequence of a number of baculovirus genes indicate that, although different 

baculoviruses have accumulated substantial sequence diversity, they are evolu­

tionarily related [17]. 

Numerous genotypic variants of AcMNPV are used in many laboratories but 

differ only slightly from one another [227]. Recently, the complete genomic se­

quence of clone 6 of AcMNPV has been determined [7]. Analysis of the complete 
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Baculovirus
 
Phenotypes
 

BV specific Common Virion PDV specific 
Components Components Components 

Peplomers 
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Viral 
DNA 

Polyhedral 
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Protein (p32-34) 
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Capsid Protein Virion envelope 
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Basic DNA 
Binding Protein 

(ODVE25, E56 
and E66) 

Polyhedrin(polh) 
(p6.9) 

Tegument 
(gp41) 

Budded Virus (BV) Polyhedra Derived Virus (PDV) 

Figure 1.2. Baculovirus Structural Components. The two baculovirus virion 
phenotypes are shown; shared and virionspecific components are indicated. 
This diagram is modified from [17]. 

sequence of AcMNPV indicates that the genome has the potential to encode 154 

methionineinitiated open reading frames (ORF)s of at least 150 nucleotides (50 

amino acids). These ORFs are distributed evenly throughout genome on either 

DNA strand and arranged as adjacent, nonoverlapping reading frames sepa­

rated by short intragenic regions [7]. There appears to be little or no clustering 

of functionallyrelated genes. For example, viral structural genes [7, 150] and 

viral genes required for replication [7, 150] are dispersed throughout the genome. 

However, three genes involved in early gene expression, ie-1, ie-2 and pe38 are 

located within 5 kb of one another [7, 150]. 

The AcMNPV genome encodes a number of nonessential genes; the in­

troduction of a null mutation into a viral gene that does not appear to affect 

the ability of the virus to replicate in tissue culture or insect hosts defines a 

nonessential gene. Nonessential genes are thought to confer growth advan­

tages to the virus under specific conditions that are not detected under standard 



7 

laboratory conditions such as alternate insect hosts, harsh field conditions or a 

particular cell or tissue type. 

A notable feature of the AcMNPV genome is the presence of eight related 

regions containing EcoR1 sites. These regions known as homologous regions or 

hrs contained two to eight copies of an imperfect palindrome each separated 

by less well conserved direct repeat elements [102, 7]. Originally identified by 

Cochran and Faulkner [47], who first suggested that hrs might function as origins 

of DNA replication, hrs appear to function as both enhancers for some early 

promoters [98, 102, 218] and as origins of replication (see section 1.7) [235, 149, 

152, 170]. 

1.5 Expression of Baculovirus Genes 

In baculovirus-infected insect cells, the expression of viral genes occurs in a 

temporally-controlled fashion resulting in a cascade of early, late and very late 

gene transcription. Expression of viral genes leading ultimately to the production 

and release of infectious baculoviruses occurs via an ordered cascade of events; 

each successive group of viral genes depends on the expression of a prior group 

for activation [64] (for review see [17, 262]). Most evidence suggests that the 

cascade is regulated at the level of transcription [17]. 

Transcription of baculovirus early genes begins before initiation of viral DNA 

replication and is mediated by the host RNA polymerase II transcription ma­

chinery [76, 122, 83]. Most early gene promoters contain a TATA-box; the 

common core-promoter element (consensus TATAAA) usually found between 

-25 and -30 relative to the start site of RNA polymerase II transcription in eu­

karyotic organisms. Transcription initiation usually occurs within the consensus 

sequence, CAGT [18, 15]. Analysis of a number of arthropod promoter elements 

indicate that the sequence element TCAGT is overrepresented [38] at the site 

of transcription initiation. The similarity of this sequence to those of vertebrate 
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initiators (Inrs) of the TdT and Adenovirus ML class [318] suggest that mecha­

nisms similar to RNA polymerase II transcription of TATA-less promoters may 

be used during baculovirus early transcription. 

1.5.1 The TATA-Binding Protein 

Transcription initiation by eukaryotic RNA polymerase II has been extensively 

studied (for review see [88, 336, 81, 50]). Chromatographic fractionation and bio­

chemical analysis of cell extracts have identified at least seven fractions required 

for transcription initiation. These fractions, termed TFIIA, TFIIB, TFIID, 

TFIIE, TFIIF, TFIIH and TFIIJ, contain a number of general transcription fac­

tors required for RNA polymerase II transcription initiation [336]. The TFIID 

fraction contains a polypeptide, the TATA-binding protein (TBP), that binds 

to the TATA-box [32, 25] (for review see [272, 88]). TBP and a number of other 

proteins termed TATA-binding protein associated factors (TAFs) [59, 245, 85] 

comprise the basal transcription factor, TFIID. RNA polymerase II transcrip­

tion initiation complexes at Drosophila promoters contain at least eight TAFs 

associated with TBP [36, 86, 59] and human transcription initiation complexes 

have at least ten TAFs associated with TBP [317, 146]. The binding of TBP and 

associated factors to the TATA-box is the first step in the assembly of an active 

RNA polymerase II transcription complex [25]. TFIID then interacts with a 

variety of other general transcription factors including TFIIA [163], TFIIB [43], 

the C-terminal domain of large subunit of RNA polymerase II [306], and the 

initiator binding factor (TFII-I) [137] (TFII-I may be the site-specific DNA 

binding component of the complex in TATA-less promoters) to form a func­

tional pre-initiation complex (for review see [336]). Transcriptional stimulation 

via the initiator requires TFIID [282] and it appears that TBP is directed to 

bind to the -30 region regardless of the sequence [337]. 

Recent evidence indicates that TBP is also required for RNA polymerase 
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I [48, 249, 49] and RNA polymerase III [281, 183, 114] transcription, suggest­

ing that TBP is an universal transcription factor (for review see [279, 320, 293]). 

RNA polymerase I transcription initiation complexes contain three polypeptides, 

TAF110, TAF63 and TAF48 that individually bind specifically to TBP to form 

the SL1 complex [49]. Efficient recognition and transcription of the ribosomal 

RNA promoter requires cooperative binding between SL1 and a second factor, 

UBF [8]. Another complex containing TBP and a different set of TAFs is respon­

sible for RNA polymerase III transcription initiation [114]. There appears to be 

a diverse set of TBP-TAFs complexes that are responsible for promoter-specific 

RNA polymerase selection (for review see [85, 279]). 

TFIID-promoter interactions may facilitate melting of the DNA helix re­

sulting in the formation of an open complex. Mizutani et al. [203] have shown 

that DNA supercoiling promotes the formation of the preinitiation complex on 

the fibrion gene promoter and order of addition experiments suggest that DNA 

supercoiling facilitates the binding of the TFIID fraction, presumably TBP, to 

the promoter suggesting that binding of TFIID may accompany local melting 

resulting in the formation of an open transcription complex. Co-crystallization 

of the TBP/TATA-box complex showed that the binding of TBP to DNA in­

troduces a 80 degree bend in the DNA molecule [140, 141, 34]. Mechanistically, 

DNA bending could allow the general transcription factors to form the necessary 

contacts to initiate transcription and/or may unwind the DNA duplex, thereby 

assisting in the formation of a an open transcription complex. 

1.5.2 TBP-interactions 

Interactions between TFIID and other proteins including viral regulators have 

been shown both genetically and biochemically. The TBP-containing TFIID 

fraction may be a major target for gene regulation. Recent evidence suggests 

that several of the TAFs may function as co-activators; TAF1/110 is required 
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for Sp1 activation [118] while TAF77150 is required for NTF-1 mediated acti­

vation [36]. Therefore, components of the TBP-TAF or holo-TFIID complex 

serve as an important targets for some promoter specific activator proteins of 

both viral and cellular origin. Cellular transcription factors that appear to in­

teract with holo-TFIID include ATF [124, 108], USF [271, 328, 202] and Gal 

4 [123] and the Retinoic Acid Receptor [9]. Viral transactivators, including ElA 

of Adenovirus[164], 1E2 and 1E86 of Cytomegalovirus [106, 134], Zta of Epstein-

Barr virus [180, 179], IE of pseudorabies virus [327, 1], VP16 and ICP4 of Herpes 

Simplex virus [290, 93, 85], have been shown to interact with proteins of the basic 

transcriptional machinery including TBP and associated TAFs. The acidic do­

main of the herpes simplex protein VP16 binds strongly and selectively to both 

the human and yeast TATA-box binding factor suggesting that the acidic do­

mains in transcription factors may be required for interaction with TFIID [290]. 

Mutations in the TATA sequences in the adenovirus early control region dra­

matically reduces inducibility by E1A [330]. In vitro studies with the immedi­

ate early protein of pseudorabies virus (PvRIE) indicate that PvRIE stimulates 

TFIID binding to promoter sequences during nucleosome assembly [327, 1]. This 

result suggests that trans-activating viral factors may increase the transcription 

rate of viral genes by increasing the rate and/or stability of TFIID binding 

under conditions of direct competition between nucleosome assembly and tran­

scriptional preinitiation complex formation in vivo. Alternatively, transactiva­

tors may interact with TFIID or other components of the basal transcriptional 

machinery [182, 43] to accelerate rate limiting steps in the formation of the pre-

initiation complex (reviewed in [336]). Finally, Adenovirus E1A has been shown 

to transactivate RNA polymerase III transcription apparently by altering the 

binding properties of TFIIIC [55] indicating that viral regulatory proteins may 

interact with a variety of RNA polymerase complexes. 
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1.5.3 Baculovirus Transactivators 

Baculovirus early genes are transcribed by uninfected insect cell nuclear ex­

tracts [122, 83] and require no viral gene products for expression when trans­

fected into insect cells [102]. The binding of TATA-binding protein to early 

gene promoters is likely to be the first event in the baculovirus transcriptional 

cascade. At this point, baculovirus transactivating factors may interact with 

TBP in a manner similar to the transactivating factors of the Herpes viruses. 

The level of transcription from baculovirus early gene promoters is modulated 

by viral transactivating factors which include immediate early gene, ie-1 [103], 

ie-O [156], ie -9 (formerly called ien) [29, 30, 334], and possibly pe38 [158]. The 

TATA sequence is sufficient to allow transactivation by IE-1 from a baculovirus 

early promoter suggesting interactions between TFIID and IE-1 [18]. In tran­

sient expression assays, the viral hr sequences function as enhancer elements 

to elevate the transcript levels of early genes [102, 98, 218, 28, 185]. Hrs have 

been shown to enhance expression of reporter genes under the control of bac­

ulovirus early promoters including those from the 39k [28, 102], p35 [218] and 

p143 [185] genes, by more than 1000-fold when linked in cis with the promoter 

and co-transfected with the baculovirus regulatory gene ie-1. 

Carson and coworkers [30] have shown that IE-1 may also function as a 

repressor of transcription. Comparison of the ie-1 sequence to the sequences of 

immediate early genes of other viruses revealed no significant similarities [103]. 

However, the deduced amino acid sequence of IE-1 protein indicates that it is 

highly charged and contains an acidic N-terminal region. Gel retardation assays 

have shown that whole-cell extracts from Sf9 cells transfected with the ie-1 gene 

contain protein(s) that bind to regions within hr5 [96, 97, 259]. Construction 

of N- and C-terminal deletion mutants indicated that IE-1 has at least two 

distinct regions: a N-terminal acidic domain necessary for transactivation and 

a C-terminal domain required for DNA binding [155]. Gel retardation analysis 
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with sequential N-terminal deletions of IE-1 resulted in the appearance of faster 

migrating complexes, suggesting that IE-1 is a component of the protein-DNA 

complex bound to hr5. Recently, it was shown that IE-1 is required for replica­

tion [187, 151, 148] (see section 1.7 below) and appears to have some sequence 

similarity with single-stranded DNA binding proteins [148]. 

1.6 Late and Very Late Gene Expression 

By definition, late genes are those genes transcribed at the same time or shortly 

after the initiation of viral DNA synthesis [302]. Late gene expression is de­

pendent on viral DNA replication and is inhibited when DNA replication is 

blocked by aphidicolin [73]. Concomitant with the initiation of viral DNA repli­

cation, is the appearance of an a-amanitin- and tagetoxin-resistant RNA poly­

merase [91, 82] responsible for the transcription of late, and the hyperexpressed 

late genes, p10 and polyhedrin (polh). This late RNA polymerase initiates tran­

scription within a late promoter element a/g/t/TAAG [261, 17] and has a unique 

subunit composition suggesting that it is a virally-encoded or a virus-modified 

host RNA polymerase [333]. During the late phase of viral transcription, steady-

state levels of several host nuclear transcripts including actin, histone H2A, 113, 

and 114 and heat shock protein 70, decrease [225]. The mechanism of inhibition 

of host RNA synthesis is not understood. However, reduction in the steady-state 

levels of host mRNA appears to require a late viral protein [225]. The inhibition 

of host cell mRNA synthesis has been extensively studied in poliovirus-infected 

cells. Dasgupta and co-workers [265, 45, 54] have shown that the mechanism of 

inhibition involves cleavage of the TBP by the 3C protease encoded by poliovirus. 

A number of baculovirus genes required for late and very late gene expression 

were identified by subtracting clones from an AcMNPV genomic library and 

assaying for the ability to transactivate late or very late promoter-containing 

reporter plasmids in transient expression assays [232]. This assay has lead to 
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the identification of eighteen genes involved in late and very late gene expression 

including ie-1, ie-2, lef-2, lef-1, lef-3, lef-4, lef-5, p143, lef-6, lef-7, lef-8, lef­

9, lef-10, lef-11, p47, p35, 39K, lef-9, lef-10 and dnapol [186, 232, 230, 231, 

177, 233, 234, 303, 208]. Some of these genes have been shown to be essential 

for replication while others appear to be required for late and very late gene 

expression (see section 1.7) [187, 148, 151]. 

Several of the genes identified using the subtraction transient-expression 

assay were previously also identified using temperature-sensitive (ts) viral mu­

tants. Characterization of viral ts mutants in the p47 [31], and ie-1 [256] genes 

indicated that these genes were involved in regulating viral gene expression late 

in infection while p143 [184] was defective in viral DNA replication. 

Hyperexpressed late genes are those genes whose transcript levels increase 

and remain high even after the levels of expression of other late genes de­

creases [16]. These very late genes, p10 and polh are unique to baculoviruses, 

having extremely abundant transcripts resulting in abundant production of the 

protein product. Cis-acting elements of late and very late promoters have been 

characterized by mutational analysis. Linker scanning analysis of the vp39 late 

and the polh very late baculovirus promoters indicate that the sequence TAAG 

(where transcription initiates) is essential for promoter activity [226, 206, 251]. 

Additionally, the vp39 promoter requires 8 by upstream and 6 by downstream of 

the TAAG sequence to maintain regulation [206]. However, polh expression re­

quires the region encompassing 50 by upstream from the TAAG transcriptional 

initiation site to the translation initiation codon indicating that the untranslated 

leader of polh transcripts is necessary for hyperexpression [226]. Characteriza­

tion of the p10 promoter region suggested that although the requirement for the 

TAAG transcription initiation site is similar, competition experiments and sub­

tle differences in timing of expression indicate the regulation of p10 may differ 

from polh [33, 260, 307]. 



14 

In addition to characterizing the cis-acting promoter elements, several fac­

tors involved in very late gene expression have been identified. A very late 

expression factor, v/f-/, that regulates the expression of both the polyhedrin 

and to lesser extent the p10 gene [199] was identified by characterizing a vi­

ral is mutant. The deduced amino acid sequence of vlf-1 had two regions that 

showed some sequence similarity to integrases and resolvases [199]. Gel retarda­

tion assays using nuclear extracts from AcMNPV-infected cells have identified 

a 30-kDa phoshorylated host-encoded protein that binds to the hexanucleotide 

sequence AATAAA immediately upstream of the TAAG transcription initiation 

site [26]. These proteins and others may be involved in the regulation of bac­

ulovirus very late gene expression. 

1.7 Viral DNA Replication 

Baculovirus origins of replication have been identified from examination of defec­

tive interfering particles (DIs) and by infection-dependent transient replication 

assays (for review of baculovirus replication see [147]). Undiluted serial passage 

of AcMNPV in insect cells results in the production defective interfering parti­

cles containing viral genomes with large deletions. Presumably, the cis-acting 

sequences necessary for DNA replication and packaging are retained in these 

particles. The presence of supermolar EcoRI fragments that hybridized to re­

gions containing the hr sequences [149] suggested that hrs function as origins of 

replication. However, in other studies using DIs, Lee and Krell [166, 165] found 

multiple repeats of a non-hr containing sequence from the HindIII-K region; this 

sequence contained many unusual features including direct and inverted repeats 

and imperfect palindromic sequences. 

A Dpnl assay [239] was used to test the ability of cloned baculovirus se­

quences to undergo replication when transfected into infected insect cells [235, 

149, 152, 237, 5, 236]. Experiments using AcMNPV DNA indicated that plas­
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mids containing hrs are capable of replication. The AcMNPV genome contains 

seven hrs (hrl, hrla, hr2, hr3, hr4a, hr4b and hr5 that are distributed through­

out the viral genome. Each of the hrs contains two to eight 30-bp imperfect 

palindromes with naturally occurring EcoR1 sites at their cores [7, 102, 98]. An 

eighth hr containing a single palindrome that lacks the EcoR1 site has recently 

been reported but has not been functionally characterized [7]. The relative lev­

els of replication appear to be independent of the number of palindromes [170] 

but deletion of palindromes within an hr has been shown to affect replication 

efficiency [235]. 

Sequences similar to the AcMNPV hrs have been found in a number of other 

baculoviruses including BmNPV [191], Choristoneura fumiferana MNPV [161], 

OpMNPV [300] and Lymantria dispar MNPV (LdMNPV) [237]. One of the 

OpMNPV hrs has been shown to act as an enhancer [300] and function as a 

replication origin when linked to flanking sequences [5]. Two of the LdMNPV 

hrs functioned as origin of replication when linked to a second AT-rich domain 

that contains a 6-10 by NruI-containing palindrome [237]. Taken together, 

these experiments suggest that palindromic sequences may function as origins of 

replication in a number of baculoviruses. 

In order to identify the baculovirus genes involved in replication, overlapping 

cosmid clones representing the entire genome were transfected together with an 

origin-containing reporter plasmid into uninfected insect cells [151, 148, 2, 187]. 

Kool et al. [148] showed that lef-1, lef-2, p143, lef-3, ie-1, and dnapol were 

essential while p35, ie-2 and pe38 were stimulatory. In another study, Lu and 

Miller [187] showed that lef-1, lef-2, p143, lef-3, ie-1, and p-35 were essential 

while lef-7, ie-2 and dnapol were stimulatory. The differences in these results 

may reflect the different assay conditions; under certain conditions host-encoded 

functions may act in combination with the supplied baculovirus genes to replicate 

the reporter plasmid to detectable levels. 
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Functions have been ascribed to several of the gene products identified as 

essential or stimulatory for baculovirus replication. A number of baculoviruses 

have been shown to encode a DNA polymerase gene, dnapol, that shares the 

common sequence motifs that are conserved within polymerases [14, 304, 52]. 

p143 contains an NTP binding site and DNA/RNA unwinding motifs that are 

often associated with helicases [184]. The ie-1 gene product has been shown to 

function as a transactivator [102, 98, 218, 28, 185], bind to hrs [96, 97, 169], and 

contain a single-stranded DNA binding motif [148], suggesting that IE-1 is an 

origin binding protein. Lef-1, lef-2, and lef-3, were originally characterized as 

activators of late gene expression [230, 232, 177]. However, recent investigations 

suggest that these gene are directly involved in replication although the func­

tions of lef-1 and lef-2 are unknown [187, 148, 2]. Lef-3 has been shown by 

functional assays to encode a single-stranded DNA binding protein [109]. The 

p35 gene product likely functions to inhibit apoptosis [46] while ie-2 and pe38 

may stimulate expression of baculovirus replication genes. Lastly, lef-7, con­

tains two single-stranded DNA binding motifs and has 21% sequence similarity 

to the HSV-1 UL 29 gene that encodes a single-stranded DNA binding protein 

suggesting that lef-7 is a single-stranded DNA binding protein. 

1.8 Objectives 

To learn more about the processes of transcription in baculovirus-infected in­

sect cells, a host-encoded DNA binding protein, the TATA-binding protein, was 

isolated, sequenced and its expression in response to baculovirus infection char­

acterized. Deletions of a baculovirus late gene promoter, the vp39 promoter, were 

constructed to determine the minimal sequence necessary for late expression us­

ing an in vitro transcription system. The minimal late sequence was then used 

in gel-retardation assays in an attempt to isolate DNA-binding proteins specific 

for baculovirus late promoters. The DNA-binding activities of the baculovirus­
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encoded protein, IEI, was investigated. The specificity and structure of the 

DNA sequence that binds IE-1 was also characterized. 
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Chapter 2
 
Materials and Methods
 

2.1 Molecular Biology Products 

Nucleotides were purchased from Pharmacia Biotech Inc. (Alameda, CA) or 

Boehringer Manneheim (Indianapolis, ID). DNA and RNA modifying enzymes 

and restriction endonucleases were purchased from GIBCO-BRL (Gaithersberg, 

MD), New England Biolabs (Beverly, MA) and Promega Corporation (Madison, 

WI). Radio labeled nucleotides were purchased from DuPont NEN (Wilmington, 

DE). 

2.2 Chemical Reagents 

Chemicals were purchased from Sigma Chemical Company (St. Louis, MO), 

Fisher Scientific (Pittsburgh, PA), Bio-Rad Laboratories (Richmond, CA) and 

J.T. Baker Chemical Company (Phillipsburg, NJ). Bacto-agar, Bacto-yeast ex­

tract and Bacto-tryptone were purchased from Difco Laboratories (Detroit, MI). 

4-MUB-I3-D-Glucuronide was purchased from New Jersey Lab and Glove Sup­

ply (Livingston, NJ). 

2.3 Virus and Cell Culture 

Spodoptera frugiperda cells (Sf9, ATCC CRL 1711) were grown to density of 

2 x106 cells/ml in 75 or 150 ml of serum-free Sf900II medium (GIBCO-BRL) 

in 250 or 500 ml sterile disposable Erlenmeyer flasks (Corning) on an orbital 

shaker (VWR Scientific model 2001) at 135 rpm. Sf9 cells were also grown 

in monolayers in TMN-FH medium [284] supplemented with 10% fetal bovine 

serum (FBS), penicillin G (50 13/m1), streptomycin (50 pg /ml) and fungizone 

(Amphotericin B 375 ng/ml) in T-75 or T-150 canted-neck flasks (Corning). 
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Lymantria dispar cells (Ld652-Y) [248] were grown in monolayers in TMN-FH 

media to mid-log densities of 2-3 x106 cells/ml. Both cell types were incubated 

in a VWR Scientific model 2020 incubator at 27°C without CO2. 

Sf9 cells were infected with AcMNPV (E-2 strain) [284] obtained from Dr. 

Loy Volkman. Ld652-Y cells were infected with the OpMNPV isolate described 

by Leisy et al. [172]. 

2.4 Growth and Infection for Time-Course Experiments 

Sf9 cells [295] grown in serum-free Sf900II medium (GIBCO-BRL) to density of 

2 x106 cells/ml and harvested by centrifugation at 1500 rpm as described [83], or 

infected with AcMNPV at a multiplicity of infection (moi) of 10 and harvested 

as above at the appropriate times post-infection (p.i.). Lymantria dispar cells 

(Ld652-Y) were grown in monolayers in TMN-FH media to mid-log densities of 

2-3 x106 cells/ml or infected with OpMNPV at a moi of 10 and harvested at the 

appropriate times p.i. Both uninfected and infected Sf9 and Ld652-Y cells were 

then frozen in liquid nitrogen and stored at -80°C until the cells were subjected 

DNA (section 2.13), RNA (section 2.14) or protein (section 2.15) extraction 

procedures. 

2.5 Sf9 cDNA Library 

A Sf9 unidirectional prokaryotic-expression cDNA plasmid library, constructed 

in pCDNAII using size-selected Sf9 mRNA, was purchased from Invitrogen. 

2.6 Monoclonal and Polyclonal Antibodies 

Monoclonal antibodies, 58C9 and 16E8, made against the highly conserved C-

terminal domain of TBP from Drosophila melanogaster, were a generous gift from 

Dr. Robert Weinzierl. IE-1 polyclonal antibodies were a generous gift from Dr. 
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Plasmid Name Vector Gene Promoter Insert Size Source 

pCR1 pKS- AcMNPV 39k 384 by CR 
pCR2 pKS- AcMNPV 39k 375 by CR 
pCR3 pKS- AcMNPV vp39 479 by CR 
pCR4 pKS- AcMNPV vp39 479 by CR 
pCR5 pKS- AcMNPV vp39 191 by CR 
pCR5 deletions pKS- AcMNPV vp39 see Chapter 5 CR 
PCR6 pKS- AcMNPV vp39 396 by CR 
PCR7 pKS- AcMNPV vp39 24 by CR 
PCR7-M pKS- AcMNPV vp39 24 by CR 
PCR8 pKS- AcMNPV p10 500 by CR 
PCR9 pKS- AcMNPV p10 380 by CR 
pCG19A pBS- OpMNPV p26 by CHG 
pAcIE-1 pBS- AcMNPV ie-1 2100 by LAG 
pBG1 pKS- AcMNPV 39K 1000 by BG 
pBG30 pKS- AcMNPV vp39 500 by BG 

Table 2.1. AcMNPV and OpMNPV Promoter Constructs. Sources of the plas­
mids were: CR, Charlotte Rasmussen; CHG, Christian H. Gross; BG; Barbara 
Glocker; LAG, Linda A. Guarino (Texas A and M University). 

Claude Delsert [223]. OpMNPV polyhedrin rabbit polyclonal antibodies are 

described elsewhere [263]. 

2.7 Construction of Plasmids used in this Study 

The AcMNPV fragments used for plasmid construction were derived from an 

AcMNPV-plasmid library obtained from the laboratory of Dr. M. D. Sum­

mers. The OpMNPV restriction fragments used for plasmid construction were 

derived from an OpMNPV-cosmid library [171]. The AcMNPV and OpMNPV 

promoter-containing constructs are listed in Table 2.1. 

The hrla derivatives and OpE-derived constructs are listed in Table 2.2. 

The construction of several of these vectors is described below. The AcMNPV 

and OpMNPV gene constructs used in this study are described in Table 2.3. 

pBKS-(-Eco), a pBKS- vector which had the polylinker EcoRI site de­
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stroyed (obtained from Dr. D. Leisy) was used to construct the hrla deriva­

tive clones. pHrla was constructed by isolating the 397 by AccI fragment from 

pHdN containing the hrla region, treating it with T4 DNA polymerase to make 

it blunt-ended, and cloning it into Smal- digested pBKS-(-Eco); pHr10Eco, 

containing one complete palindrome (the left half of the left palindrome lig­

ated to the right half of the right palindrome), was constructed by digestion 

of pHrla with EcoR1 and religation; pHrlaAEcoFI (four base duplication) and 

pHrla.AEcoCB (four base deletion) were constructed by digesting pHrlaAEco 

with EcoR1 and filling in the recessed 3'-termini with the large fragment of DNA 

polymerase I (Klenow) or removal of the protuding 5'-termini with S1 nuclease, 

respectively, before religation. All clones containing mutations within the hrla 

region were confirmed by DNA sequence analysis. 

The 0-glucuronidase (GUS) reporter vector, p39KGUSp118, was used for 

measuring the enhancer effects of DNA fragments cloned into this plasmid. It 

was constructed by Dr. Douglas Leisy from p10-GUS-1- [89] and pHR39k [83] as 

follows: p10 -GUS+ was digested with BamHI and the 5'-overhangs were end-

filled using T4 DNA polymerase, followed by digestion with HindHI, and the 

plasmid pHR39k was digested with Sad, the 3'-overhangs were removed with 

T4 DNA polymerase and then the DNA was then digested with HindIII. The 

5.2-kb BamHI-HindIII fragment from p10 -GUS+, which contains the GUS gene, 

the 3'-end of the OpMNPV p10 gene and flanking region, and the pBluescribe 

(Stratagene, Inc.) vector, was ligated with the 1-kb 39K promoter-containing 

SacI-HindIII fragment from pHR39k to form p39KGUS. To obtain a set of re­

striction sites useful for subsequent subcloning of DNA fragments into the above 

described plasmid, the 1-kb ScaI-HindIII fragment of pUC18, which contains the 

complete pUC18 polylinker, was used to replace the 1-kb ScaI-HindIII fragment 

of p39KGUS, forming p39KGUSp118. 
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Plasmid Name Vector Insert Number of Insert Source 
Palindromes Size 

pHrla or pKSE-Acc3-1 
pCR-11 or pHrZiEcoFI 
pCR-12 or pHrlaZIEco 
pCR-12AT4 
pCR-12AS1 or pHrlaZiEco.5RB 
pCR-12BT4 
pCR-12BS1 or pHrlaZiEco.5LB 
pCR-13 or pHrla.AEcoCB 
pCR-14a 
pCR-14b 
pCR-14b30E or pHrlaLiEco21L 
pCR-14a7510 
pCR-14a906 
pCR-14a9011 or pHrlaAEco18R 
pHr1aGUS 
pCR-15 or pHrlthEcoGUS 
pCR-16 
pCR-17b30E 
pCR-18-1 
pCR-18-2 
pCR-18-3 
pCR-18-4 
pCR-20 or pHrIRGUS 
pCR-SAB 
pCR-SCD 
pCR-HAB 
pCR-HCD 
pOPE-NB 
pOPE-EN 
pHr-imperfect 
pHr-perfect 
pKS-F 
pHr-imperfectGUS 
pHr-perfectGUS 

pKS­
pKS­
pKS­
pKS­
pKS­
pKS­
pKS­
pKS­
pks­

pks­
pKS­
pKS­
pKS­
pKS­
p39KGUSpI18 
p39KGUSpI18 
pKS-P+Sal 
pSK­
pKS­
pKS­
pKS­
pKS­
p39KGUSI18 
pKS­
pKS-
pKS-P+Sal 
pKS -P +Sal 
pKS­
pKS­
pKS­
pKS­
pKS­
p39KGUSI18 
p30KGUSI18 

hrla 
hrla 
hrla 
hrla 
hrla 
hrla 
hrla 
hrla 
hrla 
hrla 
hrla 
hrla 
hrla 
hrla 
hrla 
hrla 
0 
hrla 
hrla 
hrla 
hrla 
hrla 
hrl a 
perfect 
consensus 
perfect 
consensus 
OpE 
OpE 
consensus 
perfect 
none 
consensus 
perfect 

2 
1 

1 

1/2 
1/2 
1/2 
1/2 
1 

1 

1 

1 

1 

1 

1 

2 
1 

0 
1 

2 x 1/2 
1 + 2 x 1/2 
2 + 2 x1/2 
3 + 2 x 1/2 
2 x 1/2 
1 

1 

1 

1 

2 1/2 
8 
1 

1 

none 
1 

1 

397 by 
316 by 
313 by 
237 by 
233 by 
76 by 
71 by 
305 by 
321 by 
321 by 
251 by 
118 by 
109 by 
99 by 
397 by 
313 by 
6 by 
251 by 
92 by 
184 by 
276 by 
368 by 
92 by 
42 by 
42 by 
42 by 
42 by 
170 by 
580 by 
42 by 
42 by 
-40 by 
42 by 
42 by 

DJL 
CR 
CR 
JTE 
JTE 
JTE 
JTE 
CR 
CR 
CR 
CR 
CR 
CR 
CR 
DJL 
CR 
CR 
DJL 
CR 
CR 
CR 
CR 
CR 
CR 
CR 
CR 
CR 
DJL 
DJL 
CR 
CR 
CR 
CR 
CR 

Table 2.2. AcMNPV and OpMNPV Origin Constructs. Sources of the plasmids 
include: CR, Charlotte Rasmussen; JTE, Jay T. Evans and DJL, Douglas J. 
Leisy 
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Plasmid Name Vector Gene Source 

Repl pKS­ lef-1 DJL 
Rep2 pKS­ lef-2 DJL 
Rep3 pKS­ lef-3 DJL 
Rep4 pKS­ dnapol CHA 
Rep5 pBS­ p143 CHA 
Rep6 or pAcIE-1 pKS-F ie-1 DJL 
Rep7 pKS­ p35 DJL 
Rep8 pKS-F ie-2 DJL 
Rep9 pKS­ pe38 DJL 
pOpIE1 pBS­ ie-1 CHA 
pOpIE2 pBS­ ie-2 CHA 

Table 2.3. Replication Gene Constructs. Source of plasmid constructs include: 
DJL, Douglas J. Leisy and CHA, Christian H. Ahrens 

2.8 Propagation of Plasmids in Bacteria 

Plasmids were propagated in E. coil strain DH5a. Competent DH5a cells were 

prepared as described by the calcium chloride [269] or the rubidium chloride 

method [192] and transformed as described by Sambrook et al. [269]. 

2.9 Isolation of Plasmid DNA from Bacteria 

Plasmids were isolated from DH5a using either the rapid-boiling method [121], 

alkaline-lysis procedure [12], cesium chloride (CsC1) centrifugation [269], poly­

ethylene glycol (PEG) precipitation [216] or on Qiagen columns (Qiagen, Inc.) 

depending on the amount of supercoiled plasmid required and the level of con­

tamination by chromosomal DNA, RNA and proteins that could be tolerated 

in subsequent manipulations. Generally, the rapid-boiling method was used 

without further purification to screen for plasmid constructs during cloning pro­

cedures. Alkaline-lysis preparations were used to prepare plasmid DNA for 

sequencing reactions. Both CsC1 centrifugation and Qiagen columns were used 
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to isolate highlypurified supercoiled plasmid DNA for in vitro transcription 

reactions and transfections. 

2.10 Polymerase Chain Reaction (PCR) Amplification 

PCR was performed using 1µg of DNA isolated using the alkalinelysis proce­

dure (see section 2.9) from the pCDNA II plasmid library that had been amplified 

in liquid culture. The pCDNA II plasmid library was amplified by addition of 

200 pl of the pCDNA II library glycerol stock (1.0 x 1010 colonies/ml) to 500 

ml of LB Broth (10 g Bactotryptone, 5 g Bactoyeast and 10 g NaC1 per litre) 

containing 50pg /ml ampicillin followed by incubation on an orbital shaker at 

37°C for 6 hours. A typical 100 pl PCR reaction contained 100pM of each de­

oxynucleotide triphosphate, 10pg of each primer, 10 mM TrisHC1 [pH 9.0 at 

25°C b 50 mM KC1, 1.5 mM MgC12, .01% gelatin (w/v), 0.1% Triton X-100 and 

3 units of AmpliTaq DNA polymerase (PerkinElmer). DNA amplification was 

achieved by 35 cycles of denaturation at 95°C for 1 min, primer annealing at 

48°C for 1 min, and extension at 70°C for 1 min. 

