
An Abstract Of The Thesis Of

Kevin Djang for the degree of Master of Science in Computer Science pre­
sented on May 11, 2000. Title: An' Alternative Architecture For Performing
Basic Computer Arithmetical Operations.

Abstract approved:

Paul Cull

The arithmetic portions of almost all modern processor architectures are

of very similar design. We use the term "traditional" to describe this de­

sign, the primary characteristics of which are native support for integer and

floating-point number types and special disjoint instructions and hardware

for each supported type. Decades of refinement have endowed this tradition­

al arithmetic architecture with high performance, but also certain inherent

limitations.

The highly-specific instruction sets and circuitry that provide optimized

performance for supported number types, also make it difficult to synthesize

unsupported number types and manipulate them in an efficient manner. This

trait also applies when using supported number types for arbitrary ranges

greater than those directly implemented by the processor.

In this thesis we present an alternative to the traditional computer arith­

metic architecture, designed to address the limitations of the traditional ap­

proachwhile preserving most of its benefits.

Instead of the specific number representation support provided by the

instructions, hardware and native data types in a traditional ALU /FPU pair,

we define a single data type, the XL U digit that forms a base from which other

number types may be easily derived, along with a set of instruction primitives

from which basic arithmetic operations may be efficiently realized.

Redacted for privacy

Our data type has a signed-digit representation, which allows algorithms

for addition, subtraction and multiplication to achieve a high degree of par­

allelism at the primitive instruction level. The instruction primitives and

algorithms are designed to hide or eliminate as much branching as possible,

further increasing instruction-level independence.

We provide details of the data type, an overview of the set of instruc­

tion primitives, and a discussion of how to use those instruction primitives

to perform basic arithmetic algorithms for addition, subtraction and multi­

plication. We also give examples for three derived number represenations;

integer, fixed-point and floating-point numbers.

We believe that our approach of building from a unified base provides

flexibity and scalability beyond that of the traditional arithmetic architec­

ture.

Our data type, the XLV digit, and the primitive operations to manipulate

it may be implemented with modest amounts of circuitry, and this, together

with the highly parallel nature of the entire design means that many XLV

circuit blocks can be realized in the same silicon area as one traditional

ALV /FPV pair. An ALV or FPV may only work when it has the correct type

to work on, whereas we believe any and all XLVs available to the processor

can be kept busy almost all of the time, achieving greater utilization of the

available silicon.

©Copyright by Kevin Djang

May 11, 2000

All Rights Reserved

An Alternative Architecture For Performing Basic Computer Arithmetical
Operations

by

Kevin Djang

A THESIS

submitted to

Oregon State University

in partial fulfillment of

the requirements for the

degree of

Master of Science

Presented May 11, 2000

Commencement June 2001

Master of Science thesis of Kevin Djang presented on May 11, 2000.

APPROVED:

Major Professor; representing Computer Science

I understand that my thesis will become part of the permanent collection of
Oregon State University libraries. My signature below authorizes release of
thesis to any reader upon reque&t.

Kevin Djang, Author

Redacted for privacy

Redacted for privacy

Redacted for privacy

Redacted for privacy

Acknowledgements

Without Dr. Lawrence Crowl there would have been no beginning to this

thesis and without Dr. Paul Cull there would have been no ending. Dr.

Crowl's ideas form the basis for this thesis and it is his guidance that turned

those ideas into a cohesive body of work. Dr. Cull's patience and persistence

carried me and the work forward to completion. I offer my thanks to them

both.

The company I work for, Rogue Wave Software, has supported me through­

out the difficult process of balancing a full-time job with writing a thesis.

I would also like to thank my parents for their love and support, and my

wife Rebecca, who figures deeply in all the aspects of my life.

Table of Contents

1 Introduction .. 1

1.1 Background 1

1.2 Motivation . 2

1.3 Outline ... 4

2 Historical Contexts 7

2.1 N umber Representation 7

2.2 Instruction Set Designs . 10

2.3 A Note Concerning Floating-Point Support. 14

2.4 Parallelism . 14

3 Key Points .. 16

3.1 Representation 16

3.2 Details of the XLU Representation 19

3.3 Algorithms for Basic Arithmetic Operations 21

4 Composite Representations 37

4.1 Fixed-Point Numbers .. 37

4.2 Floating-Point Numbers 44

Table of Contents (Continued)

5 Hardware Considerations. 60

5.1 Small Implementation Footprint . 60

5.2 High Speed and Multiple-Instruction Issue 60

5.3 Take Advantage of the Short Carry 61

6 Summary and Evaluation 62

6.1 A Summary of Things Done and Not Done. 62

6.2 Questions Raised by the Design .. 64

6.3 Summary of the XLV Architecture 66

6.4 How to Evaluate the Design 68

7 Conclusion. 75

References . 77

Appendices 86

A ppendix A - Small Glossary of Terms 87

Appendix B - The XLV Simulator ... 90

List of Figures

Figure Page

1 Addition Primitives - Sum of two digits 23

2 Multi-digit Addition Example 25

3 A multi-digit Squash "Cascade" Example. 27

4 Subtraction-by-negation Example 29

5 Subtraction Example 30

6 Multiplication Primitives - Product of two digits 32

7 3x2 Multiplication Example "By Pencil" 33

8 3x2 Multiplication Example "By Pencil" Symbols 35

9 Partial Product Accumulation 36

10 An example XLV digit Implementation 41

11 The scuh and scul operations 41

12 The scdh and scdl operations 42

13 Multi-digit scale-down example 43

14 Multi-digit fnbc example . 50

15 Single-digit fnbc example. 51

16 Pre-normalization example . 53

17 Testing if f = 0 for a two-digit value f· 57

18 Testing if f = n for a two-digit value f where n i=- o. 58

List of Tables

Figure Page

1 XLV Digit Bit Patterns 20

2 XLV Addition Operation Primitives. 23

3 The XLV Squash Operation Primitive 26

4 XLV Subtraction Operation Primitives 27

5 XLV Multiplication Operation Primitives. 31

6 XLV Scaling Operation Primitives. 40

7 XLV Normalization and Rounding Primitives 49

8 An example XLV floating-point number ... 52

An Alternative Architecture For Performing Basic Computer
Arithmetical Operations

1 Introduction

1.1 Background

The manipulation of numbers lies at the center of every computer pro­

cessor. The predecessors of electronic, digital computers such as Pascal and

Leibniz's mechanical adding machines and Babbage's difference engine were

designed specifically to help people perform basic arithmetic operations.

The potential of computing machines as "universal simulators" was recog­

nized early (Babbage, Lovelace, Turing, et al. [Ran82]), and nowadays people

regard them as much more than sophisticated adding machines. Neverthe­

less, the heart of any computer is a device that "knows" how to add, subtract,

multiply and divide. (And often one or more of these four things are under­

stood in terms of one or two of the others.)

Since basic arithmetic lies at the center of any computer, how computers

perform basic arithmetic operations and the number representations they use

when performing them has been an area of continual study and developement

for as long as there has been computing machinery.

Over the decades, as computer hardware and software have evolved, the

methods through which computers perform arithmetic have converged from

many, diverse methods to a few, similar methods. New improvements and

innovations occur on a regular basis but the focus of attention has shifted

from broad inquiry to narrow refinement.

Despite this narrowing of focus, there are many methods of representing

numbers, and many ways of implementing basic arithmetic.

2

In this thesis, we describe and explore the details of one such alternate

implementation.

Our work uses no "new" discoveries or principles. At its center is a

number representation first proposed over thirty years ago. What is new

is the resulting whole; our overall design is a significant departure from the

currently established norms for how a processor "should" do basic arithmetic.

In our alternative design we consider a computer arithemetic architecture

based upon a number representation and arithmetic first described in the

1960s [Avi61]' coupled with concepts taken from the Reduced Instruction Set

movement of the 1980s, [CM90], [PH90] and ideas from the multiple, parallel­

instruction execution units that have been incorporated into some computer

designs from early mainframes (e.g. the CDC 6600 [BH92]) to present day

high-performance microsprocessors (e.g. HP's PA-RISC [AAD+93], Intel's

Pentium [AA93] and the Motorola/IBM PowerPC [BAM+93] architectures).

We believe that our ideas, which we collectively refer as "the XLV! archi­

tecture" provide an interesting and viable alternate to the established norm.

1.2 Motivation

The work we present here was motivated and shaped by the following

observations, the questions those observations raised, and the subsequent

conclusions we drew from considering those questions.

A survey of the arithmetical portions of current microprocessor archi­

tectures DEC Alpha, Motorola/IBM PowerPC, Intel Pentium, Sun SPARC

[PH90] reveals that all of them have these traits in common:

1. 	 Hardware to directly support two number representations; integer and

floating-point.

1Following Knuth's naming convention for TEX, We pronounce "XLU" as clue, giving
X the X ("chi") sound.

3

2. 	 CISC-type instructions embedded in special-pupose hardware to per­

form the floating-point arithmetic.

3. 	 A set of (usually) simpler instructions, disjoint from the floating-point

set, to perform the same operations for integers.

4. 	 Although fixed-point arithmetic is the preferred representation for some

situations, it is not supported as a native type (like integer and floating­

point). Using fixed-point arithmetic means resorting to software. (The

same observation holds true for complex arithmetic, etc.)

5. 	 Double-precision arithmetic is often available, but there is no apparen­

t consideration at the hardware level for handling arbitrary-precision

numbers (e.g. if you need double-double-precision, you must resort to

software).

These observations raised the following questions:

1. 	 In light of observations 1, 4 and 5, can we design the arithmetic portion

of a computer to use a single number representation (early machines got

by with only one) yet efficiently support integer, fixed-point, floating­

point and multiprecision representations and operations? If so, what

characteristics would that number representation need to have?

2. 	 Observation 2 applies even to machines that are otherwise completely

RISC-based (e.g. the MIPS processor architecture [Ch089]). Research

[Da189] shows that there are advantages to exposing the sub-operations

of floating-point arithmetic to compiler optimization but none of the

commercially available architectures we know of do this.

3. 	 Taken together, observations 2 and 3 imply that portions of the comput­

ers arithmetic hardware go unused some of the time. Special-purpose

floating-point hardware is unused during integer-only calculations, and

vice-versa. Some machines can make use of at least some of their

4

floating-point hardware for integer calculations, but the question raised

remains interesting; can we design a machine that uses a maximal

amount of its available arithmetical hardware for any/every calcula­

tion?

Exploring possible answers to these questions led us to design the arith­

metical portion of a hypothetical microprocessor. This design encompasses

the following distinct - yet related - attributes.

1. 	 A single number representation that can serve as a base for a wide

range of simple or complicated numerical types.

2. 	 A set of algorithms to perform basic arithmetic (addition, subtraction,

and multiplication - division is shown to be possible but we do not

address it) using this number representation.

3. 	 The arithmetic op-codes for our hypothetical microprocessor. These

op-codes, or primitive operations may be used to realize the algorithms

mentioned above.

4. 	 A software simulation of the op-code set, which was used to test the

correctness of the algorithms and provide a base from which a larger

simulator could be created.

5. 	 Overall guidelines for how the processor might be organized to best take

advantage of the number representation, algorithms and its op-codes.

1.3 Outline

The following sections of this work describe the historical context from

and around which our ideas evolved, the key points of the XLV architecture,

how composite number representations may be derived from it, a discussion

5

of hardware considerations for implementing it, a summary and evaluation,

concluding remarks, a glossary, and a brief description of the simulator soft­

ware we wrote to help form and test our ideas as we developed the work.

The history section gives an overview of how the task of doing basic

arithmetic has evolved through the preceding decades. It focuses on number

representations, instruction set architecture, some aspects of floating-point

numbers (the peculiarity of elSe FP instructions, on otherwise purely RISe

instruction sets is noted), and some aspects of parallelism within computer

systems.

The evolution of these particular topics; number representation, instruc­

tion sets and parallelism informed and guided our own design efforts, which

are presented in the key points section. Of central importance to our design

is the reliance upon a single unifying number representation. We list the

requirements that the representation must possess, note the work during the

1960s by Algirdas Avizienis that provided us with a suitable candidate, and

describe the details of our XL U digit along with the primitive operations used

to add, subtract, and multiply it.

Since the XLV architecture provides only one number representation,

others deemed necessary must be derived from it. We discuss how this may

be done in the composite representations section. Two representations are

discussed as examples; fixed-point and floating-point. In doing so, the scal­

ability and high degree of instruction-level independence of the XLV digit

and its primitive operations is illustrated.

The hardware considerations section contains remarks and observation­

s about the general requirements for actually implementing our design onto

hardware. The XLV architecture specifies only a portion of an overall proces­

sor design and is meant to allow as much flexibility as possible to a processor

architect, so the comments in this section are mostly guidelines, not specific

directives.

6

The summary and evaluation section summarizes what we present in this

work and addresses some of the things that we do not include, and why.

The XLV architecture is evaluated in terms of feasibility, expected perfor­

mance, and positive versus negative characteristics. Concluding remarks, the

glossary and the description of the simulator round out the work.

7

2 Historical Contexts

Early digital computers managed to perform various types of arithmetic

with one number representation and modest hardware. Since this is what

we hoped to achieve2
, a review of how computer arithmetic has evolved is

worthwhile.

The subject of computer arithmetic is very large, so we confine our re­

marks to a brief overview of the topics especially pertinent to our own lines

of inquiry. Our purpose is to set our own work in the context of what has

been tried before, rather than present a detailed historical account. With

that goal in mind we briefly sketch past practice and thought regarding the

evolution of number representations, arithmetic algorithms and the hardware

and software that implement them.

2 .1 Number Representation

From the earliest mechanical devices that performed arithmetic through

the first "real" computers of the 1930s and 1940s, the number representations

used by computing machinery seem to have been kept fairly close to the

number representation the user would work with (i.e. radix-l0). Apart from

magnitude, early representations carried little "auxillary" information per

number. It was often left up to the user, for instance, to assign and track

the radix point or sign of a particular quantity.

The flurry of electro-mechanical and electronic computers designed and/or

built during the 1940s prompted investigation of how numbers could "best"

be represented inside the machines.

Eckert and Mauchly's ENIAC [GG96] represented numbers as radix-l0

integers (or fixed point numbers, if the user tracked the radix-point) and ex­

2 Albeit, with greater flexibility and performance than those early machines.

8

pressed negative numbers through a form of 10's-complement. The machine

also appears to have had a "double-precision" capabilty:

The equipment normally handles signed 10-digit numbers ex­

pressed in the decimal system. It is, however, so constructed

that operations with as many as 20 digits are possible.

ENIAC notwithstanding, the advantages of designing a computer's num­

ber representation around radix-2 were understood early on. Von Neumann's

"First Draft of a Report on the EDVAC" [vN45] succintly articulates the pri­

mary tradeoffs inherent in the choice of a radix:

It takes more binary digits (hence more operations) to perform an

arithmetic operation like addition or subtraction, etc., but using

decimal arithmetic results in complex circuitry.

