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Using an object-oriented approach, bBlocks adapts an open system policy,

which gives end users the flexibility of incorporating user-defined components into

end models and integrating the user-preferred architecture. Another purpose of this

research is to provide a mechanism to model and study future microprocessors.

bBlocks is implemented in Java, a truly cross-platfonn object-oriented language. It

is conceivable that bBlocks could eventually run on any machine, regardless of the

architecture or operating system as long as it is running the Java Virtual Machine.

In addition to this, with Java GUI tools, bBlocks provides probes to investigate the

activities inside the blocks.

To illustrate the effectiveness of bBlocks, two architectures, SuperScalar

and CDF, have been implemented.
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bBlocks:
A Flexible Object Oriented MicroArchitecture Simulation Framework

Chapter 1 INTRODUCTION

1.1 Background Overview

This study is one of the projects being canied out by the CFPP

(CounterFlow Pipeline Processors) research group at Oregon State University. The

counterfiow pipeline concept was originated by Sproull [1] as architecture for

asynchronous processor design. It offers many useful properties including local

control, local message passing, and an overall simple design methodology. The

CFPP research group introduced the same idea to synchronous processor design

and has made considerable progress by proposing the addition of two improved

approaches, Virtual Register Processor (VRP) [2] and CounterDataflow Processor

[3] [4](CDF), to the original CFPP architecture. A general-purpose simulator was

also proposed for measuring and evaluating various architectures.

In recent years, microarchitecture became more and more complicated. To

construct a new processor or even part of it can be very expensive and time

consuming. Thus, more and more microarchitecture researches depend on software

simulation tools. Unfortunately, most of the simulation tools have been developed

for some very specific research areas, and are difficult to modify to simulate things



that they were not designed to simulate [5], such as a different architecture, a

different instruction set, or even multiple hardware contexts for multithreading. In

this case, if you have a new idea that is significantly different from existing

simulated designs, you are usually stuck with writing a simulator from scratch, or

spending a lot of time attempting to modify an existing simulator to do something it

was never intended to do. Diep and Shen [6] proposed a microarchitecture

workbench called VMW in attempt to generalize simulator writing. However, their

work is only suitable for modeling superscalar machines.

For the above reason, CFPP research group proposed a general purposed

microarchitecture simulation package. The primary goal of this package is

flexibility, which means it is easy to adapt to new microprocessor architectures.

The performance of the simulator itself is important, but secondary. Todd Austin

[7] clearly described the relationship of the three features to simulators. All

simulators have three exclusive features, flexibility, speed and detail, which need to

be balanced between as shown in Figure 1. Simulations can be optimized usually

for one or possibly two of the three features. However as one optimizes for one

feature, it may affect the other two features. Most simulators currently optimize for

speed and to a less extent for detail and flexibility.

The simulator proposed here has a reasonable amount of detail, provides

lots of flexibility and reduces development time at the expense of speed. Hopefully,

researchers can concentrate on problem depth rather than on the development of

simulation tools.



detail

speed

flexibility

Figure 1. Austin's Triangle

1.2 From aBlocks To bBlocks

"Architectual Blocks" (thus "aBlocks"), the first version of simulation

framework, was developed by Michael F. Miller and Kenneth J. Janik [8]. They

successfully utilized the object-oriented concept in their design by declaring each

significant structure in the processor as an aObject. aObject is the basic component

to contain or hide a processor's data structure and operations. It was a good

beginning of making the code reusable. In aBlocks framework, numerous general

objects were made, including pipeline object, execution unit object, ROB object,

cache object, decode and fetch object. Directly mapping hardware unit to software

object makes it quite straightforward to understand the simulator code and

structure.

Java [9] was used to implement aBlocks. There are following benefits of

using Java according to Janik [10]. Java is a simple, object-oriented, distributed,

architecture neutral, portable, high-performance, multithreaded, and dynamic

language. This matches well with our requirements for a simulator. Also Java is
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substantially easier to program because of the lack of several of C's "features" that

are cormnonly abused or misused, such as pointers, preprocessing directives,

"goto"s and lots of other "features" commonly found in the obscured C context

enthes. In addition, Java offers multi-platform binaries, a graphical API, and much

easier debugging than most object-oriented languages. The tradeoff is that we do

lose a substantial amount of performance, but we believe that the ease of

programming (which significantly reduces development time) offsets this problem.

As a first version of simulation framework, aBlocks was successful but it

also has a lot of shortcomings.

