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MONITORING AND DIAGNOSIS OF A
MULTI-STAGE MANUFACTURING PROCESS

USING BAYESIAN NETWORKS

1 INTRODUCTION

Hewlett Packard in Corvallis, Oregon manufactures several precision products on

high speed, automated assembly lines. An essential process in the production of one of

these products is the alignment of a cap to the base part. This process is performed in

several automated stages with significant part queuing between stages. Performance of

this process is dually important. First, the quality of the product depends on the

positional accuracy of the cap. Second, minimization of the production line, including

the yield loss of the alignment process, presents a significant opportunity to reduce

manufacturing costs.

In order to improve performance of the alignment process a prototype of a real

time monitoring and diagnosis system was developed. The purpose of this system is to

expeditiously identify component failures. The potential advantages of this system

include yield improvement, improved product quality, data reduction for process

operators, and reduced labor requirements.

The system designed for monitoring and diagnosis of the alignment process is

composed of Bayesian networks, a probabilistic modeling technique. Bayesian networks

have several advantages over other diagnostic methods. First, Bayesian networks

provide a complete probabilistic description of a domain without specifying the

probabilities of all propositions. This solves the intractability problem of traditional

probabilistic modeling while not sacrificing completeness. Second, Bayesian networks

provide better resolution for variable representation than traditional deterministic

methods. Finally, Bayesian networks utilize prior knowledge of the causal relationships

between variables in the domain.

The primary goal of this research is to develop a general approach for monitoring

and diagnosis of a multi-stage manufacturing process using Bayesian networks. Though
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the specific goal of this paper is to provide monitoring and diagnosis of the cap

alignment process, the methods used in the approach are applicable to other multi-stage

manufacturing processes. The approach should be scalable in both speed and memory

requirements for significantly larger applications.

This research is unique because it applies Bayesian networks to a multi-stage

process containing numerous parts. In addition, monitoring and diagnosis is performed

on-line in real time with the intent of identifying problems as soon as possible and

determining the most probable source. This differs from traditional Bayesain network

applications where diagnosis is performed after a failure has occurred and the machine or

system has been shut down.

This report describes the application of Bayesian networks in developing a

system for monitoring and diagnosis of the cap alignment process. First, a general

description of the alignment process is given, followed by a brief introduction to

Bayesian networks. Next, the designs of Bayesian networks used to model both the cap

and base part assembly and the alignment process are presented. This is followed by an

outline of system implementation. Testing procedures and results are presented next.

Finally, conclusions are discussed followed by recommendations for future work.
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2 BACKGROUND

Bayesian networks have been used in numerous applications over the past several

years. Some of these applications include traffic scene analysis (Huang, 1994), general

equipment diagnosis for photolithographic sequences (Leang, 1997), manufacturing and

process diagnosis (Agogino, 1986), and tracking and avoidance of objects for automated

vehicles (Alag, 1995). Bayesian networks have also been applied recently at Hewlett

Packard for integrated circuit tester diagnosis (Mittelstadt, 1995).

In addition to real world application, research has been performed over the past

few years to extend the scope of traditional Bayesian network diagnosis. This research

has included real-time diagnosis (D'Ambrosio 1995,1996), decision-theoretic

troubleshooting (Breese, 1996), troubleshooting under uncertainty (Heckerman, 1994),

and monitoring multi-stage manufacturing processes (Rao, 1995).

This research in this paper utilizes the previous work on Bayesian networks,

including design considerations and inference algorithms. This research is different in

that it attempts to provide diagnosis in real-time as parts are produced. This is achieved

by designing a general Bayesian network to represent each part and connecting these

networks to form one large process network. Inference of each part network is

performed using existing methods. The algorithm for inference of the process network is

unique to this paper and is the main contribution of this research.
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3 THE CAP ALIGNMENT PROCESS

3.1 Basic Layout

The cap alignment process consists of four main stages: 1) cap alignment, 2) pre-

join operations, 3) the join process, and 4) post-join operations. The alignment operation

is performed in parallel by three separate aligners. An upstream process feeds base parts

and cap material into the three aligners automatically. The aligned cap and base parts

then flow out of the three aligners and into a single part stream. This part stream is fed to

pre-join operations where inspection takes place. Next, the joining operation receives the

single stream of parts from the pre-join operations. After the parts are joined they are fed

from a single part stream to the post-join operations. The parts are then split into two

part streams for post-join inspection, which is performed with two sensor systems. A

simplified diagram of this process is shown in Figure 3.1.

3.2 Inspection Data

The existing systems used for control of the cap alignment automated assembly

line provide data from six inspection points throughout the process: after alignment, after

pre join operations, and after post-join operations. Each of these inspection points is

capable of rejecting parts except for pre-join inspection, which performs position

measurements only. This difference does not effect the operation of the monitoring and

diagnosis system, so all data acquisition will be referred to as inspection. The location of

these data inspection points can be seen in Figure 3.1. The following three subsections

describe the data received from these inspection points.
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Figure 3.1: Diagram of the cap alignment process showing the process layout, part
numbers, and data inspection points.
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3.2.1 Aligner Inspection Data

Alignment inspection provides the following data fields: Aligner_Used,

Date/Time, Part_ID, dX, dY, and dThZ. The first three identify the aligner used, the day

and time of the measurements, and the part, respectively. The last three are continuous

variables that measure a feature associated with the alignment process. This is not a

measurement of the absolute position of the cap, which makes pre-join inspection

necessary.