Von Neumann understood the tradeoff between computing run-time and

component complexity. The inherent speed advantage the early electron­

ic computers enjoyed over their electro-mechanical contemporaries, and the

relatively high price and complexity of their individual components (vacu­

um tubes) led designers like Von Neuman to seek hardware simplicity first.

Binary numbers looked like a good way to achieve this:

A consistent use of the binary system is likely to simplify the

operations of multiplication and division considerably ... Binary

arithmetics [sic] has a simpler and more one-piece logical struc­

ture than any other, particulary than the decimal one.

Around ten years earlier, in 1936, Konrad Zuse must have come to similar

conclusions. His Zl through Z4 series of computers were all based upon bina­

ry number representations. Several other early machines were also designed

to represent binary number {Atanasoff's machine, the Harvard Mark-I, and

9

the Manchester Mark-I [Roj97, tables 2 and 3]) and by the 1950s, binary

numbers for internal representation were the norm3 .

Although the radix of choice (binary) was settled early on and with fairly

rapid unanimity, general acceptance of the desirability for hardware support

of floating-point numbers in addition to integers took more time and ar­

gument. This is unsurprising. Early electronic computing machinery had

strictly limited hardware resources.

Floating-point arithmetic is convenient for users (like radix-l0 numbers)

and provides a large dynamic range for a given number of digits, but (again,

like radix-l0 numbers) it requires more information per number, hence more

complex circuitry to implement. Floating-point arithmetic algorithms are

more complex than their integer or fixed-point counterparts, which once again

requires larger amounts of both time and space resources.

Among the early machines, only Zuse's ZI-Z4 machines supported floating­

point as their native number type. Early computer designers only dreamed

of having the hardware resources to support two or more native types on the

same machine. The available machinery was just too precious.

Floating-point number representations were viewed as important and de­

sirable, but too costly - "luxury" items, given secondary consideration, or

second-tier support, if at all. The CDC 6600, for example, provided the in­

structions to produce either floating-point or integer results, but internally

supported only one number representation - a 60-bit format that could be in­

terpreted as either floating-point or integer, depending upon the instruction

context [BH92].

As time passed the amount of circuitry that could be crammed into a given

amount of surface area increased with a rapidity matched only by the drop in

cost for that same amount of circuitry. As space and complexity became less

expensive and more available, the constraints that argued against supporting

3Von Neumann's report mentions the necessity (for human convenience) of incoporating
deCimal-binary and binary-decimal conversion hardware into input/output devices. The
memory and processor internals, however "use strictly binary procedures." [vN45]

10

floating-point relaxed, and the argument shifted from whether to include it

to how to include it efficiently, or what format to use. In the past decade this

last question has been resolved in a majority of the available CPU designs

through adoption of the IEEE-754 and IEEE-854 floating-point standards.

2.2 Instruction Set Designs

Arithmetic instructions formed a larger percentage of the instruction set

for early computers than for their more powerful descendants. Computers

were originally conceived as high-speed calculating engines and getting the

machine to perform arithmetic correctly and quickly was the paramount aim.

In fact prior to Wilkes et al.'s EDSAC (operational in 1949) and the notion of

the "stored program computer" , there wasn't much of a concept of instruction

set architecture at all [PH90].

Tanenbaum [Tan90] writes:

The earliest digital computers were extremely simple. They had

to be. It was hard enough to get them to work at all. From

the ENIAC through the IBM 7094, and on to the CDC 6600,

computers had relatively few instructions ...

Hardware rapidly developed greater potential capability per unit of space.

The entire capabilities of the machine were no longer required to simply do

arithmetic. As a result, designers had the freedom to incorporate more types

of "basic" operations into their machines. Examples include floating-point

and BCD arithmetic, character handling operations, multi-tasking and/or

memory-protection primitives, etc.

Naturally, as instruction sets became increasingly large, multifaceted, and

complex, the complexity of their hardware implementation increased. Imple­

menting instruction sets by wiring the instructions directly into the hardware

11

became more and more difficult, costly, and error prone. All these factors

led computer designers to establish a level of abstraction between the actual

hardware capabilities of the machine, and the instruction-set interface as seen

by the programmer. This abstraction was microcode and microprogramming.

With the advent of the IBM 360 architecture (in 1964) microprogramming

took off in a big way. In a microprogrammed architecture, each machine

instruction is actually a sequence of smaller, simpler instructions. Individual

instructions may perform rather involved, complex tasks, the details of which

are spelled out by the simpler, individual microperations of the instructions

microprogram.

Two factors encouraged actually creating the sort of complex instructions

made possible by microprogramming. The instruction-execution speed of a

typical 1960s-1970s processor was quite high relative to memory access time.

This situation encouraged minimizing fetches to and from memory. Since

each instruction costs a significant amount of time to fetch, designers strove

to supply instructions that individually performed a lot of work.

Also, computers were still frequently programed directly through the pro­

cessor's instruction-set, rather than indirectly through a high-level language

and translator. This situation led designers to favor "complex" or "power­

ful" instructions; i.e. instructions that offer many modes of usage or perform

fairly complicated operations (e.g. add the contents of a register with the

contents of a memory location pointed at by another register, storing the re­

sult to yet another memory location). Such instruction sets seek to provide

abstraction away from the complexities of the processor internals while still

directly presenting the processor's capabilities to the programmer.

Nearly all the prominent processor architectures of the 60s and 70s were

built around relatively "high-level" , complex instruction sets of the type that

are now characterized as Complex Insruction Set Computers (CISC).

During the late 1970s and early 1980s, semiconducter technology brought

ever-increasing gains in both time and space and designers began to question

12

the premises upon which CISC designs were based. The cost to fetch an

instruction from memory dropped (primarily due to caches). This implied

that the tradeoff of fewer, slower instructions, each performing a complicat­

ed task versus many, faster instructions each performing part of the same

complicated task should be re-evaluated.

As software projects expanded in size and scope, high-level languages

gained increasing popularity and the quality of machine code they produced

approached ever-closer the quality of hand-tooled assembly language.

Also, the complexity of microprogrammed assembly-language instruction

sets had become increasingly significant. Microprogramming had been em­

ployed as an abstraction between the complexity of the instruction set and

its hardwired manifestation in the machine. Microcode itself had grown so

complex that proposals appeared for adding a "nanocode" abstraction level

between the microcode and the bare hardware.

Several groups of computer designers idenpendently arrived at the same

alternate solution. Observing that the complex instructions of the then­

popular computer architectures were in fact often under-utilized, they pro­

posed returning to a computer architecture based upon a few, simple instruc­

tions, each of which would be heavily utilized. Then, instead of adding extra

levels of complexity to the machine's instruction set, they proposed adding

extra complexity to the optimization portions of high-level language transla­

tors, to optimize sequences of the few, simple instructions. In short, simplify

the hardware and deal with complexity in the more malleable medium of

software.

The ever-increasing speed and sophistication of both memory and proces­

sors insured that although these new machines would have to execute many

instructions to mimic the operations performed by one CISC instruction, the

time to perform the overall task would be comparable, if not better.

Three designs from the early 1980s; the IBM 801, the Berkeley RISC-1

and the Stanford MIPS all differed from the status quo and form a basis for

13

the so-called Reduced Instruction Set Computer (RISC) design movement

that followed.

RISC designs can vary significantly from one another, but all of them

share common hallmarks. Among these are:

1. 	 Simple instructions, designed to execute rapidly.

2. 	 No microcode level - the instruction set runs directly on the hardware.

3. 	 Complex operations are short sequences of the provided simple instruc­

tions. The burden of efficiently executing these sequences is placed

upon the compiler's optimizer.

4. 	 Simple memory access model - operands are LOADed from memory

to registers, processed via an instruction, and the results are STOREd

back into memory from registers. The LOAD/STORE instructions are

decoupled from other instructions, which in turn only "know" about

the registers.

The benefits this sort of design, as implied in the preceeding paragraphs

are that the burden of complexity is shifted to the very malleable medium of

software (the language translator). This simplifies the hardware, and if the

instruction set is carefully designed, allows that hardware to be as versatile

as a good language translator will allow.

This is, of course, a tradeoff. Overall complexity is not dimished. It is

shifted from a medium that is very static (the hardware) to one that is easier

to change (the software).

In some ways, RISC computers are a return to earlier designs. Whereas in

the early days, simplicity was sought because there was no alternative (due

to the physical devices of the day), in recent years, simplicity was sought

because it provided the best performance and the most versatility.

14

In both cases - early computers or latter-day RISe designs - the end

result is a small, straightforward, simple architecture relative to the elSe

machines developed in the intervening years.

2.3 A Note Concerning Floating-Point Support

It is interesting to note that while RISe design principles have become

widely accepted and put into practice during the last decade, not all parts

of modern processors are RISe-based.

Some recent processor designs (such as Intel's Pentium or Motorola's

Coldfire architecture) are termed "hybrid" architectures, because they com­

bine some RISe practices with some else. The motivation in hybrid designs

is often to achieve both high performance and high code density, but even

processor designs that are RISe throughout the rest of their instruction set

and layout look like else machines in their support of floating-point.

2.4 Parallelism

The term "parallelism" has progressively encompassed several meanings

as computer hardware has evolved.

In most early computers, all operations were performed one bit at time.

Parallelism at the level of bitwise operations was an aspiration, but often not

a practical reality.

The response times of the earliest electronic computers were extremely

rapid, relative to their electromechanical forebears, while at the same time,

their circuit complexity was limited by the fragility and size of their compo­

nents relative to their silicon descendents.

15

Von Neuman addressed this matter in sections 5.5 and 5.6 of the EDVAC

draft report [vN45]. He refers to performing arithmetic on all the bits rep­

resenting a quantity at once as "telescoping operations", and while asserting

the obvious attraction and value of such, offers cogent (for the time) rea­

sons why "accelerating these arithmetical operations does therefore not seem

necessary."

As circuit integeration and reliability increased, doing more at once be­

came the order of the day at increasingly higher levels of the hardware design.

Processors began to work on chunks of bits at a time, instead of con­

sidering each bit individually. "Increasing the level of parallelism" during

this era most often meant widening the number of bits the processor could

handle at once - i.e., creating machines with ever larger data-words. The

level of sequentalism rose to word-level. The bits of the word were processed

in parallel, the words were processed in serial.

However, quite early on some pioneering designers attempted the next

logical step of processing several words in parallel. Notable among these is

the CDC 6600, capable of performing several instructions in parallel.

At this level of abstraction (machine word-level) the task of providing

parallelism may be shared by both hardware and software, and there are

combinations that use more or less of both. New specialized fields of study

such as instruction scheduling arose.

The logical progression from one processor with multiple function units,

exemplified in the early 1960s by the CDC 6000, and currently by nearly all

high-end CPU's (e.g. the Intel Pentium, Motorola PowerPC and HP PA­

RISC architectures) is to provide several processors connected via efficient

communcations channels and all working in concert. Venerable examples of

this "true-multiprocessor" design are the ILL lAC IV, the Cray-XMP, the

Connection Machine of Thinking Machines Incorporated, and more recently,

the Sequent Balance/Symmetry and the Intel Paragon architectures [BH92].

16

3 Key Points

In this section we present the central design ideas of the XLU archi­

tecture. We introduce the number representation that forms a base for the

design, and arithmetic algorithms that can efficiently manipulate the number

representation.

3.1 Representation

3.1.1 Representation Requirements

The XLU's number representation is of central importance. It must meet

the following criteria:

1. 	 It must carry enough information to allow it to serve as a basis up­

on which various other number representations (integer, floating-point,

fixed-point, etc.) may be efficiently realized by the software or firmware

utilizing the XLU primitive operations.

2. 	 Efficiently realizing other number representations with multiple instruc­

tions implies rapid execution of those instructions. Therefore, our base

number representation must lend itself to manipulation in a manner

promoting as much instruction-level parallelism as possible. Since we

must execute more instructions to perform, say, a floating-point addi­

tion than a traditional FPU would, we must perform those instructions

faster - i.e., in parallel.

3. 	 The number representation must scale well. That is, the performance

of multiples of the XLU machine word size must perform well relative

17

to the performance of operations involving only the XLV machine word

size.

We believe that a signed-digit number, modified to carry additional infor­

mation for signalling overflow or special conditions such as + / - 00 or IEEE

NaN (Not-a-Number) fulfills all the requirements listed above.

A complete treatment of computer arithmetic using a signed-digit number

representation first appeared in Avizienis 1961 IRE paper [Avi61]. In chap­

ter 3 of Computer Arithmetic, Swartzlander [Jr.90a] lists the characteristics

which make this representation attractive for our own work:

By reducing carry propagation to one digit position, signed-digit

arithmetic forms the basis for cascadable on-line arithmetic algo­

rithms.

and

Elimination of carry propagation allows online operations to be

overlapped ... arithmetic operations can be overlapped by start­

ing operations as soon as digits become available from previous

operations (Le., it is not necessary to wait until the previous op­

erations have been completed).

3.1.2 Signed-Digit Number Representations

Chapter 2 of Koren's Computer Arithmetic Algorithms contains a con­

cise summary of signed-digit number systems. We quote liberally from that

source and Avizienis' original paper in this section.

A signed-digit system allows the following digit set:

Xi E {(r - 1), (r - 2), ... ,1,0,1, ... , (r - I)} (1)

18

where zequals -i, and r is the radix of the particular number system. This is

a relaxation of the requirement in conventional number systems that members

of the digit set all be greater-than or equal-to zero. It provides signed-digit

systems with the characteristic of redundant number representations.

As an example: If r = 10 and we restrict ourselves to two-digit numbers,

there are 19 possibilities ([9, ... ,9]) for each digit of each two-digit number.

This means for instance, that (01) = (19) = 1, and (02) = (18) = -2. Not

every number representable in this example has redundant representations ­

the representation of zero is unique. Koren writes:

... adding some redundancy in a number system can be very ben­

eficial. On the other hand, a high level of redundancy might be

too costly, since a larger digit set requires a larger number of bits

to represent each digit.

The redundancy of the number system as a whole may be reduced by

restricting the digit set to a subset of the complete set available. The XLV

representation is maximally redundant, that is, the complete set of available

digits is used, so we will not discuss reduced digit sets here.

As an example, here are two signed-digit representations along with their

"normal" decimal equivalent values. Both examples assume the following

maximally redundant signed-digit (SD) number system:

radix: r = 10
(2)digit set: [9,8, ... ,2,1,0,1,2, ... ,8,9]

SD value 182 - (1)102 + (-8)101 + 2
- 100 - 80 + 2

22

SD value 153 (-1)102 + (5)101 + 3
-100 + 50 + 3
-47

19

3.2 Details of the XLV Representation

XLV's number representation is thus based upon the signed-digit rep­

resentation first discussed in Avizienis' [Avi61] paper. Henceforth, when we

refer to an XL U digit we mean an entity having sign, overflow and magnitude

bits. A particular XLV digit is defined as having the same number of bits

as a particular XLV processor implementation's word size. For instance, if

the XLV architecture is implemented on a 32-bit processor, with 32 bits per

word, the XLV digit for this machine will have 32 bits.

However many bits are available, an XLV digit must encode the following

three pieces of information; a value representing a magnitude, an indication

of the sign ofthat magnitude (positive or negative) and an overflow indicator.

