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The increased use of mobile wireless devices that we have recently been witnessing,

such as smartphones, tablets, e-readers, and WiFi enabled devices in general, is driving

an unprecedented increase in the amount of data traffic. This fast market adoption of

the wireless technology along with the tremendous success of multimedia applications

brought about higher capacity, connectivity, and Quality of Service (QoS) requirements

that can no longer be met with traditional networking paradigms. As a result, heteroge-

neous wireless networks have recently emerged as a potential solution for meeting such

new requirements. Hybrid wireless mesh networks and femtocell/macrocell networks

are examples of these newly emerging heterogeneous networks. While mesh networks

are viewed as the backbone/core network, femtocell and cellular networks are viewed as

the access networks linking end-users with the backbone networks. In this dissertation,

we address the problem of resource allocation in heterogeneous networks. We investi-



gate both types of networks/architectures: next-generation wireless backbone networks

or simply wireless mesh networks (WMNs) and next-generation wireless access net-

works or simply femtocell (FC) networks. WMNs were first introduced to foster the

availability of Internet services anywhere and at anytime. However, capacity limitation

has been a fundamental challenge to WMNs, mainly due to the interference arising from

the wireless nature of the environment as well as to the scarcity of the radio/channel re-

sources. To overcome this problem, we propose in this dissertation an efficient schedul-

ing scheme that reduces interference among active links via wise time and frequency

assignments to the wireless mesh routers. The developed scheme is traffic aware in

that it maximizes the capacity of wireless links but while accounting for their traffic

loads, thus meeting the end-to-end bandwidth requirements as much as possible. In the

second part of this thesis, we focus on developing power allocation techniques for FC

networks. FCs have recently emerged as a key networking solution that has great po-

tential for improving the capacity and coverage of traditional macrocell (MC) networks

through high-speed indoor coverage. Their deployment, however, has given rise to new

interference challenges which are mainly due to the FCs’ autonomous nature and to the

unreliability of the wireless medium. Driven by this fact, in the second part of this thesis,

we first design a fully-distributed estimation-based power allocation scheme that aims at

fairly maximizing the capacity of FC networks. Second, we propose a novel distributed

stochastic power control scheme that aims at maintaining the users’ minimum required

QoS. Finally, we provide cross-layer performance analysis of two-tier FC networks, in

which we characterize the uplink interference and study its impact on the data-link layer

QoS performance in FC networks.
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Chapter 1: Introduction

1.1 Heterogeneous Wireless Networks

Recent advances in the wireless technology as well as those in electronics enabled the

mass-production and the widespread use of wireless/mobile devices capable of support-

ing various types of services and applications. This rapid adoption of these wireless

devices along with the tremendous success of multimedia applications brought about

higher capacity, connectivity, and Quality of Service (QoS) requirements that can no

longer be met with traditional networking and communications paradigms. As a result,

heterogeneous wireless networks have recently emerged as a key networking solution

for meeting and handling these new requirements. Wireless mesh networks and fem-

tocell/macrocell networks are examples of such heterogeneous networks. While wire-

less mesh networks are viewed as the backbone/core network, femtocell and cellular

networks are viewed as the access networks which link end-users with the backbone

networks.

The unique characteristics of these new generation networks (their random deploy-

ment, their autonomous operation), the nature of the wireless medium (unreliable chan-

nel condition and interference), and the wireless users constraints (limited energy sup-

ply, limited transmission power, etc.) have given rise to new challenges. One important

challenge, among many others, that needs to be addressed in order to have success-
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ful deployment and operation of such networks lies in the design of efficient resource

allocation and management methods that are suitable for these networks.

From an architectural viewpoint, heterogeneous wireless networks are composed of

two types of networks: wireless backbone/multihop networks, such as wireless mesh

networks, and wireless access networks, such as femtocell networks.

1.1.1 Wireless Mesh Networks

Wireless backbone/multihop networks are emerging as a promising architecture to ex-

tend the wireless coverage in a flexible and cost-effective way without relying on any

wired infrastructure. They can be used for various applications, such as Internet ac-

cess, emergency networks, and public safety. Typically, wireless backbone networks

consist of wireless nodes that are connected to each other in a mesh/multi-hop fashion

in order to provide access to an external network, such as Internet. Wireless backbone

networks can be classified into two types: wireless sensor networks (WSNs) and wire-

less mesh networks (WMNs). The main difference between these two types is that

WSNs consist of battery-powered energy-constrained sensors with limited computation

and storage capacity, while WMNs have high processing and buffering capacities as

well as an unlimited source of energy (since they are often plugged in an electric power

source). However, WMNs suffer from a capacity limitation due to the scarcity of the

radio resources as well as the prominent problem of interference. On the other hand,

WMNs are often infrastructure-based networks whereas WSNs are randomly deployed

in Ad Hoc fashion. In our study, we rather focus on the design of WMNs. One of the
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main goals for which WMNs were designed is to foster the availability of Internet ser-

vices (anywhere/anytime). Nowadays, it is also being deployed for various applications,

namely:

• Smart Grid: Cities can install telemetry and smart grid services using mesh net-

works to support automated traffic control, smart parking meters, and smart utility

meters. For instance, electric meters are now being deployed on residences and

transfer their readings from one to another and eventually to the central office for

billing without the need for human meter readers or the need to connect the meters

with cables.

• Public Safety: Public safety agencies can rapidly and efficiently deploy resilient,

high-capacity wireless mesh networks almost anywhere to improve situational

awareness and support emergency communications.

• Industrial Organizations: WMNs are ideal to connect industrial operations and

sites such as oil and gas fields, mining and construction areas, which are diffi-

cult to network because of their geography. With pervasive Wi-Fi, field workers

communicate easily and have access to key applications.

• Internet Access: The laptops in the One Laptop per Child program use wireless

mesh networking to enable students to exchange files and get on the Internet even

though they lack wired or cell phone or other physical connections in their area.

• Coverage Extension: namely wireless coverage extension in university cam-

puses, enterprizes, hotels, hospitals, public means of transportation, etc.
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1.1.2 Femtocell Networks

Wireless access networks include the cellular evolution towards fourth generation sys-

tems (LTE, etc.) and the proliferation of high-speed cellular indoor networks, namely

femtocell (FC) networks. A FC network is a low power, small-area-covering wireless

cellular network consisting of one Femto Access Point (FAP) and stationary or low-

mobility femto-users (FUs) deployed in an indoor environment such as a home or an

office environment. Recent statistics have shown that around 50% of voice calls and

70% of data traffic originate indoor. On the other hand, traditional macro-cellular net-

works suffer from poor indoor coverage. Hence, FC networks have appeared as a so-

lution to improve the macrocell (MC) network capacity and coverage at a low cost.

Moreover, FCs offer very high dedicated bandwidth and excellent service experience

for individual users and a new class of value-added ”femtozone services” that take ad-

vantage of certain unique characteristics of FCs, such as their ability to sense presence

and to allow seamless communications of mobile handsets with other multimedia de-

vices in the home or office [22]. From global roaming to innovative applications and

better QoS experience, the next generation of wireless access networks, namely FC net-

works, promises to enable a level of mobile data connectivity and capability that is un-

precedented. However, many challenges concerning resource allocation emerge in such

networks mainly due to their autonomous nature. In fact, FCs operate in the licensed

spectrum owned by wireless operators and share this spectrum with the under-laying

MC networks, thereby inducing significant co-channel interference that could compro-

mise system performance if it is not addressed properly. This interference arises from
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MC-to-FC, FC-to-FC, and/or FC-to- MC interactions. Dealing with this interference

is a very challenging task due to the lack of coordination between FCs and MCs, and

among the FCs themselves, which are not necessarily associated with the same Femto-

operator. Moreover, unlike traditional cellular networks, there is no centralized entity

or common base station to perform resource allocation for different FCs deployed in

the same geographic area. Therefore, it is important that efficient resource allocation

methods tailored to the FC requirements be designed and developed in order to enable

successful deployment of FC networks.

1.2 Resource Allocation for Heterogeneous Wireless Networks

The main goal of this dissertation is to develop efficient resource allocation and manage-

ment methods for these next-generation wireless networks that can satisfy QoS require-

ments and can ensure fairness among users. The resources that we consider in our work

are temporal resources (time slots), radio resources (wireless channels/subcarriers), and

power resources. Radio resources are inherently scarce, since all users must commu-

nicate using a common electromagnetic spectrum. This is the case for example of the

ISM band where there are multiple co-channel networks (WiFi, WiMax, etc.), and the

licensed cellular bands, which are shared by multiple-tier co-located cellular networks

(such as two-tier FC/MC networks). On the other hand, wireless users are becoming

increasingly sophisticated, and are demanding services with a wide range of QoS re-

quirements, designed for various applications including voice, data, and multimedia

applications. Consequently, highly efficient and robust resource allocation schemes are
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essential for the success of heterogeneous wireless networks. In addition to the scarcity

problem, the design of such schemes is very challenging due to some properties inherent

to the wireless propagation environment and the self-organizing and autonomous nature

of some of these networks. A wireless network is typically associated with a dynam-

ically changing radio environment (such as the channel gains and user locations), and

changing energy consumption and traffic requirements.

In this thesis, we consider resource allocation problems in two distinct types of wire-

less networks: (a) centrally controlled wireless networks, where a central network con-

troller controls and allocates the radio resources (i.e., WMNs), and (b) distributively

controlled wireless networks (i.e., FC networks), where the resource allocation deci-

sions are distributed/local to the wireless users. To perform this task, we adopted dif-

ferent methodologies ranging from optimization programming to adaptive control de-

pending on the network constraints. Moreover, some of our proposed schemes rely on

graphical abstract models and structures, others on physical/system level analysis or a

combination of both depending on the desired design objective.

Next, we briefly describe the incentive behind using each of these approaches: cen-

tralized vs. distributed. For instance, in the case of WMNs, a centralized approach is

more attractive thanks to the presence of a centralized entity that monitors the network

functioning and possesses global knowledge of the network parameters, such as network

topology, nodes’ schedules, resource usage, traffic requirements, etc. In addition to its

feasibility, a main asset of this approach is that it allows the computation of the optimal

solution via some optimization programming tools. However, this comes at the cost of

higher complexity, especially for large networks (with thousands of nodes).
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For FC networks, however, centralized solutions are not possible, due to the lack of a

central entity/agent that coordinates their operation. For this reason, distributed schemes

are necessary for this type of networks. The problem of resource allocation is even very

challenging for these emerging spectrum-sharing two-tier FC networks since it requires

not only distributed but also non-cooperative solutions, where a given FC is not allowed

to coordinate with either other FCs or the underlaying MC.

1.3 Thesis Organization and Contributions

1.3.1 Research Contributions

This dissertation makes four important contributions to the study and design of resource

allocation in next-generation wireless networks. We briefly elaborate on these contribu-

tions in this section.

• First, we design a new scheduling scheme that improves multi-radio multi-channel

(MR-MC) WMNs throughput and session satisfaction ratios by (i) eliminating

interference among active links, (ii) taking into account the spatial traffic distri-

bution during the channel assignment process, (iii) allowing the use of multiple

channels per link, and (iv) privileging links with lower session satisfaction ratios.

• Second, we direct our attention to the problem of FC capacity improvement via

adaptive power allocation to FUs. To this end, we propose a new distributed

non-cooperative uplink (UL) power allocation scheme for FC networks that aims

at fairly maximizing the capacity of FUs while ensuring symbiosis between the
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FCs and the underlying MC, and among FCs themselves. Each time slot, each

FU decides its transmission power value based on the evolution of its signal to

interference ratio (SIR), and the predicted value of the interference at its FAP.

• Third, we develop a new distributed QoS-aware UL power control (PC) scheme

for both FUs and MUs that aims at maintaining the minimum required SIR for a

maximum number of cellular users (CUs). In addition to the fact that our scheme

does not require any type of coordination (neither inter-tier nor intra-tier), it is

based on the use of ordinary differential equations (ODEs) to solve the power

allocation problem, which is a new contribution in itself. On the other hand, we

provide a theoretical analysis of our proposed scheme. Our analysis shows that

our proposed set of ODEs admits a unique solution. We also derive sufficient

conditions for the stability of the solution at the equilibrium point. Analytical and

simulation results encourage the implementation and adoption of our scheme in

existing FC/MC systems.

• Finally, we derive a statistical characterization of the UL physical interference,

SIR, and outage probability in FC networks, and study its impact on data link level

performance metrics, namely the packet delay, data loss rate and the maximum

achievable FU throughput for constant bit rate (CBR) type of traffic. Our analysis

establishes key cross-layer relationships that can be used for designing efficient

resource utilization techniques for FC networks, such as interference-aware power

control, QoS-aware call admission control, etc.
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1.3.2 Thesis Organization

This dissertation is organized into six chapters. Chapter 1 provides a system overview of

the studied network, its architecture, applications, and the challenges that arise in the de-

sign of resource allocation schemes in such networks. It also highlights our contributions

achieved in this area of research. Chapter 2 proposes an interference-free traffic-aware

scheduling algorithm for MR-MC WMNs. This scheme aims at fairly maximizing the

capacity of MR-MC WMNs and is formulated using binary integer programming. In

chapter 3 and chapter 4, we propose two distributed non-cooperative power allocation

schemes for two-tier FC networks with two different perspectives. In chapter 3 we de-

sign an estimation-based power allocation scheme that aims at fairly maximizing the

capacity of FC networks, whereas in chapter 4, we propose a novel stochastic power

control scheme that aims at maintaining the minimum required QoS for both MUs and

FUs. Chapter 5 presents a cross-layer UL performance analysis for power-controlled

two-tier FC networks. In this chapter, we characterize the UL physical interference in

FC networks and study its impact on the data-link layer QoS performances, namely the

delay, data loss rate, and effective throughput of CBR traffic. Finally, in chapter 6, we

summarize the main contributions of the work presented in this thesis, present some of

its limitations, and suggest new horizons for future research works and directions.
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Chapter 2: Scheduling in Multi-Radio Multi-Channel WMNs

In this chapter, we address the problem of capacity/bandwidth improvement in wireless

mesh networks (WMNs) that are capable of multiple channel access and equipped with

multiple radio interfaces. Therefore, we propose an interference-free joint time and fre-

quency scheduling scheme for wireless mesh routers. Our scheme is interference and

traffic aware in that it increases the overall achievable throughput of the network by

eliminating interference between the wireless mesh routers, and maximizes the satisfac-

tion ratios of all active sessions by accounting for the sessions’ data rate requirements.

Simulation-based results show that our proposed scheme outperforms the Tabu-based

scheduling scheme, and yields good tradeoffs between the achievable throughput of the

network and the satisfaction ratios of the sessions.

2.1 Introduction

WMNs are a new networking paradigm that can be deployed as a wireless backbone

network [9], aiming at extending the coverage of wireless access networks, such as

femtocell networks, via wireless multi-hop connections. In this architecture, the fixed

wireless mesh routers, which form a wireless backbone collect the traffic generated

by the client nodes and relay it to other networks, such as Internet, cellular networks,

Wi-Fi, WiMAX, etc. Nowadays, due to their low cost and ease of deployment and
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maintenance, WMNs are appealing to several applications, such as enterprise backbone

networks, last mile broadband Internet access, high speed metropolitan area networks,

building automation, remote monitoring and control, etc., and hence, they are foresee-

able as one of the potential networking solutions to the bandwidth scarcity problem [3].

Unlike the case of ad hoc networks, energy consumption and mobility do not usually

present a challenge to WMNs. Capacity limitation, however, presents a fundamental

challenge to WMNs due mainly to the interference arising from the wireless nature of

the environment as well as the scarcity of the radio/channel resources. The interference

arising from the use of one single wireless channel in a multihop environment limits the

number of data communications that can occur simultaneously in a given neighborhood,

thereby decreasing overall network throughput. One emerging solution to this interfer-

ence problem is to enable routers with multi-radio, multi-channel (MR-MC) access. For

example, multi-channel access can be made possible through the use of the multiple

non-overlapping channels that are provided by IEEE 802.11 and/or IEEE 802.16 stan-

dards. Although the promises of MR-MC networks are apparent, there still requires

sophisticated scheduling algorithms that can effectively assign these available channels

and radios to various links. The apparent promises of MR-MC access networks have

created significant research interests, resulting in numerous works ranging from capac-

ity characterization [52, 55, 80] to performance optimization techniques and scheduling

and channel assignment algorithms design [8, 10, 21, 65, 71]. In this chapter, we pro-

pose a new joint channel/radio assignment and time scheduling algorithm for MR-MC

access capable WMNs that improves the overall achievable network throughput while

accounting for data traffic requirements. The proposed scheduling scheme, referred to
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as TAIFS (Traffic-Aware, Interference-Free Scheduling), eliminates interference among

the active links via a wise combination of time and frequency domains. In addition, it

is traffic aware; i.e., given a set of active paths and active link loads, TAIFS distributes

the time and channel resources among the active links in a way that maximizes the

capacity of these links with respect to their traffic loads, thus making them meet the

end-to-end bandwidth requirements as much as possible and consequently enhancing

the overall achievable network throughput. We compare our proposed scheme with the

Tabu-search scheme [71], a recently proposed scheduling scheme also for MR-MC net-

works, and show the importance of considering data traffic rate requirements as well

as channel switching capabilities in the scheduling design. Our proposed scheduling

scheme uses binary integer programming (BIP) to maximize the capacity of the active

links according to their traffic loads under both the protocol and physical interference

models. It also exploits the radio-channel switching capability of the radio interfaces1

in order to increase the spectral reuse, thus improving the achievable network through-

put even further. Simulation results show that TAIFS outperforms Tabu Method [71] in

terms of total achievable network throughput and the end-to-end flow satisfaction ratio.

2.2 Network Model

We consider a WMN modeled as a directed graph G = (V,E), where V denotes the

set of all the nodes (mesh routers) in the network, and E denotes the set of physical

wireless links between pairs of nodes. Nodes are generated and placed randomly in a

1The radio switching time is shown to be decreased to approximately 80 microseconds in commercial
IEEE 802.11 interfaces [11].
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grid to form a WMN. We assume that all the nodes transmit with a fixed power P , and

that there is a wireless link between two nodes when they are located within each other’s

transmission range. That is, for all (u, v) ∈ V 2, (u, v) ∈ E when duv ≤ r, where duv is

the distance between nodes u and v, and r is node u’s transmission range.

We assume that each node is equipped with m radio interfaces, and that there is a

set Ω of n orthogonal channels, each of which has a capacity b (in Mbps). Moreover,

we assume that all nodes (i.e., mesh routers) are stationary, and that the WMN topol-

ogy is infrastructure-based with little to no topological changes. We consider a set Φ

of simultaneously active sessions in the network, where each session si ∈ Φ is charac-

terized by: Its source node sce(i), its destination node dest(i), its required data rate di,

and the path Pi used to route session si’s traffic. Given the set of sessions (i.e., source-

destination pairs, their data rates and their paths), we extract the active sub-graph G′

from the network graph G = (V,E), where G′ = (V ′, E ′) is a weighted directed graph

with:

• E ′ = { e ∈ E : ∃si ∈ Φ such that e ∈ Pi}

• V ′ = { v ∈ V : ∃e ∈ E ′ such that e is incident to v}

• ∀e ∈ E ′, the weight w(e) of link e is the sum of all sessions’ required data rates

whose paths contain e; i.e.,

w(e) =
∑

si∈Φ:Pi∋e

di (2.1)

Links in the active subgraph G′ are directed according to the routing direction of active
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flows. It is important to mention that the focus of this chapter is on link scheduling and

channel assignment algorithms rather than on routing techniques. Hence, we assume

that routers use one of the existing routing algorithms for mesh networks (e.g., OLSR [1,

27]) to find optimal paths for all sessions. The proposed channel assignment and link

scheduling scheme assumes that all paths are already chosen by means of the routing

algorithm.