Although the object-oriented language Java was used to implement

aBlocks, the design didn't follow 00 design rules. The object concept is obscure in

aBlocks. The relationship among objects is even more confusing. Each object

involves a give() method, which is used to "call" other object. One object is

triggered when it got a call and then it continuously triggers other objects by

issuing a new call. Give() method linked all objects working into an inseparable

chain. That greatly violates the data separation principle in object oriented design

and eventually makes the reuse of code impossible.

aBlocks was designed to be a trace-driven simulator. It has few details in

most of the blocks. The deficiency in details makes it hard to evaluate lots of

architecture features, such as branch prediction miss, instruction cache miss, etc. To

implement a microarchitecture involves many blocks working under various

assumptions. This also departs from the primary goal of the simulator.



A new simulation framework - "bBlocks" was proposed and developed by

this study to solve the above problems. bBlocks is not simply upgraded from

aBlocks. It uses different solutions from design to implementation although it keeps

the primary goals unchanged.

1.3 Objective

The objective of this study is to establish a simulation framework to be used

in variety of microarchitecture analysis and performance evaluation. The proposed

framework will be flexible allowing rapid microarchitecture prototyping and quick

modifications to represent various architecture studies by advocating heavy object

reusability.

Execution-based simulation engines are developed to give the architecture

researchers sufficient details to analyze their architecture structure, verify their

theory, find the bottleneck and evaluate the performance. The simulation engine

need to be encapsulated by a graphic user interface, which has probes penetrating

into each simulator unit.

The overall speed of the simulator is of course important, but is considered

of less importance to the flexibility, speed of prototyping, and even to detail, in this

study. That is speed was sacrificed for flexibility and detail.

From the standpoint of users, multi-platform capabilities are considered

important. This allow users to port simulators to different hardware platforms as



new and faster machines are made available. Similarly the capabilities of

supporting multithreading and parallel computing to reduce overall simulation time

are also desirable, although they are also beyond the scope of this study.

1.4 Scope Of This Study

This thesis focuses on implementing an open-ended simulation toolkit,

which exploits the benefit of object-oriented technologies for promoting

reusability, flexibility and integrity, factors that are crucial for ensuring software

quality and productivity. Due to time constraint, we define the following limits to

this study.

This study is to propose a feasible modeling methodology together with a

generic microarchitecture prototyping library. But accomplishing and

optImizing this library may need years of work. It's out of the range of this

study.

This study is to provide a simulation toolkit, instead of doing research on

different architectures. Thus, simulation result is collected just for illustrating

and verifying the correctness and efficiency of our simulator.

This study is a good attempt of using Object Oriented approach in an

application. It's not our goals to perform 00 methodology research.
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. The simulation framework developed in Java is theoretically platform

independent. However, it is not our responsibility to do the maintenance and

troubleshooting of different platforms.

The SimpleScalar ISA developed by Todd Austin and Doug Berger [7] is

chosen as the default instruction set. It has all the necessary features of a

modern ISA, without any strange "leftover" bits that are in most of today's

ISAs (register windows in SPARC, variable length instructions in x86, strange

floating point coprocessor math in MIPS and x86) [101. It also has an

impressive tool based on gcc to produce SimpleScalar binaries, and a simulator

capable of producing traces. All the implementation is based on SimpleScalar

ISA, although we provide users a possibility to put in a new ISA by simply

adding a new ISA interpreter.

This thesis is organized according to the bBlock software architecture,

which has three levels of abstraction: block concept, general modeling library and

simulation engine. Chapter 2 discusses the first level abstraction - block

abstraction, starting from object-oriented concept. Chapter 3 describes the general

modeling library and its basic abstraction models. Chapter 4 demonstrates how to

build a simulation engine with the existing models and uses SuperScalar and CDF

as examples. Chapter 5 discusses simulation result. Chapter 6 concludes the work.



Chapter 2 MODELING CONCEPT

2.1 Object Oriented Technology

Object-oriented technology emerged in the mid- to late 1980s as businesses

began to seriously consider object-oriented programming languages for developing

systems. Even though Simula is credited as being the first object-oriented language,

popular object-oriented languages such as Smailtalk, C++, Objective C, and Eiffel

came into their own in the 1980s [11]. All of these object-oriented languages

approach programming from a significantly different paradigm than previous

programming languages. Rather than follow the structured, deterministic, and

sequential programming paradigm associated with languages such as COBOL,

Fortran, C, Basic and others, these languages follow the approach pioneered by

Simulabased on object, attributes, responsibilities.

The Java language, as the latest development in commercial object-oriented

technology, has combined many of the good features from all previous ones [12].

For example, while C++ was just a programming language, Java, with its large

standard libraries, is a complete object-oriented system, just as Smalitalk is.

However, compared to Smalltalk, Java programming is less interactive and more

rigid, and Java libraries give better support for the creation of distributed and multi

process systems. It also has a much larger and greatly increasing user community

and considerable commercial push.