The overflow indicator requires one bit. The remainder of the bits in the digit

represent the magnitude of the digits value in two's-complement form which

provides both sign and magnitude. For a word size of n total bits, the digit

will have n - 1 bits devoted to the digit's sign and magnitude, and the one

remaining 1 bit to the overflow indicator.

Our choice of two's-complement form for the magnitude is somewhat

arbitrary. The signed-digit representation properties that we wish to take

advantage of are oblivious to the magnitude's encoding, and we could have

used whatever we wished. We felt using an integral power of two would

simplify our work (for example, in writing a software simulator) and among

the common binary representations, two's-complement has "nice" properties

and is the default encoding for integers on most modern machines.

The actual position of the overflow bit relative to the magnitude portion

is not specified by the XLV design. Magnitude and overflow may be arranged

within the digit/word in whatever way the implementor deems most suitable.

(For example: The XLV simulator we created during the course of our work

places the overflow bit in the low-order position, because this happened to

make it easy to manipulate.)

20

Although the magnitude portion of the digit represents a numerical val­

ue in two's complement form, an XLV digit with m bits of magnitude has a

range that is one less than a standard, m-bit, two's-complement integer. The

range differs because the "extra-negative" pattern, characteristic of two's­

complement representation is reserved as a special pattern by the XLV def­

inition. For a value I, represented by m bits, the two's-complement range

would be:

(3)

but the XLV digit range is:

(4)

The combination of the leading bit of the magnitude (the sign bit), the

overflow bit, and whether or not all magnitude bits are equal provides twelve

distinct patterns. What these patterns repesent is given in table 1.

Table 1: XLV Digit Bit Patterns

s magnitude 0 condition of the XLV digit
0
0
0
0
0
0
1
1
1
1
1
1

all zeros
nonzero
all ones
all zeros
nonzero
all ones
all zeros
nonzero
all ones
all zeros
non zero
all ones

0
0
0
1
1
1
0
0
0
1
1
1

zero
positive numeric value
maximum numeric value
positive overflow
positive overflow
positive overflow
NaN (for njO)
negative numeric value
minimum numeric value
NaN (for n + overflow)
negative overflow
negative overflow

21

In table 1, the s column shows the value of the sign bit, the magnitude

column describes the state of the magnitude bits excluding the sign, and the

o column shows the value of the overflow bit. The column entitle "condition

of the XLV digit" gives the meaning of a particular combination of sign,

magnitude and overflow bits. Apart from the "NaN" entries, the conditions

should be self-explanatory.

The "NaN" (Not-a-Number) patterns allow the XLV digit to be used as

a base for IEEE floating-point arithmetic. Note that there are two distinct

patterns and two distinct NaNs. One signals the result of an illegal arithmetic

operation (such as division-by-zero) and the other signals the result of a

binary operation where at least one of the two operands was in an overflow

state. Both types of NaN s are "sticky" - i.e. should the result of an operation

produce a NaN, any future operation using that result will also produce NaN

as its result.

3.3 Algorithms for Basic Arithmetic Operations

3.3.1 Addition

According to Koren, "the original motivation for introducing SD num­

bers was to eliminate carry propagation chains in addition and subtraction"

and this property shapes the way the XLV performs addition as well. We

reproduce the general algorithm here as Koren [Kor93] 4 describes it.

We wish to perform the operation X + Y = S, for a signed-digit number

system of radix r, where X, Y, S consist of signed-digits Xi, Yi, Si:

X = (Xn-I, ... ,XO) Y = (Yn-I, . .. ,YO) S = (Sn-I, ... , so)

4As noted, the algorithm is first described in Avizieni's 1961 paper. We follow (and
quote) from Koren's book here because its notation is more up-to-date.

22

The addition operation consists of two steps:

1. For each Xi and Yi, compute an interim sum Ui and a carry digit Ci:

(5)

where:
I if (Xi + Yi) ~ a

Ci = ~ if IXi + Yil < a (6)
{

1 if (Xi + Yi) :::; a

with (for a maximally redundant system):

r - 1 = a and a = r - 1 (7)

2. For each interim sum Ui and carry digit Ci compute a final sum Si:

(8)

By removing the carry propagation chain, this algorithm effectively ren­

ders the addition algorithm totally-parallef' at the digit level. A vizienis

writes:

... each sum ... digit is the function only of the digits in two

adjacent digital positions of the operands. The addition time for

signed-digit numbers of any length is equal to the addition time

for two digits. [Avi61]

The XLV primitive operations for addition directly implement the vari­

ous steps of the signed-digit addition algorithm. Table 2 lists the addition

primitives and the parts of the signed-digit addition algorithm they perform.

The flow diagram in figure 1 shows how the XLV addition primitives may

be employed to compute the sum of two XLV digits. As the flow diagram

shows, for the case of two single digit numbers, the sum is immediately

51 believe A vizienis originated the use of this term in this context.

23

Cout

Table 2: XLV Addition Operation Primitives

Name opCode Function
Addition Intermediate Sum
Addition Carry Digit
Addition Final Sum

addi Xi, Yi, Zi

addc Xi, Yi, Zi

adds Ui, Ci-l' Zi

Zi +- Ui, by equation 5
Zi +- Ci, by equation 6
Zi +- Si, by equation 8

X and Y are XLU digits

carry-out and intermediate sum
are calculated simultaneously

(previous Cout or zero)

final sum

Figure 1: Addition Primitives - Sum of two digits

available after the addi operation. In fact, since the addi operation will set

the overflow bit of [sum for cases where an addc would return 1, the addc

operation is also only required for multi-digit work. For a single-digit-by­

single-digit (i.e. word-by-word) addition, with a single-digit result, the XLV

can deliver the result via a single addi operation. "Integer addition" as it

is commonly available on conventional processors is therefore also available

24

under the XLV as a natural consequence of the design, and as a specific

subset of the general scheme.

The completely parallel nature of addition at the digit-level provided by

the signed-digit representation and choice of addition primitives is illustrated

in the following 3-digit number by 3-digit number addition example. In

these examples we will use the same digit set and radix used for signed-digit

representation examples6 on page 18.

The sum S of the 3-digit numbers:

x = 396 and Y = 787

is computed by the following sequence of XLV addition primitive operations.

The sequence makes use of temporary storage digits i 2, iI, io and Cout, Cl, Co.

The final result is stored in 83,82,81,80:

addi 6, 7 ~ Zo

addc 6, 7 ~ Co
addi 9, 8 ~ i l
addc 9, 8 ~ Cl

addi 3, 7 ~ Z2

addc 3, 7 ~ Cout

adds zo, a ~ 80

adds Zl, Co ~ 81

adds Z2, Cl ~ 82

Co ~ 83 (leftmost carry-out)

The sequence may be more easily visualized by the equivalent flow diagram

shown in figure 2. Notice that regardless of the number of digits involved,

all addi and addc operations may be performed in parallel (assuming ade­

quate processor resources). All adds operations may be performed in parallel,

pending completion of the addi and addc operations.

In general, the addition oftwo N-digit numbers can produce an N+1-digit

result. For number schemes that allow dynamic scaling, overflow is handled

6The radix-lO example from page 18 is used here rather than a radix-2 SD represen­
tation (as the XLV design specifies) because it makes the arithmetic examples easier to
read. We will present examples that use "real" XLV digits later.

25

o (known carry-in)

83 = 0 82 =-3 81 =8 80 = 3

Figure 2: Multi-digit Addition Example

naturally (at least until the resources available on the system give out). For

number schemes that require results to fit into a fixed number of digits (if our

example's result had been constrained to three, for instance) some decision

must be made about which portion of the result will be "lost".

Notice also, that our result of 383 is in a redundant form. It has the cor­

rect magnitude (-217), but in a signed-digit format. In general, signed-digit

numbers may require extra processing to convert them to a non-redundant

form. In general this mayor may not be of concern, and the extra steps may

be applied as seen fit.

A slightly more important, and related case, however, is transforming a

signed-digit number from a redundant form to a redundant form that requires

fewer digits. For example; consider the three digit, radix-10, SD number 198,

26

which may also be represented by the single-digit number -2. The XLV

squash primitive operation (see table 3) provides the ability to perform this

conversion on multi-digit XLV values.

Table 3: The XLV Squash Operation Primitive

Name opCode Function
Convert multi-digit value squash Xi, Yi, Zi Zi +- (Xi X radix) + Yi

The squash primitive takes two XLV digits, assumed to be the neighbor­

ing digits of a multi-digit number. It returns the combination of the two as

a single-digit value. The result may have its overflow bit set, if the two-digit

input is not "squash able" . The flow diagram in figure 3 shows how multiple

squash primitives may be used in a "cascade" to attempt to compress an

n-digit representation down to an (n - m)-digit representation. Vnlike the

highly parallel addition operations previously described, the squash instruc­

tion cascade is completely sequential. Each squash primitive must wait for

its predecessor's result.

3.3.2 Subtraction

The XLV instruction set performs subtraction through negative addition.

The addend takes the part of the subtrahend and the negative of the augend

takes the part of the minuend. The XLV primitive operations provided for

support of subtraction are listed in table 4.

27

x = (-1)98 is a three digit XLU value

squash(-1),9 = (-10) + 9 = -1

squash(-1),8 = (-10) + 8 = -2

Y = -2 is a one digit representation of X

Figure 3: A multi-digit Squash "Cascade" Example

Table 4: XLV Subtraction Operation Primitives

Name opCode Function
Negation
Subtraction Intermediate Sum
Subtraction Carry Digit

neg Xi, Yi

subi Xi, Yi, Zi

subc Xi, Yi, Zi

neg Yi ~ Xi

Zi ~ addi Xi, iii, Zi

Zi ~ addc Xi, iii, Zi

In early versions of the XLV design, the neg operation was provided to

allow subtraction. It is a unary operation, taking an XLV digit as input, and

returning the negative of that value. For example:

neg 7' -77

Inserting neg operations into the code sequences in the addition section con­

verts them into subtraction algorithms.

28

Here is the XLV code sequence from the three-digit addition example,

with neg operations inserted to convert it to subtraction. (Note the inclusion

of three additional temporary storage values; n2, n1 and n3):

neg 7 -+ no

neg 8 -+ n1

neg 7 -+ no

addi 6, no -+ Zo

addc 6, no -+ Co

addi 9, n1 -+ Zl

addc 9, n1 -+ C1

addi 3, n2 -+ i2

addc 3, n2 -+ Cout

adds zo, 0 -+ 80

adds Zl, Co -+ 81

adds i 2 , C1 -+ 82

Co -+ 83 (leftmost carry-out)

The flow diagram for our modified example is shown in figure 4. Notice that

the result, 1011, of this example requires the full four-digit sum a 3x3 digit

addition (subtraction) can incur. In this instance, if a maximum of less than

three digits was allowable, a decision would have to be made as to what digit

to throwaway.

The neg operation alone is enough to provide support for subtraction, but

the XLV defines two more operations for subtraction (see table 4). They are

exact analogues of the addition intermediate sum and addition carry-digit

operations, except that they perform the negation of the second argument

prior to calculation. In effect, they encapsulate the neg portion of the sub­

traction example given above. No subtraction analogue for the addition final

sum operation is needed or provided, since at that point in the computation

sequence, the operation is identical for both addition and subtraction.

Figure 5 illustrates our subtraction example again, this time implemented

with subi and subc operations instead of neg, addi, and addc. Encapsulating

the negation operation removes a discrete step in the calculation sequence,

29

o (known carry-in)

83 = 1 82 = 0 81 = 1 80 =-1

Figure 4: Subtraction-by-negation Example

reducing the required time, instruction count and intermediate storage, all

at a minimal complexity cost for the underlying subi and subc implementa­

tion. Nevertheless, in order to provide the compiler with the largest possible

set of options for code generation, the subi, subc and neg operations are all

provided in the primitive operations set.

30

io =-1

o(known carry-in)

83 = 1 82 = 0 81 = 1 80 =-1

Figure 5: Subtraction Example

3.3.3 Multiplication

Multiplication is the repeated addition of partial products. For the addi­

tion portion of this task the parallelization potential of the signed-digit addi­

tion algorithm provides a good foundation to build upon. There remains the

task of computing the partial products for the digits of the multiplication.

The result of multiplying an XLV digit by another XLV digit may be

one or two digits. In order to keep the primitive operations regular (and

therefor easier to process efficiently) we perform two "multiply" operations

per XLV digit of the multiplicand and multiplier. One operation returns the

value of the high-order digit of the product, the other returns the value of

the low-order digit of the product. These operations are listed in Table 5.

31

Table 5: XLV Multiplication Operation Primitives

Name opCode Function
multiply (high-digit)
multiply (low-digit)

mulh Xi, Yi, Zi

mull Xi, Yi, Zi

Zi +- PI of PIPO +- Xi X Yi

Zi +- Po of PIPO +- Xi X Yi

Here is an example of how these operations may be used to compute

the high and low order results of the product of an digit-by-digit multiplica­

tion. For the simplest complete case, a 1-digit-by-1-digit multiplication, this

flow diagram shows the sequence of operations: The 2-digit case in figure

6 forms the basic "multiplcation cell" of multiple-digit XLV multiplication

arithmetic.

For an n-digit multiplicand and an m-digit multiplier, n x m multipli­

cation cells are generated; one for each combination of multiplier digit and

multiplicand digit. Each multiplication cell is complete independent of any

other, and (assuming enough resources) all may be generated in parallel. The

results of the multiplication cells are the partial products of the multiplica­

tion, and are then added together (using the addition operations described

in section 3.3.1) to for the final product.

As an example, consider the product P of a 3-digit multiplicand X and

a 2-digit multiplier Y where

X = 478 and Y = 29

Figure 7 shows the partial product generation, intermediate sum accumula­

tion and final product as they might be generated if the intermediate values

were generated "by pencil". Two sequences of XLV primitive operations

32

X and Yare XLV digits

high and low order product results
can be calculated simultaneously

PI P2

Figure 6: Multiplication Primitives - Product of two digits

comprise this 3x2 multiplication. First, the following sequence generates the

necessary partial products.

mull 8, 9 -7 10,0
mulh 8, 9 -7 ho,o
mull 7, 9 -7 ho,
mulh 7, 9 -7 hIO,
mull 4, 9 -7 12,0
mulh 4, 9 -7 h2,0
mull 8, 2 -7 101,
mulh 8, 2 -7 ho,1

mull 7, 2 -7 111,

33

4 7 8 (X)

x 2 9 (Y)

7 2 (partial products)
6 :3

3 6
1 6

I 4
0 8
0 3 6 7 2 re-arranging terms

I 6 :3
8 1 6

4
0 3 6 7 2 accumulate

+ I 6 :3
0 2 0 4 2

+ 8 1 6
1 0 2 0 2

+ 4
1 0 2 0 2

Figure 7: 3x2 Multiplication Example "By Pencil"

mulh 7, 2 -+ hl,l

mull 4, 2 -+ l2,1
mulh 4, 2 -+ h2,1

Next, the following sequence accumulates final product from partial products

through repeated application of the totally parallel addition algorithm.

addi ho ,0 h,0 -+ to
addc ho,o ll,O -+ t1

34

addi h1,0 l20, -+ t2
addc h10, l20, -+ t3
addi h20, h1,1 -+ t4
addc h20, hll, -+ t5
adds tl t2 -+ t6
adds t3 t4 -+ t7
adds h21, t5 -+ ts
addi to lo,1 -+ PI
addc to lO,1 -+ t10
addi t6 hO,1 -+ tn
addc t6 ho,1 -+ t12
addi t7 l2,1 -+ t 13
addc t7 l21, -+ t14
adds tlO tn -+ t 15
adds t13 t12 -+ t16
addi ts t14 -+ t17
addc ts t14 -+ P5
addi t 15 II ,1 -+ P2
addc t 15 h,1 -+ tIS
addi t 16 tIS -+ P3
addc t 16 tIS -+ t19
adds t17 t 19 -+ P4

Regarding the notation used in this sequence: The original digits of X and

Yare shown in the primitive operations arguments as their values. Partial

products are shown as either an hx,y for the high-order value (generated by

mulh) of digits Xx and Yy, or an lx,y for the low-order value (generated by

mUll) of digits Xx and Yy. Intermediate sums and carry digits are notated

by temporaries (tn).