The sequence of the degenerate primers that yielded specific amplified prod­

uct were: primer 1, 5'-ATAGGATCCAAYGCNGARTAYAAYCCNAA-3', and primer 

2, 5'-ATAGGAACCNCCNACCATRTTYTGDATYTT-3' (see Figure 3.3). Primers 

were chosen by alignment of the conserved carboxyterminal region of previously 

determined TBP sequences, determination of small conserved regions containing 

amino acids with few synonyms and utilizing Drosophila codon biases. The 216 

by amplified fragment was cloned into the Smal restriction endonuclease site of 

the vector pBS (Stratagene). 
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2.11 Colony Hybridization 

Approximately 2.5 x105 recombinants from the Sf9 pcDNAII library were screened 

using a colony hybridization protocol [92] modified by Dr. I. Rajagopal (per­

sonal communication). Briefly, bacterial colonies were allowed to grow to the 

size of pinheads, usually 6-8 hr, at 37°C on YT (8 g Bactotryptone, 5 g Bacto 

yeast, 5 g NaC1, 20 g agar per litre) medium. The plates were incubated at 

4°C for 2-12 hr and then marked with asymmetric dots before a circular nylon 

membrane (MSI) was situated on the plate. The membranes were marked with 

a needle point corresponding to the asymmetric dots and lifted off the plate 

and positioned on a fresh plate (colony side up). The colonies were allowed to 

grow on the membrane to the size of small pinheads (up to 4 hr) before lysis. 

Four to six ml of 0.5 M NaOH /1.5 M NaC1 was placed on plastic wrap and the 

membrane placed on top (colony side up) for 7-9 min. The membranes were 

neutralized by 2 successive transfers to 0.5M Tris-HC1 [pH 7.4]/ 1.5 M NaC1 

for 5-7 min. Bacterial debris was removed from the membranes by immersion 

and gentle rocking in wash solution (0.1 M LiC1, 67% ethanol, 0.03 M TrisHC1 

[pH 7.4]). Membranes were air dried and then either baked in a vacuum oven 

at 80°C for 1-2 hr or UV crosslinked using UV Strata linker 1800 (Stratagene, 

Inc.). 

Prehybridization and hybridization with a 32Plabeled riboprobe [90] made 

from the clone containing the 216 by PCR product (see section 2.10) were per­

formed as described in section 2.14 below. Positive clones were rescreened a 

second and third time. 
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2.12	 Unidirectional Digestion with Exonuclease III in DNA Sequence 

Analysis 

The clone containing the TBP cDNA sequence, pSfTBP, was digested with the 

restriction endonucleases, KpnI and BarnHI and then incubated with exonuclease 

III to produce a unidirectional set of nested deletions [113]. A nested set of 

deletions in the opposite direction was created by digestion with ApaI and XhoI 

followed by treatment with exonuclease III. 

Exonuclease III was used to create 5' and 3' deletions of one of the vp39 late 

promoter region. pCR5 was digested with ApaI and XhoI to delete from the 5' 

end of the proximal ATAAG and SstI and XbaI were used to delete from the 3' 

region. 

Subsequent double-stranded dideoxy sequencing [305] of the exonuclease III 

generated deletion clones was carried out using Sequenase (United States Bio­

chemical) or Taq polymerase (Promega) sequencing kits as per manufacturer's 

instructions. Typically, 200-300 nucleotides could be sequenced using Taq poly­

merase while 150-200 nucleotides could be determined using Sequenase. 

2.13	 Southern Analysis 

Extraction of genomic Sf9 DNA was performed as described by Summers and 

Smith [295]. Southern analysis was performed as follows. Restriction endonucle­

ase-digested genomic DNA was electrophoresed on a 1% agarose gel in 1 X TBE 

(89 mM Tris-borate, 89 mM boric acid and 2 mM EDTA) buffer and blotted 

to a Gene Screen Plus membrane (Dupont) in 10 X SSC (1.5M NaC1, 0.15M 

sodium citrate). A restriction fragment containing the full-length SfTBP cDNA 

sequence was radioactively labeled [65]. Prehybridization was carried out in 0.25 

M NaHPO4 [pH 7.2], 7% NaDodSO4 and 100pg /ml of salmon sperm DNA at 

65°C for 3 hrs to 6 hrs [44]. 1-2 x 106 cpm per ml of radiolabeled probe was 
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added to the prehybridization solution and hybridization was carried out for 12­

16 hrs at 65°C . Both high and low stringency blots were initially washed with 

2 X SSC and 1% SDS at room temperature for 15 min. Blots were then washed 

at 65°C for 30 min in 0.2 X SSC, 0.1% SDS (high stringency) or at 42°C for 30 

min (low stringency). Autoradiograms were prepared using Kodak XAR-5 film 

and Dupont intensifying screens. 

2.14 Northern Analysis 

RNA was isolated from uninfected and AcMNPV-infected Sf9 cells by the guani­

dine isothiocyanate-cesium chloride method [40]. Total RNA was resolved by 

electrophoresis through 1.2% agarose-formaldehyde gels and transferred to a 

Gene Screen Plus membrane (Dupont) as described [269]. The BRL 1 kb DNA 

ladder was end-labeled with a--32P-dATP [269] and 100,000 cpm were elec­

trophoresed adjacent to the RNA samples. Strand-specific cRNA (riboprobes) 

complementary to the open reading frame of the gene of interest (see Figure 

legends) were made as described [90]. Prehybridization and hybridization con­

ditions were identical to those described for Southern analysis (see section 2.13). 

Following hybridization, membranes were then washed once with 2 X SSC, 1% 

SDS at room temperature for 15 min and once with 0.2 X SSC, 0.1% SDS at 

65°C for 20 min. Autoradiograms were prepared as described above (see sec­

tion 2.13). 

2.15 Western Blot Analysis 

Protein extraction and western blot analysis of total protein isolated from un­

infected and infected insect cells was performed as described [248]. 4.0 x104 

cell equivalents of protein was loaded per lane, electrophoresed, and blotted. 

An identical gel stained with Coomassie brilliant blue showed the typical pat­
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tern of protein expression seen during both AcMNPV infection of Sf9 cells and 

OpMNPV infection of Ld652-Y cells. 

2.16 Phylogenetic Analysis 

Phylogenetic analysis was performed using the Genetic Data Environment (GDE). 

Alignments of the carboxy-terminal amino acids of TBP were generated using 

clustal protein alignment [115]. Phylogenetic relationships were inferred by a 

distance-matrix method [296] using a Sun 6/670 computer and the treetool pro­

gram. 

2.17 Nuclear Extract Preparation 

Nuclear extracts were prepared from uninfected or AcMNPV-infected Sf9 cells 

at as described by Glocker et al. [82] with minor modifications. Sf9 cells were 

harvested by centrifugation for 7 min at 1500 rpm in a Beckman GP centrifuge 

at room temperature. All subsequent steps where carried out at 4°C . The 

harvested Sf9 cells were resuspended in 4 packed-cell volumes of Buffer A (10 

mM Tris-HC1 [pH 7.9], 1.5 mM MgC12, 10 mM KC1, 0.5 mM DTT), incubated 

on ice for 10 min and then lysed by 10 strokes of a Kontes homogenizer (B 

pestle). Nuclei were pelleted by low-speed centrifugation (1/2 speed in a clinical 

centrifuge) and resuspended in 1 nuclear-pellet volume of a 9:1 mixture of Buffer 

C (20 mM Tris-HC1 [pH 7.9], 25% glycerol, 420 mM NaCl, 1.5 mM MgC12, 

0.2 mM EDTA, 0.5 mM DTT) and a saturated solution of (NH4)2SO4. The 

nuclei were lysed with 15 strokes of a Kontes homogenizer (B pestle), transferred 

to ultracentrifugation tubes and rocked slowly (1/2 speed on Hoefer Scientific 

Instruments Red Rocker) for 30 min. After ultracentrifugation in a Beckman 

100.2 rotor for 1 hr at 100,000 X g at 4°C , the supernatant was removed. An 

equal volume of saturated (NH4)2SO4 solution was added to the supernatant 
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in 100 pl aliquots with gentle mixing. The milky-white supernatant was then 

rocked on ice for 30 min and then centrifuged in a Beckman 100.2 rotor at 15,000 

X g for 30 min. The pellet was dissolved in dialysis buffer (20 mM Tris-HC1, [pH 

7.9], 100 mM KC1, 20% glycerol, 0.2 mM EDTA, 10 mM 2-mercapto-ethanol) 

and dialyzed (> 50 volumes of dialysis buffer per volume of nuclear extract; 

mw cut-off of dialysis membrane was 3500 Da) for 3 hr with two buffer changes. 

After a 3 min centrifugation at 10,000 rpm in a microfuge, the nuclear extract was 

aliquoted, frozen in liquid nitrogen and stored at -80°C . Protein concentrations 

of the nuclear extracts were determined using the Bradford protein assay [23]. 

2.18 In vitro Transcription Reactions 

In vitro transcription reactions were performed as described [122, 83, 82]. Final 

concentrations of reaction components for in vitro transcription of baculovirus 

early promoters were 3 mg/ml nuclear extract, 20 mM Hepes [pH 8.4 at 25°C ], 

6 mM MgC12, and 37.5 pg /ml of DNA template in a total volume of 20 pl . 

Reaction conditions were modified to support in vitro transcription from bac­

ulovirus late promoters as follows: the addition of 50 pg /ml of a-amanitin 

and 20 units of RNasin (Promega), and reduction of MgC12 concentration to 

2mM. Transcription was initiated by the addition of nucleotides (600 itM each 

of ATP, CTP and GTP; 25 pM UTP; 5 /Xi a -32P -UTP) followed by incuba­

tion at 30°C for 30 min. DNA template containing baculovirus early promoters 

was preincubated with nuclear extract from uninfected Sf9 cells for 25 min at 

30°C whereas the nuclear extracts from 16 hr p.i. (or later) and baculovirus 

late promoter templates were not subjected to preincubation. Reactions were 

stopped by the addition of 75 Al stop buffer (0.25% SDS, 5 mM EDTA, 50 mM 

sodium acetate [pH 5.2], 1 mg E. coli tRNA /ml), extracted once with an equal 

volume of 1:1 phenol/chloroform [pH 5.0] and precipitated by the addition of 2.5 

volumes of 95% ethanol. 
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After incubation for 2-12 hr at -20°C , the RNA was pelleted by microcen­

trifugation for 30 min at 4°C . The pellets were air-dried for at least 20 min and 

resuspended in 15 pl of running dye (98% formamide, 2% xylene cyanole FF, 2% 

bromophenol blue). Samples were electrophoresed in 7 M urea-5% acrylamide 

gels for 35 min at 175 volts on a Bio-Rad minigel apparatus or for 1.5 hr at 550 

volts on a Bio-Rad Protean II apparatus. HaeIII restriction fragments of 0)(174 

were radiolabeled using T4 DNA polymerase [192] and used as size standards. 

Gels were dried under vacuum and exposed using Kodak XAR film for 12-24 hr 

with a Dupont intensifying screen. 

2.19 Primer Extension Analysis 

Transcription start sites of the in vitro transcribed RNA were confirmed by 

primer extension analysis as described [122, 83, 82]. For this analysis, the in 

vitro transcribed RNA was prepared as described in section 2.18 except that 

radiolabeled UTP was omitted and the UTP concentration in the reaction mix­

ture was increased to 200 itM . The forward (5'-GTAAAACGACGGCCAGT-3'), 

or reverse (5'-TCACACAGGAAACAGCTATGAC-3'), sequencing primers were 

used depending on the baculovirus promoter construct being assayed. 

2.20 Gel Retardation Analysis of the vp39 Late Promoter 

Oligonucleotides were labeled using -y-32P-dATP and T4 polynucleotide ki­

nase [269] and then purified on G-50 Sephadex (Pharmacia) spin columns. 

Radio labeled oligonucleotides were annealed by heating the oligonucleotides to 

95°C for 5 min in 50mM Tris-HC1 (pH 7.5), 50 mM NaC1, 1mM EDTA and plac­

ing the eppendorfs tubes in a beaker of water that had been heated to 75°C . 

The water in the beaker and consequently the oligonucleotides were allowed to 

cool to room temperature before use. The annealed radiolabeled probes (10,000 
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cpm) were incubated for 20 min at 4°C with the amount of extract indicated 

in a total volume of 20 pl containing. The radiolabeled probe and non-specific 

and specific competitor DNA were added simultaneously to the reaction mix­

tures. DNA-protein complexes were resolved by electrophoresis on 4.2% poly­

acrylamide 3% glycerol gels in 8.0 mM Tris-HC1 [pH 7.9], Borate, 1 mM EDTA. 

Electrophoresis was carried out at 200 volts for 3-5 hr at 4°C . 

2.21 Transfections 

Log-phase Sf9 cells were seeded into six-well plates (1.25 x x106 cells/well) and 

allowed to attach for 4 to 12 hr. After the cells were attached, the medium was 

removed and replaced with 0.4 ml of Grace's Insect medium (GIBCO-BRL) with 

10% FBS. An equal volume of transfection buffer (25 mM Hepes [pH 7.1], 140 

mM NaC1, 125 mM CaC12-2H20) containing plasmid DNA (see Figure legends 

for quantity of plasmid DNA transfected) was applied dropwise to the well and 

mixed thoroughly by gentle rotation of the titer plate. After 4 hr the transfection 

mixture was removed and replaced with 1 ml of fresh TNM-FH medium and 

incubated for 24 hr at 28°C . 

2.22 Plasmid Replication Assay 

Plasmid DNA was collected from infected and transfected Sf9 cells and assayed 

for replication by digestion with Dpnl [239] and the appropriate restriction en­

donucleases needed to separate the insert fragment from the vector. The sub­

sequent Southern blotting and hybridization with 32P-labeled pBKS- was as 

described [170]. Replication efficiencies were quantified with a PSI-486 Phos­

phorimager SI and Imagequant Workstation (Molecular Dynamics) using the 

Scanner Control SI-PDSI 1.0 and Imagequant 4.1 software packages. 
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2.23 /3- glucuronidase Assay 

1.25 x106 Sf9 cells, seeded in six-well plates, were transfected with varying 

amounts of pOpIe-1 or pAcIe-1 and 0-glucuronidase (GUS) reporter constructs 

(see text and figure legends). After 24 hr, the cells were harvested by scraping, 

transferred to eppendorf tubes, and pelleted by centrifugation at 4000 RPM for 

3 min in a microfuge. The cell pellets were resuspended in 200 ml PBS (120 

mM NaC1, 2.7 mM KC1, 10 mM Na2HPO4, 1.8 mM KH2PO4 [pH 7.4]) and lysed 

by three freeze-thaw cycles. Insoluble debris was removed by centrifugation at 

4000 RPM for three min and the supernatants assayed for GUS activity using 

the fluorogenic assay [132]. 

2.24 Preparation of Whole-Cell Extracts 

Whole-cell extracts were prepared as described [97] with minor modifications. 

Briefly, 1 x x106 Sf9 or Ld652-Y cells were seeded in six-well plates and then 

transfected with 10 mg of the plasmids encoding the gene of interest as described 

in section 2.21. After 24 hr, the cells were transferred to eppendorf tubes and 

washed three times with PBS followed by centrifugation for 3 min at 2500 RPM 

in a microfuge. The cells were resuspended in 4 x the packed-cell volume of 

extraction buffer (10 mM Hepes [pH 7.2], 0.4 M NaC1, 0.1 mM EGTA, 0.5 mM 

DTT, 0.5 mM phenylmethylsulfonyl fluoride, 20% glycerol) and incubated on 

ice for 10 min. The cells were pelleted at 3000 RPM in a microfuge at 4°C and 

the supernatant was removed and immediately frozen in liquid nitrogen. The 

whole-cell extracts were stored at -80°C until needed. 

2.25 Gel Retardation Assay using AcMNPV hr Sequences 

Plasmids containing putative 1E-1 binding sites were digested with the appro­

priate restriction endonucleases (usually sites within the polylinker region of the 
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vector) to liberate the DNA fragment of interest. The DNA fragments con­

taining the region of interest were recovered from agarose gels using powdered 

glass [312] or from 5% non-denaturing polyacrylamide gels using the crush-soak 

method [192] and labeled by end-filling with either a--32P-dATP or o -32P -dCTP 

using Klenow [269]. After purification on G-50 Sephadex (Pharmacia) spin 

columns, the radiolabeled probes were used for gel retardation assays. Radio la­

beled probes (10,000 cpm) were incubated for 20 min at 4°C with the amount of 

extract indicated in a total volume of 20 pl containing 10 mM Tris [pH 7.9], 100 

mM NaC1, 1 mM dithiothreitol, 20% glycerol, 1 mg poly-dIdC (Sigma Chemical 

Co.) [96]. For the electrophoretic mobility supershift experiments, IE-1 poly-

clonal antibodies (a generous gift from Dr. Claude Delsert [223]), at the indicated 

dilutions, were added to the samples and further incubated for 10 min. DNA-

protein complexes were resolved by electrophoresis on 4.2% polyacrylamide/3% 

glycerol gels in 8.0 mM Tris-HC1 [pH 7.9], 6 mM Sodium Acetate, 1 mM EDTA. 

Electrophoresis was carried out at 200 volts for 3-5 hr at 4°C . The AcMNPV 

p10 promoter fragment used in the competition experiments was isolated by 

Xhol digestion of a construct, pCR8, that contains the Hincll-Sst1 fragment 

from HindIII-Q cloned into HincII/SstI-digested pBKS-. XhoI cleaves pCR8 

once in the vector polylinker and once upstream of the p10 promoter, producing 

a 297 by DNA fragment encompassing the p10 promoter region. 

2.26 Nuclease P1 Assay 

The single-stranded nuclease P1 (Pharmacia) was used to cleave supercoiled 

plasmids that contain hairpin or cruciform structures in a manner similar to 

Lilley [181]. P1 reactions were performed in 20 mM MES [pH 6.6], 0.1mM EDTA 

and 25 mM NaCl at 37°C for the times indicated. The units of P1 used varied 

between 0.3 to 1.4 and are indicated in the figure legends. After P1-digestion, 

the reactions were divided in half. One half of the sample was analyzed on a 1% 
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agarose gel while the remainder of the sample was digested with the restriction 

enzyme Scal before electrophoresis on 1% agarose gels. 

2.27	 TwoDimensionalGel Electrophoresis of Circular DNA Topoi­

somers 

Two-dimensional gel electrophoresis of circular DNA topoisomers was performed 

as described in Bowater et al. [22] with the following modifications. Topoiso­

merase I ladders of plasmid DNA were made by incubating 3.0 pg of Qiagen­

prepared supercoiled plasmid DNA in 50 mM Tris-HC1 [pH 7.5], 0.1 mM EDTA 

and 100 mM KC1 in the presence of 1µl Topoisomerase I (kindly provided by Dr. 

Gary Schroth) [220] and increasing amounts of a 50 pM ethidium bromide for 4 

hr at 37°C . Topoisomerase I reactions were then extracted once with an equal 

volume of Tris-buffered phenol [pH 8.0] followed by extraction with 2 volumes of 

NaCl-saturated butanol. Plasmid DNA was precipitated by addition of 6 pl 5M 

NaCl and 250 pl of 100% ethanol, and subsequent incubation at -20°C for 30 

min. The DNA was then pelleted by centrifugation at 4°C at 14,000 rpm for 30 

min before being resuspended in 50 pl of TlowE (10 mM Tris-HC1 [pH 7.5] and 

0.1 mM EDTA). The range of plasmid DNA topoisomers obtained was evaluated 

by electrophorizing in TBlowE (89 mM Tris-borate, 89 mM boric acid and 0.25 

mM EDTA) either on 0.9% agarose gels for 16 hours at 85 volts in the absence 

of intercalating agents. After electrophoresis, the gel was stained and the topoi­

somerase I reactions that contributed to a complete range of topoisomers, from 

slightly positively supercoiled to highly negatively supercoiled, were identified. 

These reactions were then combined and the DNA precipitated by addition of 

0.06 volumes of 5 M NaCl and 2.5 volumes of 100% ethanol. The complete set 

of topoisomers was resuspended in 50 to 75 µl of TlowE. 

Five pl of the topoisomer mix were combined with 1.25 ,u1 of 5 X TBlowE 

buffer and incubated for at least 2 hr at 23 or 37°C . The sample was then 
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electrophoresed in the first dimension in absence of intercalating agents. Elec­

trophoresis was carried out on 1.5% agarose gels for 30 hours [144] in TB1owE 

buffer at 85 volts. The gel was then turned 90°C and soaked in the indicated 

concentrations of the intercalating agent chloroquine for 6 hr to overnight. Elec­

trophoresis in the second dimension was carried out for 20 hr at 85 volts with the 

same chloroquine concentration in the running buffer. The gel was then stained 

in ethidium bromide solution and photographed. 
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Chapter 3
 
The Spodoptera frugiperda TATA-Binding Protein
 

3.1 Introduction 

Initiation of the baculovirus transcriptional cascade within S. frugiperda cells 

requires RNA polymerase II and its associated transcription factors [122]. One 

of the earliest events in the baculovirus transcriptional cascade is likely to be 

the binding of the TATA-binding protein (TBP) to early gene promoters. The 

association of the TBP-containing complex, TFIID, with the TATA-box is the 

first step in the assembly of an active RNA polymerase II transcription com­

plex [25]. TBP then interacts with a variety of cellular co-activators, other 

general transcription factors, and the C-terminal domain of RNA polymerase 

II [306] to form a functional pre-initiation complex. Evidence suggests that the 

pre-initiation complex and specifically TBP and its associated factors (TAFs), 

serve as important targets for several promoter specific viral activator proteins 

including E1 A of Adenovirus, 1E2 of Cytomegalovirus, Zta of Epstein Barr virus, 

IE of Pseudorabies virus and VP16 of Herpes Simplex virus ( [81] and references 

therein). Therefore, it is likely that SfTBP serves as a target for baculovirus 

transactivators during early RNA polymerase II-dependent transcription [83].1 

To begin to understand the interaction of baculovirus early genes with the 

host cell transcriptional machinery, TBP from the Spodoptera frugiperda cell line, 

Sf9, was cloned and sequenced. To determine if the viral inhibition of host cell 

transcription that occurs in baculovirus-infected cells includes genes encoding 

transcription factors that are required for transcription of early genes, SfTBP 

mRNA levels were monitored during a time course of baculovirus infection using 

1 A modified version of this chapter was published as: C. Rasmussen and G.R. 
Rohrmann. (1994). Characterization of the Spodoptera frugiperda TATA-
Binding Protein: Nucleotide Sequence and Response to Baculovirus Infection. 
Insect Biochem. Molec. Biol.24:699 -708. 
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a strand-specific probe from the cloned SfTBP gene. Steady state levels of 

SfTBP mRNA were compared to steady state levels of selected viral and host 

messages. The effect of viral infection on the stability of SfTBP protein was 

determined by western blot analysis using anti-TBP antibody. 

3.2 Isolation of a S. frugiperda TATA-Binding Protein cDNA Clone 

The polymerase chain reaction, utilizing degenerate primers to the highly con­

served carboxy-terminal region of the Drosophila TBP, was used to amplify a 216 

by carboxy-terminal fragment of S. frugiperda TBP (SfTBP) from a S. frugiperda 

cDNA library. This fragment was then cloned into the Smai site of pKS- cre­

ating pSfTBP-216. A 32P- labeled riboprobe [90] was made and used to screen 

the same Sf9 cDNA library. Ten positive clones were isolated (see Section 3.3 

below). The most intense signal was from a clone containing a 1.21 kb insert. 

This clone, pSfTBP, was subsequently sequenced and found to be homologous 

to previously sequenced TATA-binding proteins. Nested sets of deletion clones 

were generated using pSfTBP, as described in section 2.12 to facilitate sequence 

analysis. Figure 3.1 illustrates the deletions used to determine the sequence of 

SfTBP. Sequencing of the appropriate deletions resulted in the determination 

of the complete sequence of SfTBP. Figure 3.2 diagrammatically depicts the 

overlapping sequences used to determine the complete SfTBP sequence. 

The nucleotide sequence and deduced amino acid sequence are presented in 

Figure 3.3. SfTBP has an open reading frame of 921 nucleotides that encodes 

a protein with a predicted mass of 34 kDa and a predicted isoelectric point of 

10.4. The sequence surrounding the initiator methionine of SfTBP conforms to 

the consensus sequence (CCA/GCCATGG) defined by Kozak [157], including a 

purine at the highly conserved -3 position relative to the start site of transla­

tion. This suggests that SfTBP transcripts are efficiently translated. A putative 

polyadenylation signal, AATAAA, is located near the 3' terminus. Downstream 
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Figure 3.1. A Schematic Diagram of the SfTBP Deletion Clones used in Se­
quence Determination. The full length SfTBP cDNA clone is illustrated by the 
thick black line and the extent of the SfTBP coding region is indicated by the 
arrow. Representative restriction endonuclease sites are denoted. 
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AX2B
 
AX43AX22

C XH54 LAX3E LAX5FSfTBP DX 

KB461 SfTBP
KB131EKB132BK46D LKB2D 

KB32 53 
KB134 

Figure 3.2. Strategy for Sequencing the SfTBP cDNA Clone. The shaded 
box represents the SfTBP coding region; the arrow indicates the direction of 
transcription. The deletion clones used to determine the complete sequence 
are shown. The regions of sequence overlap and the length the arrow for each 
deletion clone are drawn to scale and therefore are representative of the number 
of nucleotides sequenced. 

from the polyadenylation signal are two regions that contain sequences, AT3_4, 

thought to be involved in selective mRNA degradation suggesting that specific 

degradation may regulate SfTBP transcripts levels [280]. 

3.3 Isolation of TBP Crosshybridizing Clones 

During isolation of pSfTBP, a number of other clones produced a positive sig­

nal when probed with the pSfTBP-216 riboprobe during colony hybridization. 

However, none of the hybridization signals were as intense as the one generated 

for pSfTBP. This result is demonstrated by the accompanying Southern blot (see 

Figure 3.4). The intensity of cross-hybridization was determined using a PSI­

486 phosphoimager. Hybridization signals from clones p227, p231, p236, p331, 

p334, p4152, p4153, and p5133 all were 3-5% of the control pSfTBP while clone 

p225 had a hybridization signal 14% of pSfTBP. The nine TBP-cross hybridizing 
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Figure 3.3. Nucleotide and Predicted Amino Acid Sequence of the S. frugiperda 
TATABinding Protein cDNA Clone. Shown is the cDNA sequence containing 
an open reading frame of 921 by (307 amino acids) of the S. frugiperda TBP. 
Nucleotide position is shown on the left with the amino acid position shown im­
mediately below. The carboxyterminal direct repeats that flank a basic region 
are overlined by long arrows. The aminoterminal glutamine tract (Qrun) is 
boxed and STP sequences (see section 3.4) are indicated by bold type. The pu­
tative polyadenylation signal is underlined and the selective mRNA degradation 
signals are double underlined. The sequences encoded by the primers used for 
PCR are indicated with dashed lines. The Genbank accession number for this 
sequence is L22538. 
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Figure 3.4. Detection of the S. frugiperda TBP Cross-hybridizing Clones by 
Southern Analysis. The plasmid DNA was digested with PvuII, blotted to Gene 
Screen Plus (Dupont), and probed with a random-primer labeled full-length 
cDNA of the S. frugiperda TATA-binding protein using high stringency condi­
tions. Lane 1, pSfTBP; lane 2, p225; lane 3, p227; lane 4, p231; lane 5, p236; 
lane 6, p331; lane 7, p334; lane 8, p4152; lane 9, p4153; lane 10, p5133; lane 11, 
pActin. The BRL 1 kb DNA ladder was used as a size standard. The numbers 
on the right indicate the sizes in bps. 

clones were then characterized by digestion with 10 restriction enzymes (HindIII, 

EcoRI, XbaI, PstI, BamHI, PvuII, Hincll, Clal and BgllI) in order to determine 

whether these cross-hybridizing clones contained truncated portions of SfTBP 

cDNA. The restriction endonuclease data indicated none of these clones are trun­

cated versions of SfTBP. The SfTBP cross-hybridizing clones may contain small 

regions of sequence similarity to SfTBP or may be cDNA clones of other S. 

frugiperda genes that are similar to TBP. Genes with considerable similarity to 

TBP have been characterized in D. melanogaster [53]. 
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3,4 Analysis of the S. frugiperda TATA-Binding Protein Sequence 

The sequence of cDNAs encoding TBP from a variety of organisms including S. 

cerevisiae [62, 107, 125], S. pombe [119], P. carinii [201], D. melanogaster [117, 

209], S. frugiperda [252], B. mori [286], H. sapiens [241, 136], M. musculus [297], 

M. auratus [219], A. castellanii [325], S. tuberosum [120], Z. mays [104, 311], 

A. thaliana [79], T. aestivum [138, 6], D. discoideum [20], X. laevis [111], C. 

elegans [178], 0. vulvulus [176], P. falciparum [197], A. cliftonii [71], T. then­

mophila [288], E. histolytica [228] and two archaebacteria species, T. celer [193] 

and P. woesei [264]. 

These sequences show that TBP is a bipartite molecule containing a highly 

conserved carboxy-terminal domain consisting of 180 amino acids and an amino-

terminal domain that is highly variable in size and amino acid composition. The 

carboxy-terminal domain of TBP contains two direct repeats flanking a basic 

region. In addition, a region with similarity to prokaryotic sigma factors is 

located in the C-terminus of TBP. A number of studies have indicated that the 

carboxy-terminal domain of TBP contains the DNA binding activity and TBP 

binds as a monomer [126, 253, 292, 243, 51, 80]. 

The X-ray crystallographic structure of the A. thaliana and the yeast TBP 

was elucidated revealing a novel DNA binding motif [217, 34]. The C-terminal 

domain of TBP is a saddle-shaped protein; the concave side of the saddle is an 

antiparallel beta sheet that binds to DNA and the convex surface is thought to 

interact with other initiation factors and regulatory proteins. Co-crystallization 

of the TBP/TATA-box complex showed that the binding of TBP to DNA in­

troduces a 80 degree bend in the DNA molecule [140, 141]. Mechanistically, 

DNA bending could allow the general transcription factors to form the nec­

essary contacts to initiate transcription and/or may unwind the DNA duplex, 

thereby assisting in the formation of a single-stranded region needed to initiate 

transcription. 
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The carboxy terminus of the SfTBP amino acid sequence is at least 75% 

identical to the carboxy-terminal region of all other TBPs cloned to date (See 

Appendix 1); among insects it is 93% identical to the carboxy-terminus of a 

closely related species, D. melanogaster and 99% identical to the most closely re­

lated species, Bombyx mori. SfTBP contains all the conserved carboxy-terminal 

motifs with only a few conservative changes in amino acid composition compared 

to the consensus sequence derived from the other cloned TBPs, indicating that 

the DNA binding properties of SfTBP are similar to all other TBPs, including 

A. thaliana. 

The amino-terminal domain of various TBPs differ greatly in length and 

primary structure. However, TBPs from higher eukaryotic organisms appear to 

contain some common elements that include glutamine tracts termed " Q-runs" 

and "STP" regions that are rich in serine, threonine and proline. Although the 

function of these regions are unknown, the TBP N-terminal domain in human 

and Drosophila appears to be required for interactions with the transcription 

factor, Spl, that result in transactivation [241, 244]. Truncated proteins con­

taining only the conserved C-terminal domain of human TBP can only restore 

basal level transcription to TFIID-depleted He La cell extracts suggesting that 

the N-terminal domain is also required for transactivation [241]. Experiments 

have shown that the N-terminus of TBP enhances TBP-induced bending and 

reduces the stability of the TBP-DNA complex [160]. However, in vivo re­

placement of the yeast TBP gene with the human or yeast-human hybrid TBP 

genes, indicated that crucial determinants of the functional differences between 

the yeast and human TBP were localized to the highly conserved C-terminal 

region [80, 51]. Therefore, both the variable N-terminal and the highly con­

served C-terminal domain of TBP appear to be necessary for species specific 

protein-protein and protein-DNA interactions. 

Comparing the N-terminal regions from closely related species may allow 
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one to identify regions that interact with common transcription factors and re­

gions that may be responsible for species-specificity. As depicted in Figure 3.5, 

the S. frugiperda TBP and the Bombyx mori amino-terminal protein sequence 

are 82% identical. However, the Drosophila, amino-terminal sequence diverges 

significantly from both B. mori and S. frugiperda. Nevertheless, the TBP amino-

terminal domains of these three insects contain the Q-runs and STP-like ele­

ments. Furthermore, the first 27 amino acids of the Drosophila, S. frugiperda 

and B. mori amino-terminal region are very similar (74%). The remainder of 

the amino-terminal domain of Drosophila does not align well with either S. 

frugiperda or B. mori except at three small regions rich in methionine, proline, 

threonine and glutamine. These alignments suggest that the amino terminal 27 

amino acids and these three small regions may be required for interaction with 

conserved co-activators or other transcription factors. 

3.5 TBP is Encoded by a Single Gene in S. frugiperda 

S. frugiperda genomic DNA was digested with a number of restriction endonu­

cleases, blotted, and hybridized with a labeled full-length probe to SfTBP (See 

Fig. 3.6). Both high and low stringency blots were identical; the probe hybridized 

to a single band per lane on each blot indicating that there is only one copy of 

TBP per haploid genome. This finding is consistent with data from other higher 

eukaryotic organisms. Furthermore, no cross-hybridizing bands were found on an 

low stringency AcMNPV genomic blot that was identically probed and washed 

under low stringency conditions indicating that the AcMNPV baculovirus does 

not encode a TBP homolog (data not shown). 
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Figure 3.5. Alignment of the Amino-terminal Region of S. frugiperda, D. 
melanogaster and B. mori TATA-binding Protein. The alignment of the 
amino-terminal amino acids of TBP from D. melanogaster (Dm), S. frugiperda 
(Sf), Bombyx mori (Bm) was generated using the clustal protein alignment 
program [115]. The arrowhead marks the beginning of the conserved car­
boxy-terminal domain of TBP and the vertical lines indicate amino acid residues 
conserved in both sequences. Upper case letters indicate amino acid identity with 
the SfTBP sequence. The numbers on the left indicate the position of the amino 
acid residue within the sequence. 
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Figure 3.6. Detection of the S. frugiperda TBP Gene on a Genomic South­
ern Blot.S. frugiperda genomic DNA, digested with a variety of restriction en­
donucleases and blotted to Gene Screen Plus (Dupont), was probed with a ran­
dom-primer labeled full-length cDNA of the S. frugiperda TATA-binding protein 
using low stringency conditions. Identical results were obtained using stringent 
conditions. S. frugiperda genomic DNA was digested as follows: lane 1, EcoRI; 
lane 2, BamHI; lane 3, BamHI and EcoRI; lane 4, BglII; lane 5, BglII and EcoRI; 
lane 6, HindIII; lane 7, HindIII and EcoRI. The BRL 1 kb DNA ladder was used 
as a size standard. The numbers on the right, indicate the sizes in bps. 
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3.6	 Northern Analysis of S. frugiperda and AcMNPV Transcripts dur­

ing a Time Course of Baculovirus Infection 

Sf9 cells were infected with AcMNPV at a moi of 10 and total RNA was isolated 

at various times p.i., blotted and hybridized with radiolabeled viral or host-

specific probes. By 48 hours, the Sf9 cells had failed to divide and polyhedra 

were seen in 10-20% of the cells indicating that the infection was progressing. 

