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Fast Bit-Level, Word-Level and Parallel
Arithmetic in Finite Fields for
Elliptic Curve Cryptosystems

Chapter 1
INTRODUCTION

Computer and network security has recently become a popular subject due to the

explosive growth of the Internet and the migration of commerce practices to the

electronic medium. We started to buy goods online, bank online, conduct business

and financial transactions and send messages world-wide. Thus, the authenticity and

privacy of the information transmitted and the data stored on networked computers

is of utmost importance.

The deployment of network security procedures requires the implementation of

cryptographic functions. More specifically, these include encryption, decryption, au-

thentication, digital signature algorithms and message-digest functions. Software

implementations of these algorithms are often desired because of their flexibility and

cost effectiveness. However, performance has always been the most critical charac-

teristic of a cryptographic function that determines its effectiveness, requiring the

algorithm engineer to invent and develop new methods for high-speed implementa-

tions.

In this thesis, we concentrate on developing high-speed algorithms and architec-

tures for number theoretic cryptosystems. Our work is mainly focused on implement-

ing elliptic curve cryptosystems efficiently, which requires space- and time-efficient

implementations of arithmetic operations over finite fields. Since longer bit lengths

are required for better security, efficient arithmetic over finite fields with high order

will serve our purpose.

We introduce new methods for arithmetic operations over finite fields. Method-

ologies such as precomputation, residue number system representation, and parallel
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computation are adopted to obtain efficient algorithms that are applicable on a va-

riety of cryptographic systems and subsystems.

We choose to work on finite fields of characteristic two that has high order,

mainly because they are easier to implement in hardware and software, and longer

bit lengths provide better security.

We basically try to invent and improve algorithms to manage fast arithmetic

operations in finite fields of characteristic two, i.e., Galois field GF(2k). Some of the

algorithms can also be used in finite fields with different characteristics. We pre-

fer polynomial representation, because combined with characteristic two, addition

and subtraction then become equivalent and can easily be performed on the corre-

sponding terms of polynomials using bit-wise XOR operations. Since the efficiency of

exponentiation inherently depends on the efficiency of multiplication, the main issue

is then to manage multiplication efficiently, which is usually followed by a reduc-

tion. Therefore, in this thesis, we mainly focused on multiplication algorithms and

architectures.

Since arithmetic operations in finite fields also have applications in coding theory

and computer algebra, the methods proposed in this thesis are applicable to these

applications as well.

Chapters 2 through 8 provides the background necessary to understand the moti-

vation and the contents of the contributions made, which are presented in Chapters 9

through 12. A brief description of each chapter is as follows:

Chapter 2 provides a brief introduction to cryptography and to the terminology

commonly used. It also explores different types of cryptographic systems commonly

used, and summarizes the basic ideas on which these systems are built. Strong and

weak points of the systems are also presented to able to compare the level of security

they provide.

Chapter 3 includes the definitions related to the elliptic curves. It mainly de-

scribes how a set of points on an elliptic curve form an Abelian group, and how to

manage the group operations on this set. The general group structure, the procedures

to find the order of the curve, and the theorems about the upper and lower bounds
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of the order are also presented in this chapter. Finally elliptic curves constructed

over rings, along with the cryptosystems they yield, are discussed.

Chapter 4 explains how the elliptic curves are classified according to the char-

acteristics of the underlying finite field and the security they provide. Simplified

addition formulas are derived for each case. Using the relations between the order

and the structure of the Abelian groups, it was possible to classify all the elliptic

curves into a small number of isomorphism classes, which are then listed in a table,

with the structure and the order found for each class.

In Chapter 5, we present the discrete logarithm problem in finite fields and

described the algorithms found to date, to solve it. Then the elliptic curve logarithm

problem is presented and it is compared to the discrete logarithm problem. It is also

shown that for some classes of elliptic curves, the elliptic curve logarithm problem

reduces to the discrete logarithm problem in a finite field, and hence these curves

provide no extra security. The results and the reduction parameters for each class

are summarized in a table.

In Chapter 6, the implementation issues such as which curve to select, how to

count the order of a curve and how to implement an elliptic curve cryptosystem

are discussed. Results of some previous implementations are summarized. We also

present an algorithm to find the order, which we built using Schoof's original paper.

Chapter 7 summarizes other uses of the elliptic curves, such as primality testing

and factorization. The known primality testing methods are presented and compared

to that of elliptic curves'.

Chapter 8 provides an introduction to arithmetic operations in finite fields. It

presents different notations and technics used to represent field elements and manage

field arithmetic. The algorithms and methods presented in later chapters assume the

notations and technics presented in this chapter.

In Chapter 9, a new table lookup based reduction method for performing the

modular reduction operation is proposed. This method can be used to obtain fast

software implementations of the finite field multiplication and squaring operations.

The reduction algorithm has both left-to-right and right-to-left versions, which re-
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spectively improve the standard and Montgomery multiplication methods. Further-

more, it is shown that the right-to-left version of the proposed reduction method also

works in the integer case, if the modulus n is an odd number.

In Chapter 10, a novel method of parallelization of the multiplication operation in

GF(2k) is presented for an arbitrary value of k and arbitrary irreducible polynomial

n(x) generating the field. The parallel algorithm is based on the polynomial residue

number system. The parallel algorithm receives the residue representations of the

input operands (elements of the field) and produces the result in its residue form,

however, it is guaranteed that the degree of this polynomial is less than k, i.e., it is

an element of the field, properly reduced by the irreducible polynomial n(x).

In Chapter 11, we propose a new formulation of the multiplication matrix and an

architecture for the multiplication operation in GF(2m). The proposed architecture

generalizes the Mastrovito multiplication, and is particularly efficient when applied

to a specific class of polynomials that is known in advance, as it uses all possible

optimizations. We have studied all such cases in detail, and obtained space and time

complexities, and furthermore, provided actual design examples.

Chapter 12 concludes the thesis with the summary of the results, contributions

and discussions.

Appendix A includes the list of notations and definitions used in the thesis.

In Appendix B and Appendix C, we provide some of the algorithms and theorems

referred or used during the presentation of methods throughout the thesis.

Appendix D includes some short notes on finite fields that can be used to refresh

the knowledge on finite fields, before reading Chapter 8.

Finally, we also provide a rich index for the convenience of the reader.
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Chapter 2
CRYPTOGRAPHIC SYSTEMS

2.1 Introduction

The fundamental goal of cryptography has historically been to achieve privacy, i.e.,

to enable two people to send each other messages over an insecure channel in such

a way that only the intended recipient can read (or understand) the message. This

objective has traditionally been met by using private key cryptosystems. As will be

explained in the following sections this system has some disadvantages that make

it unsuitable for use in certain applications. Public key cryptosystems overcome

the key distribution and management problems inherent with private key systems.

And elliptic curves offer more security using smaller bandwidth, which make them

important.

2.2 Private Key Cryptography

Let M denote the set of all possible plaintext messages, C the set of all possible

ciphertext messages and /C the set of all possible keys.

A private key cryptosystem consists of a family of pairs of functions

Ek:M -+C and Dk:C-4M k E 1C ,

such that

Dk(Ek(m)) = m for all m E M and k E K.

To use such a system, the two users must initially agree upon a secret key k E K.

They can do this by physically meeting, but this can be impractical or sometimes

even impossible, or they might use the services of a trusted courier. Besides the

problem of availability, the secureness of the courier is still questionable.
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The main disadvantages of the private key cryptosystems are:

1. Key distribution problem (a secure channel may not be available)

2. Key management problem (if the number of pairs (of users) is large then the

number of keys becomes unmanageable)

3. No signatures possible

A digital signature is an electronic analogue of a hand-written signature that

allows a receiver to convince a third party that the message is in fact originated from

the sender.

In one-time pad method, the keys are random binary strings and a message is

encrypted by XOR'ing the key to it, one bit at a time. This system is secure but

requires a key as long as the message itself.

2.3 Public Key Cryptography

In 1976, W. Diffie and M. Hellman invented public key cryptography to address the

deficiencies in private key cryptography, stated in the previous section [10]. Their

protocol is known as Diffie-Hellman key exchange. And in terms of an arbitrary

group it can be described as:

1. (Setup) A and B publicly select a (multiplicatively written) finite group G and

an element a E G.

2. A generates a random integer a, computes aa in G, and transmits aa to B over

a public communications channel.

3. B generates a random integer b, computes ab in G, and transmits ab to A over

a public communications channel.

4. A receives ab and computes (ab)a .

5. B receives aa and computes (aa)b.
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A and B now share the common group element aab. Note that an eavesdropper

knows G,a,aa and ab, and his task is to use this information to reconstruct aab. This

problem is commonly referred to as Diffie-Hellman problem.

The problem of computing a, given G, a and as is called the discrete logarithm

problem. It has not been proven but widely believed that the discrete logarithm

problem and the Diffie-Hellman problem are computationally equivalent [46].

2.3.1 Trapdoor One-way Functions

Easy-hard : We will use the term hard to mean computationally infeasible, i.e., infea-

sible using the best known algorithms and best available technology. In terms

of software engineering only, easy and hard will mean requiring polynomial and

exponential time, respectively.

One-way function : An invertible function f : M C, such that Vm E M it is

easy to compute f (m), but for most c C it is hard to compute f-1(m). There

is no function that is proven to be a one-way function, but there are some

candidates.

Trapdoor one-way function : A one-way function that can be efficiently inverted by

using some extra information. The extra information is called the trapdoor.

A public key cryptosystem is constructed using a family fk : M C, k E IC,

of trapdoor one-way functions. The trapdoors t(k) should be easy to obtain for all

k E K. Also an efficient algorithm is needed to find fk, but knowing it, should not

lead one to any information that will make it feasible to recover k (and thus t(k)).

If these conditions are satisfied then each user U selects a random key u E 1C and

publishes the algorithm Au, his public key, for computing fu. Then the trapdoor

t(u), which is used to invert fu, will be the user's private key. Any message m is

encrypted to fu(m) using Au, and only the .user U can find out m from fu(m), as

only he knows t(u) to invert fu. To use digital signatures we assume A4 = C [46].
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The group order and exponentiation are two commonly used trapdoor one-way

functions. RSA and elliptic curves over the ring Zn uses group order as a trapdoor

one-way function, and ElGamal Cryptosystem uses exponentiation. Now we will

further explain these systems.

Suppose that for the group G, multiplication is easy and finding its order is hard.

Then we can construct a public key cryptosystem whose trapdoor one-way function

is based on the difficulty of finding group order. Each user chooses a group G (with

order n) and a random integer e such that gcd(e, n) = 1 and computes (using the

extended Euclidean Algorithm) an integer d, 1 < d < n 1, such that

ed 1 (mod n) .

A's public key consists of the group G and the integer e. To send the message m to

A, one computes and sends me. A can recover m using d since (me)d = m.

Exponentiation in a multiplicatively written finite group can be performed effi-

ciently by repeated square-and-multiply method, if an efficient way to compute the

product is known. Similarly, multiplication in an additively written finite group can

be performed efficiently by repeated double-and-add method, if an efficient way to

compute the addition is known.

2.3.2 RSA Cryptosystem

The RSA cryptosystem was invented in 1977 by Rivest, Shamir and Adleman [60]

and was the first realization of Diffie-Hellman's abstract model for public key cryp-

tography.

To set up this system each user picks two large primes p and q and computes

their product n = pq. The group used is G = Z. It is well known that the order of

G is

0(n) 1)(q 1) .

The public key is the pair of integers (n, e) and the private key is d. The problem

of computing 0(n) using only n is computationally equivalent to the problem of
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factoring n, which is believed to be hard (but not proven). Thus the security of the

RSA is based on the factoring problem.

2.3.3 ElGamal Cryptosystem

In 1985, T. ElGamal [11] proposed a public key scheme based on discrete exponen-

tiation, which exhibits the properties of a trapdoor one-way function.

1. (Setup) A finite group G and element a E G are chosen. Each user picks a

random integer 1 (the private key) and makes public at (the public key). We

suppose that messages are elements of G and that user A wishes to send a

message m to user B.

2. A generates a random integer k and computes ak.

3. A looks up B's public key ab, and computes (ab)k and mabk.

4. A sends to B the pair of group elements (ak, mabk).

5. B computes (ak)b and uses this to recover m.

Clearly, the security of the ElGamal cryptosystem and the Diffie-Hellman key

exchange are equivalent, and hence the security of the ElGamal cryptosystem is

based on the difficulty of the discrete logarithm problem. EIGamal [11] also designed

a signature scheme, which makes use of the group G [46].

2.3.4 Elliptic Curve Cryptosystems

When an elliptic curve is defined over a finite field, the points on the curve form an

Abelian group. The addition operation in this group is "easy" to implement, both in

hardware and software. The discrete logarithm problem in this group is believed (but

not proven) to be very "hard" , in particular harder than the one defined in finite fields

of the same size. It was for this reason that the elliptic curves were first suggested in

1985 by N. Koblitz [27] and V. Miller [48] for implementing public key cryptosystems.
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Elliptic curves over finite fields can be used to implement the Diffie-Hellman key

exchange, and the EIGamal cryptosystem. Also they can replace trapdoor one-way

functions in any system. These systems potentially provide the same security as

the existing public key cryptosystems, but uses shorter key lengths. Having shorter

key lengths mean smaller bandwidth and memory requirements, which is a crucial

factor in some applications such as design of smart cards, where both memory and

processing power is limited. Another advantage of using the elliptic curves is that

each user may select a different curve, even though the underlying field is the same

for all. That means each user can change his curve periodically (for extra security)

without changing the hardware [46].
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Chapter 3
ELLIPTIC CURVES

3.1 Basic Definitions

Elliptic curves can be defined over any field (e.g. real, complex, finite), but for

cryptographic purposes we will only be concerned with those over finite fields [29].

Let H be a field and H be its algebraic closure (see Appendix A). Then an Elliptic

Curve E is the set of solutions of the (Weierstrass) equation

y2 + aixy + a3y = x3 + a2X 2 ± a4x + as , (3.1)

in the affine plane H x H, together with the point at infinity 0.

If al, a2, a3, a4, as E H , then E is said to be defined over H and denoted by

E I H. The set of H-rational points of E, denoted E(H), is the set of points both of

whose coordinates lie in H, including the point 0.

3.2 Group Law

The points on an elliptic curve form an Abelian group under a certain addition, with

identity 0. Negative of a point P is denoted by P and is defined to be the point

with the same x-coordinate. First we will define the operations intuitively: If a line

intersects an elliptic curve at more than one point, then it intersects it at exactly

3 points, counting the multiplicities (When there are less than 3 finite points, it is

assumed that the rest of the intersections are at infinity, i.e., at the point 0) [26].

Then the sum of any two points is defined to be the negative of the third intersection

of the elliptic curve with the line through these two points. For a nice geometrical

introduction to elliptic curves see [66].
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Now we can explicitly state the addition rules for all P,Q E E as follows:

1. 0 P = P and P + 0 = P (0 is the identity element).

2. 0 = 0 .

3. If P = (x1, Yi) 0 0, then P = (x1, Y1 aixi a3).

4. If Q = P, then P +Q = 0.

5. If P 0, Q 0, Q # P, then let R be the third point of intersection

(counting multiplicities) of either the line PQ if P Q, or the tangent line to

the curve at P if P = Q, with the curve. Then P + Q = R.

If P = (xi, Yi) Q = (x2, y2) and R = (x3, Y3) then :

and

where

A

x3 = A2 + aiA a2 xi x2

y3 = (A + ai)x3 a3 ,

Y2 -Y1
x2
34+2a2x1 +a4aiyi

2yi +al x1 +a3

if P Q ,

Theorem 3.1 ([46]) (E, +) is an Abelian group with the identity element 0. If E

is defined over H, then E(H) is a subgroup of E.

3.3 Group Structure

There are many analogies between the group of Fq-rational points on an elliptic curve

and the multiplicative group F;: approximately same number of elements, etc. But

for a single (large) q there are many different elliptic curves and many different N to

choose from. Hence elliptic curves offer a rich source of "naturally occurring" finite

Abelian groups. It is this major advantage that makes elliptic curves attractive for

cryptography [26].
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Let E be an elliptic curve defined over Fq. Let q = pk , where p (a prime) is the

characteristic of Fq. The number of points in E(Fq) is called the order of the curve

E(Fq) and denoted by #E(Fq). Then we have:

Theorem 3.2 (Hasse,[65]) Let #E(Fq) = q +1 t. Then 5_ 21/4.

An important consequence of Hasse's Theorem is that we can pick points P

uniformly and randomly on an elliptic curve E(Fq) in probabilistic polynomial time.

The next result, proven by Waterhouse, determines the possible values for the

order #E(Fq) as E varies over all elliptic curves defined over Fq, where q = pk.

Theorem 3.3 ([46]) There exists an elliptic curve E I Fq such that E(Fq) has an

order q +1 t over Fq if and only if one of the following conditions holds:

(i) t 0 (mod p) and t2 < 4q.

(ii) k is odd and one of the followings holds:

I. t = 0.

2. t2 =2q and p = 2.

3. t2 = 3q and p = 3.

(iii) k even and one of the followings holds:

1. t2 = 4q.

2. t2 = q and p 01 (mod 3).

3. t= 0 and p 0 1 (mod 4).

The following theorem is due to Deuring:

Theorem 3.4 ([59]) Every integer in the interval (p +1 2\f-p,p + 1 + 21/7p) is

attained as #E(Fp) for some choice of (a, b) E Fr x Fr with 4a3 27b2 0 0.
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As, E varies over all elliptic curves over Fq, the values #E(Fq) are nearly uni-

formly distributed in the interval of size 05 centered at p + 1. This statement

is made precise by the following theorem, which was a key ingredient in Lenstra's

elliptic curve algorithm for factoring integers (see Appendix B.5) [36].

Theorem 3.5 ([46, 35]) There exist positive effectively computable constants c1

and c2 such that for each prime p > 5 and for any subset S of integers in the

interval [p + 1 .175, p + 1 + the probability r, of a random pair (a, b) E Fr x Fp

defining an elliptic curve E : y2 = x3 + a4x + a5 with #E(Fq) E S is bounded as

follows:

#S 2 #S
ci (log p)-1 < r, < c2 (log p) (log log p)2 .

2 [A + 1 2 [A + 1

For the next theorem we will need some standard results from Abelian group

theory. Every finite Abelian group G can be decomposed into a direct sum of cyclic

groups

G= Zni ED Zn, 83 ED Zn.,

where ni±i for all i = 1,2, ... , s 1, and ns > 2. Furthermore this decomposition

is unique. We say that G is an Abelian group of type (n1, n2, .. , ns) and rank s.

Theorem 3.6 ([46]) E(Fq) is an Abelian group of rank 1 or 2. The type of the

group is (n1, n2), i.e., E(Fq) Z7,1 ED Zn where n2 and furthermore n2lq 1.

The curve E can also be viewed as an elliptic curve over any extension field

L = Fr of Fq; E(Fq) is a subgroup of E(L). The Weil Theorem enables one to

compute #E(Fqm), for m > 2, from #E(Fq) as follows:

Theorem 3.7 (Weil,[46]) Let E be an elliptic curve defined over Fq, and let t =

q + 1 #E(Fq). Then

#E (Fqm) = gm + 1 am ,

where a, 6 are complex numbers determined from the factorization of

1 tT + q712 = (1 aT)(1. OT) .
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Now we state a few results on the group structure of E = E(Fq). E is a torsion

group, i.e., for each point P E E there is a positive integer k such that kP = 0.

The smallest such integer is called the order of the point P. An n-torsion point is a

point P E E(rq) satisfying nP = 0. Let E(Fq)[n] denote the subgroup of n-torsion

points in E(Fq), where n 0. We will write E[n] for E(Fq)[n]. In the algebraic

number theory of elliptic curves, one finds a deep analogy between the coordinates

of the n-torsion points on an elliptic curve and the n-division points on the unit circle

(which are the nth roots of unity in the complex plane [29]). If n and q are relatively

prime, then E[n] Zn Z. Division polynomials are recursively defined set of

polynomials that helps one to identify the n-torsion points or to compute nP using

P [46]. As will be seen later in Section 6.4, they are basically used in determining

the order of a curve.

3.4 Elliptic Curves Over Rings

Elliptic curves over the ring Zn are used in Lenstra's integer factoring algorithm (see

Appendix B.5) [36] and the Goldwasser-Kilian primality proving algorithm [15].

Let n be a positive integer with gcd(n, 6) = 1. An elliptic curve over Zn is given

by an equation

Ea,b:y2=x3+ax+b ,

where a, b E Z and gcd(4a3 + 27b2) = 1. If n is a product of 2 primes p and q, then

points on

Ea,b(Zn) = Ea,b(Fp) x Ea,b(Fq)

can be computed using Ea,b(Zn), i.e., without knowing p & q, and any failure leads

to the factorization n = pq [46].

A cryptosystem can be proposed based on the above ideas (See [46] for a de-

scription). Like the RSA the security of that system is based on the difficulty of

factoring n, however it is not known whether breaking the system is equivalent to

factoring n. Although the system is not as efficient as RSA, it has the advantage that

it appears to be resistant to some of the known attacks on RSA. See [33] for more
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details. In [52], Okamoto, Fujioka and Fujisaki propose a practical digital signature

scheme based on elliptic curves over Zn, where n = p2q. The scheme appears to be

several times faster than the RSA signature scheme.
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Chapter 4
CLASSIFICATION & ANALYSIS OF ELLIPTIC CURVES

4.1 Isomorphic Curves

Two elliptic curves are said to be isomorphic if they are isomorphic as projective

varieties. Two projective varieties V1 and V2 defined over a field H, are isomorphic

over H, if there exists morphisms 0 and O defined over H, such that

0 : VI. V2 , 0 : V2 VI

and both 0 o 0 and 0 o 0 are identity maps on V1 and V2, respectively.

Theorem 4.1 ([46]) Two elliptic curves, _Ell H and E2I H, given by the equations

El : y2 + aixy + a3y = x3 ± a2X2 + a4x + as

E2 : y2 + aixy + if/3y = x3 + 23x2 + F24x + C/6

are isomorphic over H, denoted by .E1 1H L-' E2 / H, if and only if there exist u, r, s, t

E H, u 0, such that the change of variables

(x, y) -+ (u2 x + r, u3 y + u2 s x + t)

transforms equation El into equation E2. Furthermore when Ell H Li E2 /H holds,

_Ell H and E2IH are also isomorphic as Abelian groups. The relationship of isomor-

phism is an equivalence relation.

The change of variables in above theorem is referred to as an admissible change

of variables.



Table 4.1. EC Equations and Addition Formulas for Char(H) = 2

Elliptic Curve Equation P -1- Q Coordinates

y2 + x3 + a2x2
as

(ai 0)

P 0 Q
)2 yl+y2(yi+y2

x3 + x1 +x2 + a2
+

xi+x2 / xi+X2

Y3 = (X11++X22 )(xi + x3) + x3 + Y1

P =Q
2 ,

I'X3 = Xi
xi

y3 = x?+ (xi +1+ 21-x0x3

y2 + a3y = x3 + a4x + a6

(al = 0)

0P Q
Y141/2 )2x3 + X1 + X2(x, +x2

( Yl +Y2 \y3 = ) X1 ± X3) + a3 + Yi(
xi -rx2

P = Q
xi+a4

x3 2a3
. \xl-r2 , ai

y3 ) (xi ± X3) ± a3 + Yia3

4.2 Curves over Fields with Different Characteristics

Let

E2 : y2 + diXy a3y = X3 ± a2X2 CL4X a6

18

be the general elliptic curve equation. When we specify the characteristic of the

underlying field, this equation transforms into simpler forms that are isomorphic to

it. For example for Char(H) = 3, it simplifies to:

y2 = X3 a2x2 ± a4x ± as

Table 4.1 and Table 4.2 summarize the cases for Char(H) = 2 and Char(H) 0 2, 3

respectively, along with the coordinates of the sum P + Q = (x3, y3) of two points

P = (xi, Yi) and Q = (x2, Y2) on the given curve [46].

Elliptic curves over finite fields with Char(H) = 2, i.e., GF(2k), is particularly

interesting. The arithmetic operations for the underlying field are easy to construct

and relatively simple to implement. These systems have shown the potential to

provide small and low-cost public key cryptosystems. Therefore, we will concentrate

on these fields.
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Table 4.2. EC Equations and Addition Formulas for Char(H) 0 2, 3

Elliptic Curve Equation P -.11- Q x3 y3

y2 x3 + a4x + P 0 Q ,, 2
Y2 Y2 2X)Y1

X2y1

)
X1 x2

( X1 ( X
)
(x1 x3) Y1

P =Q ( 3 x + a 4 2 ti-a4 \ f
22yik

x2 (L2y1 ) kx1 X3) yi

4.3 Singular vs. Non-singular Elliptic Curves

Let F(x, y) = 0 be the implicit equation for y as a function of x in Equation (3.1).

A point on the curve is said to be non-singular (or a smooth point) if at least one of

the partial derivatives aF/ax, aF/ay is nonzero at that point. If both of the partial

derivatives are zero, then the point is called singular. If a curve has no singular

points, then it is called non-singular elliptic curve, otherwise it is called a singular

elliptic curve. The condition for the cubic on the right of the elliptic curve equations

in Table 4.1 & 4.2, not to have multiple roots, is equivalent to require all points on

the curve to be non-singular [29].