3.2.2 Pre-Join Inspection Data

Pre-join measurement provides the following data fields: Date/Time, Part_ID,

dX, dY, and dThz. The first two identify the day and time of the measurements, and the

part, respectively. The last three are continuous variables that measure the location of the

cap with respect to the base part after the pre-join operations.

3.2.3 Post-Join Inspection Data

Post-join inspection is performed in parallel with two different sensor systems.

Post-join inspection provides the following data fields: Sensor_Used, Date/Time,

Part_ID, dX, dY, and dThZ. The first identifies which of two post-join sensors was used.

The next two identify the day and time of the measurements, and the part, respectively.

The last three are continuous variables that measure the location of the cap with respect

to the base part after the post-join operations.
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3.3 Production Rate and Part Flow

Cap alignment is a high speed, automated process. The speed of the total process

requires a large number of parts to be queued between stages. There are about 26-27

parts in process between pre-join and each aligner, for a total of approximately 80 parts.

There are about 360 parts between post-join and pre-join inspection. The number of

parts on the assembly line is seen in Figure 3.1.

3.4 Component Failure Types

The cap alignment process consists of three fundamental component types:

sensors, operations, and materials. Each of these is capable of failing, either isolated or

in conjunction with other failures. A failure implies improper operation or improper

characteristics of a component, but does not necessarily indicate that parts are being

made out of specifications. The purpose of this system is to identify these failures before

they produce parts out of specifications.

Sensor failures occur at the inspection points shown in Figure 3.1. There are six

sensor systems: aligner 1 sensor system, aligner 2 sensor system, aligner 3 sensor system,

pre-join sensor system, and post-join sensor systems 1 and 2. Sensor malfunctions cause

local data errors but do not directly affect downstream processes and do not necessarily

indicate the production of bad parts.

There are five separate sources of operation failures: aligner 1, aligner 2, aligner

3, pre-join, and post-join. An operation failure will affect the data from every future

operation in the cap alignment process.

The only material failure source is the cap material. Cap material may have

incorrect dimensions or features. This type of failure will affect all of the data received

from the inspection points. Note that the thermal properties of the cap material may

vary significantly batch to batch. This type of failure will only surface after the joining

process in the data received from post-join, and is also a material related problem.

However, for the purpose of this discussion it is treated as a post-join operation failure.
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4 BAYESIAN NETWORKS

Bayesian networks are probabilistic models of a domain. A Bayesian network is

a directed acyclic graph (DAG). The nodes in the graph represent variables within the

domain of interest. The directed links between nodes represent the causal relationships

between the variables. A directed link from one node to a second node indicates an

influence of the first node, called the parent node, on the second node, called the child

node. The degree of influence that a parent node has on a child node is represented by

the conditional probabilities associated with the child node. In complete Bayesian

networks, parent nodes may have several children and likewise child nodes may have

several parents.

4.1 Bayes' Rule

The foundation for Bayesian networks is Bayes' Rule, seen in Equation 4.1. This

rule governs the conditional probabilistic relationship between two Boolean variables.

Equation 4.1: Bayes' Rule.
P(A11) P(B)

POIA)=
P(A)

By designating the variables B and A in Equation 4.1 as a parent and a child

node, respectively, Bayes' Rule allows the inference of the posterior probability, P(B1A),

of the parent node given the state of the child node.
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4.2 State Space Variables

Nodes in a typical Bayesian Network represent state space variables. Each node

has a conditional probability table that stipulates the probabilities of the node's states

given the states of node's parents. For example, in the Bayesian network seen in Figure

4.1 the probability of variable B having state True may be more likely if the variable A

has state True and the variable C has state False. This causal relationship is defined in

the conditional probability table of node B, seen in Table 4.3. Nodes A and C have no

parents, and therefore only prior probabilities are defined, as seen in Table 4.1, and Table

4.2, respectively.

Figure 4.1: An example
Bayesian network.

A
P(True) P(False)

0.80 0.20

C
P(True) P(False)

0.40 0.60

Table 4.1: Prior probability Table 4.2: Prior probability
table for node A. table for node C.

B
A C P(True) P(False)

True True 0.75 0.25
True False 0.90 0.10
False True 0.15 0.85
False False 0.65 0.35

Table 4.3: Conditional probability table for node B.

This representation can be extended for Bayesian networks with a large number

of nodes and variables with three or more states.
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4.3 Observation and Inference

In diagnosis applications the typical goal is to determine the posterior

probabilities of parent nodes given observations on the child nodes. For example,

consider the Bayesian network of Figure 4.1. If the state of B is observed to be True,

then the posterior probability of A=True can be determined using a modified version of

Bayes' rule.

4.4 Continuous Variables

By defining distributions for each state of a variable, Bayesian networks can be

used to represent continuous variables. Consider again the Bayesian network of Figure

4.1. Suppose when B=True a normal distribution is expected, and when B=False a

uniform distribution is expected. Then when a value, x, is given for B, rather than

observing B=True or B=False, observations are made to the relative likelihood of

B=True and B=False. Calculating the relative heights of the normal and uniform

distributions at x does this.
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5 PART MODEL DESIGN

The system developed for monitoring and diagnosis of the cap alignment process

is based on Bayesian network models of each cap and base part. These "part models"

represent the probabilistic relationships between inspection data, alignment position, and

the alignment process components. The part models are combined to form the process

model, discussed in the next chapter. Diagnosis is then performed by Bayesian inference

of the process model.

This chapter describes the design of the Bayesian network used to represent each

cap and base part. The design is presented in four sections. The first section describes

the nodes of the part model. The second section explains the causal relationships

between the nodes. The next section details the conditional and prior probabilities

associated with each node. The final section discusses the distributions defined to

represent the states of each inspection field node.