By 5 days, the infection was complete. Ethidium bromide staining of the RNA 

agarose-formaldelhyde gels after electrophoresis indicated that equal amounts of 

RNA were loaded in all lanes except 120 hr p.i. where the total RNA isolated 

showed extensive degradation. 

The steady-state levels of the 1.3 kb SfTBP transcript were monitored dur­

ing a time course of AcMNPV infection of Sf9 cells. Previous work by Ooi and 

Miller [225] has shown that the steady-state levels of a number of host-cell nu­

clear transcripts are reduced by 18 hr p.i. However, the mRNA levels for factors 

involved in host-cell transcription were not examined. The data (Fig. 3.7) show 

that the steady-state levels of the 1.3 kb SfTBP transcript decline by 24 hr p.i. 

indicating that the inhibition of host cell transcription includes factors required 

for the RNA polymerase II transcription process. Minor bands of 2.0 kb and 1.6 

kb were also detected and may be unspliced TBP message, or another mRNA 

encoding a TBP-like protein [53]. The decline in steady-state levels of SfTBP 

transcripts after AcMNPV infection indicates that viral shutdown of host cell 

transcription includes messages for host-encoded transcription factors thought 

to be required for transcription of early baculovirus genes. 

To determine if the decline in SfTBP mRNA levels was similar to the de­

crease in transcript levels of other host messages, a riboprobe complementary 

to the D. melanogaster actin 5C gene [75] was made and the same blot was 

reprobed. S. frugiperda transcripts of size 2.4, 1.9, and 1.4 kb cross-hybridized 

with Drosophila actin 5C (Fig. 3.8). All these heterologous actin transcripts had 
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Figure 3.7. Northern Analysis of S. frugiperda TBP Transcripts During a Time 
Course of AcMNPV Infection. A strand-specific cRNA complementary to the 
SfTBP open reading frame was synthesized using SP6 polymerase and hybridized 
to a northern blot of total RNA (15 pg /lane) isolated from Sf9 cells at various 
times p.i. The numbers on the right indicate the sizes (bps) of selected markers 
of an end-labeled BRL 1 kb DNA ladder. The position and size of the SfTBP 
transcript is indicated on the left. 
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Figure 3.8. Northern Analysis of S. frugiperda Actin 5C Transcripts During a 
Time Course of Infection. The northern blot described in Fig 3.7 was stripped 
and rehybridized with a strand-specific cRNA complementary to the Drosophila 
actin 5C gene transcripts. The positions and sizes of the cross-hybridizing S. 
frugiperda actin 5C transcripts are indicated on the left. The markers are the 
same as in Fig 3.7. 

a pattern of expression similar to that of SfTBP. However, actin 5C steady-state 

mRNA levels decreased somewhat earlier in the infection (by 12 hr) than SfTBP 

transcript levels. These results are consistent with those previously seen for actin 

5C transcripts using dot blot analysis [225]. 

Concurrent with the decrease in steady-state levels of host messages, there 

was an increase in the level of expression of the AcMNPV viral messages, p26 [250] 

and ie-1 [103]. A riboprobe complementary to the 0.5 kb EcoRI fragment of 

AcMNPVHindQ was constructed. This probe contains the p26 gene without the 

hr5 enhancer region and was used to reprobe the same northern blot (Fig. 3.9). 
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Transcripts of length 1.2 kb, 1.4 kb and 2.1 kb were detected at 6 hr p.i.. The 

1.2 kb band, that encodes the p26 gene and a small portion of the 5' region of 

the p10 gene [250], increases in abundance at 12 hr p.i. but is not detected at 24 

hr p.i. indicating that the 1.2 kb band is an early baculovirus transcript whose 

transcription ceases by 24 hr p.i. The 1.4 kb transcripts, encoding the p26 and 

p10 genes, were detected between 6 and 72 hr p.i. A transcript of 2.1 kb was 

detected at 6 hr p.i., was maximally abundant at 12 hr p.i., and disappeared by 

48 hr p.i. The 2.1 kb transcript has not been previously described in the litera­

ture [250, 74]. It is possible that this transcript is produced by a transcription 

initiation site within the hr5 enhancer region or to non-termination of transcrip­

tion at the p10 termination site. Finally, it is possible that a small portion of the 

riboprobe contains vector sequences that cross-hybridize with another transcript 

that does not encode either the p10 or p26 gene. 

A riboprobe complementary to the 5' terminus of the ie-1 gene (a 752 by 

ClaI-EcoRV fragment from AcEcoRI-B) was constructed. This probe hybridized 

to a large number of transcripts by 24 hr p.i. Earlier in infection transcripts of 

approximately 1.9 kb and 2.1 kb could be discerned (See Fig. 3.10). The 1.9 kb 

transcript encoding the ie-1 gene that was first detected 6 hr p.i, increased in 

intensity by 24 hr and was barely detectable by 72 hr p.i. [41, 103] when the level 

of all transcripts decreased significantly due to cell death caused by AcMNPV 

infection. Transcripts of approximately 2.1 kb were detectable 12 hr p.i. and 

degenerated to indistinct transcripts by 24 hr p.i. These bands may correspond to 

a number of spliced ie-O transcripts synthesized late in AcMNPV infection [154]. 

Later in infection, larger transcripts of 3.7, 3.5 and 3.1 kb that overlap the ie-1 

region have been reported [103]. Although these individual transcripts could not 

be distinguished in this blot, mRNA of these sizes hybridized to the ie-1 probe. 

Similar results for ie-1 and ie-0 transcripts have been reported by others [103]. 

Northern analysis using AcMNPV viral probes demonstrated that the AcM­



51 

1
0 6 12 24 48 72 96 120
 

2100
 

1400 1635
 

1200
 

1018
 

517 /506 

Figure 3.9. Northern Analysis of AcMNPV p26 and p10 Transcripts During a 
Time Course of Infection. The northern blot shown in Fig. 3.8 was stripped and 
rehybridized with a strand-specific cRNA complementary to the p26 transcript. 
This riboprobe also detected p10 messages. The positions and sizes of the p26 
and p10 transcripts are indicated on the left. 
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Figure 3.10. Northern Analysis of AcMNPV ie-1 Transcripts During a Time 
Course of Infection. The northern blot described in Fig. 3.9 was stripped and 
rehybridized with a strand-specific cRNA complementary to the ie- 1 transcript. 
The positions and sizes of the ie- 1 containing transcripts are indicated on the 
left. 
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NPV infection progressed as expected indicating that the steady state transcript 

levels seen are indicative of the infection process. The decline in both actin and 

SfTBP transcript levels indicate that the inhibition of host cell transcription 

includes messages for host-encoded transcription factors required for the RNA 

polymerase II transcription process. 

3.7	 Detection of the TATA-Binding Protein during Baculovirus In­

fections of Sf9 and Ld Cells 

In order to examine TBP protein levels during the course of baculovirus in­

fection, western blot analysis of AcMNPV-infected Sf9 cells using an antibody 

made against the highly conserved C-terminal domain of TBP from Drosophila 

melanogaster was performed. Protein samples were isolated at the same times 

p.i. that the total RNA samples were isolated. As Figure 3.11 shows, SfTBP 

is present at relatively constant levels throughout the time course of infection. 

Although the open-reading frame of the SfTBP predicts a molecular weight of 

34 kDa; the antibody detects proteins of molecular weight 36 kDa and 38 kDa 

indicating that SfTBP may be post-translationally modified. 

The decline in steady-state SfTBP message levels does not result in a sub­

stantial decrease in SfTBP protein levels (See Fig. 3.7 and 3.11). SfTBP appears 

to be stable and not targeted for degradation. In poliovirus-infected He La cells, 

TBP is specifically cleaved by the poliovirus-encoded 3C protease [45, 54]. This 

cleavage plays a role in the inhibition of host cell RNA synthesis. Unlike po­

liovirus, the inhibition of host cell transcription during baculovirus infection does 

not appear to involve TBP cleavage or degradation. 

Western blot analysis was also performed on protein samples isolated at the 

various times p.i. from another lepidopteran insect, Lymantria dispar infected 

with the baculovirus, OpMNPV. As Figure 3.12 shows, that LdTBP has a molec­

ular weight of 33 KDa (3 kDa smaller than SfTBP) and was present at relatively 
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Figure 3.11. Western Blot Analysis of SITBP During a Time Course of AcM-
NPV Infection. Protein samples were isolated at the same times p.i. that the 
total RNA samples were isolated. The time in hr p.i. are indicated above the 
lanes. 4.0 x104 cell equivalents of protein was loaded per lane. The numbers on 
the right indicate the marker sizes in kDa (BioRad prestained low range protein 
ladder). 
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constant levels until 36 hr p.i. after which LdTBP was no longer detected. This 

result differs from the western analysis of SfTBP where protein levels persist 

until 72 hr p.i. The more rapid decrease in the levels of LdTBP may be due to 

more rapid degradation, decreased protein stability or a more rapid decline in 

TBP message levels upon OpMNPV infection. 

In addition, only one form of LdTBP was detected and it was 3-5 kDa 

smaller (33 kDa) than SfTBP. This suggests that TBP may be variable in closely 

related insects possibly due to differences in N-terminal amino acid sequences 

and/or differences in post-translational modifications. There is a high degree 

of conservation between mouse and human N-terminal sequences [111]; there 

are five amino acids differences and a partial deletion of a Q-run (likely to be 

a single event) in the mouse sequence. The B. mori sequence has 21 amino 

acid changes when compared to the Sf9TBP sequence (See Fig. 3.5). Greater 

divergence among insect TBP sequences may be explained by the substantially 

higher rates of DNA evolution in insect genomes compared to those found in 

other groups, especially mammals and birds [27]. 

3.8 Summary 

In order to begin characterizing early transcriptional events in the baculovirus in­

fection cycle, the gene encoding the TATA-binding protein from the S. frugiperda 

cell line, Sf9 was cloned and sequenced. A cDNA clone containing an 921 by 

open-reading frame (307 amino acids; 34 Kda) homologous to the TATA-binding 

protein (TBP) was isolated and sequenced from Sf9 cells which are commonly 

used in the baculovirus expression system. Southern blot analysis indicated that 

SfTBP was encoded by a single gene in the S. frugiperda genome. Northern blot 

analysis indicated that steady-state levels of the 1.3 kb SfTBP transcript de­

clined by 24 hr p.i. corresponding to the time of virus-induced inhibition of other 

host-cell transcripts. However, corresponding western blot analysis showed that 
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Figure 3.12. Western Blot Analysis of LdTBP During a Time Course of OpM-
NPV Infection. The time in hr p.i. are indicated above the lanes. 3.2 x104 cell 
equivalents of protein was loaded per lane. The numbers on the right indicate 
the marker sizes in kDa (BioRad prestained low range protein ladder). 

the steady-state TBP protein levels remained unchanged until much later in in­

fection. Therefore, if other components of the Sf9 RNA polymerase II transcrip­

tional machinery behave in a similar manner, cessation of host-cell transcription 

would require active intervention by one or more baculovirus encoded factors. 

Analysis of the S. frugiperda TBP (SfTBP) sequence showed that the amino-

terminal portion of SfTBP was 82% identical to the B. mori N-terminal TBP se­

quence. Both the S. frugiperda and B. mori N-terminal TBP sequences diverged 

significantly from the N-terminal region of all other TBP sequences, including 

Drosophila melanogaster. This analysis of TBP sequences of two closely related 

insect species suggests that the amino-terminal portion of TBP is variable in 

insect species. 

Selectively targeting specific insect pests while leaving beneficial insects un­

affected is a major goal of insect control programs. Fundamental life processes 

such as RNA polymerase II transcription that involve proteins with a high degree 
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of variability are potential targets for insect pest control. Utilizing information 

about proteins such as TBP that play critical roles in life processes may lead to 

the development of methods capable of selectively disrupting these processes in 

target insects. 
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Chapter 4
 
Inferred Phylogenetic Trees using Molecular Sequences encoding the
 

TATABinding Protein 

4.1 Molecular Evolution 

The evolutionary history of organisms can be inferred using data derived from 

homologous genetic material. Genetic information may change through time 

due to events such as substitutions (transitions or transversions), deletions, and 

inversions. By studying the rates and patterns of change in homologous genetic 

material, the evolutionary history of organisms can be constructed. 

The choice of the molecular sequence used to construct phylogenetic trees is 

important if we are to have confidence in the results. If a sequence is either nearly 

identical or shows very little identity, informative positions (a site is phylogenet­

ically informative if it favours some trees over others) are rare and phylogenetic 

trees can not be inferred with any confidence. Homologous protein-coding genes, 

where synonymous substitutions (synonymous substitutions cause no change in 

the amino acid sequence but result in a change in the nucleotide sequence) can 

occur, are often highly conserved at the protein level but may contain informa­

tive sites at the nucleotide level. Therefore phylogenies using highly conserved 

proteins can often be reconstructed with confidence. The genetic data can be 

used to augment other data such as the morphology, embryology and the fossil 

record of the organisms to construct a phylogenetic tree. 

4.2 Constructing Phylogenetic Trees 

Methods of inferring phylogenetic trees can be classified according to the type 

of data, either character-based or distance-based, used to reconstruct the tree. 

Character-based methods use discrete characters in a DNA sequence to provide 

information about a particular species whereas distance-based methods calculate 
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the similarity between two sequences to determine the evolutionary distance 

between two species (for reviews of both character-based and distance-based 

methods see [10, 296, 116, 67]). 

4.2.1 Distance Methods 

Distance methods compute the evolutionary distances for all pairs of taxa by 

determining the number of nucleotide or amino acid substitutions separating 

the two taxa. The similarity score for the two sequences is corrected based on a 

model of evolution and an additive tree constructed. Distance methods assume 

that the lengths of the branches between taxa can be summed to yield a measure 

of the distance between the taxa and branching events. Several different distance 

methods were used in this analysis. They include: the Desoete tree with either 

the Jukes and Cantor distance [133] or the Olsen correction [142], the Fitch and 

Margoliash method [70] which uses a weighted least squares method to correct 

for the error in distance estimates to obtain branch length, and the Neighbor-

Joining method [268] which sequentially identifies neighbor-pairs in a tree and 

uses the nodes generated to construct a tree. 

4.2.2 Character Methods 

Character-based methods use informative sites to determine which phylogenetic 

tree best explains the data. Two different character-based methods were used 

in this analysis, maximum parsimony [60, 69] and maximum likelihood [67]. 

Maximum parsimony finds the tree or trees that require the fewest number of 

evolutionary changes to explain the data sampled. Maximum parsimony can be 

bootstrapped; a subset of the data is used to create a new data set from which a 

number of most parsimonious trees are calculated. Bootstrapping allows you to 

determine if there is significant evidence for a particular branching order in your 
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data set. Maximum likelihood methods determine the probability of resultant 

phylogenetic tree given a certain evolutionary model. The inferred phylogenetic 

tree has the highest likelihood score. 

4.3 Is the TATA-binding Protein an Informative Macromolecule? 

The process of transcription, its regulation and fidelity are of central impor­

tance to a cell and therefore an organism. Since this process occurs in all extant 

life, DNA-dependent RNA polymerases and their associated protein factors may 

be homologous. Eukaryotic organisms utilize three different polymerases, RNA 

polymerase I, II, and III, that contain some common subunits [329] to tran­

scribe DNA. Sequence data and immunochemical cross-reactivity indicate that 

the largest subunits of the RNA polymerases from eubacteria, eukaryotes and ar­

chaebacteria are homologous [246]. Since the RNA polymerases are homologous, 

the accessory transcription factors may are also homologous. One of the best 

characterized general transcription factors is the TATA-binding protein. TBP is 

a component of all three eukaryotic RNA polymerase complexes [320, 279, 293] 

and TBP-like sequences have recently been found in archaebacteria [264, 193]. 

The C-terminal region of the TBP consists of two conserved direct repeats that 

likely arose from an early duplication event. The amino-terminal regions of 

TBPs from different species vary greatly in size and sequence. The carboxy­

terminal domain of TBP is highly conserved, having greater than 80% sequence 

identity in a wide variety of eukaryotic organisms, suggesting a universal, per­

haps primordial, role for TBP in the transcription process. Therefore, TBP is 

a good candidate macromolecule for use in phylogenetic reconstruction. I re­

constructed an evolutionary history of eukaryotes using the TBP sequence data 

available in Genbank as of May 31, 1995. 



61 

4.4 Phylogenetic Analysis using the TATA-Binding Protein 

As of May 31, 1995, the TATA-binding protein had been cloned and sequenced 

in the following organisms: S. cerevisiae [62, 107, 125], S. pombe [119], P. 

carinii [201], D. melanogaster [117, 209], S. frugiperda [252], B. mori [286], H. 

sapiens [241, 136], M. musculus [297], M. auratus [219], A. castellanii [325], S. 

tuberosum [120], Z. mays [104, 311], A. thaliana [79], T. aestivum [138, 6], D. 

discoideum [20], X. laevis [111], C. elegans [178], 0. vulvulus [176], P. falci­

parum [197], A. cliftonii [71], T. thermophila [288], E. histolytica [228] and two 

archaebacteria species, T. celer [193] and P. woesei [264]. Note that A. thaliana, 

and Z. mays have two copies of TBP that have likely arisen from a recent dupli­

cation event. 

4.4.1 Clustal Alignment of TBP Sequences 

The TATA-binding protein nucleotide sequences and their corresponding amino 

acid translations were aligned using the clustal alignment program in GDE [115]. 

Since the carboxy-terminus of all the TBP sequences is highly conserved, the 

computer-generated alignment of the both the nucleic acid sequence and the 

amino acid translations needed only minor modifications. However, the amino-

terminal portion of all the TBP sequences did not align well, although certain 

sequence motifs appear in the amino-terminal regions of most of the TBPs from 

different species. Analysis of the genomic organization of yeast, mouse, and 

amoeba TBP suggest that the C-terminal and N-terminal regions may have 

evolved separately [294]. The alignment of the TBP protein sequences is shown in 

Appendix 1. Based on these alignments and the possibility that inclusion of the 

amino-terminal portion of TBP would bias the alignments, the amino-terminal 

portion of the TBP sequences were excluded from this analysis. Therefore, 

sequence masks were created for carboxy-terminal region of the TBP to examine 
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position 1, 2 and 3 within each codon. 

4.4.2 Inferred Phylogenetic Trees using the TATA-Binding Protein 

I constructed a Desoete unrooted tree (no correction) using the aligned carboxy­

terminal region of the TBP protein sequence (See Figure 4.1). Figure 4.1 dis­

plays the phylogenetic relationships using a phenogram. This tree conformed to 

current beliefs about the evolutionary branching order of these organisms [145] 

with fungi, plants and animals clustered in groups of relatedness. The higher 

eukaryotic organisms, consisting of M. musculus, X. laevis H. sapiens, and M. 

auratus clustered in a manner suggestive of a radiation event occurring during 

the course of evolution [145]. The fungal cluster included P. carinii, an op­

portunistic pathogen, responsible for the majority of fatal pneumonia in AIDs 

patients [201]. This is consistent with the recent ribosomal RNA data that 

places P. carinii in the fungal kingdom [291]. The insects, D. melanogaster, 

B. mori and S. frugiperda and the nematodes, 0. vulvulus and C. elegans have 

diverged from the other higher eukaryotic organisms. The plant TBP sequences 

A. thaliana, S. tuberosum, Z. mays and T. aestivum sequences cluster. How­

ever, further examination of the TBP-based phylogenetic tree reveals that the 

plants do not segregate into the monocot and dicot classes. However, selective 

pressures may have altered the rate of evolution in three of the four plant TBP 

sequences since these sequences are from domesticated crop species. However, 

phylogenetic trees based on the nucleic acid sequences does segregate the plants 

into monocot and dicot classes although fails, due to codon bias, to produce a 

biologically meaningful tree for several other organisms (see below). 

Inspection of the clustering of the eukaryotic unicellular organisms including 

the ciliate, T. thermophila, the causative agent of malaria, P. falciparum, the 

amoeba, A. castellanii, the slime mold, D. discoideum, and an entamoeba that 

causes dysentery in humans, E. histolytica, indicated that these species have 
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M. auratus 
M. musculus 
H. sapiens 
X. laevis 

B. mori 
S. frugiperda 

D. melanogaster 
0. volvulus 

C. elegans 
A. cliftonii 

mays 
S. tuberosum 

A. thaliana 
T. aestivum 
S. pombe 
S .cerevisiae 

13.carinii 
A. castellanii 

D. discoideum 
T. thermophila 

E. histolytica 
P. falciparum 

T. celer 
P. woesei 

Figure 4.1. A Phylogenetic Tree Constructed Using the TATABinding Protein. 
Phylogenetic relationships were determined using an alignment of the entire con­
served carboxyterminal domain amino acids from the complete TBP sequences 
available from Genbank, EMBL and DDBJ on 31 May 1995. 
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diverged considerably supporting other evidence [198, 224, 145, 315] that proto­

zoans are paraphyletic and diverged from the mainstream of eukaryotic descent 

early in eukaryotic evolutionary history. Interestingly, the disease causing agents, 

P. falciparum and E. histolytica appear to be evolving at a faster rate than other 

unicellular organisms. Studies have shown disparate rates of molecular evolu­

tion in hosts and their parasites [105] that correlated well with the difference 

in generation times. Furthermore, these agents have been subjected to selective 

pressures, such as insecticide treatment of insect vectors and drug treatments 

in recent times, that may have increased their mutation rates. Higher rates of 

mutation would effect the phylogenetic tree by moving the branching point for 

P. falciparum and E. histolytica deeper into the tree. 

The branching order of the two archaebacteria sequences T. celer and P. 

woesei suggests that archaebacteria and eukaryotes diverged from each other 

after the divergence of eubacteria. Evidence that archaebacteria are phylogenet­

ically more closely related to eukaryotes than eubacteria is supported by other 

data. Similar analysis with subset of TBP sequences [193], RNA polymerase 

data [246], analysis of translation elongation factor sequences [130], and the dis­

covery of TFIIB-like proteins in archaea [229] indicates that eubacteria diverged 

first followed by the subsequent divergence of archaebacteria and eukaryotes. 

However, examination of the branch points for T. celer and P. woesei place the 

emergence of the archaea later than other evidence indicates [145]. This result 

can be explained if the rates of mutation are higher in P. falciparum and E. 

histolytica, and thus placed these species deeper in the tree than their actual 

date of emergence.2 

2 A phylogenetic tree containing the subset of TBP sequences available in May, 
1993 was published as part of C. Rasmussen and G.R. Rohrmann (1994). Char­
acterization of the Spodoptera frugiperda TATA-Binding Protein: Nucleotide 
Sequence and Response to Baculovirus Infection. Insect Biochem. Molec. 
Biol. 24:699-708. 
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The nucleotide sequence encoding the carboxyterminal region of TBP was 

then used to construct a number of Desoete trees (Jukes and Cantor or Olsen cor­

rection) using different sequence masks. Both the Jukes and Cantor and Olsen 

corrections produced trees with the same branching order and similar branch 

lengths (data not shown). When all nucleotide positions in each codon and 

only the 3rd nucleotide position in each codon were considered, unexpected clus­

tering was observed. The dipteran insect, D. melanogaster, and A. castellanii, 

an amoeba, formed a cluster. These results suggested that Drosophila is more 

closely related to amoeba than to the lepidopteran insect, Spodoptera frugiperda. 

This pattern always emerged when these positions are used to infer phyloge­

netic trees using other distance methods as well as maximum parsimony and 

maximum likelihood methods (data not shown). This result is unexpected since 

conventional wisdom based on morphology [159, 21] and a poor fossil record [326] 

indicate that Lepidoptera and Diptera share a recent common ancestor. How­

ever, this result can be explained by looking at the codon bias in the TBP 

sequence in these organisms. It appears that the codon bias for A. castellanii 

and Drosophila, are similar as both organisms prefer to have cytosine or guanine 

in the third position of each codon. 

When the 1st and 2nd nucleotide position in each codon was considered, phy­

logenetic trees that more closely conforms to current beliefs of the evolutionary 

branching order of these organisms was obtained. Nevertheless, bootstrapped 

maximum parsimony analysis indicated that the branching order among the 

higher eukaryotes could not be determined with a high degree of confidence. 

Molecular phylogenies of eukaryotic organisms suggest patterns of episodic in­

creases in biological diversity that correlates well with the fossil record [145]. If 

the higher eukaryotic organisms like S. frugiperda, X. laevis and H. Sapiens, all 

diverged from a common ancestor at approximately the same time, this could 

explain the uncertainty in the branching orders. However, clearly, Diptera and 
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Lepidoptera are morphologically more related to each other than to humans. 

Recent evidence [27] that suggests that insect genomes have a much higher 

rate of nucleotide substitutions than mammals could also account for the re­

sults found here. Higher rates of evolution would effect phylogenetic trees by 

moving the branch point deeper into the tree, similar to what we see in the 

phylogenetic trees inferred using sequence information from the TATA-binding 

protein. Nevertheless, the phylogenetic trees constructed using sequence data 

from the TATA-binding protein, in particular, the carboxy-terminal protein se­

quence data conformed closely to current beliefs on the evolutionary branching 

order of eukaryotic organisms. 

4.5 Eubacterial Homo logs of the TATA-Binding Protein 

X-ray crystallography has shown that the TATA-binding protein binds to DNA 

in the minor groove of the DNA double helix created by the TATA-box ele­

ment [289, 164, 140, 141, 34]. Unlike TBP, most eukaryotic sequence-specific 

DNA binding protein recognize and bind DNA in the major groove (for review 

see [110]). However, the histone-like proteins of eubacteria (for review see [58]) 

appear to bind to DNA in the minor groove of the DNA double helix [332]. A 

histone-like protein from B. stearothermophilus, HU, has been crystallized and 

its three-dimensional structure suggests that a pair of two-stranded /3 ribbons 

emerge from the body of the protein and encircle the DNA double helix in the 

minor groove [298]. The E.coli protein IHF (integration host factor) is thought to 

be a homolog of the histone-like proteins of eubacteria [58] and also contains the 

3 ribbon DNA binding motif. However, unlike the histone-like proteins which 

bind DNA in a nonspecific manner, IHF binds to specific DNA sequences; IHF 

is required for the site-specific recombination of the bacteriophage lambda into 

the E.coli genome [58]. Nash and Granston [215] suggested that some sequence 

similarity exists at the protein level between the DNA binding domains of the 
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TATAbinding protein and IHF. 

Nuclear magnetic resonance (NMR) studies using the MotA transcription 

factor from bacteriophage T4 also revealed a secondary structure consisting of 

a sixstranded antiparallel # pleated sheet with three a helices. This secondary 

structure is similar to the carboxyterminal repeat in TBP including hydropho­

bic and aromatic residues on exposed sheet surface of protein [68]. Since both 

these proteins appear to bind to the minor groove of the DNA helix in sequence 

specific manner and share some similarity at the protein level in the DNA binding 

domain, they may be homologous. I have tested the hypothesis that these eubac­

teria proteins may be homologs of TBP by aligning the TBP carboxyterminal 

protein sequence with IHF and MotA protein sequence using the clustal protein 

alignment program. Alignments of both the amino acid and DNA sequence of 

E. coli IHF and MotA with the eukaryotic TBPs indicate that these genes are 

not homologous. Nevertheless, it is possible that this DNA binding motif (,Q­

ribbon structure) arose only once in the course of evolution but the /3 ribbon can 

tolerate extreme divergence and still maintain function. However, considering 

the degree of conservation in the eukaryotic and archaebacterial TBP /3 ribbon 

structure, this is unlikely. Therefore, it is probable that the similarities between 

these molecules are a consequence of convergent evolution. 

4.6 Summary 

The carboxyterminal region of the TATAbinding protein is highly conserved, 

suggesting that this gene is homologous. Using the TBP sequence data, I have 

reconstructed an evolutionary history of eukaryotic organisms. This phylogenetic 

analysis indicated that the TATAbinding proteins of both archaebacteria and 

eukaryotic species are indeed homologous. Furthermore, this analysis showed 

that TBP is a reasonable macromolecule to use to infer phylogenetic relation­

ships though it may be more informative within kingdoms or phyla. Finally, the 
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molecular data suggest that the TATAbinding protein of eukaryotes and ar­

chaebacteria is not a homolog of the E. coli protein, IHF or MotA transcription 

factor from bacteriophage T4. 



69 

Chapter 5
 
In vitro Transcriptional Analysis of Baculovirus Early and Late Gene
 

Promoters 

5.1 Introduction 

Much of the progress in defining components of the transcriptional machinery in 

eukaryotic cells has utilized biochemical approaches that involve the development 

of in vitro transcription systems followed by subsequent fractionation and recon­

stitution of active components (reviewed in [272]). The development of an in 

vitro transcription system for baculovirus genes using uninfected Sf9 cells [122], 

and infected insect cells [83, 82] should prove useful for the isolation and iden­

tification of host and viral genes involved in the regulation of baculovirus gene 

expression. Of particular interest are the interactions between the hostcell tran­

scription machinery and viral regulatory proteins required for transactivation of 

early viral gene transcription. Later in the infection process, the mechanisms 

of transcription of the novel baculovirus late and hyperexpressed late gene pro­

moters are also of interest. Detailed knowledge of these processes will lead to a 

better understanding of the infection process aiding in the development of more 

efficient expression systems and biological control agents. 

This chapter summarizes the results of my work using the baculovirus in 

vitro transcription systems to study early and late gene promoters. I show that 

uninfected nuclear extracts are able to transcribe two baculovirus early gene pro­

moters. Using extracts prepared at various times postinfection, early, late and 

very late baculovirus gene promoters were shown to be transcribed in vitro in a 

temporal manner similar to that seen during the course of baculovirus infection 

of insect cells. Nuclear extracts prepared at 16 hr p.i. were optimal for bac­

ulovirus late gene transcription. In an attempt to identify latepromoter specific 

DNA binding proteins, a minimal baculovirus late promoter was constructed and 
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used in gel-retardation assays. Deletion analysis of the vp39 late promoter delin­

eated a minimal baculovirus late promoter. However, subsequent gel-retardation 

assays failed to identify late-promoter specific DNA binding proteins. 

5.2 In Vitro Transcription of Baculovirus Early Promoters 

To show that uninfected nuclear extracts were able to transcribe several bac­

ulovirus early gene promoters using reaction conditions similar to those estab­

lished for the OpMNPV gp64 early promoter [122], the AcMNPV ie-1 and the 

OpMNPV p26 gene promoters were assayed. 

The ie-1 gene encodes a multifunctional protein that is transcribed early in 

infection [103, 218, 28, 185, 102, 98, 42] and is involved in both the transacti­

vation of baculovirus early genes and replication of the plasmids containing the 

putative baculovirus origins of replication [187, 148, 2]. S1 nuclease mapping 

of the transcriptional start sites of the ie-1 gene has shown that transcription 

initiates within a consensus CAGT sequence located 32 by downstream from a 

TATA-box [103] (See Figure 5.1). The OpMNPV p26 gene is transcribed early 

in infection and transcript analysis has shown that transcription initiation oc­

curs about 22 nucleotides downstream from a TATA-like sequence element [11]. 

To assay for in vitro transcription activity in nuclear extracts, the pAcIE-1 and 

pCG19A (pCG19A contains the p26 gene) plasmids were digested with Hinfl and 

HindIll respectively. If accurate in vitro transcription initiation with uninfected 

nuclear extracts occurs, run-off transcripts of 339 and 135 nucleotides would be 

synthesized from the AcMNPV ie-1 promoter and the OpMNPV p26 promoter, 

respectively (See Figure 5.1). 

The results of the in vitro transcription assays are shown in Figure 5.2 and 

Figure 5.3. Major run-off transcription products of the expected size are present 

indicating that nuclear extracts from uninfected Sf9 cells are capable of specifi­
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Figure 5.1. Schematic Representation of the AcMNPV ie-1 and OpMNPV 
p26 Run-off Transcripts. The arrows indicate the expected site of transcription 
initiation and size in nucleotides of the run-off transcripts. 

cally initiating transcription at the AcMNPV ie-1 and OpMNPV p26 early gene 

promoters from the same sites used in vivo. 

The influence of Mg2+ concentration on the efficiency of in vitro early tran­

script production using these two promoters was characterized. As shown in 

Figure 5.2, specific transcription initiation was observed from the AcMNPV ie­

1 promoter at Mg2+ concentrations from 1.2 mM to 11.2 mM with maximal 

activity between 5.2 and 7.2 mM Me. Transcription from the OpMNPV p26 

promoter was observed at similar concentrations of Mg2+ (See Fig. 5.3) with 

maximal production of run-off transcripts occurring between 3.2 and 5.2 mM 

Mg2+. These results indicate that the ie-1 and p26 early baculovirus promot­

ers have Mg2+ optima (4-6 mM) similar to that show for the OpMNPV gp64 

construct [122].3 

3 The AcMNPV ie-1 transcription data was published in: R.R. Hoopes Jr., 
and G.F. Rohrmann. (1991). In vitro transcription of baculovirus immediate 
early genes: Accurate mRNA initiation by nuclear extracts from both insect 
and human cells. Proc. Natl. Acad. Sci. USA 88:4513-4517. 
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Figure 5.2. Optimization of Mg2+ Conditions for AcMNPV ie-1 in vitro Tran­
scription. The numbers above the lanes indicate concentration of Mg2+ in mM. 
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scription. The numbers above the lanes indicate concentration of Me+ in mM. 
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5.3 In vitro Transcription of Baculovirus Late Promoters 

Baculovirus late gene transcription is dependent on an aamanitin and tage­

toxinresistant RNA polymerase [76, 91, 82] that initiates transcription within 

an DTAAG promoter sequence after the onset of viral DNA replication [17]. 

This polymerase and any associated factors are probably responsible for the high 

levels of expression of the polyhedrin (polh) and p10 genes. The development of 

an in vitro transcription system for baculovirus late promoters that can be used 

to identify and characterize factors involved in late gene expression is a major 

advancement for baculovirus transcription studies [82, 331]. 

5.4 Optimization of Late In Vitro Transcription Conditions 

Glocker et al. [82] were able to prepare nuclear extracts from infected insect 

cells capable of transcribing the 39K, vp39, p10 and polh promoters. Condi­

tions similar to those previously established for early in vitro transcription were 

found, except that late transcription signals were optimal at low concentrations 

(1 or 2 mM) of Me+. This may be due to the presence of a Mg2+dependent 

DNase activity [82] that is activated at higher Mg2+ concentrations resulting in 

degradation of the DNA template. 

To optimize late in vitro transcription signals, I tested a number of additional 

reaction conditions including substituting manganese (Mn2+) for magnesium, 

template preparation methods, and the addition of EDTA to the in vitro tran­

scription reactions. Primer extension analysis, performed on RNA transcribed 

from a vp39 or 39K promoter template using late transcription conditions, was 

used to evaluate the modifications. The M13 forward primer which is com­

plementary to plasmid sequences, was used to prevent primer extension of any 

endogenous viral RNA present in infectedcell nuclear extracts. 