4.4 The Discriminant and j-Invariant

Let E be the elliptic curve given by the Equation (3.1). Define the following quan-

tities:

d2 = ai 4a2

c/4 = 2a4 + al a3

d6 = a23 4a6

2 2
d8 = al a6 4a2a8 aia3a4 + a2a3 a4

C4 = d2 24d4

A = 4d8 84 274 + 9d2d4d6

j(E) = 410
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The quantity A is called the discriminant of the elliptic curve equation, while

j(E) is called the j-invariant of E if A 0.

Theorem 4.2 ([46]) E is an elliptic curve, i.e., the Elliptic Curve Equation (3.1)

is non-singular, if and only if A 0.

Theorem 4.3 ([46]) If two elliptic curves Ell H and E2I H are isomorphic over H,

then j(Ei) = j(E2). The converse is also true if H is an algebraically closed field.

4.5 supersingular vs. Non-supersingular Elliptic Curves

The elliptic curve E is said to be supersingular if p divides t, where #E(Fq) = q+1t.

Otherwise it is called non-supersingular. It is well-known that if p = 2 or if p = 3,

then E is supersingular if and only if j(E) = 0. For Char(H) = 2, j-invariant

simplifies to j(E) = ar/A, so j(E) = 0 if and only if al = 0. Thus curves in the

first row of the Table 4.1 are non-supersingular and the ones in the second row are

supersingular. In Theorem 3.3, case (i) shows the non-supersingular curves and cases

(ii) & (iii) show the supersingular ones. From that theorem we can easily deduce the

following:

Corollary 4.4 ([46]) Let E be defined over Fq. Then E is supersingular if and only

if t2 = 0, q,2q,3q, 4q.

If E is a supersingular curve, then the group structure of E(Fq) is determined

by the next result.

Lemma 4.5 ([63]) Let #E(Fq) = q+ 1 t.

(i) If t2 = q, 2q, 3q, then E(Fq) is cyclic.

(ii) If t2 = 4q, then E(Fq)

(iii) If t = 0, then E(Fq) r-=-1

ED

zv4+, e

if t = 2.14-

if t = 2.14

cyclic if q 3 (mod 4)

Z(q+1)/2 ED Z2 or cyclic if q 3 (mod 4)
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We can deduce the following Theorem immediately from Theorem 3.6, which

determines all possible groups E(Fq) that occur as E varies over all non-supersingular

curves defined over Fq.

Theorem 4.6 ([61, 70]) If r is a prime, then let vr(n) be the largest integer with

rvp(n) In. Let N = #E(Fq) = q +1 t, where t 0 (mod p) and t2 < 4q. If ar,br

are integers which satisfy a,. > br, a,. + b,. = vr(N), and b,. < vr(q 1) for each prime

r p, then there exists a non-supersingular curve E defined over Fq such that E(Fq)

has group structure

z/pvP(N) ®® (zirar ® z/rar) .

rOp

Also, if N = #E(Fq) factors as a product of distinct primes, then E(Fq) is cyclic.

If n = pe, then either E[pe] {O} if E is supersingular, or else EV] L-1 .ape if E

is non-supersingular.

4.6 Isomorphism Classes of Elliptic Curves

In this section, the isomorphism classes of elliptic curves over finite fields H will

be counted. For the case H = F2k, a representative from each class will be listed.

#E(F2k) for each supersingular curve E defined over F2k, will be determined using

Weil's Theorem (Theorem 3.7). The group type of the curves may subsequently be

determined using Lemma 4.5.

Theorem 4.7 ([46]) The number of isomorphism classes of elliptic curves over Fq,

with Char(Fq) > 3, is 2q+6, 2q+2, 2q+4, 2q, for q -r=2 1,5, 7,11 (mod 12) respectively.

Theorem 4.8 ([46]) There are 2(2k 1) isomorphism classes of non-supersingular

elliptic curves over F2k. Let 7 be an element of F2k, such that Tr(7) =1 (if k is odd,

we can take 7 = 1). A set of representatives of the isomorphism classes is:

{ y2 + xy = x3 + a2x2 + as a6 E F2k, a2 E 10,71}
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Theorem 4.9 ([46]) There are 3 and 7 isomorphism classes of supersingular curves

over F2k, where k is odd and even respectively. For the k-odd case, let 7 be a non-cube

in F2k , and let a, 0, (5, w E F2k be such that

Tr(7-2a) = 1, Tr(7-4 [3) = 1, T e(8) 0 0 and Tr(w) = 1 .

Then a representative from each class is as shown in Table 4.3, along with the number

of points and group types. (The k values will be explained later)

Given an arbitrary supersingular elliptic curve E over F2k, we can compute

#E(F2k) by first determining to which isomorphism class E belongs. Then we can

use the results in the Table 4.3 to determine #E(F2k). Several efficient polynomial

time algorithms to find the isomorphism class of a curve can be found in [3].
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Table 4.3. Isomorphism classes of supersingular ECs over the field F2k

Curve E k #E(F2k) Group Type m

y2 x3 odd q + 1 cyclic 2

y2 + y = x3 + x k :.=-_. 1, 7 (mod 8) q + 1 + \/24 cyclic 4

k ---._ 3, 5 (mod 8) q + 1 \/' cyclic 4

y2 + y = x3 + x + 1 ka-1,7 (mod 8) q + 1 -12q cyclic 4

k a 3, 5 (mod 8) q + 1 + ./ 2q cyclic 4

y2 + 'yy = x3 k 0 (mod 4) q + 1 + /q cyclic 3

k z_-=. 2 (mod 4) q+ 1 ./4 cyclic 3

y2 + 'yy = x3 + a k a- 0 (mod 4) q + 1 Ng, cyclic 3

k a- 2 (mod 4) q+ 1+ Afq cyclic 3

y2 + ,y2y x3 k a-.- 0 (mod 4) q + 1 + Afi cyclic 3

k FE 2 (mod 4) q+ 1 /4, cyclic 3

y2 + 72y = x3 + 0 k a_-- 0 (mod 4) q + 1 .14 cyclic 3

k a_-- 2 (mod 4) q +1+ Aid cyclic 3

y2+y=x3+68x k even q + 1 cyclic 2

y2 +y =x3 k -0 (mod 4) q + 1 2\fi Z/_1 ED .Z,g_i 1

k E.-- 2 (mod 4) q + 1 + V4 z,fi+, ®z,4+1 1

y = x3 + co k :_-,- 0 (mod 4) q + 1 + 2.14, .Z,g+i e .z,+i 1

k a 2 (mod 4) q + 1 2.V4 Z\/4_1 ED .Z.v4_1 1
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Chapter 5
THE ELLIPTIC CURVE LOGARITHM PROBLEM

5.1 Discrete Logarithm Problem

Let G be a (multiplicatively written) finite cyclic group of order n, a be a generator

for G and )3 E G. The discrete logarithm of /3 to the base a, denoted by logs /3, is

the unique integer v, 0 < v < n, such that /3 = au. The discrete logarithm problem

(DLP), is to find an 'easy' (i.e., computationally feasible) method for computing

logarithms in a given group G. It is also referred to as the discrete-log problem.

Brief descriptions of the known methods and algorithms are as follows:

5.1.1 Linear Search Method

Computing the successive powers of a until Q is found.

5.1.2 Square Root Methods

5.1.2.1 Baby-Step Giant-Step

Let u = . Observe that if v = loges then we can uniquely write v = ju +

where 0 < i < u. Precompute a list of pairs (i, ai) for 0 < i < u and sort this list

by second component. For each j, 0 < j < u, compute ,6a -ju and check (by binary

search) if this element is equal to the second component of some pair in the list. If

fia-ju = ai for some i, 0 < i < u, then = alu+i and hence loges g = ju i. Note

that this method requires a table with u entries. [46].
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5.1.2.2 Pollard p-method

J. Pollard [57] gave a method to find logarithms which is probabilistic but removes

the necessity of precomputing a list of logarithms.

Partition the group G into three sets S1, S2 and S3 of roughly equal size. (Some

restrictions apply, such as 1 0 S2.) Define a sequence of group elements v0, v1, v2,

by

Vi =

1

vi -1

2

avi_i

i = 0 ,

vi E S1 ,

vi E S2 7

vi E S3 ,

for i > 0. It easily follows that the sequence of group elements defines a sequence of

integers { ai} and {bi}, where

vi = 0°4 abi i > 0

a0 = b0 =0

ai+i + 1,2ai or ai (mod n)

bi+i rJ bi, 2bi or bi + 1 (mod n)

depending on which set (SI, S2 or S3) contains vi_1. Making use of Floyd's algorithm,

Pollard computes the six tuple (vi, b2i), i = 1,2, ... until vi = v2i. At

this stage, we have

or as

for r ai a21 and s^_' b2i (mod n) . This gives

r logo s (mod n) .

There are only d = gcd(r, n) possible values for logo fi. If d is small then each of

these possibilities can be enumerated to find the correct value.
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5.1.3 Pohlig-Hellman Method

This method for computing logarithms in a cyclic group [56], takes advantage of the

factorization of the order of the group. Let

n = 1-1 piAi
i=1

where pi is a prime and Ai is a positive integer for each 1 < i < t. If v = loges 0, then

the approach is to determine v modulo for each i, 1 < i < t, and then use the

Chinese Remainder Theorem (see Appendix C) to compute v modulo n. We begin

by determining z v (mod pM. Suppose that

Ai -1

Z = E izipl ,

i=0

where 0 < zi < Pi 1. Let -y = an/Pi be a pith root of unity in G. Then

on/pi avton ,,v
7zo

Using one of the square root methods described in the previous section we determine

the logarithm of -yz° to the base 7 in the cyclic group of order pi in G. This gives us

z0. If Ai > 1, then to determine zi we consider

-.Z0r/Pi zip° niPT = Azi

Again zi can be found by a square root method. In this manner we can determine

all zi, 0 < i < Ai, and thus v modulo p" [46].

5.1.4 Index Calculus Method

First we attempt to find the logarithms of the elements of a fixed subset F =

{71, 72, , of G, called the factor base, as follows. We pick a random integer

s and attempt to write as as a product of elements in F:

as = 'Yf'z
i=1
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If we succeed, then taking the logarithms of both sides of this equality we get the

linear congruence

s E ai loge, ryZ (mod n) .

After collecting a sufficient number of relations in that form, one can then hopefully

solve for the indeterminates loge, ,yi, 1 < i < t.

In the second stage, we find loge, )3 as follows. Repeatedly pick random integers

s until as/3 can be written as a product of elements in F:

as = 'YIP

Taking the logarithm of both sides, we get

log Q = E bi loge, ryi s (mod n) .ti
The choice of the factor base determines the running time. An appropriate choice

of F will be a small set and at the same time the proportion of elements of G that

factor in F is large [41, 46].

For the field Fp, a practical method is the Gaussian integer method [7] and the

fastest one is the number field sieve [34] (although it appears to be impractical at

present). For the field F2k (or in general Fpk , where p is fixed [22]), we represent

the elements of F2k as polynomials in F2[x] of degree at most (k 1), where the

multiplication is performed modulo a fixed irreducible polynomial of degree k in

F2 [X] . The set F is then taken to be the set of all irreducible polynomials of degree

at most some prescribed bound b. To write as as a product of elements in F we

express it as a polynomial of degree at most (k 1), and attempt to factor it in

F2[x] as a product of polynomials in F. The running time of this method (after

some improvements) is the subexponential time (see Appendix A) L[2", c, 1/3], where

1.3507 < c < 1.4047 [6]. The best algorithms for Fr and F2k with rigorously proved

running times are due to Pomerance [58]. For fields Fpk , the number field sieve is

the best algorithm known. Unfortunately it is still unknown whether there exist

subexponential algorithms (with either heuristically or rigorously proven running

times) for the DLP in fields where both q and k tend to infinity. The running times

of the above algorithms are compared at the Table 5.1 [46].
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Table 5.1. Comparison of methods that solve the discrete-log problem

Method Time

Linear Search 0(n)

Square Root

Methods

Baby-Step Giant-Step 0( IViT, log n)

Pollard p 0( ([VW )

Pohlig-Hellman 0(EL Ai (log n + N/pi log pi))

Index

Calculus

Methods

Gaussian integer (for Fr) 4,1,1/2]
Pomerance (for Fr) 4,4 1/2]

Number Field Sieve (for Fr) 1[p,3213,1/3]

Number Field Sieve (for Fpk) L:pk, c, 1/3] (c is const)

Pomerance (for F2k) L[2k, -4-, 1/2]

5.2 Elliptic Curve Logarithm Problem

Let P E E(Fq) be a point of order n and

E(Fq) Z,i z, .

Also assume that n is known and gcd( #E(Fq), q 1) = 1. Then the elliptic curve

logarithm problem (ECLP), is to determine the unique integer 1, such that R = lP,

provided that such an integer exist.

In the paper [43], A. Menezes, T. Okamoto and S. Vanstone showed that the

ECLP in E(Fq) can be reduced to the DLP in a finite field Fr, where E(Fq) has

type (n1, n2) and m is the smallest integer such that E(n1) C E(Fri), and hence

E(n) C E(Fez). Furthermore E(Fq...) has type (cni, cn2). In general the reduction

algorithm takes exponential time (in In q), but they proved that it takes probabilistic

polynomial time for supersingular curves. When combined with a subexponential

algorithms for the DLP in a finite field, this yields a probabilistic subexponential

time algorithm to compute the ECLPs for supersingular curves. This algorithm is
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Table 5.2. Parameters used in reducing supersingular ECLP to DLP

Class of curve t Group Structure Comment rti m

I 0 cyclic q+ 1 2

II 0 Z(q+1)/2 ED Z2 q 1--,_- 3 (mod 4) (q + 1)/2 2

III ±74 cyclic k is even q+ 1+ V4 3

IV ±-124 cyclic p = 2, k is odd q + 1 T -127q 4

V ±.\/ 3q cyclic p = 3, k is odd q + 1 T 04, 6

VI ±2.14 Z4i ED Z,gTi. k is even 74, + 1 1

Class of Curve Type of E(Fq.) c

I (q+1,q+1) 1

II (q+1,q+1) 2

III ( / ± 1 ,/+ 1 ) +1
IV (q2 ± 1, q2 ± 1) q+.+1
V (q3 + 1,q3 + 1) (q + 1) (q ± \134 + 1)

VI (N/q± 1,f4± 1) 1

called the M 0 V attack. Thus, for supersingular curves, the ECLP is more tractable

than was previously believed. Table 5.2 summarizes the results [46]. The m values

for all isomorphism classes of supersingular elliptic curves over the finite field F2k

were indicated on Table 4.3 before.

If a non-supersingular curve is desired, then the curve must be chosen so that

the corresponding m value is sufficiently large. (By sufficiently large we mean m > c

values for which the DLP in Fq. is considered intractable)

Frey and Riick showed how to use a variant of the Tate pairing for Abelian

varieties over local fields, to reduce the ECLP in the n-torsion part of the divisor

class group of a projective irreducible non-singular curve over Fq (with char(Fq)
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coprime with n), to the DLP in Fqm, where m is the smallest integer such that

n1 (qm 1). For elliptic curves, this method is advantageous over the above method

as the condition n1(qm 1) is usually weaker than the condition E(n) C E(Fen) [46].

5.3 Group Structure

Miller [49] suggested an algorithm to find the type (ni, n2) of an elliptic curve E

defined over Fq in probabilistic polynomial time, given the factorization of N or

gcd(N, q 1), where N = #E(Fq).
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Chapter 6
IMPLEMENTATION OF ELLIPTIC CURVE

CRYPTOSYSTEMS

6.1 Advantages of Elliptic Curves

There are many analogies between the group of Fq-rational points on an elliptic curve

and the multiplicative group approximately same number of elements, etc. But

for a single (large) q there are many different elliptic curves and many different N to

choose from. Hence elliptic curves offer a rich source of "naturally occurring" finite

Abelian groups. It is this major advantage that makes elliptic curves attractive for

cryptography.

6.2 Selecting a Curve

One of the most crucial steps in developing an elliptic curve cryptosystem, is selecting

the appropriate curve to use. Some elliptic curves are susceptible to attacks that

make them no more secure than existing systems today. Although not proven the

curves that has the following characteristics are believed to provide more security

than all the other systems in use [46]:

Non-supersingular (against MOV attack; see Section 5.2)

Large order (against square root methods; see Section 5.1.2)

The order is divisible by a large prime factor (against Pohlig-Hellman method;

see Section 5.1.3)

Optimal normal basis in the underlying field (for efficient finite field arithmetic;

see Section 8.2)

In addition to above, we will prefer a curve whose group is cyclic.
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6.3 Counting Points on Elliptic Curves

We have seen in Section 6.2 that security of the Elliptic Curve Cryptosystem depends

on the curve selected, and some properties that its order should satisfy. So it is crucial

to know the order or else to find it.

One method of selecting curves is to choose a curve E defined over Fq, where

q is small enough so that #E(Fq) can be computed directly, and then using the

group E(Fen) for suitable m. Note that #E(Fqm) can be computed from #E(Fq) by

the Weil Theorem (Theorem 3.7). Observe also that if n divides m, then #E(Fqn)

divides #E(Fen), and so we should select n such that it is prime, or else a product

of a small factor and a large prime. But clearly the curve selected that way is not a

random one [46].

If a random elliptic curve is required, then the order of the curve should be

computed. In 1985, Schoof [62] presented a polynomial time algorithm for computing

#E(Fq), the number of Fq-rational points on an elliptic curve E defined over the field

Fq, where q is an odd prime. A step by step presentation of this algorithm, which

we constructed based on the above original paper, is presented in Section 6.4. The

algorithm has a running time of O(log8 q) bit operations, and is rather cumbersome

in practice. The algorithm basically uses endomorphisms and division polynomials.

Using fast multiplication technics it is possible to reduce the total running time

to 0(log8' q) bit operations, for any > 0, however since these technics are only

practical for very large q, there is still place for improvement. Buchmann and Muller

combined Schoof's algorithm with Shanks' baby-step giant-step algorithm, and were

able to compute orders of curves over 4, where p is a 27-decimal digit prime [46].

However, as explained before, from the point of view of practical cryptography

curves over fields of characteristic 2 are more important. For this reason, in [28]

Koblitz adapted Schoof's algorithm to curves over F2k and studied the implemen-

tation and security of a random curve cryptosystem. Using heuristic arguments,

Koblitz showed that if Wig, is a randomly chosen non-supersingular elliptic curve,

then the probability that N = #E(Fq) is divisible by a prime factor > NIB, is about
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log2(B/2). Thus, for example, the probability that the order of a randomly chosen

non-supersingular curve over F2155 is divisible by a 40-digit prime is approximately

0.136, which means one can expect to try about 7 curves before a suitable one is

found [46].

Menezes, Vanstone and Zuccherato implemented a version of Schoof's algorithm

for curves over fields of characteristic 2, and used some heuristic arguments to im-

prove the running time, such as using Schank's baby-step giant-step method to man-

age modular arithmetic efficiently [44]. In their implementation multiplying field

elements roughly takes 90% of all the time taken by the algorithm. Thus building

a special purpose chip or finding faster methods to reduce the time taken by field

multiplications will dramatically improve the total running time. Other possible im-

provements that they did not implement, were to use Pollard's lambda method for

catching kangaroos [57] instead of the baby-step giant-step method. Both has the

same expected running time but the later requires very little storage [46].

In 1991, Atkin described a new algorithm for computing #E(K) which uses

modular equations. The algorithm has not been rigorously analyzed but performs

remarkably well in practice. He also implemented another algorithm inspired by

Elkies' ideas, but it is only used for q odd, and generalization to the case q even does

not appear to be straightforward [46].

6.4 Schoof's Algorithm

Schoof's algorithm is a deterministic algorithm to compute the number of points on

an elliptic curve. The versions presented below are constructed based on Schoof's

original paper [62]. An outline of the Schoof's algorithm is as follows:

By Hasse's Theorem (Theorem 3.2), the number of points on an elliptic curve

E over the field of q = 2k elements is of the form N = q + 1 t, where Its < 2.14.

Schoof's Algorithm determines N modulo 1 for a bunch of small primes 1. If we run

through enough 1 so that 111 > 4A then N can be uniquely determined by the

Chinese Remainder Theorem (see Appendix C).
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For 1 > 2, one determines N modulo 1 by looking at the points of order 1, with

coordinates in field extensions of Fq. It turns out that N modulo 1 is determined by

the action of the map (x, y) 1-4 (xq, yq) on the set of points of order 1. For example,

suppose that the map (x, y) J-÷ (xq, yq) leaves some such point fixed. Then this

means that there is a point of order 1 whose coordinates are in Fq, i.e., our original

group of points with Fq coordinates has a nontrivial element of order 1. In that case

N E-_- 0 (mod 1). More generally, the value of N modulo 1 is determined by how

the q-th power map permutes the points of order 1. Thus, a basic role in Schoof's

algorithm is played by the so-called "division polynomials", which characterize the

point P (with coordinates in extensions of Fq) for which 1P is the identity.

Below is the Schoof's algorithm, preceded with the definitions used while de-

scribing it.

6.4.1 Definitions

Let EIFq be the curve y2 = x3 ax + b, where char(Fq)neq2, 3. The polynomials

1117,(x, y) E Fq[x, y] for n > 1 are defined as:

11_1(x,y) = 1

To(x, y) = 0

1111(x, y) = 1

T2(x,y) = 2y

1/3(x, y) = 3x4 + 6ax2 + 12bx a2

*4(x, = 4y(x6 + 5ax4 + 20bx3 5a2x2 4abx 8b2 a3)

W2n(x, Y) = 11'n (Tn+21`2n-i In-2Wn2+1)/2y (n > 1)

12n +1 (x, Y) = Wn+2W3n (n > 1)
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The division polynomials fn(x) E Fq[x] are defined as follows: First eliminate all

y2 terms from lifn using the elliptic curve relation, and call it then define:

fn (x) =
(x, y)

lin(x,Y) /Y

if n is odd,

if n is even.

First version describes the algorithm using words and the latter is the more

detailed and formal version. Parallelization is also introduced during the detailed

description in the second version.

6.4.2 Version 1

Input: Underlying field Fq, the list of primes up to O(V4),

polynomials fn for 1 < n < 4

Output: #E(FO, i.e., the number of points on the elliptic curve E(Fq)

1. Find the smallest L such that product of all primes up to L (except 2 and p)

is greater than 41/4 ; call this set of primes as S.

2. Calculate the functions fn for 5 < n < L

3. For each number 1 in the set S do the followings:

(a) v q (mod 1)

(b) If there is a non-zero point P in E[1] for which OP = ±vP holds

then

i. if 4P = vP holds
then t 0 (mod 1)

else (i.e., if OP = vP holds)

A. find a squareroot w of q (mod 1)

B. if 0/P ±wP

then t 0 (mod 1)

else if 01P = wP
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then t 2w (mod 1)

else (i.e., 01P = wP) t = 2w (mod 1)

else (i.e., if there is no point satisfying 4P = ±vP)

check for every T E {1, 2, ... , l} to see if there is a non-zero point P in

E[l] for which OPP +gP = 7-01 holds. Store the solution as t T (mod 1).

4. Compute the value of t using the values (t mod 1) for (1 E S) in the Chinese

Remainder Theorem (see Appendix C).

5. The number of points on the elliptic curve is equal to (q +1 t).

6.4.3 Version 2

Input: Underlying field Fq, the list of primes up to 0(\/4),

polynomials fn, for 1 < n < 4

Output: Integer #E(Fq) which is the number of points on the elliptic curve E(Fq)

1. Find the smallest L such that product of all primes up to L (except 2 and p)

is greater than 4/ ; call this set of primes as S.

2. For u from 1 up to logL do the followings in parallel: Calculate the function

.1'. for 4 + 2u-1 < n < 3 + 2u

3. In parallel for each number 1 in the set S, do the followings:

(a) v q (mod 1)

(b) if v is even then

GCD1 = gcd((e2 x)g(x)(x3 + Ax + B) + fv_i(x)fv+i(x), fi(x))

else

GCD1 gcd((e2 x)fi (x) + fv-i (x)fv+i (x) (x3 + Ax + fi(x))

(c) if GCD1 0 1 then

i. if (I) = 1 then t FE 0 (mod 1)

else
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A. Find a square root w of q by checking in parallel for

all w E {1,2,...,1- 1} if w2 -q (mod 1)

B. if w is even then

GCD2 = gcd((xq-x)f,2,(x)(x3+Ax+B)+ f,_1(x)f±i(x), fi(x))

else

GCD2 = gcd((xq-x)420(x)+ fw_i(x) fw+i(x)(x3 + Ax + fi(x))

C. if GCD2 = 1 then t 0 (mod 1)

else

I. if w is even then

GCD3 = gcd(4(x3 + Ax + B)(q-1)I2 fiv(x) 420_2(x) fw_i(x)

+ g_2(x).f.+1(x), fi(x))

else

GCD3 = gcd(4(x3 + Ax + B)(q+3)12 43v(x) gv+2(x).f._1(x)

+ fiv-2(x)fw+1(x), ft(x))

II. if GCD3 = 1 then t -2w (mod 1)

else t 2w (mod 1)

else find the values of T E {1, 2, . , l} for which the polynomials POL1

and POL2 are zero (mod fi(x)). (can be done in parallel for every T E

{1, 2, . , l }) Store the solution as t T (mod 1).

i. a = Tv+24q-i 41v-24141 417q2+1 11q

ii. = ((x xq2)1F2, lif_14,+1)

iii. POL1 = (Tv- Tv+i (e2 + xq + x))/32 + xna2)

+ Vrq +1F?T-11141/62ing

iv. POL2 = 4q17q14q(a((2e2 + x)11q,111v-iqfv-1-1) "2/34q)

041,2)(11'7+214_1 1117-2n-F1)q

4. Compute the value of t using the values (t mod 1) for (1 E S) in the Chinese

Remainder Theorem (see Appendix C).