2.3 Problem Statement and Formulation

In this chapter, we propose a traffic and interference aware link-scheduling scheme that

dynamically assigns channels and time slots among different active links while maxi-

mizing the achievable sessions’ data rates. We assume that there exists a centralized

server (e.g., a designated mesh router) in the network that has full knowledge of net-

work topology, radio/channel resource availability, and active sessions’ characteristics

(i.e., source/destination, required data rate, and path). Note that because, by nature of

WMNs, mesh routers can be safely assumed to be stationary (i.e., network topology

does not change), and by assuming that the set of available channels and the number

of radios remain unchanged over the course of sessions’ durations, we argue that hav-

ing a centralized scheduler/server is effective.That is, given that the topology and the

number of radios remain unchanged, the scheduler/server will have to gather the ses-

sions’ information, run the proposed joint channel and time scheduling algorithm, and

advertise the scheduling solutions to all mesh routers, which they will then use in their

communication. This schedule is updated by the server whenever a session enters or
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leaves the network, and transmitted again (via a common channel) to the different nodes

in the network. In the remainder of this section, we will start by modeling and stating

the different radio and interference constraints, and then define the criteria under which

TAIFS performs.

2.3.1 Radio and Interference Constraints

In order to carry out a direct communication, two nodes need to be within each other’s

transmission range, and have at least one of their radio interfaces tuned to a common

channel. A link e is said to be active if it has data traffic to carry; i.e., if it belongs to

at least one of the sessions’ paths. When e is active, it needs to be assigned at least one

channel k. Thus, for every (e, k) ∈ E ′ × Ω, we introduce the binary variable xk
e , and

define it as:

xk
e =

 1 if link e is assigned channel k

0 Otherwise

2.3.1.1 Interference Constraints

We consider two interference models: the protocol model and the cumulative model. In

the protocol interference model, all links are assumed ideal, and the interference depends

only on the distances separating the nodes [35, 55, 71]. In the cumulative interference

model (also known as the physical interference model), the interference depends on

distances, signal to interference plus noise ratio (SINR) levels, and other channel factors

that affect signals’ strength, such as fading and path loss [32, 35]. The interference
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constraints under each of the two models are described next.

(i) The protocol Interference Model:

In our scheduling scheme, we are interested in maximizing the capacity of the

active links only; i.e., the links that carry traffic loads. Given the active subgraph

G′ = (V ′, E ′), the contention graph C(G′) is defined as the undirected graph whose

vertex set is E ′ (i.e., active links), and whose edge set is all pairs (u, v) ∈ E ′ × E ′ such

that u interferes with v or v interferes with u2. Fig. 2.1 shows an example of a network

graph and its contention graph.

Figure 2.1: An example of network graph and its contention graph.

In this interference model [35,55,71], we assume ideal links and that the interference

between nodes is mainly determined according to the distance separating them. We

2This contention graph model is similar to the one used in [45], and is used here to derive and formulate
the different interference and radio constraints.
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actually consider two types of interference constraints:

• Interface-related Constraints3: state that any two links that share at least one of

their vertices can not use the same channel at the same time.

• Pair-wise Interference Constraints: state that in order for a transmission from

node i to node j to be successful over the directed link (i, j) using channel k, the

following two conditions must hold:

1. dij ≤ r. That is, the receiver must be within the transmitter’s transmission

range.

2. dlj > r for every l ∈ V ′ that is transmitting to any h ∈ V ′ concurrently with

j’s reception on the same channel k. That is, the receiver j must be out of

the range of interference caused by any other transmitter.

Therefore, by letting I ′(e) = {e′ ∈ E ′ : Transmission over e’ interferes with Reception over e},

one can write the interference constraints as:

xk
e + xk

e′ ≤ 1 ∀(e, e′) ∈ E ′ × I ′(e) ∀k ∈ Ω (2.2)

(ii) The Cumulative Interference Model:

We now formulate the interference constraints under the cumulative model. We

consider the Rayleigh fading channel model, which works well in urban/no-line-of-sight

(NLOS) environments [23]. Let us assume that a link e in the network transmits over

channel k with power P k
e . Let Ne denote the noise power measured at the receiver of

3These constraints are also adopted by the IEEE 802.11 standard.
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link e. We also assume that the channel gain Gee′ from the transmitter of link e′ to the

receiver of link e depends on the distance (between the transmitter and the receiver),

and can be written as Gee′ = K. | lee′ |−α, where α > 2 is the path loss exponent, and

| lee′ | is the distance between the transmitter of the link e′ and the receiver of link e. A

feasible schedule under the cumulative interference model is a set of activated links such

that the minimum SINR requirements are satisfied. In our case, a schedule consists of

a set of links that could be active over more than one channel at the same time. Hence,

the above condition should be satisfied for each link-channel pair that is active over a

given time slot. To model this, we use the activation decision variables xk
e in the SINR

formula (xk
e : indicates whether a link e is active over a channel k). Thus the interference

constraints can be written as:

SINR(e, k) , P k
e .Gee.F

k
e .x

k
e∑

e′ ̸=e P
k
e′ .Gee′ .F k

e′ .x
k
e′ +Ne

> βe.x
k
e (2.3)

where F k
e represents the fading coefficient of link e and channel k, and βe is the SINR

threshold at the receiver of link e. In the Rayleigh fading model, we assume that for

every channel k, the fading state variables, F k
e for e = 1, . . . , |E ′|, are i.i.d. exponen-

tially distributed random variables with unit mean. We also assume that the interference

from other transmitters is much larger than the white Gaussian noise at the receivers,

and therefore, we ignore the receiver noise in our analysis. Hence, Eq. (2.3) becomes:

SINR(e, k) , P k
e .Gee.F

k
e .x

k
e∑

e′ ̸=e P
k
e′ .Gee′ .F k

e′ .x
k
e′
> βe.x

k
e (2.4)

Note that SINR here is a random variable. Therefore, for practicality reasons and since
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we do not know the fading states ahead of time (i.e. before the actual transmission

occurs), Eq. (2.4) is replaced by Eq. (2.5) (given hereafter), which uses the average

value of SINR, denoted by SINR and written as:

SINR(e, k) =
E[P k

e .Gee.F
k
e .x

k
e ]

E[
∑

e′ ̸=e P
k
e′ .Gee′ .F k

e′ .x
k
e′ ]

Hence, the interference constraints under the cumulative interference model are:

SINR(e, k) =
P k
e .Gee.x

k
e∑

e′ ̸=e P
k
e′ .Gee′ .xk

e′
> β′

e.x
k
e ∀e ∈ E ′;∀k ∈ Ω (2.5)

In the particular case, where all the links use the same power level P for transmission,

the cumulative interference constraints become:

SINR(e, k) =
Gee.x

k
e∑

e′ ̸=e Gee′ .xk
e′
> β′

e.x
k
e ∀e ∈ E ′; ∀k ∈ Ω (2.6)

2.3.1.2 Radio Constraints

Given that every node is equipped with m radio interfaces, a node can at most com-

municate on m different channels at a given time. By letting E ′(i) = {e ∈ E ′ :

e incident to i ∈ V ′ }, these radio constraints can be written as

∑
k∈Ω

∑
e∈E′(i)

xk
e ≤ m ∀i ∈ V ′ (2.7)
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Similar interface constraints and interference models have already been used in the liter-

ature [32,35]. However, it is important to reiterate that in this chapter, we do not propose

an interference model. The main contribution rather lies in: (i) the formulation of the

scheduling problem in the case of a Rayleigh fading environment, (ii) the construction

of an interference-aware frequency and time schedule, which is optimized with respect

to the spatial traffic distribution (Phase I of TAIFS), and (iii) the exploitation of inter-

face switching capability to increase the channel reuse and further improve the network

throughput (Phase II of TAIFS).

2.3.2 Session Satisfaction Ratio

TAIFS increases the achievable network throughput by eliminating interference among

the active links in the WMN while satisfying the data rate requirements of active sessions

as much as possible; i.e., while maximizing the satisfaction ratios of active sessions,

which are defined next. Recall that a link e ∈ E ′ could be used to communicate traffic

belonging to multiple different sessions, where again each session si is associated with a

data rate requirement di. Hence, every link e is assigned an aggregate data demand w(e)

as defined by Eq. (2.1). Let w = [w(e)]e∈E′ be the vector representing all aggregate

data demands on all active links. For all e ∈ E ′, the total data rate that can be achieved

on link e per frame (a frame is a set of time slots that repeat periodically; i.e., schedule

length) is:

c(e) =

∑
t=1:nts

∑
k∈Ω xk,t

e

nts

× b (2.8)



21

where b is the capacity of one channel, nts is the total number of time slots per frame,

and

xk,t
e =

 1 if link e is assigned channel k at time slot t

0 otherwise

Under the physical interference model, the link throughput c(e) can be expressed as:

c(e) =

∑
t=1:nts

∑
k∈Ω xk,t

e .b(e, k)

nts

where b(e, k) is the channel capacity given by Shannon Formula, b(e, k) = b. log2(1 +

SINR(e, k)), and SINR(e, k) is the signal to interference plus noise ratio for link e

over the channel k as defined by Eq. (2.3). For every e ∈ E ′, we now define the per-

session satisfaction ratio sr(e) of link e as:

sr(e) =
c(e)

w(e)

And for every session si ∈ Φ, the session satisfaction ratio sri as:

sri = min
e∈Pi

sr(e)

2.4 Traffic-Aware Interference-Free Scheduling

TAIFS operates in two main phases. The first phase performs a joint channel and time

scheduling by solving a binary integer program (BIP) whose objective is to maximize

the capacity of active links according to their traffic loads subject to interference and
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radio constraints. The output of this phase is a set of active links, each assigned one

time slot and a number of channels. The second phase is a heuristic that checks the

possibilities of increasing the spectrum usage further by assigning more time slots and

channels to active links whenever possible (i.e., without violating radio and interference

constraints) while privileging the links with the least satisfaction ratios.

2.4.1 TAIFS Phase I: Traffic-Aware BIP-Based Scheduling

We will start by formulating our problem of traffic and interference aware channel as-

signment as a binary integer program (BIP). The outcome of this BIP is a subset of links

that are assigned channels in a way that they can be active at the same time without

interfering with each others. We present a BIP for each of the two studied interference

models.

2.4.1.1 BIP Formulation for Channel Assignment

Case 1: Using the Protocol Interference Model

In this model, we assume that all links are ideal; i.e., the probability of transmission

success on link e over channel k (given that both the radio and interference constraints

are met) is Psuccess(e, k) = 1. Thus, the channel assignment program can be formulated
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as:

BIP(1):

max
xk
e

∑
k∈Ω

∑
e∈E′

w(e)× xk
e

xk
e + xk

e′ ≤ 1 ∀k ∈ Ω, ∀e ∈ E ′,∀e′ ∈ I ′(e)∑
k∈Ω
∑

e∈E′(i) x
k
e ≤ m ∀i ∈ V ′

xk
e ∈ {0, 1} ∀k ∈ Ω, ∀e ∈ E ′

The above BIP assigns as many channels as possible to active links while giving pri-

ority to those with higher traffic loads under interference (Eq. 2.2) and radio (Eq. 2.7)

constraints.

Case 2: Using the Cumulative Interference Model

We now consider the physical interference constraints introduced in the previous

section, and account for the link reliability. In this model, transmitted signals are likely

to attenuate and decay, thereby increasing the chances of the receiver not being able

to decode its intended signal (Psucess(e, k) ̸= 1). Using Eq. (2.4), one can define the

transmission failure probability for a link e using channel k as Prob(SINR(e, k) ≤

βe.x
k
e); i.e.,

Pout(e, k) = Prob(P k
e GeeF

k
e x

k
e ≤ βex

k
e(
∑
e′ ̸=e

P k
e′Gee′F

k
e′x

k
e′))

The expression of Pout(e, k) could be derived from the following result [48]:
Result: Suppose z1, z2, , zn are independent exponentially distributed random

variables with means E[zi] = 1/λi, Then we have:

Prob(z1 ≤
∑
i=2:n

zi) = 1−
∏
i=2:n

1

1 + λ1/λi
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Now given that for every channel k, the random variables, F k
e , e = 1...|E ′|, are

independent and exponentially distributed with E[F k
e ] = 1,∀k ∈ Ω, one can write

Pout(e, k) = 1−
∏
e′ ̸=e

1

1 + (
βe.Pk

e′ .Gee′ .x
k
e′

Pk
e .Gee

)

The probability Psuccess(e, k) of transmission success of link e over channel k can

be expressed as 1− Pout(e, k). Or,

Psuccess(e, k) =
∏
e′ ̸=e

1

1 +
βe.Pk

e′ .Gee′ .x
k
e′

Pk
e .Gee

(2.9)

Thus, the channel assignment per time slot optimization problem can be formulated

as a MINLP:

max
xk
e ,P

k
e

∑
k∈Ω

∑
e∈E′

w(e)× Psucces(e, k)× xk
e

SINR(e, k) = Pk
e .Gee.xk

e∑
e′ ̸=e P

k
e′ .Gee′ .x

k
e′
> β′

e.x
k
e ∀k ∈ Ω, ∀e ∈ E ′∑

k∈Ω
∑

e∈E′(i) x
k
e ≤ m ∀i ∈ V ′

P k
e ≤ P0 ∀k ∈ Ω, ∀e ∈ E ′

xk
e ∈ {0, 1} ∀k ∈ Ω, ∀e ∈ E ′

This optimization program is equivalent to BIP(1). It aims at maximizing link capacity

by increasing the number of channels assigned to each link according to its traffic de-

mand, while taking into account the quality of the link modeled via Psuccess. The first

set of inequalities in this program (MINLP) corresponds to the physical interference

constraints. The second set corresponds to the radio interface constraints. The third set



25

corresponds to the power constraints, stating that the transmission power of any link

must not exceed P0. Finally, the last set of inequalities corresponds to the channel-to-

link assignment indicator variable, which can only take the value of zero or one. This

new optimization program is a MINLP (Mixed Integer Non Linear Program), which

aims at optimizing not only the channel-to-link assignment, but also the transmission

power allocated for every active link-channel pair. Power allocation variables appear

in both expressions of Psuccess(e, k) and SINR(e, k). When all links are assumed to

transmit at the fixed power P , the probability of transmission success becomes

Psuccess(e, k) =
∏
e′ ̸=e

1

1 +
βe.Gee′ .x

k
e′

Gee

and MINLP becomes a binary integer program, termed BIP(2):

max
xk
e

∑
k∈Ω

∑
e∈E′

w(e)×
∏
e′ ̸=e

1

1 +
βe.Gee′ .x

k
e′

Gee

× xk
e

SINR(e, k) = Gee.xk
e∑

e′ ̸=e Gee′ .x
k
e′
> β′

e.x
k
e ∀k ∈ Ω,∀e, e′ ∈ E ′∑

k∈Ω
∑

e∈E′(i) x
k
e ≤ m ∀i ∈ V ′

xk
e ∈ {0, 1} ∀k ∈ Ω,∀e ∈ E ′

Note that we can use the same heuristic that we developed for solving the problem of

joint scheduling and channel assignment under the interference protocol model to solve

the above physical interference model based formulation. It suffices to solve BIP(2) in

the first algorithm (that we will present in the next paragraph) instead of solving BIP(1).
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2.4.1.2 TAIFS Phase I Description

Since BIP(1) and BIP(2) perform the same task, namely channel assignment, but with

respect to two different interference models, we will use the “unique” notation BIP to

refer to any of them. Because solutions to the BIP presented above may be such that

some active links may not be assigned any channels due to resource (channels and radio

interfaces) limitations, we propose to proceed iteratively in order to ensure that all active

links are scheduled. In the first iteration, the set of all the active links (i.e., E ′) is injected

as an input to BIP. After solving this BIP, there will be two disjoint sets: a set E1 of these

active links that have been assigned channels; i.e., E1 = {e ∈ E ′ : ∃k ∈ Ω, xk
e = 1} and

a set E ′
2 of all these unassigned active links; E ′

2 = E ′ \ E1. In the second iteration, BIP

is solved again, but while considering E ′
2 instead of E ′ as the set of active links (those

active links that were not assigned any channels during the first iteration). After solving

this second BIP, there will also be two disjoint sets: a set E2 of all active links that are

assigned channels during the second iteration; i.e., E2 = {e ∈ E ′
2 : ∃k ∈ Ω, xk

e = 1}

and a set E ′
3 of all the unassigned active links; E ′

3 = E ′
2 \ E2. These iterations continue

until all the active links in E ′ are each assigned at least one channel. Once this is done,

each set Ei obtained during iteration i will be assigned a time slot, during which all

links in Ei are scheduled to carry traffic during that time slot. These iterations constitute

the first phase of TAIFS, and are summarized in Algorithm 1. In this algorithm, SM

represents a 3-dimensional schedule matrix, containing information about the time and

channel assignment for the whole set of active links after execution of TAIFS Phase I.
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Algorithm 1 TAIFS Phase I: BIP based Scheduling
1: Input: G′ = (V ′, E ′), Ω, w, CM : The set of constraints.
2: Output: nts: Number of time slots per time frame, SM: Time and Channel assign-

ment matrix.
3: A← E ′

4: nts ← 0
5: Initialize SM to zero matrix
6: while A ̸= ∅ do
7: Solve BIP
8: S ← {e ∈ A : ∃k ∈ Ω, xk

e = 1}
9: A← A \ S

10: Update SM and CM
11: nts ← nts + 1
12: end while

2.4.2 TAIFS Phase II: Traffic-Aware Link-Capacity Improvement

The first algorithm described above partitions the set E ′ of all active links into disjoint

subsets, each of which consists of multiple non-interfering links that can be active con-

currently during a time slot. Each of these links is assigned a number of channels that

it can use during that time slot. We now propose a heuristic that aims at increasing the

number of active links that can be scheduled during each of the time slots determined

by Algorithm 1. Basically, the heuristic tries to further increase the data rate c(e) that

every link e can achieve, while prioritizing the links with the lowest satisfaction ratios.

The heuristic works as follows. First, it uses the outcome of Algorithm 1 (run during

TAIFS Phase I) to calculate the satisfaction ratio sr(e) of every active link e. Recall that

the algorithm allocates one time slot and assigns a number of channels for every link

e. Second, the heuristic ranks these links according to their increasing order of their

satisfaction ratios. The rationale behind this ordering is to give a privilege to links that
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are the farthest from satisfying their data rate requirements. Once this preparation phase

is done, the heuristic picks the ”neediest” link ec among all links, and for every time slot

Tj that chronologically follows the time slot Ti that has been assigned to ec in Phase I,

it computes the set of channels over which link ec could be activated during Tj without

causing any interference. Among these channels, only the channels that, once assigned

to ec, do not violate the radio constraints are then kept. We denote this set of channels

by Γ(ec, Tj). If Γ(ec, Tj) ̸= ∅, channels from this set are assigned to ec on a per channel-

by-channel basis until floor(sr(ec)) = 1 or until all channels in Γ(ec, Tj) are assigned

to ec. The steps needed to perform this check operation (i.e. check whether a link ec can

be activated in time slot Tj and determine the set of channels Γ(ec, Tj) it will use during

that time slot, if possible) is given by Algorithm 2.

Algorithm 2 TAIFS PHASE II: check module
1: Input: ec: candidate link, Tj: candidate time slot, L(Tj): set of links active during

Tj .
2: Output: Γ(ec, Tj): set of channels to be assigned to ec in Tj .
3: A← L(Tj), Γ(ec, Tj)← Ω, exit = 0
4: while (A ̸= ∅) and (exit = 0) do
5: Pick l ∈ A
6: if (ec interferes with l) or (l interferes with ec) then
7: Γ(ec, Tj)← Γ(ec, Tj)\CH(l, Tj)
8: if Γ(ec, Tj) = ∅ then
9: exit = 1

10: end if
11: end if
12: A← A\{l}
13: end while
14: if Γ(ec, Tj) ̸= ∅ then
15: Check channels in Γ(ec, Tj): remove those violating radio constraints when as-

signed to ec during Tj

16: end if
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Note that in Algorithm 2, L(Tj) (the set of links active in time slot Tj) and CH(l, Tj)

(the set of channels used by link l in time slot Tj) are deduced from the SM matrix.