Addition of EDTA and substitution of Mn2+ for Mg2+ were assayed in at­
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tempts to reduce or inhibit the DNase activity. Concentrations of Mn2+ ranging 

from 0 to 8 mM were unable to support late in vitro transcription from the vp39 

promoter (data not shown). As shown in Figure 5.4a, addition of 2 mM EDTA 

to the in vitro transcription reactions resulted in the same late transcript signal 

intensity as was present at 0 mM EDTA but addition of 4 mM EDTA abol­

ished late transcription from the 39K promoter. Therefore, low concentrations 

of EDTA had no effect on the in vitro transcription reaction whereas higher 

concentrations were detrimental to late transcript production. 

Three methods of template preparation, alkali lysis, CsC1 gradients and pu­

rification on Qiagen columns were tested for ability to support late transcription. 

Data indicated that DNA template prepared either on CsC1 gradients (Fig. 5.4b, 

lanes 1 and 2) or purified on Qiagen columns (data not shown) served equally 

well as DNA templates while templates prepared using the alkali lysis procedure 

generated less intense signals (Fig. 5.4b, lane 3) and on occasion, a number of 

extraneous bands (data not shown). 

It has been reported that DNase activity can be eliminated from nuclear 

extracts by purification of intact nuclei through a 2 M sucrose cushion [195, 194]. 

Nuclear extracts were prepared from infected Sf9 cells at various times p.i. as 

described (see section 2.17) except nuclei were pelleted on sucrose cushions as 

described in Marzluff and Huang [194] before the high salt extraction. As shown 

in Figure 5.4c purification of nuclei on sucrose cushions did not improve the late 

transcription signal from the 39K promoter. 

Finally, nuclear extracts prepared 16 hr p.i. are rendered transcription­

ally inactive by mild heat treatment. Nuclear extracts incubated at 47°C for 

20 min, were not capable of producing transcripts while untreated extract pro­

duced transcripts from pCR5 (See Figure 5.4d). This result suggests that a 

factor(s) required for late in vitro transcription is heat-labile. Previously, Naka­

jima et al. found that the TBP-containing fraction, TFIID, of RNA polymerase 
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Figure 5.4. Optimization of Late in vitro Transcription Conditions. A. Effect 
of addition of EDTA. Numbers above the lane indicate concentration of EDTA 
in mM. B. Template preparation methods. Lane 1 and 2, pCR5 isolated from 
two separate CsC1 gradients; lane 3, pCR5 isolated using alkali lysis procedure. 
C. Nuclear extracts prepared with (lanes 3 to 6) and without (lanes 1 to 3) a 
sucrose cushion. D. Heat inactivation of 16 hr p.i. nuclear extracts. Lane 1, 16 
hr p.i. nuclear extract; Lane 2, heat-treated 16 hr p.i. nuclear extract. 
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IIcontaining nuclear extracts was preferentially inactivated under the same con­

ditions. Using column fractions to supplement heattreated extracts, they were 

able to purify TFIID approximately 300fold [214]. Perhaps, TBP and its associ­

ated factors are the heatlabile components required for baculovirus late in vitro 

transcription. Further purification of the late transcription complex, possibly 

using supplementation of heatinactivated extracts, would answer this question. 

5.5 Nuclear Extract Time Course 

The ability of the in vitro transcription system to mimic in vivo baculovirus 

gene expression using extracts prepared 0 to 40 hr p.i. was examined. Several 

baculovirus gene promoters that included the early and late promoters from the 

39K gene, the late promoters from the vp39 gene and the hyperexpressed p10 

late promoter were assayed for in vitro transcriptional activity. The plasmids 

containing these promoters used in the in vitro assays are diagrammatically 

represented in Figure 5.5. 

Expression of the 39K gene is controlled by adjacent promoter elements; 

early expression is controlled by two TATAbox elements and late expression ini­

tiates within an ATAAG promoter sequence that overlaps the proximal TATA 

box element [99, 100]. Late transcription is completely dependent upon the 

presence of the TAAG motif [100]. Primer extension analysis of the in vitro 

transcripts generated using the 39K promoter containing construct, pCR1, are 

shown in Figure 5.6a. Accurately initiating transcripts from the 39K early pro­

moters are seen in 0, 8 and 12 hr p.i. but early transcripts are not detected 

past 16 hr p.i. However, transcripts initiating within the late promoter element 

ATAAG are detected at 16 and 24 hr p.i. 

Primer extension analysis of in vitro transcripts generated using the vp39 

promotercontaining construct, pCR5, are shown in Figure 5.6b. The vp39 gene 

promoter contains three late promoter elements that all serve as sites of tran­
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Promoter Plasmid
 

ATG Ham HI 

39K pCR1 
TATAAA TATATAAG CCA CAGT 

ATG Bam HI 

v1,39 pCR5 
ATAAG ATAAG 

Sst ATG Xho I 

p10 pCR8
 
ATAAG 

Figure 5.5. Schematic Diagrams of the 39K, vp39, and, p10 Promoter Region 
Constructs. pCR1 contains a 384 by BssHII-Sst1 fragment encompassing both 
early and late promoters from the 39K gene. pCR5 contains two of the three late 
promoters of vp39. The pCR8 construct contains a 500 by Hincll-Sstl fragment 
encompassing the p10 promoter. Single arrowheads indicate early transcrip­
tion initiation sites while double arrowheads indicate late transcription initiation 
sites. Important consensus sequences are shown and the TATA elements are un­
derlined. The crosshatched box represents coding sequence and thick black lines 
represents vector sequence. 
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scription initiation in vivo [301]. The pCR5 construct contains two of the three 

late promoter elements (See Figure 5.5). Transcription was detected from the 

vp39 template between 16 and 40 hours post infection; maximal expression oc­

curred between 16 and 24 hr p.i. (See Figure 5.6b). 

The pCR8 construct contains the p10 promoter region and was used as the 

DNA template in late in vitro transcription reactions. p10 is a hyperexpressed 

late gene; p10 transcript levels increase and remain high even after the levels of 

expression of other late genes decreases [16]. p10 transcripts were detected by 

primer extension analysis 16 hr p.i. and were maximally expressed in 40 hr p.i. 

nuclear extracts. (See Figure 5.6c). 

These results show that early, late and very late baculovirus gene promoters 

are transcribed in vitro in a temporal manner similar to the cascade of viral 

gene expression seen during the course of baculovirus infection. Furthermore, 

these data indicated that nuclear extracts prepared from Sf9 cells 16 hr p.i. were 

optimal for in vitro late gene transcription while extracts prepared 32-40 hr p.i. 

were optimal for very late gene transcription. 

Figure 5.6. Primer Extension Analysis of in vitro Transcripts of Early, Late 
and Very Late Promoters. Transcripts were generated using nuclear extracts 
prepared from AcMNPVinfected Sf9 cells various times post infection. Num­
bers on the top of the lanes indicate the times postinfection that the nuclear 
extract was prepared. The sequencing ladders on the left were generated using 
the same template and primer used in the primer extension reactions. In vitro 
transcription of the A) 39K promoter using early and late reaction conditions 
and B) vp39 promoter using late conditions and C) p10 promoter using late 
reaction conditions. 
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Clear differences between the in vivo expression of late and very late genes in 

vivo have been reported [301, 205, 226]. In particular, expression from vp39 late 

promoters was detected between 12 hr p.i. and 24 hr p.i. with transcript levels 

declining by 48 hr p.i. [301, 205]. However, polh transcripts were not detected 

until 24 hr p.i. after which time transcript levels increased dramatically [301]. 

Understanding the mechanism of differential transcription of late and very late 

gene promoters during the course of baculovirus infection is of interest. My 

work shows that differences in the expression of late and very late genes seen 

in vivo can be reproduced using the in vitro transcription system. Subsequent 

fractionation and reconstitution of active components of these nuclear extracts 

at selected times postinfection may lead to the identification of viral and/or 

host factors responsible for temporal transcription of baculovirus genes. 

5.6 Alignments of Late and Very Late Promoters 

Consensus sequences for molecular binding sites such as promoter regions can 

often be determined by aligning promoter regions, and then choosing the most 

common bases at each site to create the consensus sequence. However, infor­

mation is lost when the relative frequency of bases at each position is ignored. 

Schneider et al. [274] developed a function that can be used to assess the in­

formation content of the sites, that is the frequency of base pair occurrence at 

individual positions within a set of sites is included in the evaluation. 

Information is measured in bits; one bit of information is capable of answer­

ing one yes/no question. Assuming that a sequence of nucleotides is composed 

of an equal number of A's, C's, G's and T's, one bit of information is needed to 

answer the question "Is the base a purine?". Two bits of information is required 

to ascertain the exact base at a given position (Is the base an A?). In order to 

transmit the sequence to another person using only yes/no questions , we need 

two bits of information for each position in the sequence. If another sequence is 
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composed of an equal number of A's and T's with no C's and G's, this sequence 

can be transmitted to another person using only one yes/no question or one bit 

of information for each position in the sequence (Is the base an A?). 

The information in one column of a multiple sequence alignment can be 

computed by considering the bases in the column as a string and computing 

the information of that string. By computing the information content at each 

position of the multiple sequence alignment, the important positions within the 

alignment can be found even when the column is not composed of identical bases. 

The uncertainty of a column S, in a multiple sequence alignment, is 

N(x, S) (N(xL, S))
E(S) = E log2 

xE {A,C,G,T} 

where N(x, S) is the number of the bases x in the column S and L is the length 

of the column S. The information of the column S is 

I (S) = e(L,D) E(S) 

where D is the set of all sequences in the multiple alignment and e(L, D) is a 

function dependent on the maximum uncertainty of a column of length L and 

a distribution of bases equal to the distribution of bases in the sequences in the 

set D [274]. Computer programs developed by Dr. J. Holloway were used to 

compute and display the information content of multiple sequence alignments of 

baculovirus late and hyperexpressed late promoters. 

Alignments of the p10 promoter region from five different baculovirus se­

quences, available from Genbank as of June 6, 1995, were generated using the 

clustal V alignment program [115]. The computergenerated alignments were 

modified slightly and the information content of the aligned sequences was de­

termined as described above. The p10 promoter alignment is shown in Figure 5.7 

and the information content is graphically displayed in Figure 5.8. The results 

of this analysis suggest that sequences immediately downstream of the ATAAG 

sequence may be important for gene expression. The sequence is very AT rich 
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and seems to be composed of alternating TA base pairs. Deletions of the AcM-

NPV p10 5' leader sequence that includes this region resulted in a substantial 

decreases in p10 expression as measured by CAT activity [319]. These data sug­

gest that this region is important in regulation of p10 expression. Furthermore, 

this region contains a consensus palindromic sequence that could potentially 

result in a short cruciform structure that includes the ATAAG sequence. In­

terestingly, a GGvCCTyTdr sequence between 40 and 70 by upstream of the 

ATAAG sequence also appears to be highly conserved. A limited study of the 

AcMNPV p10 promoter region indicated that a deletion removing 13 by past this 

sequence affected transient CAT expression three to fourfold [319]. A similar 

motif, CCTwTyGT is found 10 by downstream of the polyhedrin late promoter 

sequence rTAAG (see below). 

Alignments of the polh promoter region from 13 sequences available in Gen­

bank on June 6, 1995 were performed in a manner similar to that described 

for p10. The polh promoter alignment is shown in Figure 5.9 and the informa­

tion content is graphically displayed in Figure 5.10. The alignment indicates 

that sequences downstream of the rTAAG sequence may be important for polh 

expression. The sequence is AT rich, having a high conservation of T residues 

immediately downstream while further downstream A residues appear to be con­

served. Nested within the conserved sequence is a TnTNGTA sequence that has 

been previously suggested to be similar to the 5sRNA and tRNA promoters [335]. 

Linker scanning analysis of this region of the AcMNPV polh gene showed that 

sequence changes in these regions resulted in decreased expression from the polh 

promoter [226]. 

Fortyfour exclusively late promoters regions from the complete sequence of 

the AcMNPV genome [7] could not be aligned using clustal V [115] and as a 

result were aligned by hand. Information was calculated from these alignments 

and the results are displayed in a logo format [275] in Figure 5.11. The rTAAG 
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1 11 21 31 41
 
I I I I
I
 

AcMNPV GGACCTTTAA TTCAACCCAA CACAATATAT TATA
 
BmNPV GGACCTTTAA TTCAGCCCAA CACAATATAT TACA
 
OpNPV GGCCCTCTTG TAAGCCACGG T
 
CfNPV GGGCCTTTTG CTGGCCACAA C
 
SeNPV GGACCTCTGA TTACGAATCA GAACAAAGAC GACGACGACG ACGACAGTAT
 

consensus GGvCCTyTdr ttvvvcmcva bammawakay kayr
 

51 61 71 81 91
 

I I I I I
 

AcMNPV GTTAAA TAAGAATTAT TATC-AAATC ATTTGTATAT
 
BmNPV GCTAAA TAAGAATTAT TATT-AAATT ATTTGTATAT
 
OpNPV TTTAAA TAAGCACTAT TATA-AAATA TTAA-TATAT
 
CfNPV GTTAAA TAAGCATTAT TAAC-TAATT ATTATTATAT
 
SeNPV TGGCAATATC GTATAGAGAA TAAGT-TTAT TATTATAATT GTAATTATAT
 

consensus dbtaAA TAAGhatTAT TAth-wAATh dTwwkTATAT
 

101 111 121 131 141
 

I I I I I
 

AcMNPV TAATTAAAAT ACTATACTGT AAATTACATT TTATTTACAA TCATG
 
BmNPV TAATTAAAAT CTTATACTGT AAATTACATT TTATTTACTA TCATG
 
OpNPV TTACCAAACT GACTGCAATA TGATCATGTC CAAGCCCAGC ATTTT
 
CfNPV TAAGATAACA ATTTCAATAT CATCATGTCC AAGCCCAGCA TTTTA
 
SeNPV TATACATTAT GAGTCAAAAT ATTTTACTTT TGATCCGAGC CGACA
 

consensus Taanhaaamt vhbwbamwdt hdwthabdty hdabyyvvnm hbwtd
 

Figure 5.7. Alignment of p10 Hyperexpressed Late Promoter Region. p10 se­
quences avaibale in Genbank on June 6, 1995 were used in the analysis. Ac, 
Autographa californica MNPV; Bm, Bombyx mori MNPV; Op Orygia pseudot­
sugata MNPV and SNPV (sequences are identical so only one was included in the 
analysis); Cf, Choristoneura fumiferana; Se Spodoptera exigua. The consensus is 
listed below the alignment; a capital A, C, G, or T indicates that the nucleotide 
at that position is completely conserved; a lower case a, c, g or t indicates that 
the nucleotide 80% conserved and the remaining nucleotide combinations are 
indicated in the IUB/GCG nomeclature. See Appendix 2. 
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Figure 5.8. Information Content of the p10 Promoter Region. The informa­
tion content of each position in the alignment of the p10 promoter region was 
determined. The y axis is the information content of that base position in the 
alignment measured in bits and the x axis is the position of the base in the p10 
promoter region corresponding to alignment generated in Figure 5.7. The late 
promoter sequence, ATAAG begins at position number 70. 
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1 11 21 31 41 51
 

HcNPV GGGTTGAATA AAATGCGTTT TTAAACATGT TTTTTTAATA ATTATAAGTA ATTTGCTGTT
 
ApNPV AACGTTTTTG ATTTACATCT -TTTATTTAC CTTTAAATAG ATAATAAGTA CATTGCTGTT
 
BmNPV TTATTAACGA TACAAATGGA AATAATAACC ATCTCGCAAA TAAATAAGTA TTTTACTGTT
 
AcMNPV GATATCATGG AGATAATTAA AATGATAACC ATCTCGCAAA TAAATAAGTA TTTTACTGTT
 
SlMNPV TATTGACATG CGATTTCTCA ATACCAATGA AGATCAAGTG ATGATAAGGA ATTTATTACT
 
BsNPV GATGTTTTAT AAATTATCAA AATTTGTTCA TTTACAATCT TCAATAAGTA TTTTTTTCCT
 
LdNPV CTAATCTTTT ATTTGTCGCG ATCGGGCGCG CGGGCGGTCT CCAATAAGTA TTTTATTCTT
 
SfMNPV TTTGCCGCAT TTTTATCTAA TCTTTTGCCG CACTGCGGGA ATTGTAAGTA ATTTTTTCCT
 
SeNPV TTTATCATCG ACGACGATAA GTAATGATAT GGTTGCGGGA ATTGTAAGTA ATTTTTTCCT
 
PfMNPV GTGTCGGTTT CGTCGACGCG TATTTATATG TTTTTTGGGA AATGTAAGTA ATTTTCTCCT
 
MbNPV GCTTCGGTAT AACCGACGCG TATTTATACG TTTTTTGGGA AATGTAAGTA ATTTTCTCCT
 
OpMNPV AAAATAAAAC ACTAGTTACT ATT-GGCGTT TCGTTTTTTA TTAATAAGTA ATTTCCTGTT
 
PnMNPV AAAATAAAAC ATTGGTTATT ATTTGGCGTT TTGTTTTTTA TTAATAAGTA ATTTGCTGTT
 
OpSNPV GAGTAATTCG ATTTTTGCGT GAGAATTTCA ACGACACACC TCAATAAGTA TTTTTGTCCT
 

consensus nnndnnnhnn hnnnnnnnnd dhnnnnnnnn nnntnnndnn hhdrTAAGtA htTTnbTvyT
 

61 71 81 91 101
 

HcNPV ATTGTAGCAA TTTTGTAAT -AAAAATAT­ CCTATAACT- --ATG 
ApNPV ATTGTAGCAA CTTTCTAGT --AAAATTT­ CCTATAACT- --ATG 
BmNPV TTCGTAACAG TTTTGTAAT AAAAAAA--­ CCTATAA--A T-ATG 
AcMNPV TTCGTAACAG -TTTTGTAAT AAAAAAA--­ CCTATAA--A TAATG 
SlMNPV ATCGTTCTAG ATAGTGAAAA ATCAAATATC CC A TAATG 
BsNPV ATTGTAAAAC ATTGTGAAAA ATCAAATACA AC A TAATG 
LdNPV TTCGTAAAGA TTTTGGAAAA ATCAAATACA CCGT A AAATG 
SfMNPV TTCGTAAAAC ATTGTGAAAA AATAAAT A TAATG 
SeNPV TTCGTAAAAC ATTGTGAAAA AATAAAT A TAATG 

PfMNPV TTCGTAGAAG ATTGTGAAAA ATAAAAT A TAATG 
MbNPV TTCGTAGAAG ATTGTGAAAA ATAAAAT A TAATG 

OpMNPV ATTGTAACAA -TTTTGTAAA A--AAATTT­ CCTATAACC- --ATG 
PnMNPV ATTGTAACAA -TTTTGTAAA A--AAATTT­ CCTATAACC- --ATG 
OpSNPV TTCGTAAAAC ATTGTGAAAT TTCAAATACA CC A TAATG 

consensus wTyGTavhav wttktgwAaw awhAAAtwym mckwtaacya waATG 

Figure 5.9. Alignment of the polh Hyperexpressed Late Promoter Region. polh 
sequences available in Genbank on June 6, 1995 were used in this analysis. Hc, 
Hyphantria cunea NPV; Ap, Antheraea pernyi NPV; Bm, Bombyx mori MNPV; 
Ac, Autographa californica MNPV; Si, Spodoptera littoralis MNPV; Bs, Buzura 
suppressaria NPV; Ld, Lymantria dispar NPV; Sf, Spodotera frugiperda MNPV; 
Se, Spodoptera exigua NPV; Pf, Panolis flammea MNPV; Mb, Mamestra brassi­
cae NPV; Op, Orygia pseudotsugata MNPV; Pn, Perina nuda MNPV and Op, 
Orygia pseudotsugata SNPV. The consensus is listed below; a capital A, C, G, or 
T indicates that the nucleotide at that position is completely; a lower case a, c, 
g or t indicates that the nucleotide 80% conserved and the remaining nucleotides 
are indicated using the IUB/GCG nomeclature. See Appendix 2. 
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Figure 5.10. Information Content of the polh Promoter Region. The informa­
tion content of each position in the alignment of the polh promoter region was 
determined. The y axis is the information content of that base position in the 
alignment measured in bits and the x axis is the position of the base in the polh 
promoter region corresponding to alignment generated in Figure 5.9. The late 
promoter sequence, rTAAG begins at position number 44. 
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IR
 

Figure 5.11. Information Content of 44 AcMNPV Exclusively Late Promoters. 
The information content determined by aligning 44 exclusively late promoters 
from AcMNPV is displayed in logo form. 
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Figure 5.12. Information Content for the p10, polh and late promoters. The 
information content is displayed in logo form. 
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sequence is absolutely conserved and interestingly, the exclusively late promoters 

seem to have A/T rich sequences immediately preceding the late promoter motif. 

Alteration of this sequence by replacing the AT rich region with GC base pairs 

could be used to evaluate this hypothesis. 

Figure 5.12 displays the conserved regions of the p10 and polh promoter 

regions and illustrates the differences between the different late and hyperex­

pressed late promoters. The AT richness in front of the dTAAG promoter may 

be a requirement for all late promoters. Addition of more information may be 

required for hyperexpressed lates. The different motifs seen in the p10 and polh 

promoters may be responsible for the dissimilar expression of the polh and p10 

genes [260]. Addition of these motifs to an exclusively late promoter and mon­

itoring the level of expression is one approach to understanding the mechanism 

of late and very late gene expression. 

5.7	 In vitro transcription analysis of the AcMNPV vp39 Late Pro-
rooter 

To begin to dissect the differences between late and very late gene expression, 

deletion analysis was performed on the vp39 promoter. The vp39 promoter was 

chosen because it was readily expressed in vitro in nuclear extracts prepared 

16 hr p.i. and did not contain any early promoters that could confound the 

results of the experiments. Previous studies on the vp39 promoter region had 

shown that vp39 contains three TAAG sequences. Each TAAG sequence serves 

as a site of transcription initiation in vivo [302]. Deletion analysis of the vp39 

promoter region showed that the ninetynine nucleotides upstream of the ini­

tiator methionine, containing only a single late promoter, was sufficient for late 

expression [301]. 

Initially, the plasmid pCR5, containing two of the three late promoter ele­

ments, was constructed. Deletion of the upstream promoter did not appear to 
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pCR5 

Reverse primer Kpnl Apal Xhol
 
ARCAGICTATGACCATGATTACOCCAMICTCOGIAPaTAACCCIVACTAAAOCKMACAAAAGCTOCKITACCOGIGIGIO
 
TTOTCGATACTOGITACTAATOCOOTTCOACICCTTAATTOGION32'GATTTCCCTTOTTTTCGACCCATOOCCCOOGGOOGIAOCTCC 

GAGTGCGAAA GCCGTTTTCG TCGTACAAAT CGAAATATTG TGTGCCAGCG AATAATTAGG AACAATATAA GAATMAAAA
 
CTCACGCTTT CGGCAAAAGC AGCATGTTTA GCTTTATAAC ACACGGTCGC TTATTAATCC TTGTTATATT CTTAAATTTT
 

11-1-110-11P­

TTTTATACAA CAAATCTTGG CTAAAATTTA TTGAATAAGA GATTTCTTTC TCAATCACAA AATCGCCGTA GTCCATATTT
 
AAAATATGTT GTTTAGAACC GATTTTAAAT AACTTATTCTCTAAAGAAAG AGTTAGTGTT TTAGCGGCAT CAGGTATAAA
 

1-1-1110-111m­

ATAACGGCAA CAATATGGCG CTAGTGCCCG T
 
TATTGCCGTT GTTATACCGC GATCACGGGC A
 

BamH1 Xbal Sstl
 
OGGATCCACTAGITTCTAGIAOCOGICCOCCACCOCOGITOGAGICTCCAATTOUICCCTATACITGUMCGITATTACAATTCACTGIOCCGTCOTTTTAC 
CCMACKMAWJWILTCTCOCCOGICOOTGOCOCCACCPCGAGOTTAAGCOGGATAWACTCAOCATAATOTTAAGTGACCOWNWAAAATO 

-20 primer
 

Figure 5.13. Nucleotide Sequence of the pCR5 vp39 Late Promoter Construct. 
The two late promoter sites are underlined, and the transcription start sites and 
direction of transcription are indicated by the arrow. pKS- vector sequences 
are indicated in bold type. Restriction endonuclease sites denoted are in the 
multiple cloning region of pKS-. ApaI and Xhol were used to create exonuclease 
III deletions in one direction and SstI and Xbal were used for the other direction. 

have deleterious effects on in vitro transcript initiation from the remaining two 

late promoters (data not shown). Figure 5.13 displays the nucleotide sequence 

of the vp39 promoter containing region of pCR5. 

Exonuclease III was used to create 5' and 3' deletions of one of the vp39 

late promoter regions as described in section 2.12. pCR5 was digested with ApaI 

and Xhol to delete from the 5' end of the proximal ATAAG and SstI and Xbal 

were used to delete from the 3' region (See Figure 5.13). Using this protocol, 

the 5' deletions contained a single late promoter element located nearest the 

initiator methionine. The 3' end deletions contained two late promoters; an 

upstream ATAAG promoter (see Figure 5.13) and the late promoter nearest 

the methionine that was subjected to deletion analysis. A number of clones 
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pC115-AX132acCAA CAAATCrf00 CSAAAATIRA TTGAATAKCIA CULTSTCTITC TCAATCACAA AATCOCCOTA CITCCATATTr 

pC15-AXL a gat g gt.LATCTTOCI CTIAPATITA TrOILATAO ClATITCTSTC TCAATCACAA AATCOCCOTA OTCCATATTT 

pCIS -AXD gigue Arnim [got acelIAATIVA STOMTAACIA CUATICSTIC TCAATCACAA JUINCGICCOTA OTCCATATIT MEI O. am WM 

pCIS -Air tau gggaaama getgataaTa ITOAATJU10.1 OASISCTITC TCAATCACAA AATCOCCOTA OTCC.MILTIT 

pC15-1XX Wm M. ClUIATCTIO0 CTADJATITA TIVISATAAWL OATITCITIC TCAATCACAA AILTCOCCOTA CITCCATATIT 

peRS-SID CAAATC2100 CTIAJUITA ITGAJLTAMA ellartIVITTC TCAATCACAA AXICOCCI7111 OTCCATocaa 

pCS543 CAJIATCTTOG GTAAAATISk ISCOATIACIIL GATITCTZTC TCAATCACAA AATCOCCOTA CP2CCcaat to 

pC25-48 CAAATCSTOGI CTIALATTTA 11.01111TAA0 0,11TTICTTIC TWIATC&CIA ALICCICCOSA Ganattagee 

pCRS-3 CAJULTCTTOO CTAAILATTTA TTGPATAAGA OkTESCITIC TCAATCACAA 3,17Ce.atte /seat &tag! 

palS-0 CAAATCTIVO CTWASTTA ITCYATAIIMIL GA:Tram.= TelltiCILCaa at tag.: ota tagtgagtog 

pC1115-X19 CAAATCTIOGI CTAAAATIVA 1713AATAAGIA OkTrICTITC Woe not tog ea ot at agtg agte gt seta 

y(115-111310 CAJIATCYTOO MAMMA TIVAATAAAlk UMW° aat togemstata gtgagtegta t t smut tea 

;CRS -LEH CAAATCTS1313 CTAAAATTTA TTOAATAAGAL Ciaattogoco tatagtgagt ogtattaean t teaet gem 

paLS -2 CAAATCTTOO CVAIIAATZSA ITOAATAAGA. utter, oat atagt gagte gtattac ant teaotggaag 

Figure 5.14. Nucleotide Sequence of the vp39derived Constructs used in in 
vitro Transcription Analysis. The sequences of vp39 deletion clones constructed 
using Exonuclease III are shown. The names of the clones are indicated on 
the left. The vp39 nucleotide sequences are shown in capitol letters while the 
sequences derived from the pKS vector are indicated by lower case letters. The 
solid line represents a continuation of the vector sequences and the dashed line 
represents the remainder of the vp39 promoter region contained in the clone. A 
+ indicates that an in vitro transcription signal was produced using this template 
whereas indicates that no signal was detected. 

were sequenced and in vitro transcription from the templates that contained the 

complete ATAAG sequence but had portions of the either the 5' or 3' flanking 

sequence deleted was assayed using primer extension. Figure 5.14 shows the 

sequence of the clones assayed for transcriptional activity using the late in vitro 

system. 

Primer extension analysis of in vitro generated transcripts from the clones 

pCR5AX132, pCR5AXL, pCR5AXD and pCR5AXF is shown in Figure 5.15. 

When used as DNA templates in late in vitro transcription reactions, these four 

deletion constructs generated transcripts that initiated within the ATAAG pro­

moter. A deletion as close as 6 by upstream (pCR5AXF) of the ATAAG se­

quence still resulted in the production of accurately initiating late transcripts 
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(Figure 5.15). Examination of the pCR5-AXF sequence showed that pCR5­

AXF retained an AT rich sequence immediately upstream of the late promoter 

transcription initiation site. Information content analysis (See section 5.6) of 

AcMNPV late promoters indicated that sequences similar in nucleotide compo­

sition are found 6 by preceding the ATAAG motif. 

Deletions 3' to the vp39 late promoter were also assayed(Figure 5.16). Due to 

the nature of these deletions constructs, primer-extension products became pro­

gressively shorter the closer the deletion was to the ATAAG promoter sequence. 

The lengths of the expected primer-extension products from the in vitro gen­

erated transcripts are indicated in Table 5.1. Accurately initiating transcripts 

were produced when plasmids pCR5-SXK, pCR5-SXD, pCR5-43, pCR5-48, 

pCR5-3, pCR5-8, pCR5-X19 and pCR5-S1310 were used as DNA templates. 

However, plasmids pCR5-SXH and pCR5-2 failed to produce any accurately 

initiating late transcripts when assayed using the in vitro transcription system. 

These results, shown in Figure 5.16, indicate that accurate initiation from the 

baculovirus vp39 late promoter requires a maximum of 6 by of sequence down­

stream from the ATAAG sequence; deletion of 4 additional base pairs resulted 

in cessation of late transcript production. Examination of the pCR5-SXH and 

pCR5-2 sequences indicated that a CGCCC sequence is found 5 by downstream 

of the late transcription initiation site in both these clones. Information content 

analysis (See section 5.6) of AcMNPV late promoters indicated that AT rich 

sequences are common in this region. Alteration of these sequences may have 

contributed to the loss of the late transcription signal from these clones. 

The primer extension analysis of the vp39 late promoter deletion constructs 

delineated a minimal late promoter sequence necessary for accurate transcription 

initiation. The minimal late promoter element contained 6 by upstream and 6 by 

downstream of the consensus ATAAG. Oligonucleotides were synthesized (Center 

for Gene Research and Biotechnology, Oregon State University) containing the 
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Figure 5.15. In vitro Transcription Analysis of the 5' vp39 Deletion Constructs. 
The vp39 deletion clones are as indicated. The arrows mark the position of 
the mRNA transcription start sites. A sequencing ladder generated from the 
pCR5 plasmid using the same primer, the M13 forward primer, as used in the 
primer extension reactions was used as size standards. A. Lane 1, pCR5; lane 2, 
pCR5-AX132; lane 3, pCR5-AXL; lane 4, pCR5-AXD; Lane 5, pCR5-AXF. 
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Figure 5.16. In vitro Transcription Analysis of the 3' vp39 Deletion Constructs. 
The vp39 deletion clones are as indicated. The arrows mark the position of 
the mRNA transcription start sites. A sequencing ladder generated from the 
pCR5 plasmid using the same primer, the M13 forward primer, as used in the 
primer extension reactions was used as size standards. Lane 1, pCR5; lane 2, 
pCR5-SXK; lane 3, pCR5-SXD; lane 4, pCR5-43; lane 5, pCR5-48; lane 6, 
pCR5-3; lane 7, pCR5-8; lane 8, pCR5-X19; lane 9, pCR5-S1310; lane 10, 
pCR5-SXH; lane 11, pCR5-2. 
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Plasmid Name Expected Lengths Actual Lengths 

pCR5-SXK 116 and 117 by 116 and 117 by 
pCR5-SXD 94 and 95 by 94 and 95 by 
pCR5-43 91 and 92 by 91 and 92 by 
pCR5-48 88 and 89 by 88 and 89 by 
pCR5-3 81 and 82 by 81 and 82 by 
pCR5-8 75 and 76 by 75 and 76 by 
pCR5-X19 70 and 71 by 70 and 71 by 
pCR5-S1310 63 and 64 by 63 and 64 by 
pCR5-SXH 57 and 58 by 0 by 
pCR5-2 55 and 56 by 0 by 

Table 5.1. Expected and Actual Lengths of the 3' vp39 Deletion Clone 
Primerextension Products. Primerextension products were generated using 
the 3' vp39 deletion clones in the late in vitro transcription system. 

minimal late promoter sequence (oligovp39A and oligovp39B) and a mutated 

version (oligovp39AM and oligovp39BM) in which the ATAAG was changed 

to AAAAA. Oligonucleotides vp39A and vp39B and oligonucleotides vp39AM 

and vp39BM were annealed and cloned into pKS. The resultant clones, pCR7 

and pCR7M, were assayed for transcriptional activity. Figure 5.17 shows the 

sequence of the oligonucleotides used to construct pCR7 and pCR7M. As shown 

in Figure 5.18, transcripts were detected from the minimal late promoter but 

not from the mutant late promoter indicating that a functional baculovirus late 

promoter consists of 17 by including the consensus ATAAG sequence. 

During the course of this work, Morris and Miller [207] reported an in vivo 

mutational study of the vp39 promoter. Using linker scanning analysis, they 

showed that 8 by upstream and 6 by downstream of the consensus ATAAG 

were necessary for minimal expression from the vp39 promoter when fused to 

the chloramphenicol acetyltransferase (CAT) reporter gene. My in vitro results 

indicate that the in vitro late transcription system accurately reflects in vivo 

baculovirus gene expression. 
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ATATTGAATAAGAGATTTGGvp 3 9AB 
GAT C TATAACTTATTCTGTAAAC C 

ATATTGAAAAACAGATTTGG
vp 3 9ABM 

GAT C TATAACTTTTTGTCTAAAC C 

Figure 5.17. Nucleotide Sequence of the vp39AB and vp39ABM Oligonu­
cleotides. This oligonucleotides were used to construct the minimal vp39 late 
promoter clone, pCR7, and the mutated vp39 promoter, clone pCR7-M. Bold 
type indicate the sequences derived from the vp39 promoter region and plain 
type shows the additional nucleotides added to facilitate cloning into pKS-. 
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Figure 5.18. In vitro Transcription Analysis of a Minimal Late Promoter. The 
arrows mark the position of the mRNA transcription start sites. Sequencing 
ladders were generated using either the pCR7 or pCR7-M plasmid using the 
M13 reverse primer, which was the same primer used in the primer extension 
reactions. Lane 1, pCR7. Lane 2, pCR7-M. 
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5.8	 Electrophoretic Mobility Shift Analysis of the vp39 Late Pro­

moter 

Once the minimal late promoter sequence for the vp39 gene was defined, oligonu­

cleotides vp39A and vp39B and oligonucleotides vp39AM and vp39BM were an­

nealed to create doublestranded oligonucleotides referred to as vp39AB and 

vp39ABM respectively. vp39AB and vp39ABM were then used in electrophoretic 

mobility shift analysis (EMSA) in an attempt to identify late promoterspecific 

DNA binding proteins. Nuclear extracts prepared from AcMNPVinfected Sf9 

cells 0 and 16 hr p.i. were used in EMSA studies. 