5. #E(Fq) = (q +1 t).
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Note that for characteristic 2, the general form of the curve E I Fq is

y2 x3 a2x2 +

where a2 E {0, w }, w E Fq being a fixed element of trace 1, and as E F. Then the

division polynomials given above simplifies as shown below:

f0 = 0
II = 1

12 = x

f3 = X4 + X3 + as

h = x6 ± a6x2

f2n+1 = fn3fn+2 ± fn-1 fn3+1 n > 2

X f2n = fn2infn+2 ± fn-2 Lifn+1 n> 3

The algorithm will also be simplified ( see [28, 46] or [44]).

6.5 A Cryptographically Useful Subclass of Elliptic Curves

The following proposition gives the orders of some special elliptic curves:

Proposition 6.1 ([4]) The order of the group of the elliptic curve defined by y2 =

x3 + as over Fp with p "=-' 1 (mod 3) is p +1. The order of the group of the elliptic

curve defined by y2 + y = x3 + as over F2k , where k is odd, is 2k + 1.

In the implementation, the cryptographically useful curves are found, if the

number p* in the factorization of the group order

p+1 = 23.p* or 2k + 1 = 3 - p*

is a large prime. In [4], it is shown that it is indeed possible to find curves with

this property. On these curves, finding an element with high order is achieved by

calculating the 6th and the 3rd order of some arbitrary element, respectively, and

then checking if the result is not the identity. If it is not, then the order of this

element is a multiple of p*.
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Table 6.1. Operations required by different methods

Method Adding two distinct points Doubling a point

Addition formulas I + 2M I + 3M

Projective coordinates 13M 7M

Notation: I=Inversion M=Multiplication

6.6 Improving Speed

Instead of applying the addition formulas directly one can change the method, i.e.,

restore to projective coordinates to gain speed by avoiding the costly inversion oper-

ation. Table 6.1 summarizes the number of operations needed by different methods

[46].

6.7 ElGamal Cryptosystem Using Elliptic Curves

Elliptic curves can be used to implement the ElGamal Cryptosystem [47]. The

protocol is as follows:

1. (Setup) A non supersingular curve E of the form y2 + xy = x3 + a2x2 + as

defined over F2k is chosen. A point P (preferably a generator) on E is made

public. A normal basis is used to represent the elements of F2k . User B wants

to send the message (M1, M2) to user A.

2. A chooses an integer a and makes public aP, while keeping a itself secret.

3. B selects a random integer v and computes the points vP and avP = y),

using the public point P and A's public key aP.

4. Assuming that x, 9 0, B sends to A the point vP, and the field elements

M1 and M2y.
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5. To read the message, A multiplies the point vP by his secret key a to obtain

(x, y), from which he can recover M1 and M2 in two divisions.

A multiple of an elliptic curve point can be found using the repeated double-and-

add algorithm (see Appendix B.2). Morain [50] presents some addition-subtraction

chains for integers k which lead to faster algorithms than that method. Koyama and

Tsuruoka do the same for elliptic curves over the ring Zn, [46].

In this system four field elements are transmitted in order to convey a message

consisting of two field elements. Thus there is message expansion by a factor of 2.

This can be reduced to 3/2 by only sending x1 and a single bit of y1 /x1 (if xi 0 0),

instead of sending the point P = (x1, yi). This is called point compression technic.

Details can be found in [46] and [23]. For a software implementation of the ElGamal

cryptosystem over the finite field F2104 see the paper [20].

In [8], R. Candall describes an implementation of the elliptic curve analogue

of the Diffie-Hellman key exchange. Crandall presents a method for performing

arithmetic modulo p using only shift and add operations, eliminating the need for

costly divisions. This technic, together with an inversionless parameterization of the

elliptic curve, results in a very efficient implementation of elliptic curve arithmetic.

The system is called Fast Elliptic Encryption (FEE).

6.8 Implementations

Table 6.2 summarizes the results of some of the implementations [46].

For some other hardware designed to perform calculations in finite fields, see

[9, 12, 14, 71] and also consult the books [37, 42, 45, 24].
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Table 6.2. Speed comparison of some implementations (in clock cycles)

Year Implementer/Device Clock Rating Inversion Multiplication

1988 Newbridge Microsystems Inc.

& Cryptech Systems Inc.

20 MHz 50,000 1,300

1993 VLSI device 40 MHz 3,800 165
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Chapter 7
OTHER APPLICATIONS OF ELLIPTIC CURVES

7.1 Primality Testing Using Elliptic Curves

The classical methods of primality testing are as follows [35]:

Trial Division: Divisibility of the given number is tested with primes up a certain

bound. Clearly the bound should be less than but it is infeasible if it is

very big.

Fermat's Little Theorem: Finding an integer a for which an 0 a (mod n) will

prove that the number n is composite. The number a is called a it witness.

However finding a witness might be difficult or even impossible. There exist

composite numbers, the so-called Carmichael numbers, for which there exist

no witnesses of n.

Probabilistic Compositeness Test: A witness of the compositeness of the num-

ber n is found if an integer a E {1, 2, ... , n 1} is found that fails to satisfy

a 1 (mod n) or ar.2z = (mod n) ,

for some i with 0 < i < k, where n 1 = r 2k. If the generalized Riemann

hypothesis were known to be true, it would suffice to verify the above condition

for a in {2, 3, ... , r2(logn)21}, because the interval would contain a witness if

n were composite.

Pocklington's Theorem: Let s be a positive divisor of (n 1) with s > 1).

Randomly select integers a, until one satisfies:

an---1 al: 1 (mod n) and gcd(a(n-1)/q 1,n) = 1
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for each prime q dividing s. Then every prime dividing n is congruent to 1

modulo s. If that doesn't work, then n is probably not a prime.

Downrun: Simultaneously factor n 1 and n 1. If the unfactored part of any of

them is found to be a probable prime, then apply the strategy recursively to

prove the primality of this newly found probable prime. In this way a chain of

primes n = no, n1, . , nt is built, such that ni divides ni_1 + 1 or ni_1 1 and

such that the primality of ni implies the primality of ni_i.

11 Divisors: The algorithm based on the following theorem is not only polynomial

in time; but it is even efficient in practice.

Theorem 7.1 Let r, s and n be integers satisfying

0 < r < s < n, s > s n, gcd(r, s) = 1

Then there exist at most 11 positive divisors of n that are congruent to r modulo

s, and there is a polynomial algorithm for determining all these divisors.

A combination of this theorem with Pocklington's Theorem yields the following

primality test: First find an integer a satisfying both conditions in the previous

method. This shows that the prime divisors of n are all congruent to 1 modulo

s. Next apply the algorithm in the above theorem to find at most 11 positive

divisors of n that are congruent to 1 modulo s. If no nontrivial factor of n has

been found in this way, then n is prime.

Jacobi Sum Test: If, for positive integers n and s, certain Termat-like' tests hold

for n, s, and the prime divisors q of s, then any prime divisor of n is congruent

to a power of n modulo s. This test is similar to the previous method but here

s can be taken as it any product > N/T-c. The tests involving Gauss sums can

be replaced by tests involving Jacobi sums. The Jacobi sum test consists of

various `Fermat-like' tests.

The main problem with the classical primality tests is that they are tied to

groups that are fixed as soon as n is fixed. If those groups turn out not to have the
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favorable properties that are needed to complete the primality proof, then nothing

can be done about it, since changing the group would change n and consequently

change the problem. Elliptic curves provide the choice of groups such that their

relevant properties are randomized in the proper way, so that if the group chosen

does not have the right properties, then another group will be chosen [35].

For a randomly chosen elliptic curve over Fn, with n prime, the group order

#E(Fn) will behave as a random integer near (n + 1), by Hasse's Theorem (Theo-

rem 3.2). And the choice of the elliptic curve can be repeated until E(Fn) has the

favorable properties required. The following theorem can be formulated:

Theorem 7.2 ([35]) Let n > 1 be an integer with gcd(n, 6) = 1. Let E be an elliptic

curve over Z InZ, and let u and s be positive integers with s dividing u. Suppose

there is a point P on the curve satisfying:

u P = 0 and u P 0
for each prime q dividing s. Then #E(Fp) 0 (mod s) for every prime p dividing

n, and if s > (n114 + 1)2 then n is prime.

This theorem leads to the following primality test based on elliptic curves [35]:

Select an elliptic curve E over Z /nZ and an integer u such that

and

u = #E(Fn) if n is prime

u = v - q ,

for a small integer v > 1 and a probable prime q > (n114 + 1)2.

Given the pair (E, u), select a point P E E (2 I nZ) satisfying the requirements

of the above theorem, with s = q by performing the following steps:

1. Randomly select an x E ZInZ and find y such that the point P = (x, y) is on

the elliptic curve E(Z /nZ).
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2. Compute (ulq)- P =v P. If v P is undefined, then a nontrivial divisor ofn

has been found, which is exceedingly unlikely. If v P = 0, then go back to the

previous step; this happens with probability < 1/2 if n is prime. Otherwise if

v P # 0, verify that q (v P) = u P = 0, which must be the case if n is

prime, because then #E(Fn) = u.

3. Prove the primality of q recursively using this algorithm, unless the primality

of q can be proved directly using some other method.

Using an efficient method for choosing E and u as explained in [35], the expected

running time of the above test will be polynomial in log n.

7.2 Factorization Based on Elliptic Curves

Lenstra's factorization method is based on the same idea as Pollard's (p 1) method

(for both algorithms see Appendix B.5). The order of the group of rational points

on the elliptic curve is used in a similar way as (p 1). The two methods are almost

identical. The advantage of the elliptic curve is that there are a large number of

different curves that can be tried each with a potentially different order. In the

Pollard's method, we don't have the choice of changing p [67, 59].

The following theorem is due to Lenstra:

Theorem 7.3 ([67]) The elliptic curve method with v = L:p,1, 1/2]1/V splits any

integer n in expected time 0(L[p,1, 1/2]+°(1)(logn)2) where p is the smallest prime

divisor of n.

Corollary 7.4 ([67]) The elliptic curve method can be used to factor completely any

n in expected time 0(L[n,1,112]1+0(1)).

The above results show that asymptotically, Lenstra's method is as good as any

previously known method to factor n. It has ,however, in addition several advantages.

It is easy to program and ideally suited to implementation in parallel; many elliptic

curves can be tried simultaneously and independently. It requires very little storage



46

and can be conveniently run as a background job. And if n has a small prime factor,

this can be expected to be found sooner than larger ones and helps to terminate the

method in a shorter time. The running time of the previous methods was independent

of the size of the factors [67].
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Chapter 8
FINITE FIELDS

8.1 Choosing a Field

To efficiently implement the Elliptic Curve Cryptosystems, it is important to select a

curve and a field so that the number of field operations involved in adding two points

is minimized. Curves over the field K = F2k are preferred because of the following

reasons [46]:

The arithmetic in F2k is easier to implement in computer hardware than the

arithmetic in finite fields of characteristic greater than 2, because of its binary

nature.

When using a normal basis representation for the elements of F2k, squaring a

field element becomes a simple shift of the vector representation, and thus the

multiplication count in adding two points is reduced.

With curves over F2k, it is easy to use the point compression technic (see

Section 6.7), i.e., to recover the y-coordinate of a point given its x-coordinate

plus a bit of extra information. This is useful in reducing message expansion

in the ElGamal cryptosystem as will be explained later in this chapter.

For these reasons and because the supersingular curves do not offer an advantage

over finite field based cryptosystems, only the non- supersingular curves over F2k will

be considered in the rest of this thesis.

8.2 Representation of Finite Field Elements

For short notes on finite fields, please refer to Appendix D. The elements of the

field GF(2k) can be represented in several different ways [42, 45, 38]. The polyno-
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mial representation seems to be useful and suitable for both hardware and software

implementations. According to this representation an element a of GF(2/9 is a poly-

nomial of length k, that is of degree less than or equal to (k 1), written as

k-1

a(x) = E aixi ,

i.0

where the coefficients ai E GF(2), i.e., ai E {0,1}.

As a shorthand to the polynomial representation, the element a can be repre-

sented as the k-dimensional vector

a = (ak_iak-2 aiao)

Software implementations are often based on the word-level representations of the

field elements. So, assume that k satisfies the inequality

sw > k > (s 1)w ,

where w is the word-size which depends on the implementation details and the com-

puter. In this case, partitioning the k-dimensional vector into w-bit blocks, the

word-level representation of a(x) becomes

(As_1243_2 AiAo)

where Ai is of length w for i = 0,1, , (s 1). These Ai blocks are also represented

as polynomials of degree (w 1) using the notation Ai(x). In hardware, a field

element is stored in a shift register of length k.

In general, the field F2k can be viewed as a vector space of dimension k over F2.

Then, there exists a set of k elements ao, ai, , ak_i in F2k such that each a E F2k

can be written uniquely in vector space representation as

k-1
a = E aiai

i=0

a can also be represented as the 0 1 vector

ai E {0,1} .

(ak-i, 7 ai, ao)
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A normal basis of F2k over F2 is a basis of the form

where )3 E F2k; it is well known that such a basis always exists [37]. Any element

a E F2k can be represented as

k-1
a = E ai E 10,11 .

Unless otherwise noted, the first, i.e., the polynomial representation will be used.

In order to simplify the analysis, we will assume k = sw .

8.3 Arithmetic in Finite Fields

An irreducible polynomial n(x) of order k is needed to construct the finite field F2k,

which is also called the Galois Field GF(2k).

The addition of two elements a and b in GF(2k) is performed by adding the

polynomials a(x) and b(x), where the coefficients are added in GF(2). This is equiv-

alent to the bit-wise XOR operation on the vectors a and b. The word-level addition is

simply the bit-wise XOR operation on a pair of 1 -word, i.e., 2 w-bit binary numbers,

which is a readily available instruction on most general purpose microprocessors and

signal processors. Assuming the processor can perform this word level XOR operation

in one cycle, the computation of c := a + b requires s cycles. While analyzing the

circuit delays in hardware implementations, however, TA and Tx will be used to

represent the delays of single 2-input AND and XOR gates, respectively.

During the multiplication of two elements a and b in GF(2k), reduction by the

irreducible polynomial n(x) is often required. The product c = a b E GF(2k) is

obtained by computing

c(x) = a(x)b(x) (mod n(x)) ,

where c(x) is a polynomial of length k, representing the element c E GF(2k). Thus,

the multiplication operation in the field GF(2k) is accomplished by first multiplying
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the input polynomials, and then performing a modular reduction using the generating

polynomial n(x).

The word-level multiplication operation receives two 1-word (w-bit) polynomials

A(x) and B(x) defined over GF(2), and computes the 2-word polynomial

C(x) = A(x)B(x) .

The degree of the product polynomial C(x) is 2(w 1). For example, given A =

(1101) and B = (1010), this operation computes C as

A(x)B(x) = (X3 + X2 + 1) (X3 + ) = X6 + x5 + X4 + X = (0111 0010) .

The implementation of this operation, which we call MULGF2 as in [30], can be per-

formed in three different ways:

1. An instruction implemented on the processor

2. The table lookup method

3. The emulation using the XOR and SHIFT operations

The details of the analysis of these methods can be found in [30]. The fastest is the

first one, while the slowest is the last one. In our analysis, we will simply count the

number of MULGF2 operations, and assume that they are implemented using any of

the above methods. A simple method for implementing the table lookup approach

is to use two tables, one for computing the higher (H) and the other for computing

the lower (L) bits of the product. The tables are addressed using the bits of the

operands, and thus, the total size of these tables is of size 2 x 2w x 2w x w bits. We

store the values H and L in two table reads. Other approaches are also possible.

Since squaring is a linear operator in F2k , when using the normal basis represen-

tation, square of a becomes

k-1 k-1
a2 = E E aia;

i.0 j=0
k-1
E ai 02i + 2 E aiajO

i=j=0 k-1>i>j>0
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k-1
2 n2j+1ai p

i=0
k-1

Eaifi2i+1
i=0
k-1

Eai_ /fi
i=o

= (ak_2, , ao, ak_i) ,

with indices reduced modulo m. Hence a normal basis representation is advantageous

because squaring a field element can be accomplished by a simple rotation of the

vector representation, an operation that is easily implemented in hardware; thus

squaring an element also takes one clock cycle.

Multiplication in a normal basis representation is more complicated. Let

A =-- (ak_i, , a1, ao) and B = (bk-1,- , b1, b0)

be arbitrary elements in F2k , and let

= A B = 7 Ci CO)

Then
k-1 k-1 k-1 k-1 klk-1

= E E aibiA1°)/ = E E aibi4 = E E ai+ibj+iej ,

i=0 .J=0 i=0 J.0 i =0 j=0

where E {0, 1} and is defined by

They can be proven to satisfy

4)j

k 1
022 = E 4,32'

1=0

for all 0 < j, / < k 1 .

Hence if a logic circuit with inputs A and B is built to compute the product

digit co, then the same circuit with inputs A2-1 and B2-1, which are simply the cyclic

shifts of the vector representation of A and B, yields the product digit c1. In this

way C can be computed in k clock cycles. Massey and Omura [53] constructed a

serial-in serial-out multiplier to exploit this particular aspect of normal bases [46].



52

The complexity of such a circuit is determined by CN, the number of non-zero

terms .147°.), since this quantity measures the number of interconnections between the

registers containing A, B and the product C. Clearly, CN < k2. A lower bound

on CN is CN > 2k 1 [51]. If CN = 2k 1, then the normal basis is said to be

optimal. Optimal normal bases were introduced and studied by Mullin, Onyszchuk,

Vanstone and Wilson. The constructions together with a list of fields for which these

bases exist, can be found in [51]. Gao and Lenstra proved in [13] that the optimal

normal bases constructed in [51], are essentially all of the optimal normal bases. An

associated architecture for a hardware implementation is given in [1]. Using this

architecture a multiplication can be performed in k clock cycles.

Finally, the most efficient technic, from the point of view of minimizing the

number of multiplications, to compute an inverse of an element in F2k was proposed

by Itoh, Teechai and Tsujii [68]. Observe that if a E F2k, a 0, then

If k is odd, then

yields

-2k-2 -1\) 2a -1 = a = a2".
2k-1 1 (2(k-1)/2 1)(2(k-1)/2 1)

= a

Hence it takes only one additional multiplication to evaluate a2k-1-1 once the quan-

tity a2(")/2-1 is known (ignoring the cost of squaring which is a shift operation). If

k is even, then

a2k-1-1 = 2(2(k-1)(2-1)(2(k-1)/2+1)+i

and consequently it takes two additional multiplications to evaluate a2k-'-1 once

the quantity a2(k-1)/2-1 is known. The procedure is then repeated recursively. This

method requires exactly

Llog2(k 1)] + w(k 1) 1

field multiplications, where w(n) denotes the Hamming weight of 71, i.e., the number

of l's in the binary representation of n [46].
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Chapter 9
A REDUCTION METHOD FOR MULTIPLICATION

In this chapter, a new table lookup based reduction method for performing the modu-

lar reduction operation is proposed. This method can be used to obtain fast software

implementations of the finite field multiplication and squaring operations. The re-

duction algorithm has both left-to-right and right-to-left versions, which respectively

improve the standard and Montgomery multiplication methods. Furthermore, it is

shown that the right-to-left version of the proposed reduction method also works in

the integer case, if the modulus n is an odd number.

9.1 Introduction

The software implementation of the arithmetic operations in GF(2k) require that we

design word-level algorithms for efficient implementation on current general purpose

microprocessors. We propose a new table lookup based reduction (TLBR) method

for performing the modular reduction operation, which can be used to obtain fast

software implementations of the finite field multiplication and squaring operations.

The proposed modular reduction method has three important properties:

The method works for an arbitrary generating polynomial n(x). It does not

assume any special structure in n(x), for example, the generating polynomial

need not be a trinomial, a sparse polynomial, or an all-one-polynomial (AOP).

However, in such cases, the method simplifies to certain modular reduction

methods existing in the literature.

The method provides word-level algorithms, enabling efficient software imple-

mentations of finite field multiplication and squaring operations.
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The method has both left-to-right and right-to-left versions, which are useful

for performing both the standard and the Montgomery multiplications in finite

fields.

Furthermore, it turns out that the right-to-left version of the TLBR method is also

applicable to the integer case, giving a more efficient Montgomery multiplication

algorithm. The left-to-right version, however, turns out to be inefficient in the integer

case.

9.2 Table Lookup Based Reduction Algorithms

The proposed modular reduction methodology is a table lookup based method, which

uses a table of the multiples of the generating polynomial n(x), and performs a word-

level division. We start with n(x), which is a polynomial of degree k, and compute all

multiples of n(x) having degrees less than k + w. Consider the set of all polynomials

over GF(2) of length w and the set of all w-bit integers as

Qw = {1,x, x + 1, X2, X2 ± 1, X2 ± X, . Xtv-1 ev-2 ± 1} ,

.rw = 1} .

Let q; (x) be the ith element of Qw and

vi(x) = qi(x)n(x)

for i E I. The polynomial vi(x) is of degree less than k + w, which we represent as

an (s + 1) -word number

vi(x) = ViIVi,o)

We then construct the table T1 containing 2' rows, in which we store the polynomial

vi(x) using its most significant word (w-bits) as the index, i.e.,

(Vis) = (Vio-1 Vi,iVi,o)

for i E 1w. An important observation is that the most significant words Vio for i E 1-w

span the set Q, in other words, they are all unique.



Theorem 9.1 The most significant words V,8 are all unique for i E

Proof Assume Vio = Vio for i j. The polynomial

p(x) = vi (x) + vi (x)

has degree less than k, the degree of p(x), since

p(x) = +

= (0133_1 PiP0)

Furthermore, p(x) is divisible by n(x) since

p(x) = qi(x)n(x) + qi(x)n(x) = (qi(x) + qj(x))n(x) ,

which means p(x) can only be the zero polynomial, i.e., i = j.
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0

The table T1 will be used in the left-to-right TLBR algorithm for reducing polyno-

mials modulo n(x), i.e., to compute

p(x) (mod n(x)) .

In order to perform the Montgomery-type reduction, we use a right-to-left TLBR

algorithm and obtain

x-kp(x) (mod n(x)) .

This algorithm requires that we construct a table of multiples of n(x) based on the

least significant words. Similarly, we take the polynomial

vi(x) = qi(x)n(x)

for i E 1,, and construct the table T2 containing 2" rows. The table T2 keeps the

polynomial vi (x), where we use the least significant word Vi,0 as the index, i.e.,

T2 (Vi,O) = (Vio 142121)

The uniqueness of the least significant words 14,0 depends on whether n(x) is not

divisible by x.
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Theorem 9.2 The least significant words Vo are all unique for i E 1 if and only

if n(x) is not divisible by x.

Proof Assume Vo = Vi,0 for i j. The polynomial

p(x) = (vi (x) + vi (x))

has degree less than k, the degree of p(x), since

p(x) = x-w ((Vi,sVi,s-i VoVi,o) + (Vi,slij,s-1. Vjo.Vi,o))

= x-w(P, P2P10)

(Ps P2P1)

Furthermore, p(x) is divisible by n(x) if and only if

gcd(xw, n(x)) =1

since

p(x) = x-"(qi(x)n(x) + qj(x)n(x)) = x'(qi(x) + qi(x))n(x) .

Therefore, p(x) can only be the zero polynomial, i.e., i = j. The condition

gcd(xw, n(x)) =1

is satisfied if and only if n(x) is not divisible by x. 0

The tables T1 and T2 are used to reduce a polynomial of length (sw + w) to

a polynomial of length sw using the irreducible polynomial n(x). Let p(x) be a

polynomial of length (sw + w), which is to be reduced, denoted as

p(x) = (PsPs_i PiPo)

The left-to-right TLBR algorithm computes

p(x) (mod n(x)) ,

while the right-to-left TLBR algorithm computes

x-"p(x) (mod n(x)) .

The resulting polynomial in both cases is of length sw.