5.1 Node Definitions

There are four basic node categories in the part model: position nodes, delta

nodes, inspection nodes, and component nodes. Node descriptions of each of these are

presented in the next four subsections.

5.1.1 Position Nodes

Position nodes represent the alignment position of the cap at the three basic

inspection points. The name, states, and description of these three nodes are given in

Table 5.1.
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Node Name States Description
Apos OK, Fault Inkjet head position after the alignment process.
PreJPos OK, Fault Inkjet head position after the pre-join operations.
PostJPos OK, Fault Inkjet head position after the joining process and post-join operations.

Table 5.1: Nodes representing the cap position at the three basic inspection points.

5.1.2 Delta Nodes

Delta nodes represent a feature associated with the alignment process. Delta

nodes are defined for each of the three aligners. This permits the part model to represent

parts produced by any of the three aligners. These nodes are defined in Table 5.2.

Node Name States Description
Al Delta OK, Fault A feature associated with alignment from alinger 1.
A2Delta OK, Fault A feature associated with alignment from alinger 2.
A3Delta OK, Fault A feature associated with alignment from alinger 3.

Table 5.2: Nodes representing a feature associated with alignment.

5.1.3 Inspection Nodes

Inspection nodes represent the data observed at the inspection points. As

mentioned in Section 3.2, there are three basic inspection points: aligner inspection, pre-

join inspection, and post-join inspection. The following subsections describe inspection

nodes representing these three inspection points.
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5.1.3.1 Aligner Inspection Nodes

As mentioned in Section 3.2.1, aligner inspection produces three continuous

variable fields that measure a feature associated with the alignment process: dX, dY, and

dThZ. Nine inspection nodes are defined in Table 5.3 below to represent these

continuous variable fields. A node is also defined which represents the aligner used.

Node Name States Description
Al DdX OK, Fault Data field dX of aligner 1 inspection.
Al DdY OK, Fault Data field dY of aligner 1 inspection.
A/ DdThZ OK, Fault Data field dThZ of aligner 1 inspection.
A2DdX OK, Fault Data field dX of aligner 2 inspection.
A2DdY OK, Fault Data field dY of aligner 2 inspection.
A2DdThZ OK, Fault Data field dThZ of aligner 2 inspection.
A3DdX OK, Fault Data field dX of aligner 3 inspection.
A3 DdY OK, Fault Data field dY of aligner 3 inspection.
A3DdThZ OK, Fault Data field dThZ of aligner 3 inspection.
AUsed A I ,A2,A3 Aligner used for the present part.

Table 5.3: Inspection nodes representing the continuous variable data fields
associated with an alignment feature.

5.1.3.2 Pre-Join Inspection Nodes

As mentioned in Section 3.2.2, the pre-join inspection produces three continuous

variable fields that measure the position of the cap on the base part: dX, dY, and dThZ.

To represent these continuous variable fields from pre join inspection three inspection

nodes are defined in Table 5.4.
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Node Name States Description
PreJdX OK, Fault Data field dX measuring alignment position at pre-join inspection.
PreJdY OK, Fault Data field dY measuring alignment position at pre-join inspection.
PreJdThZ OK, Fault Data field dThZ measuring alignment position at pre-join inspection.

Table 5.4: Inspection nodes representing the continuous variable data fields from
pre join inspection.

5.1.3.3 Post-Join Inspection Nodes

As mentioned in Section 3.2.3, post-join inspection produces three continuous

variable fields that measure the position of the cap on the base part: dX, dY, and dThZ.

To represent these continuous variable fields from post-join inspection three inspection

nodes are defined in Table 5.5. An additional node is defined representing the post-join

sensor used for inspection of the present part.

Node Name States Description
PreJdX OK, Fault Data field dX from pre-join inspection.
PreJdY OK, Fault Data field dY from pre-join inspection.
PreJdThZ OK, Fault Data field dThZ from pre-join inspection.
PJSUsed S 1, S2 Sensor used for the present part.

Table 5.5: Inspection nodes representing the continuous variable data fields from
post-join inspection.

5.1.4 Component Nodes

Component nodes represent the basic components that constitute the alignment

process. The following subsections describe the component nodes associated with the

three basic assembly line processes: alignment, pre-join, and post-join.
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5.1.4.1 Aligner Component Nodes

The aligner component nodes represent the basic components of the alignment

process and the aligner inspection. Two nodes are defined for each aligner: one

representing the aligner and one representing the aligner sensor. In addition, a node is

defined to represent the cap material, which feeds all three aligners. These definitions of

these seven nodes are given in Table 5.6.

Node Name States Description
AI OK, Fault Aligner 1.
AlSens OK, Fault Sensor used for aligner 1 inspection.
A2 OK, Fault Aligner 2.
A2Sens OK, Fault Sensor used for aligner 2 inspection.
A3 OK, Fault Aligner 3.
A3Sens OK, Fault Sensor used for aligner 3 inspection.
Material OK, Fault Cap material.

Table 5.6: Component nodes associated with aligner 1, aligner 2, and aligner 3.

5.1.4.2 Pre-Join Component Nodes

The pre-join component nodes represent the basic components of the pre-join

process and pre-join inspection. A single node is defined to represent both, as seen in

Table 5.7.

Node Name States Description
PreJoin OK. Fault The condition of the pre-join process.
PreJSens OK, Fault The condition of the sensor used for pre-join inspection.