Reaction conditions similar to those that resulted in the production of ac­

curately initiating late transcripts in the in vitro transcription system were used 

in EMSA assays. Therefore, binding reactions were performed in total volume 

of 20 Al containing 2mM Me+, 20 mM Hepes [pH 8.4 at 25°C ], 15% glycerol, 

and 25 mM KC1 in the presence of 1µg of nonspecific competitor DNA (ei­

ther sheared salmon sperm DNA or polydIdC) and 10,000 cpms of the labeled 

oligonucleotides. Figure 5.19 shows the EMSA results when increasing amounts 

of nuclear extract prepared 0 and 16 hr p.i. were used. Protein binding to the 

vp39 minimal oligonucleotides in presence of 1 pg salmon sperm DNA was 

observed in both 0 and 16 hr p.i. nuclear extracts. However, DNAbinding ac­

tivity was much greater in 0 hr p.i. nuclear extracts than extracts prepared 16 hr 

p.i. suggesting that a hostencoded protein binds to baculovirus late promoters 

until late in infection. 

To confirm that the protein complex binds specifically to the vp39 minimal 

promoter region, complexes were competed by addition of increasing amounts 

of unlabeled vp39AB minimal oligonucleotides to the reaction in thepresence of 

salmon sperm DNA (ssDNA) or polydIdC (See Figure 5.20). This resulted in 

competition of the shifted complexes, suggesting that the DNAprotein complex 

formation was specific. However, three complexes were seen when polydIdC 
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Figure 5.19. Gel Retardation Analysis of vp39 Minimal Promoter Region. 
The radiolabeled oligonucleotides were incubated in the presence of increasing 
amounts of nuclear extract prepared 0 and 16 hr p.i. The protein concentration 
in pg added per 20 pl reaction is indicated above the lane. 
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was used as the non-specific competitor DNA whereas only one complex was 

observed with ssDNA. The single complex observed when ssDNA was used as 

the non-specific competitor appeared to have the same mobility as the fastest 

migrating band in poly-dIdC lanes. Identical complexes were observed using 

nuclear extracts prepared 0 and 16 hr p.i. although the equivalent amount 

of protein from 16 hr p.i. nuclear extracts contained significantly less DNA-

binding activity. The difference in number of complexes is likely due to the 

decreased sequence complexity of poly-dIdC; ssDNA due to it's greater sequence 

complexity may have bind a greater number of specific and non-specific DNA 

binding proteins. 

If a host-encoded protein is responsible for the DNA-binding activity seen 

in these nuclear extracts, the reduction in DNA-binding in late extracts may 

be due to viral-induced modification i.e. (de)phosphorylation or degradation of 

the host-encoded factor. To test for such activity, 0 and 16 hr p.i. extracts 

were combined and assayed for DNA-binding activity. As shown in Figure 5.20, 

mixing 2.5 pg of 0 hr p.i. and 2.5 pg 16 hr p.i. extracts resulted in the production 

of shifted complexes equivalent to those seen with 2.5 pg of 0 hr p.i. nuclear 

extracts indicating that the 16 hr p.i. nuclear extracts are unable to modify the 

DNA binding activity of 0 hr p.i. nuclear extracts. 

Competition experiments using unlabeled vp39AB oligonucleotides suggested 

that the shifted complexes were specific for the vp39 late promoter sequence. 

However, the shifted complex(es) were also competed by unlabeled vp39ABM 

mutant oligonucleotides and oligonucleotides of unrelated sequences (oligonucleo­

tides, TCGAGGGTAGGGGTCAGAGGTCACTCG and its complement, were 

kindly provided by Dr. Mark Leid). Figure 5.21 shows that in 0 hr p.i. nu­

clear extracts, DNA-binding activity was competed with the vp39ABM mu­

tant oligonucleotides at the same concentrations as the vp39AB oligonucleotides. 

These data indicate that the DNA-binding activity in these extracts is not spe­
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Figure 5.20. Gel retardation Competition Analysis of vp39 Minimal Promoter 
Region. The radiolabeled oligonucleotides were incubated in the presence of 
5 pg (lanes 1-11) or increasing concentrations of 0 hr p.i. nuclear extracts 
indicated in pg on top of lanes 12 to 15. Specific competitor DNA was added in 
excess molar amounts as indicated at the top of each lane (lanes 1-11) to reaction 
mixtures containing 1 pg of non-specific competitor DNA; either ssDNA (lanes 
1-6) or poly-dIdC (lanes 7-16) as indicated. The results of mixing equal amounts 
of 0 and 16 hr p.i. (2.5 pg 0 hr p.i. and 2.5 pg 16 hr p.i.) nuclear extracts is 
shown in lane 16. 
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Figure 5.21. Gel Retardation Competition Analysis using Specific and 
Non-specific Oligonucleotides. The radiolabeled vp39AB oligonucleotides were 
incubated in the presence of 10 pg /id nuclear extract prepared 0 hr p.i. The 
vp39AB, vp39ABM and ML oligonucleotides were added in excess molar amounts 
as indicated at the top of each lane. All binding reactions contained 1 pg of 
non-specific competitor DNA. 

cific for the baculovirus late promoter. Furthermore, use of unrelated oligonu­

cleotides of equivalent size also resulted in competition of the shifted complexes. 

Taken together, these results indicate that the DNA binding activity found using 

the vp39AB oligonucleotides is not specific for baculovirus late promoters. 

Recently Burma et al. [26] reported that a host-encoded protein of 30 kDa 

bound to the AcMNPV polyhedrin gene promoter region. Using nuclear ex­

tracts prepared both 0 and 51 hr p.i., they showed that this factor bound to 

three overlapping fragments within the polyhedrin promoter region. Their re­

sults suggested that this 30 kDa protein was binding to an AATAAA sequence 

found in all three fragments. Interestingly, a shorter version of this sequence, 

A ATAA, is found in vp39 oligonucleotides used for gel-retardation analysis. It 

is possible that the 30 kDa protein identified by Burma et al. is binding to the 
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vp39 oligonucleotides. However, Burma et al. used a DNA fragment where the 

AATAAA sequence had been mutated to CCGCCC as a competitor in gel retar­

dation assays and showed no specific competition of the shifted complex, whereas 

alteration of the AATAA sequence to AAAAA in the vp39 oligonucleotides re­

sulted in competition. Since the vp39 mutant and wild-type promoter were 

assayed for in vitro transcriptional activity (see section 5.7) and the mutated 

version of the vp39 promoter failed to produce accurately initiating transcripts, 

these results suggest that the DNA-binding identified in this work may not be 

associated with transcription of baculovirus late promoters. Further purifica­

tion and fractionation of uninfected and infected nuclear extracts is necessary 

before the role (if any) of these host-encoded DNA-binding components can be 

elucidated. 

5.9 Western Analysis of Nuclear Extracts 

Nuclear extracts prepared from uninfected and infected (16 hr p.i.) Sf9 cells 

were examined using western blot analysis for the presence of SfTBP and AcM-

NPV IE-1. Monoclonal antibody made against the highly conserved C-terminal 

domain of TBP from Drosophila melanogaster and polyclonal antibodies to AcM-

NPV IE-1 were used. As Figure 5.22 shows, SfTBP is present in both uninfected 

and infected extracts whereas AcMNPV IE-1 is present in nuclear extracts pre­

pared from infected but not uninfected cells. These results are as expected since 

SfTBP was detected in whole cell extracts until 72 hr p.i. and AcMNPV IE-1 

was detected in AcMNPV-infected cells until 72 hr p.i. [223, 42]. These data 

are consistent with the involvement of both SfTBP and AcMNPV IE-1 in bac­

ulovirus late gene transcription but by no means establishes their involvement. 

Further fractionation and reconstitution of the components of the in vitro tran­

scription system for baculovirus late promoters is required before both host and 

viral encoded late transcription factors can be identified positively. 
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Figure 5.22. Detection of SfTBP and AcMNPV 1E-1 in Uninfected and Infected 
Nuclear Extracts. Lanes 1 and 2 contain 30 and 35 ug , respectively, of nuclear 
extract prepared from uninfected Sf9 cells and lanes 3 and 4 contain 20 and 35 
pg of nuclear extract, respectively, prepared 16 hr. p.i. from infected Sf9 cells. 
The numbers on the left indicate the marker sizes in kDa determined using the 
BioRad prestained low range protein ladder. 
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5.10 Summary 

Both early and late in vitro transcription systems appear to mimic in vivo 

baculovirus gene expression. Using extracts prepared at various times post-

infection, early, late and very late baculovirus gene promoters were shown to 

be transcribed in vitro in a temporal manner similar to that seen during the 

course of baculovirus infection of insect cells. Nuclear extracts prepared at 16 

hr p.i. were optimal for baculovirus late gene transcription. Nuclear extracts 

competent for late transcription were shown by western blot analysis to contain 

SfTBP, a protein required by all three cellular RNA polymerases for transcrip­

tion and AcMNPV 1E-1, a transactivator of early gene expression and required 

for replication and/or late gene expression. Deletion analysis of the vp39 late 

promoter identified a minimal baculovirus late promoter that can be used in 

further studies to identify factors required for late transcription. This minimal 

late promoter was used in gel-retardation assays in an attempt to identify late-

promoter specific DNA binding proteins. Gel shift analysis failed to identify 

promoter-specific DNA binding at in nuclear extracts. 
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Chapter 6
 
Characterization of Protein-DNA Interactions at Enhancer Regions 

and Replication Gene Promoters 

6.1 Introduction 

Hrla is the smallest of the hrs (with the exception of hr4c, which is not well con­

served) containing only two 30-bp imperfect palindrome sequences separated 

by 58 bp. Characterization of plasmid subclones of the hrla-containing AcM-

NPV HindIII-N fragment revealed that only plasmids containing hrla under­

went infection-dependent replication and were able to stimulate transcription. 

A schematic representation of the HindIII-N subcloned fragments used to study 

the replication, transcriptional enhancer and protein-binding activity is shown 

in Figure 6.1. Sequences mapping to the left of hrla were required for max­

imal levels of replication. Plasmids containing only one half of a palindrome 

or disruptions of the central EcoRI core either did not replicate, or replicated 

very poorly, and did not exhibit enhanced transcriptional activity. Using gel-

mobility shift analysis, whole-cell extracts made from ie-1 transfected cells have 

been shown to contain a DNA-binding activity that is specific for hrs [97, 96]. 

Therefore, I attempted to correlate IE-1 binding to hrla and hrla derivatives 

with replication and transcription. 

Transient expression assays have shown that the level of transcription from 

baculovirus promoters is modulated by the product of the ie-1 gene alone [101, 

103, 218] or in combination with hr elements [102, 98, 218, 28, 185, 30]. Inter­

estingly, the ie-1 gene product has also been shown to inhibit the expression of 

two other genes, ie-2 [30] and a larger spliced form of ie-1, termed ie--0 [156] 

while allowing continued expression of its own gene product. This is similar to 

the herpes simplex virus infected-cell polypeptide 4 (ICP4) which functions as 

both a repressor and an activator of RNA polymerase II transcription. Studies 
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Figure 6.1. Schematic representation of the hrla fragments used to study the 
replication, transcriptional enhancer and protein binding activity. A restriction 
map of the HindIIIN fragment is shown at the top. The hrla region is depicted 
by a hatched bar. Regions contained in each subclone are indicated by solid lines 
below the map. 
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have indicated that ICP4 repression is mediated by ICP4 binding to a specific 

sequence near the site of transcription initiation [211, 95]. Therefore, to inves­

tigate the possibility that the ie-1 gene product functions in a manner similar 

to ICP4, the binding activity of pAcIE-1 transfected whole-cell extracts for the 

promoter region of several genes involved in baculovirus replication (ie-2, pe38, 

dnapol and helicase) was studied. 

Since hrs function as putative origins of replication, EMSA may be useful 

to probe for additional protein-DNA interactions between the proteins involved 

in baculovirus DNA replication. Therefore, I used whole-cell extracts made 

from Sf9 cells transfected with different combinations of the nine baculovirus 

genes involved in transient replication (including ie-1) [148] in gel-mobility shift 

analysis. 

The transient replication assay was used in our laboratory to identify puta­

tive origins of replication in the OpMNPV genome [236, 5]. In addition, trans­

acting sequences essential for transient replication of origin-containing plasmid 

DNA were also identified [2, 4]. Similar to the findings with the AcMNPV 

baculovirus, OpMNPV required six genes for transient replication of origin-

containing plasmids [3]. Additional experiments were performed to test for the 

interchangeability of these genes. It was found that the OpMNPV ie-1 gene 

could substitute for the AcMNPV ie-1 gene in the transient replication assay 

when transfected with hr-containing plasmid DNA into Sf9 cells. However, the 

AcMNPV ie-1 gene was unable to substitute for the OpMNPV ie-1 gene when 

transfected with the OpMNPV origin containing plasmid DNA into Ld652-Y 

cells [3]. In order to better understand the non-reciprocity of these two ho­

mologous genes, I performed gel-mobility shift analysis, to determine whether 

OpMNPV IE-1 bound to AcMNPV hr sequences and OpMNPV putative origins 

of replication. 
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6.2	 Binding of Proteins from pAcIE-1 Transfected Extracts to hr1a 

is Specific 

Gel retardation assays were employed for examining the interactions of proteins 

from pAcIE-1 transfected cells with hrla. Addition of increasing amounts of 

whole-cell extract from pAcIE-1 transfected cells to an intact hrla-containing 

probe resulted in the formation of three DNA-protein complexes. Complex I, a 

faster migrating form was detected at low concentrations of extract (Figure 6.2a, 

lane 2), complex II, a slower migrating form was seen at higher extract concentra­

tions (Figure 6.2a, lane 3), and complex III, the slowest migrating complex was 

only observed at very high extract concentration (Figure 6.2a, lane 6), and its 

presence was dependent on the quality of the whole-cell extract. When the hrla­

containing probe was incubated with whole-cell extracts from untransfected cells 

or pKS- transfected cells, we occasionally detected a shifted band, however, this 

band was only detected in trace amounts (Figure 6.2a, lanes 7-11). To confirm 

that the protein complex binds specifically to the intact hrla region, complexes 

were competed by addition of increasing amounts of unlabeled hrla-containing 

DNA fragments to the reaction (Figure 6.2b). This resulted in competition of 

the shifted complexes, indicating that the DNA-protein complex formation was 

specific. Competition experiments with an equivalently-sized DNA fragment (a 

297 by Xhol-Xhol fragment) from the AcMNPV p10 promoter, did not result 

in a decrease in the amount of complex formed (Figure 6.2b, compare lane 7 to 

lane 2), indicating that the protein(s) were binding to hrla in a sequence-specific 

manner. 

6.3	 IE-1 is a Component of the hrla DNAProtein Complex 

Sf9 cells transfected with pAcIE-1 contain protein(s) that bind to hr sequences, 

suggesting that IE-1 is a component of the complex bound to hrs. Gel retar­
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Figure 6.2. Gel Retardation Analysis of hrla. A. An end-labeled 430 by 
BamHI- HindIII fragment containing hrla was incubated in the presence of in­
creasing amounts of whole-cell extract prepared from either pAcIE-1 transfected 
(lanes 1-6) or mock-transfected (lanes 7-11) Sf9 cells as indicated. Whole-cell 
extract protein concentrations were typically 1 pg /p1 . B. Binding reaction 
mixtures contained 5 pl of extract from pAcIE-1 transfected Sf9 cells. Both ra­
diolabeled probe and competitor DNA were added simultaneously to the reaction 
mixtures. Competitor DNA was added in excess molar amounts as indicated at 
the top of each lane: lanes 3-6, unlabeled 430 by hrla fragment; lane 7, unlabeled 
297 by Xhol-Xhol AcMNPV p10 promoter fragment. 
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Figure 6.3. Gel Retardation Supershift Analysis of the hrla DNA-protein 
Complex. The end-labeled 385 by Hr1aLEco fragment was incubated with 
10 ,u1 of whole-cell extract prepared from pAcIE-1 transfected Sf9 cells. After 
a pre-incubation period of 20 min, dilutions (indicated at the top of each lane) 
of rabbit polyclonal antibodies to AcMNPV 1E-1 (lanes 3-5), preimmune serum 
(lanes 6-8) or rabbit polyclonal antibodies to OpMNPV polyhedrin (lanes 9-11) 
were added to the reaction mixture for a further 10 min before complexes were 
resolved by gel electrophoresis. 

dation assays performed in the presence of polyclonal antibodies to 1E-1 [223] 

were used to determine that IE-1 is a component of the DNA-protein complex. 

When the polyclonal IE-1 antibody was present in the reaction mixture we ob­

served the appearance of a slower migrating complex or supershift (Figure 6.3, 

lanes 3-5), indicating that IE-1 is a component of the DNA-protein complex. 

Supershifts were not detected when preimmune serum (Figure 6.3, lanes 6-8) 

or polyclonal antibodies to the OpMNPV polyhedrin protein [263] (Figure 6.3, 

lanes 9-11) were added to the reaction mixture. 
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6.4 Host-encoded Protein Binding to hrla Auxiliary Sequence 

Hr la is required for the replication of HindIII-N containing plasmids in infected 

Sf9 cells [169]. The efficiency of replication of pHdNAcc3 (Figure 6.1) was re­

duced compared to that of pHdN suggesting that sequences in the HindIll-N 

fragment lying outside of those contained in pHdNAcc3 contribute to the repli­

cation of hrla-containing plasmids [169]. Subclones of pHdN were used to de­

termine the location of the auxiliary sequences that augment the replication 

function of hrla. pHdNSub5 (Figure 6.1) replicated with the same efficiency 

as pHdN indicating that auxiliary sequences mapping to the left of the pHd­

NAcc3 region can stimulate hr-dependent replication to near maximum levels. 

However, unlike the effect on replication, clones with an intact hrla region but 

lacking sequences from the left portion of the HindIII-N fragment did not pro­

duce significantly reduced levels of GUS activity compared to clones containing 

this region [169] suggesting that this region enhances replication but not tran­

scriptional activity. Deletion analysis of the pHdNSub5 region indicated that 

sequences within the Hindi fragment were responsible for enhanced replication 

activity (H. Kim, personal communication). 

To investigate possible DNA-protein interactions within this region, I used 

whole-cell extracts made from Sf9 cells transfected with each of the baculovirus 

genes involved in transient replication, including ie-1, in gel-mobility shift anal­

ysis. Gel-mobility shift analysis was performed as described in Chapter 2.25 

using a 275 by DdeIl Accl from the pHdNAES in attempts to identify replica­

tion proteins that interact with this auxiliary sequence. The results, shown in 

Figure 6.4, indicate that a host-encoded protein(s) binds to this auxiliary se­

quence. Mock-transfected extracts as well as extracts prepared using each of 

the replication genes contained a protein(s) that bound to this DNA fragment. 



o 49 4' 4,\ It? % a ..3; 

Bound 

Figure 6.4. Gel Retardation Analysis of hrla Auxiliary Sequence. An 
end-labeled 275 by Ddel-Accl fragment was incubated in the presence of 
5.0 pl whole-cell extract (15 pg protein) prepared from Sf9 cells transfected 
with each of the replication genes. The replication gene used to transfect Sf9 
cells is indicated above each well. 

6.5	 Binding of Proteins from pAcIE-1 Transfected Extracts to hrla 
Mutants 

The role of the 30-bp imperfect palindrome sequences and intervening sequences 

between the palindromes in the replication and transactivation ability of hrla­

containing plasmids was investigated by testing plasmids that had alterations 

within the imperfect palindrome [169]. A single palindrome was created by di­

gesting with EcoRI and ligating the left half of the left palindrome with the 

right half of the right palindrome of hrla, resulting in a construct containing a 

single palindrome that was identical to the hrla right palindrome but lacks the 

58 by sequence between the two palindromes. The single palindrome construct, 

HdNAEco was sufficient to allow infection-dependent plasmid replication. How­

ever, additional mutants within the single palindrome construct containing either 

a four base deletion (HdNACB) or a three base duplication (HdNAFI) at the cen­

ter of the single palindrome and derivatives containing only the left (HdNAES) 
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or right half (HdNAEE) of the single palindrome replicated at barely detectable 

levels. GUS reporter gene constructs containing these alterations were assayed 

to determine if the sequences required for replication also influenced enhancer 

function. These experiments showed that only mutants containing a single com­

plete palindrome were able to transactivate; the central core mutants and the 

half palindrome constructs were unable to transactivate [169]. Taken together, 

these data suggest that a single palindrome is sufficient to allow hrla-mediated 

replication and transactivation and that disruptions of the central EcoRI-core 

render the palindrome dysfunctional for replication and transactivation. 

6.5.1	 Binding of Proteins from pAcIE-1 Transfected Extracts to hrla Central 

Core Mutants 

I assayed hrla mutants, similar to those tested for replication and enhancer 

functions, for the ability to form specific DNA-protein complexes. The sequences 

of these mutants are shown in Figure 6.5 and their construction is described in 

chapter 2.7. 

Only one retarded complex was observed with a DNA fragment containing 

a single hrla palindrome (construct pHR1aAEco contains the left half of the 

first palindrome fused with the right half of the second palindrome) (Figure 6.6, 

lanes 2-6). Competition experiments identical to those described for the entire 

hrla region (Figure 6.7, lanes 2-7) showed that the complex formed is sequence 

specific. The central EcoRl core mutants showed a marked reduction in replica­

tion and transactivation efficiencies. However, gel retardation assays indicated 

that a single retarded DNA-protein complex was formed with the Hr1aLEcoCB 

(Figure 6.6, lanes 7-12) and Hr1aLEcoFI (Figure 6.6, lanes 13-18) DNA frag­

ments containing the EcoRI core mutations. Competition experiments identical 

to those described above showed that the binding to the disrupted core mutants 

was specific (Figure 6.7, lanes 9-14 and 16-21). This data correlates well with 
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Hrla: 

GAOTTTTTOTCOTAAAAATOCCACTT OTTTTACCULGTAGIAATTCTACGTOTAACAC ACCULTCTAAAAGATGATOTCATTTTTTATCAA 

TGACTCATTTGTTTTAAAACAGACTT OTTTTACGAGTAGRATTCTACGTOTAAAGC ATQATCGTGAGTOCiTOOTOTTAATAAAATCAT 

HrlaAEco: 

GAGITITTOTCOTAAAAATOCCACTT OTTTTACGAGITACMATTCTACVTOTAAAGC ATGATCOTGAGTOGTOGTOTTAATAAAATCAT 

HrlabEcoFI: 

CiAGTTTTTOTCGTAAAAATGCCACTT OTTTTACGAGTAGAATTJULTTCTACGITGITAAAGC ATQATCGTGAGTOOTOOTOTTAATAAAATCAT 

Hr1aEEcoCB: 

GAGTTTTTGITCGTA/UULATOCC.ACTT I GITTTTACGIVZITAOCTACOTOTAAAGICI ATGATCOTGIAGTOGITGOTOTTAATJUULATCAT 

Hrla-interregion: 
AATTCTACOTOTAACAC ACGATCTAJUUWIATGATOTCATTTTTTATCAA 

TGACTCATITOTTTTAAAACAGACTT GITTTTACt3AOTAG 

Hr1aAEcoD21L:
 

actagtggat cc eccgagg CCACTT GITTTTACGAGTAGIAATTCTACGTOTAAAGC ATGATCOTGAGITOOTOGITOTTAATAAAATCAT
 

HrlaAlEcoD18R:
 

GAGITTTTTGITCOTAAAAATOCCACIT GITTTTACCIAGITAGAATTCTACOTOTJMAGC AT3ccegggggat mac t agt t ctagagcggc
 

Hr1aMco.5LB:
 

GIAGITTTTTOTCOTAAAAATOCCACTT I oTrrrAcaaoTAo I tategataccgtegac etcgaggggaggccggtaccagettttgttcc
 

Hr1aAEco.5RB:
 

gaattggagc tc caccgcggtggccrgccgc t c t agaac t agt gi CTACGITOTAAMIC I ATGATCOTGAOTGOTGOTOTTAATAAAATCAT
 

Figure 6.5. Sequences of the hrla Mutants and Derivatives. Sequences from 
the 30 by imperfect palindromes are enclosed in boxes. The EcoRI sites (or 
remaining portions of the EcoRI sites) are underlined. The nucleotide sequence 
derived from hrla is shown in capitol letters while the sequences derived from 
the pKS vector are indicated by lower case letters. 
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Figure 6.6. Gel Retardation Analysis of hrla Central Core Mutants. 
End-labeled HrlaAEco (lanes 1-6), HrlaAEcoCB (lanes 7-12) and HrlaAEcoFI 
(lanes 13-18) fragments were incubated in the presence of 0 pl (lane 1, 7 and 
13), 1 pl (lane 2, 8 and 14), 2 pl (lanes 3, 9 and 15), 3 pl (lanes 4, 10 and 16), 
5 pl (lanes 5, 11 and 17) and 10 pl (lanes 6, 12 and 18) of whole-cell extract 
prepared from pAcIE-1 transfected Sf9 cells. 

previous data [97, 259] indicating that protein(s) bind to regions flanking the 

EcoR1 core sequence. However, these results indicate that IE-1 binding by it­

self is not sufficient for activation of replication and enhancer functions. These 

central core mutations may alter sequences required for other factors to bind 

to hrla, or disrupt essential DNA conformations such as hairpin structures and 

thus prevent both replication and trans-activation.' 

Data from sections 6.2, 6.3 and 6.5.1 were published in D.J. Leisy, C. Ras­
mussen, H. Kim and C.F. Rohrmann. (1994). The Autographa californica 
Nuclear Polyhedrosis Virus Homologous Region la.: Identical sequences are 
essential for DNA Replication Activity and Transcriptional Enhancer Func­
tion. Virology. 208:742-752. 
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Figure 6.7. Gel Retardation Competition Analysis of hrla Central Core Mu­
tants. End-labeled HrlaAEco (lanes 1-7), HrlaAEcoCB (lanes 8-14) and 
HrlaAEcoFI (lanes 15-21) fragments were incubated in the presence of 5 ill of 
whole-cell extract prepared from pAcIE-1 transfected Sf9 cells. Both radiola­
beled probe and competitor DNA were added simultaneously to the reaction 
mixtures. Competitor DNA was added in excess molar amounts as indicated 
at the top of each lane: lanes 3-6, unlabeled 385 by Hrla.AEco fragment; lanes 
10-13, unlabeled 340 by Hr1aAEcoCB fragment; lanes 17-20, unlabeled 348 
by Hr1aLEcoFI fragment; lanes 7, 14 and 21, unlabeled 297 by Xhol-Xhol 
AcMNPV p10 promoter fragment. 
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6.5.2	 Binding of Proteins from pAcIE-1 Transfected Extracts to Single Palin­

drome Derivatives 

In order to delineate the specific sequences to which IE-1 was binding within the 

hrla region, the Hr1az.Eco construct was subjected to deletion analysis. Two 

clones, pHR1a6,Eco21L and pHR1thEco18R, that retained the central palin­

dromic core but were significantly reduced in flanking sequence, were obtained. 

pHR1aAEco21L and pHR1aAEco18R contain a single hrla palindrome (the left 

half of the first palindrome fused with the right half of the second palindrome) 

but portions of the 5' and 3' flanking sequence, respectively, have been deleted. 

The sequences of these derivatives are shown in Figure 6.5. 

DNA fragments containing the HRlaAEco21L and HR1aAEco18R dele­

tions were then used in gel mobility shift analysis to determine if IE-1 bound 

to the central region of the palindrome. Retarded complexes were observed 

when both HR1aAEco21L and HR1aAEco18R DNA fragments were used. Fig­

ure 6.8 shows that the addition of increasing amounts of pAcIE-1 transfected 

whole-cell extracts to reaction mixtures containing either pHRlaAEco21L or 

pHR1aLS.Eco18R, resulted in the formation of a single retarded complex. Compe­

tition experiments similar to those previously described, showed that the complex 

formed is sequence specific (Figure 6.9). These data, together with the central 

core mutation data, suggest that IE-1 binds to regions immediately flanking the 

EcoRl core sequence. 

Two other derivatives of hrla, that were truncated by digestion with EcoRI 

and therefore contained one half of a single palindrome (referred to as half sites) 

with 5' or 3' flanking regions were assayed for the ability to specifically bind 

IE-1. Figure 6.10 shows that that a single retarded DNA-protein complex 

was formed when labeled DNA fragments containing either hrlaAEco.5RB and 

hrlaAEco.5LB sequences were examined. To confirm that these complexes were 

specific, the complexes were competed by addition of unlabeled hrla-containing 
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Figure 6.8. Gel Retardation Analysis of hrla Single Palindrome Deletions. 
A. End-labeled Hr1aAEco21L fragments were incubated in the presence of 
0 pl (lane 1), 1 pl (lane 3), 2.5 pl (lane 4), 5 pl (lane 5), and 10 pl (lane 6) 
of whole-cell extract prepared from pAcIE-1 transfected Sf9 cells. 10 pl of 
whole-cell extract prepared from pKS- transfected Sf9 cells was used in lane 
2. B. End-labeled Hr1aAEco18R fragments were incubated in the presence of 
0 pl (lane 1), 1 pl (lane 3), 2.5 pl (lane 4), 5 pl (lane 5), and 10 pl (lane 6) 
of whole-cell extract prepared from pAcIE-1 transfected Sf9 cells. 10 pl of 
whole-cell extract prepared from pKS- transfected Sf9 cells was used in lane 2. 
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Figure 6.9. Gel Retardation Competition Analysis of hrla Single Palindrome 
Deletions. A. End-labeled Hr1aAEco21L fragments were incubated in the pres­
ence of 0 ill (lane 1) and 10/4 (lane 2-7) of whole-cell extract prepared from 
pAcIE-1 transfected Sf9 cells. Both radiolabeled probe and competitor DNA 
were added simultaneously to the reaction mixtures. Competitor DNA was 
added in excess molar amounts as indicated at the top of each lane. An un­
labeled 297 by Xhol-Xhol AcMNPV p10 promoter was used a competitor in 
lane 7. B. End-labeled Hr1aAEco18R fragments were incubated in the presence 
of 0µl (lane 1) and 10/21 (lane 2-7) of whole-cell extract prepared from pAcIE-1 
transfected Sf9 cells. Competition was performed as described in A. 

7 
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DNA fragments (Figure 6.10, lanes 3 and 4) but not by the addition of an 

equivalently sized DNA fragment containing the AcMNPV p 1 0 promoter region 

(Figure 6.10 lanes 5). 

Lastly, the region between the two central palindromes, referred to as the 

interregion, was assayed for the ability to bind IE -1. Figure 6.11 shows that a 

host-encoded factor(s) binds to the interregion forming several retarded com­

plexes. Complex I and II are detected at low concentrations of extract while 

complex III, a slower migrating form was seen at higher extract concentrations. 

These complexes were observed in pKS- and pAcIE-1 transfected whole-cell 

extracts. Competition experiments showed that the complexes observed, when 

either pKS- or pAcIE-1 transfected whole-cell extracts were used, are specific. 

One set of extracts prepared from pAcIE-1 transfected cells showed the forma­

tion of additional complexes that appeared to be specific for pAcIE-1 transfected 

extracts (data not shown). This result would suggest that both IE -1 and a host 

factor(s) are binding to this region. However, this pAcIE-1 transfected whole-

cell extract contained very high IE-1 activity and these DNA binding results 

were not reproduced with other pAcIE-1 transfected whole-cell extracts. 

The observation that host-factors bind to the IR is consistent with other 

data showing that hr-containing plasmids showed increased levels of expression 

compared to non-hr containing plasmids when transfected into insect cells with­

out IE-1 [218, 185, 169] (see section 6.6). A host factor(s) may bind to DNA 

sequences within hrs and activate transcription. 

6.6	 Enhancer Activity of hr1a Derivatives in pAcIE-1 Transfected 

Sf9 Cells 

Since hrs function as enhancers of early gene expression [28, 185, 218], I was 

interested in determining if several of the hrla derivatives also functioned as en­

hancers. DNA fragments containing Hrla, HrLEco and HrlaIR were subcloned 
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Figure 6.10. Gel Retardation Analysis of hrla Half Sites. A. End-labeled 
Hr1aAEco.5LB fragments were incubated in the presence of 0 pl (lane 1) and 
10 yl of whole-cell extract prepared from pAcIE-1 transfected (lane 2-5) or 
mock-transfected (lane 6) Sf9 cells. Both radiolabeled probe and competi­
tor DNA were added simultaneously to the reaction mixtures. Competitor 
DNA, a DNA fragment containing the entire hrla region, was added in ex­
cess molar amounts as indicated at the top of each lane. An unlabeled 297 by 
Xhol-Xhol AcMNPV p10 promoter fragment fragment was used as the com­
petitor in lanes 5. B. Experiments were performed as described in A except 
end-labeled Hr1aAEco.5RB DNA fragments were used. 

6 



123 

Mock pAcIE- I
A. B.ca.I/ 

0 

logc
1 2.5 5 10 1 2.5 5 10 .41 

0 1 2 5 10 

'4$ 
low Bound 

Five 

2 3 4 5 6 

Free 

1 2 3 4 5 6 7 8 9 10 11 12 13 

Figure 6.11. Gel Retardation Analysis of hrla and the hrla Interregion. A. 
End-labeled HrlaIR was incubated in the presence of Opl (lane 1), 2.5/21 (lane 
2 and 6), 5p1 (lane 3 and 7) and 10p1 (lane 5 and 9-13) of whole-cell extract 
prepared from pAcIE-1 transfected (lanes 6-13) and mock-transfected (lanes 
2-6) Sf9 cells. Competitor DNA, a DNA fragment containing the hrla interre­
gion, was added in excess molar amounts as indicated at the top of lanes 10-12. 
Both radiolabeled probe and competitor DNA were added simultaneously to the 
reaction mixtures. An unlabeled 297 by Xhol-Xhol AcMNPV p10 promoter 
fragment fragment was used as the competitor in lane 13. B. The end-labeled 
hrla-containing DNA fragment was incubated with increasing amounts in pl of 
whole-cell extract prepared from mock-transfected Sf9 cells. 
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into the GUS reporter plasmid p39KGUSpI18. The enhancer activities of these 

clones were determined by measuring the GUS activities in extracts of Sf9 cells 

that had been co-transfected with these GUS reporter constructs and increasing 

concentrations of pAcIE-1. 

