
AN ABSTRACT OF THE THESIS OF

Adam W. Montville for the degree of Master of Science in Electrical and
Computer Engineering presented on May 21, 2003.

Title: Random Number Generation on Handheld Devices for Cryptographic
Applications

Abstract Approved:

Random number generation is important in many fields today. It is

particularly important in the field of cryptography when generating nonce

values, cryptographic keys, and other data required in many cryptographic

applications. The proliferation of small, handheld devices that are typically

connected to large networks via a wireless connection requires stringent

security. Because it may be easier to attack a pseudorandom number

generator than to attack a particular cryptosystem, it is important that the

generation of random numbers on handheld devices be as secure as possible.

In order for the random number generator to provide good, secure "random"

data, it must first be seeded by a value that, itself, possesses the qualities of a

good random sequence. This paper explores several potential seed sources

that are available on many current handheld devices.

Redacted for Privacy

© Copyright by Adam W. Montville

May 21, 2003

All Rights Reserved

Random Number Generation on llandheld Devices for Cryptographic

Applications

by

Adam W. Montville

A THESIS

submitted to

Oregon State University

in partial fulfillment of

the requirements for

the degree of

Master of Science

Presented May 21, 2003

Commencement June 2004

Master of Science thesis of Adam W. Montville presented on May 21, 2003.

APPROVED:

Major Professor, representing Computer Engineering

Director of School of Electrical Engineejing and Computer Science

Dean of Graduate School

I understand that my thesis will become part of the permanent collection of
Oregon State University libraries. My signature below authorizes release of
my thesis to any reader upon request.

Adam W. Montville, Author

Redacted for Privacy

Redacted for Privacy

Redacted for Privacy

Redacted for Privacy

ACKNOWLEDGEMENTS

First, I thank God for providing me with the determination, perseverence,

and will to complete this thesis. I also thank my Major Professor, Dr. Cetin

K. Koc, for his guidance and helpful criticism throughout the research of this

topic. In addition, this work could not have been completed, if it were not for

my future wife, Virginia. Without her, none of this would have been possible.

My gratitude is not complete without thanking my father, who always offered

his assistance in proofing and mastering the English language. Finally, I

thank Daniel Montville for loaning me hardware test equipment - it may have

been old, but it worked!

To those who should have been named, but weren't, please forgive my

forgetfulness and know that I appreciate all those who lent a helping hand to

my research, whether directly or indirectly, including you.

TABLE OF CONTENTS

1. INTRODUCTION.. 1

2. Background ... 4

2.1. Sources of Randomness .. 4

2.2. Handheld Devices ... 6

3. Materials and Methods .. 7

3.1. TheSeedGoal... 7

3.2. Random Bit Collection Source ... 7

3.3. Handheld Implementation Platform .. 8

3.4. Audio Data Collection .. 10

3.5. Test Method .. 12

3.6. Quantity of Collected Data ... 16

4. Results... 17

4.1. Entropy Estimation ... 17

4.2. Arithmetic Mean ... 19

4.3. Monte Carlo Estimation of Pi ... 20

4.4. Serial Correlation.. 22

5. Discussion ... 24

5.1. Analysis of Audio Sampling ... 24

5.2. Analysis of Touchscreen Sampling .. 25

5.3. Chi-Square Distribution Analysis ... 27

6. Conclusion .. 29

6.1. General Conclusions ... 30

6.2. Recommendations for Future Work ... 31

References.. 32

Appendices ... 34

LIST OF FIGURES

FIGURE PAGE

1. Entropy-per-bit of Audio Samples .. 17

2. Entropy-per-bit of Touchscreen Samples ... 18

3. Average Entropy-per-bit of Audio Samples ... 19

4. Arithmetic Mean of Audio Samples ... 20

5. Arithmetic Mean of Touchscreen Samples ... 20

6. Monte Carlo Estimation of Pi for Audio Samples 21

7. Monte Carlo Estimation of Pi for Touchscreen Samples 21

8. Serial Correlation of Audio Samples .. 22

9. Serial Correlation of Touchscreen Samples .. 23

10. Average Serial Correlation of Audio Samples ... 23

11. Chi-Square Test Results for 16-Bit Audio Samples (RAW) 28

12. Chi-Square Test Results for 16-Bit Audio Samples (DESKE WED) 29

Random Number Generation on Handheld Devices for
Cryptographic Applications

1. Introduction
Todays cryptographic applications securing some of our most critical

infrastructures and communications rely heavily upon random data. In most

cases, they rely upon pseudo-random data.

Generation of "random" data can occur in one of two ways: naturally,

or deterministically. The latter is the most common because most

cryptosystems are employed on digital machines, i.e., computers.

Deterministically generated random data is not typically referred to as

"random", but as pseudo-random [7]. A generator producing pseudo-random

data is referred to as a Pseudo-Random Number Generator (PRNG), whereas

a generator producing natural random numbers is referred to as a Random

Number Generator (RNG)'. Oddly enough, sequences generated by a PRNG

often appear to be more random than those generated from naturally occurring

sources [121.

A brief review of some cryptographic application specifications

demonstrates the reliance upon random data:

'In the context of this paper, the term "random" will always refer to a natural or physical
source of randomness, and the term "pseudo-random" will always refer to a deterministic
source of randomness; in a similar manner, when a R}4G is discussed, it will be in the context
of natural or physical randomness, and when a PRNG is discussed, it will be in the context of
a deterministic method of randomness generation.

2

Network Protocols: Some network protocols require what is known

as a nonce (a number that is used once), and further require that such numbers

are random; the ClientHello and ServerHello messages of the SSL/TLS

network protocols require randomly generated data, which eventually become

the keys used to encrypt the session [16].

Cryptosystems: Virtually all cryptosystems require random data for

the purpose of key generation. This is true when examining public-key,

private-key, or hybrid cryptosystems. The Advanced Encryption Standard

(AES), Data Encryption Standard (DES), and RSA, among others, require

randomly generated data [15], [13], [14], [10], [11], [17].

Authentication Systems: Some authentication systems require

random data as well. An example of such a scheme is the Unix method of

password storage, which may require a salt value to store a password in order

to prevent identical passwords from appearing identical in the password

storage file [4].

Dieter Gollmann, in his book, Computer Security, is concerned about

the "layer below" when designing and evaluating computer security systems

[4]. His basic concern is that the foundation upon which security measures

are constructed should be at least as secure as the application being

implemented. If the foundation is flawed, then the security built upon that

3

foundation is flawed. The same reasoning can be applied to cryptographic

applications and pseudo-random number generation.

The generation of random data is a layer below relative to a

cryptosystem. For example, a PRNG responsible for generating AES keys is

the layer below relative to the AES implementation. The PRNG, itself, has a

"layer below" known as the seed The seed is that value which is used to start

pseudo-random number generation, and should be acquired from a random

source. According to NIST, "all true randomness is confined to seed

generation" E12]. As long as the seed is not known to an adversary, and the

employed PRNG generates acceptable sequences, then the adversary is not

likely to predict the output of the PRNG.

Therefore, the layer below for a given PRNG is the seeding of that

PRNG. If the seed is somehow known, then the PRNG is predictable.

Predictability occurs when an adversary can determine the generated numbers

before they are generated. If the PRNG is predictable, then the key may be

predictable. If the key is predictable, then the cryptographic application is

insecure. Ultimately, the seed must be just as unpredictable as the output of

the PRNG [12]. In order to get a seed that is unpredictable without requiring

another seed, it is necessary to find some naturally occurring source of

random information.

4

2. Background

2.1. Sources of Randomness
Randomness can come from many places. A person sitting on a park

bench flipping a quarter can provide a source of randomness, though that may

be (arguably) too slow for any cryptographic application requiring a random

bit sequence. A very well known source of randomness comes from the rate

of radioactive decay. A computer system running an operating system, and

having some fonn of a user interface, may provide several sources of

randomness [8]:

Hardware-based (external) generators

o Audio/video input

o Disk drives

o Thermal noise (or other hardware noise)

Software-based (internal) generators

o Keyboard/mouse movements

o I/O buffer content

a Operating system statistics

The first item under software-based generators is not, in the author's

opinion, properly categorized. In effect, gathering information from the

5

keyboard/mouse of a given system is gathering from an external source, rather

than from an internal source. However, there are some caveats associated

with such input, which is likely why it has been categorized in such a manner.

A common approach to collecting random samples is to gather the timing

differences between keystrokes and/or mouse movements. However, [2] has

pointed out that many keyboard and mouse inputs are buffered and will

therefore not yield proper timing results. However, mouse movements need

not be timed. Rather, the coordinate system can be utilized to produce

random values.

Using the system clock as a seed source for a PRNG is often a tactic

that is used, but not one that should be used for any situation in which an

adversary is interested in the value of the seed. As [2] points out, clocks and

timers in computer systems vary widely in terms of resolution and the timing

of the code execution may alter the perception of the true timing of the clock.

A similar argument can be made against I/O buffer content, which may, under

a denial of service attack, be well known, or easily guessable. Effectively,

these methods of seeding a PRNG (which is deterministic) use

deterministically generated seed values.

When considering PRNG seed sources, some of the random sources do

not apply, for obvious reasons. Those that do apply are the hardware-based

methods and the mouse-based method. The keyboard timing method cannot

be guaranteed across platforms to be non-buffered, and the software-based

methods (with the exception of coordinate-based mouse samples) are all

deterministic in nature. This shortens the list of potential sources of

randomness to

. Mouse movements

. Audio/video input

. Hardware noise

2.2. Haudheld Devices

There are many handheld devices on the market today. Some are

extremely specialized and used for rugged, outdoor activity, and others are

designed for executives, knowledge workers, and others who need more than

simple personal information management. Still other handheld devices are

"simple" managers of information that keep track of dates, schedules, and the

like. It can be argued, however, that there are two top handheld devices in the

United States of America:

Palm-based platforms

. Microsoft Pocket PC-based platforms

These handhelds are designed with a variety of microprocessors at

their core. It appears to be the case, however, that the Palm-based platforms

are primarily designed around Motorola DragonBall microprocessors, and that

7

the Microsoft-based platforms are primarily designed around Intel

microprocessors (including the SAl lxx/SA1 lix series and the XScale

processors)2.