There are several key characteristics fonning the fundamental building

blocks for Object Oriented technology: 1) abstraction, 2) data encapsulation, 3)

inheritance, 4) polymorphism and 5) reusability of code. The following paragraphs

briefly describe these characteristics according to R. J. Norman [11].

. Abstraction is the principle of ignoring those aspects of a problem domain that

are not the current purpose in order to concentrate more fully on those that are.

It has to do with the amount of detail you care to get involved in. in systems

analysis and design, this is called levels of abstraction. A problem can have

several levels abstraction. Each level concentrates on a given level details.

Data Encapsulation is the notion that a software component should isolate or

hide single design decision. It requires the problem domain to be decomposed

into small encapsulated-units. Encapsulation helps to localize the volatility

when changes and maintenance are required. With the object-oriented

methodologies, encapsulation incorporated both functions and data together

into objects. It also provides special protection to data that belong to the object

or a set of objects. This means an object can prevent some other unrelated part

of the program from accidentally modifying it or from incorrectly using the

private parts of the object [13]. The private parts can only be changed or

retrieved by authorized functions.

Polymorphism is the term used to describe variables that may refer at run-time

to objects of different classes.
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. Inheritance is the property that allows one object to acquire the properties

from another one. The inheritance mechanism makes it possible for one object

to be an "instance" of a more general case.

Reusability In OOP, objects are classified, written, created, and debugged in

advance. Then they can be distributed or used by other programmers in their

own programs. Further more, because of inheritance, a programmer can take an

existing class and, without modifying it, add additional features and capabilities

to it.

Contrast to traditional function-oriented technology, object-oriented

technology describes the real world as an integration of some individual objects. It

coheres the people's view of the realistic world [13J. In object oriented analysis,

objects are finite data models with functions representing states of a physical object

in the real world. The object perspective, rather than the functional perspective of

traditional methodology, is used to approach the software problem of object-

oriented programming.

2.2 Modeling Methodology

The most promising way to develop a complex software system is to break

a large system up into manageable components [14]. Decomposition provides a

very useful strategy to solve complex problems by dealing with the much simpler
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components and then integrating them together. There are several advantages in

component composition:

Reusability a well-designed component can be used repeatedly, saving the

redesign, reprogramming and retest time.

Reliability it is safer to use a component from some other applications, which

have been tested and errors removed.

Extendibility applications and systems composed from software components

can be extended by substituting existing components with new ones.

2.2.1 Functional decomposition

Traditionally, in function-oriented technology, a system is described by

functions and data structures with data flows connecting them. The decomposition

is done functionally - a high level function is broken into sub-functions that are

further broken down until the bottom level is reached. The sub-functions are

usually developed to fit one or several functional needs. They are called in some

designated places to perform certain previously defined processes.

To enhance the ability to compose and reuse software, the experienced

designers classify components by the components collaborative behavior.

Similarity of components is based on the principle that two similar components can

be substituted without the rest of the software in the system observing any

difference. Additionally, the other components must keep in a similar way when
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some components in the system are substituted by components with similar

behavior.

Since there is no efficacious guidance, the designer's experience is highly

desired here.

2.2.2 Object decomposition

The object decomposition approach suggests breaking systems down by

using higher-level objects rather than higher-level functions. These higher level

objects are further broken down to lower-level objects, each level objects dealing

with different level of details. That is, the object of one level focuses on modeling

some specific level of detail of the real world physical object's behavior. The

higher-level objects then communicate and use each other in roughly the same way

that the lower-level objects do.

The object is the basic component in object-oriented technology. With the

characteristics of encapsulation, inheritance and polymorphism, we have good

reasons to believe that object decomposition makes more sense for creating an

extendible system. At present the most successful extensible systems are built using

object-oriented components [15].
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2.23 Comparison

Traditional modeling paradigm and object-oriented modeling paradigm are

compared by Mize [15J. Table I contains a brief summary of the comparison.

Table 1. Contrasting Traditional and Object-Oriented Paradigms for Simulation
Modeling

Factors Traditional Modeling Object-Oriented Modeling
Paradigm Paradigm

Model Construction:

Software Based on procedural Based on object-oriented
programming style programming style

Problem description Abstract Natural and intuitive

Level of detail More detail means much Abstraction level is the key
more complexity in code to solve complexity problem

Effortltime/cost Moderate costs of model Initial cost of establishing
development, but a detailed model is very high,
"throwaway" type but cost of subsequent reuse

is relatively low

Model Attributes:

Purpose Usually a unique model More general models
is created for a specific possible for multiple
purpose purposes

Usage Single usage, throw-away Repeated usage and
models continuous refinement

Flexibility Highly inflexible; Highly flexible, due to the
Changes almost always ability to modify
result in a complete fundamental building
rewrite of program blocks; Quick

reconfiguration is possible



14

Object-oriented technology has opened a new avenue in the rapid

prototyping and development of complex software. Now, more and more system

designers realized the significant advantages of object-oriented technology in

describing large software problem, simplifying code maintenance and providing

extensibility for future enhancements. The following chapters will show how to

design reusable and maintainable components and give more efficient to system

development and maintenance.