The concentration of pAcIE-1 co-transfected with the GUS reporter con­

structs was varied between 0 and 5 itg per 1.25 x106 cells to determine which 

pAcIE-1 concentration yielded the highest levels of activation when compared 

to the same concentration of GUS reporter constructs. As previously shown, 

a concentration of 0.01 pg of pAcIE-1 per 1.25 x106 cells exhibited maximum 

enhancer effect [169]. As shown in Figure 6.12, the magnitude of the enhancer 

effect was diminished at both higher and lower concentrations of pAcIE-1. In 

the absence of pAcIE-1, an approximate 10-fold increase in GUS activity was 

observed with pHr1aGUS when compared to p39KGUSpI18 whereas the GUS 

levels observed using pHrLEcoGUS and pHr1aIRGUS were not discernibly above 

p39KGUSpI18 levels. 

Comparison of the transactivation ability of the three reporter gene con­

structs were performed using 0.01 fig of pAcIE-1 per 1.25 x106 cells. As shown 

in the Figure 6.13, the complete hrla sequence enhances transcription 10-fold 

better than the construct containing just a single palindrome. Although, the 

GUS reporter construct containing the interregion (Hr1aIRGUS) does enhance 

transcription at least 10-fold when compared to the non-hr-containing plasmid, 

p39KGUSpI18, it is 200-fold lower than the complete hrla sequence. These 

data suggest that synergistic interactions may be occurring between palindromes 

and/or the regions between the palindromes. The DNA sequences between the 

hr palindromes exhibit some sequence conservation [96, 98](See Appendix 3). 

Therefore, maximal enhancer activity appears to require at least two imperfect 

palindromes and may include the region between the palindromes that I have 

referred to as the interregion. 
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Figure 6.12. Enhancer Activity as a Function of pAcIE-1 Concentra­
tion. 0.5 ,ag of p39KGUSpI18, pHr1aGUS, pHRlaA and pHr1aIRGUS were 
co-transfected into 1.25 x106 Sf9 cells in the presence of varying concentra­
tions of pAcIE-1. GUS activity was measured at 24 hr post-transfection. A. 
The influence of pAcIE-1 concentration on GUS activity are plotted relative 
to the activity obtained in p39KGUSpI18 transfected cells without the addi­
tion of pAcIE-1. The ratios of GUS activities of pHr1aGUS, pHRlaAEcoGUS 
and pHR1aIRGUS relative to p39KGUSpI18 at 0.001 and 0.1 jig are shown. B. 
Same as A, only higher concentrations of pAcIE-1 were used. The ratios of 
GUS activities of pHrlaGUS, pHR1aAEcoGUS and pHR1aIRGUS relative to 
p39KGUSpI18 at 5 pg is shown. 



126 

1 .5 '
 

>-, 

-4 

4-)
0 

1 .0 

4 
cf) 

c7 

a) 

-

4-) 0 .5 

a) 
(24 

0 .0 7 

Figure 6.13. Enhancer Activity of hrla derivatives. 1.25 x106 Sf9 cells were 
cotransfected with 0.5 fig of the indicated plasmids and 0.01 jig of pAcIE-1. 
The ratios of GUS activities relative to pHr1aGUS are shown. Each column rep­
resents the average of at least three independent transfections with the standard 
deviation indicated. 
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6.7	 Binding of Proteins from pAcIE-1 Transfected Extracts to Repli­

cation Gene Promoters 

As previously mentioned, the ie-1 gene product has been shown to modulate 

the level of transcription from baculovirus promoters in the presence [102, 98, 

218, 28, 185, 30] or absence [101, 103, 218] of hr elements. Furthermore, the ie-1 

gene product inhibits the expression of two other genes, ie-2 [30] and a larger 

spliced form of ie-1, termed ie-O [156] while allowing continued expression of 

its own gene product. To investigate the possibility that IE-1 may bind to the 

promoter regions of several baculovirus genes, pAcIE-1 transfected whole-cell 

extracts were assayed for DNA binding activity specific for the promoter regions 

of several genes involved in baculovirus replication, including ie-2, pe38, dnapol 

and helicase. 

As shown in Figure 6.14, pAcIE-1 transfected extracts contain a DNA bind­

ing activity specific for the ie-2 gene promoter. Addition of pAcIE-1 transfected 

whole-cell extracts resulted in the formation of two DNA-protein complexes. A 

faster migrating complex was detected in both mock and pAcIE-1 transfected 

whole-cell extracts (Figure 6.14, compare lane 2 and 3) suggesting that a Sf9 

encoded protein(s) may be interacting with the ie-2 promoter region. However, 

it is interesting to note that the complex migration is not identical using mock 

and pAcIE-1 whole cell extracts, the addition of equivalent amounts of protein 

from pAcIE-1 transfected whole cell extracts resulted in increased binding (Fig­

ure 6.14, compare lane 2 and 3) and the complex was competed by addition of 

hrla containing probe (Figure 6.14, lane 10). Complex II, a slower migrating 

form was specific for pAcIE-1 transfected extracts. Complex II was competed 

with increasing amounts of both the ie-2 promoter and the hrla fragment (Fig­

ure 6.14, lanes 6 and 10). Competition experiments with an equivalently sized 

DNA fragment (a 297 by XhoI- Xhol fragment) from the AcMNPV p 1 0 promoter, 

did not result in a decrease in the amount of complex formed (Figure 6.14, corn­
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Figure 6.14. Gel Retardation Analysis of the ie-2 Promoter Region. A 336 
by end-labeled Ncol-Xbd fragment containing the ie-2 promoter region was 
incubated in the presence of Opl (lane 1), 10p1 (lane 2-10) of whole-cell ex­
tract prepared from pAcIE-1 (lanes 3-10) or mock (lane 2) transfected Sf9 cells. 
Extract protein concentrations were 2.5 pg /p1 . Both radiolabeled probe and 
competitor DNA were added simultaneously to the reaction mixtures. Competi­
tor DNA included the 336 by ie-2 promoter fragment (lanes 4-6), the 430 by 
fragment containing the hrla region (lane 9 and 10), and the 297 by Xhol-Xhol 
AcMNPV p10 promoter fragment (lane 7 and 8) that were added in excess molar 
amounts as indicated at the top of each lane. 

pare lane 8 to lane 3), indicating that the IE-1 is binding to the ie-2 promoter 

in a sequence-specific manner. 

When the pe38 promoter region was used in gel mobility shift analysis, 

pAcIE-1 transfected extracts were shown to contain a DNA binding activity 

specific for the pe38 gene promoter. Addition of pAcIE-1 transfected whole-cell 

extracts resulted in the formation of two DNA-protein complexes. Complex II, 

the slower migrating complex, was only formed when very high concentrations 

pAcIE-1 transfected extracts were used (Figure 6.15, lane 15). Complex I, a 

faster migrating complex, was formed by addition of pAcIE-1 transfected ex­

tracts. This complex was not detected when equal amounts of mock-transfected 
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extract was used. Competition by addition of increasing amounts of both the 

pe38 promoter and the hrla fragment (Figure 6.15) resulted in the disappear­

ance of the shifted band. However, competition experiments with an equivalently 

sized DNA fragment (a 297 by Xhol-Xhol fragment) from the AcMNPV p10 pro­

moter, did not result in a decrease in the amount of complex I or complex II 

(Figure 6.15, compare lane 8 to lane 3), indicating that the IE -1 is binding to 

the pe38 promoter in a sequence-specific manner. 

Electrophoretic mobility shift analysis using the dnapol and p143 promoters 

failed to detect any sequence-specific binding in both mock and pAcIE-1 trans­

fected extracts (data not shown) suggesting that the ie-2 and pe38 promoter 

regions contain sequences for IE-1 binding. 

6.8 IE-1 is a Component of the pe38 DNA-Protein Complex 

Sf9 cells transfected with pAcIE-1 contain protein(s) that bind to replication 

promoters, suggesting that IE-1 is a component of the complex. Gel retardation 

assays performed in the presence of polyclonal antibodies to IE-1 [223] resulted in 

the appearance of a slower migrating complex or supershift (Figure 6.16, lanes 3­

5), indicating that IE-1 is a component of the DNA-protein complex at the pe38 

promoter. Supershifts were not detected when pre-immune serum (Figure 6.16, 

lanes 6-8), polyclonal antibodies to the OpMNPV polyhedrin protein [263] (Fig­

ure 6.16, lanes 9-11) or mouse monoclonal antibodies to Drosophila TBP (data 

not shown) were added to the reaction mixture. 

6.9 Western Analysis of Whole-Cell Extracts 

Whole-cell extracts prepared from Sf9 cells transfected with pKS- or the AcM-

NPV ie-1 gene were examined for the presence of IE-1 using western blot anal­

ysis. Polyclonal antibodies to AcMNPV IE-1 were used [223] to detect IE-1 
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Figure 6.15. Gel Retardation Analysis of the pe38 Promoter Region. A 120 by 
end-labeled Ncol-Kpnl fragment containing the pe38 promoter region was incu­
bated in the presence of Opg (lane 1 and 13), 2.5pg (lane 2-10) and 12.5pg (lane 
14 and 15) of whole-cell extract prepared from pAcIE-1 transfected (lanes 3-12 
and 15) and mock-transfected (lane 2 and 14) Sf9 cells. Both radiolabeled probe 
and competitor DNA were added simultaneously to the reaction mixtures. Com­
petitor DNA, DNA fragment containing the pe38 promoter (lanes 4-6) or the 
hrla region (lanes 10-12), was added in excess molar amounts as indicated at 
the top of each lane. An unlabeled 297 by Xhol-Xhol AcMNPV p10 promoter 
fragment fragment was used as the competitor in lanes 7-9. 
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Figure 6.16. Gel Retardation Supershift Analysis of the pe38 DNA-protein 
Complex. The end-labeled 120 by pe38 promoter containing fragment was in­
cubated with 2.5 ig of whole-cell extract prepared from pAcIE-1 transfected 
Sf9 cells. After a pre--incubation period of 20 min, dilutions (indicated at the 
top of each lane) of rabbit polyclonal antibodies to AcMNPV IE-1 (lanes 6-8), 
preimmune serum (lanes 3-5) or rabbit polyclonal antibodies to OpMNPV poly­
hedrin (lanes 9-11) were added to the reaction mixture for a further 10 min 
before complexes were resolved by gel electrophoresis. 
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Figure 6.17. Detection of AcMNPV IE-1 in Whole-Cell Extracts. Lanes 1 
and 2 contain 20 and 40 pg , respectively, of whole-cell prepared from pKS­
transfected Sf9 cells and lanes 3 and 4 contain 20 and 40 pg of whole-cell extract, 
respectively, prepared from ie- 1 transfected Sf9 cells. The numbers on the left 
indicate the marker sizes in kDa determined using the BioRad prestained low 
range protein ladder. 

protein production. As Figure 6.17 shows, 1E-1 is present in whole-cell extracts 

prepared from ie -1- transfected but not pKS- transfected cells. The AcMNPV 

IE-1 polyclonal antibodies fail to cross-react with OpMNPV IE-1 (data not 

shown). 

6.10 Analysis of DNA Sequences that Exhibit IE -1 Binding Activity 

6.10.1 Alignments of AcMNPV hr Regions 

Alignments of all the hr regions in the complete genome of AcMNPV [7] were 

generated using the clustal V alignment program [115]. The computer-generated 

alignments were modified and the information content of the aligned hr sequences 

was determined as described in Chapter 5.6. The hr alignment is shown in Ap­
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Figure 6.18. Information Content of the AcMNPV hrs. The information con­
tent of each position in the alignment of the hr region was determined. The y 
axis is the information content of that base position in the alignment measured 
in bits and the x axis is the position of the base in the hr region corresponding 
to alignment generated in Appendix 3. Position 56 corresponds to the G in the 
EcoRI site (GAATTC) found in the center of the imperfect palindromes. 

pendix 3 and the information content is graphically displayed in Figure 6.18. In 

addition, the results obtained for the region including, and immediately flanking, 

the central palindromic core are displayed in a logo format [275] in Figure 6.19. 

Using the aligned AcMNPV hr regions (See Appendix 3), a distance matrix 

was computed between all pairs of hrs using the Jukes and Cantor model of 

evolution [133]. Cluster analysis using PHYLIP was used to construct the tree 

(See Figure 6.20). Analysis of the tree indicated that the hrs segregated into 

three clusters and that the repeated palindromic elements within each hr region 

largely comprise these clusters. Hr3, hrl and hr4a cluster, the hr2 region formed 
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Figure 6.19. Information Content for the Central Palindromic Region of AcM-
NPV hrs displayed in Logo Form. 
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a cluster and the hr5, hrla and hr4b regions were split between two groups. 

The cluster containing the hr3, hrl and hr4a repeats has accumulated a greater 

number of nucleotide differences than the other two clusters. Hr3, hrl and hr4a 

repeat elements may have been present in the AcMNPV genome for a longer 

period of time and therefore had greater opportunity to accumulate nucleotide 

changes or alternatively selective pressures on sequence conservation may be 

less at these locations in genome. Recent duplication events may have given 

rise to hr2 as the repeated palindromic elements are very homogenous. The 

sequence differences between the hrs may be a result of random mutations in 

non-essential regions of the hrs. Alternatively, the sequence differences may also 

be important for the individual function of the hrs for instance in the timing of 

origin replication. 

6.10.2 Determination of 1E-1 Binding Site 

Mutational analysis of both hrla and hr5 [97, 259] suggest that IE-1 binds to 

a specific sequence immediately flanking the central palindromic core. Using 

a Gibbs sampling strategy for multiple sequence alignments [162], I compared 

the nucleotide sequences that have been shown to specifically bind IE-1 from 

my work using hrla and that of others [97, 259] using hr5. By employing this 

algorithm, I was able compare the different DNA fragments and the number 

of complexes formed per DNA fragment. For instance, this algorithm can be 

used to find two identical sequence motifs within a DNA fragment that formed 

two (or more) complexes when used in EMSA. By comparing a number of the 

DNA fragments that have been tested for IE-1 binding activity, possible IE-1 

binding motifs were determined. These nucleotide motifs were centered around 

a 5'-ACTCGTAA-3' core sequence contained within the conserved imperfect 

palindrome. 

Analysis of the promoter regions of the baculovirus genes involved in DNA 
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Figure 6.20. Cluster Analysis of the AcMNPV Hr Sequences 
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GAATAACTGT ACTGOTAA TTTGATTATG ----71 bp----ATG
 

0112­

is-0 TATAAAGCC CGTTTGCCCA ACTCGTAA ATCAGTATCA ----69 bp----ATG 

po-38 TATAAAAGCAG GCACTCACCA ACTCGTAA GCACAGTTCG ----37 bp----ATG 

is-2 TATAAATACAG CTGCCGTTCT ACTCGTAA GCACAGTTCA ----40 bp----ATG 

Hr consensus TAY DBGHKTTACRV GTAGAATTCT ACBYGTAA MRCRHRWT 

Figure 6.21. The Putative IE-1 Nucleotide Binding Sequence. Alignment of the 
hr consensus and the replication gene promoters that contain similar sequences. 
The putative IE-1 nucleotide binding motif is show in bold and underlined. The 
arrowheads mark the location of transcription initiation. 

replication indicated that the lef-1, ie-2 and pe38 promoters contained the 

putative IE-1 binding motif identified above. Since the IE-1 binding site is 

palindromic, these data suggest that IE-1 binds to two sites containing the 5'­

ACTCGTAA-3' sequence motif within the palindrome (See Figure 6.21). A 

search of the ACMNPV genome revealed that this sequence is found in all the 

hrs with the exception of hr4c (which is not well conserved) and because the hrs 

are palindromic, the same sequence is present on the complementary strand. In 

addition, this motif was found in the promoter region of the ie-O gene. However, 

the sequence is only found once within the promoter regions of lef-1, ie-2, pe38 

and ie-O; it is not palindromic. Figure 6.21 shows the location of the motif 

within each of the promoter regions. The putative IE-1 binding motif is located 

3' to the TATA Box and either comprises or is a few bases upstream of the site 

of transcription initiation. The position of the putative IE-1 binding motif may 

be important for IE-1 regulation (see discussion). This sequence was also found 

in several other locations in AcMNPV genome but all these appear to be within 

coding regions and not located near promoter regions. 



138 

6.11	 Proteinhrla Interactions with Baculovirus Genes Required for 

Transient Replication 

Whole-cell extracts made from cells transfected with each of the nine baculovirus 

genes involved in DNA replication were tested for ability to bind to hr sequences 

using EMSA. As shown in Figure 6.22, only whole-cell extracts made from ie-1 

transfected cells contained a DNA-binding activity. When both ie-1 and each 

one of the other genes involved in replication were co-transfected no change 

in the mobility of the complex bound to hrla.AEco was observed. Similarly, 

no change in mobility of the bound complex was observed when whole-cell ex­

tracts where prepared from Sf9 cells transfected with all the replication genes or 

when the complete hrla probe was used (data not shown). Results from these 

experiments showed that under the conditions used only IE-1 bound to hrla 

sequences indicating that other methods may be more useful in determining any 

additional protein-protein-DNA interactions between the replication proteins 

and hr sequences. 

6.12	 Does the OpMNPV 1E-1 bind DNA in a manner similar to 
AcMNPV ? 

The OpMNPV IE-1 predicted protein sequence is 21% identical at the amino 

terminus (maintaining an acidic profile) and 55% identical at the C-terminal to 

the AcMNPV IE-1 predicted protein sequence [299]. Transient assays showed 

that OpIE-1 was able to transactivate an AcMNPV 39K CAT reporter construct 

in both Ld652-Y cells and Sf9 cells. Expression was enhanced by the presence 

of AcMNPV hrs, although OpMNPV IE-1 enhancement was less than that seen 

when AcMNPV IE-1 was transfected [299]. Constructs containing the OpMNPV 

enhancer region, referred to as OpE [300], showed that OpMNPV IE-1 also 

functioned as a transactivator in both Ld652-Y and Sf9 cells [300]. Therefore, 
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Figure 6.22. Gel Retardation Analysis of the Hr1aLEco DNA-Replication Pro­
tein Complex. End-labeled HrlaAEco fragments were incubated in the presence 
of 5 tzl of whole-cell extract prepared from Sf9 cells transfected with each repli­
cation gene or in combination with ie-1. A. Whole-cell extracts made from Sf9 
cells transfected with a single replication gene. The name of the gene is indicated 
above the lane. B. Whole-cell extracts made from Sf9 cells transfected with ie-1 
and another gene involved in replication as indicated above the lane. 
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I performed gel-mobility shift analysis, to determine whether OpMNPV IE-1 

bound to AcMNPV hr sequences and the OpMNPV enhancer, OpE. 

6.13	 Binding of Ld652-Y host-encoded protein to the AcMNPV hrla 

is specific. 

Gel retardation assays using the same experimental conditions as those estab­

lished for AcMNPV pAcIE-1 transfected extracts were employed for examining 

the interactions of proteins from pOpIE-1 transfected Ld652-Y cells with hrla. 

As shown in Figure 6.23, addition of increasing amounts of whole-cell extract 

from pOpIE-1 or pKS- transfected cells to hrla resulted in the formation of 

a DNA-protein complex. However, no retarded bands were observed when the 

hrlaAEco probe was used suggesting that a host-encoded protein(s) bound to 

the hrla interregion. Gel retardation assays using hrlaIR indicated that host 

protein(s) binding to the interregion formed several complexes that were com­

peted by addition of increasing amounts of unlabeled hrlaIR-containing DNA 

fragments (Figure 6.24). Competition experiments with an equivalently sized 

DNA fragment (a 297 by Xhol-Xhol fragment) from the AcMNPV p10 promoter, 

did not result in a decrease in the amount of complex formed (Figure 6.24), in­

dicating that the host-encoded protein(s) were binding to hrla interregion in a 

sequence-specific manner. These results indicate that both Sf9 and Ld652-Y 

cells produce proteins that bind to the hrla interregion. 

6.14	 Host-encoded Protein Binding to OpMNPV Enhancer Sequen­

ces 

Gel-mobility shift analysis was performed to determine whether OpMNPV IE-1 

bound to the OpMNPV enhancer, OpE. OpE consists of a 66-bp element that 

is tandemly repeated partially or completely 12 times and has some sequence 
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Figure 6.23. Gel Retardation Analysis of the Hrla-Ld652-Y Protein Complex. 
A. End-labeled hrla was incubated in the presence of 0 pi (lane 1), 1 pl (lane 
2 and 6) 2.5 pl (lane 3 and 7), 5.0 pl (lanes 4 and 8) and 10 pl of whole-cell 
extract prepared from pOpIE-1 transfected Ld652-Y cells (lanes 6-9) or pKS­
transfected Ld652-Y cells (lane 2-5). B. End-labeled HrlaAEco was incubated 
in the presence of 0 pl (lane 1), 2.5 pl (lane 2) and 5.0 pl (lane 3) of whole-cell 
extract prepared from pOpIE-1 transfected Ld652-Y cells 
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Figure 6.24. Gel Retardation Analysis of the hrlaIR-Ld652-Y Protein Com­
plex. End-labeled hrlaIR was incubated in the presence of 0 p1 (lane 1), 
1.0 pl (lanes 2 and 6), 2.5 pl (lanes 3 and 7) 5.0 pl (lanes 4 and 8) and 10 pl (lanes 
5 and 9-13) of whole-cell extract prepared from pOpIE-1 (lanes 6-13) or pKS­
(lanes 2-5) transfected Ld652-Y cells. Both radiolabeled probe and competitor 
DNA were added simultaneously to the reaction mixtures. Competitor DNA, the 
unlabeled hrlaIR fragment, was added in excess molar amounts as indicated at 
the top of each lane. An unlabeled 297 by Xhol-Xhol AcMNPV p10 promoter 
fragment was used as the competitor in lane 13. 
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CGCCGCTGACGCACCGCT AGCACGCG 
CCG TTCGAGAGCGTTCGCACCCGAA AAGCAGGGTCGCCGCTGACGCACCGCTAAAAATAGCACGCG 
CCT TTCGAGAGCGTTCGCACCCGAA AAGCAGGGTCGCCGATGACGCACCGCTAAAGTAA 

Figure 6.25. Sequence of the OpE-NB Enhancer Construct. The repeated 
elements are aligned and the palindromic region is boxed. 

similarity to AcMNPV hr elements [300]. Southern Blot hybridization indicated 

that similar regions were found in four other regions in the OpMNPV genome. 

When the OpE region was cis-linked to an OpMNPV vp39-CAT reporter gene 

construct and co-transfected with ie-1 into both Sf9 or Ld652-Y cells, expres­

sion of vp39 was increased at least two-fold indicating that OpE does function as 

an enhancer element [300]. More recently, a 2.3 kb region containing 7 complete 

repeats and 5' flanking sequence of the OpE region was found to a function as 

a putative origin of replication in transient DNA replication assays [5]. There­

fore, to determine if OpIE-1 transfected extracts contain a DNA binding activity 

specific for OpE repeats, I performed gel mobility shift analysis using a DNA 

fragment containing 2.5 repeat elements. This construct was referred to as OpE-

NB and is shown in Figure 6.25. I was unable to detect specific OpMNPV IE-1 

complex formation using the experimental conditions established for the homol­

ogous AcMNPV protein. However, I did detect host factor(s) from the Ld652-Y 

cells that bound specifically to the OpE region (See Figure 6.26). Similar results 

were seen if whole-cell extracts were made using pOpIE-1 transfected Sf9 cells 

(data not shown). Finally, Sf9 mock-transfected whole-cell extracts also con­

tained a DNA binding activity specific for OpMNPV enhancer elements (data 

not shown). 
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Figure 6.26. Gel Retardation Analysis of the OpMNPV Enhancer Element. A. 
End-labeled OpENB was incubated in the presence of Opl (lane 1), 1.0p1 (lane 
2), 2.5p1 (lane 3) 5.0p1 (lane 4) and 10p1 (lanes 5 and 6-10) of whole-cell extract 
prepared prepared from pOpIe-1 transfected Ld652-Y cells. Both radiolabeled 
probe and competitor DNA were added simultaneously to the reaction mixtures. 
Unlabeled OpENB DNA fragments were added in excess molar amounts as in­
dicated at the top of each lane. An unlabeled 297 by Xhol-Xhol AcMNPV p10 
promoter fragment fragment was used as the competitor in lanes 10 and 19. B. 
End-labeled OpENB was incubated in the presence of Opl (lane 1), 1.0p1 (lane 2), 
2.5p1 (lane 3) 5.0p1 (lane 4) and 10p1 (lanes 5-9) of whole-cell extract prepared 
prepared from pKS- transfected Sf9 cells. Competition analysis was performed 
as described in A. 
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6.15 Summary 

The results of the gel retardation assays indicate that pAcIE-1 transfected cells 

contain factors that bind specifically to hrla. Supershift assays using polyclonal 

antibodies directed against IE-1 show that IE-1 either binds hrla directly, or 

as part of a complex that includes host factors. Gel retardation assays using 

a number of different hrla mutants indicated that IE-1 bound specifically to 

regions flanking the central palindromic EcoRI site. However, mutant hrla se­

quences in which small deletions or insertions were introduced into the central 

EcoRI core region showed either greatly diminished or no replication or enhancer 

functions suggesting that IE-1 binding by itself is not sufficient for activation of 

replication and enhancer functions. 

Gel retardation assays indicated that pAcIE-1 transfected cells contain fac­

tors that bind specifically to the ie-2 and pe38 promoters. Comparison of the 

IE-1 binding data for hr elements and analysis of the promoter regions of the 

ie-2 and pe38 genes revealed a putative IE-1 nucleotide binding sequence, 5'­

ACTCGTAA-3'. 

The gel retardation assay was also used to investigate additional protein-

DNA interactions between the nine baculovirus genes required for transient repli­

cation. Results from these experiments indicated that only IE-1 bound to hrla 

sequences under the conditions used. 

Lastly, I performed gel mobility shift analysis, to determine whether the ho­

mologous protein in the OpMNPV baculovirus bound to AcMNPV hr sequences 

and OpMNPV putative origins of replication. Results from these experiments 

showed that a Ld652-Y host encoded protein(s) bound to the interregion of 

AcMNPV hrla and that host encoded protein(s) from both Sf9 and Ld652-Y 

cells bound specifically to the OpMNPV enhancer element. 
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Chapter 7
 
Effect of Palindromic Mismatches on AcMNPV Hr Function
 

7.1 Introduction 

Numerous studies have shown that B-form double-stranded DNA can be altered 

depending on the local nucleotide sequence and environmental conditions such 

as ionic strength, temperature, pH and topology (for review see [213]). DNA 

structural polymorphisms include Z-DNA [316], bent DNA [277, 276], tetraplex 

DNA [278] and cruciform formation [181, 200]. It has long been recognized that 

palindromic sequences found in double-stranded DNA might convert to hair­

pin structures known as cruciforms [242]. Thermodynamic calculations indicate 

that depending on length and number and type of mismatches within the palin­

dromic sequence, cruciforms may form at moderate negative superhelicities [213]. 

Furthermore, statistical mechanical calculations suggest that a number of cruci­

forms found in plasmids and bacteriophages may form under conditions typical 

of supercoiled DNAs from natural sources [314]. Nevertheless, the biological 

significance of DNA structural perturbations is only now being explored. 

The hr regions of the AcMNPV have been shown to function as enhancers of 

RNA polymerase II-mediated transcription [98, 102, 218, 259] and as putative 

origins of DNA replication in transient replication assays [235, 149, 152, 170, 169]. 

The AcMNPV genome contains eight hrs composed of varying numbers of highly 

conserved repeat elements. Each hr region has two to eight copies of a 30-bp 

imperfect palindrome flanked on both sides by approximately 20-bp of a direct 

repeat element [102, 7]. Conversion of the consensus 30-bp imperfect palindrome 

into a cruciform structure would result in a 13-bp stem containing two sites of 

mismatches. 

DNA transitions such as local base pair melting are necessary for the pro­

cesses of transcription [61] and replication [57]. Both of these processes re­
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quire single-stranded DNA to serve as templates either for RNA transcript 

or DNA daughter-strand production. Transitions such as cruciform formation 

at hr regions in AcMNPV may facilitate local base pair melting thereby as­

sisting the processes of baculovirus transcription and replication. Therefore, 

investigations were undertaken to study the possible role of cruciform forma­

tion in baculovirus replication and transcription. Oligonucleotides containing 

the AcMNPV hr consensus imperfect palindrome sequence and a perfect palin­

drome sequence were synthesized. The oligonucleotide sequences and their pu­

tative cruciform structures are shown in Figure 7.1. These oligonucleotides 

where then cloned into pKS- and used in assays to study cruciform forma­

tion including nuclease P1 assays and two-dimensional (2-D) electrophoresis 

of topoisomer ladders. The ie-1 gene product is involved in transcriptional ac­

tivation [101, 103, 218, 102, 98, 28, 185, 30] and is essential for baculovirus 

DNA replication [187, 151, 148]. Furthermore, IE-1 has been shown to bind 

to hrs [97, 96, 259, 169]. To examine the role of palindrome formation may 

play in IE-1 binding to hrs, gel retardation analysis was employed to charac­

terize the ability of IE-1 to bind to the imperfect and perfect oligonucleotides. 

The ability of the perfect and imperfect palindrome to act as an enhancer was 

assayed by cloning the perfect and imperfect oligonucleotides into the GUS re­

porter plasmid, p39KGUSpI18, and monitoring GUS activities in extracts of Sf9 

cells that had been co-transfected with these reporter constructs and increasing 

concentrations of pAcIE-1. 

7.2 Nuclease P1 Assays 

P1 nuclease, a single-strand specific nuclease, can be used to determine the 

presence and location of single-stranded DNA regions, (such as those found at 

the apex of cruciforms) in circular supercoiled plasmids. If P1 cleavage occurs 

at specific single-stranded sites within the plasmid DNA, it would result in a 
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Imperfect Palindrome 
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Figure 7.1. Potential Cruciform Structure of the hr Perfect and Imperfect Palin­
dromes. The imperfect and perfect oligonucleotide sequences are shown in capitol 
letters while the sequences derived from the pKS vector are indicated by lower 
case letters. The stars indicate the sites of mismatched base pairs. 
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distinct banding pattern following digestion with restriction endonucleases and 

gel electrophoresis. Figure 7.2a shows the results of P1 cleavage of supercoiled 

plasmids pKS-F (the vector control), pHr-imperfect and pHr-perfect. While the 

starting material contains a minor amount of relaxed or nicked plasmid, cleavage 

of each sample by increasing amounts of nuclease P1 resulted in the conversion 

of the supercoiled plasmids to nicked and linear molecules. Figure 7.2b shows 

the results of gel electrophoresis of the P1-treated plasmids following digestion 

with the restriction enzyme Scal. Scal cleaves at a single site in the plasmids. 

Nuclease P1/ScaI digestion of the control plasmid, pKS-F, resulted in the pro­

duction of several distinct bands. This result is not unexpected since the parent 

vector of pKS-F is a derivative of pBR322. pBR322 has been shown to contain 

a major and two minor sites of cleavage that correlate with sequences containing 

inverted repeats [181]. The digestion pattern of the pHr-imperfect construct was 

indistinguishable from pKS-F, the control vector, indicating that the consensus 

hr palindrome containing two mismatches does not form a cruciform under these 

experimental conditions. However, as Figure 7.2b clearly shows, the pHr-perfect 

digestion pattern is different from that of the vector control and pHr-imperfect 

indicating that an additional nuclease P1-sensitive site occurs within this con­

struct. The sizes of the specific fragments produced by &al digestion (1.2 kb 

and 1.8 kb, see Figure 7.2b) are consistent with the formation of a cruciform 

structure centered at the EcoRl of the perfect palindrome indicating that the 

perfect palindrome does form a cruciform structure under these experimental 

conditions. 
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Figure 7.2. Nuclease P1 Assay of the Hr Perfect and Imperfect Constructs. 
A. Nuclease P1 digestion of supercoiled plasmid DNA. B. &al digestion of the 
nuclease P1treated reactions. The numbers above the wells indicate the units 
of nuclease P1 used in the reaction. The lane marked M contains the BRL 1 Kb 
DNA ladder. Samples in the lanes marked 1.0S were digested with Seal before 
digestion with 1.0 unit of nuclease P1. 
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The pHrlaAEco construct was also examined for nuclease P1 sensitive sites. 

This construct, derived from hrla, contains a single palindrome created by fus­

ing the left half of the first hrla palindrome with the right half of the second 

palindrome and 55 by of 5' and 210 by of 3' flanking sequences (See Figure 6.1). 

Figure 7.3 shows that the pHrlaAEco digestion pattern is different from that of 

the vector control, pKS- indicating that an additional nuclease P1-sensitive site 

occurs within this construct. The sizes of the specific fragments produced by 

Scal digestion, 2.1 and 1.2 kb, are consistent with the formation of a cruciform 

structure centered at the EcoRl of the single hr contained in this construct. This 

result indicates that the hrla palindrome does form a cruciform structure under 

these experimental conditions. Furthermore, since the hrla palindrome contains 

2 mismatched base pairs similar to pHr-imperfect, these results suggest that the 

hrla flanking sequences may play a critical role in cruciform formation. 

7.3 Two-dimensional Gel Electrophoresis of Topoisomers 

Circular double-stranded DNA can exist as topoisomers that differ in number 

of times one DNA strand wraps around the other strand and is measured as 

the linking number, LK. LK is composed of two components, the twist (Tw) 

which is the number of times the DNA helix crosses itself and the writhe (Wr) 

which is the twisting of the DNA duplex axis in three-dimensional space. The 

relationship between these terms is defined by the equation: 

Lk = + Wr (7.1) 

Treatment of supercoiled DNA with topoisomerase I in the presence of intercalat­

ing agents such as ethidium bromide (See Chapter 2.27) results in the production 

of a topoisomer ladder with each member of the ladder differing from the others 

by a linking number of one. The difference between the topoisomers results in 

different mobilities during electrophoresis on agarose gels; the greater the degree 
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Figure '7.3. Nuclease P1 Assay of the pHrlaAEco Construct. The numbers 
above the wells indicate the units of nuclease P1 used in the reaction. The 
plasmid construct and the units of the restriction endonuclease, Scal, used in 
the reactions are also indicated above the wells. The lane marked M contains 
the BRL 1 Kb DNA ladder. 
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of supercoiling the faster the migration of the topoisomer. 2-D electrophoresis 

is performed to improve the resolution of the different topoisomers and permits 

the identification of DNA structural transitions. 

The energy associated with DNA supercoiling can stabilize the formation 

of an altered DNA structure such as a cruciform. Formation of a cruciform 

would result in a change in the twist of the molecule. This results in a change 

in writhe because, according to aforementioned mathematical relationship, the 

linking number remains constant for a closed-circular molecule. The change in 

writhe alters the shape of the molecule and hence its electrophoretic mobility. 

Therefore, a plasmid containing sequences with the ability to form a cruciform 

would migrate more slowly than a plasmid with the same LK. The amount of re­

tardation seen in plasmids containing altered DNA structures such as cruciforms 

can be used to estimate the energy required for the DNA structural transition. 