After the check module related to the activation of link ec in slot Tj is performed,

if floor(sr(ec)) < 1, then we move to the next time slot Tj+1 and apply the check

module for link ec and time slot Tj+1. We keep performing the same operations until

floor(sr(ec)) = 1 or until the end of the frame is reached; i.e., all the time slots that

follow Ti are scanned. The steps of the whole heuristic run during TAIFS Phase II are

summarized and provided in Algorithm 3.

Algorithm 3 TAIFS Phase II: Network Capacity Improvement
1: Input: E ′

sorted: Array of links in E’ sorted according to their capacities, Tsorted:
Array of time slots assigned to links in E ′

sorted, nts, SM: The schedule matrix, sr:
The link satisfaction ratio vector.

2: Output: SM: Time and Channel assignment matrix, sr: The link satisfaction ratio
vector.

3: for counter = 1 : |E ′
sorted| do

4: ec ← E ′
sorted[counter]

5: Ti ← Tsorted[counter]
6: Tj ← Ti+1

7: while (Tj ≤ nts)and(floor(sr(ec)) < 1) do
8: Γ(ec, Tj)← check module(ec, Tj, L(Tj))
9: if Γ(ec, Tj ̸= ∅) then

10: Update SM
11: Update (sr(ec)
12: end if
13: Tj ← Tj+1

14: end while
15: end for

Now that we have presented the two phases of our scheme in detail, we will next

show how TAIFS (i) eliminates interference between wireless routers, (ii) increases
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spectral reuse, and (iii) improves network throughput.

By design, TAIFS assigns channels/time slots to active links in such a way that they

do not interfere with each other. In fact, in the first phase of our scheme the active links

are scheduled iteratively. In each iteration, a set of links are assigned some channels

over which they can be active during a given time slot while meeting the interference

and radio constraints. The second phase of our scheme conserves the ”interference-free”

property. Indeed, in this phase, we only activate link e in some slot Tj > Ti if and only if

there exists some channel k such that if link e transmits in slot Tj over channel k it will

not interfere with the other links which are already active in Tj , and the radio constraint

is not violated by this activation. Hence, the schedule obtained after phase II is also

interference-free.

On the other hand, TAIFS improves spectral reuse during both phases. In the first

phase, spectral reuse is increased by assigning the same channel to multiple, non-interfering

links that can be active during the same time slot. Channel reuse is further increased in

the second phase. In fact, note that in the first phase, if a link e is activated in time slot

Ti, (i < nts), e is not considered for activation in time slot Tj (∀j, i + 1 ≤ j ≤ nts). In

the second phase we study the possibility of activating link e in time slots different from

the time slot it has been initially assigned during phase I. Thus, in phase II, by increasing

the number of slots in which a link is activated, we increase not only the link capacity,

but also the channel reuse (i.e. the number of users per channel at a given time).

As far as network throughput is concerned, in our scheduling scheme, the channel-

to-link assignment is performed with respect to the link’s current traffic load as shown

in BIP. Thus, the number of channels assigned per link is proportional to the link’s traf-
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fic load. As a consequence, links participating in forwarding traffic of more than one

session (thus representing potential bottlenecks) are given higher priority and assigned

more channels. Hence, the per session achievable throughput will be increased com-

pared to the case where every link is assigned only one channel independently of the

traffic load, as done in previous works: [5, 8, 59, 65].

In short, the proposed scheduling scheme improves the network throughput and the

session satisfaction ratios by (i) eliminating interference among active links, (ii) taking

into account the spatial traffic distribution during the channel assignment process, (iii)

allowing the use of multiple channels per link, and (iv) privileging links with lower

session satisfaction ratios.

2.5 Performance Evaluation

2.5.1 Simulated Scheme and Performance Metric

For completeness, we first begin by providing a brief overview of Tabu Method [71],

and then present the performance metric used in this evaluation section.

2.5.1.1 Simulated Scheme

Tabu-Method [71]. is a centralized channel assignment algorithm also designed for

MR-MC WMNs. It consists of two main phases: In the first phase, it assigns channels

(or colors) to vertices in the contention graph, where each vertex corresponds to one
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link in the active graph, but without taking radio interface constraints into account. It

starts first from a random channel assignment, and then tries to improve this assignment

iteratively by using the tabu-based search technique [38]. The goal of this phase is to

minimize interference by achieving a graph vertex coloring that maximizes the number

of edges that link vertices of different colors in the contention graph. Since the channel

assignment obtained from the first phase may not satisfy the radio interface constraints,

during the second phase, Tabu Method applies a merge procedure repeatedly to eliminate

these constraint violations.

2.5.1.2 Performance Metric

The main purpose of this work is to provide a scheduling scheme for MR-MC wireless

mesh networks with the main objective of increasing the active sessions’ satisfaction

ratios. Therefore, we use this metric as a means to evaluate and analyze the performance

of the proposed scheduling scheme. The session satisfaction ratio is defined as the ratio

of the session’s achieved data rate to that of its required one. It is viewed as a metric of

assessing how well the scheme performs from a session (i.e., user)’s viewpoint.

2.5.2 Simulation Settings and Results

2.5.2.1 Simulation Settings

We implemented both TAIFS and Tabu Method in MATLAB. We used TOMLAB (linked

with MATLAB) to solve the BIPs of TAIFS Phase I. TOMLAB offers a variety of tools
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to solve BIPs efficiently and reliably; the one that we used is based on the Branch and

Cut algorithm [70]. We ran our simulations, analyzed them, and plotted our results

also using MATLAB. In our simulations, we generated random MR-MC WMNs, each

consisting of 50 mesh routers randomly deployed in a 1000m × 1000m area. We also

fixed the transmission range r of every node to 250m. We consider n wireless channels,

and assume that every mesh router is equipped with m radio interfaces. For evaluation

purposes, we varied n from 2 to 12 and m from 2 to 6. For every generated network

topology, we also generate |Φ| = 20 sessions by randomly selecting 20 random pairs of

source/destination nodes. MaxRate denotes the maximum data rate that a session can

require. Session i’s data rate, i = 1, 2, . . . , |Φ|, is set to i ×MaxRate/|Φ|. The total

traffic load is then TMaxRate =
(|Φ|+1)MaxRate

2
.

It is known that BIPs are NP-hard problems. However, there exists some fast oper-

ation research approaches/heuristics implemented in Tomlab/CPLEX (e.g., Branch and

Cut) that can provide fast and accurate enough solutions to BIPs. For example, for the

case of our simulations (a network with 50 nodes and 12 channels) the CPU time for

computing the BIP based schedules is around few milliseconds. This computation time

could be further decreased if computation is performed by more powerful computing

machines/servers. In the following subsection, we will present the performances of our

scheme in terms of satisfaction ratio improvement.
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2.5.2.2 Simulation Results

First, we study the general performance behavior of our system under different aggre-

gate network traffic demands and resource availabilities (channels and radio interfaces).

Figs. 2.2 and 2.3 show the average session satisfaction ratio when both the number of

channels and the number of radios are varied respectively for MaxRate = 10Mbps

and MaxRate = 60Mbps. We can see that, for both cases of MaxRate, the aver-
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Figure 2.2: Impact of the number of channels and radios on the average satisfaction ratio
for MaxRate = 10Mbps

age session satisfaction ratio has the same trend: It increases as the number of channels

and/or radio interfaces increases. We notice that when the number of radios per node m

equals 2, an increase in the number of channels has little to no impact on the achieved

per session satisfaction ratio. Likewise, when the number of channels n equals 2, an

increase in the number of radios slightly improves the average session satisfaction ra-
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Figure 2.3: Impact of the number of channels and radios on the average satisfaction ratio
for MaxRate = 60Mbps

tio. However, when n gets closer to 12, an increase in the number of radios incurs a

significant improvement in the achieved session satisfaction ratio; this can be seen from

the steep slope of the obtained curves. On the other hand, by varying MaxRate, we

can clearly see the impact of total traffic load on the performances. For instance, when

MaxRate = 10Mbps, the total traffic load is T10 = 105Mbps, and we can achieve up

to 80% per session satisfaction ratio. While, when MaxRate is increased to 60Mbps

(i.e., total traffic load T60 = 630Mbps), we can only achieve up to 15% of the required

data rate. This gives us good insights on the capacity of our network during the WMN

planning phase. In other words, given a set of resources and sessions’ rate requirements,

we can determine the average session satisfaction ratio guaranteed by our scheduling

scheme.
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Second, we compare the session satisfaction ratios of TAIFS with those of Tabu

Method. Since Tabu Method does not eliminate the interference completely and assigns

only one channel per link, we consider that the obtained link capacity with this scheme

is c(e) ≈ b
|I′(e)|+1

, where I ′(e) is the set of links that interfere with link e and are as-

signed the same channel as this one using the Tabu approach. Hence, what we measure

for the Tabu Method is an upper bound rather than the actual achievable performance.

Figs. 2.4 and 2.5 show the average session satisfaction ratios under both schemes for
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Figure 2.4: Session satisfaction ratio: MaxRate = 10Mbps

two different values of MaxRate: 10Mbps and 60Mbps. Observe that the session sat-

isfaction ratio realized under our scheme is double the one realized under Tabu-scheme.

In addition, notice that the variation of the number of radio interfaces affects the per-

formances of our scheme; by looking at the satisfaction ratios depicted via the 3 curves

shown in Fig. 2.4, we can see that when n is greater than 6 channels, adding 2 more ra-
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Figure 2.5: Session satisfaction ratio: MaxRate = 60Mbps

dio interfaces increases the satisfaction ratio level by about 20%. With Tabu Method, on

the other hand, as m increases from 4 to 6, the achieved session satisfaction ratio level

increases slightly and tends to stabilize around the value of 35%. Tabu Method performs

even poorly when MaxRate is increased to 60Mbps. In fact, Fig. 2.5 shows that when

n = 6 and m = 6, our scheme performs three times better than Tabu Method. The

figure also shows that for a given value of MaxRate, the best session satisfaction ratio

realized under our scheme is around 15% versus 7% for Tabu Method. We also notice

that the curve related to our scheme is still far from stabilizing at a fixed bound/value

for n = 12.

In essence, these obtained results show that our proposed scheme, TAIFS, outper-

forms the TABU based scheme in terms of sessions’ satisfaction ratios. Although Tabu

Method minimizes the interference in the network, it does not make an efficient use of
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the available resources (i.e. channels vs. time). Unlike Tabu Method, TAIFS can assign

active links more than one channel per time slot. In addition, TAIFS allows links to

switch across different channels during different time slots, thereby utilizing the avail-

able spectrum and radio resources more efficiently.

2.6 Summary

In this chapter, we proposed an interference-free, traffic-aware scheduling scheme for

MR-MC WMNs. Our scheme uses binary integer programming to assign channels and

time slots to active links while accounting for sessions’ traffic loads. Results show

that our scheme increases throughput and sessions’ satisfaction ratios by (i) eliminating

interference and (ii) taking into account the spatial traffic distribution. Simulation re-

sults also show that our proposed scheme outperforms Tabu-based scheduling scheme

in terms of session satisfaction ratios.
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Chapter 3: Fairness-Oriented Power Allocation in Two-Tier FC Networks

In this chapter we develop a new distributed non-cooperative uplink (UL) power alloca-

tion scheme for femto-users (FUs). Our scheme aims at fairly maximizing the through-

put of FUs based on periodic estimation of the interference at the femto access points

(FAPs). We compare our scheme to the optimal centralized one. Simulation results

show that our scheme presents good performances in terms of throughput and fairness.

3.1 Introduction

Femtocells (FCs) operate in the licensed spectrum owned by wireless operators and

share this spectrum with macrocell (MC) networks, thereby inducing significant co-

channel interference that could compromise system performances if it is not taken into

account. This interference arises from MC-to-FC, FC-to-FC, and/or FC-to-MC inter-

actions. Dealing with this interference is a very challenging task due to the lack of

coordination between FCs and MCs, and among the FCs themselves, which are not nec-

essarily associated with the same Femto operator. Moreover, unlike traditional cellular

networks, there is no centralized entity or common base station to perform resource al-

location for different FCs deployed in the same geographic area. Therefore, traditional

centralized interference mitigation and power control schemes are no longer applicable

to this type of networks. Even distributed cooperative solutions are not appropriate in
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this context, since FCs are independent of and often cannot communicate with one an-

other. There have been some research works recently proposed to analyze and solve the

FC interference problem in UL communications. Claussen [26] evaluated the impact

of deploying FCs on existing co-channel MCs based on system level simulations. On

the other hand, Shi et al. [67] developed an analytical model to study the UL capacity

and coverage of UMTS FCs coexisting within the MCs. Other works proposed some

resource management schemes in two-tier FC/MC networks in order to reduce the in-

terference and improve the capacity of these networks. For instance, in [56, 64], the

authors designed fractional frequency reuse (FFR) based scheduling techniques to mit-

igate the interference at the FCs, while in [72], a distributed hashing-based scheduling

scheme is proposed for OFDMA FCs, under the assumption of FC-MC cooperation.

These different spectrum management schemes might be further improved by optimiz-

ing power allocation. Therefore, some works have been recently proposed to decrease

UL co-channel interference via adaptive power allocation: In [82], Yavuz et al. tried to

mitigate interference via power calibration. Jo et al. [47] proposed a simple UL power

control for FCs. Their scheme adjusts the transmit power of FUs in proportion to the

fed-back interference level of MCs. However, they focused only on the protection of a

MC’s UL communication and neglected inter-FC interference. In [19], Chandrasekhar

et al. characterized the maximum achievable MC signal to interference plus noise ra-

tio (SINR), given a set of feasible FC SINRs, using the Pareto optimality criterion.

They also proposed a coordinated UL power control architecture for both MCs and FCs,

which requires MCs to use their proposed power control algorithm. Their work assumes

cooperation and possibility of communication between FCs and underlying MCs, which



41

is not often the case since FCs co-located with the MC do not necessarily belong to the

same cellular/wireless operator. One of the main priorities of the research community

and the industry with the emergence of FCs was to ensure that the performance of the

existing MC networks will not be affected by the introduction of these new entities: the

FCs. Therefore, most of the related work, either focused on the protection of MC from

interference originating from FCs, or coupled (femto and macro) resource management

while assuming the possibility of coordination between the macro base station (MBS)

and the FAPs, which is not always true. Therefore, in this chapter we direct our atten-

tion to the problem of FC capacity improvement via adaptive power allocation to FUs.

To this end, we propose a new distributed non-cooperative UL power allocation scheme

for FC networks in which we try to fairly maximize the capacity of FUs while ensuring

symbiosis between the FCs and the the underlying MC, and inter-FCs. Our scheme is

completely distributed. Each time slot, each FU decides its transmission power value

based on the evolution of its signal to interference ratio (SIR), and the predicted value

of the interference at its associated FAP. Thus, our scheme does not require any ex-

change of information between FCs neither between FCs and MCs. Simulations have

shown that our scheme achieves good performances in terms of throughput and fairness

compared to the optimal centralized case despite the absence of information exchanges

between the active FCs.
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3.2 Network Model

We consider a single-carrier two-tier cellular system consisting of NFC FCs (with cov-

erage radius RF ) overlaid on one MC (with coverage radius RM ), where both of them

operate over an identical carrier frequency f . Each FC consists of one FAP and NFU

femto-users. On the other hand, the MC consists of one macro base station (MBS0) and

NMU macro users. We assume that both FCs and MC use TDMA as a channel access

technique, that is, we assume that time is slotted and at every time slot only one MU is

active per MC and only one FU is active per FC. We denote the currently active MU by

m and the currently active FU associated with the femto access point FAPi by FUi. In

this chapter, we consider the UL communication stream; i.e., communication from MU

to MBS0 and from FUs to FAPs. We also assume that these UL communications are

synchronized [57]1. We denote MUs’ and FUs’ maximum transmit powers respectively

by Pm
max and P f

max, where P f
max is relatively small compared to Pm

max. In our network,

we assume that there are no FCs in the vicinity of the macro base station, and that the

maximum power used by FUs, P f
max, is low enough so that UL communications at FCs

will not cause harmful interference at the macro base station, MBS0. Hence, this study

focuses on and addresses the UL interference at active FAPs, created by their neigh-

boring active MUs and FUs. The physical channel is represented by a combination of

path-loss, log-normal shadowing and Rayleigh fading. The channel gain gji of user j to

base station i is modeled in compliance with the ITU specifications [2], according to

1Once turned on and before initiating any communication, FCs get synchronized to the cellular core
network using an asymmetric communication link such as xDSL thanks to an enhanced version of IEEE
1588 [57].
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which at time slot t

gji(t) = Kjd
−αj

ji (t)Sji(t) (3.1)

where Kj is a constant factor, dji(t) represents the distance from user j to base station i

at time t, αj the path loss propagation factor related to the transmission environment (we

distinguish between three environments cellular, indoor, and indoor-to-outdoor), and

Sji represents the log-normal shadowing realization at time t with a standard deviation

of 8dB for MUs and 4dB for FUs. We have superimposed the Rayleigh fading to

this model by simply multiplying these channel gains by their corresponding Rayleigh

fading coefficients Fji in order to take into account the non-line-of-sight (NLOS) nature

of the outdoor-to-outdoor/outdoor-to-indoor signal propagation. In fact, the impact of

NLOS propagation conditions is significant especially in urban zones. Let Gji(t) =

Fji(t)gji(t) denote the resulting channel gain for transmission from user j to base station

i at time t. Hence, given that there is only one active MU per time slot and only one

active FU per FC per time slot, the signal to interference plus noise ratio (SINR) of the

transmission from FUi belonging to FC i to its FAPi at time slot t is

γi(t) =
gii(t)Pi(t)

Ii(t)
(3.2)

where Pi(t) denotes the transmission power of FUi at time t, and Ii(t) (Eq. 5.14) is the

interference experienced by FAPi at time t due to the transmission of FUj , (j ̸= i) of
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neighboring FCs and the transmission of the simultaneously active MU m.

Ii(t) =
∑

FUj ;j ̸=i

Gji(t)Pj(t) + σi(t) (3.3)

where σi(t) = GmiP
m(t)+ni with Pm(t) denoting the transmission power of the active

MU m at time t and ni denoting the additive white Gaussian noise at FAPi. Thus, under

this physical interference model, the throughput of FUi can be expressed as

Thi =

∑
t=1:T Ci(t)

T
(3.4)

where Ci(t) = W log2(1 + γi(t)) is FUi’s Shannon capacity with W representing the

channel bandwidth in Hz.