2.3 First Level Abstraction

This section focuses on the first level abstraction of microprocessor

architecture. Block and strategy are principle concepts used to describe the

microarchitecture being modeled.

There are many substantially different modeling approaches to fulfill the

decomposition task. However, to achieve the primary goals - getting the most

flexibility and reusability, the modeling abstraction need to be carefully considered.

The central idea in making components reusable is to involve the stable behavior

inside it and exclude the variable features outside it. Another useful idea is that

features tending to change at the same time should be grouped together. After

inspecting several microarchitectures, we refined two basic abstractions, block and

strategy, to model the system. The following will describe these two abstractions in

detail.
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2.3.1 Block abstraction

Block is the key concept in bBlocks. It inherits the idea of "creating each

significant structure in the processor as an object" [8] from aBlocks. It is the basic

unit to encapsulate the data structure and simulation activities, also the basic

reusable and extendible component to construct the simulator, as the brick to the

building. Figure 2 shows the basic block diagram in bBlocks.

input E'::) status 9
output

input
output

output
pre-tick tick

imt A A

Figure 2. Basic Block

The basic block is defined as a module which, having some kinds of

standard inputs and outputs, with the ability to memorize its own status, can do

some pre-designed operations to the inputs and get the output when it is thggered.

It potentially corresponds to the microprocessor hardware modules. It has two

synchronized behavior: pre-tick() and tickO. In pre-tick() period, a block

communicates with other blocks and prepares the input into the input buffer. In
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tick() period, a block manipulates the input and gets the output ready into the

output buffer. A block also has some standard information probe engines, such as

toStringO, report() and statusO, which provide methods to dump the current status

of itself. The basic block is created as an abstract class in bBlocks (shown in Figure

3). Any other simulator blocks are extended from it.

ic abstract class Block implements Testable[

private String name;
private Simulator owner;
private StatCalculator statistic;

public Block( String name, Simulator owner )[
this.name = name;
this.owner = owner;

public abstract boolean preTick() throws SimException;

public abstract boolean tick() throws SimException;

public String toStringQ[
return "I am "+ this.getClass().getNameQ+" "+ name +"\n";

public String reportQf
return "I am "+ this.getClassQ.getName()+" "+ name +"\n";

public String statusOf
return "1 am "+ this.getClassQ.getName()+" 0+ name +"\n";

Figure 3. Block Abstraction
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So far, in bBlocks library, some essential blocks are provided, including

MemoryUnit, PreFetch, Decoder, Instruction Window, Reorder Buffer, Instruction

Pipe, etc. In this way, the basic microprocessor activities were decomposed and

encapsulated into blocks.

2.3.2 Specific strategy

It is the fact that every simulator is constructed under some specific

conditions and assumptions. There is no exception for bBlocks. These conditions

and assumptions may vary in different architecture research. For instance, bBlocks

uses SimpleScalar ISA as defaulted ISA. The executive binary depends on

SimpleScalar's gcc compiler. That's the specific mechanism bBlocks can not

avoid even as a generic modeling library. Strategy is used here to group and

represent those features liable to change. The goal we are seeking is to give it the

most possibility to involve different strategies or to change from one to another.

Strategy is not a hardware-associated object. Instead, it is more reasonable

to think it as a protocol or rule the hardware (block) need to follow. The block

access the protocol by declaring a standard interface associated to the strategy

provider. The separated strategy provider is the place to implement whole strategy

with detail. Therefore, the block keeps being a generic one, not relying on any

specific strategies. In the above example, a specific strategy called SimpleScalar

ISA interpreter is provided to implement all the methods concern to SimpleScalar
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ISA. The blocks using this strategy only need to declare an ISA function interface

in their blocks. The simulation engine is responsible for associating the ISA

function interface to SimpleScalar ISA interpreter.

When a new ISA is needed, the only thing you need to do is to provide a

new ISA interpreter in correct directory and associate your simulation engine to

your new interpreter. (That can be done in a definition file.) The polymorphism

characteristic of object-oriented technology offers that benefit.