2-D gel analysis was performed on topoisomers of the pHr-imperfect, pHr­

perfect and the vector control, pKS-F. The results are shown in Figure 7.4. 

DNA structural transitions were not observed when both the pKS-F and pHr­

imperfect constructs were analyzed. However, a DNA structural transition was 

observed when pHr-perfect topoisomers where subjected to 2-D gel analysis (See 

Figure 7.4c). The free energy required for cruciform formation can be calculated 

using the following equation (for discussion of the derivation of this equation 

see [22]): 
1100RT

AG = (Lk Lw) (7.2)
N 

where R is the gas constant with a value of 1.9865 calories/mole/degrees Kelvin, 

T is the temperature in degrees Kelvin, N is the size of the plasmid in by and Lk 

is the linking number of the topoisomer at the midpoint of the DNA structural 

transition and Lw is the linking number of the unshifted topoisomer of the same 

mobility. 

The length of the extruded DNA structure can be determined by the equa­
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tion: 
N

Arrow = + 1 (7.3)
10.5 

where N is the length of the extrusion. Calculations from equation 7.2 and 7.3 

indicated that 9.6 kcal/mole was required to form the hr perfect cruciform and 

that 30bp were extruded from the plasmid. This result correlates well with 

expected cruciform structure which consists of 30bp. These data are consistent 

with the nuclease P1 analysis which indicated that the pHrperfect construct 

contained a cruciform centered at the EcoR1 site of the hr palindrome. 
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Figure 7.4. Two-Dimensional Electrophoresis of pHr-perfect and pHr-imper­
fect Topoisomers. For each construct, the ethidium bromide-stained agarose 
gel and a schematic representation of the gel is shown. Topoisomers were elec­
trophoresed on 1.2% agarose gels for 20 hr in the first dimension and for 16 
hr in the presence of 6.0pg per ml chloroquine in the second dimension. In 
the schematic representation, the linking numbers of selected topoisomers are 
indicated, the arrows show the DNA structural transition and the numbers in 
parentheses indicate the change in twist associated with the transition. NC de­
notes nicked circular DNA. A. pKS-F, the vector control B. pHr-imperfect C. 
pHr-perfect. 



158 

B. 1 
IR' 

() 

-U.85 __ (1) 
__ .0.85 

00 

0 

0 
V 

0 
8' -0 

-15.85 
-10.85 

00 

0000 0 0 0j 
nO 

C. 

Figure 7.4 (continued) 
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2-D gel analysis using different electrophoresis conditions was performed on 

topoisomers of the pHr-imperfect, pHrlaAEco and pKS-F . The results of these 

experiments are shown in Figure 7.5. Again, both the pKS-F and pHr-imperfect 

constructs did not exhibit any DNA structural transitions. However, calculations 

indicate that pHrlaAEco extrudes 63-bp with a free energy requirement of 19.6 

kcal/mole. 
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Figure 7.5. Two-Dimensional Electrophoresis of pHr-imperfect and 
pHrlaAEco Topoisomers. For each construct, the ethidium bromide-stained 
agarose gel and a schematic representation of the gel is shown. Topoisomers 
were electrophoresed on 1.5% agarose gels for 30 hr in the first dimension and 
for 24 hr in the presence of 1.8pg per nil chloroquine in the second dimension. 
In the schematic representation, the linking numbers of selected topoisomers 
are indicated, the arrows show the DNA structural transition and the numbers 
in parentheses indicate the change in twist associated with the transition. NC 
denotes nicked circular DNA. A. pKS-F, vector control B. pHR-imperfect C. 
pHr1aLlEco. 
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Figure 7.6. Potential DNA Secondary Structures of the hrla Single Palindrome. 

Analysis of this region using the M-FOLD program in GDE [339] revealed 

that the pHrlaAEco insert has the potential to form two 56 by cruciform-like 

structures; these stem-loop structures were centered around the central hr palin­

drome but contained an additional stem and loop (Figure 7.6). Alternatively, the 

AT-rich flanking sequences could allow additional melting of the DNA in this re­

gion. These sequences, flanking the conserved region of the AcMNPV hr consen­

sus are not well-conserved suggesting that cruciform formation by pHrla,O,Eco 

may be fortuitous. Furthermore, the free energy requirement for pHrlaAEco 

cruciform formation suggests that the cruciform may not exist in vivo. The free 

energy of formation of cruciforms thought to form in vivo is typically between 13 

and 18 kcal/mole [213]. Since a DNA structural transition for pHrlaAEco but 

not pHr-imperfect was observed, a lower limit of 19.6 kcal/mole on the energy 

required for AcMNPV hr cruciform formation can be assumed. Therefore, it is 

unlikely to occur in vivo without thermodynamic assistance from DNA-binding 

proteins. 
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7.4	 Binding of Proteins from pAcIE-1 Transfected Extracts to the 

Hr Perfect and Imperfect Oligonucleotides 

To determine if IE-1 was capable of interacting with the imperfect and per­

fect palindrome constructs, gel retardation assays were employed using extracts 

from pAcIE-1 transfected cells. As shown in Figure 7.7, addition of increasing 

amounts of whole-cell extract from pAcIE-1 transfected cells to annealed radi­

olabeled oligonucleotides containing either the imperfect palindrome consensus 

or the altered perfect palindrome resulted in the formation of a DNA-protein 

complex. Quantitation performed using a PSI-486 Phosphoimager SI and Im­

agequant workstation (Molecular Dynamics) showed that doubling the amount 

of extract used doubled the portion of shifted complex when both Hr-imperfect 

and Hr-perfect probes were used. Furthermore, proteins from the pAcIE-1 ex­

tracts seemed to bind either probe with similar affinities. These results were 

unexpected because Guarino and Dong [97] had failed to detect DNA-protein 

interactions using a 40-bp oligonucleotide containing the central 24-bp palin­

drome. However, using 42-bp oligonucleotides, I was able to detect IE-1 binding 

to hrs. 

To confirm that the protein complex binds specifically to the perfect and 

imperfect palindromes, the complex was competed by addition of increasing 

amounts of unlabeled perfect and imperfect oligonucleotides and the hrla-con­

taining DNA fragment to the reaction. These results, shown in Figure 7.8 and 

Figure 7.9 indicate that the DNA-protein complex formation was specific. Quan­

titation indicated that the complex was competed equally well with either the 

Hr-imperfect or Hr-perfect oligonucleotides. The ratio of bound to free probe 

decreases at the same rate whether the Hr-perfect or Hr-imperfect oligonu­

cleotides are used as competitors. This is shown graphically in Figure 7.10. 

Addition of 60- and 120-fold molar excess of the hrla-containing fragment re­

sulted in competition of the shifted complexes, while 60- and 120-fold molar 
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Figure 7.7. Gel Retardation Analysis of Hr Perfect and Imperfect palindromes. 
The radiolabeled oligonucleotides containing the perfect (lanes 1-9) and the
imperfect (lanes 10-18) palindromes were incubated in the presence of increasing 
amounts in pl of whole-cell extract prepared from either pAcIE-1 transfected
(lanes 6-9 and 15-18) or mock-transfected (lanes 2-5 and 11-14) Sf9 cells as 
indicated. Extract protein concentration was 2.5 jig . 
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excess of the DNA fragment containing the AcMNPV p10 promoter did not re­

sult in a decrease in the amount of complex formed (See Figures 7.8 and 7.9, 

compare lanes 5 and 9 to lanes 11 and 12). These results indicated that the pro-

tein(s) were binding to both the Hr-perfect and Hr-imperfect oligonucleotides in 

a sequence-specific manner. Finally, the annealed vpS9 and ML oligonucleotides 

(see Chapter 5.7 and 5.8) failed to compete IE-1 binding to the Hr-perfect and 

Hr-imperfect oligonucleotides (data not shown). 

7.5 IE-1 is a Component of the DNA-Protein Complex 

Sf9 cells transfected with pAcIE-1 contain protein(s) that bind to the perfect and 

imperfect oligonucleotides, suggesting that IE-1 is a component of the complex. 

Gel retardation assays performed in the presence of polyclonal antibodies to IE­

1 [223] resulted in the appearance of a slower migrating complexes or supershifts 

(Figure 7.11 and Figure 7.12, lanes 3-5), indicating that IE-1 is a component 

of the DNA-protein complex bound to both the consensus hr palindrome and 

the perfect palindrome. Supershifts were not detected when pre-immune serum 

(Figure 7.11 and Figure 7.12, lanes 9-11), polyclonal antibodies to the OpM-

NPV polyhedrin protein [263] (Figure 7.11 and Figure 7.12, lanes 6-8) or mouse 

monoclonal antibodies to Drosophila TBP (data not shown) were added to the 

reaction mixture. 

It has been reported that a cruciform structure containing mismatched base 

pairs is required for high-affinity binding of the cAMP response element-binding 

protein [285]. The AcMNPV hr central core palindrome is highly conserved and 

includes two regions of mismatched base pairs. Therefore, I was interested in 

testing whether the predicted hr cruciform structure containing these mismatches 

was a high-affinity binding site for AcMNPV IE-1. Using gel retardation anal­

ysis, I failed to detect specific binding to the radiolabeled single oligonucleotides 

that had been boiled in 50 mM NaCl, 50 mM Tris-HC1 pH 7.5, 1 mM EDTA and 
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Figure 7.8. Gel Retardation Analysis of Hr Imperfect palindrome. The radio-
labeled oligonucleotides containing the imperfect palindrome were incubated in 
the presence of 12.5 pg whole-cell extract prepared from pAcIE-1 transfected 
Sf9 cells. Both radiolabeled probe and competitor DNA were added simulta­
neously to the reaction mixtures. Competitor DNA was added in excess molar 
amounts as indicated at the top of each lane: lanes 3-6, unlabeled imperfect 
palindrome oligonucleotides; lanes 7-10, unlabeled perfect palindrome oligonu­
cleotides; lanes 11 and 12, unlabeled 297 by Xhol-Xhol AcMNPV p10 promoter 
fragment; lanes 13 and 14, unlabeled 430 by Hrla-containing fragment. 
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Figure 7.9. Gel Retardation Analysis of Hr Perfect Palindrome. The radiola­
beled oligonucleotides containing the perfect palindrome were incubated in the 
presence of 12.5 pg whole-cell extract prepared from pAcIE-1 transfected Sf9 
cells. Both radiolabeled probe and competitor DNA were added simultaneously 
to the reaction mixtures. Competitor DNA was added in excess molar amounts 
as indicated at the top of each lane: lanes 3-6, unlabeled imperfect palindrome 
oligonucleotides; lanes 7-10, unlabeled perfect palindrome oligonucleotides; lanes 
11 and 12, unlabeled 297 by Xhol-Xhol AcMNPV p10 promoter fragment; lanes 
13 and 14, unlabeled 430 by Hrla-containing fragment. 
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Figure 7.10. Comparison of Competitor Efficiencies. DNA binding assays 
shown in Figure 7.8 and Figure 7.9 were analyzed using PSI-486 Phosphoimager 
SI and Imagequant workstation (Molecular Dynamics). A. Competition of IE-1 
binding to the radiolabeled Hr-imperfect oligonucleotides. B. Competition of 
IE-1 binding to the radiolabeled Hr-perfect oligonucleotides. 
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Figure 7.11. Gel Retardation Supershift Analysis of the Hr Imperfect Palin­
drome. The radiolabeled oligonucleotides containing the imperfect palindrome 
were incubated in the presence of 12.5 jig whole-cell extract prepared from pA­
cIE-1 transfected Sf9 cells. After a pre-incubation period of 15 min, dilutions 
(indicated at the top of each lane) of rabbit polyclonal antibodies to AcMNPV 
1E-1 (lanes 3-5), preimmune serum (lanes 9-11) or rabbit polyclonal antibodies 
to OpMNPV polyhedrin (lanes 6-8) were added to the reaction mixture for a 
further 10 min before complexes were resolved by gel electrophoresis. 
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Figure 7.12. Gel Retardation Supershift Analysis of Hr Perfect Palindrome. 
The radiolabeled oligonucleotides containing the perfect palindrome were in­
cubated in the presence of 12.5 pg whole-cell extract prepared from pAcIE-1 
transfected Sf9 cells. After a pre-incubation period of 15 min, dilutions (in­
dicated at the top of each lane) of rabbit polyclonal antibodies to AcMNPV 
IE-1 (lanes 3-5), preimmune serum (lanes 9-11) or rabbit polyclonal antibodies 
to OpMNPV polyhedrin (lanes 6-8) were added to the reaction mixture for a 
further 10 min before complexes were resolved by gel electrophoresis. 
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slowly annealed to promote formation of the cruciform structure (See Figure 7.13 

and Figure 7.14, lanes 15-20). Experiments shown in Figures 7.13 and 7.14 us­

ing unlabeled slowly annealed single oligonucleotides as competitors indicated 

that the single oligonucleotides failed to act as competitors whereas the double-

stranded Hr-imperfect and Hr-perfect oligonucleotides did. The sequences of 

the oligonucleotides are as follows: 

1. imperfect oligonucleotide A: 

5'-GAACT C G CTTTACGAGTAGAATTCTACTT GTAAAACACAAT C-3', 

2. imperfect oligonucleotide B: 

5'-GATTGTGTTTTACAAGTAGAATTCTACTCGTAAAGCGAGTTC-3', 

3. perfect oligonucleotide C: 

5'-GAAC T C GTTTTACAAGTAGAATTCTAC TT GTAAAACACAAT C-3', 

4. perfect oligonucleotide D: 

5'-GATTGT GTTTTACAAGTAGAATTCTACTTGTAAAAC GAGTT C-3', 

These results indicate that IE-1 does not bind to a cruciform structure 

containing mismatched bases. 

7.6	 Enhancer Activity of Perfect and Imperfect Palindromes in pAcIE­

1 ransfected Sf9 Cells 

Since hrs function as enhancers of early gene expression [28, 185, 218], I was 

interested in determining if altering the AcMNPV hr sequence from an imperfect 

to a perfect palindrome had an effect on enhancer activity. The oligonucleotides 

were subcloned into the GUS reporter plasmid p39KGUSpI18, creating pHr­

imperfectGUS and pHr-perfectGUS. The enhancer activities of these clones were 

determined by measuring the GUS activities in extracts of Sf9 cells that had been 
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Figure 7.13. Electrophoretic Mobility Shift Analysis using the Hr-imperfect 
Oligonucleotides Singly as Competitor. The radiolabeled oligonucleotides 
containing the imperfect palindrome were incubated in the presence of 
12.5 pg whole-cell extract prepared from pAcIE-1 transfected Sf9 cells. Both 
radiolabeled probe and competitor DNA were added simultaneously to the reac­
tion mixtures. Competitor DNA was added in excess molar amounts as indicated 
at the top of each lane: lanes 3-6, unlabeled imperfect palindrome oligonu­
cleotide A; lanes 7-10, unlabeled imperfect palindrome oligonucleotide B; lanes 
11-14, unlabeled annealed imperfect palindrome oligonucleotides. Gel retarda­
tion analysis using oligonucleotide A (lanes 15-17) and B (lanes 18-20) was also 
performed. 12.5 tig of mock (lane 16 and 19) or pAcIE-1 (lane 17 and 20) 
transfected extracts was used. 
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Figure 7.14. Electrophoretic Mobility Shift Analysis using the Hr-perfect 
Oligonucleotides Singly as Competitors. The radiolabeled oligonucleotides 
containing the perfect palindrome were incubated in the presence of 
12.5 pg whole-cell extract prepared from pAcIE-1 transfected Sf9 cells. Both ra­
diolabeled probe and competitor DNA were added simultaneously to the reaction 
mixtures. Competitor DNA was added in excess molar amounts as indicated at 
the top of each lane: lanes 3-6, unlabeled perfect palindrome oligonucleotide C; 
lanes 7-10, unlabeled perfect palindrome oligonucleotide D; lanes 11-14, unla­
beled annealed imperfect palindrome oligonucleotides. Gel retardation analysis 
using oligonucleotide C (lanes 15-17) and D (lanes 18-20) was also performed. 
12.5 fig of mock (lane 16 and 19) or pAcIE-1 (lane 17 and 20) transfected ex­
tracts was used. 
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Figure 7.15. Enhancer Activity as a Function of pAcIE-1 Concentration. 
0.5 mg of p39KGUSpI18, pHrlaGUS, pHR1aLEcoGUS, pHr-perfectGUS and 
pHr-imperfectGUS were co-transfected into 1.25 x106 Sf9 cells in the presence 
of varying concentrations of pAcIE-1. GUS activity was measured at 24 hr 
post-transfection. A. The influence of pAcIE-1 concentration on GUS activ­
ity is plotted. The ratios of GUS activities of pHrlaGUS, pHrlaAEcoGUS, 
pHr-perfectGUS and pHr-imperfectGUS relative to p39KGUSpI18 at 5 pg is 
shown. B. Same as A, except that only the lower concentrations of pAcIE-1 
were plotted. The ratios of GUS activities of pHrlaGUS, pHrlaAEcoGUS, 
pHr-perfectGUS and pHr-imperfectGUS relative to p39KGUSpI18 at 0.1 itg is 
shown. 
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Figure 7.16. Enhancer Activity of the Hr-perfect and Hr-imperfect derivatives. 
1.25 x106 Sf9 cells were co-transfected with 0.5 pg of the indicated plasmids and 
0.1 pg of pAcIE-1. The ratios of GUS activities relative to pHrlaGUS are shown. 
Each column represents the average of three independent transfections with the 
standard deviation indicated. 
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pHr-perfect and pHrlaAEco plasmids indicated that these constructs contained 

an altered DNA structure, centered at the EcoRl site within the palindromic 

sequence. Characterization of the pHr-perfect cruciform using 2-D gel elec­

trophoresis indicated that cruciform required 9.6 kcal/mole to form and extruded 

30 bp. These findings are consistent with a the formation of a cruciform struc­

ture containing the altered AcMNPV hr sequence. The construct, pHrlaAEco, 

required 19.6 kcal/mole to extrude 63 by indicating that either a larger DNA 

secondary element is extruded from the plasmid or that the AT-rich flanking 

sequences allow additional melting of the DNA. 

The results of the gel retardation assays indicate that pAcIE-1 transfected 

cells contain factors that bind specifically to the 42 by perfect and imperfect 

oligonucleotides. Supershift analysis using polyclonal antibodies directed against 

IE -1 show that IE-1 binds the imperfect and perfect oligonucleotides. This is 

the smallest DNA sequence reported to date to which IE-1 has been shown to 

bind. The nucleotide differences between the perfect and imperfect palindromes 

occur in the variable region of the putative IE-1 binding sequence. The putative 

IE-1 binding site consensus sequence on one side of the palindrome changed from 

5'-ACTCGTAA-3' to 5'-ACTTGTAA-3' in the perfect oligonucleotides. The 

putative IE-1 binding site consensus sequence on the other side of the palin­

drome remained unchanged. Competition experiments performed with annealed 

single-stranded perfect and imperfect oligonucleotides indicated that cruciform 

formation does not appear to have a direct role in IE-1 binding. 

Comparison of the transactivation ability of the perfect and imperfect palin­

dromic sequences using GUS reporter gene constructs showed that the perfect 

and imperfect palindromes functioned as enhancers of transcription equally well 

and as well as the pHrlaAEcoGUS construct. These results, taken together 

with the gel retardation data, indicate the 42 by encompassing the AcMNPV hr 

central palindrome is all that is required for enhancer function. 
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Chapter 8
 
Conclusions
 

Recent studies have shown that a number of viruses encode multifunctional 

cis- and trans-acting elements (for review see [37, 153, 57]) involved in both 

transcription and replication. Previous studies and this work indicate that bac­

uloviruses also contain cis- and trans-acting elements that function in transcrip­

tion and replication. The ie-1 gene product transactivates RNA polymerase 

II-mediated baculovirus gene expression [83] and this expression is enhanced 

by the presence of cis-linked hr sequences [169, 259, 218]. This work and that 

of others has shown that IE-1 binds specifically to hrs suggesting that hr en­

hancer function is mediated through IE-1 binding activity. IE-1 is also involved 

in baculovirus DNA replication. In transient replication assays, the ie-1 gene 

along with dnapol, helicase, lef-1, lef-2, and lef-3 are essential for replication of 

hr-containing plasmids [148]. It is likely that IE-1 functions directly and indi­

rectly in baculovirus replication. IE-1 may regulate the levels of expression of 

genes involved in DNA replication process and since hrs appear to function as 

origins of replication, IE-1 may be an origin-binding protein and serve to form 

the nucleus for assembly of the replication complex. 

8.1	 Cis- and Trans-acting Sequences Involved in Baculovirus Tran­

scription 

8.1.1	 IE-1 Binding Studies 

The results of the gel retardation assays indicate that pAcIE-1 transfected Sf9 

cells contain factors that bind specifically to hrla. Supershift assays using poly-

clonal antibodies directed against IE-1 show that IE-1 either binds directly, or 

as part of a complex that includes host factors. When a DNA fragment contain­
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ing the complete hrla sequence was used as a probe, three distinct complexes 

were detected at high cell extract concentrations, whereas a mutant, pHrlaAEco, 

containing a single palindrome, showed only a single retarded complex. These 

results are similar to those reported for hr5 fragments containing either one or 

two complete palindromes [97, 259]. Guarino and Dong [97] suggested that the 

formation of complex I was due to the interaction of proteins with one of the 

two palindromes, and the formation of complex II was due to the interaction 

of proteins with both palindromes simultaneously. Complex III was interpreted 

as being formed from the interaction of proteins with an additional half palin­

drome that was present on their probe. Since the hrla probe contains only two 

complete palindromes without an additional half palindrome, we suggest that 

complex III may be due to cooperative interactions between the factors bound 

at both palindromes that promote the binding of additional IE-1 and/or other 

factors. Alternatively, there may be additional binding sites for IE-1 (or the 

IE-1 containing complex) in the intervening DNA between the two palindromes. 

Analysis of this sequence, however, did not reveal any obvious sequence similar­

ities between the intervening region and the palindromic sequences. 

Construction of a number of derivatives of hrla that included a single palin­

drome, mutations within the central EcoRI site, 5' and 3' deletions of the single 

palindrome, and palindrome half sites indicated that IE-1 bound to sequences 

within a palindrome half site. Using a Gibbs sampling strategy for multiple 

sequence alignments [162], a putative IE-1 binding motif, centered around a 

5'-ACTCGTAA-3' core sequence contained within the conserved imperfect hr 

palindrome, was determined. Information analysis of the hrs indicated that the 

TC dinucleotide (nucleotides 3 and 4) has some variability (See Figure 6.18). 

Therefore, the putative IE-1 binding motif is 5'-ACBYGTAA-3' . 

As stated earlier, IE -1 may function to regulate the levels of expression of 

genes involved in DNA replication. The ie-1 gene product has been shown to 
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modulate the level of transcription from other baculovirus gene promoters in 

the absence [101, 103, 218, 156, 30] of hr elements. Analysis of the promoter 

regions of the baculovirus genes involved in DNA replication indicated that the 

lef-1, ie-2 and pe38 promoters contained the putative IE-1 binding motif, 5'­

ACTCGTAA-3'. This sequence was also found upstream of the ie-O gene, the 

spliced form of ie-1 that has been shown to be down-regulated by the ie-1 

gene product [156]. Furthermore, the putative IE-1 binding motif is located 

3' to the TATA box and either comprises or is a few bases upstream of the 

site of transcription initiation. This positioning of the putative IE-1 binding 

motif may be important for IE-1 transcriptional repression (see below). The 

ie-2, pe38, dnapol and helicase promoters were assayed for IE-1 DNA binding 

activity. IE-1 specific binding was observed when the ie-2 and pe38 promoters 

but not when the dnapol and helicase promoters were assayed indicating that 

the IE-1 is binding to the 5'-ACTCGTAA-3' motif. 

To determine if the putative IE -1 binding site does in fact bind IE-1 and that 

IE-1 binding is important for transcriptional regulation of the replication gene 

promoters, mutation of the putative IE-1 binding site within one of these pro­

moters should be performed. This altered promoter should then be assayed for 

IE-1 binding activity and gene expression using GUS reporters constructs. Fail­

ure of IE-1 to bind to the mutated replication gene promoter and changes in mea­

surable GUS activity, would indicate that IE-1 binds to this sequence and IE-1 

binding is important for gene expression. Further studies including mutational 

analysis of the nucleotides within the IE-1 binding site should be conducted, 

together with footprinting experiments would to determine the nucleotides im­

portant for IE-1 binding. Footprinting experiments could be attempted using 

pAcIE-1 transfected whole-cell extracts, but may require purification of IE -1. 

When performing gel retardation assays with mock-transfected Sf9 whole-

cell extracts, retarded complexes were frequently detected suggesting that host 
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factors may also bind to hrs. Gel retardation studies showed that Sf9 cell factors 

bound specifically to the region between the hr central palindrome, referred to 

as the interregion. Consistent with this observation, is the finding that reporter 

gene constructs containing hr sequences transfected into Sf9 cells are transacti­

vated even in the absence of ie-1 [30, 218, 185, 169]. The question of what these 

host factors are and if they are important for hr function could be approached 

experimentally as outlined in section 8.1.3. 

8.1.2 IE-1 Binding and Transcriptional Regulation 

A number of the hrla constructs examined for IE-1 binding activity were also 

examined for the ability to transactivate baculovirus gene expression. DNA 

fragments containing the entire hrla region, the single palindrome, central core 

mutations, half sites and the interregion were subcloned into a GUS reporter 

plasmid. The enhancer activities of these clones were determined by measuring 

the GUS activities in extracts of Sf9 cells that had been co-transfected with 

these GUS reporter constructs and increasing concentrations of pAcIE-1. The 

entire hrla region containing two palindromes greatly enhanced transcriptional 

activity; GUS activity is at least 10-fold higher than constructs containing just a 

single palindrome. The single palindrome and the 42-mer imperfect and perfect 

single palindrome constructs all enhance expression transcription when com­

pared to the non-hr containing GUS reporter plasmid. However, mutant hrla 

sequences in which small deletions or insertions were introduced into the cen­

tral EcoRI core region and constructs containing half-sites showed either greatly 

diminished or no enhancer functions, although DNA probes containing core mu­

tations were capable of binding IE-1 [169]. This suggests that IE -1 binding by 

itself is not sufficient for enhancer function. These mutations may alter sequences 

required for other factors to bind to hrla, disrupt essential DNA conformations 

such as hairpin structures, or alter the stereospecific conformation of the IE-1 



182 

dimer that may be critical for interaction with other proteins. 

The maximum enhancer effect of cis-linked hr-regions occurred when rel­

atively low levels of co-transfected pAcIE-1 plasmid DNA were used. This 

suggests that the hr elements specifically bind IE-1, facilitating the interaction 

of IE-1 with the plasmid DNA, where it functions to stimulate transcription. At 

high concentrations, IE-1 may interact non-specifically with the DNA allowing 

near maximal levels of transcriptional stimulation in the absence of a specific in­

teraction with an hr sequence. The relatively high levels of stimulation of early 

genes linked in cis to hr enhancer sequences by limited concentrations of IE-1 

may reflect the conditions present at the beginning of a baculovirus infection. 

The successful initiation of AcMNPV infection may be dependent upon the abil­

ity of low levels of IE-1 to highly activate transcription of single copies of early 

genes linked in cis to hr enhancer sequences in the baculovirus genome. 

8.1.3 Model for IE-1 Regulation of Baculovirus Gene Expression 

Studies on multifunctional regulatory proteins from other DNA viruses may pro­

vide clues as to the mechanisms of baculovirus transcriptional regulation by IE-1. 

Infected-Cell polypeptide 4 (ICP4) from herpes simplex virus type 1 activates 

the transcription of some HSV genes [56, 221] and represses the transcription of 

others [56, 222, 258]. Studies, using reconstituted in vitro transcription systems, 

show that ICP4 activates transcription in a complex manner that involved DNA 

binding, interactions with general transcription factors including TBP, TFIIB 

and TBP-associated factors (TAFs) and possibly proteins that bind to the start 

site of transcription [93]. Similar studies using ICP4 repressable promoters in­

dicated that ICP4 inhibited the stimulatory effect of the transactivators Spl, 

VP16, USF, and ICP4 itself without affecting basal transcription [95, 257, 94]. 

Moreover, ICP4 inhibited transcription by binding to a specific sequence near 

the site of transcription initiation [211, 95] and thereby interfering with forma­
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tion of transcription initiation complexes [94]. Smith et al. [283] suggested a 

model of how ICP4 regulates transcription that involves both protein-protein 

and protein-DNA interactions. ICP4 forms a tripartite complex with TBP and 

TFIIB and the resulting interactions stabilize the formation of the preinitiation 

complex. Formation of the complex is a rate-limiting step in the formation of 

the transcription preinitiation complex, and ICP4 stimulates formation at least 

five-fold [283]. Thus, one mechanism by which ICP4 enhances viral gene ex­

pression may be by recruiting and stabilizing the formation of the preinitiation 

complex. However, mutational analysis of ICP4 suggests that ICP4 may have 

additional interactions with other proteins that also result in an increase in gene 

expression [283]. At certain HSV promoters, ICP4 represses activated but not 

basal levels of transcription [95, 94, 257]. Gu et al. [94] showed that repression is 

mediated by ICP4 binding to DNA at or near the site of transcription initiation 

suggesting that ICP4 interacts with the preinitiation complex in a manner that 

inhibits activated transcription. 

A number of studies have reported similar interactions between other vi­

ral transactivators and the transcription preinitiation complex. For instance, 

the human cytomegalovirus IE protein, the HSV VP16 early transactivator pro­

tein, the Ela protein of Adenovirus and Zta from Epstein-Barr virus interact 

directly with TBP [106, 290, 127, 180, 167]. Recent studies indicate that the 

synergistic action of the viral transactivators, Zta and VP16, correlates with the 

assembly of the TFIID:TFIIA (DA) complex and the ability of the DA-complex 

to bind TFIIB. The binding of TFIIB appears to be activator-dependent and 

once bound, TFIIB enhances the transcription by increasing complex stabil­

ity [39]. These results imply a similar regulatory pathway for a number of viral 

systems. Moreover, viral transactivators may function in a similar manner in 

heterologous systems. In fact, Adenovirus E1A mutants defective in early gene 

expression can be complemented by the pseudorabies IE gene [66]. Substitution 
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of the baculovirus ie-1 gene with viral transactivators from other systems may be 

of interest in answering the following questions. Can heterologous viral trans-

activators function in the baculovirus system? Is baculovirus gene expression 

enhanced or reduced using heterologous transactivators? Could these experi­

ments reveal functional domains of viral transactivators and be used to engineer 

a more potent AcMNPV IE-1 ? 

Using the AcMNPV IE-1 DNA binding and transcriptional data obtained 

during the course of this work and the published data concerning AcMNPV 

IE-1 and other viral transactivators, a model for IE-1 transcriptional regula­

tion of baculovirus promoters can be proposed. This model is diagrammatically 

shown in Figure 8.1. Binding of the AcMNPV IE-1 dimer to a single hr ele­

ment results in a stimulation of transcription as measured using GUS reporter 

constructs. However, two copies of the hr palindrome elevate the levels of GUS 

expression 10-fold when compared to the single palindrome suggesting synergis­

tic interactions. Binding of AcMNPV IE-1 dimers to several hrs may stimulate 

formation of the DA complex by specific interactions with multiple members of 

the preinitiation complex, including TBP and TAFs resulting in increased gene 

expression. A single IE-1 dimer may not be able to promote as efficient DA 

complex formation or TFIIB recruitment. Mutations in the hr palindromes that 

alter the spacing between the IE-1 binding sites may alter the conformation of 

the IE-1 DNA complex preventing productive interactions with the preinitiation 

complex. Finally, IE-1 mediated repression may be a function of IE-1 binding 

at or near the site of transcription initiation resulting in altered interactions with 

the preinitiation complex that leads to the repression of activated transcription. 

Future work to examine the mechanisms of IE-1 transcriptional regula­

tion should prove interesting. Initially the experiments described above (sec­

tion 8.1.1) to confirm the IE-1 binding motif, should be performed. In addition, 

the GUS activity assays can be used to study the effect of IE-1 on the expression 
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Figure 8.1. Schematic Representation of a Model for IE-1 Regulation of Gene 
Expression. General transcription factors involved in the formation of the preini­
tiation complex are indicated. The filled-in boxes represent the hrs or a portion 
of the hr. The arrowheads indicate the site of transcription initiation. 
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of replication gene promoters with and without the IE-1 binding motif located 

near the start site of transcription. These reporter constructs could also be as­

sayed with and without hr enhancer sequences to determine if the position of 

putative IE-1 binding motif near the start site of transcription represses acti­

vated but not basal transcription levels. 

The in vitro transcription system can be used to observe the effects of ad­

dition of AcMNPV IE-1 on baculovirus gene expression. Using different DNA 

templates, the role of IE-1 in the regulation of different genes can be examined. 

To determine if IE-1 addition promotes the formation of transcription initiation 

complexes, DNA templates and nuclear extracts from uninfected Sf9 cells can 

be incubated for different lengths of time in the presence or absence of IE-1 

before the addition of the detergent, sarkosyl. Low concentrations of sarkosyl 

allows elongation of a committed transcription complex but inhibits formation 

of initiation complexes [112]. The quantity of primer extension products is a 

measurement of the number of transcription complexes formed before addition 

of sarkosyl and therefore to can be used to compare the rate of initiation complex 

formation in the presence and absence of IE-1. 

These experiments would require purified AcMNPV IE-1. AcMNPV IE-1 

could be purified as a fusion protein provided the fusion protein is functional 

in replication assays, gel retardation assays and GUS activity assays. However, 

although histidine-tagged IE-1 functioned in transient replication assays (Jay 

Evans, personal communication), and as a transactivator in GUS activity assays 

(data not shown), whole-cell extracts transfected with the histidine-tagged IE -1 

failed to show reproducible DNA binding activity (data not shown). Therefore, 

IE-1 may have to be purified from transfected or infected Sf9 cells. Purification 

of IE-1 from infected or transfected Sf9 cells may not be too difficult as IE -1 

polyclonal antibodies [77] and DNA oligonucleotides [135] containing the IE-1 

binding motif could be used in affinity chromatography to purify IE-1. However, 
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any mutational analysis of IE-1 would require purification of the mutant IE-1 

protein for subsequent functional assays, limiting the purification protocol to 

procedures that do not utilize IE-1 functions that may be altered by introduced 

mutations. Hence, overexpression and purification of the IE-1 protein from E. 

coli may provide a viable option. Alternatively, small quantities of IE-1 can be 

made using an in vitro transcription/translation system. 

To examine the effects of IE-1 on the assembly of the transcription preiniti­

ation complex, experiments similar to those performed with ICP4 and Zta viral 

transactivators can be performed [283, 179]. The general transcription initia­

tion factors can be fractionated from nuclear extracts following well-established 

protocols [254, 270] and since SfTBP was cloned during the course of this work, 

recombinant SfTBP can be made. Gel retardation assays and DNAse I foot-

printing can be used to examine the protein-protein-DNA interactions between 

various general transcription factors and IE-1 during reconstitution experiments 

using various baculovirus promoter templates including those containing hr ele­

ments. Moreover, once this system is established, it can also be used to examine 

the effect the addition of IE-1 has on transcription initiation complex formation 

on pre-assembled nucleosome templates [327, 328]. 