Table 5.7: Component nodes associated with the pre-join process and pre-join
inspection.
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5.1.4.3 Post-Join Component Nodes

The post-join component nodes represent the basic components of the joining

process, the post-join process, and post-join inspection. A single node is defined to

represent both the join and the post-join process. Two nodes are defined to represent the

post-join sensors. These nodes are defined in Table 5.8.

Node Name States Description
Post Join OK, Fault The condition of the join and post-join process.
PostJSens I OK, Fault The condition of sensor 1 used for post-join inspection.
PostJSens2 OK, Fault The condition of sensor 2 used for post-join inspection.

Table 5.8: Component nodes representing the joining and post-join process, and
post-join inspection.

5.2 Causal Relationships

In the cap alignment process, each operation is dependent upon the accuracy of

the previous operation. For example, if the position of the cap is faulty after the

alignment operation, then the position of the cap is expected to be faulty after pre-join

and after post-join, regardless of the state of those two operations. Therefore, the node

APos is a parent of the node PreJPos, which is a parent of the node PostJPos. These are

the primary nodes in the part model.

There is the possibility that two successive operations are faulty but the data

received from inspection after both operations is good. This would occur only if the

faults were counter-acting. The probability of this is extremely low and therefore it is not

considered in the part model as a possibility. This greatly reduces the hypothesis space

of the part model without significantly affecting the accuracy of diagnosis.

The next three sections of this chapter discuss the causal relationships between

these three nodes and the rest of the nodes in the part model. The completed part model

is shown in Figure 5.1.
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5.2.1 Aligner Nodes

The position of the cap after the alignment operation is dependent upon the

mentioned feature associated with the alignment operation. If the feature is faulty, then

the cap position will be faulty. Therefore delta nodes Al Delta, A2Delta, and A3Delta are

parents of the position node APos. However, for a particular part, only one of the three

delta nodes influences the position node APos. Thus the inspection node AUsed is also a

parent of the node APos. The only parent of each delta node is its respective aligner

component node, because if an aligner is not properly functioning the feature associated

with the alignment process is expected to be faulty. The feature is measured at the

aligner inspection. If the feature is faulty, then the aligner inspection data fields will be

faulty. Therefore each delta node is the parent of its respective inspection nodes. The

aligner inspection fields will also be faulty if the aligner sensor is faulty, and therefore

the component nodes AI Sens, A2Sens, and A3Sens are parents of their respective aligner

inspection nodes.

5.2.2 Pre-Join Nodes

The cap position after the pre-join operation is dependent upon the cap position

after the alignment operation, as mentioned above, and the pre join operation. If the pre-

join operation is functioning improperly, then the cap position at pre-join inspection will

be faulty. Therefore the component node PreJoin is a parent of the position node

PreJPos. The cap position after the pre-join operation is measured at pre-join inspection.

If the cap position is faulty, then the pre-join inspection data fields will be faulty.

Therefore the position node PreJPos is a parent of the inspection nodes PreJdX, PreJdY,

and PreJdThZ. These inspection nodes will also be faulty if the pre join sensor is faulty,

and thus are children of the component node PreJSens.
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5.2.3 Post-Join Nodes

The cap position after join and post-join operations is dependent upon the cap

position after the pre join operations, as mentioned above, and the join and post-join

operations. Therefore the component node Post Join is a parent of the position node

PostJPos. The cap position after join and post-join operations is measured at post-join

inspection. If the cap position is faulty, then the inspection data fields are expected to be

faulty. Thus the position node PostJPos is a parent of the inspection nodes PostJdX,

PostJdY, and PostJdThZ. These inspection fields will also be faulty if the post-join

inspection sensor used if faulty. Therefore the nodes PostJSensl, PostCSens2, and

PJSUsed are also parents of the post-join inspection nodes.
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Figure 5.1: The Bayesian network part model.
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5.3 Conditional and Prior Probabilities

The position of the cap at each of the three basic inspection points is dependent

upon all preceding operations. If any one of the parent operations is faulty, then the cap

position will be faulty. Likewise, the data received at the inspection points is dependent

upon both the position of the cap and the inspection sensors. For these reasons, the

probability of each child in the part model has value one for the union of its' appropriate

parents, and zero for all other state combinations. For most nodes, the appropriate

parents are all parents of that node. For nodes whose parents include the nodes AUsed or

PJSUsed the appropriate parents are all parent nodes except for those not indicated by the

node AUsed or PJSUsed. Table 5.9 shows the conditional probabilities for all child

nodes.

Child node type Parents P(Child =OK) P(Child= Fault)

Nodes where parents do not
include AUsed or PJSUsed

(PI=OK... A Pn=0K) 1 0

--1(Pi=0K... A Pn=0K) 0 1

Nodes where parents include
AUsed or PJSUsed

aUsed=Pused A Pused=0K) A
(131=0K... A Pn=0/0)

1 0

--i((Used=Pud A Pud=0_ K)
A (Pi=0K... A Pn=0K)) 0 1

Table 5.9: Conditional probabilities of all child nodes in the cap and base part model.

The prior probabilities of the component nodes in the part model are dependent

upon the prior probabilities of future parts and the posterior probabilities of earlier parts.