3. Materials and Methods

3.1. The Seed Goal
It was established in Section 2 that the true source of security for a

given, accepted PRNG lies in the seeding of that PRNG. Because the focus is

upon the seed, there are slightly different randomness requirements. Though

the output of seed and pseudo-random number generators must be

unpredictable, the seed generator need not be capable of generating very long

random bit sequences. The sequences generated should pass as many

randomness tests as possible, however, shorter sequences can be tested.

3.2. Random Bit Collection Source
The purpose of this research is to study some of the (potentially)

random sources that may be available in a bandheld device. Although there

are several potential sources of randomness in handheld devices, only two

were chosen for this study: audio input, and touchscreen input.

2 A bnef review of the datasheets/user-manuals for the Dragonflall, XScale, and SAl 110
microprocessors reveal that there are no RNGs made available to the systems designed around
them [6] 15] [9].

8

3.3. Handheld Implementation Platform
There are many handheld devices available today, but one of the more

popular platforms was chosen for this study the Microsoft Pocket PC. The

Pocket PC operating system runs on several different handheld devices, all

with different configurations. However, all Pocket PC devices are required by

Microsoft to meet certain specifications. As a result of this mandate, all

Pocket PC devices can be expected to have a common denominator of

hardware and functionality. Of particular importance is the fact that every

Pocket PC device is required to have a source of audio input and a

touchscreen as part of the user interface.

The particular Pocket PC device used in this study was a Dell Axim

X5 with an Intel XScale microprocessor, 32MB of internal RAM, 32MB of

Intel StrataFlash non-volatile memory, and running Pocket PC 2002.

3.3.1. Software Implementation
Several software components were required to complete this study.

These components fall into two primary categories: Pocket PC Software, and

Test and Evaluation Software. The Pocket PC Software was originally

implemented for the sole purpose of data collection, and has now been slightly

rewritten to form a cohesive Application Programming Interface that can be

included in derivative works (see the Appendix for source listings).

3.3.1.1. Pocket PC Software

3.3.1.1.1. Touchscreen Data Collection
The touchscreen on a Pocket PC is intended to be the primary user

interface on the device. The screen resolution of all Pocket PC devices is

specified by Microsoft to be 240 x 320 pixels3. Toucbscreen data can be

collected as entropy by looking at the varying coordinates of the stylus upon

the touchscreen as time passes. The implementation used for this study

requires the user to scribble on the screen as randomly as they can, and then

collects the points of the stylus on the touchscreen at various sample rates,

wherein the software collects point data at intervals of approximately Sms,

lOms, or l5ms.

The coordinates are passed as a single 32-bit value (a DWORD in

Microsoft parlance), where the lower 16 bits represent the x coordinate and

the higher 16 bits represent they coordinate. Each 16-bit value is known as a

WORD. The program responsible for collecting entropy represents the

collected point data as the exclusive-or of the low half of the x WORD with

the low half of they WORD.

Let the collected point data be represented by F, then

P = (LO(coord) ® HI(coord)) A OxOOFF.

From this point forward, any reference to screen dimension will be in the unit of pixels.

10

The coord value in the previous equation is the value collected when

either of the stylus-generated messages are received. The HI and LO

functions return the high WORD and low WORD respectively, and their

results are then XOR'd before being AND'ed with a mask designed to collect

only the lower eight bits of the representation. Therefore, the point

representation used in collecting data from the touchscreen in this study is an

8-bit representation rooted in the x and y coordinates of the original

touchscreen event.

3.4. Audio Data Collection

The Pocket PC has a rich audio interface. The Pocket PC Wave API

was used to prepare the audio input device, collect the audio data, and release

the audio input device appropriately. This method of audio recording requires

the use of data buffers. A buffer of bytes is first prepared then "registered"

with the audio device. A function is invoked to start recording and will record

continuously, thus filling the buffer. When the buffer has been filled, a

message is sent to the recording entity, at which time the recording can be

stopped, the buffer unprepared (i.e., unregistered), and then used. The use of

the WAV file format is beneficial in the sense that the WAV specification

does not call for compression of the audio samples [1]; such compression, or

other manipulation, would not provide suitable access to the samples.

11

A practical implementation of an audio-based source of randomness

would provide a driver that is able to provide a dynamic entropy pool from

which seed values can be drawn. The pool would be updated periodically, in

order to bolster unpredictability. This means that the audio device would be

periodically enabled in order to record sample noises. An owner of a

handheld device may be in aziy number of places, so the study sought to

provide a variety of sample locations, in addition to a variety of sample types.

However, a simple continuous design was implemented for this study.

The sample locations chosen were: riding in an automobile, dining in a

restaurant, attending a lecture, and working in a quiet office. These scenarios

were chosen to reflect the potential places and situations a person may find

them in throughout the course of any given day. Many people commute to

work or otherwise use an automobile of some kind on a day-to-day basis.

Dining in a restaurant is thought to have been a good simulation of any busy

location, such as an airport terminal. Lecture attendance is not unlike

attending a presentation or group meeting where (roughly) one person speaks

at a time. Finally, the quiet office is the environment in which only typing,

printing, body movements, and background noise are picked up by the audio

recording device. These locations are referred to as location sources or

sources.

12

For each of the collection locations, eight different samples were

taken. The Wave API provides for two sample sizes: 8-bit and 16-bit. For

each sample size, there are four sample rates available: 8kHz, 11kHz, 22kHz,

and 44kHz. This yields a total of eight sample configurations for each of the

location sources.

3.4.1.1. Test and Evaluation Software
Several small software components were implemented to assist in

organizing the collected data for testing. Without going into too much detail,

three tools were implemented for the Linux operating system: deskew, co/em',

and truncfile. Each of these tools take a user-supplied data file, manipulate

the data contained in the file, then write the final result to a new, user-

specified file. The deskew command is used for removing bias from collected

data; co/em' is used to collect one bit of "entropy" for every byte in the

collected data file; and truncfile is used to trim a given data file to a user-

specified size. All of these Linux-based command line tools were

implemented using the C programming language. For more information

regarding the implementation of these tools, see the Appendix.

3.5. Test Method
Raw data was collected from each of the data sources (touchscreen,

and audio input). The collected data was logged and filed prior to distillation.

The distillation process performed as many as two steps, which were designed

13

to do two things: collect randomness from the data, and to deskew (remove

bias from) the data. Randomness was collected by taking the least significant

bit of every byte collected, and deskewing was performed by the method

listed in Section 3.5.1.

The collected data was distilled into four distinct categories:

. Raw Data: the uncorrected data,

Entropy Data: raw data that has been distilled for randomness

Deskewed Data: raw data that has been distilled for bias

correction, and

Entropy and Deskewed Data: entropy data that has been

distilled for bias correction.

3.5.1. Deskewing To Remove Bias

The deskewing method used in mentioned in [13] and [8]. This

distillation process is necessary because the generator may provide a sequence

that contains a greater number of ones or zeros in the bit-sequence. The

method of deskewing data is to look at the bits in a sequence t in bit pairs t

and t,+j for all i from i = 1, 3, 5, ..., n. If t. and t,+j are equal, discard the bits

and move on to the next pair; otherwise, store t, as an output of the generator

and discard t,+j before iterating. This method of deskewing produces

unbiased output from any generator[8].

14

3.5.2. Selected Suite
The test suite chosen for this study is the ENT Test Suite4. The ENT

Test Suite is comprised of the Chi-Square Distribution Test, Arithmetic Mean

Test, Monte Carlo Estimation of Pi, and the Serial Correlation Test. In

addition to these specific tests, the estimated entropy-per-bit is also given by

the selected test suite. The test suite was chosen because it is suitable for

testing random seed data5.

3.5.2.1. Chi-Square Distribution Test
The Chi-Square Distribution Test is, perhaps, the most common test of

randomness available. It is also used as a foundation for other randomness

tests [12]. The distribution is calculated for the input stream and represented

as an absolute value and a percentage, where the percentage indicates the

frequency at which a truly random sequence (uniformly distributed) would

exceed the absolute value [7]. The interpretation of such results lies in the

interpretation of the given percentage; the percentage is taken to be the degree

to which the sequence is suspected of being non-random [7].

A sequence is judged to be non-random, if the given percentage is

greater than 99% or less than 1%. A sequence is suspected of being non-

' Much of the information contained in this section is not intended to describe the tests
mathematically, but to describe their general operation and to provide proper methods of
result interpretation; moreover, much of the information has been adapted from [3J.

of the information contained in the test description sections was adapted from [3],
except where otherwise noted.

15

random, if the given percentage lies between 95% and 99%, and if the given

percentage lies between 1% and 5%. Percentages between 90% and 95% and

between 5% and 10% are "almost suspect" [7]. If the percentage given does

not fall into any of these ranges, then the sequence can be judged as random.

3.5.2.2. Arithmetic Mean Test
The Arithmetic Mean Test takes the sum of the bits contained in the

sequence, then divides the sum by the length of the sequence. This is, in

effect, a frequency test that indicates how many ones and zeros exist in the

given sequence. For bit sequences, the closer the result of this test comes to

0.5, the more likely it is that the given sequence is random.

3.5.2.3. Monte Carlo Estimation of P1
The Monte Carlo Estimation of Pi is a test that first gathers the bits of

the sequence into bytes. The bytes are then interpreted as successive 24-bit

coordinates within a square. If the point falls within a circle inscribed in the

square, than that point is registered as a "hit." The hits falling within the

circle are then used to estimate the area of the circle, from which the

estimation of Pi is derived.