3.3 Problem Statement and Formulation

In this chapter, we aim at maximizing the capacity of FCs while accounting for some of

their specificities, such as their low power operation, the lack of cooperation among the

FCs, and between the FAPs and the macro BS. As mentioned before, a FAP is a small

device that is installed in an indoor environment, like a home or an office, to provide

access to its indoor users. Typically, FAPs are not associated with the macro cellular

networks, and henceforth, they are likely to be managed and owned by different enti-

ties/operators. They are, however, expected/assumed to operate over the same wireless

channel that the underlying macro cellular network uses. Therefore, there is a need for

mechanisms that manage the exploitation of the common wireless channel by the FUs
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so that their physical capacity in terms of achievable throughput is fairly increased. The

key challenge as well as the focus of this chapter is on how FCs can effectively allo-

cate the transmission powers of their associated FUs in spite of the lack of coordination

among FCs themselves as well as between FCs and the macro cellular network, in order

to maximize their throughput. The problem of uplink (UL) power allocation to FUs can

be formulated as a non-linear program (NLP):

max
Pi(t)

∑
i∈Ωt

wi(t) log2(1 +
gii(t)Pi(t)∑

(j∈Ωt,j ̸=i)Gji(t)Pj(t) + σi(t)
)

Pi(t) ≤ P f
max ∀i ∈ Ωt

Pi(t) ≥ 0 ∀i ∈ Ωt

where Ωt = {FUi active/scheduled during time slot t}. We recall that in our study we

assume that FCs use TDMA; that is, there is only one active FU per FC at a given time

slot. This NLP should be run every time slot before the scheduled FUs start communi-

cating. It aims at allocating power to FUs with the objective of fairly maximizing their

overall achievable throughput. In fact, the objective function is expressed as the maxi-

mization of a weighted sum of the channel capacity (and consequently the throughput)

of FUs. The weights wi(t) somehow translate the fairness in power allocation to simul-

taneously active FUs. Indeed, if an active FU i ∈ Ωt has not been allocated power at

time slot t (i.e. Pi(t) = 0) via this optimization program, its associated weight will get

incremented by one for the next time slot during which it will be active. Hence, this

optimization program (expressed as a maximization of a weighted sum) privileges the

FUs that have higher weights (i.e., those that have been activated less frequently dur-
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ing their scheduled/assigned time slots). This power allocation is subject to maximum

transmission power P f
max constraints, where P f

max is assumed to be low enough to avoid

interference with the UL communication from the active MU and the macro base station

(MBS0). Note that this NLP can be solved optimally only if there exists a centralized

entity that monitors all the FAPs deployed in the MC. In fact, solving this NLP requires

that each FAP possesses a global knowledge about all the other FC properties, namely

their schedule, their positions, their channel gains, their transmission power, etc. How-

ever, as clearly stated in the system model, for the case of FCs, assuming and relying on

a centralized approach is not realistic; i.e., it is not practical to assume the existence of

a centralized entity that can gather and have such a global information. Moreover, the

FCs themselves are isolated entities that are independent of one another, and therefore

they are unable to communicate/cooperate with each others. With this in mind, in this

chapter, we design and propose a non-cooperative power allocation scheme that allows

each FAP to efficiently allocate power to its active FUs in a distributed manner; i.e.,

without requiring information exchange with the surrounding FAPs nor with the MBS.

3.4 Estimation Based Power Allocation

In this section, we present our scheme which consists of determining at every time slot

the amount of power to be used by each active FU in order to increase its chances

of getting a higher throughput. In our scheme, at every time slot, each FAP reports

some interference related measurements to its active FU to help it decide the amount

of transmission power it needs to use. Since FCs cannot communicate with each other,
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each active FU, say FUi, associated with FAPi will decide the amount of power to use

at time slot t by estimating the amount of interference Ii(t) that will be experienced by

FAPi during the time slot t. This estimate is calculated based on the measurements

provided by FAPi and is denoted as Îi(t).

3.4.1 General Description of Proposed Scheme

Our proposed solution consists of the following steps: At the initial time slot t0 (i.e., the

very first time slot), FUi chooses a random value of Pi(t) that satisfies the maximum

power constraint, and uses it to start its communication with its associated FAPi. At

each subsequent time slot t ̸= t0, each active FAPi measures the amount of interference

Ii(t) (given in Eq. 5.14) that it receives. This measured interference will then be used to

estimate the amount of interference, Îi(t+1), that FAPi is expected to experience during

the next time slot. FAPi can also measure the received SINR, γi(t), corresponding to

FUi’s UL transmission. We assume that FAPi is able to estimate the value of channel

gain ĝii(t) of its currently active FU (before it actually starts communicating) using

some well-known filtering technique [39]. These measurements are important, because

they will help FUi decide the amount of power it needs to use as explained later (in our

algorithm presented below). Recall that time is assumed to be slotted, where each slot

consists of an UL subslot (communication from FUi to FAPi) and a downlink (DL)

subslot (communication from FAPi to FUi). Hence, the measurements made by FAPi

at the UL subslot of slot t can be transmitted to FUi during the DL of subslot t. These

measurements will be used by FUi to calculate Îi(t+1) (the predicted value of Ii(t+1))
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and decide on the amount of transmission power that it will use at time slot (t + 1). In

order to have good estimation values, we assume that each active FU is scheduled over

NTS contiguous time slots (where NTS > 3).

3.4.2 Proposed Transmission Power Allocation Algorithm

Once FUi acquires all necessary information (described in the previous paragraph) from

its associated FAPi (via the DL of time slot (t− 1)), it decides on the amount of power

it needs to use at the UL of time slot t using the following algorithm, which consists of

two main tests:

Test 1: Wireless Channel Condition.

If ĝii(t) = 0, then FUi decides not to transmit at time t; i.e., it sets its transmission

power Pi(t) to 0, because of the bad wireless propagation conditions. Otherwise, if

ĝii(t) ̸= 0, the active FUi runs Test 2 below.

Test 2: Transmission Power Determination.

In this test, FUi checks whether its SINR, γi(t−1), achieved at the previous time slot is

included in the interval [γmin
i , γmax

i ], and decides on the value of its transmission power

Pi(t) accordingly. Based on this value of Pi(t), it decides whether to update the value

of γmin
i or γmax

i . The detailed description of this test is presented below.

1. First Case: If γi(t− 1) < γmin
i , then

• Set Pi(t) =
Îi(t)(1+ε(t−1))γmin

i

ĝii(t)
if this fraction does not exceed P f

max. Other-
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wise, set Pi(t) = 0.

• Set γmin
i = βγmin

i if Pi(t) = 0, where 0 < β < 1 is a chosen design

parameter.

2. Second Case: If γi(t− 1) > γmax
i , then

Let:

Pmax
desired =

Îi(t)(1 + ε(t− 1))γmax
i

ĝii(t)
(3.5)

Pmin
desired =

Îi(t)(1 + ε(t− 1))γmin
i

ĝii(t)
(3.6)

• If Pmax
desired ≤ P f

max, set Pi(t) = Pmax
desired

• Else if Pmin
desired ≤ P f

max, set Pi(t) = Pmin
desired

• Else set Pi(t) = 0 and update γmax
i = βγmax

i

3. Third Case: If γmin
i ≤ γi(t− 1) ≤ γmax

i , then

Let:

Pmax
desired =

Îi(t)(1 + ε(t− 1))γi(t− 1)

ĝii(t)

Pmin
desired =

Îi(t)(1 + ε(t− 1))γmin
i

ĝii(t)

• If Pmax
desired ≤ P f

max, set Pi(t) = Pmax
desired

• Else if Pmin
desired ≤ P f

max, set Pi(t) = Pmin
desired

• Else set Pi(t) = 0
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In our algorithm, γmin
i and γmax

i are two design parameters; γmin
i is greater than γth

i

(the SINR threshold); γmax
i is at least three times as high as γth

i ; and ε(t − 1) is the

interference estimation error, expressed as

ε(t− 1) =
|Ii(t− 1)− Îi(t− 1)|

max(Ii(t− 1), Îi(t− 1))

Our proposed algorithm uses the weighted moving average technique to compute

the estimated value of interference Îi(t), as it gives more importance to the most recent

interference measurements. In fact, we assume that the interference measured in the

previous time slot is the closest to the current interference value. The rationale behind

the use of γmin
i and γmax

i in our algorithm (Test 2) is to try to figure out the optimal γi(t)

(i.e., the one that would allow us to achieve optimal throughput). This is made via suc-

cessive adjustments of γmin
i and γmax

i : Note that in our algorithm, we decrease these two

parameters whenever their use would incur a zero power for FUi. In fact, we know that

the transmission power Pi of FUi (and consequently its SINR γi) cannot be increased

indefinitely to maximize its throughput not only because of the maximum power con-

straint, but also and most importantly because of the behavior of FUi’s throughput Thi

(as shown in Eq. 3.4) as a function of Pi. Indeed, as Pi increases, Thi also increases

up to a point where it reaches its maximum and after which it starts decreasing again.

Here, as Pi increases, Ij (the interference experienced at FAPj , j ̸= i) increases and

hence the power Pj of FUj increases too to overcome this high interference (Ij). As a

consequence, the interference at FAPi (i.e., Ii) will also increase, thereby decreasing

Thi. Therefore, we decided to bound the value of γi and consequently that of Pi so
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that Thi is maximized without impacting the achieved throughput of other FUs that are

simultaneously active with FUi. In other words, the incentive behind our algorithm is to

try to fairly maximize the throughput of the different FUs without needing to exchange

information among their FAPs.

3.5 Performance Evaluation

In this section, we evaluate the performances of our proposed distributed algorithm, and

compare it with the optimal centralized one presented in Section 3.3.

3.5.1 Simulation Settings and Performance Metrics

3.5.1.1 Simulation Method and Settings

We implemented both the centralized solution and our scheme in MATLAB. We ran

our simulations, analyzed them, and plotted our results also using MATLAB. In our

simulations, we generated a grid network with one MBS in the center surrounded by

NFC = 96 uniformly placed FAPs and NMU = 20 randomly generated MUs. Each FC

has a transmission range RF = 20m and consists of one FAP placed in the center and

NFU = 3 FUs generated randomly in its coverage area. In our simulation, we assume

that the MC and the FCs operate over the same wireless channel, and that both FCs and

the MC use TDMA as a channel access mechanism. For evaluation purposes, we varied

the inter-FAP distance from 10m to 45m in order to vary the network coverage ratio.

Unless otherwise stated the number of contiguous time slots assigned per FU, NTS , is
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Table 3.1: Summary of Simulation Parameters
Maximum FU Power P f

max 125 mWatt
Maximum MU Power Pm

max 1 Watt
Femto SINR Threshold γth

i 3.2dB
Channel Bandwidth W 160Mbps

Carrier Frequency f 2.5GHz
Number of Simulation Slots 3000 Time Slots

Total number of femto-users Ntot 288 FUs
SINR Bounds Update Factor β 0.9

fixed to 10. The main simulation parameters are summarized in Table 3.1.

3.5.1.2 Performance Metrics

The goal of this chapter is to provide a distributed, non-cooperative scheme for power

allocation with the two objectives of: (i) increasing FUs’ overall achievable throughput,

and (ii) maximizing fairness among them. To this end, the following two metrics are

used to evaluate and analyze the performance of the proposed power allocation scheme.

Average Throughput: is the average per user achieved data rate. It is viewed as a met-

ric of assessing how well the scheme performs from a user’s point of view.

Fairness Indicator: represents an important metric for distributed, non-cooperative/selfish

systems, where some resources (e.g., wireless channel) need to be shared by a set of

users that all try to maximize and go after their own benefit. The idea here is to quantify

and assess how fair the proposed scheme is in terms of the FUs’ achieved throughput,

by using the following fairness indicator [66]: F =
(
∑

i=1:Ntot
Thi)

2

Ntot(
∑

i=1:Ntot
Th2

i )
, where Ntot is the

total number of FUs. This metric is viewed as a metric of assessing how well the scheme
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performs from a network’s point of view.

3.5.2 Simulation Results

3.5.2.1 Throughput Performance

Fig. 3.1 shows the per-FU average achieved throughput for various time frames (one

time frame equals 30 time slots). First, note that in the long run, our scheme achieves

50% of the optimal throughput obtained via the centralized optimization program. Sec-

ond, observe that both schemes, our distributed and the centralized, are stable as the

average per-FU throughput does not fluctuate much; they both quickly converge to a

fixed value. For the proposed distributed scheme, the convergence time is around 10

time frames (i.e. 300 time slots which is equal to 6 seconds).

Fig. 3.2 shows the per-FU average throughput as a function of the FC coverage

ratio. We define the coverage ratio as the ratio of the total FC area to the total MC

area. From Fig. 3.2, we can clearly see that the average throughput achieved with the

centralized scheme decreases rapidly as the FC coverage ratio increases. In fact, it

decreases from 158 Mbps for femto-coverage-ratio=0.08 (8%) to 110 Mbps for coverage

ratio equal to 0.85 (85%). In other words, the decrease is of 623 kbps for 1% increase

in the coverage ratio for throughput obtained with the centralized scheme, whereas the

decrease of throughput achieved with our scheme is barely noticeable. For our scheme,

the decrease ratio is of the order of 129 kbps for 1% coverage ratio increase. Hence,

although our scheme does not achieve as much throughput as the centralized approach
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Figure 3.1: Per-FU average achievable throughput.

does, it presents better performances in terms of scalability.
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Figure 3.2: Impact of the FC Coverage Ratio on the average achieved throughput.
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Figure 3.3: Impact of the number of per-FU Contiguous Time Slots on the average
achieved throughput.

We also study and show in Fig. 3.3 the impact of varying the number of contiguous

time slots assigned per FU on the average achieved throughput. Note that the average

throughput obtained with our scheme increases from 60Mbps to 70Mbps as the number

of contiguous slots assigned per FU increases from 4 to 22 slots. This is because the

estimation error is smaller for higher assigned numbers of contiguous slots. Indeed,

the more slots a FU has, the more interference measurements/samples it gets, the more

accurate its interference estimates is, and consequently the better the decision of the

allocated transmission power is. On the other hand, observe that the performances of

the optimization program is independent of the number of contiguous slots assigned per

FU, which is expected.
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3.5.2.2 Fairness Performance

Fig. 3.4 shows the fairness indicator of the proposed scheme when varying the time

frame index. The figure shows that our scheme achieves good fairness performances.

Observe that fairness indicator reaches up about 0.65. Therefore, not only does our

scheme perform in a distributed manner; i.e., each FC runs the algorithm without need-

ing to cooperate or exchange information with the surrounding FCs, but also ensures

good fairness among the FUs by allowing them to achieve approximately equal amounts

of throughput. This is because each FC takes into account the presence of surrounding

FCs by estimating the interference they might incur and by bounding and adjusting the

SINR achieved by its associated active FU so that it would not harm the communication

of surrounding FUs.
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Figure 3.4: Fairness indicator as a function of time frame index.
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Figure 3.5: Fairness indicator as a function of the FC Coverage ratio.

In Fig. 3.5, we also show that the fairness performance of the proposed scheme is not

affected by the increase of the FC coverage ratio, which further confirms its suitability

to areas with high FC coverage such as the urban areas.

3.6 Summary

In this chapter, we proposed a distributed, non-cooperative uplink power allocation

scheme for FC networks. Through simulation, we showed that our scheme achieves

good throughput performances while ensuring fairness among all active femto-users. In

addition, we showed that our proposed scheme presents good scalability property, which

makes it suitable for femto-networks deployed in urban areas.
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Chapter 4: QoS-Aware Power Allocation in Two-Tier Macrocell/Femtocell

Networks

In this chapter, we develop a new distributed power control (PC) scheme for the up-

link traffic in femtocell/macrocell networks that can be used by both femto-users (FUs)

and macro-users (MUs). Our work aims at maintaining the minimum required signal

to interference ratio (SIR) for as many cellular users (CUs) as possible via distributed

QoS-aware stochastic power allocation. We also provide a theoretical analysis of our

proposed PC scheme, and evaluate and compare its performance with existing power

allocation techniques. Simulation results show that our scheme yields a significant per-

formance improvement in terms of percentage of satisfied users when compared with

these existing solutions.

4.1 Introduction

Designing efficient PC schemes is very challenging in the case of two-tier FC networks,

mainly due to their autonomous nature. Therefore, it has been the focus of many re-

cent works. Some of these works resort to game theoretical approaches to design PC

schemes [19, 41, 49, 58, 61, 77, 79], some of which [19, 28, 61] use the famous Foschini-

Miljanic power update formula [31]. Other works use new optimization approaches such

as: predictive modeling [16,29], particle swarm optimization [43], fractional power con-
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trol [14,60,78], etc. In [14,60,78], the authors use fractional power control, a new PC ap-

proach that lies between the channel inversion and the water filling policy. Their scheme

aims at helping disadvantaged users by attenuating the impact of the fading factor re-

lated to their communications with their associated base stations (BSs). However, the

optimization of the assignment of the PC exponents in such a scheme would necessitate

a central network entity that possesses a global knowledge of the different channel gains

of these CUs. Likewise, the PC scheme proposed in [53], which aims at maximizing FC

capacities while maintaining a minimum SIR value at the MC, requires the existence

of a central FC/MC resource managing unit/agent. Other prior works [19, 29, 77, 79],

although distributed in nature, still require inter-tier/intra-tier coordination for their op-

eration. For instance, in [29], the authors propose a new PC scheme, in which they

used the predictive modeling approach (a widely used approach in industrial applica-

tions such as process plants control or production control). In their scheme, a CU needs

to know its channel gain at the BSs different from the one to which it is associated,

which is only possible under the condition of communication/cooperation between that

CU and its surrounding BSs. On the other hand, in [19, 77, 79], the authors formulate

the power allocation problem using a game-theoretic approach, where inter-tier coor-

dination (equivalently coordination between the FC and the MC) is assumed. In fact,

in [79], the primary user (PU) needs to broadcast some measurements to the secondary

user (SU) in order to allow it adjust its transmission power. Likewise, in [77], the au-

thors use a Stackelberg game-based PC, in which the SU determines its transmission

power while taking into account the price decided by the PU. The implementation of

their algorithm requires the knowledge of the cross channel gains (i.e that of the SU at
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the PU’s BS and that of the PU at the SU’s BS). In our work, however, no inter-tier or

intra-tier coordination is required. The cellular user (CU) only needs to communicate

with its associated base station (whether MBS or FAP) to get the information required

to adjust its transmission power.

From a modeling perspective, several works ( [19,58,61,77,79]) addressed the prob-

lem of power allocation in two-tier networks while differentiating between two types of

users: prioritized PUs and SUs (with lower priority). Indeed, in [58], the authors pro-

pose a game-based PC scheme, where the SUs are assigned bounded power to meet

their SIR requirements. Their assigned power should not exceed a target power value

so that the interference at the MU could not exceed a certain threshold. A similar con-

cept has been adopted in [61], where a joint power and admission control algorithm is

proposed to support the MUs with guaranteed QoS requirements, while letting the FUs

only exploit the remaining network capacity. In our work, we consider a MC network

overlaid with multiple FC networks where all considered active users (FUs and MUs)

have a QoS constraint expressed in terms of a minimum SIR requirement that needs to

be maintained. Both the FUs and the MUs are licensed users. Therefore, we do not

distinguish between them in terms of resource allocation.

Finally, the authors of the game-theoretic power control schemes proposed in [19,

41, 49, 58, 61, 77, 79] proved the existence of Nash equilibria (in [19, 41, 49, 58, 61]) and

Stackelberg equilibria (in [77, 79]) for these games. In our work [15], we prove that

our PC scheme, derived using ordinary differential equations (ODEs), admits a unique

solution that we compute. We also derive sufficient conditions on the stability of our

system at the equilibrium.
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4.2 Network Model

We consider a single-carrier two-tier cellular system consisting of FCs overlaid on one

MC, where both of them operate over an identical carrier frequency f . The MUs and the

FUs are spatially distributed in the two-dimensional plane according to two independent

homogeneous Poisson point processes with intensities (i.e. spatial densities) λMU and

λFU respectively. In this work, we consider the uplink (UL) communication stream;

i.e., communication from the MUs to the MBS and from the FUs to their corresponding

FAPs. We assume that time is slotted and TDMA is used by the CUs (ie., MUs and

FUs) to access the wireless channel, and that the UL communications at the FCs are

synchronized with those at the MC [57]1, and consequently are mutually synchronized.

We further assume that FUs residing in the same FC do not interfere with each other

since they are scheduled in different TSs. Likewise, we assume that the MUs inside the

MC are scheduled according to TDMA.