2.4 Decomposition

The "clock" plays an important role in modem RISC microprocessor. Most

of the hardware units are synchronized by clock. That means the operation of those

hardware units happen simultaneously, synchronous with the clock signal. And

further more, lots of factors, likes IPC (Instructions Per Cycle), which we are trying

to evaluate with our simulator, is relatively concerned with clock cycles. Just like

the hardware, bBlocks uses "clock" to drive and synchronize the block, which has

two synchronized phase, pre-tick() and tickO. The former, communicating phase,

gets inputs from other blocks and puts them into input buffer. The later, data

processing phase, operates input data, changes current status and puts the outputs

into the output buffer. The input buffer and output buffer are not only separations

between blocks but also used for synchronizing clock activities.
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Now the block concept can be updated. It is a software model to imitate the

behavior of a piece of hardware unit which identifies itself by lying between two

synchronized buffers and using clock to synchronize its behavior. For example, in

five-stage MIPS architecture, five blocks are deduced accordingly. Those are IF,

ID, EX, MEM and WB. With same theory, SuperScalar architecture is decomposed

to PreFetch, Decoder, Instruction Window, Execution Unit (EU, BEU, MEU),

Reorder Buffer, Register File and Memory Unit. CDF architecture has most of the

components from SuperScalar except Instruction Window. It has Instruction Pipe

instead. The following chapter reveals the detail of each block.

Although in the software simulator, blocks are triggered sequentially for

pre-tick() and tickO, it is obvious that the concurrent concept is implicitly involved

in the design of bBlocks. Block, which has input and output buffer to isolate itself

from outward and uses clock signal to synchronize the behavior, is the basic

concurrent component in bBlocks.
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Chapter 3 MODELING LIBRARY

This chapter deals with the second level of abstraction - the generic

modeling library. In brief, this second level of abstraction is using block and

strategy concept to model the microarchitecture. Some reusable components are

constructed, which create the stem of a generic modeling library.

3.1 Notation

The following notations are used in diagrams showing architecture details:

I. output

9 block symblol

(g) strategy symbol

association symbol, e.g. a block may be
associated to a strategy. This association
may involve a modification to strategy data.

association symbol, e.g. a block may be
associated to a strategy. This association
only involves read to strategy data.

Figure 4. Diagram Notation
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3.2 PreFetch

PreFetch generates instruction-loading requests and parses the loaded

instructions for next simulation stage. The instruction loading address is determined

according to current program counter (PC) and branch prediction information. The

branch prediction information is provided by a branch predictor strategy, which is

separated from PreFetch block and ready to change. Now, bBlocks only involves a

very simple branch predictor strategy. It uses a hash table to record the recent

branch history. The instruction is considered to be a branch, if its address has a

match in this hash table. Register File strategy is connected to PreFetch for

supplying program counter (PC) information.

Inst loading Loaded
request insts

Parsed

BranchLj.nstc

Figure 5. PreFetch Block
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3.3 Decoder

Decoder translates original instruction into instruction token, which carries

all the necessary infonnation for execution. A separate ISA interpreter provides the

translation strategy. Register File provides the register value for decoder. Register

renaming also happens inside the Decoder.

Original I I Decoded
insts

interpreterFil'

Figure 6. Decoder Block

3.4 Instruction Window

Instructions wait in Instruction Window till they are ready for execution.

Then they are issued to available execution units. It can issue multiple instructions

out of the original program order. Once the instruction is executed, the result is

forwarded to Instruction Window to resolve the instruction dependency. Instruction

Window also guarantees every instruction in it gets an entry reserved in Reorder

Buffer.



instruction

EEer

3.5 Execution Unit

Inst
issue

ROB entry Forward
allocate inst

Figure 7. Instruction Block
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Execution Unit is the place where instructions are executed. There are two

extension blocks derived from Execution Unit: BEU and MEU. BEU generates

branch interrupt if it finds a branch prediction miss. MEU handles all the memory

access. It has an interface with memory hierarchy.

Issued Execution

inst INT_ALU result

Figure 8. Execution Unit
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3.6 Reorder Buffer
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Reorder Buffer reserves an entry for every instruction entered into

Instruction Window. This entry is used to store its execution result. The execution

results of the instructions are retired in order after they are made ready.
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RF accepts retired execution results and modifies the register values

accordingly. The register values are saved in the register file, which is another

strategy dependent on ISA.

Register Retired

File I RF 'F Result

Figure 12. RF
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3.8 Memory Unit

This is the generic memory/cache object. It can act as any level of cache,

with any size (but all 'dimensions' must be in powers of 2) and any latency. It

checks the input from lower level cache. If it hits in the cache set table, result is

returned to lower level output, otherwise it is sent to next level. The data returned

from high level is passed to lower level and loaded into the cache set table at the

mean time.