Left-To-Right TLBR Algorithm: To reduce

select the entry

p(x) = PIA)

(Vs IVs -2 ViVo)
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from the table T1 using the index Ps = Vs. Since T1 was constructed so that

the element

(P078-117,2 VIVO

resides in position P,, we have

p(x) := (PsPs_i PiPo) + (PsysIVs -2

:= (0.F1_1 PIPiD

where Pi = P3 + Vi for j = 0,1, ... , s 1. We also discard the most significant

w bits of the new p(x). Since we add a multiple of n(x) to p(x), and obtain a

polynomial of length sw, we effectively compute

p(x) (mod n(x)) ,

as required. We denote the above computation as

p(x) := p(x) +71(Ps)

Right-To-Left TLBR Algorithm: To reduce

select the entry

p(x) = (PsPsi- PiPo)

(vsv.,-1 V1)

from the table T2 using the index Po = Vo. Since T2 was constructed so that

the element

(vsysi viP0)
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resides in position P0, we have

P(x) := (P5Ps-1- liP0) + -1413o)

:= pi 0) ,

where Pi = +17; for j = 1, 2, ... , s. We then shift the new p(x), w bits to

the right, i.e., we multiply it by x-z". Since we add a multiple of n(x) to p(x),

and then, multiply it by x' in order to obtain a polynomial of length sw, we

effectively compute

x-wp(x) (mod n(x)) ,

as required. We will denote the above computation as

p(x) := x-w (p(x) + T2(130))

9.3 Standard Multiplication Using TLBR Method

The standard multiplication algorithm computes

c(x) = a(x)b(x) (mod n(x))

given a(x), b(x), and n(x). In order to apply the TLBR method, we first construct

the table T1 using the generating polynomial n(x). The algorithm then proceeds by

multiplying one word of a(x) by the entire b(x), which is followed by a table lookup

reduction to reduce the partial product. We will call this algorithm STDMUL, whose

steps are given below:

Algorithm STDMUL

Step 0: Construct T1 using n(x) and w

Step 1. c(x) := 0

Step 2. for i = s 1 downto 0 do

Step 3. c(x) xwc(x) + Ai (x)b(x)

Step 4. c(x) c(x) + (Cs)

Step 5. return c(x)
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The operation in Step 4 of STDMUL is performed by first discarding the sth (the

most significant) word of

c(x) = (CsCs_i C1C0)

and then by adding the s-word number

Ti(Cs) =

to the partial product c(x) as

Vi Vo)

Cs-1 Ci-2 C1 CO

Vs-1 Vs-2 V1 VO

Similarly, we perform the standard squaring operation using the TLBR method. This

algorithm is denoted as STDSQU, whose steps are given below. An important saving

in this case is that the cross product terms disappear because the ground field is

GF(2). Since

k -1

a2 (X) = E aix2i = ak_ix2(k-1)
ak_2X2(k-2) + aix2 + a0

i=0
(9.2)

the multiplication step (i.e., Step 3) in STDMUL can be skipped. The standard

squaring algorithm, called STDSQU, starts with the degree 2(k 1) polynomial

c(x) = a2(x) given by

c(x) = (ak_1Oak_20 0(404) ,

and then performs the reduction steps using the table T1.

Algorithm STDSQU

Step 0: Construct T1 using n(x) and w

Step 1. c(x) := Etfc; aix2i

Step 2. for i = 2s 1 downto s do

Step 3. c(x) := c(x) + Tl (Ci)

Step 4. return c(x)
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We perform the operation in Step 3 of STDSQU by first discarding the ith (the most

significant) word of

c(x) = (CiCi_i CiCo)

and then by adding the s-word number

Ti(Ci) = (Vs-iVs-2- ViVo)

to the partial product c(x) by aligning 17,1 with Ci_i from the left:

Ci_i Cfi-2 Ci-s+1 Ci-s C1 CO

Vs-1 Vs-2 V1 VO

Thus, each addition operation in Step 3 requires exactly s XOR operations.

9.4 Example : Standard Multiplication Using TLBR

We take the field GF(28) to illustrate the construction of the table T1, and also give

an example of the standard multiplication operation using the TLBR method. We

select the irreducible polynomial as

n(x) = x8 + x5 + x3 + x2 +1 . (9.3)

We also select w = 4, which gives s = k/w = 8/4 = 2. The table T1 is constructed

by taking a polynomial q(x) from Q4, multiplying it by n(x) to obtain

v(x) = q(x)n(x) ,

and then placing the least significant s = 2 words of v (x) to T1 using the most signif-

icant word as the index. The step-by-step construction of T1 is shown in Table 9.1.

The multiples of n(x) do not necessarily come in an increasing order, however, we

have a complete set of most significant words, and thus, we can use these values as

their indices to store them in T1. The table T1 is shown in Table 9.1 in its unsorted

form. When sorted with respect to the most significant words, i.e. the i values, we

no longer need the first column.



Table 9.1. The construction of T1 and T2 for n(x) = (0001 0010 1101).

q (x) v(x)

(0000) (0000 0000 0000)

(0001) (0001 0010 1101)

(0010) (0010 0101 1010)

(0011) (0011 0111 0111)

(0100) (0100 1011 0100)

(0101) (0101 1001 1001)

(0110) (0110 1110 1110)

(0111) (0111 1100 0011)

(1000) (1001 0110 1000)

(1001) (1000 0100 0101)

(1010) (1011 0011 0010)

(1011) (1010 0001 1111)

(1100) (1101 1101 1100)

(1101) (1100 1111 0001)

(1110) (1111 1000 0110)

(1111) (1110 1010 1011)

i 71(i)

(0000) (0000 0000)

(0001) (0010 1101)

(0010) (0101 1010)

(0011) (0111 0111)

(0100) (1011 0100)

(0101) (1001 1001)

(0110) (1110 1110)

(0111) (1100 0011)

(1001) (0110 1000)

(1000) (0100 0101)

(1011) (0011 0010)

(1010) (0001 1111)

(1101) (1101 1100)

(1100) (1111 0001)

(1110) (1010 1011)

(1111) (1000 0110)

i 7; (0

(0000) (0000 0000)

(1101) (0001 0010)

(1010) (0010 0101)

(0111) (0011 0111)

(0100) (0100 1011)

(1001) (0101 1001)

(1110) (0110 1110)

(0011) (0111 1100)

(1000) (1001 0110)

(0101) (1000 0100)

(0010) (1011 0011)

(1111) (1010 0001)

(1100) (1101 1101)

(0001) (1100 1111)

(0110) (1111 1000)

(1011) (1110 1010)
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Furthermore, we also give the table T2 in Table 9.1, which is to be used by

the right-to-left TLBR algorithm for computing the Montgomery multiplication and

squaring operations in GF(28). The table T2 is constructed by placing the polynomial

v(x) in T2 using its least significant word as the index. Again the table T2 shown in

Table 9.1 is in its unsorted form and we will get rid of the first column that includes

the least significant words, i.e., the i values, as soon as the rows of the table is sorted

using them.



As an example for STDMUL, we take

a(x) x7 + x6 + x4 + x3 + x +1 = (1101 1011) = (A1.A.0)

b(x) x7 +x6+x3±x2+x (1010 1110) = (131-130)

The algorithm starts with c(x) = 0 and then performs the following steps to find the

result:
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(9.4)

i = 1 Step 3: c(x) c(x)x4 + Al (x)b(x) = (C2C1Co)

0+ (1101)(1010 1110) = (0111 0110 0110)

Step 4: c(x) := c(x) + T1(C2) = (C1 Co) + T1(C2)

(0110 0110) + (1100 0011) = (1010 0101)

i = 0 Step 3: c(x) := c(x)x4 + Ao(x)b(x) = (C2C1C0)

(1010 0101 0000) + (1011) (1010 1110)

(1110 1101 0010)

Step 4: c(x) := c(x) + T1(C2) = (C1C0) + T1(C2)

(1010 1011) + (1101 0010) = (0111 1001)

Therefore, the result is found as

C(X) = 1001) = X6 ± X5 ± X4 4- x3 + 1 .

9.5 Montgomery Multiplication Using TLBR Method

The Montgomery product of two elements a(x) and b(x) is defined as the computation

of

c(x) = a(x)b(x)r-1(x) (mod n(x)) ,

where r(x) is a fixed element of the field [30]. It is established that when

r(x) = xk (mod n(x)) ,

we can obtain efficient software implementations of the Montgomery multiplication

operation in GF(2k). Thus in the sequel, we define the Montgomery multiplication

of a(x) and b(x) as

x-ka(x)b(x) (mod n(x)) .
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Note that the inverse element
x-k (xk)-1

exists since n(x) is an irreducible polynomial, and thus

gcd(xk, n(x)) = 1 .

The details of the Montgomery multiplication algorithm in GF(2k) and its properties

are found in [30]. The algorithm requires that we compute N6(x) in advance which

is the least significant word of the polynomial n'(x) defined as

n'(x) = n(x)-1 (mod xk) .

An algorithm for computing NN(x) is also described in [30]. However, it turns out

that the Montgomery multiplication method using the TLBR algorithm does not

require the computation of N(x). This is not surprising since the table T2 keeps all

2' multiples of n(x), and therefore, there is no need to separately compute N6(x).

The steps of the Montgomery multiplication algorithm using the TLBR method

are given below. The algorithm, which we call MONMUL, is based on the right-to-left

TLBR algorithm described in Section 9.2.

Algorithm MONMUL

Step 0: Construct 7'2 using n(x) and w

Step 1. c(x) := 0

Step 2. for i = 0 to s 1 do

Step 3. c(x) := c(x) + Ai(x)b(x)

Step 4. c(x) := x-w(c(x) + T2(Co))

Step 5. return c(x)

At the end of Step 1, we have an (s + 1) -word number

C = (cscs_ ci co) -

We discard the 0th (the least significant) word Co, and then add the s-word number

T2(co) = (v-sys_i v2v1)
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to the partial product c(x) by aligning V1 with C1 from the right:

Cs Cs-1 C2 C1

Vs Vs -1 V2 V1

Thus, the 1-word shift operation denoted as the multiplication by x-w is implicitly

performed. Each addition operation in Step 4 requires exactly s XOR operations.

Similarly, the Montgomery squaring method computes

c(x) = x-k a2(x) (mod n(x)) .

In order to compute c(x), we first obtain a2(x) using the property (9.2), and then

reduce the result with the help of the right-to-left TLBR algorithm, as seen below.

Algorithm MONSQU

Step 0: Construct T2 using n(x) and w

Step 1. c(x) aix2i

Step 2. for i = 0 to s 1 do

Step 3. c(x) := x-w (c(x) ± T2 (Co))

Step 4. return c(x)

When Step 1 completes, we have an (2s 1) -word number

C = (C2,2C2s-3 C1 Co)

In the beginning of the ith step, the number c(x) is an (2s i 1) -word number

C = (C2s-i-2C2s-i-3 CiCo)

We perform the operation in Step 3 of MONSQU by first discarding the 0th (the

least significant) word of c(x), and then by adding the s-word number

T2 (Co) (VsVs-1 V1)

to the partial product c(x) by aligning V1 with C1 from right, as follows:

CS C5-1 C2 C1

Vs Vs -1 V2 V1
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As in the case for the Montgomery multiplication, the 1-word shift operation, i.e.,

the multiplication by x', is implicitly performed, and each addition operation in

Step 3 requires exactly s XOR operations.

9.6 Example : Montgomery Multiplication Using TLBR

We take the field GF(28) and the same irreducible polynomial n(x) as the one exem-

plified in Section 9.4. The lookup table T2 is exactly the same as the one in Table 9.1.

In this case, however, we compute the Montgomery product of the same polynomials

a(x) and b(x) given in Equation (9.4).

Therefore, we will be computing

c(x) = a(x)b(x) (mod n(x)) .

The right-to-left TLBR algorithm starts with

a(x) = (A1240) = (1101 1011)

b(x) = (BIB()) = (1010 1110)

c(x) = 0

and performs the following steps:

i = 0 Step 3: c(x) := c(x) + Ao(x)b(x) = (C2C1C0)

= 0 + (1011) (1010 1110) =-- (0100 1000 0010)

Step 4: c(x) := x-4 (c(x) + T2(Co)) = (C2C1) + T2(Co)

= (0100 1000) + (1011 0011) = (1111 1011)

i = 1 Step 3: c(x) := c(x) + Ai(x)b(x) = (C2C1C0)

= (1111 1011) + (1101)(1010 1110) = (0111 1001 1101)

Step 4: c(x) := (x-4c(x) + T2(C0)) = (C2C1) + T2(Co)

= (0111 1001) + (0001 0010) = (0110 1011)

The product is found as

C(X) (0110 1011) = X6 + X6 + X3 + X + 1 .
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Table 9.2. The size of the table in bytes for the TABLEREAD operation.

k w=4 w =8 w =10 w=16

160 320 5,120 20,480 1,310,720

256 512 8,192 32,768 2,097,152

512 1,024 16,384 65,536 4,194,304

1024 2,048 32,768 131,072 8,388,608

9.7 Analyses of the Algorithms

In this section, we analyze the standard and Montgomery multiplication algorithms

by calculating the size of the lookup tables and counting the total number of the

table read and the word-level GF(2) addition and multiplication operations. The

implementation details of the word-level operations were studied in Section 8.3 be-

fore. We will denote the table read operation using TABLEREAD, and count the total

number of TABLEREAD operations. In regards to the sizes of these tables, we note

that the table T1 (or T2) has 2w rows, each of which contains a polynomial of length

k. This implies that the size of the tables is 2w x k bits. The space requirements

for the tables Ti (or T2) for performing the TABLEREAD operation are exemplified in

Table 9.2.

For example, if w = 8 and k = 160, the size of the table is 28 x 20 = 5, 120 bytes,

which is quite reasonable. However, the table size becomes excessive as we increase

the word-size. For a fixed field size k, we can decide about the word-size w given the

memory capacity of the computer system.

Now, we give the steps of the algorithms STDMUL and MONMUL in detail in

Table 9.3, together with the number of TABLEREAD, MULGF2, and XOR operations.

The total number of operations for STDMUL, STDSQU, MONMUL, MONSQU

are summarized in Table 9.4. Furthermore, in Table 9.5, we give the coefficients of

the highest term s2 in the operation counts of the multiplication algorithms using the
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Table 9.3. Operation counts for STDMUL and MONMUL algorithms.

STDMUL TABLEREAD MULGF2 XOR

for i=0 to s do

C D.] : =0 -

for i=s-1 downto 0 do

P :=0

for j=s-1 downto 0 do

(H,L) :=MULGF2 (A [i] , B [j] ) s2

C [j +1] : =C [j] XOR H XOR P 2s2

P :=L

C [0] :=P

for j=0 to s-1 do
C [j] : =C [j] XOR T [C Cs]] [j] s s2

MONMUL TABLEREAD MULGF2 XOR

for i=0 to s do
CM := 0 - -

for i=0 to s-1 do
P := 0

for j=0 to s-1 do

(H,L) :=MULGF2 (A [i.] ,H [j] ) s2

C [i] : =-C [j] XOR L XOR P - 2s2

P := H

C [s] : = P

for j=0 to s-1 do
C[j] := C[j +i] XOR T CCM] [j] s s2
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Table 9.4. The operation counts for the algorithms.

TABLEREAD MULGF2 XOR SHIFT

STDMUL s 52 3 2 -

STDSQU s s2

MONMUL s s2 3s2

MONSQU s s2

Table 9.5. The operation count orders for the algorithms.

Using this method MULGF2 XOR SHIFT

STDMUL 1 3 0

STDSQU 0 1 0

MONMUL 1 3 0

MONSQU 0 1 0

Using the method in [30] MULGF2 XOR SHIFT

STDMUL 1 # + 3 2(w + 1)

STDSQU 0 9- i -4 7
4 3w

MONMUL 2 4 0

MONSQU 1 2 0
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proposed TLBR method, comparing them to those algorithms which do not utilize

the TLBR method. The detailed timing requirements of the algorithms without the

TLBR method are given in [30].

9.8 Special Cases

The presented TLBR methods and the resulting multiplication algorithms work for

an arbitrary generating polynomial. The tables T1 (or T2) are constructed and used

without assuming a special structure in n(x). This is an important property of the

TLBR method, making it applicable for any value of k and for arbitrary generating

polynomials. However, it may be possible to avoid the construction of the table or to

reduce the size of it or to reduce the time taken by the algorithm when the generating

polynomial has a special structure. In this section we consider several different forms

of irreducible polynomials for generating the field GF(2').

We start with the case in which the generating polynomial n(x) is of the form

n(x) = xk + + aix + ao ,

where j = tw and t < s is an integer. This implies that Xk is the only nonzero

term among the (s t)w most significant terms of n(x), and thus, there is no need

to prepare the whole table T1 as the multiples of n(x) will have all zeros in the

most significant s t words, except the most significant word which is used as an

index. It suffices to store the least significant t words of the multiples of n(x) to

reduce the partial product. Therefore, the size of the table T1 will be 2w x t x w

instead of 2w x s x w, i.e., the table size reduces linearly depending on the value of

t. Furthermore, we only add the t least significant words of the operands during the

addition operation since we know the remaining s t words are zero. Therefore, Step

4 of STDMUL is performed by first discarding the sth (the most significant) word of

c(x) = (C,Cs-i CI. Co)

and then by adding the t-word number

Ti (Cs) = (14-04-2 ViVo)
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to the partial product as

Cs1 Cs _2 Ct Ct -1 Cl CO

V_1 V1 VO

The most significant (s t) words are not added since (Vs_117,_2 Vt) is known to

be all zero. This operation requires t word-level XOR operations in the reduction step

(Step 4) instead of s.

9.8.1 Trinomials

When the irreducible polynomial is a trinomial of the form

n(x) = + xi +1 ,

where 1 < j < k, then, it turns out that there is no need to prepare the table

T1 (or T2) and thus we will drop the phrase TLB from the names of the reduction

algorithms. We can use the most significant (or the least significant) word of the

partial product in order to reduce it. There are different approaches, depending on

the value of j. If j is an integer multiple of the word size w, i.e., j = tw, we can use

the word-level shifts of the partial product. If j is not an integer multiple of w, i.e.,

j = tw + u for some 1 < u < w, then, certain bit-level operations will need to be

performed.

For j = tw, the left-to-right reduction algorithm reduces the (s+ 1) -word partial

product

c(x) = (CsCs-i CiCo)

by adding C, multiple of the irreducible polynomial n(x) to it as

c(x) := c(x) + (x5w + xtui + 1)C3 .

This implies that we need to add C, to Cs, Ct, and Co in Step 4 of the algorithm

STDM UL. However, we do not perform the first addition C, + C, = 0, as follows:

Ct + 1 Ct Cl CO

CS Cs
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Thus, during the ith step of the reduction, we perform 2 XOR operations. The mul-

tiplication algorithms described in [64, 72] are essentially the same.

The right-to-left reduction algorithm, on the other hand, uses Co to reduce the

partial product from the right (the least significant). Effectively, it performs the

operation

c(x) := c(x) + (xsw + xtw + 1)C0

in order to reduce the partial product 1-word from the right. This implies that we

add Co to Co, Ct, and Cs as follows:

Cs Cs-1 Ct+1 Ct C1

Co Co

Similarly, we do not perform the addition of the least significant words Co + Co = 0,

and obtain the s-word partial product using only 2 XOR operations.

If j is not a multiple of w, but, say j = tw + u for a positive integer 1 < u < w,

we need to perform the operation

c(x) := c(x) + (x"' + xt"±u + 1)C3

to reduce the most significant word of Cs of c(x). This implies that Cs is added to

Cs and CO, which takes care of the part c(x)+(xsw+1)Cs. In order to add xt"(xuCs)

to the partial product, Cs needs to be shifted u bits to left, which produces a 2-word

number (V1V0). Let

Cs = (Ck+w-1 Ck+1Ck)

then, (VI Vo) is obtained as

(V1) (V0) = (0 0 ck+w-1ck+w-2 .ck+w-u) (ck-i-w_u_1 ck+ick 0 - 0) .

We then add V1 and V2 to Ct+ 1 and Ct, respectively. The operations required to

reduce c(x) using the left-to-right reduction algorithm are shown below:

Cs_i Ct+i Ct CI. Co

V1 Vo CS
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Similarly, the addition of the most significant words Cs + Cs = 0 is ignored. In

summary, the reduction operation during the ith step requires a few bit operations

to obtain V1 and V0, and then 3 word-level XOR operations.

On the other hand, the right-to-left reduction algorithm performs the operation

c(x) := c(x) + (x tw+u + 1)C0

in order to reduce the least significant word of Co of c(x). This implies that we add

Co to Cs and Co, taking care of the part c(x) + (xsw +1)Co. In order to perform the

operation

c(x) := c(x) xtw (xuco)

we shift Co to the left u times, obtaining a 2-word number (VIII) as before. We then

add 171 and 17(; to Ct+1 and Ct, respectively. The final reduction operation is

Cs Ct-1-1 Ct C2 C1

CO 1711 VOI

The addition of the least significant words Co + Co = 0 is ignored. The right-to-left

reduction algorithm requires a few bit operations to compute V1 and n, followed by

3 word-level XOR operations.

9.8.2 All-One-Polynomials

In this case, the generating polynomial n(x) will be an all-one-polynomial (AOP),

i.e., of the form

xkn(x) xk-1 + + x + 1 .

It is known that an AOP is irreducible if and only if k +1 is prime and 2 is primitive

modulo k +1 [45]. For k < 100, the AOP is irreducible for the following values of k:

2, 4, 10, 12, 18, 28, 36, 52, 58, 60, 66, 82, and 100.

The reduction is often performed using the polynomial (x + 1)n(x) xk+1 + 1,

thus as in the trinomial case we do not need the tables and we will drop the phrase

TLB from the names of the reduction algorithms. Since k + 1 is not an integer
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multiple of w, the exact word-level shifting is not possible with this polynomial. In

this case, we need to perform the operation on the (s +1)-word partial product c(x)

c(x) := c(x) + (xsw+1 + 1)A

where A is a 1-word number obtained from C,, as we will explain shortly. Since the

most significant word of the new c(x) needs to be zero, we obtain

Cs + (Ax) = 0 ,

and therefore, Ax = C,. If the least significant bit of C,, denoted as ck, is equal

to zero, the computation of A is very simple: A = C,/x, i.e., C, is shifted 1 bit to

the right to obtain A. Thus, A is actually an (w 1)-bit number, and when Ax is

added to C5, the result is zero. The final reduction is performed using only one XOR

operation as

Cs-1 Cs-2 C1 CO

A

However, when ck is not equal to zero, we have no other choice except to add the

entire n(x) to c(x). This implies that we add the w-bit AOP

2' 1 = (11 1) = 1,

to each word of c(x) starting from 0 ending at s 1, as

Cs-1 C5-2 C1 CO

1, 1, 1,, 1
This operation makes the least significant bit ck zero. Therefore, if ck is nonzero, we

need to perform an additional s XOR operations to reduce the (s + 1)-word partial

product c(x).

On the other hand, the right-to-left reduction algorithm performs

c(x) := c(x) + (x'+1 + 1)Co

in order to reduce the least significant word Co of c(x). When Cc, is added to

c(x), the new least significant word Co will be zero. However, we also need to
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add xsw+1C0 to c(x). If the most significant bit cw_i of Co is zero, this operation is

easily accomplished. We compute Ao = Cox, and since c,,,_1 is zero, Ao fits into w

bits, i.e., 1-word. The following operation accomplishes the reduction:

Cs Cs_i Ci

Ao

If cu,_i is not zero, then Ao is no longer a 1-word number: it is a (w + 1)-bit number

containing a one its wth position:

Ao = (lcw-icw--2 coo)

The reduced partial product in this case becomes

c(x) = (1 CsCs_i GC].)

As in the case for the left-to-right reduction algorithm, we have no other choice

except to add the entire AOP n(x) in order to reduce the most significant bit:

Cs Cs 1 C2 C1

w w 1w lw

Therefore, when we need to perform an additional s XOR, operations to reduce

the (s + 1) -word partial product c(x).

9.9 Integer Case

In this section we consider the extension of the TLBR method to the integers. We are

interested in reducing the (s + 1) -word integer a modulo n, where n is an arbitrary

integer of length s words. In the following, we show that the right-to-left TLBR

algorithm works if and only if n is odd. On the other hand, the left-to-right TLBR

algorithm works for
21c±wn>

(2w + 1)

but it is inefficient.
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First we concentrate on the right-to-left TLBR algorithm. Let i E /u, and vi = in.

Since n is an s-word number and

0 < i < 2' 1 ,

the number vi for all i is an (s + 1) -word number, represented as

vi = (Vi,sVi,s-i VoVi,o)

The table T2 is constructed by the right-to-left TLBR algorithm using the least

significant words Vi,o as

T1(-14,0) = )

We note the minus sign in the index, which helps us to add the table entry to the

partial product, instead of subtracting it.

An important requirement is that all V,3 be unique for i E Iw. This way we

construct the complete table of the multiples of n to be added to the partial product.

The uniqueness of the least significant words depends on whether n is odd, which is

easily proven as follows.

Theorem 9.3 The least significant words of vi = in are unique for i E I,, if and

only if n is odd.

Proof The least significant word of vi is given as in (mod 2w). The set of residues

in (mod 2w) for i E 1-w is complete if and only if

gcd(n, 21") = 1 .

This is satisfied when n is odd.

Therefore, the right-to-left TLBR algorithm used in the Montgomery multiplica-

tion and squaring algorithms works in the integer case for an odd n only. This gives

us a table lookup based Montgomery multiplication algorithm, which is more efficient

than the regular Montgomery multiplication since the reduction step is significantly

simplified. Furthermore, there is no need to compute no =
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Table 9.6. Multiples of n = 35 = (100 011).

i vi = in

001 000 100 011

010 001 000 110

011 001 101 001

100 010 001 100

101 010 101 111

110 011 010 010

111 011 110 101

Unfortunately, the left-to-right TLBR algorithm does not work as well. It is

impractical for two main reasons:

1. The most significant words are not always unique,

2. Even when they are unique, the left-to-right TLBR algorithm cannot use ad-

dition in place of subtraction since this will cause a carry to higher order bits.

As an example, we take w = 3 and n = 35 = (100 011), and produce the values

vi = in as shown in Table 9.6.