3.5.2.4. Optimal Compression (Estimated Entropy)
The estimation of entropy is derived, in the ENT Test Suite, from the

ability to compress a file "optimally." If the file is extremely compressible,

16

then it is judged to be non-random. The result of this test is given as a

percentage and is then used to estimate the entropy contained in each bit of the

sequence. A value close to 1 is desired.

3.5.2.5. Serial Correlation Test
The Serial Correlation Test measures the extent to which a given bit in

the sequence is correlated to past or future bits in the sequence. The result of

this test is given on a scale from zero to one, where zero indicates no detected

correlation and one indicates definite correlation. The results of this test will

be closer to zero for sequences that approach true randomness. Further

description of this test can be found in [7].

3.6. Quantity of Collected Data
Approximately 1MB of data was collected for each source

configuration. Randomness was then collected from these files using the

colent command. After randomness was collected, this new data set was

deskewed using the deskew command. This process resulted in a file

significantly smaller in size than the raw data file. The smallest file size after

full distillation was just over 1 5KB, so all of the files used for testing were

truncated (using the truncfile command) to 15,360 bytes (122,880 bits). As is

evident from the data quantity reduction due to the distillation process, it

would be advantageous for any practical implementation to avoid, if possible,

17

distillation measures for the sake of processing time reduction, and there for a

reduction in power consumption.

4. Results

4.1. Entropy Estimation
The entropy-per-bit range of the results extend from approximately

0.78 to 1.0, which yields approximately 6.24 to 8 bits of entropy (randomness)

per byte. Figure 1: Entropy-per-bit of Audio Samples shows the entropy-per-

bit of the audio samples at all levels of distillation; and Figure 2: Entropy-per-

bit of Touchscreen Samples shows the entropy-per-bit of the touchscreen

samples at all levels of distillation.

1002000

I

0.990000

0.996000

&
0994000

0

9
0.992000

0990000

0908000

0990000

Audio Samples

8..0. .nd D&I,.

Figure 1: Entropy-per-bit of Audio Samples

Cr
C9SSOO1fl

DOth.

DReitrn..J

1.002000

0.998000

0,996000

8

0.992000

0.990000

I
0,988000

0,986000

0.984000

0.982000

Touchscreen

DeSewed bltropy.Dethewtd Sitropy Raw

Oat I I on

Figure 2: Entropy-per-bit of Touchscreen Samples

18

5rno

DI5m

Figure 1: Entropy-per-bit of Audio Samples is somewhat difficult to

interpret, so Figure 3: Average Entropy-per-bit of Audio Samples shows the

average estimated entropy-per-bit of all audio sample configurations, i.e.,

sample size and rate, at all levels of distillation.

N

S

I

S

0 fl

0

A.dto S.NpI.

SUtiSt tSUtt I6-tit4%k* SS1* 8-dEliSt 8-ht,t BUI4dt 8-tlt.ad-D

S...pI. Con? gtu.tIcn

Figure 3: Avernge Entropy-per-bit of Audio Samples

4.2. Arithmetic Mean

19

o___
prt,Cked
O Ertr iw
oR..

These are the results of the ENT Arithmetic Mean Test. Recall that a

value close to 0.5 is desired for a random sequence. Figure 4: Arithmetic

Mean of Audio Samples shows the arithmetic mean of the audio samples at all

levels of distillation; and Figure 5: Arithmetic Mean of Touchscreen Samples

shows the arithmetic mean of the touchscreen samples at all levels of

distillation.

Audio Samples

O5

O 1 Ii In In Ill
rir' III lit IF I

o 54W!]

o vauxJ

O4O

o aaoxt

o44W!]

o W!

040W!
[JEDEROEOERDE ERDEDEROFDF1RD]EOEROEDERDEDER
1&Sll1k)* 16-ht.t l8-bt,44*t 10.01.60-S 501 ¶15* &bl.Th*5 8-St,4400 B-bI,0.Hi

D_5

O_5

0.54W!

I

o

o 4

O4

C0111161n.iton.S Olstlll.11.l,

Figure 4: Arithmetic Mean of Audio Samples

Touohsoreen

0.51*0.4 (r*apyD.0*d Eonp, Has

Figure 5: Arithmetic Mean of Touchscreen Samples

20

U.oOn
Dali..
0 Odessa WI

l000

0 l0

43. Monte Carlo Estimation of P1

These are the results of the Monte Carlo Estimation of Pi. The closer

the estimation comes to Pi, the more random the sequence is assumed to be.

Figure 6: Monte Carlo Estimation of Pi for Audio Samples shows the

21

estimation of the audio samples at all levels of distillation; aid Figure 7:

Monte Carlo Estimation of Pi for Touchscreen Samples shows the estimation

of the touchscreen samples at all levels of distillation.

Aodio S.mpl.s

if FL fl fl

_____- ii

'IF

:
DEL) ER LIED ER 0=0 E 4 0 ED E 0 0EDE o r[ED E 9 0 FDF 9 0 Fl) F 6

16-tot 111*6 16-tot ad-to 16-01 4410* 16-01606 0-tot 116-0 0-tot ZflFfr 0-tot 440Th 6-b! 600

Contiguraito.. .nd Distillation

Figure 6: Monte Carlo Estimation of Pi for Audio Samples

3-

3 0-6tcC!

*6-03
S

11

I1W60

O6I1

0.

Toss I. Sc r.. I.

01UWVO ErtrcwD.flss.nd Eric

DIstillation

Figure 7: Monte Carlo Estimation of P1 for Touchsereen Samples

l_
jD 1500

22

4.4. Serial Correlation
These are the results of the ENT Serial Correlation Test. Recall that a

value close to 0.0 is desired for a random sequence. Figure 8: Serial

Correlation of Audio Samples shows the serial correlation of the audio

samples at all levels of distillation; and Figure 9: Serial Correlation of

Touchscreen Samples shows the serial correlation of the touchscreen samples

at all levels of distillation.

Audio Samples

Iii

fl Ffl F B Fri F S fl Cfl F F R 1) FD F In en: e R FIFO F S fliFU F p

lt.-bt 1kl-t It-b Ck0 I IS-b' M0 it..bt.t*JS 0.0 rut ..bI,J. &bt 4015
I

B-StOat

Con? IguntIoI, and DIstIlletlon

Figure 8: Serial Correlation of Audio Samples

a

a.o1

I.'

-oowo

-U.n

-0. l

Touch,cr..n

DlstIlI.iIo.

Figure 9: Serial Correlation of Touchscreen Samples

23

U!-
'U!.

D U!.

Figure 8: Serial Correlation of Audio Samples is somewhat difficult to

interpret, so Figure 10: Average Serial Correlation of Audio Samples shows

the average estimation of all audio sample configurations, i.e., sample size

and rate, at all levels of distillation.

o

0.

O2

o In

Din

-0-i

-o ian

.OI5OXI

0.thi liU9Z IS-bofllt t64*44Wz 16-048th. 8-UUIIflI. SmM2 S-t4lz
SOure. Conflqno.

AvofAdIo$.rnpIe,

Figure 10: Average Serial Correlation ol Audio Samples

II0*

24

5. Discussion

5.1. Analysis of Audio Sampling
Prior to testing, it was thought that the audio samples would require

extensive distillation in order to achieve randomness. One reason for this

prejudice stems from the thought that the audio input hardware on the

handheld device was likely to have some filtering to reduce noise. Another

reason is that the audio hardware is not directly accessible. Rather, the

operating system had to be used as the interface to the audio hardware, and it

was thought that the operating system might further filter the sample input, or

otherwise alter the data prior to testing. As mentioned in [1], the WAV file

format does not compress audio samples, however.

The audio samples held up well to most of the ENT test suite. Of all

the samples, however, the deskewed and raw samples seemed to perform the

best. Of these, the 16-bit samples at either 8kHz or 44kHz (see Figure 1:

Entropy-per-bit of Audio Samples) proved superior. The audio samples did

not fair as well as the touchscreen in the Monte Carlo estimation of Pi.

However, it appears that the deskewed and fully distilled audio samples

performed the best against this test.

The audio samples produced widely variant results when up against

the Serial Correlation Test, and very few of them fell in the range given by

[7]. The only audio samples that satisfied the given acceptable range were:

25

16-bit, 1 1khz restaurant,

16-bit, 8klHz car,

8-bit, 1 lkI-Iz car,

8-bit, 22kHz restaurant, and

8-bit, 8kHz car

A potential reason for this is that large quantities of audio data were

collected at once which is not likely to be the preferred implementation for

cryptographic purposes. It is likely that the data collected from a dynamic

pooi of audio samples over an extended period of time will produce much

better correlation results. Such a dynamic pool may be implemented as a

stream driver in the Pocket PC operating system, which then would not need

to be statically (or dynamically) linked to any particular cryptographic

application, but available to all.

5.2. Analysis of Touchscreen Sampling

As with the audio Samples, the touchscreen sampling performed well

at all sample resolutions, but the 1 5ms resolution proved to be superior in

most cases. In all cases, the deskewed or raw touchscreen data samples

appeared to yield the best test results, with the deskewed samples showing

slightly better results in all but the Serial Correlation Test. Unfortunately, the

only touchsereen samples that passed the Serial Correlation Test according to

26

the range given in [7] were the raw samples collected at all resolutions. A

potential reason for this deviance may be due to the implementation of the

touchscreen collection algorithm.

The touchscreen resolution on a Pocket PC device is 240 x 320, and

the coordinate system on the Pocket PC is such that the x and y coordinate

values are placed into 16-bit WORDs. This is necessary because of the range

on they-axis (320). The collection method (given in 3.3.1.1.1) provides for an

8-bit collection result, which means that the collection will represent a

maximum of 256 values for the y-axis. The consequence of this

implementation is that those y values that range from 256 to 339 are mapped

to the first 64 values ofthey-axis.