To help clarify the sequence of XLV primitive operations, figure 8 shows

a variation of figure 7. The partitial products and intermediate sums are rep­

resented by their temporary value labels from the sequence of XLV primitive

operations.

Figure 9 shows a flow diagram corresponding to the sequence of XLV

primitive operations that accumulate the partial products of the multiplica­

tion example into a final sum.

35

X2 Xl Xo
X Yl Yo

ho,o lo,0

h1,0 l10,
h20, l2,0

ho,1 lo,1
h1,1 ll1,

h21, l21,

h21, h20,
hll,

h10,
l20,

ho,0

h,o
lo,0

l21, ho,1 lo,1
ll1,

+
h21, h2,0

hll,
h10,
l2,0

ho,o
l10,

Po

ts t7 t6 to Po
+ t14 l2,1 ho 1, lO,1

+
(PS) t17 t16 tIS

III,
PI Po

(PS) t17 t16 P2 PI Po
+ tIS

(PS) t17 P3 P2 PI Po
+ t 19

(PS) P4 P3 P2 PI Po

Figure 8: 3x2 Multiplication Example "By Pencil" Symbols

36

P5 =0 P4 = 1 P3 =0 PI =0 Po =2

Figure 9: Partial Product Accumulation

37

4 Composite Representations

This section demonstrates how the XLV number representation and prim­

itive operations may be used as a base from which other number represen­

tations may be created. We refer to such representations as synthesized

representations, and in this sections we describe two examples: fixed-point

and floating-point. We also introduce the XLV primitive operations provided

specifically to support the needs of synthetic representations such as these.

4.1 Fixed-Point Numbers

We use the definition of fixed-point numbers given in Koren [Kor93]: A

fixed-point number X is a sequence of n radix r digits Xn-lXn-2 ... XIXO that

is partitioned into a fractional part of m digits as well as an integral (integer)

part of k digits, with k + m = n. Quoting Koren:

The value of an n-tuple with a radix point between the k most

significant digits and the m least significant digits

(Xk-l X k-2' •. XIXO, .,
".

. X-IX-2'", ..,
x_m)r., (9)

integral part fractional part

is

X - Xk_lrk-1 + Xk_2rk-2 + ... + Xlr + Xo + X_lr-1+
m... + x_mr­

(10)

The radix point is not stored in the register but is understood to

be in a fixed position between the k most significant digits and the

m least significant digits. Therefore, we call such representations

38

fixed-point representations. The programmer of the digital com­

puter is not necessarily restricted to the use of numbers having

the predetermined position of the radix point but can properly

scale the operands. As long as the same scaling factor is used for

all operands, the add and subtract operations yield the correct

results, since aX ± aY = a(X ± Y), where a is the scaling factor.

However, corrections are required when performing multiplication

and division, since aX . aY = a2XY and aX/aY = X/Yo

It should be clear that integers are the subset of fixed-point numbers

that have no fractional part. Koren writes "Commonly used positions for

the radix are at the rightmost side of the number (Le., pure integers, m = 0)

and at the leftmost side of the number (i.e. pure factions, k = 0)."

4.1.1 XLV Fixed-Point Number Representation

Substituting "XLV digit" for "digit" in the discussion above shows how

naturally Fixed-Point numbers may be represented by the XLV architecture.

A fixed-point number may be represented by one or more XLV digits, with

the additional constraint that the radix point lies somewhere to the right

of the leftmost bit of the leftmost digit, and somewhere to the left of the

rightmost bit of the rightmost digit. (Otherwise, the value of digit or digits

would be either a pure fraction or a pure integer.)

We leave tracking the position of the radix point to the higher-level (com­

piler, interpreter, other code-generation) abstraction layers, so the represen­

tation itself requires no additional complexity.

The information carried by the XLV digit, and the particular bit-pattern

it shows at a given point in time does not change, although the interpretation

of what it represents at that point in time may differ, depending upon where

the higher-level abstraction chooses to "place" the radix point.

39

As an example, consider a hypothetical 16-bit implementation of an XLV

digit X. Seen as a pure integer, 16 bits gives us a magnitude in the range of

±214 - 1 and a radix T = 214 with the digit's radix point understood to be

adjacent to the rightmost (low-order) magnitude bit.

But we can equally view the 14 bits of the magnitude as having the radix

point positioned in the middle (i.e. between the 7th and 8th magnitude bits).

The XLV digit now represents both integer and fractional parts, each with

representable values according to equation (10) with k = m = 7. The radix

point could equally be placed between any of the other bits of the XLV digit

(with k and m changed appropriately).

4.1.2 Fixed-Point Arithmetic

The arithmetic operations given in section 3.3 apply without modification

to an XLV digit sequence whether it represents a pure-integer, pure-fraction,

or fixed-point number. However fixed-point arithmetic differs from pure­

integer and pure-fraction arithmetic because of the possibility of scaling the

operands.

When the scaling involves changing the radix point by an integral number

of XLV digits, the change is "transparent" to the digits themselves. What­

ever higher-level abstraction is keeping track of the radix position is expected

to remember the fact that the radix is now between two different digits.

However, scaling by an integral number of digits is likely to be the ex­

ception. For cases where scaling involves changing the radix point's position

by less than one digit's amount of bits, XLV primtives are provided. They

accept an XLV digit x, and a value s to scale it by.

The scaling primitives work by shifting the magnitude bits of x s positions

in the appropriate direction. The sign and overflow bits may playa part in

a given scaling primitive's operation, but they are never shifted themselves.

40

Since both x and S are XLU digits, the range of S (i.e. the number of

bit positions to shift) will far exceed the number of magnitude bits in x. For

example, an XLU digit implemented in a 16-bit binary word has a total of

fourteen magnitude bits, but can specify a maximum shift value of 16383

positions. The scaling primitives handle this discrepency by "maxing-out"

at the number of magnitude bits for the particular implementation. Using

the same example XLU digit, when an S value exceeds 14, all the magnitude

bits are shifted, but "no more" shifting is done, i.e., s effectively equals 14

for values of [15,16 ... 16383]. Negative values in s equal a shift value of O.

Table 6: XLU Scaling Operation Primitives

Name opCode Function
Scale up (high digit)
Scale up (low digit)
Scale down (high digit)
Scale down (low digit)
Scale down intermediate
Scale down carry

seuh Xi, Si, Yi

seu! Xi, Si, Yi

sedh Xi, Si, Yi

sed! Xi, Si, Yi

sedi Xi, Si, Yi

sede Xi, Si, Yi

Yi t- (Xi X 28i) - maximum(xi)
Yi t- Xi X 2 8

i

Yi t- Xi -;- 2 8
i

Yi t- maximum(xi) - (Xi X 28i)

"signed-digit-aware" sed!
"signed-digit-aware" s edh

The individual scaling primitives are summarized in table 6. Like the

multiply instructions, they are designed to be used primarily in pairs, with a

given pair returning the high-word and low-word results of a given operation.

In the following paragraphs we explain each of these operations and pro­

vide simple examples of their use. For the examples, we use the 16-bit XLU

digit implementation mentioned in the discussion above and summarized in

figure 10.

In the examples that follow, we ignore the sign (s) and overflow (0) bits

as the scaling primitives d07 and show only the 14 magnitude bits in the

diagrams.

7This is actually only mostly true. The scdc and scdi pair are sign-aware.

41

Bit layout within each digit:

sign bit overflow bit

"\ /
XLV digit x = s znmmmmmmmmmmmmm,o

/
...

magnitude bits

Figure 10: An example XLV digit Implementation

The seul primitive operation scales the XLV digit x up by a factor of 28

(i.e. multiplies x by 28
) by shifting the magnitude bits of x to the left by s

positions. The seuh primitive operation returns "the bits shifted off the left

end." Figure 11 illustrates both operations.

x = 01 1100 0110 0100 (7268d)
s = 00 0000 0000 0101 (5d)

a b

scuh x, s scul x, s
01 001 0 0110 0100
o1110 00 1100 100

0000000000 1110 00 1100 1000 0000

a b

Figure 11: The scuh and scul operations

The sedh primitive operation scales the XLV digit x down by a factor

of 28 (i.e. divides x by 28
) by shifting the magnitude bits of x to the right

42

by s positions. The seul primitive operation returns "the bits shifted off

the right end." (Note that the meanings of "high" and "low" for scale-down

operations are inverted relative to scale-up operations.) Figure 12 illustrates

the sedh and sedl operations.

x = 01 1100 0110 0100 (7268d)
s = 00 0000 0000 0101 (5d)

scdh x, s scdl x, s
01 1100 011 0 0100
o1110 0011 00 100

000000 1110 0011 00 1000 0000 0000

a b

Figure 12: The scdh and scdl operations

The sede and sedi primitive operations scale the XLU digit x down by

a factor of 28 bits in the same manner as the sedh and sedl operations pair.

Unlike sedh/sedl, the sede/sedi primitives adjust as well as scale x. This

additional feature is required for situations where we might wish to add one

(for example, a carry-in) after a the scale-down operation(s).

The results from an sede/sedi combination may be added together using

the parallel addition algorithm discussed earlier, because the sedc/scdi pair

assures that their respective results will not overflow. They may be thought

of as the scaling equivalents of the adde/addi primitive operations.

Figure 13 illustrates a four-bit (i.e. divide-by-16) scale-down of a two-digit

XLU value, and also illustrates how the scdc/scdi operations pair differs in

behavior from the scdh/scdl operations pair. In figure 13 the sedc/scdi

a b

43

XLV digits are: x = + 00 0000 00111111

and: y = + 11 11111111 1111

scale digit: s = + 00 0000 0000 0100

The primitives operation sequence is:

sede x, s -+ t3 = + 000000 0000 0100
(sedh would give + 00 00000000 0011)

sedi x, s -+ t2 = - 11 1100 00000000
(sedl would give + 11 1100 0000 0000)

sede y, s -+ tl = + 00 0100 0000 0000
(sedh would give + 00 0011 1111 1111)

sedi y, s -+ to

Figure 13: A multi-digit scale-down example (sign bit shown as +/-)

44

combination leading to the adds result t3 will tolerate the subsequent addition

of a one, while the equivalent scdh/scdl combination will not.

4.2 Floating-Point Numbers

Floating-point numbers, like fixed-point numbers, provide values with

an integer and fractional portion. However, floating-point numbers accept

increased complexity of representation for greater convenience. A floating­

point number explicitly tracks the position of the radix, and that position

may vary as the particular number is manipulated. The burden of shifting

the position of the radix point is taken on by the arithmetic algorthms for

floating-point numbers.

Floating-point numbers are commonly represented in the literature by a

pair of values (e.g. Knuth [Knu81]). We use Knuth's notation with some

slight differences.

Given the base b, excess q, a floating-point number of n digits may be

represented by the pair of values:

q(e, f) = f x be
- (11)

Where the exponent, e is an integer of a specified range, and the fraction, f
is either a signed, pure fraction or a fixed-point number. In this latter case,

the fixed-point number is usually a pure-fraction, often with what is known

as an "implied one" to the left of the leftmost significant digit (e.g. IEEE-754

floating-point) .

4.2.1 Floating-Point Arithmetic

Shifting the burden of explicitly tracking the radix position onto the rep­

resentation and its operations increases the complexity of both. For the

45

arithmetic operations we discuss, the additional complexity is almost entire­

ly due to explicitly accounting for the dynamic behavior of the radix-point

into the arithmetic operations themselves.

Before discussing methods for implementing floating-point under the XLV

architecture, we present general descriptions of the steps required to add,

subtract and multiply floating-point numbers. Our descriptions are taken

primarily from Knuth [Knu81], whom we will quote liberally here. (Goldberg

[GoI91] and Koren [Kor93] also provide good coverage of this material.)

It's important to note at this point that the XLV digit and primitive op­

erations are a sufficent base upon which many different floating-point number

systems/semantics may be realized. That is, what we describe here is not the

only way to do floating-point arithmetic, nor is it the only sort that the XLV

architecture can support. We use Knuth's algorithms here because they are

simple, clear, and "classic" among the various descriptions available in the

literature.

Also note that Knuth's algorithms devote steps at the beginning and end

to "unpacking" and "packing" the floating-point numbers, i.e. separating

and recombining the exponent and fractional portions. We leave those steps

implicit in our descriptions here.

4.2.2 Floating-Point Addition and Subtraction

Given two n-digit, floating-point numbers x = (ex, Ix) and y = (ey , I y),

the sum s = x + y is calculated through the following steps. (These same

steps are also used to perform floating-point subtraction by substituting -y

for y.)

1. Pre-normalize x and y. Knuth writes:

A floating-point number (e,1) is normalized if the most sig­

nificant digit of the representation of I is nonzero, so that

46

lib ~ III < 1 	 (12)

or if I = 0 and e has its smallest possible value.

That is, we want to scale x and y up by shifting leading O's off the

left-hand, most-significant end of I, while decrementing e, subject to

the bounds Knuth notes.

2. 	 Compare ex and ey, and if ex < ey, interchange x and y (i.e., after this

step, x is the number with the larger exponent).

3. 	 Set the exponent of the result: es f- ex

4. 	 Compute the difference between the exponents; d = ex-ey. Ifd ~ n+2,

the difference between the exponents is "too large", and the procedure

may be terminated in whatever manner is deemed most suitable.

5. 	 Scale right: Shift y's fraction, Iy right by d places; i.e., divide it by
bex-ey.

6. 	 Add the fractional parts of the numbers: Is -+ ex + ey

7. 	 Post-Normalize the result. Post-Normalization is involved enough to

merit its own algorithm. See section 4.2.9 for details.

4.2.3 Floating-Point Multiplication

Given two n-digit numbers x = (ex, Ix) and y = (ey,ly), the product

p = x x y is calculated through the following steps.

1. 	 Compute the product's exponent by computing the sum of the multi­

plicand and multiplier exponents: ep f- ex + ey

47

2. Compute the product's faction by computing the product of the mul­

tiplicand and multiplier fractions: fp +- fx x fy

3. 	 Post-Normalize the result. (See section 4.2.9 for post-normalization

details.)