An inspection of Table 9.6 shows that the most significant words are not unique

for n = 35, for example, 001, 010, and 011 appear twice, while 100, 101, 110, and

111 do not appear. We prove below that collisions occur if n < 2k+w/(2w + 1).

Theorem 9.4 If
2k±w

n <
(2w + 1)

then there is always a collision, i.e., there are at least two equal most significant

words. Otherwise, the most significant words are unique.

Proof We consider all multiples with s words. Let I be the integer such that

In < 2k±w < (I ± 1)n ,
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i.e., In is the greatest multiple of n, that has (8+1) words. Note that the difference

of any two consecutive multiples is n, which is less than 2k, and thus, the difference

of the most significant words of the consecutive multiples can be at most one. In

particular, In has 2w 1 = 1 1 as the most significant word. Thus, the most

significant words form a monotone increasing sequence. As the largest one is 1 1,

all possible single words exist among them. Therefore, we have I > 2". When

I = 2", we have uniqueness and when I > 2w we have collision(s).

For
2k+"

n <
(2w + 1)

using the definition of I, we have

(2k+w)
2k+w < (1. + 1)n < (i + 1) (2w + 1) ,

which yields 2w < I, i.e., we always have a collision. For

2k+w
n

(2w + 1)

again by the definition of I, we have

2k+w
2k±w > I n >

(2w + 1)/

which yields 2w + 1 > I, i.e., we have no collision.

During the reduction, we need to make sure that the number we subtract is

less than the partial product. This can be done by comparison, and if the selected

multiple is larger, we can use the previous multiple of n instead. If the most sig-

nificant words of vis are not unique, i.e., if there are collisions, then we have the

problem of choosing the correct multiple. We can solve this problem by assigning

the smallest multiple for all of the of the indices at which the collision occurs, which

will reduce the probability of a negative result. For example, for the most significant

word 001, we can assign the smaller multiple which is 001 000 110. Similarly, we

can use 010 001 100 and 011 010 010, for the most significant words 010 and 011,

respectively. However, in order to reduce the products with the most significant
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words not in our list, we will have to either assign the largest multiple 011 110 101

to all of them or continue to produce more multiples until we get all possible most

significant words. Note that, even after using this method, we still have to compare

the numbers and use the previous multiple if necessary. In short, when there is a

collision, the proposed table lookup based approach is not practical.
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Chapter 10
PARALLEL FINITE FIELD MULTIPLICATION

USING POLYNOMIAL RESIDUE NUMBER SYSTEMS

10.1 Introduction

In this chapter a novel method of parallelization of the multiplication operation in

GF(2k) is presented for an arbitrary value of k and arbitrary irreducible polynomial

n(x) generating the field. The parallel algorithm is based on the Polynomial Residue

Number System. The parallel algorithm receives the residue representations of the

input operands (elements of the field) and produces the result in its residue form,

however, it is guaranteed that the degree of this polynomial is less than k, i.e., it is an

element of the field, properly reduced by the irreducible polynomial n(x). By proper

selection of the modulus polynomials, and the application of the Chinese Remainder

Theorem, yields an efficient parallel algorithm.

10.2 Polynomial Residue Number Systems

Let

mi (x), m2 (x), . . . , mL (x)

be a list of pairwise relatively prime polynomials such that the degree of mi(x) is

equal to di for i = 1, 2, ... , L. We choose m,i(x) such that each di is approximately

equal to 2k /L, and thus, the product polynomial

L

M(x) = fl mi(x)

is of degree d > 2k. A polynomial p(x) is represented in the Polynomial Residue

Number Systems (PRNS) with a list of remainders:

p= (Ply P27 ,PL)
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where

pi (x) = p(x) (mod mi (x) )

for i = 1, 2, ... , L. For efficiency reasons, we select each mi (x) so that pi(x) is

represented using at most w bits or 1 word. This implies that deepi(x)) = di <
w. Furthermore, the polynomials mi (x) need to be pairwise relatively prime, i.e.,

gcd(mi, mi) = 1 for i j. Therefore, we construct the PRNS by finding L pairwise

relatively prime polynomials mi(x), each of which is of degree w, such that the degree

of M(x) is Lw > 2k. Since k = sw, we have L > 2s. The reason for choosing the

PRNS range as twice the size of the inputs is that we need to represent the product

of two operands (or the square of one operand) uniquely.

Once the PRNS is constructed by proper selection of the L such polynomials,

we can perform the PRNS arithmetic. The residue addition and multiplication op-

erations in the PRNS are defined as follows:

:= + b represents the residue addition:

:= ai + bi (mod mi)

e := *-1; represents the residue multiplication:

ci := ai bi (mod mi)

i =1,2,...,n

i =1,2,...,n .

If an operand is not a vector but a single polynomial, e.g., a, (which is of length w),

then we will assume that it is a vector with all entries equal to a as (a, a, ... , a). For
ti

example, 6= a * I; implies that

(c1,c2,...,CL) = (a, a, ... , a) * bz, , bL)

or in other words,

ci = a bi (mod mi) .

The conversion from the PRNS representation to the polynomial representation

is based on the extension of the Chinese Remainder Theorem (see Appendix C) to

the polynomials [25]. Given the PRNS representation of p(x) as

15= ,PL)
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we use the Single Radix Conversion (SRC) algorithm to compute p(x) using

p(x) =

where

i =1

(Mil mod mi) Mi I mod M(x) ,

(x) =
M(x)

= mi(x)m2(x) mi_i(x)mi+i(x) mL(x) ,
mi (x)

and, the inverse Mil (mod mi) is defined as

Mil Mi =1 (mod mi) ,

which exists since gcd(Mi, mi) = 1 and all mis are pairwise relatively prime. We will

assume that the coefficients mi for i = 1, 2, ... , L, and the inverse vector

I= (mi--1- mod ml, /VW mod m2, - ME 1 mod mL)

are precomputed and used in the SRC algorithm. Here the polynomials

Mi (x) = M(x)/mi (x)

are of degree (L 1)w . The entries offare reduced, i.e., the degree of WI- (mod mi)

is less than the degree of mi. Using these definitions, we give the SRC algorithm

which computes the polynomial p(x) given its residue representation 7:7 as follows:

THE SRC ALGORITHM

Input: 15 = (P1, P2, /4)
Output: p(x) (mod M) (x)

Auxiliary: M,, M2, , and f

Step 1. r := 75*

Step 2. p(x) := ri mi mod M(x)

Step 3. return p(x)

10.3 Finite Field Multiplication Using the PRNS

If

s(x) = a(x) + b(x) ,
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then the degree of s(x) is not larger than the maximum of the degrees of a(x) and

b(x), thus, the PRNS arithmetic would yield the exact result, i.e.,

ti
..-s= c1+6

However, in multiplication

p(x) = a(x)b(x) ,

the degree of the resulting polynomial increases. The polynomial p(x) needs to

be reduced modulo the irreducible polynomial n(x) in order to obtain the product

c = a b in GF(2k). Therefore, if we want to use the PRNS for multiplication modulo

n(x), we need to devise a method to reduce the resulting polynomial modulo n(x).

We will perform this reduction using the table lookup reduction algorithm proposed

in [19]. This algorithm precomputes the multiples of the irreducible polynomial

n(x), and stores them in the table T in such a way that a word-level reduction

becomes possible using these stored values. We start with n(x), which is a degree-k

polynomial, and compute all multiples of n(x), which has at most k + w bits (or s + 1

words). Consider the set of all polynomials over GF(2) of length w and the set of

all w-bit integers:

Qw = {1, X, X + 1, X2, X2 + 1, X2 + X, ... Xw-1 + Xw-2 + + 1} ,

1 = {0,1,2,...,2w .

Let qi (x) be the ith element of qv and

vi(x) = qi(x)n(x)

for i E 1w. The polynomial vi(x) is of degree less than (k + w), which we represent

as an (s + 1)-word number

vi(x) = vovi,o)

We then construct the table T containing 2'n rows, in which we store the polynomial

vi(x) using its most significant word (w-bits) as the index, i.e.,

T[vi,s] = ,
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for i E An important observation is that the most significant words Vi,3 for i E 1,0

span the set Q, in other words, they are all unique [19]. We use the left-to-right

reduction algorithm. In order to reduce

P(x) = (Ps Psi Pi Po) ,

we select the entry

(Vs-iVs-2- VIVO

from the table T using the index P, = V,. Since T was constructed so that the

element

(Ps Vs-1Vs-2 VIVO)

resides in position P,, we have

p(x) := p(x) +T[Ps]

= (PsP.5-1 PiPo) + (PsVs-1Vs-2- -VIVO

= (OP:_l- PiPo)

where P' = Pj+Vj for j = 0,1, ... , s 1. We also discard the most significant w bits

of the new p(x). Since we add a multiple of n(x) to p(x), and obtain a polynomial

of length sw, we effectively compute p(x) (mod n(x)), as required.

Furthermore, we compute the multiples of n(x) in the PRNS representation

and store them similarly in the table T, which has 2" rows and L independent

columns, where each column contains a 1-word number at each row. If the PRNS

representation of

(vsys_i vivo)

is given as

= (Vi7 V2, VL) 7

then the row V, of the table f holds vi in column i for i = 1, 2, ... , L, i.e.,

t[Vs] (vi, v2, ,vL)

The tables T and f are used to reduce a polynomial modulo the irreducible polyno-

mial n(x). The PRNS-based multiplication algorithm is given below.
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THE PRNSBASED MULTIPLICATION ALGORITHM

Input: and -1;

Output: and c(x)

Auxiliary: M1 ML, I, T, and
Step 1. ei*g

Step 2. e*

Step 3. c(x) := ri Mi mod M(x)

Step 4. for i = 2s 1 downto s

Step 5. c := 5+ -24[Cd *x(i-s)w

Step 6. c(x) := c(x) + T[Ci] x(i-s)w

Step 7. return c and c(x)

Assuming the input polynomials a(x) and b(x) are of degree at most k 1, we

have the product polynomial c(x) in its residue representation at the end of Step 1,

however, this polynomial is of degree 2(k 1). The representation is still unique,

since the degree of M(x) is at least 2k, and thus, the SRC algorithm will yield a

unique result. However, we cannot use the resulting polynomial c(x) and its residue

representation Sas an input to another multiplication. We need to use the generating

polynomial n(x) to reduce e and c(x) so that the result is again less than n(x). Steps

3-6 accomplish this reduction. First we use the SRC algorithm to compute c(z), and

then in Steps 5 and 6, we use the left-to-right reduction algorithm to reduce c(x)

so that it is of degree at most k 1. We perform the operation in Step 6 by first

discarding the ith (the most significant) word of

c(x) = (CiCi_i CiCo)

and then by adding the s-word number

T[Ci] = (Vs-1Vs -2 VIVO

to the partial product c(x) by aligning Vs_1 with Ci_i from the left:

Ci 1 - 2 Ci s + 1 ci- s 1 C1 CO

Ci Vs 4 Vs 2 V1 VO
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The addition of the most significant words Ci + Ci = 0 is not performed. Also the

terms Ci_s_1 down to Co are not involved in the addition either. Only the terms

starting from V3_1 down to Vo are added to the corresponding terms of c(x) in order

to reduce c(x) modulo n(x). Thus, the shift factor x(i-s)w is taken care of by this

alignment process.

Furthermore, as we reduce c(x) modulo n(x) in Step 6, we also reduce its residue

representation e using n and T in Step 5 by multiplying the residue numbers f[Ci]

and

(5(i-s)w, 5(i-s)w,, ,
x(i

-s)w)

and then adding the result to 6.

10.4 Example : PRNS-based Multiplication

We will illustrate the PRNS-based multiplication algorithm using the same example

as in Section 9.4, i.e. we will compute

c(x) = a(x)b(x) (mod n(x)) ,

using the same polynomials a(x), b(x) and n(x) as before:

n(x) = x8 + x5 + x3 + + 1 = (1 0010 1101)

a(x) = + x8+ x4 + x3+ x + 1 = (1101 1011) = (Apelo)

b(x) = x7+x5+x3+x2+x = (1010 1110) = (BiBo)

The lookup table T of multiples of n(x) is exactly the same as T1 in Table 9.1. The

sorted form is shown in Table 10.1.

The precomputation of the multiples will be extended to include the PRNS

representations. Since k = 8 for we select w = 4, and thus, s = 2. Furthermore,

L = 2s = 4, which implies that we need 4 pairwise relatively prime polynomials

mi(x), each of which is of degree 4, to construct the PRNS. We select the following

polynomials as moduli:

(x) = x4 + x + 1
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Table 10.1. The lookup tables T and I' for n(x) = (1 0010 1101).

index T T

(0000) (0000 0000) (0000, 0000, 0000, 0000)

(0001) (0010 1101) (1110, 1000, 1000, 0100)

(0010) (0101 1010) (1111, 1001, 1101, 1000)

(0011) (0111 0111) (0001, 0001, 0101, 1100)

(0100) (1011 0100) (1101, 1011, 0111, 1111)

(0101) (1001 1001) (0011, 0011, 1111, 1011)

(0110) (1110 1110) (0010, 0010, 1010, 0111)

(0111) (1100 0011) (1100, 1010, 0010, 0011)

(1000) (0100 0101) (0111, 0111, 0110, 0101)

(1001) (0110 1000) (1001, 1111, 1110, 0001)

(1010) (0001 1111) (1000, 1110,1011, 1101)

(1011) (0011 0010) (0110, ono , 0011, 1001)

(1100) (1111 0001) (1010, 1100, 0001, 1010)

(1101) (1101 1100) (0100, 0100, 1001, 1110)

(1110) (1010 1011) (0101, 0101, 1100, 0010)

(1111) (1000 0110) (1011, 1101, 0100, 0110)
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M2(X) = X4 + X3 + 1

M3 (X) = x4 + x3 + x2 + 1

M4 (X) = X4 + X3 + X2 + X + 1

This gives us

M(x) = ml(x)m2(x)m3(x)m4(x)
x16 +x15 x14 +x13 x11 +x10 +x8 x7 +x5 +x4 +x2

The following values are also easily computed:

M1

M2

M3

M4

x12 x11 x10 +x7 +x +1

x12 +x10 +x8 +x3 +x2 +1

x12 +x9 +x6 +x3 +1
x12 x8 x5 x4 x3 x2

(x3 + x2 + X, X3, X3, x2)

=

(x+1,x3 x +1,2 + x +1,x3 +x2)

We then compute the multiples of 71 and store them in table T. The lookup table f,

is also added to Table 10.1, with the entries in the same row representing the same

multiple.

We now illustrate the steps of the PRNS-based finite field multiplication algo-

rithm that computes the product c(x). The PRNS representations of a and b are

found as

= (1111,1010,1001,0010)

6 = (0011,0010,1000,1011)

The PRNS-based multiplication algorithm starts with c = 0 and performs the fol-

lowing steps to find the result

c(x)

as follows:

= X6 + X6 + X4 + X3 + 1 = (0111 1001)
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Step 1: 6 = 6* g= (1111, 1010, 1001, 0010) * (0011, 0010,1000,1011)

= (0010, 1101,0110,1001)

Step 2: 7? = 6* 1= (0010,1101,0110,1001)* (0011, 1011, 0111, 1100)

=

Step 3: c(x) =

(0110, 0010,1111,1111)

1 ri Mi mod M(x)

= (0110) (0001 1100 1000 0011)+

(0010) (0001 0101 0000 1101)+

(1111) - (0001 0010 0100 1001)+

(1111) (0001 0001 0011 1111)

= (0111 0010 1110 0010) = (C3C2C1C0)

(i = 3) Step 5: e = 6+ ti[C3] * x4 = 6+ /4[0111] * x4

= ( 0010,1101, 0110, 1001) + (1100,1010, 0010, 0011) * x4

= (0101,0001,0001,0111)

Step 6: c(x) = c(x) + T[C3] x4 = (0010 1110 0010) + T[0111] x4

= (1110 1101 0010) = (C2C1C0)

2) Step 5: 6 = 6+ f[c2] * x° = 6 +

= (0101, 0001, 0001, 0111) + (0101, 0101,1100, 0010)

= (0000, 0100,1101, 0101)

Step 6: c(x) = c(x) + T[C2] x° = (1101 0010) + T[1110]

= (1101 0010) + (1010 1011) = (0111 1001) = (CiCo)

The last vector c in Step 5 or the last polynomial c(x) in Step 6 yields the result.

The result 5 in Step 5 is reduced modulo n(s), and thus, it can be used as an input

to another multiplication.

(i =

10.5 Improving the PRNS-based Multiplication Algorithm

In this section, we give an improved PRNS-based multiplication algorithm, which

saves computational time and space as compared to the multiplication algorithm

given in Section 10.3 and exemplified in Section 10.4. The improved algorithm is

based on the following observations:
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We compute the polynomial representation of c(x) along with its residue rep-

resentation e only because we need the words of c(x) to reduce c modulo n(x).

We only use the most significant s words of c(x) starting from (2s 1) down

to s to perform this reduction, as seen in Step 4.

Therefore, the SRC algorithm for computing c(x) can be modified so that we only

compute the most significant s words of c(x), and thus, save space and time in the

PRNS-based multiplication algorithm.

In Step 3 of the PRNS-based multiplication algorithm, we first compute

L

c(x) = E Ti A
i=i

and then perform a modulo M(x) reduction. Since L = 2s, and each one of A is of

length (at most) (2s 1) words, the above computation can be written as

L

c(x) = E Ti (Mi,2s-2Mi,28-3 Mi,iMi,o)
i=1

Since we are only interested in computing the most significant s words of c(x), the

above sum must be divided by x3". To avoid unnecessary computation, we first

divide Mi by x(3-1*, then perform the multiplications and the summation, and

finally divide the result by xw. This way we first discard the part of Mi which does

not contribute to the final result, and then, we perform another division to get only

the necessary part of c(x). More explicitly, we truncate Mi by ignoring the words

indexed from 0 up to (s 2), and only keep the ones from (s 1) up to (2s 2).

This implies that we compute

L

ETi (Mi,23-2Mi,28-3 Mi,sMi,s-100 0) .

j=1

The least significant (s 1) words of zeros can be ignored by computing

L

ETi (Mi,2s-2Mi,2.9-3 Mi,sMi,s-1)
i=1

The multiplication operation

Ti (Mi,2s-2Mi,2s-3

Ti
Mi

x(s-1)w
i=1
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produces an (s + 1)-word number; the addition of L such numbers is still of length

(s + 1) words. Since we only need the most significant s words, we ignore the least

significant word of the result as

L

C (x) = E rZ
x(8-1)w) xwi=1

= C1C0) .

This result is less than M(x) and it is not reduced modulo M(x). Furthermore, the

values
Mi(x)

Mi'(x) = x(s--1)w

can be precomputed. The most significant s words of c(x) is computed using the

modified SRC algorithm as follows:

THE MODIFIED SRC ALGORITHM

Input: i5= (1)1,P2,- ,pi,)

Output: p'(x): The most significant s words of p(x)

Auxiliary: MI, /14, , MI, and

Step 1. := f)* I5-"

Step 2. p'(x) := (EL ri ./u1) x-
Step 3. return p'(x)

The modified PRNS-based multiplication algorithm uses the modified SRC algorithm

given above to compute c'(x) in order to reduce 6.

THE MODIFIED PRNS-BASED MULTIPLICATION ALGORITHM
ti

Input: d and

Output:

Auxiliary: MI, it/4, , Mi, I, T, and f4

Step 1. := Et' * -1;

ti
Step 2. r := 6*

Step 3. c'(x) := (EL ri MZ) x-
Step 4. for i = s 1 downto 0

Step 5. c := 6+ 77"[Cn * xi"



Step 6.

Step 7.

c'(x) := ( c'(x) mod xit" ) + T[q] x-(s-i)to

return

91

We have only the most significant s words of c(x). The entire c(x) can be written

as

c(x) C:9,;Cs_1Cs-2 CICo)

In order to reduce c(x) in step for i = s 1, we need to take the most significant

word C's_1 and obtain the table entry

and add it to c(x) as

Cs-1

T[CS-1] (Vs-1Vs-2 VIVO) 7

q_2 Cs -1 Cs-2 CI. CO

VS-1 V2 V1 VO

In general, in the ith step, we need to take the least significant i words of c'(x)

and add (s i) words right-shifted version of T[q] to c'(x) in Step 6. Similarly,

we perform the reduction on in Step 5. The most significant words of c(x) are

completely zeroed during the reduction process in Step 6. We do not provide c(x)'

as an output, and the modified PRNS-based multiplication algorithm returns only.

10.6 Example : Improved PRNS-based Algorithm

We illustrate the steps of the modified PRNS-based multiplication algorithm using

the same example as the one in Section 10.4. The precomputation part and the

tables remain the same. Additionally, we need to compute M1(x) for i = 1, 2, ... , L,

which are obtained using

as

A
x(8-1)w = Mi/x4

(0001 1100 1000 0011)/x4 = (0001 1100 1000) ,

= 0101 0000 1101)/x4 = (0001 0101 0000) ,



=

Af.'4 =

The algorithm takes the same Ei and b. as input operands, and performs the following

steps to find the result

(0001

(0001

0010

0001

0100 l001vx4 =

0011 1111)/x4 =

(0001

(0001

0010

0001

0100) ,

0011) .
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5= (0000,0100,1101, 0101) .

Step 1: c = g= (1111,1010,1001, 0010) * (0011,0010,1000,1011)

= (0010, 1101, 0110, 1001)

Step 2: f.* = 5 * I = (0010,1101, 0110, 1001) * (0011, 1011, 0111,1100)

= (0110, 0010, 1111, 1111)

Step 3: c'(x) = itil) x-4

= [(ono) (0001 1100 1000) + (0010) (0001 0101 0000)+

(1111) (0001 0010 0100)+

(1111) (0001 0001 0011)] x-4

= (0111 0010)

(i = 1) Step 5: c = 5+ T[Cl] * x4 = 5+ f[0111] * x4

(0010, 1101, 0110, 1001) + (1100, 1010,0010, 0011) * x4

= (0101,0001,0001,0111)

Step 6: c'(x) = ( c'(x) mod x4 ) + Trn x-4 = (0010) + T[0111] x-4

(0010) + (1100) = (1110)

(i = 0) Step 5: c = 5+ f[C0] * x° = 5+ f[1110]

(0101, 0001, 0001, 0111) + (0101, 0101, 1100, 0010)

= (0000, 0100,1101, 0101)

Step 6: c(x)' = ( c'(x) mod x° ) + T[q] x°

= (1110) + T[1110] = (0000)

Since c'(x) after Step 6 for i = 0 is not needed, this computation may be skipped.

10.7 Analysis of the PRNS-based Multiplication Algorithm

In this section, we analyze the PRNS-based multiplication algorithm by counting the

total number of word-level GF(2) addition and multiplication operations. The word-
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Table 10.2. Operation counts for the PRNS-based multiplication algorithm.

Steps MULGF2 XOR

Step 1 1

Step 2 1

Step 3 s s 1+ s loge (2s)

Step 5 (s times) 1 1

Step 6 (s times) 1

Total 2s + 2 3s 1 + s log2(2s)

level multiplication operation MULGF2 is performed using the table lookup method,

and the word-level addition operation is performed using the bit-wise XOR which is

available on most processors. The implementation details of these operations were

studied in Section 8.3 before.

Following the assumption made in Section 10.2, we select deg(mi) = w, and

perform modulo mi(x) multiplications using the table lookup method.

Since there are L different moduli, we assume that we have L = 2s processors

each of which performs its arithmetic (addition and multiplication) operations with

respect to its selected modulus. We also use a processor which we call the 'server'

to perform a few table lookup operations. The server can be one of the processors.

We ignore the server operations and the communication overhead in our analysis.

The analysis of the improved PRNS-based multiplication algorithm is given be-

low. The results are summarized in Table 10.2.

Step 1: This step requires a single MULGF2 operation by each of 2s processors.

Step 2: This step requires a single MULGF2 operation by each of 2s processors.

Step 3: Let

M' = (K.9_011,8_2- )
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This value is already precomputed and saved. During Step 3, the ith processor

multiplies ri by M' using MULGF2 operation and obtains the (s+1)-word result.

Each word multiplication for j = 0, 1, , (s 1) produces a 2-word result

ri (HiLj) .

These parts must then be added to obtain the final result ri .A4-; as follows:

A/gs_2 m',2 m1,1 m1,0

Ti

L3_1 Ls2 L2 L1 Lo

H5_1 H3-2 Hs _3 H1 Ho

Ss Ss-1 Ss-2 S2 S1 SO

The above operation is performed using s MULGF2 operations and (s 1) XOR

operations by the ith processor for all processors i = 1, 2, ... , 2s.

Then the 0th word is discarded and the remaining s-word polynomials are

summed by all 2s processors using the binary tree algorithm. This operation

takes log2(2s) steps, where at each step two s-word polynomials are added.

Therefore, s log2 (2s) XOR operations are required.

The resulting s-word polynomial c' (x) is communicated to the server and to

the first s processors among all 2s processors. This polynomial is needed in

Step 6.

Step 5: To speed up this step, the values

xiw (mod mi)

are precomputed and stored for all i = 1, 2, ... , (s 1) and j = 1, 2, ... , 2s.

The server performs a lookup operation for xi' (mod m1) and also for [CI],

and sends them to the jth processor for all j = 1, 2, ... , 2s. Each processor

then performs a single MULGF2 operation and a single XOR operation to obtain

6:= e+ i[q]

for a single vector entry.
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Step 6: In this step, we add the i-word shifted polynomial T[q] to c'(x). Since c'(x)

is available in the first s processors, each of one of these processors performs a

single XOR operation. The updated polynomial c'(x) is then communicated to

the server.