The wireless channel gain gji of user j to base station i is modeled in compliance

with the ITU specifications [2], according to which at time slot t

gji(t) = d
−αj

ji (t)10−
Yji(t)

10 (4.1)

where dji(t) represents the distance from user j to base station i at time t, αj the path

loss exponent related to the transmission environment (we distinguish between three

environments: cellular, indoor, and indoor-to-outdoor), and Yji(t) represents the normal

1Once turned on and before initiating any communication, FCs get synchronized to the cellular core
network using an asymmetric communication link such as xDSL thanks to an enhanced version of IEEE
1588 [57].
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variable associated to the log-normal shadowing realization at time t, with zero mean

and standard deviation σMU = 8dB for MUs and σFU = 4dB for FUs. Hence, the SIR

of the transmission from FUi belonging to FCi to its associated FAPi at time slot t is:

γi(t) =
gii(t)Pi(t)

Ii(t)
(4.2)

where Pi(t) denotes the transmission power of FUi at time t, and Ii(t) is the interference

experienced by FAPi at time t due to concurrent transmissions from active neighboring

FUj (j ̸= i) and MUk. Ii(t) can be written as

Ii(t) =
∑

FUj ;j ̸=i

gji(t)Pj(t) + gki(t)Pk(t) (4.3)

Likewise, the SIR corresponding to the transmission from MUk to its MBS0 is

given by:

γ0(t) =
gk0(t)Pk(t)

I0(t)
(4.4)

where I0(t) =
∑

FUj
gj0(t)Pj(t) is the interference at MBS0. In our model, we assume

that FUs’ positions are fixed, and hence, their corresponding shadowing coefficients are

considered constant across time. On the other hand, we assume that MUs are moving

and their movement is described by the Random Way Point Mobility Model [13]. Hence,

for any given MU, a realization of its shadowing coefficient at time t + T is correlated

to that at time t following Cox’s model [75] and is described as follows.
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Yki(t+ T ) = Yki(t) exp

(
−vk(t)T

dc

)
+ ηk(t) (4.5)

where ηk(t) is a normally-distributed random variable with zero mean and variance

σηk = σMU

√
1− exp

(
−2vk(t)T

dc

)
, vk(t) is the speed of MUk and dc = 50m models

the large-scale fading outdoors [75]. For dki ≪ dc, the object is enormous relative to

the inter-node separation dki. Thus, from the receivers perspective, the transmitter ap-

pears stationary, since any displacement of the transmitter over a relatively short period

of time is insignificant relative to the size of the object. For dki ≫ dc this same local

shadowing object can be modeled as a point, and thus, the receiver sees the transmitter

traveling.

4.3 Problem Statement and Proposed Solution

Consider a set of n simultaneously active FUs and one active MU whose traffic requires

a minimum data rate to guarantee a desired QoS. An example of such traffic is the voice

traffic which requires a data rate of about 56 to 64 kbps in order to achieve an acceptable

QoS. Recall that the data rate achievable by a wireless node i could be expressed as a

function of its achievable SIR, γi (according to Shannon capacity formula). Hence, this

data rate constraint could be mapped into the following minimum SIR constraint:

γi(t) ≥ γth, ∀i = 1..n+ 1
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where γth is the minimum required SIR threshold. In this work, our objective is to ensure

that each CUi (i.e. any simultaneously active FUs or the MU) achieve and maintain a

SIR value γi(t) that is as close as possible to the target γth; i.e., γi(t) ≃ γth. The

idea here is that the achieved SIR should be above the threshold in order to receive an

acceptable QoS, but it is not desirable to be more than the threshold, as this would not

be beneficial to these applications. This objective can be formulated with the following

equation:

| γi(t)− γth |= | γi(t0)− γth |
t− t0 + 1

(4.6)

The physical interpretation of this equation (4.6) is that the distance between the

achieved SIR and the minimum required SIR decays geometrically with rate 1/t as

t → ∞ for any active CUi. This represents the target we want to achieve via our

distributed autonomous power control scheme developed hereafter. Notice that in our

problem formulation, we use a backward/reverse engineering approach. That is, starting

from the desired solution (4.6), we develop a PC scheme which aims at achieving our

goal of sustaining the achieved SIR γi(t) in the vicinity of/at the desired γth level.

Starting from (4.6), the differential dynamic of our system can be derived as

∂(γi(t)− γth)

∂t
= −sign(γi(t)− γth)× | γi(t0)− γth |

(t− t0 + 1)2

= −(γi(t)− γth)

∣∣∣∣ γi(t)− γth

γi(t0)− γth

∣∣∣∣
Thus, the differential dynamic of our system can be described by the following set
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of ODEs:2

γ̇i(t) = −(γi(t)− γth)

∣∣∣∣ γi(t)− γth

γi(t0)− γth

∣∣∣∣ , ∀i = 1..n+ 1 (4.7)

Moreover, as mentioned in Section 4.2 the FUs’ channel gains are considered con-

stant during the power control process, since they are immobile. On the other hand, we

assume that the MUs are slowly moving so that their channel gains at two consecutive

time slots are almost the same gii(t + 1) ≈ gii(t). Hence, by differentiating (4.2) with

respect to time, we get:

γ̇i(t) = gii
Ṗi(t)Ii(t)− Pi(t)İi(t)

I2i (t)
(4.8)

Then, by equating (4.7) and (4.8), we get:

Ṗi(t) = Pi(t)
İi(t)

Ii(t)
− Ii(t)

gii
(γi(t)− γth)

∣∣∣∣ γi(t)− γth

γi(t0)− γth

∣∣∣∣
Finally, using Taylor Series Expansion of order one, it follows that

İi(t)

Ii(t)
=

∂Ii(t)
∂t

Ii(t)
=

∂ ln(Ii(t))

∂t

≃ ln

(
Ii(t+ 1)

Ii(t)

)

Moreover, we assume that Ii(t+ 1) ≃ Ii(t). Hence, our desired transmission power

2Here, we use the mathematical notation ẋ(t) = ∂x(t)
∂t
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dynamics are described by the following set of ODEs:

Ṗi(t) = −
Ii(t)

gii
(γi(t)− γth)

∣∣∣∣ γi(t)− γth

γi(t0)− γth

∣∣∣∣ ∀i = 1..n+ 1 ∀t ≥ t0 (4.9)

Based on (4.9), we deduce our desired power control rule as, ∀i = 1..n+ 1 ∀t ≥ t0

Pi(t+ 1) = Pi(t)−
Ii(t)

gii
(γi(t)− γth)

∣∣∣∣ γi(t)− γth

γi(t0)− γth

∣∣∣∣ (4.10)

Our proposed power control scheme given in (4.10) above can then be refined with:

1. Power constraint: When Pi(t+ 1) obtained from (4.10) is negative, CUi chooses

not to transmit, and when Pi(t + 1) exceeds the maximum allowed power level,

Pmax (Pmax equals P f
max for the FUs and Pm

max for the MUs), CUi sets its trans-

mission power to Pmax. Formally, Pi(t+ 1) = min(max(0, fi(t)), Pmax).

2. Safety margin: The value of γth is multiplied with a safety factor δ ≥ 1 in order

to provide a safety margin. The intuition here is that targeting an SIR slightly

higher than the threshold γth provides more guarantees by increasing the chances

of meeting the required γth.

3. Smoothing factor: A smoothing factor 0 ≤ β < 1 is introduced to reduce the

fluctuations in CUi’s transmission power evolution during the power control pro-

cess/period. This is shown in (4.12) below.

To sum up all the above, the final proposed power control rule can be written as

Pi(t+ 1) = min(max(0, fi(t)), Pmax) ∀i = 1..n+ 1 (4.11)
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with

fi(t) = βhi(t) + (1− β)Pi(t) (4.12)

where hi(t) is the function defined by

hi(t) = Pi(t)−
Ii(t)

gii
(γi(t)− δγth)

∣∣∣∣ γi(t)− δγth

γi(0)− δγth

∣∣∣∣ (4.13)

Now that we have defined our PC rule, we next give a brief description of our PC

algorithm used by each active CUi. First, recall that in our system, CUs are scheduled

according to TDMA so that only one FU is active per FC per TS; same thing applies for

the MC. We further assume that in each time slot, when a CU becomes active, it stays so

for NTS contiguous TSs, during which it uses the proposed PC algorithm (Algorithm 4)

for determining/allocating its power. In this algorithm, BSi refers to the base station

associated to CUi (either FAPi or MBS0).

Algorithm 4 Power Control Algorithm at CUi

1: Initialize t=0, Select Pi(t) randomly from [0, Pmax], Send data.
2: while t ≤ NTS do
3: Collect Previous Interference measurement from its associated BSi

4: Compute Transmission power Pi(t+ 1) using (4.11)
5: Send data
6: t← t+ 1
7: end while
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4.4 Theoretical Analysis of the Proposed Solution

Our proposed power control scheme is a stochastic process deduced from a finite set

of ODEs given by (4.9). Therefore, in order to characterize its long term behavior, our

analysis resorts to some control theory results. In the following, we study the existence

and uniqueness of a solution to this system of ODEs and derive sufficient condition on

its stability. The analysis that we provide in this section applies to the case of immobile

FUs and MUs. Notice that by plugging equation (4.6) in (4.9), the system of ODEs (4.9)

that defines our PC scheme is equivalent to

Ṗi(t) = −
Ii(t)(γi(t)− γth)

(t− t0 + 1)gii
∀i = 1..n+ 1 ∀t ≥ t0 (4.14)

In this section, for the sake of analysis we will use the system of ODEs (4.14) instead

of (4.9).

Theorem 1. The system of ODEs in (4.14) admits a unique solution given by

P (t) = exp

(
ln

(
1

t− t0 + 1

)
M
)
P (t0) (4.15)

where M = I − G, I is the identity matrix of order (n + 1), and G is a (n + 1) by

(n+ 1) matrix with zeros diagonal elements Gii = 0 and non-zero off-diagonals Gij =

γthgji
gii

,∀i, j = 1, .., (n+ 1).



69

Proof. Proof of Existence: From (4.14), we have, ∀i = 1..n+ 1 ∀t ≥ t0,

Ṗi(t) = − Ii(t)γi(t)

(t− t0 + 1)gii
+

Ii(t)γ
th

(t− t0 + 1)gii

= − Pi(t)

(t− t0 + 1)
+

γth

(t− t0 + 1)

∑
j ̸=i

gji
gii

Pj(t)

This set of ODEs could be further transformed using a matrix form as follows:

Ṗ (t) =
−1

t− t0 + 1
(I−G)P (t) (4.16)

where I is the identity matrix of order (n+1), and G is defined in the theorem statement.

Now let A(t) = −1
t−t0+1

(I−G),∀P 1, P 2 ∈ [0, Pmax]
n+1. We have

∥A(t)P 1 − A(t)P 2∥ = ∥A(t)(P 1 − P 2)∥

≤ ∥A(t)∥∞ ∥P 1 − P 2∥2

≤
maxi,j

{
|γ

thgji
gii
|; 1
}

t− t0 + 1
∥P 1 − P 2∥2

Let k(t) =
maxi,j

{
|
γthgji

gii
|;1

}
t−t0+1

, a piecewise continuous function for all t ≥ t0. Therefore,

∀P (t0) ∈ [0, Pmax]
n+1 there exists a unique solution to (4.14), defined as

P (t) = Φ (t, t0, P (t0))P (t0)

Solution Computation: Notice that A(t) could be written as A(t) = α(t)M with

α(t) = −1
t−t0+1

and M = (I−G) a constant matrix. Hence, A(s) and
∫

A(s) ds commute.
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Thus,

Φ (t, t0, P (t0)) = exp

(∫ t

t0

A(s) ds
)

= exp

(∫ t

t0

α(s) dsM
)

= exp

(
ln

(
1

t− t0 + 1

)
(I−G)

)

Theorem 2. If M = (I − G) is diagonalizable and has positive eigenvalues, then the

equilibrium P ∗ of the system (4.14) is both stable and asymptotically stable.

Proof. Recall that by definition, P ∗ is an equilibrium vector for the system (4.14) is

equivalent to Ṗ (t) = 0 at P ∗. Given that M is diagonalizable and with positive eigen-

values, there exists an invertible matrix Q and a diagonal matrix D whose diagonal ele-

ments λ1, λ2, .., λn+1 are positive such that: M = QDQ−1. That is, I−G = QDQ−1.

Hence, using Taylor series expansion, we get:

exp (− ln(t− t0 + 1)M) =
+∞∑
n=0

(− ln(t− t0 + 1)QDQ−1)n

n!

= Q exp (− ln(t− t0 + 1)D)Q−1

Let x(t) = P (t) − P ∗. Note that ẋ(t) = Ṗ (t) and the zero vector is an equilibrium

vector for x(t). Hence, studying the stability of the equilibrium vector for (4.14) or

(4.16) is equivalent to studying the stability of the zero vector for the system ẋ(t) =
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−1
t−t0+1

Mx(t). We have:

∥x(t)∥ =

∥∥∥∥exp(ln( 1

t− t0 + 1

)
M

)∥∥∥∥ .∥x(t0)∥
≤

∥∥Q exp (− ln(t− t0 + 1)D)Q−1
∥∥ . ∥x(t0)∥

≤ ∥Q∥
∥∥Q−1

∥∥ exp(− ln(t− t0 + 1)min
i

λi

)
∥x(t0)∥

and hence, ∀ε > 0,

∥x(t0)∥ <
ε

∥Q∥∥Q−1∥ exp (− ln (t− t0 + 1)mini λi)

implies that

∥x(t)∥ < ε ∀t ≥ t0

Hence, x = 0 is a stable solution for ẋ(t) = −1
t−t0+1

Mx(t). Consequently, P ∗ is a stable

solution for (4.14). Moreover,

0 ≤ ∥x(t)∥ ≤ ∥Q∥
∥∥Q−1

∥∥ exp(− ln(t− t0 + 1)min
i

λi

)
∥x(t0)∥

and limt→+∞ exp (− ln(t− t0 + 1)mini λi) = 0. Hence, limt→+∞ x(t) = 0. Thus,

x = 0 is also asymptotically stable, which implies that P ∗ is asymptotically stable for

(4.14).

Corollary 1. The final proposed power control rule given by (4.11) has the same prop-

erties as the one given by (4.10). That is, it admits a unique solution and presents similar
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stability characteristics.

Proof. The proof follows from [81] which states that by modifying a power control

function (in our case it is given in (4.10), which is derived from (4.9) or equivalently

(4.14)), by using a smoothing/averaging factor and adding a maximum power constraint,

the resulting new power control function, see (4.11), has the same properties as the initial

one (i.e. (4.10)) in terms of solution existence and stability.

In this work, we analyze the theoretical performances of our PC scheme only for the

case of fixed MUs and FUs. These results are still valid also for the case of fixed MUs

and mobile FUs (as long as they do not leave the coverage area of their associated FCs).

In fact, in that case, the FUs displacements are restricted to the indoor premises, so the

distance separating the FU from its associated FAP is generally less than dc = 50m.

Hence, using Cox’s model [75], these mobile FUs’ channel gains can also be considered

constant across time. On the other hand, extension of these results to the case of mobile

MUs is analytically complex since in that case the MUs’ channel gains are no longer

constant and represent a stochastic process as shown in Section 4.2. Indeed, in the case

of mobile MUs, the key convergence/stability condition is [40]:

lim
t→+∞

1

t
log ∥A(1)A(2)...A(t)∥ < 0

4.5 Performance Evaluation

We now evaluate the performance of our proposed PC scheme (referred to as Proposed-

PC) and compare it with two existing PC schemes: Utility-PC [19] and Stackelberg-
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PC [77]. We first start with a brief description of these two existing schemes, and then

evaluate and analyze the performance gain Proposed-PC achieves in terms of the per-

centage of satisfied users when compared with Utility-PC and Stackelberg-PC.

4.5.1 Simulated Schemes and Performance Metric

4.5.1.1 Utility-PC Scheme [19]

Utility-based PC (hereafter referred to as Utility-PC for short) scheme, proposed by

Chandrasekhar et al. [19], assumes that both the FUs and the MUs use TDMA as the

multiple access method for sharing the wireless channel. Further, it also assumes that

there is only one active FU per FC per TS and one active MU per TS in the underlying

MC. Utility-PC’s power control formula, proposed to allow the active FUi to achieve its

desired SIR threshold γth, is as follows:

Pi(t+ 1) = min

((
Pi(t)

γi(t)

[
γth +

1

a
ln

(
agii
bg0i

)]+)
;P f

max

)
(4.17)

where
[
γth + 1

a
ln
(

agii
bg0i

)]+
= max

(
0, γth + 1

a
ln
(

agii
bg0i

))
, g0i is the channel gain from

the active MU to FAPi, and a and b are two constants set respectively to 0.1 and 1 in

order to maximize the FCs capacities. On the other hand, the formula used to update the

active MU’s power is nothing but the Foschini-Miljanic power update formula [31]:

Pk(t+ 1) = min

(
Pk(t)

γ0(t)
γth, Pm

max

)
(4.18)
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where γ0(t) is the SIR associated with the transmission of the active MUk to its MBS.

Although this scheme is distributed, it still requires coordination between the FCs and

the underlying MC.

4.5.1.2 Stackelberg-PC Scheme [77]

We also compare our PC scheme to another recently-proposed game-based power allo-

cation scheme [77]. In what follows, this scheme is referred to as Stackelberg-PC. In

Stackelberg-PC, the active FU determines its transmission power while taking into ac-

count the price decided by the active MU. The implementation of this scheme requires

the knowledge of the cross channel gains acquired under the assumption of FC-MC

coordination. The PC update rule used by the active MUk is:

Pk(t+ 1) = min

(
I0(t)

gk0
, Pm

max

)
(4.19)

On the other hand, the active FUi updates its power as follows

Pi(t+ 1) = min

(
max

(
1

ln(2)gi0πi

− Ii(t)

gii
, 0

)
, P f

max

)
(4.20)

where πi is the price associated to the transmission of FUi calculated as follows:

πi =
1

ln(2)gi0

(
σ0gki
gk0gii

+ σi

gii

)
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gk0 and gi0 are the channel gains of the active MUk and FUi at the MBS respectively,

gii is the channel gain of the active FUi at its associated FAPi, and gki is the channel

gains of the active MUk at FAPi.

4.5.1.3 Performance Metric

The goal of this work is to provide a distributed, non-cooperative PC scheme with the

objective of maintaining the SIR achieved by each CU as close as possible to the desired

level γth. Therefore, the outage percentage defined as the percentage of CUs (FUs and

MUs) whose QoS constraints are not met is used as as the performance metric to evaluate

the effectiveness of our proposed PC scheme.

4.5.2 Simulation Settings and Results

4.5.2.1 Simulation Settings

We consider a two-tier FC/MC network, in which the FAPs, the FUs and the MUs are

scattered randomly over a 70m× 70m area, with spatial densities λFAP , λFU and λMU

respectively. In each FC, the FUs are scheduled in a round robbin fashion. Each active

FU is allowed to transmit during NTS contiguous time slots. Likewise, the MUs are

scheduled according to TDMA. In our simulation, the FUs are assumed fixed across

time while the MUs are moving and their mobility is modeled using the Random Way-

Point model. Main simulation parameters are summarized in Table 4.1.
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Table 4.1: Summary of Simulation Parameters
Maximum FU Power P f

max 0.5 Watt
Maximum MU Power Pm

max 2 Watt
Femto SIR Threshold γth 1.8 dB

Number of Contiguous Time Slots per CU 100 Time Slots
Average number of FCs 75 FCs
Average number of FUs 294 FUs

Average number of MUs 50 MUs
PC Smoothing Factor β 0.8

4.5.2.2 Simulation Results

In our performance evaluation we focus on two main aspects: First, and most impor-

tantly, we study the outage percentage since it allows us to measure how well the pro-

posed PC scheme performs in terms of meeting the CUs’ QoS constraints. Second, we

consider investigating the general behavior of the power and/or SIR obtained as a result

of using our PC scheme, so as to assess the ability of our scheme vis-a-vis of stability

and convergence in the case of mobile MUs (since these properties have been already

studied for the case of immobile MUs in Section 4.4).