4.2.4 An XLV Floating-Point Number Representation

As Knuth's definition of a floating-point (equation 11) shows, the heart

of an FP representation is two separate pieces of information, exponent and

fraction, that together represent one numerical value. From this observation

it's easy to see that we may implement each of the two pieces of an FP

number with one or more XLV digits, the exponent as a pure integer and

the fraction as either a fixed-point value or a pure fraction.

The special patterns (see table 1) defined for the XLV digit allow floating­

point representations built from XLV digits to communicate overflow, under­

flow and other special conditions associated with floating-point arithmetic. In

particular, the XLV special patterns provide direct support for the NaN, +00

and -00 required by the IEEE-754 and IEEE-854 standards for floating-point

arithmetic. (The IEEE floating-point standard's requirements for denormal­

ized arithmetic and specific rounding modes/behavior must be generated by

sequences of XLV primitives.)

Obviously, many different implementations of floating-point numbers are

possible using XLV digit as a base for exponent and fraction. We describe

one here - a simple implementation - for use in the arithmetic examples that

follow.

Our example floating-point representation is synthesised from XLV digits

as follows:

• 	 An XLV digit composed of a 16-bit binary word, with 14 magnitude

bits, and the sign and overflow bits in the leftmost and rightmost bit

48

positions respectively (i.e. the same example XLV digit implementa­

tion used for the scaling primitive examples).

• 	 radix r = 214

• 	An exponent, e, composed of a single XLV digit.

• 	 A fraction, j, composed of two XLV digits playing the role of a pure­

fraction fixed-point number.

• 	An implied radix point, the left of the leftmost fraction-digit, with no

implied one (unlike, for example, IEEE-754) on the other side. The

radix point is completely implicit, and as stated in the sections dealing

with fixed-point representations.

The radix and exponent range of our example representation are quite

large compared to the total number of fraction digits. This gives the rep­

resentation a relatively large range, but poor precision on that range. This

same trait is mitigated in real FP representations by carefully balancing

radix, exponent and fraction. We keep the fraction small here to enhance

the illustrative capacity of the representation.

4.2.5 Scaling, Normalization and Rounding

Pre-Normalizing the fractional portion of a floating-point number involves

scaling it up or down. The various XLV scaling primitive operations are used

to actually scale the number, and the XLV primitive operation fnbe provides

the amount needed to actually scale. Table 7 contains a summary of fnbe's

behavior.

The fnbe operation takes two arguments; Xi+! and Xi. Conceptually the

two arguments represent the left-hand and right-hand XLV digits of a two-or­

49

Table 7: XLU Normalization and Rounding Primitives

Name opCode Function

Find Normalization
Bit Count

z +- { fnbc ~N' Xi
if Xi+! = N
if Xi+l < N
if Xi+! = 0

more-digit value. Fnbc returns the number of zeros to the left of the leftmost

I-bit in xi's magnitude, subject to Xi+l 's value.

If 0 ~ Xi+l < N, fnbc returns 0 without evaluating Xi. This signals

that there are one or more "I" bits to the left of Xi. If Xi+! exactly equals

the number of magnitude bits in the XLU digit implementation (N), Xi is

evaluated, because Xi+! = N implies every magnitude bit to the left of Xi is

a zero.

This behavior allows a sequence of fnbc and adds (or addo) operations to

"chain" the number of zeros for a multi-digit value. Figure 14 shows a flow

diagram of a four-digit fnbc chain. As with multi-digit squash operation

sequences, each sucessive fnbc primitve relies on its predecessor's result.

Unlike the squash chain, the fnbc chain includes addition operations and as

the length of the fnbc chain increases, some parallelism in performing the

additions can be realized.

For single-digit values, X is set to N. Figure 15 shows the flow diagram

for fnbc with a single digit, along with examples of its use. (The examples

use the XLU digit implementation described in figure 10.)

50

number of left-hand bits for (X3, "" xo)

Figure 14: Multi-digit fnbe example

51

number of bits

Examples:
fnbc 00 0000 0000 1110 (14d), 11 1111 1111 1111 (16383d)

-+ 00 0000 0000 0000 (Od)
fnbc 0000000000 1110 (14d), 00 0000 0010 1001 (41d)

-+ 00 0000 0000 1000 (8d)

Figure 15: Single-digit fnbc example

4.2.6 An XLV Floating-Point Example Number

Table 8 illustrates the components and values for an example floating­

point number created using our example floating-point representation defini­

tion. Notice that the fractional portion consists of two XLU digits; IXl and

Ixo'

4.2.7 XLV Floating-Point Addition and Subtraction

Addition or subtraction of two floating-point XLU numbers is broken

down into suboperations. The suboperations implement, through sequences

of XLU primitves, the steps in Knuth's floating-point addition/subtraction

algorithm (detailed previously).

52

Table 8: An example XLV floating-point number

X (ex, fCXl'XO))
where:

ex o00 0000 0000 0011 0
and:

fXl o00 0110 1010 1100 0
and:

fxo o00 0110 1100 1001 0

Addition of exponent and fractional portions of the addend and augend

are implemented using the basic XLV addition sequences detailed earlier for

pure-integer, pure-fraction, and fixed-point XLV numbers.

Pre-normalization of the addend and augend is computed via a combina­

tion of fnbe, scaling and addition primitives. Figure 16 shows a flow-diagram

for our example XLV number. In this figure, notice that no seuh operation is

required for fxl because the behavior of the fnbe operation guarantees that

no ones will be shifted into the result of seuh.

The comparision of the two exponents (step 2, in Knuth's algorithm) re­

quires some explanation. No explicit XLV primitive exists for the comparison

of two XLV values.

We assume comparison operations for word-sized operands will exist as

part of the "other" portion of whatever instruction-set within which an XLV

architecture is realized. The XLV architecture requires only that two oper­

ations exist; one to distinguish and branch on whether a value is > 0, the

other to do the same if a value is = o.
As the previous paragraph implies, comparing two XLV values depends

on first computing the difference between the two XLV values, then using

the "other" comparison operation to branch. The comparison is one of the

few places within an XLV sequence where branching is not avoided.

53

Given X = (ex, Ix) with

s mm mmmm mmmm mmmm v
ex = 0 00 0000 0000 0011 0

s mm mmmm mmmm mmmm v s mm mmmm mmmm mmmm v

I(Xl,xO) = 0 00 0110 1010 1100 0 o 00 0110 1100 1001 0

/",1'

Figure 16: Pre-normalization example

This doesn't address how the "other" comparison operations (which are

not required to understand multi-digit XLV numbers) deal with difference

values greater than one digit. For the general case, this is future work. For

the specific case of finding which exponent is larger, once we compute the

difference, we only need to know the leading digit's (leading word, for the

"other" comparison operation) relation to zero. We may still need to post­

54

normalize and round the results. These topics are covered in sections 4.2.9

and 4.2.10.

4.2.8 XLV Floating-Point Multiplication

Compared with floating-point addition, floating-point multiplication is

straightforward. Implementing the first two steps of Knuth's previously­

detailed algorithm through XLV primitives involves generating an integer

addition sequence for the exponents ex and ey and a fixed-point multiplication

sequence for the fractions f(Xl,XO) and f(Yl,YO)·

The multiplication sequence may be quite involved, but in addition to the

instruction-level parallelism inherent in XLV primitive operations sequences,

note that the addition of the exponents and the multiplication of the fractions

may also proceed independently of each other.

As with floating-point addition, the end-result of these operations need

to undergo post-normalization and rounding. See sections 4.2.9 and 4.2.10

for details.

4.2.9 XLV Post-Normalization

At the completion of either a floating-point addition, subtraction or mul­

tiplication sequence, the computed result may not be normalized, according

to the definition given in equation 11. This may be acceptable in some

instances, but more often the semantics of a particular floating-point type

implementation require that the result must be post-normalized.

The goal of post-normalization is the same as pre-normalization; to adjust

the exponent and fractional parts of a floating-point value so that together

they fit within the definition given in equation 11.

55

In the following steps we paraphrase Knuth's normalization algorithm

[Knu81]. (The algorithm assumes that III < b, where, as we recall, b is the

number base.)

1. 	 Test the result's fraction I: III ~ 1 indicates "fraction overflow", and a

need to scale the result down (i.e. to the right). III = 0 indicates that

the exponent should be set to its lowest possible value, after which, no

further work is necessary; the normalization process is complete.

2. 	 Test for normaliztion: For any other value, I mayor may not be nor­

malized. Testing whether III ~ lib determines this. If the number is

normalized, proceed to rounding, otherwise, scale the result up (i.e. to

the left) and try again.

3. 	 Scaling Up (left): Shift I to the left by one position and decrease e by

1, then test for normalization again.

4. 	 Scaling Down (right): Shift I to the right by one position and increase

e by 1, then proceed to rounding.

5. 	 Rounding:

For a fraction I of at most n places, Knuth writes "We take this to

mean that f is changed to the nearest multiple of b-n ." There are

various methods for rounding a value of I greater than n places back

down to n places. Some of these may result in III = 1, which is not

allowable in Knuth's algorthim. If this happens, return to the scaling

down step and proceed from there.

6. 	 Check e: Either the original result, or prior operations of the normal­

ization process may have resulted in an exponent underflow or overflow

condition (e is either smaller or larger than its allowed range). Such

cases indicate that the result computed can not be expressed within the

system, and appropriate actions must be taken on a per-implementation

56

basis. If e is safely within tolerance, then the normalization process is

successfully complete.

As Knuth's normalization algorithm shows, implementing normalization

for floating-point numbers based upon XLV digits is largely a matter of

providing the primitive operation sequences to scale the fraction up or down,

increment or decrement the exponent, and test the value of the fraction at

the appropriate point.

We have already shown how the scaling primitives may be used to con­

struct scaling operations of arbitrary scope, and the exponent increment and

decrement operations are simple addition or subtractions upon a signed dig­

it (i.e. an unadorned XLV digit). However, the test to determine if f is

normalized, requires further discussion.

As in the case for the comparison operations required in XLV implemen­

tations of floating-point addition and subtraction, methods for testing the

value of the fraction f are not specified within the XLV primitive operation

set. We assume comparison operations for word-sized operands exist as part

of the "rest" (i.e. non-XLV portion) of the processor's instruction set, and as

previously mentioned, those comparison operations are not assumed to deal

with or "understand" multi-digit XLV numbers.

Providing general-case methods for comparisons of multi-digit XLV num­

bers currently stands as future work, however normalization demands that we

supply some specific schemes for comparison of the fraction, f of a floating­

point number, which may be multi-digit in its composition.

For specific cases where f is compared relative to a number (i.e. 1 or b)
in a strictly greater-than or less than manner, it is enough to test against the

most-significant (leftmost) digit of f, since the value of subsequent, lesser­

significant digits of f will not change the comparison.

57

For specific cases where the value of f must be compared equal to a value

(e.g. f = 0), and we may not assume comparsion operations beyond those

provided by the "rest" of the ISA, we resort to a "comparison chain", similar

in concept to the scaling chain seqeuences of XLV primitive.

The particular structure required to test if f = 0 for our example XLV

floating-point number (table 8) representation is given in figure 17. This

structure only works for comparisons to O. It will not work for, say f = 1.

o

==? is a (word size) equality operation
returning "true" or "false"

r

Figure 17: Testing if f = 0 for a two-digit value f.

A similar, derivative structure to test if f = n, where n =1= 0 is shown in

figure 18. Obviously, this structure could be used to test if f = 0 as well,

and for the simple number representation shown, there's no difference.

This structure is very specific to our example floating-point number (table

8) representation. For example, it "knows" the position of the radix point,

and relies upon that information. This brings up the fundamental difference

between figures 17 and 18. The former is specific to 0, but makes no as­

sumption about radix point. The latter is not specific to zero, but makes

assumptions about radix point position.

58

o n

==? is a (word size) equality operation
returning "true" or "false"

r

Figure 18: Testing if f = n for a two-digit value f where n =/: O.

Both structures are adequate but aesthetically unsatisfactory, and compu­

tationally expensive. While both structures scale, both will form an inverted

binary tree, the time cost of which (i.e. depth) is logn, where n is the number

of digits in the XLV representation of f. More over, the zero-comparision

structure is general for the XLV number, but compares only to zero, while

the n-comparison structure is specific to the XLV number representation.

And both representations assume that one of the two items being compared

is a single word (i.e. one XLV digit) in size, whether 0 or n in value. Clearly,

good strutures for comparison/test operations are a primary candidate for

any future work.

4.2.10 Rounding Considerations

The primitive operations for rounding an XLV digit or string of XLV

digits representing a number have not been finalized. Specifics of this topic

59

thus lie outside the scope of this particular thesis. Nevertheless, some general

observations may be made.

Whatever form of rounding is required and specified, for example round­

towards-infinity or round-to-nearest, the approach we have experimented

with is to provide XLV primitive operations (one per desired rounding mode)

that will perform the operation for a single XLV digit, but may also serve as

"links" in a sequence of such operations so that the same function may be

performed on a string of XLV digits. We've demonstrated this approach in

the squash and fnbc primitive ops (tables 3 and 7).

Our hypothetical rounding operations could be used to form operation

sequences in the same way as we use squash and fnbc. We believe this will

work, and it has the benefit of being simple to scale up - that is, the structure

produced by using it for multi-digit XLV representations is something we

know and have worked with. However, like the squash and fnbc primtive ops,

the structure is not highly parallel, and subject to linear time complexity.

Thus, future work includes determining if better performance is possible

within the XLV framework, and finding a way to provide it if it does. (This

might also have implications for improved methods for handling the squash

and fnbc operations.)

60

5 Hardware Considerations

The XLV architecture's hardware is left largely unspecified. Should the

XLV ever be realized as an actual device, designers are left with a large

amount of lattitude to realize the processor. Nevertheless, the XLV number

representation and arithmetic algorithms presuppose certain characteristics

and traits about the hardware implementation.

Obviously, the instruction set must implement the base operations re­

quired to support the XLV arithmetic algorithms. Beyond that, the follow­

ing characteristics - perhaps design principles is a better term - are expected

to be embodied by the hardware.

5.1 Small Implementation Footprint

Whatever the complexity of the overall processor, the XLV portion is

expected to be small and compact. We believe that the single number repre­

sentation and small, simple instruction set may be implemented in a relatively

modest number of transistors and on a small amount of surface area.

5.2 High Speed and Multiple-Instruction Issue

In the use of a single number representation, and small, simple instruc­

tions we are making the tradeoff pioneered by the RISe processors of the

late 1980s: The single number representation and simple instruction set give

us flexibility, scalability and uniformity, but we require several instructions

to perform arithmetical tasks that on conventional processors require one, or

a fraction of one instruction. Thus, to provide the same level of performance

as conventional processors, we must execute more instructions per unit time.

61

The same factors that require this throughput (single number represen­

tation, and simple instructions) also provide us with the means of acheiving

the goal.