10.8 Applications of the PRNS-based Multiplication

The improved algorithm takes two polynomials in their residue representation 01 and b

such that the degree of each of a(x) and b(x) are less than k, and produces the product

polynomial in its residue representation 6. The squaring algorithm can be given using

the similar construction method, however, there may be certain optimizations.

The PRNS-based multiplication algorithm for the field GF(2k) finds its applica-

tions in cryptography where the range of the operands are large, usually

160 < k < 1024 ,

therefore, it is justifiable to use parallel polynomial arithmetic. We give an exponen-

tiation algorithm for computing ge where g E CF(2k) and e is an r-bit integer

below.

e = (er-ier-2 eieo)

THE PRNS-BASED EXPONENTIATION ALGORITHM

Input: g(x), e, and n(x)

Output: c(x) = ge

Auxiliary: MI, , Mi, I, T, and

Step 1. Compute § and e:= (1,1, ,1)

Step 2. for i = r 1 downto 0

Step 3. e:= Multiply(e,

Step 4. if ei = 1 then e := Multiply(§,

Step 5. c(x) := SRC(ci

Step 6. return c(x)
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Here the multiplication algorithm is the modified PRNS-based multiplication

method given in Section 10.5, which uses the modified SRC algorithm within. Since

we need the entire c(x) as the output of the exponentiation operation, the original

SRC algorithm is used in Step 6.
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Chapter 11
A GENERAL MASTROVITO MULTIPLIER

In this chapter, we propose a new formulation of the multiplication matrix and an

architecture for the multiplication operation in finite fields of characteristic 2. The

proposed architecture generalizes the Mastrovito multiplication. Since 2Th' is generally

used to represent the finite field associated with the Mastrovito multiplier, different

than the rest of the thesis, we will use the variable m instead of k, to denote the

dimension of the finite field in this chapter. The proposed method is particularly

efficient when applied to a specific class of polynomials that is known in advance, as

it uses all possible optimizations. We have also studied all known special cases in

detail, and obtained space and time complexities, and furthermore, provided actual

design examples.

11.1 Introduction

The efficiency of the architecture is measured by the number of 2-input gates (XOR

and AND) and by the total gate delay of the circuit. The representation of the field

elements have crucial role in the efficiency of the architecture. For example, the well-

known Massey-Omura [53] algorithm uses the normal basis representation, where the

squaring of a field element is equivalent to a cyclic shift in its binary representation

(see Chapter 8). Efficient bit-parallel algorithms for the multiplication operation in

the canonical basis representation, which have much less space and time complexity

than the Massey-Omura multiplier, have also been proposed.

The standard (polynomial) basis multiplication requires a polynomial modular

multiplication followed by a modular reduction. In practice, these two steps can be

combined. A novel method of multiplication is proposed by Mastrovito in [39, 40], in
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which a matrix product representation of the multiplication operation is used. The

Mastrovito multiplier using the special generating trinomial

is shown to require (m2 1) XOR gates and m2 AND gates [39, 40, 54, 55]. It has been

conjectured that the space complexity of the Mastrovito multiplier would also be the

same for all trinomials of the form

xm + xn + 1

for n = 1, 2, ... , m 1. This conjecture was shown to be not true for the case of

m = 2n in [31]. The architecture proposed by Koc and Sunar in [31] requires (m2-1)

XOR gates and m2 AND gates, when m 0 2n. However, the required number of XOR

gates is reduced to (m2 'fl) for the trinomial

XM +XI' +1 ,

for an even 7n.

In this chapter, we generalize the approach of [31] in several ways. We describe

a method of construction for the Mastrovito multiplier for a general irreducible poly-

nomial. We give detailed space and time analysis of the proposed method for several

different types of irreducible polynomials. It turns out that our method also requires

(m2 XOR and m2 AND gates for the trinomial of the form

xm x +1 ,

for an even in.

The best special case of the proposed method is in the case of equally-spaced-

polynomial (ESP), i.e., a polynomial of the form

p(x) xizA x(k-1)A

The best-known architecture for this case requires (m2 1) XOR gates [21], whereas

our method uses only (m2 .A) XOR gates. The ESPs reduce to the special trinomials

xm x +1
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for k = 2 and reduce to the all-one-polynomials (AOPs)

xm xm-1 + -I- x2 x + 1 ,

for A = 1. Thus, our proposed general architecture requires (m2 1) XOR gates and

m2 AND gates when the irreducible polynomial is an AOP. An architecture for the

canonical basis multiplication operation in GF(2m) was proposed by Koc and Sunar

in [32] for an irreducible AOP, which uses (m2 -1) XOR gates and m2 AND gates, while

requiring significantly less space and time complexity than similar bit-parallel finite

field multiplication architectures [39, 69, 21]. Therefore, our proposed architecture

also captures this established lower bound on the number of XOR gates for multipliers

based on irreducible AOPs.

11.2 Notation & Preliminaries

Let p(x) be the irreducible polynomial generating the Galois field GF(2m). In order

to compute the multiplication

c(x) = a(x)b(x) (mod p)(x)

in GF(2m), where a(x), b(x), c(x) E GF(2m), we need to first compute the product

polynomial

d(x) = a(x)b(x) = (E aixi) CE bix)
i=o i=o

and then reduce d(x) using p(x) to find the result c(x) E GF(2m). We can compute

the coefficients of d(x) using following matrix-vector product:
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do

d1

d2

dm -2

ao

al

a2

am_2

0

ao

ai

am_3

0

0

ao

am-4

0

0

0

ao

0

0

0

0

bo

bi

b2
dm_i am-1 am-2 am-3 al ao

dm 0 am-1 am-2 a2 a
bm_2

dm+1 0 0 am-1 a3 a2
bm_i

d2m_3 0 0 0 am_i am_2

d2m-2 0 0 0 0 am-

The above multiplication matrix will be called M, and its rows will be denoted by

Mi where i = 0, 1, , 2m-2. Note that the entries of M solely consist of coefficients

of a(x). The m x m submatrix UM of M will be defined as the first m rows of M,

and the (m 1) x m submatrix LM of M will be defined as the last (m 1) rows

of M, i.e.,

=

al

0 0 0 0

ao 0 0 0

a2 al ao 0 0

am-2 am_3 am -4 a0 0

am_2 am_3 al a0

0 am_i am_2 a2 al

0 0 am_i a3 a2

=

0 0 0 am_i am_2

0 0 0 am,- 1
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Superscripts will be used to denote the step numbers during the reduction process

and the superscript (f) will be used to indicate the final form of the corresponding

matrix. When referring to a matrix in general, no superscript will be used.

All the rows in the submatrix LO) of matrix M will be reduced, using the

irreducible polynomial p(x), so that, at the end of reduction, L(f) will become the

zero matrix. During that process, the rows of L will be added to the rows with lower

indices according to the irreducible polynomial. All the row vectors, that are added

to the others due to the reduction of a single row, will be called its children. The

final submatrix U(f) will be equal to the so called Mastrovito matrix Z, which is

multiplied by the column vector b to produce the result c.

Adding two vectors will be done by adding the corresponding entries. For ex-

ample adding

and

we get

V + W = [ (vn + wn)

vn vn -1 v1 v0

Wn-1 WI WO

(vn-1 + wn-1) ... (v1 + W1) (vo + w0)

Also concatenation of vectors will be needed during the reduction algorithm.

This will be represented using the operator II . For example, the above vectors V

and W, which are both of length (n + 1), can be concatenated to form a new vector

of length 2(n + 1), as follows

V W = [ vn vn -1 " V1 VO Wn Wn-1 W1 W0 I

Note that, in general, the equality of the lengths is not a requirement for the vectors

to be concatenated.

During the reduction, the vectors will be shifted to the right and left and the

new entries will be filled with zeros. For example (V 3) and (V 4 2) represent

right and left shifts of the vector V, by 3 and 2 positions, respectively. For the vector

V = [ vn Vn-1 vn -2 " V2 V1



the results will be

(V =

(V 4 2)

0 0 0 Vn Vn- V6 V5 V4 V3 2

Vn-2 Vn_3 Vn_4 Vn_5 Vn_6 V1 V 0 0 .
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Also, at some steps of the reduction, vectors will be used as rows to form matrices.

For example, to form a matrix using the last (n 1) entries of the above vectors, the

following notation will be adopted

V Vn-2 Vn-3 Vn-4 Vn-5 V3 V2 Vi V0

(V 3) 0 Vn Vn- V71 - 2 V6 V5 V4 V3

(V 4-- 2) Vn-4 Vn_5 Vn_6 Vn _7 V2 V1 0 0
3x (n-1)

As seen above, although the original vectors are longer, only the last (n 1) entries

of each are used, and the rest is discarded.

A final note will be on special matrices that will be encountered frequently during

the reduction process. In mathematics literature, a matrix whose entries are constant

along each diagonal is called a Toeplitz matrix. Sum of two Toeplitz matrices is also

a Toeplitz matrix [16]. This property will be used to establish a recursion in the

proposed method, as will be seen later.

11.3 General Case

Let

p(x) = xnk + xn(k-1) + + xni + xno

= xm + xn(k-1) + - + xn1 + 1

be a general irreducible polynomial where no, n1, ..., n(k- 1) nk are integers and

0 = no <n1 < < n(k_i) < nk = m .

The difference between highest two orders will be denoted by A, i.e.,

A = nk n(k_1) = m n(k-1)
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First the overall processes will be summarized and then a method will be pro-

posed to find the same result efficiently.

When the irreducible polynomial is used to reduce the rows of LO), each row will

have k children. The one corresponding to the constant term xn° = 1, is guaranteed

to be added to a row in U, but the others might be added to the rows of L and

will need to be further reduced later. To simplify the notation and observe the

regularity, k additional matrices will be used. The children produced due to the

reductions corresponding to the xThi term will be added to the m x m matrix Xi(1),

for i = 0,1, ... , (k 1). The children that fall back into the submatrix L will be

stored in L(1) to be reduced later.

By the introduction of Xi matrices, the matrix UM is preserved during the

reduction. At the end of the first step, i.e., when every row of matrix LO) is reduced

exactly once, the following matrices will be produced

where

= + X001) + + ...+ X(k - 1) (1) ,

0 0 0 0 0 0 0

0 0 0 0 0 0 (ni 1)

Xi(1) = 0 am_i am-2 an, a2 al ni

0 0 am -1 ani+i a3 a2 (ni +

0 0 0 am_i am -n; (m 1)

for i = 0,1, ... , (k 1). The part of matrix M to be further reduced after the first

step, will be



I(1) =

o o 1 1;:i) i(b1,)+1

0 0 0 , 1(,61)+3 /(,61,)+2

0 0 0 0 1(71,) 2

0 0 0 0 0 (1)

0 0 0 0 0 0

0 0 0 0 0 0

0

1

(m 2)
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As can be seen above, the new matrix L(1), that will be reduced in the next step,

is again triangular. That means the new children will again be in the same form,

except that they will contain more zero terms at the beginning.

Thus it is clear that if the same procedure is recursively applied, the submatrix

I( °) will never change and the forms of the matrices Xi and L will remain the same

after every step, i.e., Xi will all be trapezoidal and L will be triangular. The entries

that are zero and outside the indicated geometric regions after the first iteration, will

always remain zero. Only the values inside these regions will be changed during the

rest of the reduction. The number of nonzero rows of L after step j, i.e., number of

nonzero rows in L(?) can be denoted by

rj (m 1) j(m n(k_o) = (m 1) j ,

as there are (m 1) nonzero rows initially, i.e., 7-0 = (m 1), and the number is

reduced by A = (m n(k_i)) after each step. Thus it will take

N[m, A] = 11

steps to reduce the whole matrix L(°). This number is also equal to the number of

nonzero terms in the row Lo at the end of step j, i.e., number of nonzero terms in

the row L(61) for j = 1,2, ... , N[m, A] 1. Note that the range of j does not include

j = N[m, A], as the number of nonzero rows becomes zero after step N[m, A], but

the number r; will be negative for j = N[m, A].
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First the matrix M is divided into the upper and lower submatrices UM and L(').

Then, as shown in Figure 11.1, LM is reduced into k matrices using the irreducible

polynomial, while UM is kept unchanged. Upper and lower parts of the new matrices

are separated next (see Figure 11.2). While upper parts form the matrices Xi(1), lower

parts are accumulated into the matrix LW as shown in Figure 11.3, to be further

reduced in the next step. This procedure is repeated until the matrix L becomes the

zero matrix, i.e., all rows are reduced. The sum of the matrices in the last row, i.e.,

0°) and Xi(f) for i = 0, 1,...,(k 1), yields the Mastrovito matrix Z.

The summary of the reduction will be as shown in Figure 11.4.

When a more detailed analysis is performed, one will see that all the submatrices

formed by the nonzero rows of the matrices produced after the first iteration are

Toeplitz matrices. When the matrix V') is reduced further, the children will be added

to the nonzero rows of the matrices Xi(1) and LP) which are Toeplitz submatrices. As

the sum of Toeplitz matrices is again a Toeplitz matrix [16], the submatrices formed

by the nonzero rows will all be Toeplitz submatrices again. And because these are
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7

...

Figure 11.2. Separating the upper and lower parts

special Toeplitz matrices, computing only the first nonzero rows of Xi(f) will be

enough to reconstruct them. Similarly the matrix M, and hence the submatrices,

UM and IA, can be constructed using only the row Mm_i. Furthermore, since all

the first nonzero rows of the matrices Xi(f) are identical, it is enough to compute

only one of them. Thus it will suffice to work on only X0V) .

Here is how the final X0V) is computed:

N[m4] -1
E 14i) = r.g) +141) +...+ L(oNfrn41-1)
j =o

This will be used with 10) to construct the final matrix Z. First, the rows Znt

are formed by adding the corresponding rows of the matrix 10) to Xq,), for i =

0, 1, , (k 1). Then they are extended to larger vectors Yi by concatenating the

necessary parts of U('), to their beginning, so that the shifts of Yi produce the rows

below them up to the row ni+1, or up to the row (m 1) if i = (k 1). This will

simplify the construction of the matrix Z. To further simplify the representations,
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+-- ro.

Figure 11.3. Accumulation of the lower parts

the first nonzero rows of Xi, which are all identical, will be represented by the vector

V will be used. And instead of referring to UM and 1,(°), the original multiplication

matrix M, or its entries ai will be used.

So here is the summary of the proposed method:

First compute V

N[rnA]-1
V = E LW) = [

J.0

using the recursive definition of

IA(?) =

Vm_i V3 V2 V1

(LW-1) (m ni))

ru_1) > (m ni)

(k-1)>i>0

(11.5)

(11.6)

for 1 < j < N[m, 0] 1 to reduce everything to the sum of shifts of the row Lr ,

or equivalently to the sum of rows in M. The above summation means that the row
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4-

Figure 11.4. Reduction of the multiplication matrix for the general case
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LW-') is shifted by (m n(k_i)),(m nk-2), etc. until all the entries become zero.

Then all are added to form One performance note here: V is not computed

until it is totally reduced to the sum of rows of M, as there might be cancellations.

Then, compute Zni for i = 0,1, ..., (k 1) using the following recursive relations:

Z0 = [ao] II [V]lx(m-1) [ a0 V-m-1 Vm-2 V3 V2 V1

Zni = (Lf- M -m+n(2_1)]1xAi [Zn(2_1) > Adix(m-Ai)) + V ,

where Ai = (ni n(i_i)) for i = 1,2, ..., (k 1). Thus if

V = [ 0 Vm-i Vm-2 V3 v2 and

Zn(i_i) = [ an(i_i) Wm-1 Wm-2 W3 W2 W1

then

Zni = [ ani (ani-1 Vm-1)

(11.7)

(an(,-1) + (wm-i vm-i-Az ) (wAi+i vi)

Next find Yi for i = 0,1, ..., (k 1) by extending Zni

Yi = [Mm+ni]1x(A(i+i)-1) II Zni

an(i+i)-1 an2+1 ani (ani-i Vm-i)

(ao Vm-ni) (wnz-1 + vm-n3-1) (wni+1 + v1)

Finally, the whole Z matrix can be constructed as follows:

(11.8)
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11.3.1 Analysis

YO

YO -+1

YO 1)

Y1

Y1 -4 1

Y(i 1) -4 (Az 1)

Yi

Yi -> 1

Y(k 2) -4 (A(k_i.) - 1)

Y(k 1)

Y(k 1) 1

Y(k - 1) (A 1)
771X711

0

1

(m 1)
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(11.9)

The formula of the vector V in Equation (11.5) includes shifts of LU), which finally

reduce to the shifts of row 14°) when the recursive formula is used. As all right

shifts of the row le) = MTh, are present in the original multiplication matrix M, it

is possible to represent the vector V as a sum of rows of this matrix. Except for

the row itself, the minimum shift is A. Thus, in terms of the multiplication

matrix M, the shifted vectors will correspond to a subset of the rows of M, with the

minimum index being (m + A). After cancellations, the indices of the rows will be a

subset S of the set of indices m, (m + A), (m + A + 1), ..., (2m 3), (2m 2) The

first row with smallest index can be used as a base for the addition and the rest will
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be added to it. Thus the actual subset to be added to this base vector is (S min S),

which will be called as S *. As row Mi has exactly (2m 1 j) nonzero terms for

2m 2 > j > m and as adding each nonzero term requires a single XOR, the total

number of XOR gates required to compute the first form of V will be equal to the

SUM

E (2m 1 j) .

jES*

The delay in the computation of the vector V, can be minimized when the binary

tree method is used to compute the summation in each entry. As there are at most

IS I numbers to be added to compute any entry, the delay of computation will be

Flog2 SI] Tx, where 181 represents the order of the set S.

When the recursive relations in Equation (11.7) is used, construction of Zo re-

quires only rewiring and Zn, is then constructed by adding the vector V, to the

vector formed by concatenation, using (m 1) XOR gates, as the vector V has only

(nt 1) nonzero terms. Thus a total of (k 1) (m 1) XOR gates is needed to find

all Z,t for i = 1, 2, ... , (k 1). As the time needed to compute a single row Zni is

Tx, the total delay to compute all is (k 1)Tx.

The vectors YO and Y1 are then found using Equation (11.8) by only rewiring.

Construction of Z in Equation (11.9) is also done using only rewiring, as it only

consists of shifts.

To find the final result c(x) via the product c = Zb, m2 AND and m(m

1) XOR gates is needed. Each coefficient of the final result c(x) can be computed

independently via the product ci = Zib. All the multiplications can be done in one

level and the m terms can be added using the binary tree method in flog2 ml Tx

time.

Thus, overall computation for the general case requires m2 AND gates and

(m 1)(m + k 1) + (2m 1 j) (11.10)
;ES*

XOR gates. And the total delay of the circuit is

TA + Mog2 ISI1 + (k 1) +flog2m1) Tx . (11.11)
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11.3.2 Example

Let the irreducible polynomial be p(x) = x7 + x5 + x3 + x + 1. Then m = 7, k = 4,

n3 = 5 and A = 7 5 = 2. The standard reduction will reduce the last A = 2 rows

of matrix M at each step, and finds the final Z matrix in N[7, A] = IT1 = 121 = 3

steps.

The standard reduction operations performed can be summarized as follows:

M

ao 0 0 0 0 0 0

al ao 0 0 0 0 0

a2 al ao 0 0 0 0

a3 a2 al ao 0 0 0

a4 a3 a2 al ao 0 0

a5 a4 a3 a2 al ao 0

as a5 a4 a3 a2 al ao

0 as a5 a4 a3 a2 ai

-->

ao 0 0 0 0 0 0

al ao 0 0 0 0 0

a2 al ao 0 0 0 0

a3 a2 al ao 0 0 0

a4 a3 a2 al ao as a5

a5 a4 a3 a2 al (ao + ao) (a5 + ao)

as a5 a4 a3 a2 al (ao + a6)

0 as a5 a4 a3 (a2 + a6) (ai + as)

0 0 as a5 a4 a3 a2 0 0 as a5 a4 a3 (a2 + a6)

0 0 0 as a5 a4 a3 0 0 0 as a5 (a4 + a6) (a3 + a5)

0 0 0 0 as a5 a4 0 0 0 0 as a5 (a4 + as)

0 0 0 0 0 as a5 0 0 0 0 0 0 0

0 0 0 0 0 0 as 0 0 0 0 0 0 0
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ao 0 0 0 0

al ao 0 0 0

a2 al ao as a5

0

0

(a4 + as)

a3 a2 al (ao + as) (a5 + as) (a4 + a5 + as)

a4 a3 a2 al (ao + as)

a5 a4 a3 (a2 + a6) (al + as)

as a5 a4 a3 (a2 + as)

0 as a5 (a4 + a6) (a3 + a5)

0 0 as a5 (a4 + as)

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

(a5 + as)

(ao + a4)

(al + as)

(a2 + a4)

(a3 + a5)

0

0

0

0

ao as as (a4 + a6) (a3 + as)

al ao + a6) (a5 + a6) (a4+as+ae) (a3+a4-1-a5+a6)

a2 al (ao + a6) (as + a6)

a3 (a2 + a6) (ai + as) (ao + a4)

a4 a3 (a2 + a6) (a1 + a5)

a5 (a4 + as) (a3 + as) (a2 + a4)

a6 a5 (a4 + a6) (a3 + as)

(a4+as+a6)

(a3 + a6)

(ao + a4)

(al + a3)

(a2 + a4)

0

0

(a3 + as)

(as + a4 + a5 + as)

(a4 + a5 + as)

(a3 + a6)

(ao + a4)

(al + a3)

(a2 +a4)

0

0

0

0

(a2 + a4)

(a2-Fa3-1-a4-Fa5 )

(a3A-a4+a5-1-04)

(a2+a5-1,243)

(a3 + a6)

(ao + a2)

(a1 + a3)

(a1 + a3)

(ai-Fa2+a3-Ea4)

(a2+a3 i-a4±a5)

(a1+47.4-Fa5-1-043)

(a2-4-a5+46)

(al + as)

(ao + a2)

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

The first 7 rows the above result will form the Z matrix.
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The proposed method will do the following to get the above result: First the

vector V is found using Equation (11.5)

N[7,5]-1

V = > LW) = + LW) + .

i=0

which can be computed using the recursive definition in Equation (11.6):

LW) = (LV-1) (7 n,i))

ru_i) > (7 n2)

3 > i > 0

Using this formula L(c1) and LO can be reduced as follows:

LW) >2 (LV -÷ (7 n2)) = (Lr -4 (7 5)) + (7 3))

3>i>0
6> (7 ni)

(L,1°) 2) + (LV 4) = M9 + M11

L2) = E (LW) (7 n2)) = 1.41) -4 (7 5)

3>i>0
(7 ni) <4

((Lr + 2) + (14°) ÷ 4)) -4 (7 5) = (g3) 4) + (140) __÷ 6)

(140)_> 4) = M11

Thus the final form of the vector V will be

V = LV +LW) + le) = M7 ± (Mg + M11) ± Mll

= M7 + M9

=

=

[

+ [

[

0

0

0

as

0

as

a5

0

a5

a4

as

(a4 + as)

a3

a5

(as + a5)

a2

a4

(a2 + a4)

a1

a3

(a1 + as)

1,

]

]

As can be seen from above, S = {7, 9} and 5* {9}.
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Next compute Zo, Z1, Z3 and Z5 using the recursive relations in Equation (11.7):

Zo = [ao] II [V]ix (7_1)

ao a6 a5 (a4 + as) (a3 + a5) (az + a4) (ai + a3)

Z1 = ([M7]1x1 II [Zo -4 1]1),(7_1)) + V

= [ al ao as a5 (a4 + a6) (a3 + as) (az + a4)

+ [ 0 a6 a5 (a4 + as) (a3 + as) (az + a4) (al + a3)

= [ al (ao -1-as) (a5+a6) (a4+a5 +a6) (a3+a4+a5 +a6) (a2-1-a3-i-a4+a5) (ai+a2-Ea3±a4)

Z3 = ([1\47+1]1x2 11 [zi 2]1x (7-2)) + V

= [ a3 a2 a1 (ao + as) (a5 + a6) (a4+a5+a6) (a3-i-a4+.5-i-a6) ]

+ [ 0 a6 a5 (a4 + as) (a3 + as) (az + al) (ai + a3) ]

= [ a3 (a2 + a6) (a1 + a5) (ao + a4) (a3 + a6) (a2-Fa5+a6) (ari-a4-1-a5+a6) ]

Z5 = ([147+3] 1 x 2 II [Z3 ÷ 2]1 x (7-2)) + v
= [ a5 a4 a3 (az + as) (a1 + as) (ao + a4) (a3 + a6) I

+ 0 as a5 + a6) (a3 + a5) (a2 + a4) (al + a3)

[ a5 (a4 + a6) (a3 + a5) (az + a4) (a1 + a3) (ao + az) (a1 + as) ]

Extending Zo, Z1, Z3 and Z5 using Equation (11.8) will result in the following vectors:

YO = [Mr]ix(i-1) Zo

= Zo = [ ao a6 a5 (a4 + as) (a3 + as) (az + a4) (al + a3)

Y1 = [Ms]lx(2-1) 11 Z1

= az al (ao + a6) (a5 + a6) (a4 + a5 + a6)

(a3 + a4 + a5 + a6) (a2 + a3 + a4 + as) (ai + az + a3 + a4) ]

Y2 = [Mlidix(2-1) II Z3

= [ a4 a3 (az + as) (ai + as)

(ao + a4) (a3 + as) (az + as + as) (al + a4 + as + as) ]

Y3 = [1\412]lx(2-1) 11 Z5

= [ a6 a5 (a4 + a6) (a3 + as) (az + a4) (ai + a3) (ao + az) (ai + as) ]
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Finally the whole Z matrix can be constructed using the Equation (11.9):

YO

Y1

(Y1 -* 1)

Z = Y2

(Y2 -÷ 1)

Y3

(Y3 > 1)
7x7

a0 a6 a5 (a4 + as) (a3 + a5) (a2 + a4) (ai + a3)

a1 (ao + a6) (a5 + a6) (a4+a5+a6) (a3d-a4+a5+a6) (a2+a3+a4-Fa5) (ai +a2+a3+a4)

a2 al (ao + as) (a5 + as) (a4+a51-a6) (a3+a4+a5-I-a6) (a2+a3+a4+a5)

a3 (a2 + a6) (al + a5) (ao + a4) (a3 + a6) (a2+a5+a6) (ai+a4+a5-Fa6)

a4 a3 (a2 + as) (ai + a5) (ao + a4) (a3 + a6) (a2+a5+a6)

a5 (a4 + a6) (a3 + a5) (a2 + a4) (ai + a3) (ao + a2) (al + a6)

as a5 (a4 + a6) (a3 + a5) (a2 + a4) (al + a3) (ao + a2)

Note that the final matrix found using our method is the same as the one found

using the standard method.