Therefore, the prior probabilities of the component nodes in the part model are assigned

to be 0.5 for each state. This allows each part model to return relative likelihoods of the

component nodes to the process model. The process model can then calculate the

posterior probabilities of any component node at any location or time in the alignment

process. This is discussed further in the next chapter.
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5.4 Data Distributions

Distributions must be defined to represent each state of the continuous variable

inspection nodes. Normal distributions are defined for the state OK. The mean and

standard deviation of these distributions are defined by the system engineer and are based

on historical data. The form of the distributions of erroneous data is not known, so

uniform distributions are defined for the state Fault. This simplifies the calculations

while still modeling the belief that data away from average is more likely faulty. The

height of the uniform distribution is calculated from the difference limits established by

the systems engineer. The difference limits represent the points away from the mean at

which the data is considered faulty. The height is calculated so that it is equal to the

height of the normal distribution at the difference limits, as shown in Figure 5.2. By

doing this, data received at the difference limits is considered equally likely to be from

the state OK as from the state Fault.

Normal Distribution
State = OK

4---Difference Limits

Average

The height of the uniform
distribution is equal to the

height of the normal distribution
at the difference limits

Uniform Distribution
State = Fault

Figure 5.2: The relationship between the normal and uniform distributions.
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6 PROCESS MODEL DESIGN

The "process model" combines the "part models" from the previous section into a

single Bayesian network representing all parts currently in the alignment process. The

process model is used to determine the posterior probabilities of the alignment process

components given the data observed from basic inspection points. This section presents

the design of this process model. A description of the network structure is given first,

followed by an explanation of the posterior probability-updating algorithm.

6.1 Network Description

The process model is constructed by connecting multiple part models. Each

component node in the part model is the child of the corresponding component node in

the previous part model and the parent of the corresponding component node in the next

part model. This represents the causal relationship between consecutive parts in the

alignment process. For example, if a component node has the state OK for one part, then

the state of the corresponding component node of the next part has a high probability of

also being OK. The process model is shown in Figure 6.1. The first row in the part

model represents the prior probabilities of the components given no information.

The posterior probabilities of a component node for particular part model in the

process model represents the posterior probability of that component at the time

corresponding to the particular part. For example, consider a part currently at post-join

inspection. The posterior probability of the component node, PreJoin, represents the

posterior probability of the pre-join operation at the time the part passed through pre-join,

which was many parts earlier. Therefore the current posterior probabilities of the

components in the process model are calculated at the part model representing the most

recent part through the corresponding component.
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Figure 6.1: The process model.



24

6.2 Posterior-Updating Algorithm

The function of the process model is to determine component posterior

probabilities based on observed data from the inspection points. Figure 6.2 shows the

basic algorithm developed for this purpose.

Inspection data is read in time order from five different input files corresponding

to the five inspection points. The part identification number is used to check the data

against the part already represented in the system. If a matching part is found, then the

new data is observed on the existing part model. If a matching part is not found, then the

system locates a place for a new part model. If the system is full, the part models are

indexed and the oldest part model is removed to make place for the new part model.

Once a place is found, a new part model is loaded and the data is observed.

Once the new data is properly observed the current part model is queried and the

component joint probabilities are returned. These are used to update the posterior

probabilities of the current part model, the previous part models, and the subsequent part

models. When the joint likelihoods are multiplied, a small transition value is added to

each entry. This allows the posterior probabilities to slowly change from part to part. In

essence, this is the same as assigning a small probability of state change for component

nodes in successive part models in the process model. Furthermore, posterior updating

can be performed only after a specific number of data entries are received. This allows

the run-time of the program to decrease without significant loss of system

responsiveness. This is important for high-speed assembly lines such as the cap

alignment process.

After the posterior probabilities are updated, the algorithm outputs the appropriate

component beliefs from the current part model. The appropriate component beliefs are

those for which data has been observed. For example, the component beliefs outputted

from pre-join inspection include the nodes Al, Al Sens, A2, A2Sens, A3, A3Sens,

Material, PreJoin, and PreJSens. This provides useful information about the state of the

alignment process at the current time and at the time when the part went through

upstream processes.
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Figure 6.2: The posterior-updating algorithm.
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7 SYSTEM IMPLEMENTATION

The part model was designed and constructed using Strategist, a Bayesian

network modeling software application from Prevision. Once the part model is

completed, it is saved as a .spi file, the standard file format for Bayesian networks. The

process model was implemented in Visual C++ from Microsoft. Part models are loaded

using routines from BMR.lib, a Bayesian modeling and reasoning library available from

Prevision. BMR.lib was also used for making observations on the part models and for

querying the part models. The posterior updating algorithm uses the results from the

part model queries to calculate the posteriors of all the parts in the alignment process.

These computations are implemented in Visual C++.
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8 TESTING AND RESULTS

As mentioned in the previous section, the system designed for monitoring and

diagnosis of the cap alignment process reads data from five input files that correspond to

inspection data from the three aligners, pre-join, and post-join. These files can be

obtained in real-time from the actual alignment process. However, before the system can

be applied to actual production it was first validated using simulated data with known

characteristics. By using simulated data, simplified typical faults of a known origin can

be tested. The results of such tests help to better define the capabilities of the system and

therefore should provided a better understanding of the results obtained when the system

is applied to the actual production process.

This chapter describes the testing performed on simulated data. Fortunately,

Hewlett Packard already has a process emulator that can generate simulated data in the

form of the five data files previously discussed. This emulator was used to generate

simulated fault scenarios. Single fault scenarios were tested first followed by some

typical multi-fault scenarios.

Testing and results are presented in four sections. The first section describes

testing on a typical simulated data set. This data set covers several single fault scenarios.

The data is presented graphically along with an analysis of the results, which are also

presented graphically. The second section discusses the results from additional testing

on single fault scenarios. The final two sections discuss the results from testing on

multiple faults and process drift.

8.1 A Typical Simulated Data Set

This section describes the data and the results from a typical simulated data set.