We assume the clock rate of the processor will be "fast enough", and

that the cache and register set will be able to keep the XL V portion of the

processor supplied with instructions.

We also assume that there will be more than one XL V processing unit per

overall processor. If the compactness rule above is followed, there should be

room for several XLUs in the space that would be spent on one conventional

ALV and FPV pair.

5.3 Take Advantage of the Short Carry

The number representation and algorithms are designed to maximize in­

dependence of the primitive operations in a given algorithm's instruction

stream, so there should be sufficient fine-grain parallelism to keep any and

all available XLVs busy.

The use of Avizienis' algorithms for addition and in the sub-steps of

multiplication ensures that carry propagation - a major factor in creating

interdependence between suboperations of these algorithms - is minimized.

The primitive operations were chosen to limit or hide branching as much as

possible. This mitigates a second major factor in inhibiting instruction-level

parallelism.

In summary, a processor implementing XLV must provide sufficient speed,

and sufficient numbers of XLUs to keep the instruction throughput high. If

this is the case, we believe the arithmetical performance of the processor will

not suffer relative to conventional designs, and the processor will additionally

enjoy the advantages of good scaling, extensibility and flexibility inherent in

the XLV design.

62

6 Summary and Evaluation

6.1 A Summary of Things Done and Not Done

We began this thesis by reviewing how the portions of computer architec­

ture dealing with basic arithmetic have evolved to one dominant approach;

that of direct support for integer and floating-point data types, with dis­

tinct, specialized instructions and hardware for each type. This approach is

presently employed almost universally in new processor design.

We note that while this is true of the arithmetic portion of the archi­

tecture, it is not generally true for other portions of processor. The shift

from else to RIse designs brings this dichotomy into a sharp light; while

RISe-based processor Instruction sets generally stand in strong contrast to

elSe-based ISAs, the integer arithmetic and (more particularly) floating­

point arithmetic portions of such designs differ little from those on else

processors.

Processor and Instruction-set design in general has a history of inovation,

but in the particular sphere of arithmetic, it has focused on refinement rather

than diversity.

The premise for the work following these observations is that alternate

data types and instruction sets for computer architecture are possible, in­

teresting, and realizable. In support of that premise, we've developed and

presented here a data type (the XLV digit) and set of primitive arithmetic

operations (the XLV primitive ops) that we believe provide a suitable basis

for exploring one alternative to the current "traditional" computer arithmetic

architecture.

Our work does not infer a particular implementation, and we do not here

address many obvious (and interesting) questions raised by the basic XLV

design.

63

For the work done in this thesis, we remained removed from the physical

realities of implementing a processor, and we have not done much analysis

to estimate the arithmetical performance (in time and space) of a processor

implementing the XLV digit and primitive operations.

We implemented a simple simulator8 in the C programming language.

The simulator works with a 16-bit XLV digit as its data type, and allowed

us to check the feasibility of XLV primitive operations and explore various

primitive operations sequences. The simulator is not advanced enough to

provide metrics for evaluation of the XLV design. Extending it to do so, and

to accept alternative XLV primitive operations sets for comparison lies in

the realm of future work.

Our goal was to provide a framework with a single data type and a very

flexible basic set of instructions upon which further exploratory work might

be done. Performance and implementation are future work, and as such are

treated in only a speculative fashion here.

The topic of division has not been addressed. It is a basic arithmetic

operation and as such obviously deserves inclusion in our work.

In his original article on signed-digit arithmetic Avizienis stated that

"Signed-digit division is performed as a sequence of additions or subtractions

and left shifts" and recommends "the Robertson division method" [Rob58]

as "most readily applicable to signed-digit representations. This is because

the Robertson method requires an estimate of quotient magnitude which the

signed-digit can provide with "limited uncertainty" [Avi61].

Knuth gives the "classical" algorithm for digit-by-digit division in the

his 2nd volume [Knu81] and this algorithm is further explained in Brinch

Hansen's 1994 paper [Han94]. Studying the work done by Avizienis, Knuth,

Hansen, et al., and implementing the basic algorithm given by Knuth for

our XLV digit representation convinced us of the feasibility of implementing

division, but also of its complexity.

8See Appendix B for a brief description

64

Dividing two numbers is conceptually not much more difficult than multi­

plication, but it involves a multitude of details which complicate it. Doerfler

[Doe93) in his book on the art of calculating writes that "Division reveals

difficulties in simplification". These inherent "difficulties" along with the

fact that we have no new insights to share beyond those expounded by the

authors noted above placed division (along with extending the simulator,

performance metrics, etc.) into the future work category.

6.2 Questions Raised by the Design

As the previous section notes, generating metrics for the actual time and

space requirements of XLV impelementation schemes lies beyond the scope

of the present work. Nevertheless, by drawing upon inferences from prior

work and current industry examples we may make inferences regarding such

matters.

6.2.1 Is the Design Realizable?

We believe that the XLV type and primitive operations are easily realized

with present technology, but have not explored this in detail. Our belief

is based on the similarity of the XLV primitive ops, in both design and

computation complexity, to the arithmetic operations of existing processor

implementations, e.g. the MIPS R3000 [PH90).

The XLV digit lies somewhere between an integer and a floating-point

value, in terms of time/space complexity for a single instance. We assume

this would translated into a complexity somewhere between an integer and

a floating-point instruction for each of the XLV primitive operations. For

example, no single XLV primitive approaches the algorithmic complexity of,

65

say, the FADD floating-point addition instruction of the Intel i387 Architec­

ture, but the XLV addi operation is algorithmically more complex than the

integer ADD instruction of the companion i386 Architecture [IP86] [Cof83].

Using this "mid-range" complexity level as a rule-of thumb, we believe that

the entire set of XLV primitives will fit into less silicon than is required to im­

plement a traditional 32-bit ALU /FPV pair of current complexity/capability.

6.2.2 What is the Expected Performance?

The XLU design trades away high instruction density to gain high in­

struction throughput (through the regularity of its primitive operations and

their operands) and high instruction parallelism.

Increasing the availability of fine-grain i.e. instruction-level, parallelism

is a primary goal of the XLU design. Two of the design's primary traits ­

minimization of the interdependence of individual primitive operations upon

each other's results, and avoidance of branching instructions - promote this

goal. Both of these traits are a natural outcome of the signed-digit number

representation underlying the XLV digit specification.

Given this, we expect processors impelementing an XLU digit type and

the primitive operations that manipulate it to gain performance in proportion

to the number of XLU primitive operations the processor can perform in

parallel. We believe the ability to implement a number of complete "XLV

processor function-subunits" within the floorplan of a single processor is not

unreasonable, based upon the superscalar processor designs produced during

the 1990s (e.g. the Intel Pentium, HP PA-RISC 8K, 9K and 10K and the

Motorola/IBM PowerPC architectures).

As mentioned in previous sections, performance also depends upon the

processor's compiler. In the same way that the first MIPS processors relied

upon the compiler to generate pipeline interlocks in the instruction stream,

66

rather than spend hardware resources for that purpose [Tan90], the XLV

primitive operations depend upon all the capabilities a good optimizing com­

piler can bring to bear on the source code.

The success of RISe computer systems of the 1990s illustrate how well

compilers can reorder code. Examples of optimization techniques that give

good results for floating-point arithmetic [DaI89] and for situations where a

particular idiom (say, the XLV addition or subtraction code sequence) may

be optimized "offline", then generated "from memory" upon identification

of the idiom's use [Mas87] increase our confidence in the ability of compiler

optimizations to provide performance gains for an XLV implementation.

6.3 Summary of the XLU Architecture

What follows is a final summary of the main points of the XLV Archi­

tecture divided into three separate lists; one defining the important char­

acteristics, a second stating the positive claims we feel we can make about

the design, and a third listing the potential negative aspects offsetting the

perceived gains.

6.3.1 Imporant Characteristics

• There is one base-level number representation (the XLV digit) provides

a basis for the synthesis of any desired number type.

• The number representation is a signed-digit, redundant form.

• The number representation has very high radix.

• The primitive operations are kept regular and simple (in the tradition

of the original RISe MIPS ideas).

67

• Primitive operations were chosen and designed to allow implementation

of arithmetic algorithms with minimum branching.

6.3.2 Positive Implications of these Characteristics

• 	 Since there is only one base-level number representation, all available

hardware may manipulate that representation. There is no integer

ALU/FPU dichotomy.

• 	 The limited carry-digit increases the potential for parallel addition

and subtraction algorithms, and portions of multiplication algorithm­

s. There is a high level of instruction-level parallelism and operation

independence available to the compiler.

• 	 The potential to scale up is "built into" primitive operations set. The

high radix and parallelism inherent in the algorithms means that multi­

digit numbers may be handled without too high an overhead.

6.3.3 Negative Implications of these Charactersitics

• 	 Small numbers i.e. magnitudes of less than one radix, may not be pro­

cessed as efficiently as traditional ALU/FPU combinations. Although

multi-digit numbers scale well, there is some overhead, and for "small"

i.e. single-digit or double-digit values, the overhead may be more than

for traditional ALU /FPU designs.

• 	 There is an added burden for the high-level language translators. There

is also an additional burden for writing code "manually" at the "as­

sembler" level. (This is reflected to some extent in all RISe-based

instruction sets.)

68

• 	The code density is poor, relative to traditional ALU /FPU designs.

Again, this reflects the choice of a RISC-style approach. Instruction

density has been traded for the ability to handle more instructions

efficiently at a time. The code density of an XLU-base processor would

be even less than a RISC design featuring a traditional ALV /FPU

section.

6.4 How to Evaluate the Design

The following section outlines plans for evaluating the XLU architecture.

Beyond a few a priori observations, making claims about XLU performance

in time or space requires implementing an XLU-based processor or series of

processors, running a series of test programs (benchmarks) on the implemen­

tation(s) and gathering metrics based on the program runs.

Between iterations of testing, we can use the data gathered to modify the

XLV primitive operations set, or find better sequences of them to express

our goals, or find better optimizations to apply to those sequences.

6.4.1 A Priori Observations

The XLV architecture trys to provide as much flexibility and instruction­

level parallelism as possible to the processor in which it is implemented. The

XLV digit and primitive operations provided are a generalized system from

which many specific numeric types may be manipulated many ways.

The signed-digit arithmetic upon which the XLV design is based gives

an implementing processor the ability to perform addition or subtraction on

XLV digits (processor words) without regard for carry propagation. As we

have seen, the addition algorithm requires three distinct steps, realized in

69

three primitive operations. This means that for small values the XLU does

more work that the equivalent integer or floating-point hardware.

As the size of the values required increases to multiple processor words,

sufficient numbers of XLU processors working in parallel provide a constant

time of three operations per result, since all of the primitive operations for

each of the three steps are independent and carry propagation is strictly lim­

ited. Integer or floating-point hardware requires linear processing of results

as the number of processor words required to express the result increases due

to carry propagation between processor words.

A single XLU cannot expect to do better than a standard processor de­

sign of even modest power but as the number of XLUs implemented into a

processor increases, its ability to outperform standard processors does also.

To discover how much requires more than a priori observations. For that, we

require a working XLU-based processor.

6.4.2 Implementing an XLU-based Processor

Evaluating XLU-based implementations by simulation is more attractive

than actually realizing different XLV-based implementations in hardware. A

simulator is easier to reconfigure and instrument than actual hardware.

The existing XLU simulator (see Appendix B) is not adequate for the

task of evaluating the design. Considerable effort would be required to bring

it up to the level of a full simulation of a microprocessor including one or

more XLUs.

A possible alternative would be to modify the existing simulator for Hen­

nessy and Patterson's DLX [PH90] microprocessor. Several XLUs would re­

place the ALU /FPU portion of the DLX, and the XLV primitive operations

would be added to the ISA. Apart from the obvious advantage of not having

to create a complete simulator from scratch, another benefit of modifying

70

the DLX is that the unmodified version can then be used for side-by-side

comparisons with the DLX+XLU version.

6.4.3 Gathering Data

Once we have a simulator that implements an XLU-based processor, we

can use test programs (benchmarks) run on it to search the design space of

the XLV. Arbitrarily, we propose breaking the testing into three steps or

"levels"; basic arithmetic, simple programs and finally, large programs.

Each level of testing should provide us with data about XLV-base pro­

cessor performance for time and space, and relative to standard processors.

We can then use the data collected to modify the XLV design, improving it

based upon our findings.

6.4.4 Level One Tests

Our first test programs should be simply additions of numbers of various

digit lengths. From our a priori observations, we can predict that for integers,

in terms of instruction count and running time, the XLV won't do better than

a standard ALV until the number of digits (equivalent to processor words

here) increases beyond about three.

Number types with nontrivial representations such as floating-point pre­

sent more interesting fare for our relatively "uninteresting" addition tests.

Efficient representations for floating-point numbers in XLV digits and opti­

mizations that may be applied to the floating-point addition algorithm are

things we need to discover based on simulator results.

71

We believe that for types like floating-point, the advantage of carry prop­

agation may not make up for the fact that scaling may take a significant

number of XLV primitive operations to perform. We should still see the

XLV-based version performing better than the standard version, but any

crossover in advantage to the XLV will be at later point than for integers.

After addition tests, multiplying numbers of various digit lengths should

be tried. The highly independent nature of the XLV primitive operations

should provide interesting opportunities for optimization of the instruction

sequences.

As with addition we predict that the XLV will not do better than a

standard design until the number of digits (processor words) involved in the

calculation increases beyond those which a standard processor is capable

of handling directly (word or double-word) and that floating-point or similar

complicated number representations will present less performance to the XLV

than integers.

However, for addition, subtraction or multiplication operations, if the

number representation tested is not native to the standard processor (e.g.

a fixed-point number type) then we believe the XLV-based design should

provide competitive performance even for small sizes (number of processor

words) because the basic arithmetic operations must be synthesized from

instruction sequences on both the XLV and standard processors.

The overall goal for this initial level of testing is to explore how the XLV

architecture performs basic arithmetic for a variety number representations,

for a range of available XLVs per processor. The information gathered would

us to modify the design and composition of the XLV primitive operation set,

if required. It may also provide us with information about how many XLVs

per processor is optimal for a given number representation.

As a postscript to this level oftesting, we should extend the XLV design to

include provisions for performing division operations (and perhaps remainder

and square root) before continuing to level two. Assuming we did extend the

72

architecture in this way, those operations would require the same testing

described for addition, etc.

6.4.5 Level Two Tests

Once we have data for basic arithmetic, and have applied adjustments

to the XLV design based on that data. We need to explore how XLV-based

processors perform for nontrivial yet still fairly simple programs. Again,

we need to exercise XLV-based processors with varying numbers of XLVs

available for various number representations.

As initial test programs for integer, fixed-point and floating-point number

representations, we propose the RSA encryption algorithm, Mandelbrot set

calculations, and the computation of 7r and/or e.

The RSA encryption algorithm provides a good way to test the multipli­

cation of large integers, and an opportunity to explore integer representations

of different radices, since the computations are modulo a specific value.

Mandelbrot calculations are usually performed using a processor's floating­

point number type. However the arithmetic involved is well-suited to a fixed­

point number representation, or even a representation of complex numbers

with fixed-point components.