Fig. 4.1 shows that our scheme, Proposed-PC, achieves a gain of 15% and up to

20% of satisfied FUs when compared to Utility-PC and Stackelberg-PC. Recall that

Proposed-PC achieves such gain without needing any coordination among other FCs

nor the underlying MC (as opposed to Utility-PC and Stackelberg-PC); i.e., it is fully

decentralized. Moreover, Fig. 4.2 shows that Proposed-PC achieves such performance

with 3 times less average power consumption than that by its counterpart Utility-PC

(0.15 Watt for our scheme vs. 0.48 Watt for the Utility-PC scheme), and almost the

same power level as Stackelberg-PC. On the other hand, the slight variations in our
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Figure 4.1: FU Outage Percentage

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

Iteration

Av
er

ag
e 

FU
 P

ow
er

 

 

Proposed−PC

Utility−PC

Stackelberg−PC
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Figure 4.3: MU Outage Percentage

system behavior observed every 20 TSs (see Fig. 4.1) are due to the mobility of the

MUs. In fact, in our case we assume that the coherence interval is equal to 20 TSs.

Hence, the change in the MUs’ shadowing factors are observed every 20 TSs.

As far as the MUs are concerned, Fig. 4.3 shows that the percentage of unsatisfied

MUs is almost the same for the three PC schemes, and Stackelberg-PC slightly outper-

forms ours. This result is expected since Stackelberg-PC was designed with the objective

of guaranteeing the QoS requirement of the MU, the game leader, which jointly deter-

mines its power allocation and the interference price charged to the active FUs. Second,

we study the impact of the FC spatial density on the FU outage percentage (Fig. 4.4(a))

and the MU outage percentage (Fig. 4.4(b)). Fig. 4.4(a) shows that the FU outage rate

increases as the FC spatial density increases. However, our scheme still realizes the best

performance among the three schemes with a gain of about 15% of QoS-guaranteed
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Figure 4.4: Impact of FC Spatial density on the CU Outage Percentage
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FUs. On the other hand, Fig. 4.4(b) shows that for a FC density less than 0.01, our

scheme has the least MU outage percentage, and beyond that value, Stackelberg-PC has

the least MU outage percentage, which is an expected result since Stackelberg-PC was

designed with the objective of prioritizing the MU in terms of QoS guarantee. However,

overall the three schemes present almost same MU outage percentage for different FC

spatial densities.

In Fig. 4.5 and Fig. 4.6, we plot the SIR evolution of two randomly picked FUs and

two randomly picked MUs (respectively) during its assigned contiguous time slots. We

clearly see that the SIR level of these FUs smoothly converges to a steady state. On the

other hand, that of MU2 presents more fluctuation, observed every 20 TSs due to the

impact of its mobility on its channel gain variation.
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4.6 Summary

In this chapter, we designed a distributed, non-cooperative uplink PC algorithm that

enables both the FUs and the MUs to autonomously meet their minimum required SIRs,

whenever possible. We provide a theoretical analysis of the properties of our scheme,

namely solution existence and stability. Moreover, through simulations, we show that

our scheme outperforms some recently proposed schemes in terms of the number/rate

of satisfied CUs. In addition to its distributiveness and simplicity/ease of computation,

simulations show that our scheme is very stable and converges quite quickly to its steady

state.
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Chapter 5: Cross-Layer Performance Analysis of Uplink FC Networks

Uplink (UL) interference analysis in two tier femtocell (FC) networks has been the focus

of many recent research works, due to its impact on the quality of service (QoS) offered

by such networks. However, prior works studied such a parameter from a physical-layer

viewpoint; i.e., they did not consider the mapping/interaction between the physical layer

parameters and the upper layers, namely the data-link layer. In this chapter, we present

an analytic study of the UL physical interference in FC networks and its impact on the

delay and data loss rate experienced by constant-bit-rate (CBR) traffic, as well as on the

maximum achievable femto-user (FU) throughput.

5.1 Introduction

Characterizing and analyzing interference is becoming more and more important in

modern wireless communications mainly due to the emergence of new communica-

tion and networking paradigms, such as femtocell and cognitive radio networks, which

necessitate and call for the sharing of the radio spectrum more than ever. Therefore,

it has been the focus of many recent works, ranging from hardware-level design and

optimization [4, 44, 62, 63, 68] to system-level analysis and characterization [7, 17, 18,

24, 33, 34, 42, 46, 50, 73]. In the following, we overview some of these works, high-

light their limitations, and state how our work differs from them. Researchers at both
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academia and industry have been studying and analyzing interference since the emer-

gence of cellular networks. Similar to our work, in [7,17,18,24,42,50], the authors pro-

vide a system level analysis of the FC interference power and outage probability while

taking into account the users’ spatial distributions, the wireless propagation gain, etc.

However, these works present some limitations. In fact, [17] only applies to single-tier

networks. In addition, [7] and [42] analyze UL interference in two-tier networks while

differentiating between two types of users: licensed primary users (PUs) and unlicensed

secondary users (SUs) whose activity depends on the strength of the signal transmit-

ted by the PUs. In our work, we consider a MC network overlaid with multiple FC

networks where all considered active users (FUs and MUs) are licensed users sharing

the same radio resource and their activity is independent of one another. On the other

hand, [7,18,24,42,50] address two-tier wireless networks, but they did not consider the

impact of using power control by the cellular users (CUs). In our work, however, we

assume that both MUs and FUs use fractional power control. Moreover, we provide a

statistical characterization of the SIR auto-correlation per FU for the case of mobile and

stationary CUs, which represents a novel contribution that may be used in the design of

more efficient retransmission schemes. Other prior works analyze the UL interference

spectrum while taking into account physical layer issues that involve modulation and

coding [44, 62, 63, 68]. These works may have applications in hardware radio design

and optimization, but do not provide enough statistics for the analysis of the QoS ex-

perienced by the CU. For instance, in [68], the symbol and packet error probability are

derived with respect to two different spread spectrum techniques: Direct Sequence and

Frequency Hopping, while taking into account the channel fading and the interferers’
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spatial distribution. The packet error probability models the block/bit error probability

in a given packet at the receiver. That is, it characterizes the outage probability from a

packet viewpoint. While such characterization could be useful/helpful for the study and

design of error correcting schemes/codes, it doesn’t allow us to assess the QoS experi-

enced per user, namely the per-user transmission outage probability and delay. In fact,

in our scheme, we are interested in the outage probability from a system level viewpoint

rather than a link-level viewpoint. That is, we aim at characterizing the transmission out-

age probability (from a user viewpoint) in order to characterize the MAC performance

metrics such as delay and data loss rate. In [62] and [63], the authors provide a system

characterization that incorporates metrics such as error probability, channel capacity,

power spectral density, and aggregate RF emission of the network for different linear

modulation schemes (M-PSK and M-QAM). These characterizations could be helpful

for hardware RF emission standardization to ensure proper functioning of different co-

existing networks such as GPS, cellular networks, etc. In our analysis, however, we

make abstraction of the modulation and coding part and analyze the interference power

statistics rather than its temporal/spectral properties since we target the characterization

of our FC system from a higher level, i.e. MAC layer level. Indeed, in our work, we

propose a cross layer analysis, in which we study the impact of the PHY performance

metrics on the MAC-related ones (delay, data loss rate, throughput), in power-controlled

FC networks, thereby providing useful statistics/metrics and open new horizons for fu-

ture applications design such as call admission control design [36, 37].
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5.2 System Model

5.2.1 Network Model

We consider a single-carrier two-tier cellular system consisting of FCs (with average

coverage radius R) overlaid on one MC (with coverage radius RM >> R), all operat-

ing over an identical carrier frequency f . In our model, we assume that the FAPs are

spatially distributed according to a homogeneous PPP with mean λFAP . We model the

spatial distribution of the FUs and the MUs using two independent homogeneous PPPs,

ϕ1 and ϕ2, in the two-dimensional plane, with intensities λ1 and λ2 respectively. For a

PPP with intensity λ, the probability of n nodes being inside a region Z depends only

on the total area AZ of Z and is given by [51]:

P(n ∈ Z) =
(λAZ)

n

n!
e−(λAZ) (5.1)

Here λ is the spatial density of interfering nodes (in our case λ1 for FUs and λ2 for

MUs), in nodes per unit area. Once scattered over the geographic area, each FU is asso-

ciated with the closest/nearest FAP in its neighborhood. This is just a graphical model

that we use to mimic real deployments of FCs. In fact, in real deployment scenarios, it

is not unlikely that FUs are not associated with their closest FAP; this might especially

happen in areas with a high density of FCs. But we still assume that such minor vari-

ations/exceptions although not taken into account still do not hurt our system analysis,

since we primarily aim to characterize cross-layer (physical and data link) performance

parameters from a statistical viewpoint.
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In this work, we consider the UL communication stream; i.e., communication from

the MUs to the macrocell base station (MBS) and from the FUs to their corresponding

FAPs. We assume that TDMA is used by the CUs (MUs and FUs) to access the wireless

channel, and that the UL communications at the FCs are synchronized with those at

the MC [57]1, and consequently are mutually synchronized. It is worth mentioning,

that our statistical characterization is still valid under the assumption of asynchronous

FU/MU operation. However, intra-FC synchronization needs to be maintained. We

further assume that FUs residing in the same FC do not interfere with each other since

they are scheduled in different time slots (TSs). Moreover, we assume that a MU that lies

within the coverage area of a FC still communicates with the MBS, but it is scheduled

on a TS that is orthogonal to the rest of the TSs used by the active FUs belonging to that

FC. Hence, at any TS, there is at most one active user per FC. Although in our model, we

consider TDMA as the MAC scheme, our system could be mapped into a TH-CDMA

(Time-Hopping Code Division Multiple Access) system, where unlike [18], orthogonal

codes are used by the users inside the same FC. In our model, each CU can only be in

one of two states: On or Off; we use δi(t) to indicate CU i’s activity/state:

δi(t) =


1 if user i is active (On) at time t

0 if user i is inactive (Off) at time t

Also, we assume that all FUs and MUs have the same average activity rate, which is

1Once turned on and before initiating any communication, FCs get synchronized to the cellular core
network using an asymmetric communication link such as xDSL thanks to an enhanced version of IEEE
1588 [57].
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denoted by δ. According to our model, there is at most only one active FU (FUi) in

each femtocell FCi at a given time slot t. Hence, we are interested in the interference

caused by the neighboring active FUs and the neighboring active MUs at FAPi. Given

the users are located according to PPP, we model the interference’s spatial distribution as

follows: We consider that FAPi is located at the center of a disk of radius R representing

the area of FCi covered by FAPi. Since only FUi is active at time slot t inside FCi,

then the interference at FAPi is only caused by out-of-cell interference and it comes

from the active FUs located in the annulus Z1 (delimited by the radii R and R1) and

from the active MUs located in the annulus Z2 (delimited by the radii R and R2) as

shown in Fig. 5.1. R1 and R2 are chosen such that the interference due to FUs beyond

R1 (respectively MUs beyond R2) is negligible.

Figure 5.1: Graphical Network Pattern Model

Although in real world settings wireless signals emitted by cellular users are sub-
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ject to shadowing (slow fading), fast fading, and pathloss, we here assume that cellular

users are slowly-moving or fixed so that their transmitted signal degradation is mainly

dominated by shadowing (slow fading) and pathloss effects in compliance with ITU

specifications. In this chapter, we distinguish between three values of the pathloss ex-

ponent depending on the position of the cellular user (i.e. MU or FU). Let us denote α

the pathloss exponent and rj the distance between cellular user j and FAPi. We have:

α =


2 if rj < R

α1 if R ≤ rj < R1

α2 if rj ≥ R1

with α2 > α1 > 2. This propagation model has been widely used to model the trans-

mission in FC networks. We also adopt it in our work in order to gain some insights

on the physical characteristics of FCs and their impact at the data link layer. Unfortu-

nately, if we consider the combined action of shadowing and fast fading, the problem

becomes analytically intractable and difficult to come up with some insightful/useful

results. Therefore, we assume that the physical channel gain is represented by a com-

bination of path-loss and log-normal shadowing in compliance with the ITU specifica-

tion [2]. Hence, the amplitude of the signal received by FAPi placed at a distance rj

from FUj is:

Aji = Sjr
−α1
j Pj

where α1 denotes the path loss exponent associated with the interfering FUs in the zone

Z1, Pj the transmission power of FUj , and Sj the log-normal shadowing coefficient for
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the signal propagating from FUj to FAPi given as follows [74]:

Sj = 10−a(ξj/10)10−b(ξji/10) (5.2)

where a = b = 1√
2
, ξj and ξji are two independent realizations from a zero-mean normal

random variable (RV) with standard deviation σξf . ξj represents the propagation envi-

ronment local to FUj (the near field), while ξji deals with the propagation environment

of the path between FUj and FAPi (the far field). It is also important to mention that

for two different FUs j and m, ξji and ξmi are two independent identically distributed

RVs. Likewise, the amplitude of the signal received by FAPi placed at a distance rk

from MUk:

Aki = Skr
−α
k Pk

where α denotes the path loss exponent associated with the interfering MUs, Pk the

transmission power of MUk, and Sk the log-normal shadowing coefficient for the signal

propagating from MUk to FAPi given as follows:

Sk = 10−a(ξk/10)10−b(ξki/10) (5.3)

where ξk and ξki are two independent realizations from a zero-mean normal RVs with

standard deviation σξm > σξf . ξk represents the propagation environment local to MUk

(the near field), while ξki deals with the propagation environment of the path between

MUk and FAPi (the far field). Also in this case, for two different MUs, k and m, ξki

and ξmi are two independent identically distributed RVs.
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5.2.2 Fractional Power Control

UL power control is considered as one of the fundamental approaches that helps mitigate

the interference experienced by base stations in order to enhance the reliability and QoS

of wireless networks. In this chapter, we assume that both FUs and MUs implement

and use the recently proposed fractional power control approach [60], which is being

investigated by some wireless operators such as Motorola [78] and Siemens [14]. In our

work, we use the fractional power control scheme proposed in [60], tailored to the case

where the wireless propagation environment is rather dominated with log-normal shad-

owing. Recall that in our analysis we assume that the amplitude of the signal received

at FAPi located at a distance ri from its associated FUi is:

Aii = 10−a(ξi/10)10−b(ξii/10)r−2
i Pi (5.4)

Moreover, we assume that both ξi and ξii are constant during the coherence interval

(slow fading), and that its values could be obtained at FUi from its associated FAPi.

Based on this assumption, our fractional power control scheme is designed in order to

get rid of the near-field shadowing ξi and to reduce the impact of the far-field shadowing

ξii as follows:

Pi =
10a(ξi/10)10s1(ξii/10)Pfu

E [10a(ξi/10)10s1(ξii/10)]
(5.5)

In (5.5), s1 is an exponent chosen from the interval [0, 1] in order to compensate the

effect of the far-field channel propagation loss ξii, Pfu is the average FU transmission

power satisfying 0 < Pfu ≤ Pmax
f , with Pmax

f being the maximum transmission power
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allowed per FU. Moreover, observe that in the power control rule (5.5), we used the

normalizing factor E
[
10a(ξi/10)10s1(ξii/10)

]
so that on average we have E [Pi] = Pfu;

that is the average transmission power per FU does not exceed the maximum power

Pmax
f . We also assume that the same power control policy is used by the MUs. Hence,

the UL transmission power of MUk is:

Pk =
10a(ξk/10)10s2(ξk0/10)Pmu

E [10a(ξk/10)10s2(ξk0/10)]
(5.6)

where ξk represents the propagation environment local to MUk, ξk0 deals with the prop-

agation environment of the path between MUk and its MBS, and Pm is the average

MU transmission power satisfying 0 < Pmu ≤ Pmax
m , with Pmax

m > Pmax
f being the

maximum transmission power allowed per MU.

5.3 Interference Analysis

In this section, we derive a statistical characterization of the UL interference in FC

networks. We first derive its average and variance, and then derive its probability density

function (PDF). In our FC network, we assume a TDMA operation where only one FU

is active per FC per time slot. However, when the femto user FUi is communicating

with its associated FAPi at time slot t, its signal may be affected by the transmissions

of the neighboring active FUs and MUs. Hence the interference at FAPi at time slot t



92

can be expressed as:

I(t) =
∑
j∈ZF1

δj(t)r
−α1
j Sj(t)Pj(t) +

∑
k∈ZM2

δk(t)r
−α
k Sk(t)Pk(t) (5.7)

The interference expression consists of two sums: the first one is over the set of neigh-

boring active FUs, ZF1, confined in the region Z1, and the second one is over the set of

neighboring active MUs, ZM2, confined in the region Z2. Let Xj(t) = Sj(t)Pj(t),∀j ∈

ZF1 and Xk(t) = Sk(t)Pk(t), ∀k ∈ ZM2.

Xj(t) = 10(−aξj(t)−bξji(t)/10)

(
10(aξj(t)+s1ξjj(t)/10)Pfu

E
[
10(aξj(t)+s1ξjj(t)/10)

]) .

=
10((s1ξjj(t)−bξji(t))/10)Pfu

E
[
10((aξj(t)+s1ξjj(t))/10)

] (5.8)

with ξjj , ξji, are i.i.d (independent identically distributed) whose distribution is a Gaus-

sian with zero mean and standard deviation σξf = 4dB for all j ∈ ZF1. Hence, Xj(t)s

are i.i.d log-normal RVs with mean µ1 and variance σ2
1 for all j ∈ ZF1. Using some

basic operations on independent normal variables as well as relationship between the

statistics of a log-normal RV and its associated normal variable we can easily show that:

µ1 =
E
[
10((s1ξjj(t)−bξji(t))/10)

]
Pfu

E
[
10((aξj(t)+s1ξjj(t))/10)

] = Pfu (5.9)

σ2
1 =

P 2
fuV

[
10((s1ξjj(t)−bξji(t))/10)

](
E
[
10((aξj(t)+s1ξjj(t))/10)

])2 .
σ2
1 =

(
exp

(
(s21 + b2)

(
ln (10)

10
σξf

)2
)
− 1

)
P 2
fu (5.10)
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Likewise, as far as the MUs are concerned, we have:

Xk(t) = 10(−aξk(t)−bξki(t)/10)

(
10(aξk(t)+s2ξk0(t)/10)Pmu

E [10(aξk(t)+s2ξk0(t)/10)]

)
=

10(−bξki(t)+s2ξk0(t)/10)Pmu

E [10(aξk(t)+s2ξk0(t)/10)]
(5.11)

with ξk0, ξki, are i.i.d RVs distributed according to a zero-mean Gaussian with standard

deviation σξm for all k ∈ ZM2. Hence, Xk(t)s are i.i.d log-normal RVs with mean µ2

and variance σ2
2 for all k ∈ ZM2.

µ2 =
E
[
10((s2ξk0(t)−bξki(t))/10)

]
Pmu

E [10((aξk(t)+s2ξk0(t))/10)]
= Pmu (5.12)

σ2
2 =

P 2
muV

[
10((s2ξk0(t)−bξki(t))/10)

]
(E [10((aξk(t)+s1ξk0(t))/10)])

2 .

σ2
2 =

(
exp

(
(s22 + b2)

(
ln (10)

10
σξm

)2
)
− 1

)
P 2
mu (5.13)

Thus, we have shown that the interference I(t) experienced at FAPi is the sum of

the independent log-normal RVs related to the FU interferers and the MU interferers:

Xj(t), j ∈ ZF1 with mean µ1 and variance σ2
1 and Xk(t), k ∈ ZM2 with mean µ2 and

variance σ2
2 respectively. In the rest of the chapter, we will use the interference expres-

sion given by (5.14) to carry out our statistical analysis.

I(t) =
∑
j∈ZF1

δj(t)r
−α1
j Xj(t) +

∑
k∈ZM2

δk(t)r
−α
k Xk(t) (5.14)
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For ease of derivation, we use the following notation: I(t) = I1(t)+ I2(t), with I1(t) =∑
j∈ZF1

δj(t)r
−α1
j Xj(t) and I2(t) =

∑
k∈ZM2

δk(t)r
−α
k Xk(t).