Another possibility for the correlation of the touchscreen sampling

may lie in the fact that a user supplied the input. If, at some point during the

data collection, the user interacting with the program began scribbling in a

patterned way, then it may be the case that the serial correlation numbers

would grow further from zero, thus showing a higher degree of correlation

from bit to bit. Yet another possibility for the correlation is the fact that the

screen resolution, and therefore its binary representation, is bounded. Such

bounds are known to provide, in some cases, a higher degree of correlation

[2].

27

The serial correlation is likely to be of greater importance to the

decision of whether to use the touchscreen for a random bit sequence, because

it is not as dynamic as the audio can be when implemented as a driver. The

touchscreen could, if the Original Equipment Manufacturer (OEM) of a

Pocket PC device were to incorporate his into their native toucbscreen driver,

collect data periodically form the screen as the device is used throughout the

day. However, this may provide an unwanted bias in the sense that the Pocket

PC invites a particular pattern of use. The "Start" button is tapped often, and

the resulting pop-up menu is bound to have some preferred applications (i.e.,

"tap points"). In addition, the command bar and other menu items are

typically restricted to the top and bottom of the display. Essentially, the

typical use of a Pocket PC is not likely to provide a good source of

randomness, which means that the user will need to intervene and generate a

new seed manually, or when prompted to do so. Either way is invasive and

not likely to be adopted by users.

5.3. Chi-Square Distribution Analysis

Because the Chi-Square Distribution is, perhaps, the most sensitive

test in the ENT Test Suite, it has been giYen special consideration in this

discussion. The results have thus far indicated that 16-bit audio samples taken

at either 8kHz or 44kHz rates yield the best random data in this study (when

serial correlation is not considered). Moreover, the deskewed and raw

28

samples provided the best random data out of all the 16-bit, 8/44kHz samples.

Figure 11: Chi-Square Test Results for 16-Bit Audio Samples (RAW) shows

the percentage of the time that raw audio samples of the given configuration

will exceed the Chi-Square Distribution value. Recall that very high or very

low percentages are concluded to be non-random, and that the closer to 50%

the percentage is, the more likely it is that the sequence under test is random

[3} E7].

16 50%

50(0%

33 3'..

S

V

10

050%

16-Bit Audio SanIes at 8kHz and 44khz RAWI

ao. 1044CM Th.0C11CM8 1644C4Sn 16.8Sf CM 16445(150 568 165a131 (5 14,c*aSSt

50816. 00,? iOIt,.tiOn

Figure 11: Chi-Square Test Results for 16-Bit Audio Samples (RAW)

Similarly, Figure 12: Chi-Square Test Results for 16-Bit Audio

Samples (DESKEWED) shows the percentage of the time that the deskewed

audio samples of the given configuration will exceed the Chi-Square

Distribution value.

001(1:3

00(0*

40(01.

30(0%

70.00t4

10.00%

000%

29

'S-Art AldI.! Sanr!es at Skitz 3-ILl kz - IrE K

lO. 18.44, l&øcla.,00m t&44csromn lOe0Wt. 1044.0100. 16.$.,UOM,wt 16.44.rntnwt

$0.4,.. 0000gur.tt.l

Figure 12: Chi-Square Test Results for 16-Bit Audio Samples (DESKEWED)

As is clearly evident in Figure 11 and Figure 12, the deskewed. 16-bit

audio samples taken at a rate of 8kHz provide the most satisfactory results

when the Chi-Squared Distribution is utilized. Out of eight sample

configurations, the two that were most unacceptable came from 16-bit 44kHz

samples (in the classroom and office). The only time the 44kHz samples

faired better than the 8kHz samples was in the restaurant location. Otherwise,

the I 6-bit, 8k1-lz samples were consistently near 50%, and therefore performed

very well against the Chi-Squared Distribution test.

6. Conclusion
The results of this study are both promising and concerning. On some

levels, the results appear to be promising, and should elicit further study in

"I]

these areas. On other levels, the results seemed to warrant that the research

direction should be altered to other potential sources of randomness.

6.1. General Conclusions

As mentioned in Section 4, the touchscreen and audio implementations

were not ideal, and even though the samples appear promising for the purpose

of random number generation, the implementation issues should be fixed and

the data resampled and retested prior to further exploration of the subject.

Nonetheless, these tests indicate that the chosen sources of randomness may

be suitable for cryptographic applications, which is contradictory to the

findings of [1], where it is claimed that microphone input is not an adequate

source of entropy on any computing system.

Of all the sources examined, the audio source appears to be the best

when tested with the ENT Test Suite. In particular, the 16-bit audio samples

at either 8kHz or 44kHz seemed to provide the best results in most areas when

raw or deskewed data was used. It is expected that a dynamic pool

implementation of the audio collection will provide a correction to the

relatively sporadic serial correlation showing of the audio samples, and that a

larger ample collected as would be in a practical application would provide a

better estimate of Pi via the Monte Carlo method.

All things considered, handheld devices may possess adequate random

sources for the purpose of seeding deterministic PRNGs. In particular, those

31

handheld devices capable of recording audio data are likely to provide a

suitable means of gathering seed data.

6.2. Recommendations for Future Work
It can be concluded from this study that 16-bit audio samples taken at

a sampling rate of 8kHz, when deskewed, provide the best source of

randomness from those examined on the Dell Axim X5 Pocket PC handheld

device. Further inference of these results may be examined in fiture work. A

continuation of this work may be interested in a more practical

implementation of an audio RNG system with emphasis placed on audio

sources with additional, more stringent testing. Further, future work should be

interested in performing identical tests across multiple devices. Currently, the

results are only applicable to a Dell Axim X5.

The 16-bit audio samples at 8kHz and 44kHz sample rates performed

well against the Arithmetic Mean, Estimated Entropy and the Chi-Square

tests. These samples performed only marginally well against the Monte Carlo

Estimate of Pi, and did not fair well at all against the Serial Correlation Test.

It is recommended that further study be performed in the area of attempting to

massage better Serial Correlation results by using a more practical

implementation, and by using a larger amount of data.

32

REFERENCES

[1] Giles Cotter. Generation of pseudorandom numbers from
microphone input in computer devices, March 2002.

[2] J. Schiller, D. Eastlake, S. Crocker. Randomness
recommendations for security. Technical report, Internet
Engineering Task Force, December 1994.

[3] http://www.fourmilab.ch/randoml, 2003. A search for "ENT
random" on Google will turn up more references to the same
content than that which is listed here.

[4] Dieter Gollmann. Computer Security. John Wiley and Sons,
Inc., 1999.

[5] Intel Corporation. Intel XScale Core Developer's Manual,
December 2000.

[6] Intel Corporation. Intel StrongARM SA-1 100 Microprocessor
Developer's Manual, October 2001.

[7] D.E. Knuth. The Art ofComputer Programming, Volume 2.
Addison-Wesley, Third Edition, 1998.

[8] A. Menezes. Handbook ofApplied Cryptography. CRC Press,
1996.

[9] Motorola, Inc. MC68328 (DragonBall) Integrated Processor
User's Manual, 1995.

[10] National Institute of Standards and Technology. SpecfIcations
for the Data Encryption Standard (DES), October 1999.

[11] National Institute of Standards and Technology. Specflcation
for the Advanced Encryption Standard (AES), November 2001.

[12] Andrew Rukhin, Juan Soto, James Nechvatal, Miles Smid,
Elain Barker, Stefan Leigh, Mark Levenson, Mark Vangel,
David Banks, Alan Heckert, James Dray, San Vo. A statistical
test suite for random and pseudorandom number generators for
cryptographic applications. Technical report, National Institute
of Standards and Technology, May 2001.

[13] Bruce Schneier. Applied Cryptography. John Wiley and Sons,
Inc., Second Edition, 1996.

33

[14] William Stallings. Cryptography and Network Security
Principles and Practice. Prentice-Hall, Inc., Second Edition,
1999.

[15] Douglas R. Stinson. Cryptography Theory and Practice.
Chapman and Hall, Second Edition, 2002.

[16] Stephen Thomas. SSL and TLS Essentials. John Wiley and
Sons, Inc., 2000.

[17] U.S. Department of Commerce/National Institute of Standards
and Technology. Digital Signature Standard (DSS), January
2000.

34

APPENDICES

35

This section contains the source listings for all code developed for this

research. The code is divided into two sections: Pocket PC and Linux.

Pocket PC Source Listings

Resource.h
#define IDS APP TITLE 1

#define IDS HELLO 2

define IDC AUDIO 3

#define IDI AUDIO 101

#define 1DM MENtJ 102

#define IDDABOUTBOX 103
#define 1DM_FILE_EXIT 40002
#define 1DM HELP ABOUT 40003
itdefine 1DM RUN 1MB 40004
#define 1DM RUN 2MB 40005
#define 1DM RUN 4MB 40006
#define 1DM RUN 8MB 40007
4tdefine 1DM RUN 16MB 40008
#define 1DM RUN 32MB 40009
4define 1DM SETTING 16 BIT 40010
#define 1DM SETTING 8 BIT 40011
#define 1DM SETTING8KHZ 40012
#define 1DM SETTING 11 KHZ 40013
#define 1DM SETTING 22 KHZ 40014
#define 1DM SETTING 44 KHZ 40015
#define 1DM RUN TOUCH 40016
#define 1DM RUN OS RAND 40017
#define IDMRtJNIR 40018
#define 1DM SETTING GEN DATA 40021
#define 1DM RUN RAND AUD 40022
#define 1DM RUN RAND TS 40023
#define 1DM RUN RAND OS 40024
#define 1DM RUN RAND IR 40025
#define 1DM SETTING TS 25 40026
%defirie 1DM SETTING TS 15 40027
define IDMSETTINGTS5 40028
#define 1DM INSTRUCTION 40029
4define 1DM SETTING ANT 1K 40031
#define 1DM SETTING ANT 5K 40032
#define 1DM SETTING ANT 10K 40033
idefine 1DM SETTING ANT 50K 40034
#define 1DM SETTING ANT 100K 40035
*define 1DM SETTING ANT 250K 40036
idefine 1DM SETTING TS 10 40037
define 1DM SETTING ANT 512K 40039
#define 1DM SETTING ANT 1M 40040
#define 1DM SETTING ANT 5M 40041

36

// Next default values for new objects
1/
#ifdef APSTUDIO INVOKED
#i fnde £ APST[JDIO READONLY SYMBOLS
#define APS NEXT RESOURCE VALUE 104

#define APS NEXT COMMAND VALUE 40042
#define APS NEXT CONTROL VALUE 1001.