We propose the computation of 7r or perhaps e for floating-point represen­

tations not so much because the calculation possesses special traits but be­

cause computation of trancendentals is a traditional exercise for new floating­

point processors. Hence a large body of algorithms and optimization work

already exist for such computation.

For all of these tests we need to study both fixed-range number represen­

tations and dynamic-range number representations For this latter type, the

range of representable values is allowed to grow as required by adding XLV

digits a number as required.

73

For dynamic-range number representations, we expect XLU-based proces­

sors to perform better, for two main reasons. First such representations must

be synthesized by sequences of instructions on standard processors as well

as the XLU-based processors (the standard processor gains no speed advan­

tage from hardwired instructions in this case) and presumably the standard

processor's ISA was not specifically designed with this sort of thing in mind

(as was the XLU). Second, adding digits may actually improve XLU-based

computations, since it may also reduce the need for some types of scaling

and normalization . .,
Independent of any particular number representation, a primary focus

of all these level two tests is to gather and study the sequences of code

generated for the algorithms. Optimization opportunities for sequences of

basic arithmetic should be found, and generalized into rules for a compiler

to apply.

We believe that for some case the level of optimization will be quite high,

but not for all cases. Algorithms that require large amounts of inter-digit

(inter-word) scaling operations may not fare as well for optimization, because

the amount of parallelism available at the primitive operation level is smaller

than (for example) the totally parallel addition algorithm.

6.4.6 Level Three Tests

Passing beyond the level two tests implies we've iterated the XLU design

at least once. We should have a feel for what the "right" number of XLUs

per processor is for a given requirement. Assuming that, in addition, we've

used the data gathered to improve the XLU primitive operations set and the

compiler's optimization ability, we should, at level three discover how XLU­

based processors perform on full benchmark test suites and on real programs.

An example of a likely benchmark is the SPEC suite. Real programs could

74

include anything from rendering complex graphics with Renderman or a sim­

ilar program, Analog circuit simulation using SPICE, or formatting a sizable

document with 'lEX.
To reach this level of tests would require a significant amount of work.

Both our simulator and the compiler servicing it would need to be complete

enough to handle "real" code. Getting an experimental compiler to the level

of efficiently handling production-level C source code (or any other language)

is a research project in and of itself.

At this level of testing, we are at last evaluating the XL V architecture

"globally". Distribution of the code across the XLVs available on the pro­

cessor is of interest and a study of possible global-level code optimizations

should be done. It is also at this level that we will finally be able to say with

some authority whether the XLV design is viable or not relative to standard

processor designs.

75

7 Conclusion

In this thesis, we first examined the evolution of architectures for per­

forming computer arithmetic, and noted how different approaches rapidly

converged to a single approach.

This "standard" architecture's characteristics include direct hardware

support for a binary, signed-digit integer (the "ALU") and separate, dis­

joint circuitry providing direct hardware support for a floating-point format

(the "FPU"). Regardless of the overall processor design, the ALU instruction

set is most often RISe-like, while the FPU instruction set is very elSe-like.

We do not argue with the success of this "traditional" ALU /FPV de­

sign. Instead we propose a new architecture, "XL U", as an alternative. Our

approach provides unification of the traditional ALU /FPU circuitry and in­

struction sets by defining one basic number representation; the XLV digit.

The XLU digit contains enough information to support many different

number formats. We provide examples of integer, fixed-point and floating­

point within this work. Moreover, the XLV digit allows us to used signed­

digit arithmetic operations which, as we have shown, provide significant

amounts of instruction-level parallelism during the basic operations of ad­

dition, subtraction and multiplication.

The XLU instruction set is RISe-based, and designed to minimize branch­

ing. These characteristics provide language translation tools (compilers, etc.)

with wide possibilties for optimization, and at the same time make efficient

use of available circuitry.

Our design involves a tradeoff between complexity in circuitry and in code.

The XLU digit and the average XLU instruction are more complex to realize

in circuitry than the average traditional integer value or ALU instruction,

but are significantly less complex to realize than the average floating-point

value or FPU instruction.

76

This tradeoff means that the XLU architecture as a whole allows a large

amount of flexibility between time/space tradeoffs in implementation while

still keeping overall performance as a reachable end-goal. When more cir­

cuitry is available, some poritions of the basic arithmetic algorithms may

be hardwired and time performance is enhanced. When less circuitry is

available, the algorithms are generated as instruction sequences, but may be

agressively optimized, so that time performance does not greatly suffer.

We believe that this gives a processor designer using the XLU approach

more freedom relative to the traditional ALU /FPU design. He may choose

to devote more of the available circuitry to arithmetic performance, and gain

a relative speed advantage over traditional ALU /FPU designs, or he may

choose to devote less, and reduce the overall circuitry required for arithmetic

at a smaller cost to performance than for a traditional ALU/FPU.

This thesis does not provide details of implementation, experimental met­

rics for size and time, or any exploration of tradeoffs using the XLU architec­

ture. Initial results from a basic simulator provided us with evidence that the

algorithms are sound and the design is realizable in reasonable amounts of

code or circuitry, but more detailed simulations are required to gather accu­

rate time and space metrics. Such simulations (and an advanced simulator)

lie beyond the coverage of this work.

Within its limits, we believe that the work presented here reaffirms the

fact that there are many ways to design the arithmetic portion of a processor,

and forms a viable basis to support future work.

77

References

[AA93]

[AAD+93]

[ALBL91]

[AT67]

[AT70]

[AT93]

[AtWC84]

[Avi61]

[Avi66]

[BAM+93]

Donald Alpert and Dror Avnon. Architecture of the pentium
processor. IEEE Micro, pages 11-21, June 1993.

Tom Asprey, Gregory S. Averill, Eric DeLano, Russ Mason, Bill
Weiner, and Jeff Yetter. Performance features of the pa7100
microprocessor. IEEE Micro, pages 22-35, June 1993.

Thomas E. Anderson, Henry M. Levy, Brian N. Bershad, and
Edward D. Lazowska. The interaction of architecture and op­
erating system design. In Architectural Support for Program­
ming Languages and Operating Systems, pages 108-120. ACM
and IEEE, April 1991.

Algirdas A vizienis and Chin Thng. Design of combinational
arithmetic nets. In Digest of the lrst Annual IEEE Comput­
er Conference, pages 25-28, September 1967.

Algirdas A vizienis and Chin Tung. A universal arithmetic build­
ing element (abe) and design methods for arithmetic proces­
sors. IEEE Transactions on Computers, C-19(8):733-745, Au­
gust 1970.

Makoto Awaga and Hiromasa Takahashi. The J-tvp 64-bit vector
coprocessor. IEEE Micro, pages 24-36, October 1993.

Loyce M. Adams and thomas W. Crockett. Modeling algorithm
execution time on processor arrays. IEEE Computer, 17(7):38­
43, July 1984.

Algirdas A vizienis. Signed-digit number representations for fast
parallel arithmetic. IRE Transactions on Electronic Computers,
EC-10:289-400, 1961.

Algirdas Avizienis. Arithmetic microsystems for the synthesis of
function generators. Proceedings of the IEEE, 54(12):1910-1919,
December 1966.

Michael C. Becker, Michael S. Allen, Charles R. Moore, John S.
Muhich, and David P. Thttle. The powerpc 601 microprocessor.
IEEE Micro, pages 54-67, October 1993.

78

[BD84]

[BEH91]

[BGvN61]

[BH92]

[BK82]

[BSBF89]

[BSK92]

[BSK93]

[CCG+84]

[CGLT89]

Pradip Bose and Edward S. Davidson. Design of instruction
set architectures for support of high-level languages. In The
11th Annual International Symposium on Computer Architec­
ture, pages 198-206. ACM and IEEE Computer Society, June
1984.

David G. Bradlee, Susan J. Eggers, and Robert R. Henry. In­
tegrated register allocation and instruction scheduling for riscs.
In Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 122-13l.
ACM and IEEE, April 1991.

Arthur W. Burks, Herman H. Goldstine, and John von Neu­
mann. John von Neumann Collected Works, volume 5, chapter
Preliminary Discussion of the Logical Design of an Electronic
Computing Instrument, pages 41-65. Pergamon Press, Oxford,
England, 1961.

Robert J. Baron and Lee Higbie. Computer Architecture: case
studies. Addison-Wesley Publishing Co., Inc., Reading, Mas­
sachusetts, 1992.

Richard P. Brent and H. T. Kung. A regular layout for paral­
lel adders. IEEE Transactions on Computers, C-31(3):144-147,
March 1982.

David H. Bailey, Horst D. Simon, John T. Barton, and Martin J.
Fouts. Floating point arithmetic in future supercomputers. Su­
percomputer Applications(?), 3(3):86-90, Fall 1989.

Jr. Burton S. Kaliski. Multiple-precision arithmetic in c. Dr.
Dobb's Journal, pages 40-48,116,117,118,119, August 1992.

Jr. Burton S. Kaliski. the z80180 and big-number arithmetic.
Dr. Dobb's Journal, pages 50-58, September 1993.

W. J. Cody, J. T. Coonen, D. M. Gay, K. Hanson, D. Hough,
W. Kahan, R. Karpinski, J. Palmer, F. N. Ris, and D. Steven­
son. A proposed radix- and word-length-independent standard
for floating-point arithmetic. IEEE Micro, 4(4):86-100, August
1984.

Robert Cohn, Thomas Gross, Monica Lam, and P.S. Tsen­
g. Architecture and compiler tradeoffs for a long instruction
word microprocessor. In Architectural Support for Programming
Languages and Operating Systems, pages 2-14, Boston, Mas­
sachusetts, April 1989. ACM and IEEE.

79

[CH90] 	 Rulph Chassaing and Darrell W. Horning, editors. Digital Signal
Processing with the TMS320C25. John Wiley and Sons, Inc.,
New York, NY, 1990.

[Cho89] Paul Chow, editor. The MIPS-X RISC Microprocessor. Kluwer
Academic Publishers, Norwell, MA, 1989.

[Cir95] Joe Circello. Cold fire: A hot architecture. Byte Magazine, pages
173-174, May 1995.

[CM90] John Cocke and V. Markstein. The evolution ofRISC technology
at IBM. IBM Journal of Research and Development, 34(1):4-11,
January 1990.

[Cof83] James W. Coffron. Programming the 8086/8088. Sybex, Berke­
ley, CA, 1983.

[Coo80] Jerome T. Coonen. An implementation guide to a proposed stan­
dard for floating-point arithmetic. IEEE Computer, 13(1):68-79,
January 1980.

[Cra80] Harvey G. Cragon. The elements of single-chip microcomputer
architecture. IEEE Computer, 13(10):27-41, October 1980.

[DaI89] William J. Dally. Micro-optimization of floating-point opera­
tions. In Architectural Support for Programming Languages and
Operating Systems, pages 283-289, Boston, Massachusetts, April
1989. ACM and IEEE.

[Dew88] A. K. Dewdney. The Armchair Universe.
Co., New York, New York, 1988.

W. H. Freeman and

[DHK93] Jean Duprat, Yvan Herreros, and Sylvanus KIa. New redundant
representations of complex numbers and vectors. IEEE Trans­
actions on Computers, 42(7):817-824, July 1993.

[DM82] David R. Ditzel and H.R. MacLellan. Register allocation for free:
The c machine stack cache. In Proceeding of the Symposium on
Architectural Support for Programming Languages and Operating
Systems, pages 48-56, Palo Alto, California, March 1982. ACM
and IEEE.

[Doe93] Ronald W. Doerfler. Dead Reckoning, Calculating Without In­
struments. Gulf Publishing Company, Houston, Tx, 1993.

80

[DV87] 	 Jack W. Davidson and Richard A. Vaughan. The effect of in­
struction set complexity on program size and memory perfor­
mance. In Architectural Support for Programming Languages
and Operating Systems, pages 60-64, Palo Alto, California, Oc­
tober 1987. ACM and IEEE.

[DW90] 	 Jack W. Davidson and D.B. Whalley. Reducing the cost of
branches by using registers. In Proceedings of the 17th Annual
International Symposium on Computer Architecture, pages 182­
191, Los Alamitos, CA, May 1990.

[EL92] 	 Milos D. Ercegovac and Thomas Lang. On-the-fly rounding.
IEEE Transactions on Computers, 41(12):1497-1503, December
1992.

[ES94] 	 Mohamed EI-Sharkawy, editor. Signal Processing, Image Pro­
cessing and Graphics Applications with Motorola's DSP96002
Processor. Prentice-Hall, Inc., Engelwood Cliffs, NJ, 1994.

[Fat82] 	 Richard J. Fateman. Hight-level language implications of the
proposed ieee floating-point standard. A CM Transactions on
Programming Languages and Systems, 4(2):239-257, April 1982.

[Fly80] 	 Michael J. Flynn. Directions and issues in architecture and lan­
guage. IEEE Computer, 13(10):5-22, October 1980.

[Gar76] 	 Harvey L. Garner. A survey of some recent contributions to
computer arithmetic. IEEE Transactions on Computers, C­
25(12):1277-1282, December 1976.

[GG96] 	 H.H. Goldstine and Adele Goldstine. The electronic numerical
integrator and computer (ENIAC). IEEE Annals of Computing
History, 18(1):10-16, 1996. This reprint of the original paper
appeared in the Annals of Computing History by permission of
the American Mathematical Society and National Academy of
Sciences.

[GLS93] 	 Susan L. Graham, Steven Lucco, and Oliver Sharp. Orchestrat­
ing interactions among parallel computations. ACM SIGPLAN
Notices, 28(6):100-111, June 1993.

[GoI91] 	 David Goldberg. What every computer scientist should know
about floating-point arithmetic. ACM Computing Surveys,
23(1):5-48, March 1991.

[Han94] 	 Per Brinch Hansen. Multiple-length division revisited: a tour of
the minefield. Software-Practice and Experience, 24(6):579-601,
June 1994.

81

John Hennessy, Norman Jouppi, Forest Baskett, Thomas Gross,
and John Gill. Hardware/software tradeoffs for increased perfor­
mance. In Proceedings of the Symposium on Architectural Sup­
port for Programming Languages and Operating Systems, pages
2-10, Palo Alto, California, March 1982. ACM and IEEE.

[HoI97] 	 W. Neville Holmes. Composite arithmetic: Proposal for a new
standard. IEEE Computer, 30(3):65-73, March 1997.

[Hwa93] 	 Kai Hwang. Advanced Computer Architecture with Parallel Pro­
gramming, pages 286-298. McGraw-Hill, Inc, New York, prelim­
inary edition, 1993.

[IP86] 	 William H. Murray III. and Chris H. Pappas. 80386/80286 As­
sembly Language Programming. Osborne McGraw-Hill, Berkeley,
CA, 1986.

[Jep99] 	 Brian Jepson. Old workstations never die. Performance Com­
puting, page 14, March 1999.

[Jou89] 	 Norman P. Jouppi. Architectural and organizational tradeoffs
in the design of the multititan cpu. Wrl research report 89/9,
Digital Equipment Corporation Western Research Laboratory,
100 Hamilton Avenue, Palo Alto, California 94301 USA, July
1989.