Theorem 3. The average µI and the variance σ2
I of the interference at FAPi can be

expressed as

σ2
I =

πδ(λ1(σ
2
1 + µ2

1) + λ2(σ
2
2 + µ2

2))

α1 − 1

(
1

R2(α1−1)
− 1

R
2(α1−1)
1

)

+
πδλ2(σ

2
2 + µ2

2)

α2 − 1

(
1

R
2(α2−1)
1

− 1

R
2(α2−1)
2

)
(5.15)

µI =
2πδ(λ1µ1 + λ2µ2)

α1 − 2

(
1

Rα1−2
− 1

Rα1−2
1

)
+

2πλ2

α2 − 2
δµ2

(
1

Rα2−2
1

− 1

Rα2−2
2

)
(5.16)

Proof. The proof of this theorem uses the law of total expectation, the law of total vari-

ance and Campbell’s theorem for PPP [69]. We have µI , E [I(t)] = E [I1(t)] +

E [I2(t)]. Moreover the two sums I1(t) and I2(t) are independent since the two PPPs

ϕ1 and ϕ2 are independent, the activity of MUs and FUs are independent, and the shad-

owing factors of the different interfering users are also mutually independent. Hence,

σ2
I , V [I(t)] = V [I1(t)] + V [I2(t)]. In the rest of this proof, we will only present the

derivation of E [I1(t)] and V [I1(t)] (the derivation of E [I2(t)] and V [I2(t)] uses exactly

the same techniques). Using the law of total expectation,

E [I1(t)] = Er [Eδ [EX [I1(t)|r, δ]]] = Er

[
µ1δ

∑
j∈ZF1

r−α1
j

]
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By applying Campbell’s Theorem, we get:

E [I1(t)] =

∫ R1

R

µ1δ

rα1
2πλ1r dr =

2πλ1µ1δ

α1 − 2

(
1

Rα1−2
− 1

Rα1−2
1

)

On the other hand, using the law of total variance we have V [I1(t)] = E [V [I1(t)|r, δ]]+

V [E [I1(t)|r, δ]] with:

E [V [I1(t)|r, δ]] = σ2
1δE

[ ∑
j∈ZF1

(r−α1
j )2

]

V [E [I1(t)|r, δ]] = V

[
µ1

∑
j∈ZF1

δj(t)r
−α1
j

]

= µ2
1(δ − δ

2
)E

[ ∑
j∈ZF1

(r−α1
j )2

]

+ µ2
1δ

2

E

[
(
∑
j∈ZF1

r−α1
j )2

]
− E

[ ∑
j∈ZF1

r−α1
j

]2
On the other hand, we have:

E

(∑
j∈ZF1

r−α1
j

)2
 = E

[ ∑
j∈ZF1

(r−α1
j )2

]
+ E

[ ∑
i̸=j∈ZF1

1

rα1
i rα1

j

]

= E

[ ∑
j∈ZF1

(r−α1
j )2

]
+

∫ ∫
ZF1

r−α1
1 r−α1

2 ϕ1(dr1)ϕ1(dr2)

= E

[ ∑
j∈ZF1

(r−α1
j )2

]
+ E

[ ∑
j∈ZF1

r−α1
j

]2
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Hence, V [E [I1(t)|r, δ]] = µ2
1δE

[∑
j∈ZF1

(r−α1
j )2

]
. Thus:

V [I1(t)] = δ(σ2
1 + µ2

1)E

[ ∑
j∈ZF1

(r−α1
j )2

]

= δ(σ2
1 + µ2

1)
πλ1

α1 − 1

(
1

R2(α1−1)
− 1

R
2(α1−1)
1

)

Knowing the statistics of the UL interference is very useful especially to the design

of FC networks and to the improvement of its PHY layer performance. For instance,

it could be used to optimize the fractional power control exponent s1 used by the FUs

so that the average UL interference experienced at the FAP and/or its variance is min-

imized. On the other hand, deriving the interference’s PDF can be very useful, too.

It can be used, for example, in non-cooperative systems whose operations rely on the

estimation of the interference [16]. Observe that the expression of the interference at

FAPi is nothing but the sum of independent log-normal RVs. Hence, using the Fenton-

Wilkinson approximation [30] about the distribution of the sum of log-normal RVs, it

follows that:

Corollary 2. At any time slot t, I(t) is a log-normal random variable whose PDF is

fI(x) =
1√

2πxσeq

exp

(
−(lnx− µeq)

2

2σ2
eq

)
(5.17)

where µeq = ln

(
µ2
I√

σ2
I+µ2

I

)
and σ2

eq = ln
(

σ2
I+µ2

I

µ2
I

)
.
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Proof. Providing an accurate PDF of the UL interference I(t) is mathematically in-

tractable since it is expressed as the sum of log-normally distributed RVs and the number

of summands follows a Poisson distribution. Therefore, we approximated it using the

following approach. We have divided the problem of finding the PDF of I(t) into two

sub-problems:(i) Determining the nature of the probability distribution that statistically

characterizes the aggregate interference at FAPi (normal, lognormal, etc.) (ii) Charac-

terizing the shape of this distribution via its associated mean and variance. In order to

answer part(i), we have used the Fenton-Wilkinson approach which states that the sum

of a finite number of independent log-normal distributions is a log-normal distribution.

This approach is actually more accurate than the central limit theorem since it applies

independently of the number of RVs in the sum (whether it is high or low), moreover it

is more specific since it only applies to the log-normal distribution type of PDF. Part (ii)

has already been computed in Theorem 1, in which we have taken into account that the

interferer locations are described by homogeneous PPPs.

5.4 Signal to Interference Ratio and Outage Probability

In this section, we first derive some statistical characteristics of the UL signal to inter-

ference ratio (SIR) that allowed us characterize the link outage probability. Then, we

study the temporal auto-correlation of the SIR for the case of stationary CUs, as well as

for the case of slowly-moving CUs using the uniform mobility model.
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5.4.1 Statistical Characterization

Taking into account the wireless propagation model and the fractional power control

described in Section 5.2, the signal transmitted by FUi to its FAPi placed at a distance

ri is:

Aii(t) =
10((s1−b)ξii(t)/10)Pfur

−2
i

E [10a(ξi/10)10s1(ξii/10)]
(5.18)

Hence, the SIR of FUi transmitting at time slot t to its associated FAPi can be

written as:

γ(t) =
10((s1−b)ξii(t)/10)Pfur

−2
i

E [10a(ξi/10)10s1(ξii/10)] I(t)
(5.19)

We notice from (5.19) that the SIR γ(t) is equal to the ratio of two independent log-

normal random variables. Hence, we conclude that γ(t) is log-normally distributed as

shown in Theorem 3 and its proof.

Theorem 4. At any time slot t, the SIR γ(t) corresponding to the transmission of FUi

in FCi to FAPi is a log-normal random variable whose PDF is

fγ(u) =
1√

2πuσs−eq

exp

(
−(lnu− µs−eq)

2

2σ2
s−eq

)
(5.20)

where µs−eq = ln

(
µ2
s√

σ2
s+µ2

s

)
and σ2

s−eq = ln
(

σ2
s+µ2

s

µ2
s

)
.
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And µs and σs are the average and variance of the SIR:

µs = Pfu(r)
−2e−µeq+

σ2
eq
2 (5.21)

σ2
s =

P 2
fu

r4

(
e
(s21+b2)

(
ln(10)
10

σζf

)2
+σ2

eq − 1

)
eσ

2
eq−2µeq (5.22)

And r is the average distance between FUi and its FAPi

r =
1

2
√
2πλFAP

(5.23)

Proof. For analytical tractability, in this proof, we will replace ri the distance separating

FAPi from FUi in the SIR expression (5.19) by r defined as the average distance be-

tween a FU and its associated FAP. It has been shown that the distance between a point

u and the nearest point from a point process X with intensity λ is Rayleigh-distributed

with mean m = 1
2
√
2πλ

[69]. By applying this to our network settings, we get the average

distance between a FUi and its associated FAPi, which happens to be the nearest one

among its neighboring FAPs, is r = 1
2
√
2πλFAP

.

Let Y = 10((s1−b)ξii(t)/10) = e(s1−b)ξii(t) ln(10)/10 = eZ , Z ∼ N
(
0, (s21 + b2)

(
ln(10)
10

σf

)2)
.

Moreover, from the analysis made in the previous section, the interference I(t) experi-

enced at FAPi is log-normally distributed. That is I(t) = eX , with X ∼ N (µeq, σ
2
eq).

Hence, we can write:

γ(t) =
Pfu(r)

−2eZ−X

E [10a(ξi/10)10s1(ξii/10)]

with Z and X being two independent normal variables. The independence property

of these two variables can be easily deduced from the fact that the random variables
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ξii, ξjj , ξji, ξkk and ξk0 are mutually independent ∀j ∈ ZF1, j ̸= i and ∀k ∈ ZM2.

Hence, (Y − Z) ∼ N
(
−µeq,

(
(s21 + b2)

(
ln(10)
10

σf

)2
+ σ2

eq

))
. Consequently, γ(t) is

log-normally distributed, with mean

µs , E [γ(t)] = Pfu(r)
−2e−µeq+

σ2
eq
2

and variance

σ2
s , V [γ(t)] =

P 2
fu

r4

(
e
(s21+b2)

(
ln(10)
10

σζf

)2
+σ2

eq − 1

)
eσ

2
eq−2µeq

In addition, we assume that the transmission from FUi to FAPi fails if its SIR (γ)

is below a certain defined threshold γth. This is the case if the interference at FAPi is

high enough compared to the amplitude of the signal transmitted by FUi, so that this

FAP cannot detect it.

Corollary 3. The outage probability Po , P(γ < γth) of FUi’s transmission to FAPi

is:

Po =
1

2
erfc

− ln(γth)− µs−eq√
2σ2

s−eq

 (5.24)

5.4.2 The Temporal Auto-Correlation of the SIR

In many link outage analysis works, the realizations of the SIR are assumed indepen-

dent across time. However, this is not always the case, especially when the interferers
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positions are correlated across time. In our analysis, we assume that the nodes are fixed

(stationary) or are (at most) moving slowly. Therefore, in the following we derive the

temporal autocorrelation of the UL SIR γ corresponding to the transmission of FUi

to FAPi at two different TSs t1 and t2 chosen from a given coherence interval during

which the channel propagation gain as well as the transmission power used by FUi re-

main essentially constant (i.e. maintained at the same level), so that the signal received

at FAPi from FUi could be approximated by a constant Ki. In this autocorrelation

analysis we distinguish between two cases:

Case(1)—Mobile interferers: We consider that the interferers, the MUs and the FUs, are

moving with constant speeds v1 and v2 respectively, and their displacement direction is

described by an angle θ uniformly distributed in [0, 2π].

Case(2)—Stationary interferers: We consider v1 = v2 = 0.

Theorem 5. The temporal autocorrelation of the SIR (γ) corresponding to the trans-

mission of FUi to FAPi at the time slots t1 and t2 (t1 < t2) is:

Under case(1)—Mobile interferers:

Rγ(τ) =
K2

i E
[

1

δ
2
(β1Xj+β2Xk)(β3Xj+β4Xk)

]
− µ2

s

σ2
s

(5.25)

where τ = t2 − t1, Xj and Xk denote the log-normal shadowing coefficients related to

the FUs and MUs respectively (as defined in (5.14)), and

β1 =
2πλ1

α1 − 2

(
1

Rα1−2
− 1

Rα1−2
1

)
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β2 =
2πλ2

α1 − 2

(
1

Rα1−2
− 1

Rα1−2
1

)
+

2πλ2

α2 − 2

(
1

Rα2−2
1

− 1

Rα2−2
2

)

β3 =

∫ R1

R

∫ 2π

0

λ1r

(r2 + (v1τ)2 + 2v1τr cos(θ))
α1
2

dr dθ

β4 =

∫ R2

R

∫ 2π

0

λ2r

(r2 + (v2τ)2 + 2v2τr cos(θ))
α
2

dr dθ

Under case(2)—Stationary interferers:

β1 = β3 and β2 = β4, thus:

Rγ(τ) =
K2

i E
[

1

δ
2
(β1Xj+β2Xk)2

]
− µ2

s

σ2
s

(5.26)

Proof. Given that the SIR realizations are identically distributed but not independent

(i.e. correlated) across time, the temporal autocorrelation of the SIR at the time slots t1

and t2 (t1 < t2) is:

Rγ(τ) =
E [γ(t1)γ(t2)]− µ2

s

σ2
s

where

E [γ(t1)γ(t2)] = K2
i E
[

1

I(t2)I(t1)

]
= K2

i E
[∫ +∞

0

∫ +∞

0

e−(xI(t1)+yI(t2)) dx dy

]
= K2

i

∫ +∞

0

∫ +∞

0

E
[
e−(xI(t1)+yI(t2))

]
dx dy

By further decomposing the interference into two interference terms induced by the
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neighboring FUs and MUs as in (5.14), it follows that

E[γ(t1)γ(t2)] = K2
i

(∫ +∞

0

∫ +∞

0

E
[
e−(xI1(t1)+yI1(t2))

]
E
[
e−(xI2(t1)+yI2(t2))

]
dx dy

)
(5.27)

When considering mobile interferers, we have

rj(t2) =
√
rj(t1)2 + (v1τ)2 + 2v1τrj(t1) cos(θ) ∀j ∈ ZF1 (5.28)

rk(t2) =
√

rk(t1)2 + (v2τ)2 + 2v2τrk(t1) cos(θ) ∀k ∈ ZM2 (5.29)

On the other hand for any point process ϕ, its Laplace functional is defined as

Lϕ(f) , E
[
e−

∫
Z f(x)ϕ(dx)

]
= E

[
e−

∑
x∈Z f(x)

]
(5.30)

Using (5.28) and (5.29), and applying (5.30) yield

E
[
e−(xI1(s)+yI1(t))

]
= e−δXj(β1x+β3y)

where

β1 =

∫ R1

R

r−α12πλ1r dr =
2πλ1

α1 − 2

(
1

Rα1−2
− 1

Rα1−2
1

)

β3 =

∫ R1

R

∫ 2π

0

λ1r

(r2 + (v1τ)2 + 2v1τr cos(θ))
α1
2

dr dθ
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Likewise,

E
[
e−(xI2(t1)+yI2(t2))

]
= e−δXk(β2x+β4y)

where

β2 =

∫ R2

R

r−α2πλ2r dr

=
2πλ2

α1 − 2

(
1

Rα1−2
− 1

Rα1−2
1

)
+

2πλ2

α2 − 2

(
1

Rα2−2
1

− 1

Rα2−2
2

)

β4 =

∫ R2

R

∫ 2π

0

λ2r

(r2 + (v2τ)2 + 2v2τr cos(θ))
α
2

dr dθ

Hence, it follows that

E [γ(t1)γ(t2)] = K2
i E
[(∫ +∞

0

∫ +∞

0

e−δXj(β1x+β3y)e−δXk(β2x+β4y) dx dy

)]
= K2

i E

[
1

δ
2
(β1Xj + β2Xk)(β3Xj + β4Xk)

]

The characterization of the temporal auto-correlation of the SIR in FCs is important.

In fact, it helps characterize the correlation of transmission failures over time. Thus, it

provides useful information for the design of retransmission strategies, or power control

schemes for efficient reliable FC networks.
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5.5 System Capacity and Delay Performance

In this section, we characterize the asymptotic capacity (i.e. steady state capacity) of

a FC network. We determine the delay characteristics for CBR (constant bit rate) traf-

fic in FC networks, and derive an upper bound on the achievable asymptotic FC ser-

vice/throughput while taking into account the interference analysis done in the previous

sections. First, by assimilating a FC to a D/G/1 queuing system, we characterize the

average delay per FU. Then, we derive the probability that it exceeds a certain delay

threshold. We further explain the derived delay result through an example of CBR, de-

lay constrained type of traffic: Voice over IP (VoIP). Finally, we study the asymptotic

achievable throughput in FC networks.

5.5.1 Delay Characterization

Since time is fairly shared among the FUs in the same FC, and the interferers are as-

sumed to be spatially distributed according to a homogeneous PPP, then we can safely

assume that the average packet delay experienced by any active FU in a given FC is

the same. Therefore, to characterize the delay performance of a FC, it suffices to char-

acterize it for one of its active FUs. Moreover, from any active FAP’s viewpoint, the

spatial and temporal distribution of the interferers have the same statistical characteriza-

tion. Therefore, the statistical delay characterization that we provide hereafter for FCi

applies for any active FC deployed inside our MC.

In this section, we characterize the per packet average delay at FUi. Recall that in

our system we assume that the FCs use TDMA as a channel access technique. That
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is, we assume that time is slotted and at every time slot only one FU is active per FC.

Moreover, we assume that each active FU generates ν packets of voice traffic in its

assigned time slot. Hence, given that FCi contains multiple active FUs (nf active FUs),

FAPi experiences an arrival of traffic with a constant data rate equal to ν packets per

time slot. Hence, FCi could be assimilated to a D/G/1 queuing system with a constant

packet arrival rate equal to ν packets per time slot, served by a wireless channel with a

per-packet average service time χ = E [χ], where χ is a random variable representing

the packet service time. Our aim is to derive the packet’s average waiting time (W ) in

the queue of FUi as well as its average service time χ, in order to deduce the per-packet

average total delay (D = W+χ) at FUi. In our analysis, we further assume that FCs are

heavily loaded. That is, the active FUs always have traffic to send in their assigned time

slots. Hence, using Kingman’s heavy traffic approximation, the steady state average

queuing delay in our system is:

W =
ν(χ2 − (χ)2)

2(1− νχ)
(5.31)

In fact, Kingman’s heavy traffic approximation [12] states that for a heavy loaded G/G/1

system with an average packet arrival rate ν and average service time χ, the average

waiting time is W = ν(σ2
a+σ2

s)
2(1−νχ)

, with σ2
a being the variance of the packet inter-arrival

times, and σ2
s the variance of their service times. Note that in our case the D/G/1 system

is a particular case of the G/G/1 system with the difference that the packet inter-arrival

times are deterministic in our case, that is σ2
a = 0, leading then to Eq. (5.31). Now, all

what remains to approximate D is to derive the first and second order moments of the
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service time χ and χ2. In our system, we define the average packet service time (χ) as

the average delay between the instant it is initially transmitted by FUi and the instant

of its successful reception at FAPi. Moreover, we assume that a transmission attempt

failure is solely due to excessive interference; i.e., due to high transmission powers of

neighboring interferers causing γ < γth. Hence:

χ ,
+∞∑
k=0

T (k)P(success|k)

=
+∞∑
k=0

T (k)(1− Po(tk+1))
k∏

j=1

P(γ(tj) < γth)

=
+∞∑
k=0

T (k)(1− Po)P
k
o

where T (k) denotes the delay corresponding to k retransmissions, tj corresponds to the

time slot of the jth transmission attempt of the packet, and the expression of the outage

probability Po is given by Eq. (5.24). In the above derivation, we assumed that γ(t) (for

any time slot t) are i.i.d. Hence, basic order statistics (with some algebraic manipulation)

yield the last line of the above derivation. Given our system settings, it is easy to show

that the average delay of k retransmissions is T (k) = (1 + nfk). Plugging this value in

the last line of the above derivation, we get two sums that, using some known results in

geometric series, lead to the following expression

χ = 1 +
nfPo

1− Po

(5.32)
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On the other hand, the second moment of the service time can be written as

χ2 ,
+∞∑
k=0

(T (k))2(1− Po)P
k
o

Using the same calculus techniques for the derivation of Eq. (5.32), we can write

χ2 = 1 +
2nfPo

1− Po

+
n2
f (Po + P 2

o )

(1− Po)2
(5.33)

Thus, we conclude the following result:

Theorem 6. The average packet delay in a TDMA heavy-loaded FC system in which

FUs are scheduled in a round-robbin fashion is:

D = 1 +
nfPo

1− Po

+
ν(χ2 − (χ)2)

2(1− νχ)
(5.34)

where χ is given by Eq. (5.32) and χ2 is given by Eq. (5.33).