High level High level
output input

Set table

Memory Unit

Low level Low level
input output

Figure 13. Memory Unit

3.9 Strategies

So far, in bBlocks, several strategies are provided. Table 2 lists the

strategies.
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Table 2. Strategies

Strategy Description

SimpleScalar ISA Interpreter Implement all mechanisms associate to ISA

Brach Predictor Implement branch prediction strategy

Register File Implement registers structure

Memory File Implement simulation virtual memory
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Chapter 4 SIMULATION ENGINE

In the object modeling framework described above, the microarchitecture is

divided into individual blocks such as PreFetch, Decoder, Instruction Window,

Reorder Buffer, Register File and Memory Unit. Each of these blocks represents a

physical object in the real world. This chapter will describe how to integrate these

models into a simulation engine - the third level of abstraction.

4.1 Pack Blocks Into Simulation Engine

All features discussed above are architecture independent. But to construct a

simulation engine, the architecture dependent features can not be avoided.

First, to create a simulation engine, connectors are needed to link the blocks

together. Connector also serves as an adapter to transfer data type when two

interfaces with different data types are linked. Connectors are architecture

dependent features. For Example, in SuperScalar, Execution Units are connected to

Instruction Window and in CDF, they are connected to Instruction Pipe. For this

reason, connectors are separated from original blocks and implemented in the

simulation engine level to protect the original blocks to be a generic one.

ABlocks used a fixed interface (aToken) to connect blocks. It offers

aBlocks a very simple connector, but at the same time brings some problems.

aToken is the most confusing part in aBlocks. The over generalized structure needs



29

a lot of assumption to make it understandable. It greatly hurts the data encapsulate

theory. bBlocks avoids it by choosing several well designed interface types. For

instance, in bBlocks, the "CacheLine" type serves for the interfaces between

memory units, while "InstructionToken" type for interfaces of the blocks after

decoder and "Result" type for interfaces of the blocks after execution units. Here is

a trade off between the complexity of connectors and the functionality of interface

types.

Figure 14 uses SuperScalar simulation engine as an example. A set of

"ssBlock" is derived from the original blocks in the generic modeling library.

Besides the characteristics inherited from original blocks, ssBlocks implement the

connectors. The ssBlocks are called application-specific blocks. These blocks may

add in any application related features or use a specific feature to substitute the

generic one.

At this point, all the components for constructing a simulation engine are

available. A simulation manager is used to assemble the existing components

actively into an architecture simulation engine. The simulation manager is

responsible for setting up simulation components, parsing parameters to each

component and triggering each component's activity during its lifetime. Figure 15

shows part of SuperScalar simulation manager as an example.
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lic class SuperScalar extends Simulator (

SsPreFetch preFetch;
SsDecoder decoder;
S5IW iw;

public void setupOf
preFetch = new SsPreFetch(Fetchparaml, FetchParam2 ...);
decoder = new SsDecoder(decodeParaml, decodeParam2 ...);
1w = new SsIW(IWParaml, IWParam2 ...);

preFetch . connectTo ( cachel);

decoder.connectTo(preFetch, getRegFileQ);
iw.connectTo(decoder, forwardProvider);

addBlock(preFetch);
addBlock(decoder);
addBlock(iw);

I

public static void main( String[i args )(
Simulator sim = new SampleScalari;

sim. rune;

I
I

Figure 15. SuperScalar Simulation Manager

In bBlocks, the users are granted the privilege to setup the parameters for

hardware configuration in a definition file. The simulation manager reads in the

parameters when it is started.

Therefore, using the block models in simulation library and adding some

connectors, it's easy to construct a new architecture simulation engine. Like your

toy bricks, with all the bricks (block models), using some well-designed
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connectors, you can construct whatever (architecture) you like. To demonstrate the

efficiency of above analysis, two simulation engines - SuperScalar and CDF, are

implemented.

4.2 SuperScalar Simulation Engine

SuperScalar refers to microprocessor architectures that enable more than

one instruction to be executed per clock cycle, and may internally reorder

instruction execution. Nearly all of modern microprocessors, including the

Pentium, PowerPC, Alpha, and SPARC microprocessors are SuperScalar.