The ie-1 gene was identified as a late expression factor using an assay that 

did not differentiate between genes required for DNA replication and transcrip­

tion of baculovirus late genes. It is possible that IE-1 regulates the levels of 

expression of genes involved in DNA replication and also functions as the origin-

binding protein. Immunoprecipitation of IE-1 from nuclear extracts prepared 

from AcMNPV-infected Sf9 may allow for the isolation of IE-1 associated pro­

teins. This experiment may result in the isolation of a late transcription complex 

or components of the baculovirus origin recognition complex that may include 

host factors. 

Several of the molecular tools necessary for this work have been developed 
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during the course of my work. The gene encoding the S. frugiperda TATA-

binding protein was cloned and sequenced and its the expression monitored dur­

ing the course of AcMNPV infection. This clone can be used to make recom­

binant SfTBP to study 1E-1 and TBP interactions. The in vitro transcription 

systems developed using uninfected and AcMNPV-infected nuclear extracts from 

Sf9 cells can be used in studies to look at IE-1 function during baculovirus gene 

expression. In addition, a gel-mobility shift assay for IE-1 DNA binding was 

developed and can be used in further investigations. 

8.2 Transcription Factors and DNA Replication 

The same cis- and trans-acting sequences that stimulate baculovirus early gene 

expression are also required for baculovirus DNA replication. Hrs act both as 

enhancers of transcription and as origins of replication. The ie-1 gene is a 

trans-acting factor that is essential hr-dependent replication [147, 148] and also 

functions as a transactivator of early gene expression [101, 103, 218]. The ability 

of IE-1 to transactivate baculovirus early gene expression is augmented by the 

presence of hrs cis-linked to the early gene promoters [102, 98, 218, 28, 185, 30]. 

The involvement of transcription factors in DNA replication has been observed 

in a number of systems [240, 175, 57]. Since the processes of replication and tran­

scription share many similarities including the formation of a multicomponent 

nucleoprotein complex in a nucleosomal environment, DNA unwinding, RNA 

synthesis, and DNA-template dependent polymerization of similar substrates in 

a 5' to 3' direction, it is not surprising that replication and transcription share 

common factors. Furthermore, coordinate regulation of these two processes may 

be achieved by the use of common factors. 

Studies on transcription factor involvement in the replication in other DNA 

virus systems may provide clues to possible roles for AcMNPV IE-1 in bac­

ulovirus replication. Adenovirus utilizes several cellular transcription factors 
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that stimulate replication via two different mechanisms. The transcription fac­

tor, NFI, stimulates replication by positioning and stabilizing the binding of 

adenovirus-encoded DNA polymerase to the origin of replication [210]. Oct­

1 binding to the adenovirus origin results in bending of DNA template which 

is thought to stimulate replication by facilitating protein-protein interactions 

and/or inducing structural distortions in the DNA template that facilitate ini­

tiation [210, 308]. The papovavirus SV40 T antigen is a multifunctional protein 

that binds to SV40 origins of replication [196], has DNA helicase activity [287] 

and stimulates the expression of viral genes [338]. Auxiliary cellular transcription 

factors appear to stimulate SV40 replication by alleviating repression caused by 

nucleosomes at the site of replication initiation [37]. The E2 protein of bovine 

papilloma virus also appears to function by alleviating nucleosomal repression 

possibly by recruiting cellular single-stranded DNA binding proteins to the ori­

gin [173, 175, 174]. E2 also interacts with El, the origin recognition factor, to 

stabilize El binding to the origin DNA [72] and the E1 /E2 complex may direct 

binding of the DNA polymerase-primase complex to the origin [240]. 

Unlike the viral origins of replication described above where transcriptional 

enhancer sequences are located adjacent to the origin, the Epstein-Barr virus 

(EBV) origin of replication, oriP, contains two-cis acting elements that are sepa­

rated by nearly a kb of DNA [78, 255]. A 30-bp family of repeats that functions 

as a transcriptional enhancer and is transactivated by the the viral EBNA-1 

gene product [255] is an essential component of the EBV DNA replication ori­

gin. A dyad symmetry element that contains 4 EBNA-1 binding sites is located 

approximately 900 by away from the family of repeats is thought to function as 

a DNA unwinding element (DUE) and site of replication initiation [78, 322]. 

From studies utilizing other viral systems, it is clear that the AcMNPV ie­

1 gene product may have multiple functions in both transactivation and DNA 

replication. In addition to functioning as a viral transactivator, IE-1 may be 
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the origin recognition protein and thus facilitate interactions with other repli­

cation proteins. The purification of factors involved baculovirus replication and 

subsequent reconstitution of an in vitro replication system, should contribute to 

understanding the role of IE-1 in baculovirus replication. 

8.3	 Role of Hr Palindromes in Baculovirus Transcription and Repli­

cation 

Regions of DNA to which proteins bind can contribute specific sequences as 

well as structural elements for the assembly of proteins required to carry out 

essential functions in replication and transcription. DNA structure can play a 

role in regulation. For instance, high-affinity binding of the cAMP response 

element-binding protein requires a cruciform structure containing mismatched 

base pairs suggesting that cruciform formation is important for transcriptional 

activation [285]. 2-D gel electrophoresis of constructs containing the perfect 

and imperfect hr palindromes indicated that the perfect palindrome is likely to 

form cruciforms in vivo, whereas the imperfect palindrome is unlikely to form 

this structure without thermodynamic assistance from DNA-binding proteins. 

Gel retardation assays indicated that the IE-1 did not require mismatched base 

pairs, nor a cruciform structure for binding to the hr palindrome. Furthermore, 

GUS reporter gene constructs failed to detect any difference in the levels of 

transactivation between the mismatched and perfect palindromes indicating that 

sequence-specificity, not DNA structure, was critical for IE-1 function. These 

data, together with the hrla [169] and hr5 mutational analysis [259] suggest that 

IE-1 binding requires critically spaced half sites within a palindrome, rather than 

cruciform formation, for enhancer function. 

Initiation of replication requires unwinding of the DNA to allow access of the 

replication complex to DNA template. A general model for replication is that 

the origin recognition protein recognizes specific sites at a replication origin and 
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induces localized unwinding by itself (SV40 T antigen [287]) or in combination 

with other replication factors [240]. DNA unwinding elements, regions of DNA 

that are intrinsically easier to unwind, can be found near origins of replication 

in E. coli [24], yeast [129] and in viral systems [322, 57, 240]. 

The Epstein-Barr virus, oriP, contains a family of 20 imperfect copies of 30­

bp repeats that was predicted to form cruciform structures with a 22-bp stem 

containing 2 mismatches and a 12-bp loop. The dyad symmetry region of oriP 

can form a single 15-bp stem cruciform containing 1 mismatch with a 15-bp 

loop. P1 nuclease experiments indicated the region of dyad symmetry was P1 

sensitive whereas the repeated family was P1 sensitive when 9 or more repeats 

were present [322]. 

I performed similar studies on the AcMNPV hrs. A construct containing 42­

bp encompassing a single imperfect AcMNPV palindrome was not P1 sensitive. 

However, the pHrlatlEco construct which contains a single palindrome (created 

by fusing the left half of the first hrla palindrome with the right half of the second 

palindrome) with 55 by of 5' and 210 by of 3' hrla-derived flanking sequences and 

the complete hrla construct (data not shown) were P1 sensitive. The pHrlaAEco 

flanking sequences are not conserved in the AcMNPV palindromic regions and 

result in a larger extrusion of DNA than predicted by the AcMNPV hr consensus 

sequence. However, hrla may function in a slightly different manner than the 

other hr regions since hrla contains only two palindromes and has been shown 

to have an auxiliary sequence (not present in these constructs) to the left of the 

palindrome that enhances the levels of replication [169]. The auxiliary sequence 

may have evolved in hrla to enhance replication whereas multiple copies of 

palindrome in other origins may alleviate the need for auxiliary sequences. 

2-D gel electrophoresis of topoisomers and nuclease P1 assays showed that 

the 42-bp single AcMNPV imperfect palindrome is unlikely to form a cruciform 

without thermodynamic assistance. Nevertheless, multiple copies of the AcM­
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NPV hrs may, in a manner similar to the EBV orip, function as a DUE. However, 

AcMNPV hr palindromes would form cruciforms with a shorter stem (13-bp) 

and would contain at least two mismatches. This suggests that AcMNPV hrs 

may be less likely to unwind than EBV orip regions. Furthermore, the EBV orip 

family of repeats required at least 9 repeated elements before P1 sensitivity was 

observed. Since, AcMNPV hrs contain only one to eight palindromic elements, 

the energetics for DNA unwinding may not be favorable without aid from DNA 

binding proteins. To determine if hrs function as specific DNA binding sites 

and/or DNA unwinding elements, the AcMNPV hr regions, particularly those 

containing the greatest number of palindromes, should be assayed for P1 sen­

sitivity. Furthermore, these experiments can be conducted in the presence and 

absence of purified AcMNPV IE-1 to observe the effect of IE-1 binding on DNA 

structure. Finally, electron microscopy could be used to observe the structure of 

AcMNPV hr regions in the presence and absence of purified AcMNPV IE-1. 
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Appendix A
 
Alignment of TBP Coding Regions
 

1 11 21 31 41 50
 

I I
I I I I
 

MDQNNSLPPY AQGLASPQGA MTPGIPIFSP MMPYGTGLTP QPIQNTNSLS
 

MDQNNSLPPY AQGLASPQGA MTPGIPIFSP MMPYGTGLTP QPIQNTNSLS
 

MDQNNSLPPY AQGLASPQGA MTPGIPIFSP MMPYGTGLTP QPIQNTNSLS
 

MDQNNSIPPF -QGLASPQGS LTPGINIFSP LITYGTGLTP QPVQTTNSLS
 

MDHMLPSPYN IPGIGTPLHQ P EE DQQILP
 

MDQMLPSPYN IPGIDTPLHQ P EE DQQILP
 

MDQMLSPNFS IPSIGTPLHQ MEADQ QIVANPVYHP PAVSQPDSLM
 

MN-LNSPAVS MLGGDTPAHG GPNSVLGGQG PSSILTGHGP NSVMGPNSIL
 

MTG
 

MAE PG
 

MAD QG
 

MAD QG
 

MAA AAVDPM -- VL GLG
 

MD
 

MAD E ERLKE FK EANKIV
 

MA
 

MSG ITLPSLTN VL QSAGMA
 

MST AT
 

MSSDKTSQQT FK LAP NNSVASNSI­

MS TPGDFSLSP FI-LGGAVDP RSMSQ
 

MNFLEQDQLF LENINQDN
 

M---SNVKL
 

MVDMSKVKL
 

51 61 71 81 91 100
 

I I I I
 

ILEEQQREQQ QQQ QQQQ QQQQQAVATA
 

ILEEQQR--Q QQQ QQQQ QQQQQAVATA
 

ILEEQQRQQQ QQQQQQQQQQ QQQQ--QQQQ QQQQQQQQQQ QQQQQQQAVA
 
ILEEQQRQQQ Q
 
- ---NAMQQQ QLQQQQSQ AQP SLAALG---S SPIVGFGA-I
 

- ---NAMQQQ H-QHQQQQ QQH ALAAMG---S SPLVGFGASL
 

PAPGSSSVQH QQQQQQSDAS GGSGLFGHEP SLPLAHKQMQ SYQPS-ASYQ
 

- GPGSVLNPQ SIQPMQSQ QMH SLQGSSMQMH SHLANSNLNL
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T SGGASG 

F D 

V HGHPSA 

DQNK NKNNILSTIE TMDKSI 

VVSAHYTSEY DNNEKEKSDD LKNKLVHKNI SLN 

101 111 121 131 141
 

AASVQQSTSQ QSTQGASGQT PQLFHSQT-- --LTTAPLPG TTPLY
 

AASVQQSTSQ QPTQGASGQT PQLFHSQT-- - -LTTAPLPG TTPLY
 

AAAVQQSTSQ QATQGTSGQA PQLFHSQT-- -LTTAPLPG TTPLY
 

--TQQSTLQ QGNQG-SGQT PQLFHPQT-- - -LTTAPLPG NTPLY
 

MGTPQRSMHT YAPTASYATP QQMMQPQTP- QNMMSPMIAA G-NLSSQ
 

MGTPQRSVHT YAPAASYATP QQMMQPQTP- QNLMSPMITS G-SLAGQ
 

QQQQQQQLQS QAPGGGGSTP QSMMQPQTP- QSMMAHMMPM SERSVGGSGA
 

NINPASVGPD RNPGSVMHHN LDINPPSVAY QNLTVPMTPL AYSVYDR--­

LED SQP
 

LEG SQP
 

TEG SQP
 

SGVVG GGVGRA GGGG AVMEG AQP
 

- --FALPTTA SQASAFMNNS SLTF PVLPN ANNEA
 

PNTR QVWENQNRDG TKPA TTFQS EEDIK
 

PSSL SFPSSHILMS GAMY PGSRD EKGME
 

PGSTQLPPLH QLNISSQPSS QPPQ PSLQY SEPAQ
 

SEDLY PKL
 

151 161 171 181 191 200
 

I I
 I
 I I
 I
 

PSPMTPMTPI TPATPASESS GIVPQLQNIV STVNLGCKLD
 

PSPMTPMTPI TPATPASESS GIVPQLQNIV STVNLGCKLD
 

PSPMTPMTPI TPATPASESS GIVPQLQNIV STVNLGCKLD
 

150 
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PSPITPMTPI
 

---QMLSQA SPAP
 

- ---QMLSQA SPAP
 

GGGGDALSNI HQTMGPSTPM
 

---DALTHQ APASNIAATM
 

TNETADSGDA
 

RAAPESEKDT
 

HGVVSTSLNQ
 

STAASDDMDS
 

TTSTPAQ
 

LGNI CHAVICQLQL
 

201 211 22
 

1 1
 

LKTIALRARN AEYNPKRFAA
 

LKTIALRARN AEYNPKRFAA
 

LKTIALRARN AEYNPKRFAA
 

LKTIALRARN AEYNPKRFAA
 

LKKIALHARN AEYNPKRFAA
 

LKKIALHARN
 

LKKIALHARN
 

LKKIALHARN
 

LKKIALHARN
 

LKEIAMQARN
 

LKAIALQARN
 

LKAIALQARN
 

LKAIALQARN
 

LKQIALQARN
 

LKTIALHARN
 

LKTVALHARN
 

LKTIALHARN
 

LKNIALHARN
 

LKAIALGARN
 

LKQIALRARN
 

LRKIVQKAIN
 

AEYNPKRFAA
 

AEYNPKRFAA
 

AEYNPKRFAA
 

AEYNPKRFAA
 

AEYNPKRFAA
 

AEYNPKRFAA
 

AEYNPKRFAA
 

AEYNPKRFAA
 

AEYNPKRFAA
 

AEYNPKRFAA
 

AEYNPKRFAA
 

AEYNPKRFAA
 

AEYNPKRFAA
 

AEYNPKRFAA
 

AEYNPKRFAA
 

AIYNPKRFAG
 

SPATPASESS
 

TPLTPLSADP
 

TPMTPHSADP
 

TPATPGSADP
 

VPATPASQLD
 

DVDMSL-HPS
 

VDLS-KHPS
 

VDLT-KHPS
 

VDLT-KHPS
 

VDLA-RHPS
 

EVSKN-EGVS
 

SAT
 

TATNTFAGVS
 

DVDRT-KHPS
 

NVDLS-KHPS
 

SHKKVLIIQT
 

GIVPQLQNIV
 

GILPQLQNIV
 

GIVPQLQNIV
 

GIVPQLQNIV
 

VPSPALQNIV
 

IPMPALQNIV
 

GIIPELQNVV
 

GIVPTLQNIV
 

GIVPTLQNIV
 

GIVPTLQNIV
 

GIVPVLQNIV
 

GIVPTLQNIV
 

GIVPTLQNIV
 

GIVPTLQNIV
 

GIVPTLQNIV
 

GIIPTLQNIV
 

NIV
 

ITHPEIVNVV
 

IHNII
 

STVNLGCKLD
 

STVNLDCKLD
 

STVNLNCKLD
 

STVNLCCKLD
 

STVNLGVPLD
 

STVNLGVQLD
 

STVNLGCTLE
 

STVNLDCKLD
 

STVNLDCKLD
 

STVNLDCKLD
 

STVNLDCRLD
 

ATVNLDCRLD
 

ATVTLGCRLD
 

ATVNLDCRLD
 

STVNLGCKLD
 

STVNMATELY
 

STVNLSTKLD
 

SRFQLGVKLE
 

SSANLCIDIN
 

RIENIV ASVDLFTQLN
 

RIENIV ASVDLFAQLD
 

1 231 241 250
 

VIMRIREPRT TALIFSSGKM VCTGAKSEEQ
 

VIMRIREPRT TALIFSSGKM VCTGAKSEEQ
 

VIMRIREPRT TALIFSSGKM VCTGAKSEEQ
 

VIMRIREPRT TALIFSSGKM VCTGAKSEEQ
 

VNMRIREPRT TALIFSSGKM VCTGAKSEED
 

VIMRIREPRT TALIFSSGKM VCTGAKSEED
 

VIMRIREPRT TALIFSSGKM VCTGAKSEDD
 

VIMRIREPRT TALIFSSGKM VCTGAKSEES
 

VIMRIREPRT TALIFSSGKM VCTGAKSEEA
 

VIMRIRDPKT TALIFGSGKM VCTGAKSED­

VIMRIREPKT TALIFASGKM VCTGAKSEQQ
 

VIMRIREPKT TALIFASGKM VCTGAKSEQQ
 

VIMRIREPKT TALIFASGKM VCTGAKSEHL
 

VIMRIRDPKT TALIFASGKM VCTGAKSEEH
 

VIMRIREPKS TALIFASGKM VVLGGKSEDD
 

VIMRIREPKT TALIFASGKM VVTGAKSEDD
 

VIMRIREPKT TALIFASGKM VVTGAKSEDD
 

VIMRIREPKT TALIFASGKM VCTGAKSEEA
 

VIMRIREPKT TALIFKSGKM VCTGAKSEDA
 

VIMRLRDPKT TALIFASGKM VCTGAKTEED
 

AIMRISSPKS TALIFQTGKI VCTGTRSIEE
 



232 

P.falciparum
 

T.celer
 

P.woesei
 

M.auratus
 

M.musculus
 

H.sapiens
 

X.laevis
 

B.mori
 

S.frugiperda
 

D.melanogaster
 

0.volvulus
 

C.elegans
 

A.cliftonii
 

Z.mays
 

S.tuberosum
 

A.thaliana
 

T.aestivum
 

S.pombe
 

S.cerevisiae
 

P.carinii
 

A.castellanii
 

D.discoideum
 

T.thermophila
 

E.histolytica
 

P.falciparum
 

T.celer
 

P.woesei
 

M.auratus
 

M.musculus
 

H.sapiens
 

X.laevis
 

B.mori
 

S.frugiperda
 

D.melanogaster
 

0.volvulus
 

C.elegans
 

A.cliftonii
 

Z.mays
 

S.tuberosum
 

LRLVAVSIRN AEYNPSKINT LIIRLNKPQC TALIFKNGRI MLTGTRTKKD
 

LERVIEMCPH SKYNPEEFPG IICRFDEPKV ALLIFSSGKL VVTGAKSVED
 

LEKVLDLCPN SKYNPEEFPG IICHLDDPKV ALLIFSSGKL VVTGAKSVQD
 

251 261 271 281 291 300
 

I I I I I I
 

SRLAARKYAR VVQKLGFP-A KFL---DFKI QNMVGSCDVK FPIRLEGLVL
 

SRLAARKYAR VVQKLGFP-A KFL---DFKI QNMVGSCDVK FPIRLEGLVL
 

SRLAARKYAR VVQKLGFP-A KFL---DFKI QNMVGSCDVK FPIRLEGLVL
 

SRLAARKYAR VVQKLGFP-A KFL---DFKI QNMVGSCDVK FPIRLEGLVL
 

SRLAARKYAR IIQKLGFT-A KFL---DFKI QNMVGSCDVK FPIRLEGLVL
 

SRLAARKYAR IIQKLGFT-A KFL---DFKI QNMVGSCDVK FPIRLEGLVL
 

SRLAARKYAR IIQKLGFP-A KFL---DFKI QNMVGSCDVK FPIRLEGLVL
 

SRLAARKYAR IVQKLGFN-A KFT---EFKV QNMVGSCDVR FPIQLEGLCL
 

SRLAARKYAR IVQKLGFQ-A KFT---EFMV QNMVGSCDVR FPIQLEGLCI
 

SRTAARKYAK IVQKLGFP-A KFT---EFKI
 

SKLAARKYAR IIQKLGFP-A KFK---DFKI QNIVGSCDVK FPIRLEGLAY
 

SKLAARKYAR IIQKLGFP-A KFK---DFKI QNIVGSCDVK FPIRLEGLAY
 

SKLAARKYAR IVQKLGFP-A KFK---DFKI QNIVGSCDVK FPIRLEGLAY
 

SKLAARKYAR IVQKLGFP-A TFK---DFKI QNIVASCDVK FPIRLEGLAY
 

SKLASRKYAR IIQKLGFN-A KFT---DFKI QNIVGSCDVK FPIRLEGLAY
 

SKLASRKYAR IIQKIGFA-A KFT---DFKI QNIVGSCDVK FPIRLEGLAF
 

SKLASRKYAR IIQKLGFN-A KFT---DFKI QNIVGSCDVK FPIRLEGLAY
 

SRLAARKYAR IIQKLGFA-A KFL---DFKI QNIVGSCDVR FPIRLEGLAF
 

SRFAARKYAR IIQKLDFP-A RFT---DFKI QNIVGSCDVK FPIKLELLHN
 

SNRAARKYAK II
 

SKIASKKYAK IIKKIGYP-I HYS---NFNV QNIVGSCDVK FQIALRTLVD
 

SIMGCKKIAK IIKIVTKDKV KFC---NFKI ENIIASANCN IPIRLEVLAH
 

IERAVNKLIQ MLKKIG---A KFSRAPQIDI QNMVFSGDIG MEFNLDAVAL
 

IERAVAKLAQ KLKSIG---V KFKRAPQIDV QNMVFSGDIG REFNLDVVAL
 

301 311 321 331 341 350
 

I I I I 

THQQFSSYEP ELFPGLIYR- - -MIKPRIVL LIFVSGKVVL TGAKVRAEIY
 
THQQFSSYEP ELFPGLIYR- - -MIKPRIVL LIFVSGKVVL TGAKVRAEIY
 
THQQFSSYEP ELFPGLIYR- - -MIKPRIVL LIFVSGKVVL TGAKVRAEIY
 
THQQFSSYEP ELFPGLIYR- -MIKPRIVL LIFVSGKVVL TGAKVRAEIY
 
THGQFSSYEP ELFPGLIYR- - -MVKPRIVL LIFVSGKVVL TGAKVREEIY
 
THGQFSSYEP ELFPGLIYR- --MVKPRIVL LIFVSGKVVL TGAKVREEIY
 
THCNFSSYEP ELFPGLIYR- - -MVRPRIVL LIFVSGKVVL TGAKVRQEIY
 
THTQFSTYEP ELFPGLIYR- -MVKPRVVL LIFVSGKVVI TGAKYKKDID
 

THSQFSTYEP ELFPGLIYR- - -MVKPRVVL LIFVSGKVVI TGAKTKRDID
 
----FCSYEP ELFPGLIYR- - -MLQPKIVL LIFVSGKVVL TGAKERTEIY
 
SHGAFSSYEP ELFPGLIYR- - -MKQPKIVL LIFVSGKIVL TGAKVREETY
 
AHGAFSSYEP ELFPGLIYR- - -MKQPKIVL LIFVSGKIVI TGAKVRDETY
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SHSAFSSYEP ELFPGLIYR­

SHGAFSSYEP ELFPGLIYR­

SHGTFSSYEP ELFPGLIYR­

SHGTFSSYEP ELFPGLIYR­

SHGTFSSYEP ELFPGLIYR­

AHNHYCSYEP ELFPGLIYR­

AHTSFTNYEP EIFPGLIYK­

YEP EIFPGKIYR­

SDLAFCQYEP EVFPGLVYR­

DHKEYCNYEP ELFAGLVYRY
 

SLPN-CEYEP EQFPGVIYR­

TLPN-CEYEP EQFPGVIYR­

- -MKLPKIVL
 

--MKQPKIVL
 

- -MVKPKVVL
 

- -MVKPKIVL
 

- -MVKPKIVL
 

--MVQPKIVL
 

- -MIQPKVLL
 

- -EFNTKIVL
 

-MASPKVTL
 

KPTSNLKSVI
 

- -VKEPRAVI
 

- -VKEPKSVI
 

LIFVSGKIVI
 

LVFVSGKIVL
 

LIFVSGKIVL
 

LIFVSGKIVL
 

LIFVSGKIVL
 

LIFVSGKIVL
 

LIFVSGKIVL
 

LIFVSGKIVL
 

LVFSTGKVVL
 

LIFVSGKIII
 

LLFSSGKIVC
 

LLFSSGKIVC
 

351 361 371 381
 

1 

EAFENIYPIL KGFRKTTWLP CPASPTHLFF KASQFWYHW*
 

EAFENIYPIL KGFRKTT
 

EAFENIYPIL KGFRKTT
 

EAFENIYPIL KGFRKTT
 

EAFDNIYPIL KSFKK
 

EAFDNIYPIL KSFKK
 

DAFDKIFPIL KKFKK
 

DAFNQIYPIL KGFKK
 

EAFGQIYPIL KGFKK
 

RAFEQIYPVL TQFRK
 

TAFENIYPVL AEFRKV
 

TAFENIYPVL TEFRKN
 

TAFENIYPVL REFRKV
 

AAFENIYPVL TEYRKS
 

QAFEAIYPVL SEFRKH
 

QAFEAIYPVL SEFRKM
 

QAFEAIYPVL SEFRKSS
 

EAFENIYPVL TEYKKT
 

EAFENIYPVL SAFKKVN
 

KAF
 

LAYKNIYPIL LANRKED
 

TVFQDIYNVL IQYKN
 

EAVRKLLREL EKY
 

EAVRKLLREL DKY
 

Q-*
 

Q-*
 

QS*
 

* 
at
 

QQ*
 

44*
 

QQ*
 

QQ*
 
*
 

*
 

*
 

*
 

AIT----Q*
 
*
 

ISN*
 

*
 

DLIG EGEEEW---*
 

GLLE EEEEE----*
 

TGAKMREETY
 

TGAKVRDEIY
 

TGAKVREEIY
 

TGAKQREEIY
 

TGAKVREEIY
 

TGAKVREEIY
 

TGAKVREYIY
 

TGAKTRENIN
 

TGAKDEESLN
 

TGCKSVNKLY
 

SGAKSEHDAW
 

SGAKSEADAW
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Appendix B 
IUB Codes 

IUB / GCG Meaning 

A A 
C C 
G G 

T / U T 
M A or C 
R A or G 
W A or T 
S C or G 
Y C or T 
K G or T 

A or C or G 
H A or C or T 
D A or G or T 
B C or G or T 

X / N G or A or T or C 
not (G or A or T or C) 

Complement
 
T
 
G
 
C
 
A
 
K
 
Y
 
W
 
S
 

R
 
M
 
B
 
D
 
H
 
V
 
X
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Appendix C
 
AcMNPV Hr Alignment
 

1 11 21 

hr5-1 atgatgtcat tt-gtttt 

hr2-4 atgatgtcat tt-gtttt 

hr2-5 atgatgtcat tt-gtttt 

hr2-8 atgatgtcat tt-gtttt 

hr2-6 atga-gtcat tt-gtttt 

hr4b-1 atgatgtcat tt-g-ttt 

hrla -1 atga-gtt-t tt-gtcgt 

hr4b-4 atgatgtcat tt-gtttt 

hr2-7 atga-ctcat tt-gtttt 

hr2-3 atgatgtcat tt-gtttt 

hr4b-3 atgatgtcat tt-gtttt 

hr5-5 atgatgtcat tt-gtttt 

hr2-2 atgatgtcat tt-gtttt 

hr5-4 atga-ctcat tt-gtttt 

hrla-2 atga-ctcat tt-gtttt 

hr2-1 atgtcatc-- ---gtt 

hr4b-2 atgtcatc-- ---gta 

hr4b-5 atgtcatc-- ---gta 

31 41 51 58
 

I I I I
 

t -- aaaattga-a ctggctttac gagtagaa
 

tt- aaaattga-a ctggctttac gagtagaa
 

tt- aaaattga-a ctggctttac gagtagaa
 

tc- aaaactaa-a ctcgctttac gagtagaa
 

tc- aaaactaa-a ctcgctttac gagtagaa
 

tc- aaaattga-a ctggctttac gagtagaa
 

aaaaatgcca cttgttttac gagtagaa
 

tc- aaaaccga-a ctcgctttac gagtagaa
 

tc- aaaactga-a ctcgctttac gagtagaa
 

tc- aaaaccga-a ctcgctttac gagtagaa
 

ttt aaaattca-a ctcgctttac gagtagaa
 

tc- aaaactga-a ctcgctttac gagtagaa
 

tc- aaaactga-a ctggctttac gagtagaa
 

tc- aaaaccga-a cttgatttac gggtagaa
 

aaaacag--a cttgttttac gagtagaa
 

cta--a ctcgctttac gagtagaa
 

c-aa-a ctcgctttac gagtagaa
 

c-aa-a ctcgctttac gagtagaa
 

hr5-2 atgtcat--­ - --gttttgt acacggctc- ataaccga-a ctggctttac gagtagaa 

hr5-3 atgtcat--­ - --gttttgc acacggctc- ataa a ctcgctttac gagtagaa 

hr5-6 atgtcat--­ - --gttttgc acatggctc- ataactaa-a ctcgctttac gggtagaa 

hr1-5 a-gtcata -- - - -att 

hr3-1 atgacatcat tcc 

hr1-3 atgacatcat cca 

hr1-4 atgac-tcat act 

hr4a-1 atgac-tcat taa 

hr4a-2 atgacatcat ccg 

hr3-3 atgacatcat cca 

hr3-5 atgacatcat ttc 

hr3-6 atgacatcat ctc 

hr3-4 atgacatcat ttc 

hrl-1 atgacattat ccc 

hr3-2 atgac-taat as 

hr1-2 atgacatcat ccc 

hr3-7 atgacatcat ccc 

59 69 79 

aa-t cgtgcgttac aagtagaa
 

g gat- catgatttac gcgtagaa
 

ctgat- cgtgcgttac aagtagaa
 

tgat- tgtgttttac gcgtagaa
 

tcgat- cgtgcgttac aagtagaa
 

acgat- tgtgttttac aagtagaa
 

ctaat- cgtgcgttac aagtagaa
 

ttgat- tatgttttac aagtagaa
 

ttgat- tatgttttac aagtagaa
 

ttgat- tgtgttttac acgtagaa
 

tcgat- tgtgttttac aagtagaa
 

ttgat- cgtgcgttac aagtagaa
 

ctgat- tgtgttttac aagtagaa
 

ttgat- cgtgcgttac aagtagaa
 

89 99 109 116
 

I I I
 

hr5-1 ttctacgcgt aaaacacaat c-aagt atga-gt
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hr2-4 ttctacttgt 

hr2-5 ttctacttgt 

hr2-8 ttctacgtgt 

hr2-6 ttctacttgt 

hr4b-1 ttttacttgt 

hrla-1 ttctacgtgt 

hr4b-4 ttctacttgt 

hr2-7 ttctacttgt 

hr2-3 ttctacttgt 

hr4b-3 ttctacttgt 

hr5-5 ttctacgtgt 

hr2-2 ttctacttgt 

hr5-4 ttctacttgt 

hr la-2 ttctacgtgt 

hr2-1 ttctacgtgt 

hr4b-2 ttctacttgt 

hr4b-5 ttctacgtgt 

hr5-2 ttctacttgt 

hr5-3 ttctacgtgt 

hr5-6 ttctacgcgt 

hr1-5 ttctactcgt 

hr3-1 ttctacttgt 

hr1-3 ttctactcgt 

hr1-4 ttctactcgt 

hr4a-1 ttctactggt 

hr4a-2 ttctactcgt 

hr3-3 ttctactcgt 

hr3-5 ttctactcgt 

hr3-6 ttctactcgt 

hr3-4 ttctactcgt 

hrl-1 ttctacccgt 

hr3-2 ttctactcgt 

hr1-2 ttctatccgt 

hr3-7 ttctactcgt 

aaaacacaat
 

aaaacacaat
 

aaaacacaat
 

aacgcacgcc
 

aaaacacaat
 

aacacacgat
 

aacgcaagat
 

aaaacacaat
 

aaaacataat
 

aaaacacaat
 

aaaacacaat
 

aacgcatgat
 

aaagcacaat
 

aaagcatgat
 

aaaacataat
 

aacgcatgat
 

aaaacacgat
 

aatgcacgat
 

aacgcacgat
 

aaaacatgat
 

aaagcgagtt
 

aaagcaagtt
 

aaagccagtt
 

aaagcgagtt
 

aaagcaagtt
 

aaagcgagtt
 

aaagcgagtt
 

aaagcaagtt
 

aaagcgagtt
 

aaagtatgtt
 

aaagcgagtt
 

aaagcgagtt
 

aaagcgagtt
 

aaagcgagtt
 

c-gagag
 

c-gagag
 

c-aaggg
 

c-aaggg
 

c-aagaa
 

ctaaaag
 

c-ggtgg
 

c-aagcg
 

c-gaaag
 

c-gaggg
 

c-aagaa
 

c-aaggg
 

caaaaag
 

c-aagag
 

c-aaggg
 

c-agtgg
 

c-gattg
 

g-aagg
 

a-aa---ata
 

c-gg---tta
 

c-gg---tta
 

c-gg---ttg
 

c-gg---ttt
 

t-ag---ttt
 

t-ag---ttt
 

c-ag---ttt
 

t-ag---ttt
 

t-ag---ttt
 

c-ag---ttt
 

g-aa---ttt
 

atgatgt
 

atgatgt
 

atgatgt
 

atgatgt
 

atgatgt
 

atgatgt
 

atgatgt
 

atgatgt
 

atgatgt
 

atgatgt
 

atgatgt
 

atgatgt
 

atgatgt
 

atgatgt
 

atgatgt
 

atgatgt
 

atga-gt
 

ag cc gtgtgcaaaa -atga--­

tga----gcc gtgtgcaaaa catga--­

tga----gcc gtgtgcaaaa catga--­

tga----gcc gtgtgcaaaa catga--­

tgaaaaa caa-- -atga--­

taaaaaa caa-- -atga--­

tgaaaaa caa-- -atga--­

-aaaaaa caa-- -atga--­

tgaaaaa caa-- -atga--­

tgaaaaa caa-- -atga-gt 

tgaaaac as -- -atga-gt 

tg 