4define APS NEXT SYMED VALUE 101
#endif
#endif

StdAfx.h
II stdafx.h : include file for standard system include files,
/1 or project specific include files that are used
/7 frequently, but
II are changed infrequently
/7

#1 f

!defined(AFXSTDAFXHA9DB83DBA9FD11DOBFD1444553540000I
NCLUDED)
*define
AFXSTDAFXHA9DB83DBA9FD11DOBFD1444553540000 INCLUDED

#if MSCVER > 1000
#pragma once
#endif // MSCVER > 1000

#define W1N32 LEAN AND MEAN
stuff from Windows headers

7/ Windows Header Files:
#include <windows . h>
#include <commctrl h>
%include <stdio.h>

II Local
4t include

#include
#include
#include
1include
#include

Header Files
"audio. h"

"sound_recorder. h"
"file writer.
"osrand .
"irrand . h"
"prng_ppcsha .

II Exclude rarely-used

II TODO: reference additional headers your program requires
here

37

//{ {AFX INSERT LOCATION)
1/ Microsoft eMbedded Visual C++ will insert additional
declarations immediately before the previous line.

%endif II
!defined(AFXSTDAFXHA9DB83DBA9FD11DOBFD1444553540000I
NCLUDED)

StdAfx.cpp
II stdafx.cpp : source file that includes just the standard
includes
II audio.pch will be the pre-compiled header
II stdafx.obj will contain the pre-compiled type
information

#include "stdafx.h"

7/ TODO: reference any additional headers you need in STDAFX.H
/7 and not in this file

audio.rc
I/Microsoft Developer Studio generated resource script.
II
%include "resource.h"

define APSTUDIO READONLY SYMBOLS
I///////////////7//////I/7/////////////////////////////I//////
///////////////
1/
II Generated from the TEXTINCLUDE 2 resource.
/1
4include "newres . h7'

//II/////II/I///I///////I/I//////////////I///I///I//I/I//II///
/ / / / / / / / / / / / /./ /

*unde f APSTUDIO READONLY SYMBOLS

//
7//I//I//I/I//I
// English (U.S.) resources

#if !defined(AFX RESOURCE DLL) defined (AFXTARGENU)
#ifdef W1N32
LANGUAGE LANGENGLISH, SUBLANG ENGLISH US
4tpragma code_page (1252)
*endif /IWIN32

38

/////////////////I//////////////////////////////////I/////////

1/

II Icon
II

If Icon with lowest ID value placed first to ensure
application icon
II remains consistent on all systems.
IDIAtJDIO ICON DISCARDABLE "audio.ICO"

4ifdef APSTUDIO INVOKEDI//I////IIIIII/7///I/II/IIIIII/III/III///I//II/II/I/IIIIIIII//I//I//I/I//I//I
I-
II TEXTINCLUDE
1/

1 TEXTINCLUDE DISCARDABLE
BEGIN

"resource. h\O"
END

2 TEXTINCLUDE DISCARDABLE
BEGIN

"L[nclude "newres.h"\r\n"
P1 \

END

3 TEXTINCLUDE DISCARDABLE
BEGIN

" \ 0 "

END

4tendif II APSTUDIO INVOKED

I///////I///I/I///I//I////I///I//I//II/II//I/////////f///I////I/I//I//I/If//I
1/
/1 Menubar
/1

1DM MENU MENU DISCARDABLE
BEGIN

POPUP "&File"
BEGIN

MENUITEM "E&xit", 1DM FILE EXIT
END

POPUP "&Help"
BEGIN

MENUITEM "&About",
MENUITEM "Instructions",

1DM INSTRUCTION
END
POPUP "Run"
BEGIN

MENUITEM "Collect raw Audio",
MENUITEM "Collect raw Touchscreen",
MENUITEM "Collect PRNG from OS",

I DM RUN OS RAND
MENUITEM "Collect raw IR",
MENUITEM SEPARATOR
MENUITEM "Get PRN from Audio",

1DM RUN RAND AUD
MENUITEM "Get PRN from Touchscreen",

1DM RUN RAND TS
MENUITEM "Get PRN from OS",

I DM RUN RAND OS
MENUITEM "Get PRN from IR",

I DMRUNRANDIR
END
POPUP "Settings"
BEGIN

POPUP "AUDIO"
BEGIN

MENUITEM "16 Bit Samples",
1DM_SETTING_i 6_BIT

MENUITEM "8 Bit Samples",
1DM SETTING 8_BIT

MENIJITEM "8 k}lz",

I DMSETTING8KHZ
MENUITEM "ii kHz",

1DM SETTING 11KHZ
MENUITEM "22 kHz",

I DMSETTING22KHZ
MENUITEM "44 kHz",

1DM SETTING 44KHZ
END
POPUP "Touchscreen"
BEGIN

MENUITEM "15 ms delay"
I DMSETTINGTS1 5

MENtJITEM "10 ms delay",
I DMSETTINGTS1 0

MENUITEM "5 ms delay",
IDMSETTINGTS5

END
POPUP "Data Collection Amount"
BEGIN

39

1DM HELP ABOUT

I DM RUN 1MB
1DM_RUN_TOUCH

1DM_RUN_I R

MENUITEM "1 KB",
I DM SEPT ING ANT 1K

MENUITEM "5 KB",
1DM SETTING ANT 5K

MENUITEM "10 KB",
1DM SETTING ANT 1 OK

MENUITEM "50 KB",
1DM SETTING ANT 50K

MENUITEM "100 KB",
I DM SETTING ANT 10 OK

MENUITEM "250 KB",
I DM SETT INGAMT2 50K

MENUITEM "512 KB",
I DM SETTING ANT5 12K

MENUITEM "1 MB",
I DMSETTINGANT1M

END
END

END

/1

7/ Dialog
/1

IDDABOUTBOX DIALOG DISCARDABLE 0, 0, 125, 55
STYLE DSMODALFRAME WSPOPUP

I
WSCAPTION WSSYSMENU

EXSTYLE Ox80000000L
CAPTION "About audio"
FONT 8, "System"
BEGIN

ICON IDIAUDIO, IDC STATIC, 11, 17,20,20
LTEXT "audio Version

1.0", IDC STATIC, 38, 10, 70, 8, SSNOPREFIX
LTEXT "Copyright (C) 2003",IDCSTATIC,38,25,70,8

END

///////////////
7/
II DESIGNINFO
7/

4ifdef APSTUDIO INVOKED
GUIDELINES DESIGNINFO DISCARDABLE
BEGIN

IDDABOUTBOX, DIALOG
BEGIN

41

LEFTMARGIN, 7
RIGHTMARGIN, 118
TOPMARGIN, 7
BOTTOMMARGIN, 48

END
END
#endif II APSTUDIO INVOKED

///////////////
I-

II Accelerator
II

IDC AUDIO ACCELERATORS DISCARDABLE
BEGIN

"I", 1DM_HELP_ABOUT, ASCII, ALT,
NOINVERT

VKF4, 1DM FILE EXIT, VIRTKEY, ALT,
NOINVERT
END

//
///////////////
1/
II String Table
1/

STRINGTABLE DISCARDABLE
BEGIN

IDS APP TITLE "audio"
IDS HELLO "Hello World!"
IDC AUDIO "AUDIO"

END

#endif II English (U.S.) resources
//
I//I/I//I//I//I

#ifndef APSTUDIO INVOKED

I//I//I//I//I/I
1/
II Generated from the TEXTINCLUDE 3 resource.
1/

42

*endif // not APSTUDIO INVOKED

newres.h
%ifndef NEWRESH
#define NEWRESR

#if ! defined (UNDER CE)
#define UNDER_CE WIN32WCE

#endif

#if defined(W1N32 WCE)
#if ! defined (WCEOLE ENABLE DIALOGEX)

#define DIALOGEX DIALOG DISCARDABLE
4endif
%include <commctrl . h>
de fine SHMENUBAR RCDATA
#if defined(W1N32 PLATFORM PSPC) && (WIN32WCE >= 300)

#include <aygshell . h>
e1se

#define IIMAGENONE (-2)

#define NOMENU OxFFFF
#define IDSSHNEW 1

4tde fine 1DM SHAREDNEW 10

#define 1DM SHAREDNEWDEFAULT 11
endi f

4tendif 1/ WIN32WCE

#ifdef RCINVOKED
#ifndef INC WINDOWS
#define INC WINDOWS

inc1ude "winuser.h" II extract from windows
header
#endif
#endif

#ifdef IDC STATIC
*undef IDC STATIC
#endif
#define IDC STATIC (-1)

4endif /INEWRESH

43

file_writer.h
/ *.* *

**** ** * * * * *

FILE: file writer.h
PURPOSE: Header information for file writer.c
DATE: April 2003
AUTHOR: Adam W. Montville

Information Security Laboratory
Oregon State University
montviad@ece. orst . edu

#ifndef FILE WRITER
define FILE WRITER

#include "stdafx.h"

II FUNCTION DECLARATIONS (See Implementation for descriptions)
mt FileWriterinitialize(char *);
mt FileWriterWrite (char);
mt FileWriterClose (void);
mt FileWriterNewline (void);
mt FileWriterComxna (void);

#endif // FILE WRITER

file_writer.cpp
/ *** ***** *

** * * * ** *

FILE: file_writer. c
PURPOSE: Interface for writing files when collecting

PRNG seed
data. This interface uses the

standard C-style file
functions.