The SuperScalar simulation engine is modeled after the centralized

SuperScalar execution model [16], shown in Figure 16. Figure 17 shows the

diagram of SuperScalar simulation engine.
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4.3 CDF Simulation Engine

The CounterDataFlow (CDF), described by Janik [10], is an improved

architecture from original CFPP (counterfiow pipeline processor) suggested by

Spoull [1]. Referring to Figure 18, there are two pipelines, the instruction pipeline

and the result pipeline. The instruction pipeline carries instructions from ROB up

toward the top of the instruction pipeline. If an instruction gets to the end of the

pipeline and hasn't been executed, it simply wraps around to the beginning of the

pipeline and continues up the pipeline. Along the way, instructions and results

interact and inspect each other. If an instruction needs an operand in order to

execute, it watches the results that flow past it in the result pipeline and grabs

whatever data it needs. Once the instruction has all of the data that it needs to

execute, it sends the instruction off to the execution units to calculate the result.

When the instruction arrives at the execution unit's recovery point, it takes the

result from the execution unit if the execution has completed. As the instruction

continues up the instruction pipeline, it looks for empty spots in the result pipeline

in which to put its results. The result pipeline carries results down to the ROB.

When it gets to ROB, the result could be written to ROB and exit the pipeline, or be

forced to wrap around for performance reasons.

In CDF simulation engine, about 85% codes, which include all the

architecture models except Instruction Pipe and ROB, are reused from the existing

modeling library and SuperScalar simulation engine. The fact that it only takes
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about one week to generate the CDF simulation engine demonstrates the efficiency

of the simulator design. The OOM feature in bBlocks allows the users assemble

their models with much fewer redundant efforts, which are definitely needed if

models are developed from scratch.

r,
-I-

EIE__ E'
ROB

I Branch
Prefetch

peicnon

Instruction

aehe

Figure 18. CDF Architecture
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Chapter 5 SIMULATION RESULT

To verify the correctness of simulators, lots of test programs were loaded in

and executed. A set of simulation result was collected for analysis.

5.1 Functional Verification

As an execution based simulator, correctly running program is the first test

feature. Both SuperScalar and CDF simulation engine was fully tested and

validated for functional correctness by some gradually advanced steps:

. Test by simple programs. We wrote some simple C programs for the first step

verification.

. Test by SimpleScalar test programs. SimpleScalar toolkit has a set of

precompiled binaries that give more thoroughly test for different types of

operations including integer, floating point, long integer, short integer and

characters.

. Test by SPEC95 benchmark. SPEC95 is a worldwide standard for measuring

and comparing computer perfonnance across different hardware platforms.

Our confidence comes from fully passing all the tests. All the outputs are

correct.



5.2 Statistic Verification

Statistic correctness comes after functional correctness for a simulation tool.

To inspect the statistics, simulation results got from SuperScalar architecture

(shown in Figure 16) are compared with the results got from SimpleScalar "sim-

outorder". SimpleScalar's "sim-outorder" can be used as a SuperScalar simulator.

With similar configuration parameter, the two simulator's results should be

comparable. Due to time constraint, seven benchmarks from SPEC95 are selected

for performance comparison and one million instructions are executed for each

benchmark.

2.5 ...._ .-..--.

l.5--- __ 1.!

0.5

0

I

applu compressg5 swim fpppp mgrid apsi wave5 average

SimpleScalar bBlocks: superscalar

Figure 19. Instruction Per Cycle
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Figure 19 shows the comparison in average IPC (Instruction Per Clock

cycle) for the first 1 million instructions of each benchmark. From the above figure,

the results of these two simulators are very close. Actually the average IPC is

almost same.
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Now, bBlocks only has a very simple branch prediction strategy. It uses a

hash table to record the recent branch history. The instruction is considered to be a

branch instruction, if its address has a match in this hash table. It is found similar to

the combined predictor in SimpleScalar toolkit, although the later is much

complicate. Figure 20 compares the branch prediction miss rates got from those

two simulations. The average branch prediction miss rates are very close.
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Instruction cache miss rate is an incomparable feature for these two

simulators. The reason is that the instruction cache in bBlocks is a non-blocking

cache, whereas the instruction cache in SimpleScalar "blocks on an I-cache miss

until the miss completes" [7]. Non-blocking cache means it still can accept

following cache access after it gets a cache miss (obviously, that introduces

additional miss possibility). Figure 21 shows the difference in instruction cache

miss rate. It is reasonable that the instruction cache miss rate of bBlocks is always

larger than that of SimpleScalar.
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Figure 22. Data Cache Miss Rate
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Data cache miss rates are compared in Figure 22. The results from those two

simulators have a rational difference.

5.3 Additional Discussion

It is admitted that bBlocks with object-oriented approach design is much

slower than SimpleScalar with traditional design (implement with C). From the

above experiment, the average execution time of bBlocks is 120000 seconds, and

the average execution time of SimpleScalar is 39 seconds. That is bBlocks is 3000

times slower than SimpleScalar.