There are 4 additions in the first computation of vector V and 3*6 additions in

the computation of rows Zi. The vectors Yi and the construction of the matrix Z

is done only using rewiring. To find the final result c(x) via the product c = Zb, 72

AND and 7* 6 = 42 XOR gates will be needed.

Thus, the overall computation for the general case requires 49 AND gates and

4 + 3 *6 +42 = 64 XOR gates.

To compute the required XOR gates, one can alternately use the Equation (11.10)

with S* {9} , m = 7 and k = 4, which yields

(7 1)(7 + 4 1) + E (14 1 j) = 60 + 4 = 64
jE {9}
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XOR gates. Using S = {7, 9} in Equation (11.11), the total delay of the circuit turns

out to be

TA ± (1-log2 21 + (4 1) + [log2 71 ) Tx = TA ± 7Tx

11.4 Special Cases

When the irreducible polynomial has a multiple with fewer terms or some special

form, the reduction of some higher terms can be simplified. These yield some sim-

pler multipliers. Binomial, trinomial, all-one-polynomial (AOP) and equally-spaced-

polynomial (ESP) cases will be studied.

11.4.1 Binomials

When p(x) is binomial, it is always reducible, and a Galois Field can not be con-

structed using it. But still reduction by a binomial can be needed in some cases. For

example while doing a reduction using the AOP

p(x) xm-1 xm,-2 xm-3 x2 xl + 1

the (x + 1) multiple of it, which will be the binomial

(x + 1)p(x) = xm ± 1 ,

can be used, to reduce the terms with order higher than m 1. Thus, binomial case

will be presented to be used as a base for the other special cases and for the sake of

completeness.

Let p(x) = xm + 1. When we use this polynomial to reduce the rows of L03), each

row will have a single child and that child will be in U, as explained in the general

case. Furthermore the row number of the child in U will be the same as the reduced

row in L(°) . In that case, all the reduction can be done in a single step as follows:



z = +

ao 0 0

a1 ao 0

a2 a1 ao

0

0

0

:

0

0

0

0

0

0

am_3 am_4 am -5 ao 0 0

am-2 am-3 am-4 a1 a0 0

am -1 am-2 am_3 a2 a1 a0

a0 am_i am_2 a3 a2 a1

al ao am_i a4 a3 a2

a2 a1 ao a5 a4 a3

am-3 am-4 am-5 ao am-1 am-2

am_2 am_3 am_4 al ao am -1

am_i am_2 am_3 a2 a1 ao

0 am_i am_2 a3 a2
.

a1

0 0 am_i a4 a3 a2

0 0 0 a4 a3

0 0 0 0 am-1 ant-2

0 0 0 - 0 0 17,-m-1

0 0 0 0 0 0
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As can be seen above, we needed no gate to get the last matrix. And in fact all

can be done by just working on a single vector. Define the intermediate vector Y as

Y = [Mm -1 --->

am -1 am-2 a2 a1 ao am_i am-2

Then the whole Z matrix can be constructed as follows:

Y

Y --> 1

Y-+2

ao

al

a2

Z=
Y (m 3)

Y (m 2)

Y (m 1)
- mxm

am_3

am_2

am_i

a2 al

am-i am-2 a3 a2 ai

ao am_i - a4 a3 a2

al a0 a5 a4 a3

am-4 am-5 ao am -1 am-2

am_3 am_4 al a0 am_i

am-2 am-3 a2 a1 ao
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11.4.1.1 Analysis

Since Y is never processed, and as the rows of matrix Z can be obtained by only

rewiring, the final Z matrix costs nothing in terms of gates. To find the final result

c(x) via the product c = Zb, m2 AND and m(m 1) XOR gates will be needed.

While computing c = Zb the multiplications can be done in one level and then

the outcomes can be added using the binary tree method. Using this procedure the

delay of the circuit will be

TA + ilog2 ml Tx .

11.4.2 Trinomials

Let the irreducible polynomial be the trinomial

p(x) ± xn + 1

Note that A = m n in this case. The special case n = Ti will be treated as a special

case of the equally-spaced-polynomials (ESPs) later and will not be studied here.

First the overall processes for trinomials will be summarized and then a method

will be proposed to find the same result efficiently. When this irreducible polynomial

is used to reduce the rows of LO), each row will have two children. The one corre-

sponding to the constant term xn° = 1, is guaranteed to be in U, but the other might

need to be further reduced depending on the position of the parent row. To simplify

the notation and observe the regularity, two additional matrices will be used. The

reductions due to the constant term will always be added to the matrix XO, and the

reductions due to the xn term will always be added to Xl. At the end of the first

step, the following matrices will be produced:
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Z(1) = + X0(1) + X1(1)

a() 0 0 0 0 0 am_i am-2 a2 al

a1 ao 0 0 0 0 0 am_i a3 a2

am-3 am-4 a() 0 0 0 0 0 am-1 am_2

am_2 am-3 al a0 0 0 0 0 0 am_i

am -1 am-2 a2 al
a0

0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 (n 1)

+ 0 am_i am_2 a2 a1 n

0 0 am_i an+i a3 a2 (n + 1)

0 0 0 ap+i apam -1 (m 1)

0 0 am_i aP+2 a0 1-1 0

0 0 0 am_i aA4.3 aA+2 1

L P)
0 0 0 0 am_i am-2 (n 3)

0 0 0 0 0 am_i (n 2)

0 0 0 0 0 0 (n 1)

0 0 0 0 0 0 (m 2)

As can be seen above, the new matrix L(1) that will be reduced further is again

triangular. That means the new children will again be in the same form, except that

they will contain more zero terms at the beginning.

Thus it is clear that if the same procedure is recursively applied, as in the general

case, the submatrix 13(°) will never change and the forms of the matrices Xi and L
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will remain the same after every step, i.e., Xi will all be trapezoidal and L will be

triangular. The entries that are zero and outside the indicated geometric regions

after the first iteration, will remain zero. Only the values inside these regions will

be changed during the rest of the reduction. The number of nonzero rows of L after

step j, i.e., number of nonzero rows in L(i) can be denoted by

rj = (m 1) j(m n) = (m 1) jA ,

as there are (m 1) nonzero rows initially, and the number of rows is reduced by

A = (m n) after each step. Thus it will take

N[m, A] = Imo 11

steps to reduce the whole matrix L(°). This number is also equal to the number of

nonzero terms in the row L(T) at the end of step j, i.e., number of nonzero terms in

the row LW) for j = 1,2 ,..., N[m, A] 1. Note that, similar to the general case, the

range of j does not include j = N[m, A], as the number of nonzero rows becomes

zero after step N[m, A], but the number ri will be negative for j = N[m, A].

When a more detailed analysis is performed, as in the general case, one will see

that all the submatrices formed by the nonzero rows of the matrices produced after

the first iteration are Toeplitz matrices. When the matrix L(1) is reduced further,

the children will be added to the nonzero rows of the matrices X0(1), X1(1), and

LP) which are Toeplitz submatrices. As the sum of Toeplitz matrices is again a

Toeplitz matrix [16], the submatrices formed by the nonzero rows will all be Toeplitz

submatrices again. And because these are special Toeplitz matrices, computing

only the first nonzero rows of X0(f) and X1(f) will be enough to reconstruct them.

Similarly the matrix M, and hence the submatrices, 0°) and L(°) , can be constructed

using only the row Mrn_i. Furthermore since the first row of X0(f) and the nth row

of X1(f) are identical, it is enough to compute only one of them. Thus it will suffice

to work on only X0V).

Here is how XOW) is computed:

Mm,A1-1
E 14,3) 140) Lw) Lv[mAi_i)
j=0
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But since for trinomials the recursive relation in Equation (11.6) simplifies to

(LW-1) .4 (m-ni)) = (LW-i) (m-n)) = (Lo i) -÷ A)
r(j -1) > (m ni)

1 > i > 0

X0V) becomes

Nfrn,A1-1

E (14,,()) -4 jA) = + (L(0°) A) + (Lr (N[rri, - 1)A) .

j =0

This will be used with UM to construct the final matrixZ. First, the rows Zo

and Zn are formed by adding the corresponding rows of the matrix 0°) to X0(0f) and

X1W) and then they are extended to larger vectors YO and Y1 by concatenating

the proper parts of UM to their beginning, so that the shifts of YO and Y1 produce

the rows below them. This will simplify the construction of the matrix Z. To

further simplify the representations, X0(0f) and XIV), which are all identical, will be

represented by the vector V. And instead of referring to UM and LM, the original

multiplication matrix M, or its entries ai will be used.

The vector V will be defined as
N[it,A]-1 N[m4]-1

V = E (Lp jA) = E
j=0 j=0

=
[ 0 v vm_i vm_2 V3 V2 V1 I

Before proceeding any further consider the following equality:

N[rn,0] -- 1

V = E (14°) -> jA)
j=0

NimAj-1

L° + E V -4 j°)
j=1

N[m4] -1
= 0 + E (g)) -4 jA) + (Tr -4 N[771, A]A)

N[m3.1.70 + t (140)
j =1



[ E
(go) jA)]

N[m,A]-1

j=0

= + (v --÷ A)

-+0
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Note that the row (Lo ) -+ N[m, A]A) added to the sum above is a zero vector since

L(T) has a zero at the first entry and is shifted at least (m 1) positions to the right.

The above equality suggests the following recursive formula for the computation

of the entries of the vector V:

vi

0

ai

Vi±p

i m ,

(m 1) i > (n 1)

(n 1) > i > 1 .

Formulas for Zo and Zn can be found using the general recursive formula in

Equation (11.7):

Zo = [ao] II [v]lx(m -1)

= [ a0 vrn_2 V3 V2 V1

Zn = (Mn + (V n)) + V

= [ an (an_i + vm-1) (ao + vA) (vm-i + vA-1) (vn+1 + vi)

However, there are further simplifications here, which can be seen by comparing the

entries of Zn and Zo carefully. The first n entries in Zn are identical to the last n

entries of Zo, and thus need not be computed again, rewiring will be enough. This

can be proven using the recursive formula of the vector V in Equation (11.12)

(Z0 4- A) = (M0 4- A) + (V A)

= V4L
(14°) + (V A)) 4- A

= (L(T) E A) + ((V -* A) 4-- A)

= Mn + ((V A) 4- A) .

During the double shift, the first n entries of the second term above is preserved, i.e.,

they are the same as in vector V. Thus the difference between the first 71 entries of
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the vectors (Z0 A) and Zn, is only the vector (V > n). But since the first (n +1)

entries of the vector (V n) are all zero, the vectors (Z0 ÷- A) and Zn agree in the

first n positions. Then during the computation of Zn, the first n positions can be

produced by rewiring the last n entries of Zo or V, as they are the same, i.e., [V]1xn.

Note also that the last A entries of the sum (Mn + (V ---> n)) is equal to

[(Z0 -4 = [ ao vm_i vn+i = [ a0 am -1 an+1

Note that the Equation (11.12) is used to substitute vi = ai for i = (n+1), , (m-1).

So here is the summary of the proposed method:

First compute the vector V using the recursive definition in Equation (11.12).

Then compute Zo and Zn using:

Zo = [ao] II [V]ix(m-1) = ao vm-i vm-2

Zn = [V]1xn ([V]1xA [(Zo >

[ Vn V- n-1 Vi

[ VA VA_1

[ an Vn-1 Vi

vl + ao

V2 V1

am_i

(ao + vA) (am-i + vA-1) (an+1 + vi)

Next find YO and Y1 by extending Zo and Zn:

YO = iN4L--mj 1 x (n-1) 11 Zo

[ an-1 an-2 ai

Y1 = 1ML- m-En 1j 1 x (A-1) 11 Zn

r

ao Vm_i

am-1 am-2 an+1 an

Vm_2 V2

Vn-1

v1 (ao + vA) + vA-1)

V1

(an + vi) I
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Finally the whole Z matrix can be constructed as follows:

YO ao VA+1 VA vl

YO -+ 1 al a0 V0 -1-2 V0 -I-1 V2

YO (n 1) an-1 an-2 a0 vm-1 vn

Z= Y1 an tin-1 vi (ao + v.6,) (an+i + v1)

Y1-41 an+1 an v2 Vi (an+2 ± V2)

Y1 (A 2) am -2 am -3 - 2/A_1 VA_2 (am_i VA_1)

Y1 > (A 1)
mxm

am -2 VP VA-1 (ao + vA)

(11.15)

Note that the vA_i type of entries for i > 0 in the last rows, is present only if their

indices are less than n. Otherwise they will be taken as

11.4.2.1 Analysis

Computation of the vector V using the recursive relation in Equation (11.12) requires

only one XOR gate for each of the last (n 1) entries which sums up to a total of

(n-1) XOR gates. The total delay is (N[m, LS.] 1)Tx as the entries can be computed

in blocks of A, no computation is needed for the first block and computations within

each block can be done in parallel.

Construction of Zo requires only rewiring. During the computation of Zn, the

first n positions are produced by rewiring, and only A XOR gates are needed to

compute the last A entries as each requires a single addition. This computation

takes Tx time, as all can be added in parallel. The vectors YO and Y1 are then

found using only rewiring. Construction of the matrix Z is also done using only

rewiring, as it only consists of shifts. To find the final result c(x) via the product

c = Zb, m2 AND and m(m 1) XOR gates will be needed. And the delay for this last

part is TA + FlOg2 ml Tx when the binary tree method is used to compute the sums.
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Thus, overall computation for the trinomial case requires m2 AND gates and

(n 1) + A + m(m 1) = m2 1

XOR gates. And the total delay of the circuit is

TA + (N[771, A] + [log2 ml) Tx = TA + Gm
A

1
1 + [log2 nl) Tx . (11.16)

11.4.2.2 Example

Let the irreducible polynomial be p(x) = x7 + x4 + 1. Then m = 7, n = 4. The

standard reduction will reduce the last A = 7 4 = 3 rows of matrix M at each

step, and finds the final Z matrix in N[7, 4] = 1N1 = 2 steps.

The operations performed by the regular reduction method can be summarized

as follows:

M=

ao 0 0 0 0 0 0

al ao 0 0 0 0 0

a2 al ao 0 0 0 0

a3 a2 al ao 0 0 0

a4 a3 a2 al ao 0 0

a5 a4 a3 a2 al ao 0

as a5 a4 a3 a2 al ao

as a5 a4 a3 a2 al

ao 0 0 0 0 0 0

al ao 0 0 0 0 0

a2 al ao 0 0 0 0

a3 a2 ai ao as a5 a4

a4 a3 a2 al ao as a5

as a4 a3 a2 al ao as

as a5 a4 as a2 al ao

0 as a5 a4 (a3 + as) (a2 + as) (ai + a4)

0 0 as a5 a4 a3 a2 0 0 as a5 a4 (a3 + a6) (a2 + a5)

0 0 0 as a5 a4 a3 0 0 0 as a5 a4 (a3 + a6)

0 0 0 0 as a5 a4 0 0 0 0 0 0 0

0 0 0 0 0 as a5 0 0 0 0 0 0 0

0 0 0 0 0 0 as 0 0 0 0 0 0 0



ao a6 a5 a4 (a3 + as) (a2 + a5) (al + a4)

al ao a6 a5 a4 (a3 + a6) (a2 + a5)

a2 al ao a6 a5 a4 (a3 + a6)

a3 a2 al ao as a5 a4

a4 (a3 + a6) (a2 + a5) (al + a4) (ao + a3 + as) (a2 + a5 + as)
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(a1 + a4 + a5)

a5

a6

a4

a5

(a3 + a6) (a2 + a5)

a4 (a3 + as)

(al + a4)

(a2 + a5)

(a0 + a3 + a6) (a2 + a5 + a6)

(al + a4) (a0 + a3 + as)

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

The first 7 rows will form the Z matrix.

The proposed method will do the following:

First compute V, using the recursive relations in Equation (11.12):

V = [ 0 ]
II

[ 0 ]

[ a6 a5 a4 ] II [ (a3 v3+3) (a2 + v2+3) (al + vi+3) ]

[ a6 a5 a4 [ (a3 + as) (a2 + a5) (a1 + a4) ]

= 0 a6 a5 a4 (a3 + a6) (a2 + a5) (al + a4) ]

Then compute Zo and Z4 using Equation (11.13):

Zo = [ao] II [V]ix(7-1) = [ ao a6 a5 a4 (a3 + as) (a2 + a5) (a1 + a4) ]

Z4 = [V]l x4 II ([V]lx3 [(Z0 4)]1x3)

[ a4 (a3 + a6) (a2 + a6) (al + a4) ] II

[ (a3 + as) (a2 + a5) (al + a4) + [ ao a6 a5 ] )

= [ a4 (a3 + as) (a2 + a5) (a1 + a4) (a0-1-a3-1-a6) (a2+0,5-1-a6) (al -1-a41-a5)



Next find the vectors YO and Y1 using Equation (11.14):

YO = [M7]ix(4-1) II Zo

= [ a3 a2 a1 a0 as a5 a4 (a3 + as) (a2 + as) + a4)

Y1 = [1\41.1]lx(3-1) if Z4

as a5 a4 (a3 + as) (a2 + a5) (a1 + a4)

(ao + as + as) (a2 + as + a2) (al + a4 + as) ]

Finally the whole Z matrix can be constructed using Equation (11.15):

Z=

YO

YO -4 1

YO -}2

YO -÷ 3

Y1

Y1 -31

Y1 -4 2
7x7

a0 a6 a5
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a4 (a3 + a6) (a2 + a5) (ai + a4)

al a0 a6 a5 a4 (a3 + a6) (a2 + a5)

a2 al ao as a5 a4 (a3 + as)

a3 a2 al ao a6 a5 a4

a4 (a3 + a6) (a2 + a5) (a1 + a4) (ao-Fa3-Fa6) (a2+a5A-a2) (ai +a4+a5)

a5 a4 (a3 + a6) (a2 + as) (al + a4) (ao +a3 +a6) (a2-Fa5+a2)

a6 a5 a4 (a3 + a6) (a2 + as) (ai + a4) (ao +a3 +a6)

Note that the final matrix found using our method is the same as the one found

using the standard method.

There are 3 additions in the computation of the vector V. And Z4 is produced

using rewiring for the first 4 entries and 3 additions for the last 3 entries. The vectors

YO, Y1 and the construction of the matrix Z is done only using rewiring. To find

the final result c(x) via the product c = Zb, 72 AND and 7* 6 = 42 XOR gates will be

needed. Thus, the overall computation for the trinomial case requires 49 AND gates

and 3 + 3 + 42 = 48 XOR gates.

Note that the above results all agree with the results found theoretically.

The total delay of the circuit can be found using Equation (11.16) with m = 7

and A = 3

TA + + (log2 71) Tx = TA + 5Tx



129

11.4.3 Equally-Spaced-Polynomials

Let p(x) be an equally spaced- polynomial (ESP) with ni = iA for i = 0, 1, . . . , k and

m = nk = kA, i.e.,

p(x) = xnk + xnk-i + + XThi xn°

xkA x(k-1)A x6.

A is called the spacing factor. Note that A still shows the difference between the

highest two orders as before, i.e., A = nk n(k_1). When the row M. of the initial

matrix M, is reduced, it produces children on rows

A), (j- 2A), . . . , (j k A) ,

for (j > (k + 1)A) . Similarly when the child on row (j A) is further reduced, the

new children will be on rows

(.7 2A), (j 3A), , (j (k + 1)A)

As all of these are identical the new ones will cancel all of the old ones. The only

new child left will be the one on row (j (k + 1)A). Hence we can say that the only

offspring of the row MM for j > (k + 1)A will be added to the row (j (k + 1)A).

This is because, what effectively done above is reducing the row using the (x°+1)

multiple of the original irreducible polynomial p(x), which is

(x° + 1)p(x) x(k+i)A

All the rows in LM except the first A, can be reduced using this multiple. The first

A rows has to be reduced using p(x) itself. In terms of the matrix M, this means

that the rows M(k+op, M(k+op+i, M2771,_2 will be reduced using the multiple

(x° + 1)p(x) and the rows MkP, Mkp+1, M(k+i)p_i will be reduced using the

original polynomial p(x). Note that the first part of the reduction does not use any

addition as all the entries reduced will be added to the upper triangular section of

the matrix UM which consist of zeros. The second part of the reduction can be

managed using two different approaches.
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11.4.3.1 First Solution

As before the proposed method will only compute Zn, = ZiA, for i = 0, , (k 1),

but without using the vector V this time. First we define v = (k i 1) to simplify

the notation. When the above procedure is used, the row Zip becomes

ZiP = (MiA MiA±(k+1)11) MkA

aip aip_1 ao 0 0 akA-i a(i+06.-F1

+ [ 0 akA-.1 a(v+i)A a(v+1)A-1 avA avA-1 al

= [ aiP (20,-1 + akA-1) (ao + a(v+i)A) a(v+1)A.-1

avA (akA-1 + avA-i) (a(i+1),60-1 + al)

where we combined the first two vectors, as no gate is needed while adding them.

The combined vector has A consecutive zeros, except for the row Z(k_i)p which has

only A 1. As a result of this and the leading zero in MkA, computing Zip, for

i = 0, , (k 2) only requires ((k 1)A 1) additions, and Z(k_i)A requires (k 1)A

additions.

However there are further simplifications in the computation due to same addi-

tions appearing twice during the whole process. Using the definition of Zo, the row

ZvA is found as

Zvp = [ avo (avP-1 akp- 1) (ao a(i+1)A) a(i+1)A-1

acel (akA-1 + ai.6-1) (a(v+1).6.+1 + al)

As seen above, the first vA entries of the row Zvp are identical to the last vA entries

of the row Zip, and the last iA entries of the row Zvp are identical to the first iA

entries of the row Z. Thus to obtain the row Zvp, the only addition needed to be

carried out is (ao + a(i+i)A), the rest can be constructed by rewiring the row Zip and

the original matrix M.

For the case k odd, the row Z (k_i)A is
2

Z (ki) A =
2

a (k-1) (a (k-1)A 1 -I-- akix-i) (ao + a (k+1) A ) a (k+1) A
2 2 2 2 aa

a (k-1) A (akA_i + a (k-1) 1) " (a(k+i) + al) I
2 "a 2 `-s-r-
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As can be seen above the first (k21)A and the last (k;1) A entries are identical. Thus

it is enough to compute the first (1c21)A entries and the term (ao + a (k +1) p) only.
2

So the proposed method computes the rows of the final matrix Z directly using

the following set of recursive relations:

Zip =

(MiA 1\4(k+i+1)0) MkA

[Zvp]l xiA II Rao + a(v+i)A) a(v+1)0 -1

avp] [Zvp --+ (i 1)A]lxv.a.

[aiA (aiA-1 + akA-1) (ao + a(i+i)A) a(i+i)A-1

- - aiA (akA_i + aiA-1) (a(i+1)A+1 + al)] i = k- 21 for k odd

(11.17)

where for k odd, the last (iz 1) entries in the i = k21 case is not computed, but

rewired using the first part of the same vector.

Next find YiA for i = 0, 1, . , (k 1) by extending Zip:

0 < < [j
1kIfi < < (k 1),6,

YiA = [Mni+JA]ix(A-1) II Zip

[a(i+i)A-i aiA (aiA-i + akA-1) (ao + a(v+1)A) a(v+1)A-1

awl (akA-i + avA_i) (a(i+i)A+1 + al)

Finally, the whole Z matrix can be constructed as follows:



Z

YO

YO -4 1

YO (A 1)

YD

YD 1

Y(i 1)A (A 1)

YiA > 1

Y(k 2)46. -4 (A 1)

Y(k 1)A

Y(k 1),A, 1

Y(k 1)0 > (A 1)

11.4.3.2 Analysis of the First Solution

rnx 771.