The simulated data set is composed of six single faults occurring over several hundred

parts in the alignment process. The data consists of inspection data from the five input

files corresponding to aligner inspection, pre-join inspection, and post-join inspection.
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The simulated data has two significant characteristics: Local deviation and long term

process drift. Three graphs were generated showing the simulated data as well as the

sytsem output from each of the three basic inspection points.

The first three faults in this simulated data set are aligner failures. Each aligner

produces data that is offset from the mean for approximately 300 parts. This is a

simplified representation of an aligner failure. The entire process is cumulative, so when

the parts corresponding to the faulty data are simulated at pre join and post-join

inspection, the same offset will be apparent. Had these been aligner sensor failures then

the data would be faulty at aligner inspection only. Figure 8.1 shows the inspection data

from the aligners for this simulated data set.

-e- AI -a- Al Sens -A-- A2 A2S ens -A- A3 --A- A3Sens t Material a Al DdX
A Al DdY 0 Al DdThZ a A2DdX a A2DdY 0 A2DdThZ a A3DdX A A3DdY 0 A3SDThZ
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Figure 8.1: System diagnosis and inspection data at the aligners for a typical data set.
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When faulty data is received at one of the aligners the system initially diagnosis

that both the aligner and the aligner sensor are faulty. The system recognizes that three

hypothesis exist to explain the faulty data: 1) both the aligner and the aligner sensor are

faulty, 2) the aligner is faulty, and 3) the aligner sensor are faulty. Because both the

aligner and the aligner sensor appear in two out of these three hypotheses, the posterior

probability of both initially fall to 33%, which represents the probability that State =OK.

This is shown in Figure 8.1.

When the faulty parts associated with these three aligner failures are inspected at

pre-join, the system is able to propagate the information gained from pre-join inspection

back to the system diagnosis at aligner inspection. This information propagation is a

function of distance between inspection points. Aligner inspection and pre-join

inspection are relatively close, so this information propagation from pre-join inspection is

significant to the aligner diagnosis. Once the new information reaches the aligner

diagnosis, the system recognizes that the aligner must be faulty, and thus eliminates the

hypothesis that the aligner sensor is faulty. Because the aligner appears in both of the

remaining hypotheses, it's posterior probability drops to close to 0%. The posterior

probability of the aligner sensor rises slightly to 50% because it exists only in one of the

remaining hypotheses.

The system has an easier time arriving at this diagnosis at pre-join and post-join

inspection. This is because the system has all upstream inspection data available. This

can be seen in Figure 8.2 and Figure 8.3. The diagnosis of these aligner failures at pre-

join and post-join inspection is actually a diagnosis of what the state of the process was at

the time the current part passed through the aligners. For example, when the post-join

diagnosis indicates an aligner failure, it actually refers to the state of the aligner when the

alignment operation was performed on the part. This is useful as a process history, but is

not as useful for real-time monitoring.

The fourth failure in the simulated data set is a pre-join sensor failure. The

inspection data at pre join is offset from the mean for a period of approximately 300

parts. The offset, however, is not present when the same parts are inspected at post-join.

This represents a simplified pre-join sensor failure where the sensor calibration is off but

parts at pre join inspection are actually within the set difference limits. The data



30

received at pre-join inspection is shown in Figure 8.2. This data shows both the pre-join

sensor failure and the aligner failures discussed in the preceding paragraphs.

100

90

80

70

60

50

40

30

20

10

-. Al al-- Al Sens -+- A2 *- A2Sens A3 A3Sens + Material
PreJoin PreJSens o PreJdX A PreJdY 0 PreJdThZ

Al Sens

/

A2Sens

i

A3Sens

/

A3

A PreJSens

PreJSens

PreJoin

r.
L7,

I "I

I

Al A2

/
-

t
PreJoin System Diagnosis]

1

PreJdX

1 \ PAV
reJdThZ

-4--- PreJdX

-.
----,

Inspection Data at Pre-join
PreJdY

1
I

I
1

Successive Parts

3

3
0

Figure 8.2: System diagnosis and inspection data at pre-join for a typical data set.

When the faulty data is received from pre join inspection, the system recognizes

that three hypotheses exist as a pre-join diagnosis, similar to the response from the

aligner diagnosis for the aligner failures. These three hypotheses are: 1) pre-join failure

and pre-join sensor failure, 2) pre-join failure, and 3) pre-join sensor failure. Because

both pre-join and pre-join sensor appear in both of these hypotheses, the posterior

probabilities of both drop to 33%. Because pre join inspection and post-join inspection

are separated by over 300 queued parts, the data from this pre-join sensor failure never

appears simultaneously at both pre-join and post-join inspection. Therefore the diagnosis
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at pre-join is unable to differentiate between these three hypotheses and the posterior

probabilities remain at 33%, as shown in Figure 8.2. If the failure continued longer the

post-join diagnosis, which correctly diagnoses the pre-join sensor as the only fault would

be able to propagate information back to the pre-join diagnosis. The diagnosis at pre-join

would then increase the posterior probability of pre join back to 100% and reduce the

posterior probability of the pre join sensor to 0%.
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In addition to the pre-join diagnosis of the aligner failures and pre-join sensor

failures there exists a significant spike at close to the last 300 parts. This spike shows

both pre-join and the pre join sensor posterior probabilities dropping as far as 33%. This
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occurs because the process at pre-join drifts away from the mean and begins to pass the

set difference limits.