DATE: April 2003
AUTHOR: Adam W. Montville

Information Security Laboratory
Oregon State University
montviad@ece . orst . edu

*** *******

#include <stdio.h>

44

#include "file_writer. h"

FILE *outFile; /1 File pointer

* FUNCTION: FileWriterinitialize
* DATE: April 2003
* PURPOSE: Initialize the file writing component for
* operation.
* PARAMS:
* filePath character pointer to file
* RETURN:
* 0 -- Failure
* 1 -- Success
*1

mt FileWriterinitialize(char *filepath)
mt result 1;

outFile = fopen (filePath, "w"); II open for
writing

if(outFile == NULL)
result = 0;

return result;

* FUNCTION: FileWriterWrite
* DATE: April 2003
* PURPOSE: Writes a single unisigned integer to the

file
* pointed to by outFile.
* PARAMS:
* data -- unisgned integer data to be

written
* RETURN:
* -1 Not initialized
* 0 Failure
* 1 -- Success

mt FileWriterWrite(char data)
mt result = 1;

if(outFile NULL)
if(fprintf(outFile, "%c", data) != sizeof (data))

result = 0;
else

result = -1;

return result;

mt FileWriterNewline(void)
mt result = 1;
if(outFile != NULL)

fprintf(outFile, "\n");
else

result = 0;

return result;

mt FileWriterComma(void)
mt result = 1;
if(outFile != NULL)

fprintf(outFile, ",");
else

result 0;

return result;

/**

* FUNCTION: FileWriterClose
* DATE: April 2003
* PURPOSE: Closes the file pointer and frees any used
* memory that may have been allocated
* PARAMS:
* NONE
* RETURN:
* -1 Not initialized
* 0 Failure
* 1 Success
*1

mt FileWriterClose(void)
mt result = 1;

if(outFile != NULL)
ifUfclose(outFile)) 0)

result = 0;
else

result = -1;

return result;

46

audio.h

#if
defined (AFXAUDIOH68F81C24E17E412B99F87BCF2O6FE788IN
CLUDED)
#define
AFXAUDIOH68F81C24E17E4 123 99F8 7BCF2O6FE7 88 INCLUDED

#if MSCVER > 1000
#pragma once
#endif II MSCVER > 1000

%include "resource .h"

#endif II
!defined(AFX AUDIO H 68F81C24 E17E 4123 99F8 7BCF206FE788 IN
CLUDED)

audio.cpp
II audio.cpp : Defines the entry point for the application.
II

#include "stdafx.h"

#define MAX LOADSTRING 100

// Global Variables:
HINSTANCE hlnst;
The current instance
HWND hwndCB;
The command bar handle
HWND g_hWnd;
TCHAR szOut [MAX LOADSTRING];
be output
BOOL dataCollected = FALSE;
whether data has been collected
BOOL first = TRUE;
Indicates first run.
BOOL working = FALSE;
BOOL audioDataCollected;
BOOL trackEnabled = FALSE;
BOOL audioEnabled = FALSE;
BOOL irEnabled FALSE;
BOOL osEnabled = FALSE;

7/

//

II String to

/7 indicates

7/

enurn TASKS {NONE, AUDIO, IR, OS, TRACK};
CHAR *seedBuffer;
TASKS running = NONE;

47

DINT dataCount;
mt currentBits;
mt currentHertz;
char *outFjleName = "rand.txt";
TCHAR errorMessage [MAX LOADSTRING];
BOOL errorPresent FALSE;
DINT myError;
SEED_DATA prngData;
DINT tsDelay = 25; II
default
DINT dataCollectionPmount = 1024; II
default
DWORD threadld;
DWORD threadExitCode;

II Forward declarations of functions included in this code
module:
ATOM MyRegisterCiass (HINSTANCE, LPTSTR);
BOOL Initlnstance (HINSTANCE, int);
LRESULT CALLBACK WndProc (HWND, DINT, WPARAM,
LPARAN);
LRESULT CALLBACK About (HWND, DINT, WPARAN,
LPARAN);
void AudioCailback (void);
LREStJLT DoMouseMain (FIWND hWnd,
DINT wMsg, WPARAN wParam, LPARAN lParam);
void LoggerFunction (LPTSTR);
void PackSeedData
DWORD WINAPI AudioPowerManageSubvers ion (LPVOID
lpData);

mt WINAPI WinMain(HINSTANCE hlnstance,
HINSTANCE hPrevinstance,
LPTSTR lpCmdLine,
mt nCmdShow)

MSG msg;
HACCEL hAccelTable;

II Perform application initialization:
if (!Initlnstance (hlnstance, nCmdShow))

return FALSE;

hAccelTable LoadAccelerators (hlnstance,
(LPCTSTR) IDC AUDIO);

&msg))

48

II Main message loop:
while (GetMessage(&msg, NULL, 0, 0))

if (!TranslateAccelerator(msg.hwnd, hAccelTable,

TranslateMessage (&msg);
DispatchMessage (&msg);

return msg. wParam;

1/

II FUNCTION: MyRegisterClass()
1/

/7 PURPOSE: Registers the window class.
1/

/7 COMMENTS:
/7

II It is important to call this function so that the
application
II will get 'well formed' small icons associated with it.
'-

ATOM MyRegisterClass(HINSTANCE hlnstance, LPTSTR
szWindowClass)

WNDCLASS wc;

wc.style = CSHREDRAW
I
CSVREDRAW;

wc.lpfnWndProc = (WNDPROC) WndProc;
wc.cbClsExtra = 0;
wc.cbWndExtra = 0;
wc.hlnstance = hlnstance;
wc.hlcon = Loadlcon(hlnstance,

MAKEINTRESOtJRCE(IDIAUDIO));
wc.hCursor = 0;
wc.hbrBackground (HBRUSH)

GetStockObject (WHITE BRUSH) ;
wc.lpszMenuName = 0;
wc.lpszClassName szWindowClass;

return RegisterClass (&wc);

I-

/I FUNCTION: Initlnstance(HANDLE, int)

49

//

// PURPOSE: Saves instance handle and creates main window
//

II COMMENTS:
//

II In this function, we save the instance handle in a

global variable and
II create and display the main program window.
1/
BOOL Initlnstance(HINSTANCE hlnstance, mt nCmdShow)

HWND hWnd;
TCJ-iAR szTitle[MAXLOADSTRING]; II The

title bar text
TCHAR szWindowClass{MAXLOADSTRING]; /1 The

window class name
mt result;
hlnst = hlnstance; II Store instance handle

in our global variable
II Initialize global strings
LoadString(hlnstance, IDC AUDIO, szWindowClass,

MAX LOADSTRING);
MyRegisterClass (hlnstance, szWindowClass);

LoadString (hlnstance, IDS APP TITLE, szTitle,
MAX LOADSTRING);

hWnd = CreateWindow(szWindowClass, szTitle, WSVISIBLE,
CWUSEDEFAULT, CWUSEDEFAULT, CWUSEDEFAULT,

CWUSEDEFAULT, NULL, NULL, hlnstance, NULL);

if (!hWnd)

return FALSE;

ShowWindow(hWnd, nCmdShow);
UpdateWindow (hwnd);
if (hwndCB)

CommandBarShow(hwndCB, TRUE);

ghWnd hWnd;
currentBits = 8;
currentHertz = 44100;

return TRUE;

/1

1/ FUNCTION: WndProc(HWND, unsigned, WORD, LONG)
1/

II PURPOSE: Processes messages for the main window.
I-

1/ WMCOMMAND process the application menu
// WMPAINT - Paint the main window
II WMDESTROY post a quit message and return
//

II
LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARN4
wParam, LPARPN lParam)

HDC hdc;
mt wmld, wmEvent;
PAINTSTRUCT ps;
RECT rt;
mt result;
GetClientRect(ghWnd, &rt);

switch (message)

case WMCOMMAND:
wrnld = LOWORD(wParam);
wmEvent = HIWORD(wParam);
II Parse the menu selections:
switch (wmld)

case 1DM HELP ABOUT:
DialogBox(hlnst,

(LPCTSTR) IDDABOUTBOX, hWnd, (DLGPROC)About);
break;

case 1DM_FILE_EXIT:
DestroyWindow (hWnd);
break;

case 1DM SETTING TS 10:
tsDelay = 10;
break;

case 1DM SETTING TS 15:
tsDelay = 15;
break;

case 1DM SETTING TS 5:
tsDelay = 5;
break;

case 1DM SETTING ANT 1K:
dataCollectionAmount
break;

case 1DM SETTING ANT 5K:
dataCollectionAmount
break;

case 1DM SETTING ANT 10K:
dataCollectionlAmount
break;

= 1024;

5120;

= 10240;

51

case 1DM SETTING AMT 50K:
dataCollectiorilmount = 51200;
break;

case 1DM SETTING ANT lOOK:
dataCollectionkuount = 102400;
break;

case 1DM SETTING AMT 250K:
dataCollectionAtnount = 256000;
break;

case 1DM SETTING ANT 512K:
dataCollectionAmount = 512000;
break;

case 1DM SETTING ANT iN:
dataCo1lectionPmount = 1048576;
break;

case 1DM RUN 1MB:
dataCollected = FALSE;
running = AUDIO;
CreateThread (NULL, NULL,