Another fact is that, CDF simulation engine is generated in a very short

time (about one week) based on SuperScalar engine. About 85% codes of CDF

simulation engine are reused from SuperScalar engine. CDF is new microprocessor

architeture proposed by CFPP group at Oregon State University. There is no

execution-based simulation for CDF before bBlocks. From our experience, it takes

months or even years of work to build a new microprocessor simulator. Therefore,

the great benefit of bBlocks is manifested. bBlocks favors flexibility and reusability

at the expense of speed.

bBlocks software structure is shown in Table 3. Table 4 lists the

configuration parameter used in above experiment.
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Table 3. Software Structure

Level Directory name Program
lines

Explanation

1 sim 1681 Definition of block,simulator,etc
2 block 4486 Blocks like prefetch,decoder,etc

supplement 8196 Strategies and data type definition
util 1470 Utility used by whole project

3 superscalar 1261 Specific blocks for SuperScalar
cdf 2188 Specific blocks for CDF

Total 19282

Table 4. SuperScalar Configuration Parameter

Block name Parameters

PreFetch width=4

I-cache 1 sets=8,lineLength=32,assoc=2,latency= 1 ,width=4, LRU,
writeback

I-cache 2 sets=8,lineLength= 1 28,assoc=2,latency= 1 ,width=4,LRU
,writeback

D-cachel sets=8,lineLength=1 6,assoc=2,latency=1 ,width=4, LRU,
writeback

D-cache2 sets=8,lineLength=64,assoc=2,latency= 1 ,width=4, LRU,
writeback

Memory pages=8 ,pageLength=256,latency= 1 ,width=4

Decoder width=4
1W size=32
ROB size=32,width=4
FastintAlu * 3 latency=1

SIowl ntAl u latency=4
FastFPAlu latency=4

SIowFPAIu latency=8

BEU latency=1
MEU latency=1
RF width=4
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Chapter 6 CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

Modeling real world systems with classes and components is the preferred

modeling technique for new generation microprocessor simulation software. The

advantages of using OOP and OOM is significant in achieving code reusability,

easing development times, improving portability and avoiding obsolescence. In this

research, a generic modeling library, bBlocks, was constructed from scratch

allowing microarchitecture analysts to quickly assemble new prototyping models.

Although it is not fully accomplished, the library has already demonstrated some

outstanding qualities.

Correctness. Because the simulation package is execution based, the correctly

running programs itself gives us more confidence for the functional correctness.

In fact, during the implementing of CDF, we found a great mistake lying in

aBlock simulator. As a trace-based simulation, it is hard for aBlocks to identify

the error.

Reliability. The fact that result got from our SuperScalar simulation is very

similar to that got from SimpleScalar simulation announces the reliability.

Reusability. This is our primary goal. And we do achieve it by successfully

using the OOP and OOM methodology in simulation design and developing.

The generic modeling library is the essential part advocating large amount code
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reuse. From this library, any new architecture is readily to be generated.

Actually, our second simulation engine for CDF (a recently proposed

architecture, no existing simulator for it), was generated in a very short term.

. User friendliness. bBlocks provides a graphic user interface, which let users

dynamically probe into any block and get the detail. With it, the user can trace

every instruction loaded into the simulation engine. It did give us a great help in

program debugging. It will show its advantage in helping architecture

validating and bottleneck detecting.

Portability. Theoretically, application developed with Java will run on any

computer that has a Java virtual machine.

From this study, Java, although not perfect, is still a good choice for

implementing microarchitecture simulation libraries. As an object-oriented

programming language, Java offers several advantages over C++ such as a true

cross-platform characteristic, it is network ready, has many easy to use features and

has good GUI ability. The library developed using Java offers clear opportunities of

portability and offers an unlimited audience through the Internet. All the good

features can compensate the only drawback, the sacrifice of computational speed.

Nowadays, the improvement of computer hardware, Java compiler techniques and

distributed computing also negative this drawback. Java multi-thread provides a

great potentiality to enhance the speed and capacity of the simulation.



6.2 Recommendations For Further Study

6.2.1 Accomplish the modeling library

Due to time limit, the modeling library is not fully finished. For example, a

complex branch prediction strategy is necessary for branch study. The "syscall"

instruction is not completely decoded now. The Memory Execution Unit needs to

handle "instruction load pass store". New microprocessor models may be required

for future study. Numerous works need to be done to fulfill a comprehensive

simulation package.

6.2.2 Optimize the performance

Java virtual machine offers the platform-independent ability at the expense

of runtime performance. The simulation speed is major problem. Sun's HotSpot

technology, a just-in-time compiler, provides a notable improvement. But there is

still a big gap, which can be filled by code optimization. Another choice is to use

Java multi-thread.
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