[Jr.90a] 	 Earl E. Swartzlander Jr., editor. Computer Arithmetic, Volume
II. IEEE Computer Society Press, Los Alamitos, CA, 1990.

[Jr.90b] 	 H. S. Warren Jr. Instruction scheduling for the ibm risc sys­
tem/6000 processor. IBM Journal of Research and Development,
34(1):85-92, January 1990.

[KAJW93] 	 Sanjaya Kumar, James H. Aylor, Barry W. Johnson, and
Wm. A. Wulf. A framework for hardware/software codesign.
IEEE Computer, 26(12):39-45, December 1993.

[KC93] 	 Kishore Kota and Joseph R. Cavallaro. Numerical accuracy and
hardware tradeoffs for cordic arithmetic for special-purpose pro­
cessors. IEEE Transactions on Computers, 42(7):769-779, July
1993.

[KD91] 	 Robert F. Krick and Apostolos Dollas. The evolution of instruc­
tion sequencing. IEEE Computer, 24(4):5-15, April 1991.

[KDSPS77] David J. Kuck, Jr. Douglass S. Parker, and Ahmed H. Sameh.
Analysis of rounding methods in floating-point arithmetic. IEEE
Transactions on Computers, C-26(7):643-650, July 1977.

82

[KH92] Gerry Kane and Joe Heinrich. MIPS RISC Architecture.
Prentice-Hall, Engelwood Cliffs, New Jersey, 1992.

[Knu81] Donald E. Knuth. The Art of Computer Programming, Volume
2; Seminumerical Algorithms. Addison-Wesley Publishing Co.,
Inc., Reading, Massachusetts, 1981.

[Kor93] Israel Koren. Computer Arithmetic Algorithms. Prentice Hall,
Engelwood Cliffs, New Jersey, 1993.

[KS77] Peter Kornerup and Bruce D. Shriver. A unified numeric repre­
sentation arithmetic unit and its language support. IEEE Trans­
actions on Computers, C-26(7):651-659, July 1977.

[LF80] Richard E. Ladner and Michael J. Fischer. Parallel prefix com­
putation. Journal of the Association for Computing Machinery,
27(4):831-838, October 1980.

[LiI94] David J. Lilja. Exploiting the parallelism available in loops.
IEEE Computer, 27(2):13-26, February 1994.

[LKB91] Roland L. Lee, Alex Y. Kwok, and Faye A. Briggs. The floating
point performance of a superscalar sparc processor. In Fourth
International Conference on Architectural Support for Program­
ming Languages and Operating Systems, pages 28-36. ACM and
IEEE, April 1991.

[MA96] Mitchell Marcus and Atsushi Akera. Exploring the architecture
of an early machine: The historical relevance of the eniac ma­
chine architecture. IEEE Annals of the History of Computing,
18(1):17-24, 1996.

[Mas87] Henry Massalin. Superoptimizer - a look at the smallest pro­
gram. In Architectural Support for Programming Languages and
Operating Systems, pages 122-126, Palo Alto, California, Octo­
ber 1987. ACM and IEEE.

[MHR90] R. K. Montoye, E. Hokenek, and S. L. Runyon. Design of the IB­
M RISC system/6000 floating-point execution unit. IBM Journal
of Research and Development, 34(1):59-70, January 1990.

[Mon85] Peter L. Montgomery. Modular multipliation without trial divi­
sion. Mathematics Of Compuation, 44(170):519-521, April 1985.

[Mot93] Frederick C. Motteler. Arbitrary precision floating-point arith­
metic. Dr. Dobb's Journal, pages 28-34,84,86,87, September
1993.

83

[MRMP80] Stephen P. Morse, Bruce W. Ravenel, Stanley Mazor, and
William B. Pohlman. Intel microprocessors - 8008 to 8086. IEEE
Computer, 13(10):42-60, October 1980.

[mWHC92] Wen mei W. Hwu and Pohua P. Chang. Efficient instruction

[Och91]

[Par90]

[Pat94]

[PH90]

[PV94]

[PWW97]

[Ran82]

[Rob58]

[Roj97]

sequencing with inline target insertion. IEEE Transcations on
Computers, 41(12):1537-1551, December 1992.

Tom Ochs. Numeric types, representations, and other fictions.
Computer Language, 8(8):?, August 1991.

Kunle Olukotun, Basem A. Nayfeh, Lance Hamond, Ken Wilson,
and Kunyung Chang. The case for a single-chip multiprocessor.
In Architectural Support for Programming Languages and Oper­
ating Sytems VII, pages 2-11. ACM and IEEE, October 1996.

Behrooz Parhami. Generalized signed-digit number systems: A
unifying framework for redundant number representations. IEEE
Transactions on Computers, 39(1):89-98, January 1990.

Peter C. Patton. Multiprocessors: Architecture and application­
s. IEEE Computer, 18(6):29-40, June 1994.

David A. Patterson and John L. Hennessy. Computer Architec­
ture: A Quantitative Approach. Morgan Kaufmann, Inc., San
Mateo, CA, 1990.

James Phillips and Stamatis Vassiliadis. High-performance 3-1
interlock collapsing alus's. IEEE Transactions on Computers,
43(3):257-268, March 1994.

Alex Peleg, Sam Wilkie, and Uri Weiser. Intel MMX for multi­
media PCs. Communications of the ACM, 40(1):25-38, January
1997.

Brian Randell, editor. The Origins of Digital Computers.
Springer-Verlag, Berlin, 1982.

James E. Robertson. A new class of digital division methods.
IRE Transactions on Electronic Computers, 7:218-222, Septem­
ber 1958.

Raul Rojas. Konrad zuse's legacy: The architecture of the Zl
and Z3. IEEE Annals of the History of Computing, 19(2):5-16,
April-June 1997.

84

[Rym82] 	 James W. Rymarczyk. Coding guidelines for pipelined proces­
sors. In Proceedings of the Symposium on Architectural Support
for Programming Languages and Operating Systems, pages 12­
19, Palo Alto, California, March 1982. ACM and IEEE.

[SC92] 	 Andre Seznec and Karl Courtel. Opac: A floating-point copro­
cessor dedicated to compute-bound kernals. In The 19 Annual
International Symposium on Computer Architecture, page 427.
ACM SIGARCH and IEEE Technical Committee on Computer
Architecture, May 1992.

[Sch94] 	 Bruce Schneier. Applied Cryptography. John Wiley and Sons,
Inc., New York, New York, 1994.

[Sit93] 	 Richard L. Sites. Alpha axp architecture. Communications of
the ACM, 36(2):33-44, February 1993.

[SKG77] 	 William J. Stenzel, William J. Kubitz, and Giles H. Garcia. A
compact high-speed parallel multiplication scheme. IEEE Trans­
actions on Computers, C-26:948-957, 1977.

[Sto92] 	 Harold S. Stone. Copyrights and author responsibilities. IEEE
Computer, 25(12):46-51, December 1992.

[Tan90] 	 Andrew S. Tanenbaum. Structured Computer Organization - 3rd
ed. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1990.

Kunio Uchiyama, Fumio Arakawa, Susumu Narita, Hirokazu Ao­
ki, Ikuya Kawasaki, Shigezumi Matsui, Mitsuyoshi Yamamoto,
Norio Nakagawa, and Ikuo Kudo. The Gmicro/500 superscalar
microprocessor with branch buffers. IEEE Micro, pages 12-22,
October 1993.

[USS97] 	 Augustus K. Uht, Vijay Sindagi, and Sajee Somanathan. Branch
effect reduction techniques. IEEE Computer, 30(5):71-81, May
1997.

[vN45] 	 John von Neumann. First draft of a report on the EDVAC.
Technical report, Moore School of Electrical Enginnering, Uni­
versity of Pennsylvania, 1945. Exact copy (but with typograph­
ical errors corrected) reprinted in IEEE Annals of the History of
Computing, Vol.15, No.4, 1993.

[VPB93] 	 Stamatis Vassiliadis, James Phillips, and Bart Blaner. Interlock
collapsing alus's. IEEE Transactions on Computers, 42(7):825­
839, July 1993.

85

[WaI90] David W. Wall. Limits of instruction-level parallelism. Wr­
I technical note tn-15, Digital Equipment Corporation Western
Research Laboratory, January 1990.

[WaI91] David W. Wall. Limits of instruction-level parallelism. In Fourth
International Conference on Architectural Support for Program­
ming Languages and Operating Systems, pages 176-188. ACM
and IEEE, April 1991.

[WF82] Shlomo Waser and Michael J. Flynn. Introduction to Arithmetic
for Digital Systems Designers. Holt, Rinehart and Winston, Or­
lando, Florida, 1982.

[WiI93] Al Williams. 32-bit floating-point math.
pages 70-74,76,78,80, June 1993.

Dr. Dobbs Journal,

[WS91] Andrew Wolfe and John P. Shen. Variable instruction stream ex­
tension to the vliw architecture. In Fourth International Confer­
ence on Architectural Support for Programming Languages and
Operating Systems, pages 2-14. ACM and IEEE, April 1991.

[Yoh73] J. Michael Yohe. Roundings in floating-point arithmetic. IEEE
Transactions On Computers, C-22(6):577-585, June 1973.

86

Appendices

87

Appendix A - Small Glossary of Terms

Architecture An abstract specification or list of attributes, either of hard­

ware or software.

In his article describing the Alpha AXP Architecture Sites [Sit93] re­

peats a definition of Amdahl et al., defining

COMPUTER ARCHITECTURE ... the attributes and be­

havior of a computer as seen by a machine language pro­

gramer. This definition includes the instruction set, instruc­

tion formats, operation codes, addressing modes, and all reg­

isters and memory locations that may be directly manipulat­

ed by a machine language programmer.

We use the term here in this same sense, although our architecture

is only a partial description of a single portion of a CPU (Le., the

arithmetical portions of the arithmetic-logic unit).

In a Unix Review article, Brian Jepson [Jep99] gives another, definition

that, while less formal, is still useful and slightly amusing:

Architecture is a term used in computing that refers to the

topology of anything that can be looked at as a whole made

of separate parts, such as a network, operating system, or

computer. When architecture is brought up in polite con­

versation, it's usually used to discuss the contstraints put on

you by whoever designed the thing you are talking about.

Implementation A particular physical example of an architecture or algo­

rithm. One instance of the possibilities presented by an architecture or

algorithm.

Instruction In the context of this work, the implementation of an algorithm

(arithmetical or otherwise) through a sequence of one or more XLU

88

primitives. An instruction is a sequence of one or more XLV primitive

operations.

ISA 	Instruction Set Architecture - the specification of the instruction set

for a processor, or, in the case of the XLV primitive instructions, for a

subset of the instruction set for a processor.

Multiplication Cell The simplest complete XLV multiplication sequence

involving only two digits; one as multiplicand, the other as multiplier.

Pure Fraction A number with its radix position to the right of its rightmost

digit. See [Kor93].

Pure Integer A number with its radix position to the left of its leftmost

digit. See [Kor93].

Radix The base of a number system (e.g. radix-IO = base-IO or decimal,

and radix-2 = base-2 or binary).

Radix point Separator between the integer and fractional portions of a

number.

Signed-digit Arithmetic The algorithms for performing the four basic

arithmetic functions (addition, subtraction, multiplication and divi­

sion) using Signed-digit numbers. See [Avi61] and [Kor93].

Signed-digit Number A member of a fixed-radix number system in which

the digit set may contain both positive and negative values. See [Avi61]

and [Kor93].

XLV The "eXperimental aLV" (pronounced "clue"). The overall name for

the architecture we propose in this work. The "X" is given the X ("chi")

sound, following Knuth's pronounciation of 'lEX.

89

XLV Digit (Also, just "digit") The fundamental data type of the XLV

architecture. It is designed to form a base containing just enough in­

formation to support derivation of whatever number types are required.

XLV Instruction (Also, just "instruction") Informally, this may be used

as a synonym for "XLV Primitive", but formally it is a synonym for

"Instruction" .

XLV Primitive (Also, "XLV operation") A base-level ability or function,

such as "Add two digits and return the carry out value", expressible in

a single XL V mnemonic.

90

Appendix B - The XLU Simulator

Early on in the course of our work, we wrote a simple software simulator

to help us test ideas, and to encourage "tinkering" that might lead to new

insights. What follows is a brief description of the basic simulator's design,

functionality and usage.

The simulator was never "complete"; new features were added as research

or whim required. The plan was to extend the abilities of the simulator as the

basic XLV architecture (presented in this work) was analyzed and extended

in further study. This Appenix covers the basic functionality in place in the

simulator during the formulation of the ideas presented in this work.

Design

The XLV architecture represents only a small portion of a complete pro­

cessor, and the XLV simulator simulates that portion. Originally, It had no

provision for branching and assumed a simple memory model consisting of a

large number of registers, and fiat memory. The memory addressing scheme

is a pure load-store model. Values are loaded from memory to registers and

stored from registers to memory. Operations are only register-to-register.

Later additions included statement labels (for planned branching fea­

tures) and several instructions to report on or analyze various aspects of

XLV operations sequences loaded into the simulator. These advanced fea­

tures were not used extensively during the development of the ideas presented

in this work.

91

Implementation

The simulator is implemented in several thousand lines of C code. Flex

and bison lexor and parser generator tools were used to create the founda­

tion of the code; individual functions implement individual XML primitive

operations, or, in some cases a short sequence of XML primitive operations

(for exploring hybrid RISC/CISC variations of the XML operations set).

A simulated 16-bit machine word yields an XML digit with 14 bits of

magnitude. For simplicity XML digits are input or output to and from the

simulator as multi-digit, positive or negative radix-10 integers. So, for in­

stance the XML digit with the magnitude -1024 is keyed into the simulator

as exactly same string; -1024. (The simplicity is in relation to the implemen­

tation, not the user, although radix-10 should not be a great inconvenience

for the user.)

Usage

In operation, the simulator functions as a sequential interpreter. Pro­

grams, consisting of sequences of "instructions" and "statements" are either

typed directly into the simulator at its ready prompt, or presented to it in

a file via a include instruction. Instructions are commands that directly

tell the simulator to perform some meta-action (e.g. clear_reg tells the

simulator to clear all its registors). Statements consist of an XLV primi­

tive operation, followed by its arguments, the keyword to and the location

(register) to store the result.

Here is a simple example of using xmc to directly interpret a single XLV

primitive operation9 statement:

9Notice that XMC recongnizes add_i for the XLV primitive operation addi. We had
to code the primitive ops names into the simulator with under bar-separators , but we
frequently dropped them when writing notes or referring to them in email, and ended up

92

$ xmc

>interpret

>add_i 500 1400 to %0

>print 1.0
1900

>quit

xmc done

$

First of all, the interpret instruction places the simulator in direct inter­

preter mode - each carriage-return is assumed to signal the end of either

an XMC instrution or an XLV statement. Next, the intermediate sum of

the two XLV digits "500" and "1400" is computed, and the result stored in

register o. Then the contents of register 0 are echoed using the XMC print

instruction, and finallly, the quit instruction exits the XMC simulator.

specifying them without underbars, while never changing the names in the simulator.