The final two failures in this simulated data set are, in order, post-join sensor 1

failure and post-join sensor 2 failure. The inspection data at post-join is offset for each

sensor on two separate occasions. This represents a post-join sensor failure where one

sensor is calibrated incorrectly, producing faulty data, while the other sensor works

correctly, producing normal data. The data received at post-join inspection is shown in

Figure 8.3. Also evident in this data is the offset from the earlier aligner failures, which

is correctly diagnosed. Noticeably missing is any offset from the pre-join sensor failure.

This allows post-join inspection to correctly diagnose the pre-join sensor failure.

Unlike the previous failures, the post-join diagnosis can immediately determine that the

only feasible hypothesis is a post-join sensor failure. This is because while one sensor is

failing, the other is properly functioning and thus producing normal data. This normal

data indicates that post-join is operating correctly, and therefore cannot be the source of

the fault. The post-join diagnoses this correctly, and thus the posterior probability of

each sensor is reduced to 0% when the sensors fail independently.

8.2 Additional Single Faults

There are four additional single fault scenarios not discussed in the previous

section: 1) aligner sensor failure, 2) cap material failure, 3) pre join failure, and 4) post-

join failure. Each of these failures were simulated and tested, and the results are given in

the following paragraphs. The diagnostic results are presented in the form: component

node(probability of state =OK). Only those nodes with posterior probabilities less than

100% are given.

When an aligner sensor fails, the data read at the respective aligner inspection is

offset from the mean. However, this offset is not evident at pre-join and post-join

inspection. This is because an aligner sensor failure indicates only faulty measurements,

not faulty position. When the faulty data is initially read the system cannot differentiate

between an aligner failure and an aligner sensor failure, resulting in a diagnosis at the
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aligners of: aligner(33%), and aligner sensor(33%). Once the faulty data reaches pre-join

inspection, the system recognizes that the alignment position is good, and thus the

diagnosis at pre-join is: aligner sensor(0%). Because the system already knows the

alignment position is good, the diagnosis at post-join is the same as the diagnosis at pre

join.

A cap material failure produces faulty data for all three aligners and all down

stream inspections. The system diagnosis at aligner inspection is: aligner 1(45%), aligner

1 sensor(45%), aligner 2(45%), aligner 2 sensor(45%), aligner 3(45%), aligner 3

sensor(45%), and material(30%). Here the system recognizes the material is the most

probable source of the failure, but because the data is faulty at all inspections the system

cannot eliminate other failure hypotheses. When a material failure reaches pre join

inspection, the pre-join diagnosis improves slightly to: aligner 1,2, & 3(44%), aligner 1,2,

& 3 sensor(46%), material(25%), pre-join(47%), and pre join sensor failure(47%). The

post-join diagnosis is the same as the pre-join diagnosis for the aligner components and

material. The post-join diagnosis slightly alters the pre join diagnosis of the pre join

components to pre-join(46%) and pre-join sensor(48%), and also diagnoses the failure

possibilities of the post-join components: post-join(49%), post-join sensor 1 (49%), and

post-join sensor 2(49%).

The data from a pre join failure is faulty at pre join inspection and at both post-

join inspections. When the faulty data is initially received at pre-join inspection, the pre-

join diagnosis cannot distinguish between a pre-join failure and a post-join failure. The

initial diagnosis at pre-join is: pre-join(33%) and pre-join sensor(33%). When the faulty

data is received at post-join, the post-join diagnosis is able to conclude that the most-

likely failure is pre-join(23%). The post-join diagnosis also recognizes other possible

failure hypotheses: pre-join sensor(38%), post-join(43%), post-join sensor 1(48%), and

post-join sensor 2(48%).

A post-join failure affects the data at both post-join inspections. The system

recognizes that the faulty data from a post-join failure indicates that the best failure

hypothesis is post-join(20%), but also recognizes the possibility of one or both of the

post-join sensors failing, and thus produces the diagnosis: post-join sensor 1(40%) and

post-join sensor 2(40%).



34

8.3 Multiple Faults

Most multiple faults have the same diagnosis as one of the single fault scenarios

discussed in the previous two sections. For example, if an aligner failure and pre-join

failure occur at the same time, the system will produce the same diagnosis as a single

aligner failure. This is because an aligner failure affects all downstream inspections, so

the data will be faulty at pre join inspection regardless of whether pre-join is functioning

properly. This line of reasoning applies to all multiple fault scenarios where one fault

affects the data for another downstream fault.

Some multiple fault scenarios have a unique diagnosis. In all cases the system

determines all possible fault hypotheses and produces a diagnosis based on how many of

those fault hypotheses a particular component appears in. The more fault hypothesis a

component appears in, the more likely it is to be faulty, and the lower the probability of

State =OK will be.

One interesting multiple fault scenerio is two aligner failures. If aligner 1 and

aligner 2 fail at the same time, the aligner diagnosis is: aligner 1 & 2(33%) and aligner

sensor 1 & 2(44%). Unlike a material failure, the data from a dual-aligner failure will

only affect two thirds of the data received at pre-join inspection. The remaining one third

will be good data produced from aligner 3. This good data allows the system to conclude

that both pre-join and pre-join sensor are OK. In addition, the faulty data received at pre-

join inspection indicates that the failures could not have been only aligner sensor failures.

This improves the aligner diagnosis to give the following pre join and post-join

diagnosis: aligner 1 & 2(0%), and aligner sensor 1 & 2(50%).
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8.4 Process Drift

The failures discussed in the previous testing section have been modeled as step-

failures. This implies that a dynamic event occurred producing a level shift in the

inspection data from within the normal distribution to somewhere outside the normal

distribution. Failures of this kind may occur for many reasons, including, for instance,

when a machine breaks or a new batch of material is introduced which has improper

dimensions.