Now that we have derived the per-packet average delay, we further assume that our

system is delay sensitive and has a delay constraint expressed as

P(D > Dmax) < ϵ (5.35)

where Dmax is the maximum allowed per packet delay, and ϵ is a design parameter that

will be explained later in this section through an example. It has been shown in [76] that

given a system with a constant data arrival rate ν and a variable channel capacity C(t),
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the probability of D(t) exceeding a delay bound Dmax satisfies:

sup
t

P(D(t) > Dmax) ≈ f(ν)e−g(ν)Dmax

where D(t) denotes the delay experienced by the packet generated at time t, and f(ν), g(ν)

are two functions of the source data rate ν. Note that this implicitly assumes that the

tth packet delay D(t) is exponentially distributed. Hence, we can easily show that

f(ν)
g(ν)

= E [D(t)] and f(ν) = P(D(t) > 0). In our system, we are making discrete

time analysis (time is slotted) where the delay is expressed in terms of number of time

slots. Therefore, we will use the geometric distribution (with parameter p = 1 − Po)

as a discrete approximation of the exponential distribution to derive f(ν). This approx-

imation is legitimate when the time slot duration is small enough, which is the case in

cellular networks in general where a time slot is approximately equal to 1 to 2 millisec-

onds. Thus, knowing that by definition D(t) ≥ 0, we have:

f(ν) , P(D(t) > 0) = 1− P(D(t) = 0)

= 1− p = Po

and consequently

g(ν) , f(ν)

E [D(t)]
=

Po

D

Theorem 7. For CBR traffic, the probability of the packet delay exceeding a threshold
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Dmax in FC networks satisfies

sup
t

P(D(t) > Dmax) ≈ Poe
−Po

Dmax
D (5.36)

This result can be useful for many applications, such as call admission control, cross-

layer QoS-aware network design, etc.

Illustrative example: Consider a FC network whose FUs are scheduled in a TDMA

fashion, and where each FU sends ν voice packets at its assigned slot. We know that

in order to have an acceptable QoS for voice, the per-packet delay should not exceed

Dmax = 400ms, and the packet loss rate should not exceed about 3% [54]. Therefore,

if a packet delay exceeds Dmax, it is considered lost. The maximum allowed packet loss

rate is nothing but the parameter ϵ introduced in Eq. (5.35). From Eq. (5.36), it then

follows that the delay constraint is

Poe
−Po

Dmax
D ≤ ϵ (5.37)

Using the expression of D given in (Eq. 5.34) and solving (Eq. 5.37) for Po yield the

maximum allowed physical outage probability tolerated per FU in order to satisfy (5.37).

5.5.2 Asymptotic Capacity

The instantaneous channel capacity (at time slot j) is defined via the Shannon for-

mula as C(j) = b log(1 + γ(j)), where b denotes the channel bandwidth. Hence,

for FC networks, the service provided to FUi by the wireless channel is defined as
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S(t) ,
∑t

j=1C(j). Inspired by the effective bandwidth, Wu and Negi proposed the

effective capacity theory [76], which is the dual of the original effective bandwidth the-

ory [20]. The effective capacity is defined as the maximum constant arrival rate that

a given service process can support in order to guarantee a QoS requirement specified

by the QoS exponent g(ν). In our case, the effective capacity is nothing but the maxi-

mal achievable throughput under the maximum delay constraint, specified by the QoS

exponent g(ν) = Po

D
.

Analytically, the effective capacity can be formally defined as follows. Let the se-

quence C(j); j = 1, 2, ... (C(j) is the channel capacity at time slot j) denote a discrete

time stationary and ergodic stochastic service process and S(t) ,
∑t

j=1C(j) be the

partial sum of the service process. Assume that the Gärtner − Ellis limit of S(t),

expressed as

Λc(u) = lim
t→+∞

1

t
log
(
E
[
euS(t)

])
exists and is a convex function differentiable for all real u. Then the effective capacity

of the service process, denoted by Ec(u), where u > 0, is defined as [76]:

Ec(u) , −
Λc(−u)

u
= − lim

t→+∞

1

ut
log
(
E
[
e−uS(t)

])
(5.38)

Based on our physical-layer framework developed in Section 5.4, we now derive an

upper bound on the network effective capacity, which is stated in the following theorem.

Theorem 8. In the high-SIR regime, the effective capacity of a FC network is upper

bounded as follows:

Ec(u) < E [log(γ)] (5.39)
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Proof. Case 1: Assuming i.i.d. SIR realizations across time: At the high-SIR regime,

for any time slot j, we have log(1 + γ(j)) ∼ log(γ(j)), with log(γ(j)) is normally

distributed with parameters: µ , E [log(γ(j))] = µs−eq and σ2 , V [log(γ(j))] =

σ2
s−eq. Let Yj = log(γ(j)) where the index j refers to the jth time slot. Hence, Yj ∼

N (µ, σ). Since the random variables Yj; j = 1, 2, ... are assumed i.i.d., the sum Y =∑N
j=1 Yj is normally distributed with mean µY = Nµ and variance σ2

Y = Nσ2. It

follows that E
[
e−uS(t)

]
= limN→+∞ E

[
e−u

∑N
j=1 (

t
N
) log(1+γ(j))

]
, with:

E
[
e−u

∑N
j=1 (

t
N
) log(1+γ(j))

]
≈ E

[
e−u

∑N
j=1 (

t
N
)Yj

]
≤ E

[
e−u( t

N
)Y
]

≤ MY

(
−u t

N

)
= e−(tuµ)+ 1

2
( t

2

N
u2σ2)

Here, MY denotes the moment generating function of the random variable Y =
∑N

j=1 log(γ(j)).

Calculating the limit of the obtained result as N the number of time slots/samples goes

to infinity yields

E
[
e−uS(t)

]
≤ e−(tuµ) (5.40)

Thus, the asymptotic network capacity, assuming time independent SIR realizations,

is upper bounded as follows:

Ec(u) , − lim
t→+∞

1

ut
log
(
E
[
e−uS(t)

])
≤ µ (5.41)

Case 2: Assuming dependent but identically distributed SIR realizations across time:

Note that in the case of identically-distributed but time-correlated realizations of the
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SIR, under the high-SIR regime, we can proceed the same way as in case 1 discussed

above to characterize the asymptotic capacity of FC networks, with the only difference

is the fact that Y =
∑N

j=1 Yj is no longer normally distributed (but we still have Yj ∼

N (µ, σ)∀j = 1..N ). Hence,

E
[
e−u

∑N
j=1 (

t
N
)yj
]
≤
∫

e−u
∑N

j=1 (
t
N
)yjfY(y) dy (5.42)

where fY(y) is the multivariate normal joint distribution function of the RVs (Yj; j = 1, 2, .., N )

defined as:

fY(y) = (2Π)−
N
2 |Ry|−

1
2 exp

(
−1

2
(yT − µT)R−1

y (y − µ)

)

where Ry denotes their covariance matrix. Thus, all we need is to find an ”adequately”

chosen upper bound for the integral in (5.42), in order to obtain a finite upper bound of

the asymptotic network capacity. Below, we present our approach to bound this quantity.

Let us define the random vector z = y − µ. Substituting this random variable in the

right hand side (RHS) of the integral of (5.42) yields

∫
e−u

∑N
j=1 (

t
N
)yjfY(y) dy = (2Π)−

N
2 |Ry|−

1
2 e−Nu t

N
µ

(∫
e−u

∑N
j=1 (

t
N
)zje−

1
2
zTR−1

y z|J| dz
)

(5.43)

where |J| is the determinant of the Jacobian matrix (defined by: Jmn = ∂ym
∂zn

). Note

that in this case, J is the identity matrix (therefore, |J| = 1). Moreover, we assume that

at the high SIR-regime, Yj > E [Yj], for any time slot j, and hence, Zj > 0; ∀j, implying
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that ∀u > 0, e−u
∑N

j=1 (
t
N
)zj < 1. Injecting this inequality in (25) yields

E
[
e−u

∑N
j=1 (

t
N
)Yj

]
≤ e−Nu t

N
µ(2Π)−

n
2 |Ry|−

1
2

∫
e−

1
2
zTR−1

y z dz (5.44)

Moreover, we know that given K a symmetric positive definite matrix, the multidi-

mensional Gaussian integral satisfies:

∫
exp

(
−1

2
xTK−1x

)
dx = (2Π)

N
2 |K|

1
2 (5.45)

Since Yj, j = 1, 2, .., N are identically distributed, the covariance matrix Ry is sym-

metric positive-definite. Hence, the integral obtained in the RHS of (5.44) is nothing but

the multidimensional Gaussian integral. Thus, by using the result in (5.45) and applying

it to the RHS of (5.44), we get the same upper bound as in (5.40): E
[
e−u

∑N
j=1 (

t
N
)Yj

]
≤

e−Nu t
N
µ. Then, by taking the limit as N → +∞, we get the same upper bound as in the

time uncorrelated case: E
[
e−uS(t)

]
≤ e−(tuµ). Thus, for this case, we also have:

Ec(u) , − lim
t→+∞

1

ut
log
(
E
[
e−uS(t)

])
≤ µ

As far as the low-SIR regime is concerned, for any time slot j, log(1 + γ(j)) ∼

γ(j), with γ(j) log-normally distributed. Due to some computational complexity related

to log-normal distribution, and the non-existence of a moment generating function for

this type of distribution, we were not able to find an upper bound on the FC network

asymptotic capacity at the low-SIR regime.
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Table 5.1: Summary of Simulation Parameters
Maximum FU Power P f

max 0.125 Watt
Maximum MU Power Pm

max 1 Watt
Femto SINR Threshold γth 3.2. dB

FC Coverage Radius (R) 7 m
Interference Zone Z1 radius (R1) 50 m
Interference Zone Z2 radius (R2) 100 m

Indoor Pathloss Exponent 2
Pathloss Exponent α1 3
Pathloss Exponent α2 5

FU Shadowing Standard deviation σξf 3 db
MU Shadowing Standard deviation σξm 6 db

Average activity rate δ 1
3

FU Spatial density λ1 0.15
MU Spatial density λ2 0.02

Power Control exponents s1 and s2
1√
2

5.6 Numerical Results

Using the physical model discussed in Section 5.2, we apply Monte Carlo numerical

techniques to simulate the co-channel interference observed at the FAP for 106 samples.

At each sample instant, the locations of the active MU and FU interferers are generated

as a realization of their corresponding PPPs, and their shadowing coefficients as realiza-

tions of their related log-normal distributions. In our simulation, we use the same PHY

propagation parameters as in [25] and [2] and fix the PPP intensities, unless otherwise

stated. The main simulation parameters are summarized in Table 5.1.

In Fig. 5.2, we plot the theoretic outage probability derived in Eq. (5.24) and com-

pare it with that obtained via Monte Carlo simulations. Note that there is a slight mis-

match between the analytical curve and the simulated one since we derived the inter-
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Figure 5.2: The Physical Outage Probability
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ference PDF using an approximation rather than an exact derivation (due to analytical

intractability, as mentioned in Section 5.3). The log-plot of this outage probability (see

Fig. 5.3) shows that the analytical and the simulated outage probability coincide at high

SIR regime, but they do not at low SIR regime (under -5 dB) and the gap between these

two curves increases under -10 dB.
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Figure 5.4: The Outage Probability as a function of the FU and MU density

On the other hand, in Fig. 5.4 and Fig. 5.5, we illustrate the evolution of the outage

probability as a function of the FU density for different MC loads (i.e. load in MUs).

These figures show that the MU spatial density has a much higher impact on the out-

age probability than the FU spatial density. The curves in Fig. 5.5 are of a paramount

importance since they constrain the density and consequently the number of active FUs

that could be accepted in the underlying MC to meet a desired value of the outage prob-

ability. Hence, it would be useful for the design of admission control mechanisms. For
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instance, in order to maintain the outage probability at the FAP Po ≤ 0.1, the density

of active FUs in the MC should not exceed 0.03 for a MU density λ2 ≈ 0.001. Fi-

nally, using the theoretical delay derivation in Eq. (5.36), we plot the delay constraint

(P(D > Dmax)) for a CBR traffic with constant rate equal to 64kbps whose tolerated

packet loss rate is ϵ ≤ 0.1. Fig. 5.6 shows that the packet loss probability P(D > Dmax)

increases slightly as the number of active FUs per FC (nf ) increases. However, it in-

creases considerably as the physical outage probability Po increases. Thus, a two tier

FC/MC network with high density in FUs would have a low loss rate for CBR traffic

only if its outage probability is maintained at a low level. One way to achieve this goal

would be the design of interference-aware power control scheme.

5.7 Summary

In this chapter, we derived statistical characterizations of UL interference, SIR, and out-

age probability. Our analysis showed that UL interference and SIR in two-tier Poisson-

distributed FC networks can be represented by a log-normal distribution. We verified

this result using Monte-Carlo simulations. Moreover, we modeled and characterized

link delay, data loss rate, and effective throughput of CBR delay-constrained traffic in

two-tier FC networks. These derived results can be used to characterize many multime-

dia applications, such as interactive gaming, voice, and video applications. This work

opens up several issues for future research on resource management in FC networks,

including interference-aware fractional power control design, call admission control de-

sign, and the extension of the current results to multiple-tier heterogeneous networks.
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Chapter 6: Conclusion

This chapter summarizes the main results and contributions of this dissertation and pro-

poses some future research work directions.

6.1 Contributions Revisited

This dissertation makes four important contributions to the body of knowledge on re-

source allocation study and design for next generation wireless networks. In our work,

we considered two types of architectures: next generation wireless backbone networks,

namely wireless mesh networks (WMNs), and next generation wireless access networks,

namely femtocells (FCs). Our contributions can be summarized in the following points:

• First, we design a new scheduling scheme for multi-radio multi-channel (MR-

MC) WMNs. We provide two types of formulations: The first one is based on

a graphical representation of the network topology as well as of the interfer-

ence relationships, while the second one is based on a physical description of

the system that takes into account channel fading. Our scheme improves the net-

work throughput and the session satisfaction ratios by (i) eliminating interference

among active links, (ii) taking into account the spatial traffic distribution during

the channel assignment process, (iii) allowing the use of multiple channels per

link, and (iv) privileging links with lower session satisfaction ratios.
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• Second, we direct our attention to the problem of FC capacity improvement via

adaptive power allocation to femto-users (FUs). To this end, we propose a new

distributed non-cooperative uplink (UL) power allocation scheme for FC networks

in which we try to fairly maximize the capacity of FUs while ensuring symbio-

sis between the FCs and the the underlying macrocell (MC), and inter-FCs. Our

scheme is completely distributed and does not require any type of coordination,

neither inter-tier (FC-MC) nor intra-tier (FC-FC) coordination. This property is

made possible thanks to the use of exponential weighted moving average predic-

tion technique. In fact, in our work, we propose an adaptive algorithm according

to which each time slot, each FU decides its transmission power value based on

the evolution of its signal to interference ratio (SIR), and the predicted value of

the interference at its femto access point (FAP).

• Third, we develop a new distributed QoS-aware UL power control scheme for

both FUs and macro-users (MUs), that aims at maintaining the minimum required

SIR for a maximum number of cellular users (CUs). In addition to the fact that our

scheme does not require any type of coordination, it is based on the use of ordi-

nary differential equations (ODEs) to solve the power allocation problem, which

is a new contribution in itself. In fact, in this work we adopt a reverse engineering

approach: We first start by formulating the QoS constraint for the CUs, expressed

in terms of a minimum SIR requirement that needs to be maintained. The differ-

entiation of this system of constraints, yields a system of ODEs that describes the

CUs’ transmission power dynamics. On the other hand, we provide a theoretical

analysis of our proposed scheme. Our analysis shows that our proposed set of
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ODEs admits a unique solution. We also derive sufficient conditions for the sta-

bility of the solution at the equilibrium point. Analytical and simulation results

encourage the implementation and potentially adoption of our scheme in existing

deployed FC/MC systems.

• Finally, we derive a statistical characterization of the UL physical interference,

SIR and outage probability in FC networks, and verify them using Monte-Carlo

simulations. Then, we study the impact of these parameters on data link level

performance metrics, namely the packet delay, data loss rate and the maximum

achievable FU throughput for constant bit rate (CBR) type of traffic. In fact, in

our work we provide a novel system modeling that allowed us to link the data-link

layer performance metrics to those of the physical (PHY)-layer and characterize

their interactions. Our analysis establishes key cross-layer relationships that can

be useful for designing efficient resource utilization techniques for FC networks,

such as interference-aware power control, QoS-aware call admission control, etc.

6.2 Future Work Directions

The performance enhancements achieved through this dissertation incite us to further

investigate this research area. Our thesis work opens up new research horizons and

directions.

For instance, a natural extension of our proposed work would be through the de-

sign of call admission control (CAC) mechanisms to help decide the acceptance of new

traffic/users arrival based on the service level agreement (SLA) established between the
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network and the users. The SLA basically defines the QoS that the FC network is com-

mitted to provide to the wireless users. CAC techniques perform better when jointly

designed with resource allocation schemes. Indeed, due to the mobility of the cellular

users, a FAP may need to predict the arrival of new FUs/MUs in order to optimize the

resource allocation schemes, so that it can accept as many users as possible.

On the other hand, these schemes could be extended to more general network set-

tings. In fact, we may consider more complicated scenarios, where we have multiple tier

networks (rather than just two-tier), sharing a common wireless spectrum. An exam-

ple of such scenario are the wireless networks operating over the unlicensed ISM band

such as WiMax, WiRan, WiFi, RF networks, and the emerging near-field communica-

tion (NFC) networks. Indeed, the number of wireless networks operating over the ISM

band is going crescendo with the emergence of new industrial, medical, scientific and

entertaining wireless networking-based applications. Hence, the resource management

in these types of networks is becoming more challenging than ever, and many issues

still need to be addressed such as spectrum management and power allocation that take

into account the dynamically changing heterogeneous wireless users spatial distribution.

Another, closely related issue that could benefit from such resource allocation schemes

is the design of CAC mechanisms to maintain the required QoS. The design of CAC

techniques is challenging since it has to be performed in a distributed fashion and needs

some ways to predict the introduction of new wireless users, their mobility pattern and

its impact on the provided QoS.

Moreover, according to Cisco, in 2015 global mobile data traffic will increase 26-

fold between 2010 and 2015. Mobile data traffic will grow at a compound annual growth
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rate (CAGR) of 92 percent from 2010 to 2015, reaching 6.3 million tera bytes (6.3 1018

bytes) per month by 20151. Hence, the design of data offloading schemes from one tier

to another would be of a paramount importance to alleviate such traffic burden from

one single network and rather share this load among co-located networks for better QoS

provisioning. Some results from the social networking paradigm may be used for this

sake. Moreover, the deployment of data offloading schemes in such networks may lead

to the derivation of new queuing models that would help characterize the capacity and

QoS offered by such networks. In addition to traffic balancing, which helps preserve

the network resources in order to have greater capacity in terms of number of accepted

users, there is the problem of distributed service management to improve the mobile

user’s quality of experience (QoE) [6]. This problem is very challenging nowadays due

to the proliferation of mobile multimedia applications, ranging from watching live TV

via real-time streaming, online gaming, visio-conference, etc. In fact, the QoS/QoE

related to these apps is highly degraded with mobility. In addition, this offered QoE

gets even worse due to the increasing number of wireless mobile users which is made

possible thanks to the widespread of new multimedia-capable hand-held mobile devices

such as smartphones and PCs.

1Source: Cisco Visual Networking Index Global IP Traffic Forecast, 2010-2015
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