&AudioPowerManageSubversion, NULL, 0, &threadld);
InvalidateRect (ghWnd, &rt,

TRUE);
result =

SoundRecorderinitialize (outFileName, dataCollectionArnount,
(DWORD)AudioCallback);

&rt, TRUE);

TRUE);

TRUE);

if(result != -1)
SoundRecorderStart 0;
working TRUE;

else
running = NONE;
InvalidateRect (ghwnd,

break;
case 1DM RUN TOUCH:

if(dataCollected == TRUE)
dataCount = 0;

dataCollected = FALSE;
running = TRACK;
InvalidateRect (ghWnd, &rt,

break;
case 1DM RUN OS RAND:

dataCollected = FALSE;
running = OS;
InvalidateRect (ghWnd, &rt,

break;
case 1DM RUN IR:

dataCollected = FALSE;

TRUE);

52

currentHertz);

currentHertz);

running = IR;
InvalidateRect (ghWnd, &rt,

break;
case 1DM SETTING 8 BIT:

SoundRecorderSet Format (8,

break;
case 1DM SETTING 1 6 BIT:

SoundRecorderSetForrnat (16,

break;
case 1DM SETTINGBKHZ:

SoundRecorderSetFormat (currentBits, 8000);
break;

case 1DM SETTING 11 KHZ:

SoundRecorderSetFormat (currentBits, 11025);
break;

case 1DM SETTING 22 KIiZ:

SoundRecorderSetFormat (currentBits, 22050);
break;

case 1DM SETTING 44 I<HZ:

SoundRecorderSetFormat(currentBits, 44100);
break;

default:
return DefWindowProc (hWnd, message,

wParam, iParam);

break;
case WMCREATE:

hwndCB = CommandBarCreate(hlnst, hWnd, 1);

CornmandBarinsertMenubar (hwndCB, hlnst,
1DM MENU, 0);

CominandBarAddAdornrnents (hwndCB, 0, 0);
break;

case WMPAINT:
RECT rt;
hdc = BeginPaint(hWnd, &ps);
GetClientRect (hWnd, &rt);
rt.top = rt.top + 30; 1/ make

room for command bar

if (errorPresent)

53

DrawText (hdc, errorMes sage,
tcslen(errorMessage), &rt, DT_LEFT DTWORDBREAK);

errorPresent = FALSE;
else

II NOTHING IS YET RUNNING
if (running == NONE)

swprintf(szOut, TEXT("Select the
desired settings for your capture method from the \"Settings\"
menu,"));

DrawText (hdc, szOut,
tcslen(szOut), &rt, DTLEFT

I
DTWORDBREAK);

rt.top = rt.top + 15;
swprintf (szOut, TEXT ("then

select the desired capture method from the \"Run\" menu."));
DrawText (hdc, szOut,

tcslen(szOut), &rt, DT_LEFT
I
DTWORDBREAK);

/1 OS COLLECTION IS RUNNING
else if (running == OS)

if (!dataCollected)
swprintf (szOut,

TEXT("Collecting data from OS."));
DrawText (hdc, szOut,

tcslen(szOut), &rt, DTLEFT DTWORDBREAK);

OsRandlnitialize (outFileName, 0, dataCollectionAmount);
OsRandStart ;

dataCollected = TRUE;
Invalidat eRect (ghwnd,

&rt, TRUE);
else

OsRandClose
swprintf (szOut, TEXT ("Data

from OS has been collected."));
DrawText (hdc, szOut,

tcslen(szOut), &rt, DTLEFT DTWORDBREAK);

II IR COLLECTION IS RUNNING
else if (running == IR)

if(!dataCollected)
swprintf(szOut,

TEXT("Collecting data from IR device."));
DrawText (hdc, szOut,

tcslen(szOut), &rt, DTLEFT
I
DTWORDBREAK);

IrRandlnitialize (outFileName, dataCollectionPinount,
(DWORD) LoggerFunction);

IrRandStart 0;

&rt, TRUE);

54

dataCollected = TRUE;
InvalidateRect (ghWnd,

else
IrRandClose 0;
swprintf (szOut, TEXT ("IR

data has been collected."));
DrawText (hdc, szOut,

tcslen(szOut), &rt, DTLEFT
I
DTWORDBREAK);

II TS COLLECTION IS RUNNING
else if (running == TRACK)

if (! dataCollected)
if(dataCount 0)

rnyError

FileWriterinitialize (outFileName);

if(!myError)
swprintf (szOut,

TEXT("COULD NOT INIT OUTFILE"));
else

swprintf (szOut,
TEXT("Scribble as randomly as possible."));

DrawText (hdc, szOut,
tcslen(szOut), &rt, DTLEFT DTWORDBREAK);

else
FileWriterClose ;

swprintf (szOut,
TEXT ("Touchscreen data collected."));

DrawText (hdc, szOut,
tcslen(szOut), &rt, DTLEFT

I
DTWORDBREAK);

II AUDIO COLLECTION IS RUNNING
else if (running == AUDIO)

if (! dataCollected)
swprintf (szOut,

TEXT("Collecting audio data"));
DrawText (hdc, szOut,

tcslen(szOut), &rt, DT_LEFT
I
DTWORDBREAK);
else

GetExitCodeThread (&threadld, &threadExitCode);

ExitThread (threadExitCode);

55

swprintf (szOut, TEXT (9Data
has been collected."));

DrawText (hdc, szOut,
tcslen(szOut), &rt, DTLEFT

I
DTWORDBREAK);

EndPaint (hWnd, &ps);
break;

case WMLBUTTONDOWN:
case WMMOUSEMOVE:

if (running TRACK)
if (! dataCollected)

DoMouseMain (hWnd, message,
wParam, iParam);

break;
case WMDESTROY:

CommandBarDestroy(hwndCB);
PostQuitMessage (0);
break;

default:
return DefWindowProc(hWnd, message, wParam,

iParam);

return 0;

II Mesage handler for the About box.
LRESULT CALLBACK About (HWND hDlg, UINT message, WPARAM wParam,
LPARAM lParam)

RECT rt, rtl;
mt DlgWidth, DigHeight; II dialog width and height

in pixel units
mt NewPosX, NewPosY;

switch (message)

case WMINITDIALOG:
II trying to center the About dialog
if (GetWindowRect(hDlg, &rtl))

GetClientRect (GetParent (hDlg), &rt);
DlgWidth = rtl.right rtl.left;
DlgHeight = rtl.bottom rtl.top
NewPosX (rt.right

rt.left - DlgWidth)/2;
NewPosY = (rt.bottom -

rt.top - DlgHeight)/2;

physical screen

NewPosY,

SWPNOSIZE);

56

1/ if the About box is larger than the

if (NewPosX < 0) NewPosX = 0;
if (NewPosY < 0) NewPosY = 0;
SetWindowPos(hDlg, 0, NewPosX,

return TRUE;

0, 0, SWPNOZORDER I

case WMCOMMPND:
if ((LOWORD(wParam) == IDOK)

(LOWORD(wParam) == IDCANCEL))

return FALSE;

break;

EndDialog(hDlg, LOWORD(wParam));
return TRUE;

/1

II FUNCTION: AudioCaliback
I-

II PURPOSE: Receives the callback when the WAVEHDR object
II is full and ready to be read.
'-
void AudioCailback (void)

dataCollected = TRUE;
SoundRecorderCiose 0;
RECT rt;
GetClientRect (ghwnd, &rt);
InvalidateRect (ghWnd, &rt, TRUE);

/**

* FUNCTION: DoMouseMain
* DATE: April 2003
* PURPOSE: Handle touchscreen events for pen tracking.
* PAEANS;
* hWnd --
* wMsg --
* wParam --
* lParam --

57

*

* RETURN:
* LRESULT
*

* NOTES: Adapted from code found in Douglas Boling's
book
* "Programming Microsoft Windows CE"
(2nd Ed.).
*1

LRESULT DoMouseMain (HWND hWnd, UINT wMsg, WPARAM wParam,
LPARAM iParam)

POINT ptM;
UINT uPoints = 0;
MDC hdc;

CHAR temp;

ptM.x = LOWORD(lParam);
ptM.y = HIWORD(lParam);

if(dataCount != dataCollectionmount)
temp = (ptM.x & Ox0OFF) " (ptM.y & Ox0OFF);

II collect the xor of low bytes.
FileWriterWrite (temp);
dataCount++;

else
dataCollected = TRUE;
dataCount = 0;
RECT rt;
GetClientRect (ghWnd, &rt);
InvalidateRect (ghWnd, &rt, TRUE);

hdc = GetDC(hWnd);

SetPixel (hdc, ptM.x, ptM.y, RGB(0,0,0));
SetPixel (hdc, ptM.x+l, ptM.y, RGB(0,0,Ofl;
SetPixel (hdc, ptM.x, ptM.y+l, RGB(0,0,0));
SetPixel (hdc, ptM.x+l, ptM.y+l, RGB(0,0,Ofl;

ReleaseDC(hWnd, hdc);

Sleep (tsDelay);

return 0;

58

* FUNCTION: PackSeedData
* DATE: April 2003
* PURPOSE: Take one bit of entropy collected and pack

these
* bits into words for use in PRNG.
* PARAMS:
* NONE
* RETURN:
* NONE
* NOTE: Assumes that the raw seed data has already

been
* collected.
*1

void PackSeedDatao)
mt i, j, k, temp;
mt mask = Ox0000000l;

prngData.clen = 60;
prngData.tlen = 20;

for(i = 0; i < 60; i++)
for(j = j*; j < (j+l)*8; j++)

temp = seedBuffer[j] & mask;
prngData.c{i} = prnqData.c[i] temp;
prngData.c{iJ <<= 1;

i i now equals 60
for(i; i < 80; i++)

for(k = 0, j = i*8; j < (i+l)*B; j++, k++)
temp = seedBuffer[j] & mask;
prngData.t[k] = prngData.t{k] I temp;
prngData.t[k] << 1;