Process drift is a different type of failure. Process drift occurs when inspection

data slowly deviates from the mean over a significant period of time. As long as the drift

away from the expected mean is large enough, the resulting diagnosis will be the same as

those discussed in the previous sections. The major difference is how rapidly the

diagnosis is made. In the previous sections, the diagnosis followed quickly after the

failure events themselves. In a process drift failure, the diagnosis of each potential

source component will be more gradual. This is more of a system feature than a system

limitation, because it provides information about not only the most likely source of the

failure but also indicates the rate at which the failure may have occurred.
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9 CONCLUSIONS

The system presented in this report can provide correct diagnosis of process

failures in real -time. The system serves as a process monitor that can detect a failure

within 10 bad parts. Diagnosis accuracy improves when the bad parts generated from the

failure are received at downstream inspection points.

In a real application of this system the failed component can be shut down when a

failure is detected. Then when more evidence is received from the bad parts already in

process the system can provide probabilistic diagnosis. For example, the first three

failures from the first simulated data set were all aligners failures. Once the failures are

detected, the appropriate aligner can be shut down and serviced. Then when the bad

parts reach pre-join inspection the system can report the probable failures in order of

most likely. In this case the most likely failure was the aligner itself (0%), followed by

the aligner sensor(50%).

The large number of parts between pre join inspection and post-join inspection

makes diagnosis of pre join component failures at pre-join inspection difficult.

However, the system still recognizes that there is a failure, even though it has difficult

differentiating between a pre-join failure and a pre-join sensor failure. This difficulty is

due mostly to the queuing in the alignment process, and is not necessarily an indication

of system limitations.

The accuracy of the system is dependent upon the accuracy of the configuration

parameters. The configuration parameters include the mean, standard deviation, and

difference limits representing each of the alignment processes. The diagnosis system can

only provide useful information if these parameters are properly set. The system

considers data within the difference limits as good and data outside of the difference

limits as faulty. If these parameters do not correctly characterize the process then the

system will view some good data as faulty and likewise some faulty data as good.

Bayesian networks applied in the manner presented in this report can provide a

good model of the probabilistic relationships between multiple parts and multiple

components in a multi-stage manufacturing process. The results from this research
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indicate that a system developed in this manner has the capability to represent a

complicated process by modeling each part separately and then connecting the multiple

part models to form one process model. This assumes the following three things. First,

if a good part is produced, there is high probability that the next part produced will be

good, and vice versa. Second, data from part inspections is correlated to both the state of

the part and the state of the operations used to produce the part. And finally, the

configuration parameters of the inspection data are well known.

By remembering the likelihoods from each individual part model and updating

these individually when new data is received a large Bayesian network can be

represented without having to query every part model when the posterior probabilities are

determined. This significantly reduces the processing time needed to compute the

posterior probabilities without effecting the accuracy of the results.

The posterior probability-updating algorithm can be modified to only update the

posteriors after a certain amount of inspection data has been received. This can

significantly reduce the processing time while not greatly effecting the response time of

the system to faults. This was evident in the output results from the first simulated data

set, where the posteriors were updated only after five parts passed through each

inspection point. The system output still indicated failures within 10 parts, or

approximately 15 seconds.

In general, this system may be applied to similar manufacturing processes where

parts are produced in sequential manner and inspection is performed at several points

throughout the process. The current algorithm used by the system to update the posterior

probabilities is order n in the number of parts in the system and order n2 in the number of

component nodes. This means the system is not completely scalable to larger processes.

Solutions to these problems are discussed in the next chapter.
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10 CONTINUATION

The system developed for monitoring and diagnosis presented in this report

currently outputs the posterior probabilities of each component in the alignment process.

In the future this information can be combined with action cost information to develop a

decision model for the alignment process. For example, the system was unable to

differentiate between a pre-join failure and a pre join sensor failure in the first simulated

data set. In this case the best action is to attempt to repair the component with the

smallest ratio of repair cost to prior probability of failure.

A developed application of this system could include many user interface

features. Possible features include graphs of the posterior probabilities in real-time,

decision trees used to determine optimal repair sequences, and process history reports. A

completed system would include a monitoring mode, a repair mode, and a process

history mode.

The system could also be implemented with a learning mode, in which data is

recorded from good parts currently being produced. This data could then be used to

determine the configuration parameters of the system.

More detailed part models could be developed and used to provide greater

information to the operator. The detailed models could be analyzed only when a failure

has been indicated using the simpler part models, thus avoiding speed problems. For

example, each component node has two states: OK and Fault. This could be replaced by

three component nodes representing the states of the component for the field dX, dY, and

dThZ.

The current posterior updating algorithm records the joint likelihoods of each

component in the part model. In this case, the part model had 12 components, and

therefore the joint likelihoods contain 4096 numbers. To properly update the posteriors 4

arrays of length 360 are needed, with each element containing 4096 numbers. This

presents a significant memory allocation problem. However, this problem can be handle

by implementing a sparse matrix to represent these joint likelihoods. In a sparse matrix,
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only the significant numbers and their locations are recorded, and the other are all

assumed to be some small delta value.

The current posterior updating alogorithm performs multiplication of the joint

probabilities between every part model in the system model. This presents a significant

speed problem. This problem too can be avoided with more efficient programming. The

posterior probabilities are only important at each inspection point, and therefore need not

be computed at every part. The total of the multiplications between two inspection

points can be saved and then updated when new data is received. This would require

only one set of multiplications between inspection points rather than a set of

multiplications for every part between inspection points. This method is currently being

researched.
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