0

1

(m 1)
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For the case k even, the rows Zip, with indices i = 0, , k-22 can be computed using

(k 1)A 1 additions each, and then the rows for i = t, , (k 1) can be computed

using one addition each, which sums up to a total of

(k
2

± 1)((k 1)A 1) (k 1 +1) = k(k 1)A
2 2

additions.

For the case k odd, as the first (k;') A and the last (k21) A entries in the row

Z(k_i)A are identical, it is enough to compute the first (k-21) A additions only. The
2

rows Zip, with i = 0, , (k21) 1 can be computed using (k-1)A 1 additions each,
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and then the rows with i = (k+21), , (k 1) can be computed using one addition

each as in the previous case, which sums up to a total of

(k 1)
((k 1)A 1) +

(k 1)A
+ [(k 1) (

(k 1) (k 1)
kA+ 1) + 1] =

2 2 2 2

additions.

Thus in both cases k(k
2

1).n. =
2

ni(k-1) additions, i.e., XOR gates are needed to

compute the rows Zip matrix. The vectors Yi0 and the final matrix Z can be

found using only rewiring. Also m2 k2A2 AND and m(m 1) XOR gates are needed

to find the final result c(x) via the product c = Zb. Hence the overall computation

for this special case requires m2 AND gates and

m(2 1)
+ m(m 1) = m2 + m (k 3)

XOR gates.

Note that the total delay of the circuit that computes the matrix Z is only Tx

as all entries only requires a single addition and can be computed in parallel. The

final product c = Zb can be computed by a doing products in the first layer and

then using the binary tree method to add the results. The total delay of the circuit

will then be

TA + (1 + (10g2 ml) TX

11.4.3.3 Second Solution

There is also another approach that depends on the observation that the last vector

used in the computation of Zip is always the same row, i.e., MkA = Mm. Then

the contribution of this vector can be computed separately and can be added to the

contribution of the other vectors for each row. That is the result ci6, = Zi,6,13 can be

partitioned as

= ZiAb = ViAb + ZiOb ,

where Z'b contains the contribution of the first two vectors in the definition of Zip

in Equation (11.17) and Z"b contains the contribution of the last vector. However,
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since the results are not vectors but numbers, shifting cannot be applied to construct

the rows of c with indices that are not multiples of A. Then one has to construct

the whole matrices Z' and Z". Still there will be simplifications as there are only A

different rows in the matrix Z".

In terms of the row ci this corresponds to the partition

ci = Zib = (Mi + Mi+(k+i)0)b + MkA+jb

where i j (mod A) and 0 < j <

The result c is then directly found by using these entries.

11.4.3.4 Analysis of the Second Solution

(11.20)

As shown before the sum (n+mi+(k+1)A) requires no addition and has Z consecu-

tive zeros, except for the rows Z(k_i)p+i with 0 < 1 < A, where it has only (A 1 0

zeros.

Thus the first product requires

(k 1)AAND (k 1)A 1XOR gates f o r i = 0, , (k 1),A. 1,

((k 1) + 1 + 1) AND ((k 1)A + OXOR gates for i = (k 1)A, kA 1

Since the row Mkp±j has (kAj-1) non-zero terms, the second product requires

(kA j 1)AND and (kA j 2)XOR

gates for 0 < j < A. Another XOR gate is needed for the final sum of each row. Thus

to compute the result using this second approach

(k 1) A((k 1) A) +
A-1
[E (k 1)A + 1 +

1=0
+

A-1
[E kA j

1]j=0

k2% 2 m2

AND gates and

A-1
11 A-1

(k 1),6((k 1)A 1) + [E (k 1)A ± [ k 2] + kA = m2 -O
i=o

XOR gates are required.
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AR vector products can be carried out in parallel. The bottleneck for the delay

is the last row in the first product, i.e., when 1 = (A 1), where two full vectors

of length m are multiplied. When the binary tree method is used to compute the

additions, the total delay becomes

TA + (1 + flog2 ml ) Tx

where 1Tx is the delay of the final vector sum.

11.4.3.5 Comparison of the Two Solutions

The delay and the number of AND gates needed are equal in both solutions. For

k > 2,

m2 ± m(k
2

3) > m2 > m2 A ,

i.e., the second solution uses less XOR gates. And for k = 2, i.e., for the special

trinomials xm + x 2 + 1, both solutions uses the same number of XOR gates as

m2 ± (k 3) 2 in 2 A= 771 = 771 La .

In conclusion, the second solution is always better, but for trinomials the first

solution can also be used, as well.

11.4.3.6 Example

Let the irreducible polynomial be the ESP

p(x) = x6 ± x3 + 1 .

Then A = 3 and m = kA = 6.

As k = 2, the both solutions have the same efficiency. So to present and compare

the solutions, both cases, along with the general reduction, will be presented.

The multiple (x3 1)p(x) will be

(x3 + 1)p(x) = X9 1 .
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In the proposed methods, the rows M9 and M10, will be reduced using this

multiple and the rows Mg, M7 and M8 will be reduced using the original polynomial.

The standard reduction will proceed as follows:

M=

ao

ai

a2

a3

a4

a5

0

0

0

0

0

0

ao

al

a2

a3

a4

a5

0

0

0

0

0

0

ao

al

a2

a3

a4

a5

0

0

0

0

0

0

ao

al

a2

a3

a4

a5

0

0

0

0

0

0

ao

al

a2

a3

a4

a5

0

0

0

0

0

0

ao

al

a2

a3

a4

a5

-4

0,0

ai

a2

a3

a4

a5

0

0

0

0

0

0

ao

al

a2

a3

a4

a5

0

0

0

0

0

0

ao

al

a2

a3

a4

a5

0

0

0

0

0

0

ao

al

a2

a3

a4

a5

0

0

a5

0

0

0

ao

al

a2

a3

a4

0

0

a4

a5

0

0

0

ao

al

az

a3

0

0

-4

ao

al

a2

a3

a4

a5

a5

ao

al

(a2 + a5)

a3

a4

a4

a5

ao

(a1 + a4)

(a2 + a5)

a3

a3

a4

a5

(ao + a3)

(a1 + a4)

(a2 + a5)

(a2 + a5)

a3

a4

a2

(ao + as)

(al + a4)

(al + a4)

(a2 + a5)

a3

al

a2

(ao + a3)

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

The first 6 rows form the matrix Z.
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The first solution starts by computing Zo and Z3 first, using Equation (11.17):

Zo = (Mo + Mg) + Ms

= ( [ ao 0 0 0 0 0 ]

+ [ 0 0 0 0 a5 a4 ] )

+ [ 0 a5 a4 a3 a2 al ]

= [ ao 0 0 0 a5 a4 ]

+ [ 0 a5 a4 a3 a2 al ]

= [ ao a5 a4 a3 (a2 + a5) (ai + a4) ]

Z3 = [ a3 (a2 + as) (al + a4) (ao + a3) a2

YiA is then found using Equation (11.18):

YO = [M6]lx2 Zo

= [ a2 al ao a5 a4 a3 (a2 + as) (al + a4) ]

Y1 = [Mo]ix2 II Z3

= [ a5 a4 a3 (a2 + a5) (al + a4) (ao + a3) a2

Then the whole Z matrix can be constructed using Equation (11.19), as follows:

Z=

Y0

YO 1

YO 32

Y1

Y1+1
Y1 2

7x7

ao a5 a4 a3 (a2 + a5) (al + a4)

al a() a5 a4 a3 (az + a5)

a2 al ao a5 a4 a3

a3 (a2 + a5) (al + a4) (ao + a3) a2 al

a4 a3 (az + a5) (al + a4) (ao + a3) az

a5 a4 a3 (a2 + a5) (al + a4) (ao + a3)

3 XOR gates are needed to construct Zo and Z3. m2 = 36 AND and m(m 1) = 30

XOR gates are needed to find the final result c(x) via the product c = Zb. Hence the

overall computation for this special case requires 36 AND gates and 3 + 30 = 33 XOR

gates. The total delay is (TA + 4Tx).
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In the second solution, the column vector Z'b is computed first

ao 0 0 0 a5 a4 bo a0b0 + a5b4 + a4b5

Z'b =

al ao 0 0 0 a5

a2 al ao 0 0 0

b aibo + aobi + a5b5

azbo + a1b1 + aobz

a3 a2 al ao 0 0 b3 a3bo + a2b1 + a1b2 + aob3

a4 a3 a2 a1 ao 0 b4 a4bo + a3b1 + a2b2 + a1b3 + aob4

a5 a4 a3 a2 a1 ao b5 a5b0 + a4bi + a3b2 + a2b3 + a1b4 + a0b5

which requires 24 multiplications and 18 additions. Then the column vector Zia is

computed

Z"b =

0 a5 a4 a3 a2 a1

0 0 a5 a4 a3 a2

0 0 0 a5 a4 a3

0 a5 a4 a3 az al

0 0 a5 a4 a3 a2

0 0 0 a5 a4 a3

bo

b2

b3

b5

=

a5b1 + a4b2 + a3b3 + a2b4 + a1b5

a5b2 + a4b3 + a3b4 + a2b5

a5b3 + a4b4 + a3b5

a5b1 + a4b2 + a3b3 + a2b4 + a1b5

a5b2 + a4 b3 + a3b4 + a2b5

a5b3 + a4b4 + a3b5

As noted before there are only A = 3 different rows in matrix Z"b, so computing it

requires 5 + 4 + 3 = 12 multiplications and 4 + 3 + 2 = 9 additions, and adding it

to the column vector Z'b requires 6 additions. Thus a total of 24 + 12 = 36 AND and

18 + 9 + 6 = 33 XOR gates are needed to find the final result c(x) directly using the

second solution. The total delay is (TA + 4Tx).

Since k = 2 for the trinomials both solutions required exactly the same number

of gates and have the save delay.

11.4.4 All-One-Polynomials

Let the irreducible polynomial be the all-one-polynomial (AOP)

p(x) = xnk xnk_i xn, xno xk x(k-1) + + x + 1

i.e. , ni = i for i = 0,1, , k and m = nk = k.
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This is a special case of ESP with A = 1. So all the rows, except the first one,

in the lower submatrix can be reduced using the multiple

(x +1)p(x) = x(k+1) +1 .

This produces the partial result

ao 0 am_i am_2 a3 a2 al

a1 ao 0 am_i a4 a3 a2

a2 a1 ao 0 a5 a4 a3

a3 a2 al ao a6 a5 a4

am_3 am_4 am_5 am_6 a0 0 am_i

am_2 am_3 am_4 am_5 al ao 0

am_i am_2 am_3 am_4 a2 al a0

0 am_2 am_3 a3 a2 al

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

The first row in lower submatrix has to be reduced using the original irreducible

polynomial p(x). One of the two solutions proposed in the ESP case can be used

here.

11.4.4.1 Analysis

As before, both solutions require m2 AND gates and the delay is

TA + (1 + (log2 ml) Tx

in both cases. The second solution requires m2 1 XOR gates since A = 1. The XOR

gates needed to apply the first solution depends on the choice of p(x), but it always
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uses at least m2 XOR gates, except for the case p(x) = x2 + x + 1 which requires

m2 1 --2n- = 3 gates. So for all other cases the second solution is better.

11.4.4.2 Example

Let the irreducible polynomial be the AOP

p(x)=xio±xs+x8±x7±x6±x5±x4±x3±x2+x±i

Then m = k = 10 and A = 1. The multiple (x + 1)p(x) then will be

(x + 1)p(x) = xil + 1 .

The second method will compute the column vectors

ao 0 a9 a8 a7 as a5 a4 a3 a2 b0

al a0 0 a9 a8 a7 a6 a5 a4 a3 b1

a2 al ao 0 as a8 a7 a6 a5 a4 b2

a3 a2 ai ao 0 a9 a8 a7 a6 a5 b3

a4 a3 a2 al ao 0 as a8 a7 a6 b4Vb =
a5 a4 a3 a2 al ao 0 a9 a8 a7 b5

a6 a5 a4 a3 a2 al ao 0 as a8 b6

a7 a6 a5 a4 a3 a2 al ao 0 as b7

a8 a7 a6 a5 a4 a3 a2 al ao 0 b8

as a8 a7 as a5 a4 a3 a2 al ao b9

and
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Zgb = [ 0 a9 a8 a7 a6 a5 a4 a3 a2 al

bo

bl

b2

b3

b4

b5

b6

b7

b8

b9

= a9bi + a8b2 + a7b3 + a6b4 + a5b5 + a4b6 + a3b7 + a2b8 + albs

Computing Z'b require 9 * 9 + 10 = 91 AND gates and 8 *9 + 9 = 81 XOR gates.

Similarly computing Zgb require 9 AND gates and 8 XOR gates. The final result is

found by adding the result of the product Zgb, to every row of Z'b, which uses

another 10 XOR gates.

Thus the total number of gates required to find the result c is 100 AND gates and

99 XOR gates, which agrees with the theoretical results found.

The bottleneck operation for the delay is the multiplication V9b, which takes

(TA + flog2 101 Tx) time, assuming that the binary tree method is used to add the

terms. Adding Zgb to this result takes another Tx time. Thus the total delay of the

circuit becomes (TA + 5Tx).
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Chapter 12
CONCLUSIONS

This chapter summarizes the results of the thesis, lists the most significant contri-

butions and finally discusses future research directions in this largely unexplored

area.

12.1 Discussion of Results

Chapter 9 is based on the paper [19]. In this chapter, we proposed a table lookup

based reduction method for performing the standard and Montgomery multiplica-

tion and squaring operations in GF(2k) using the polynomial basis. The proposed

method yields word-level algorithms, enabling software implementations of the fi-

nite field arithmetic operations which find applications most notably in elliptic curve

cryptography. We treated the special irreducible polynomials and the integer case

in detail and gave the algorithmic details for these methods together with the com-

plexity analysis in terms of the number of basic arithmetic operations. The proposed

algorithm is more efficient than the previously published results, and in the case

of special irreducible polynomials (particularly, trinomials), the proposed method

reduces to already known algorithms found in the literature.

In the integer case, the right-to-left version of the algorithm works well, providing

an efficient version of the Montgomery multiplication algorithm. However, the left-

to-right version is not efficient mainly due to the fact that the most significant words

of the integer multiples of the modulus are not unique.

Chapter 10 is based on the paper [18]. The proposed parallel algorithm requires

0(s logs) arithmetic operations using 2s processors. Additionally there are some

table lookup operations performed by the server, and there is also the communication
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overhead. The sequential multiplication algorithm using the table lookup method

given in [19] requires s2 MOLOF2 and 3s2 XOR operations, therefore, a total of 0(s2)

arithmetic operations. Thus, the efficiency of the parallel algorithm proposed turns

out to be
82 1

(S2 logs) logs
The parallel algorithm is highly suitable for hardware implementation. For ex-

ample, by selecting w = 8 and L = 40, we can implement GF(216°) arithmetic, which

is desired in several applications of elliptic curve cryptography [46]. By selecting spe-

cial irreducible polynomials, for example, trinomials or all-one-polynomials, we may

not have a need for the tables T and f and the reduction operation will be greatly

simplified [19]. A hardware implementation of this algorithm would be highly useful.

Chapter 11 is based on the paper [17]. In this chapter, a general new method is

introduced to implement Mastrovito multipliers for all polynomials. When applied

to a given specific irreducible polynomial the space complexity, i.e., the number of

gates required, and the time complexity, i.e., the total delay of the architecture, of

the proposed method turns out to be very efficient. The special cases described have

the same efficiency as the best known architectures proposed to date.

The multiplier for the special generating trinomial

xm x 1

is shown to use (m2 1) XOR and m2 AND gates [39, 40, 54, 55]. The method we

proposed also requires (m2 1) XOR and m2 AND gates, moreover, it is applicable for

general trinomials. This result agrees with the best known architectures [31].

Paar [31] conjectured that the space complexity of the Mastrovito multiplier

would be the same for all trinomials. While (m2-1) XOR and m2 AND gates seemed like

a natural lower bound for Mastrovito multipliers, and Koc and Sunar [31] proposed

an architecture for trinomials of the form

xm + x7f +1 ,

that only requires (m2 TLI) XOR and m2 AND gates. In this chapter, a more general

multiplier that requires only (m2 A) XOR and m2 AND gates is proposed for the
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equally spaced polynomials, where A is the spacing factor (see page 129). Our

multiplier improved the best-known algorithm for this case, which uses (m2 1) XOR

and m2 AND gates [21]. Furthermore, the method can also be applied to the special

forms of the equally-spaced-polynomials, such as trinomials of the form

xm + x +1

and the all-one-polynomials. In both cases our algorithm achieves the best known

lower bounds, as given in [32, 31].

12.2 Summary of Contributions

Below is the summary of the contributions made:

A new word-level serial reduction algorithm for integers and polynomials (al-

ternative to division-based reduction)

A new word-level serial reduction algorithm for polynomials (alternative to the

Montgomery multiplication)

Two simplified versions of the above algorithms applicable to trinomials and

all-one-polynomials

A new word-level parallel multiplication algorithm for polynomials using PRNS

(two versions)

A general Mastrovito multiplier architecture for polynomials

Four simplified versions of the above architecture for special polynomials

Improvement on the best-known Mastrovito multiplier architecture for equally-

spaced-polynomials

Detailed analyses of all methods proposed

In some special cases [45, 32], the canonical basis is equivalent to the normal

basis, and the proposed multipliers can also be used for normal basis multiplication by
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rewiring. However, we believe there will be further improvements if the architectures

are designed specifically for the normal basis.

Our analyses ignore the communication overhead, which can be crucial in some

cases. Also the design of the algorithms were not architecture oriented. Future

research with these in mind might yield more efficient algorithms and totally different

approaches.
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Appendix A
NOTATIONS & DEFINITIONS

2 cyclic group cyclic group with n elements

G ® H direct sum direct sum of additive groups

Fq finite field The unique finite field with q = pm elements,

where p is a prime

H algebraic closure if H = Fq then H = U Fq.
m>1

F* = Fq {0} the Abelian group formed by the nonzero

elements of the finite field Fq

GF(q) Galois field Galois field equivalent to Fq

8* = (S min 8) the subset of S with minimum element removed

order of S the number of elements in the set S

Euler phi function number of integers less than and relatively

prime to 0(n) = nri 1

pin ( p
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E(F) F-rational points the set of points on the elliptic curve

both of whose coordinates lie in the field F

#E(F) order of E(F) the number of elements in the set E(Fp)

Te Te function the function Te : F2m F4 defined by:

Te(a) = a+ a22 + a24 + + a2"1-2

Tr trace function the linear function Tr : F2m F2 defined by:

Tr(a) = a+ 2' + a22 + + a2m-1

N norm function the function N : F2m F2 defined by:

Tr(a) = a a21 a22 - a2m-1

(;) Legendre symbol Function that maps a to ±1 depending on

whether x is a quadratic residue modulo p

or not, i.e.,

0, if pla

+1, if a is a quadratic residue (mod p)

1, if a is not a quadratic residue (mod p)

x quadratic character Function that maps n E F to ±1 depending

on whether or notn has a square root in the

field F, i.e.,

0, if x = 0,

+1, if n has a square root in F,

1, if n has no square root in F.
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L[n, c, a] subexponential time Time complexity of an algorithm that is

asymptotically faster (resp. slower) than

an algorithm whose running time is

fully exponential (resp. polynomial) in

the input size n. It is defined as:

0(exp((c + o(1))(1nn)"(1n1nn)1 -Q))

II concatenation used to build a new vector from others

(see page 101 for an example)

--> 4 right & left shift used to shift a vector to right or left

(see page 101 for an example)

U

matrix construction used to construct an n x m matrix using

W
- nxm

the given n vectors (of various lengths)

as rows (see page 102 for an example)

TA AND delay the delay of a single 2-input AND gate

Tx XOR delay the delay of a single 2-input XOR gate

N[n, m] n7;zil a notation used in Section 11 to count

the number of steps in the analysis
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Appendix B
ALGORITHMS

B.1 Repeated square-and-multiply method

Let G be a multiplicatively written finite group of order 71, and a3 E G. The

number or group operations used is at most 211og211. (Source: [46])

Input: a E G, 1 E

Output: at

1. Let (btbt_i bibo), be the binary representation of 1, where bi E 10,11 and

bt = 1.

2. Set # a

3. For i from t 1 down to 0 do

If bt = 1 then

4. Output #

B.2 Repeated double-and-add method

Let G be a additively written finite group of order n, and a, # E G. The number or

group operations used is at most 2 r1og211 . (Source: [46])
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Input: a E G, 1 E Z

Output: al

1. Let (btbt_i bibo), be the binary representation of 1, where bi E {0, 1} and

bt = 1.

2. Set 0 4-- a

3. For i from t 1 down to 0 do

If bi = 1 then

< +a
4. Output 0

B.3 Euclidean Algorithm

This algorithm computes the greatest common divisor of 2 numbers a and b by

repeated divisions. The number of steps is at most 2 log2(max{2a, 2b}). (Source:

[66])

Input: Two integers a and b such that a > b

Output: integer d which is the greatest common divisor of a and b, i.e., d = (a, b)

1. Let i = 0, rt = a and rt+1.

2. Divide rt by rt+i and get the quotient qt±i and remainder rt+2, i.e.,

ri = ri+igi+i + ri+2 with 0 < rt+2 < 7-1+1

3. If ri+2 = 0 then set d = rt+i and go to next step. If ri4.2 0 0 then increment i,

i.e., i = i + 1, and go to step 2.

4. Output d.
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B.4 Pollard's (p 1) Algorithm

If n has a factor p, such that (p 1) has no large prime divisor, then the following

method is virtually certain to find p. (Sources: [29, 66])

Input: A composite number n

Output: A factor p of n

1. Choose an integer v that is a product of small primes to small powers. (For

example take k = lcm [1, 2, 3, ... , u], for some small number u)

2. Choose an arbitrary integer a such that 1 < a < n.

3. Compute (a (mod n)).

If it is greater then 1, then it is a non-trivial factor of n; set p to that value

and go to step 7.

Otherwise go to step 4.

4. Compute (av (mod n)) by the repeated square-and-multiply method.

5. Compute d = gcd(av 1, n) using Euclidean algorithm and the residue of a'

modulo n from step 4.

6. If d = 1 then go to step 1 and choose a larger v.

If d = n then go to step 2 and choose another a.

Otherwise 1 < d < n will hold and d will be a non-trivial divisor. Set p to d

and goto step 7.

7. Output p.
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B.5 Lenstra's Elliptic Curve Factoring Algorithm

This is a probabilistic algorithm that uses elliptic curves. (Sources: [29, 66, 36]) For

a simpler version with complexity analysis see [5].

Input: A composite number n

Output: A factor p of n

1. Check that gcd(n, 6) = 1 and that n doesn't have the form ne. for some r > 2.

2. Choose random integers b, xi, Y1 between 1 and n.

3. Let c = 4 bxi (mod n), let C be the cubic curve

C:y2=x3+bx+c

and let P = (Yi.,x1) E C .

4. Check that gcd(4b3 + 27c2, n) = 1. (If it equals n, go to step 2 and choose a

new b. If it is strictly between 1 and n then it is a non-trivial divisor. Set p to

that value and goto step 8.

5. Choose an integer v that is a product of small primes to small powers. (For

example take v = lcm [1, 2,3, ..., u], for some small number u)

6. Compute
(au 1),

7. Compute D = gcd(d, n).

If D = 1, either go to Step 5 and increase v or go to Step 2 and choose a new

curve. If D = n, then go to Step 5 and increase v.

Otherwise 1 < D < n will hold and d will be a non-trivial divisor. Set p to D

and go to Step 8.

8. Output p.
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Appendix C
THEOREMS

Theorem C.1 (Chinese Remainder Theorem,[25]) The solution of the system

p (mod m1)

P2 --= p (mod m2)

PL = p (mod mr,)

is unique with respect to modulus M = Mimi for pairwise relatively prime moduli

L > i > 1. It can be computed using

where

p

[L

E pi (Mil mod mi) Mi mod M ,
i=i

Adi =
M

= rn1m2 "mi-imi+i 774. ,mi

and, the inverse Mr' (mod mi) is defined as

MI' Mi =1 (mod mi)

which exists since gcd(Mi,mi) = 1 and all mis are pairwise relatively prime.

Theorem C.2 (Prime Number Theorem,[2]) If ir(n) is defined as the number

of primes less than 11, then

rr(n)
Ti

log n
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Appendix D
NOTES ON FINITE FIELDS

Zn is a finite field if and only if n is a prime number.

If the characteristic m of a field is not 0, then it is a prime number. And that

field contains a subfield having m elements. This subfield is called ground field

of the original field.

If F is a finite field of characteristic p, then it contains pm elements for some

positive integer n. Furthermore, such a field exists for every prime p and

positive integer n.

If Zp[x]l f (x) is the set of all equivalence classes in Zp[x] under the congruence

modulo the irreducible polynomial f(x) of order n, then it forms a field with

pn elements.

For every non-zero element a E GF(q), the identity aq-1 = 1 holds. Further-

more, an element a E GF(qm) lies in GF(q) itself if and only if aq = a.

In every field F = GF(q) there exists a primitive element.

The minimal polynomial of an element a E Fp*ic is unique and is an irreducible

polynomial given by

ma (x) (x ,

SEC(a)

where C(a) is the set of conjugates of a with respect to GF(p), i.e.,

C(a)

To simplify multiplication of polynomials, one can precompute the z(i) values

such that 1 + ai = az(i). The table formed in that way is called a Zech's log

table.
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