/**

* FUNCTION: LoggerFunction
* DATE: April 2003

hDJ

* PURPOSE: Allows other components to "write back" to
this
* component and then prints on the

Screen.
* PAEANS:
* message -- a pointer to the message
(null term string)
* RETURN:
* NONE
*1

void LoggerFunction(LPTSTR message)
swprintf (errorMessage, message);
errorPresent = TRUE;
RECT rt;
GetClientRect (ghwnd, &rt);
InvalidateRect(g_hWnd, &rt, TRUE);

DWORD WINAPI AudioPowerManageSubversion(LPVOID lpData)
while (dataCollected)

SystemldleTimerReset ;

Sleep (2000);

return ERROR_SUCCESS;

Linux Source

Deskew.c

* DESKEW.0
*

* AUThOR: A. W. Montville
* VERSION: 1.0
*

* Given an input file which has entropy bits collected,
i.e., the lowest
* bit from collected raw bytes, the output file will

contain deskewed information.
*

* The input data (read from the input file supplied at the
command line) is
* parsed in bit pairs starting with the first byte of the

file and moving toward
* the last byte of the file. The first bit of the pair, a,

is compared to the

* second bit of the pair, b. If they are the same, both
bits are discarded, and
* the algorithm moves on to the next bit pair. If they are

different, then the
* bit a is kept as the output bit of the generator which

produced the input data.
*

* This method is described in "Handbook of Applied
Cryptography", by A. tIenezes,
* et. al. (see page 173).
*

* Copyright Cc) 2003 A. W. Montville
*1

#include <fcntl . h>
#include <stdio.h>
#include <stdlib. h>
#include <sys/stat.h>
%include <sys/types.h>
finclude <unistd.h>

#define MAX DESKEW BUFFER SIZE 1048576 /1 1
Meg.

void Des kewusage (void);

mt main(int argc, char* argv[])

char *inFilepath = argv[1];
char *outFilepath argv[2];
unsigned char readBuffer [MAX DESKEW BUFFER SIZE];
unsigned char writeBuffer [MAX DESKEW BUFFER SIZE] ;
mt eofFlag = 0;

unsigned char
unsigned char
unsigned char

modet

temp[1];
a;

b;

mode;

mt inFile;
handle to input file

mt outFile;
output file

mt count;
counts bytes read from input file

mt packCount;
that have been packed

mt idx;
output buffer

!I'A

/1 handle to

1/

II tracks bits

II index for

61

mt 1; //
byte loop index

mt //
bit loop index

unsigned char maskArray[8] =
0001 [0]

II 0000 0010 [1]

1/ 0000 0100 [2]

II 0000 1000 [3]

II 0001 0000 [4]

/1 0010 0000 [5]

/1 0100 0000 [6]

II 1000 0000 [7]

OxOl, II 0000

0x02,

0x04,

0x08,

OxlO,

0x20,

0x40,

0x80

II Check that enough arguments were supplied, otherwise
print usage

if(argc >= 3)

mode = SIRUSR
I
SIWDSR

I
SIRGRP SIWGRP

I

SIROTH;

inFile = open(inFilePath, ORDONLY, mode);
outFile = open(outFilePath, OWRONLY OEXCL

I

OCREAT, mode);

II Detect error opening input file
if(inFile == -1)

perror("inFile");
return 1;

II Detect error opening output file
if(outFile == -1)

perror ("outFile");
return 1;

packCount = 0;

62

%ifdef DEBUG
printf("Starting process.. .\n");

#endif

while(l)
count 0;

i = 0;
idx = 0;

#ifdef DEBUG
printf ("Reading Input file: %s",

inFilePath);
#endif

do
count = read(inFile, temp, 1);

II Read one byte from the
file

if (count 0)

II If byte not read (or
error), then

flag to indicate such.
II set EOF

eofFlag = 1;

#ifdef DEBUG
printf ("count == EOF\n");

#endif

%ifdef VERBOSE_DEBUG
printf ("readBuffer [%d] being

assigned\n", i);
endi f

if (eofFlag)

set, then break out
II If EOF flag is

break;

loop prior to writing.
II of the

readBuffer[i) temp[0];
i++;

while (i < MAX DESKEW BUFFER SIZE);

count =

63

%ifdef DEBUG
printf("%d bytes read so far, writing

to output file.. .\n", count);
#endif

for(i = 0; i < count; i++)

for(j = 7; j >= 1; j -= 2)
a = maskArray[j] &

readBuffer{i];
b = maskArray[j-lJ &

readBuffer[iJ;

b is zero, or if a is

then we have different

entropy.

zero, then the bit was set and

II If a is not equal to zero and

II equal to zero and b is not,

II bits and should collect the

if((a && !b) II (!a && b)

/1 If a is not equal to

// a 1 is written to the
lsb of writeBuffer[idx]; otherwise

II a is zero, and the
buffer remains unchanged.

if(a)
writeBuffer[idx] 1=

Oxi;

bits have been packed into

have been through to 6, then

place. Otherwise, the index is

packCount variable is reset.

1;

II Keep track of how many

// the character. If we

/1 the last shift takes

II incremented and the

if(packCount < 7)
packCount++;
writeBuffer [idxj <<=

else
packCount = 0;
idx++;

write (outFile, writeBuffer, idx-1);

if (eofFlag)
break;

close(inFile);
close (outFile);

else
Des kewUs age 0;

return 0;

void Des kewUsage C)

printfY'\n\n");
printfyv*** USAGE ***\flt!);

printf(" deskew <infile> <outfile>\n");
printf("\n\n");

collect_entropy.c

* COLLECT ENTROPY.0
*

* AUTHOR:
* VERSION:
*

A. W. Montville
1.0

* Given an input file, this creates an output file
containing 1 bit of
* data for every S bits collected. The least-significant

bit is collected.
*

* Copyright (c) 2003 A. W. Montville
*1

#include <fcntl.h>
4include <stdio . h>
#include <stdlib.h>
#include <sys/stat.h>
#include <sys/types .h>

65

#include <unistd. h>

void CollectEntropyUsage (void);

mt main(int argc, char* argv[])

char* inFilePath = argv[1];
char* outFilePath = argv[2];
char temp[1};
char toWrite[1];
modet mode;
mt inFile, outFile;
mt count = 0;
char mask = Ox000l;

II Check that enough arguments were supplied, otherwise
print usage

if(argc >= 3)

mode = SIRUSR
I
SIWUSR

I
SIRGRP

I
SIWGRP

SIROTH;
inFile = open(inFilePath, ORDONLY, mode);
outFile = open(outFilePath, OWRONLY

I
OEXCL

OCREAT, mode);

if(inFile == -1)
perror ("inFile");
return 1;

if(outFile == -1)
perror ("outFile");
return 1;

count++;
while(read(inFile, temp, 1) > 0)

towrite[0J = toWrite[0J
I

(temp[0J & mask);
lf(count 8)

toWrite[0J = toWrite[0) << 1;
count++;

else
count = 1;
write(outFile, toWrite, 1);

close(inFile)

close (outFile);
else

CollectEntropyUsage C);

return 0;

void CollectEntropyUsage()
printf("\n\n");
printf(I*** USAGE ***\flul);

printf(" colent <infile> <outfile>\n");
printf("\n\n");

trunc_files.c
/**
* TRUNCFILES.0
*

* AUTHOR: A. W. Montville
* VERSION: 1.0
*

* Given an input file, this will truncate the file to a
* user-defined byte length
*

Copyright (c) 2003 A. W. Montville
*1

%include <fcntl . h>
#include <stdio.h>
%include <stdlib.h>
#include <sys/stat.h>
#include <sys/types * h>
%include <unistd. h>

#ifndef TRUNC FILE M\X BUFFER SI ZE
#define TRUNC FILE MPX BUFFER SIZE 2097152

1/ 2 MB buffer
endi f

// Function Prototypes
void TruncFileUsage (void);

II Main program entry
mt main(int argo, char* argv[))

67

char *inFilepath = argv[1];
char *outFilepath = argv[2];
char temp[l];
char buffer [TB.UNC FILE MAX BUFFER SIZE];
irit inFile, outFile;
mt ± = 0;
mt count = 0;
mt amtRead = 0;
mt truncAmt = 0;
modet mode;

// Check that enough arguments were supplied, otherwise
II print usage
if(argc >= 4) {

truncAmt = atoi(argv[3]);

II Open file handles
mode = SIRUSR SIWUSR S_IRGRP \\

SIWGRF SIROTH;
inFile = open(inFilePath, ORDONLY, mode);
outFile = open(outFilePath, OWRONLY \\

OCREAT, mode);

1/ check inFile
if(inFile == -1)

perror ("inFile");
return 1;

II check outFile
if(outFile == -1)

perror ("outFile");
return 1;

II Read the entire file into buffer[]
while((amtRead read(inFile, temp, 1)) > 0)

buffer[i] = temp[0];
count += amtRead;
i++;

II Return an error if the input file contains
II fewer
II bytes than the truncation amount.
if (count < truncAmt)

perror("inFile too small");
return 1;

68

else

II Write truncated amount to outFile
write(outFile, buffer,trunc23mt);

II Close file streams
close (inFile);
close (outFile);

II Display proper usage
TruncFileUs age 0;

return 0;

void TruncFileUsage() {

printf("\n\n");
printf(*** USAGE ***\fl'l);
printf(" truncfile <infile> <outfile prefix> \\

<truncation amount in bytes>\n")
printf(" NOTE: The last argument to truncfile \\

cannot be checked for errors\n");
printf(" therefore the output file size \\

must be checked prior to use.\n");
printf("\n\n");

