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A second difficulty in utilizing these modulation formats is that nonlinear amplification

generates out-of-band power (spectral regrowth). Therefore, to achieve both high energy

efficiency and spectral efficiency, some forms of linearization must be used to compen-

sate for the nonlinearity of power amplifiers. One powerful technique that is amenable to

monolithic integration is digital signal predistortion. Most predistorters try to achieve

the inverse nonlinear characteristic of High Power Amplifier(HPA). In this thesis a new

multi-stage digital adaptive signal predistorter is presented. The scheme is developed

from the direct iterative method with low memory requirement proposed by Cavers [1]

in combination with the multi-stage predistortion proposed by Stonick [2]. To make

the predistorter more compact a very simple and fast method called the complementary

method is proposed. The complementary method has prominent advantages over other

digital predistorters in terms of stability of the algorithm, complexity of the algorithm

and computational load.
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EFFICIENT DIGITAL PREDISTORTION
TECHNIQUES

FOR POWER AMPLIFIER LINEARIZATION

1. INTRODUCTION

Wireless communication is one of the fastest growing fields in the engineering

world. Particularly during the past ten years, the mobile radio communication industry

has grown by orders of magnitude [3]. The first U.S. cellular telephone system, AMPS,

uses analog FM as modulation scheme and time division multiple access (TDMA) for its

multi-access scheme. In AMPS, each channel occupies 30KHz. In late 1991, the first

U.S. digital cellular system was installed, which supports 3 users in the same 30KHz

channel. The digital modulation scheme is differential quadrature phase shift key-

ing (DQPSK), and time division multiple access(TDMA) is used. In 1993, a digital

cellular system based on code division multiple access (CDMA) was proposed by Qual-

comm, mc, which supports a variable number of users in a 1.25MHz-wide channel using

direct sequence spread spectrum. With the development of the very large-scale integra-

tion(VLSI), digital signal processing(DSP) technology and information theory, digital

communication systems outperform analog communication systems in several ways [4].

Digital communication systems provide much higher capacity than the analog systems

because of their improved spectrum efficiency. Also digital technology facilitates imple-

mentation of new services such as data transmission and several supplementary services

that generate additional revenues. Other advantages include greater noise immunity

and robustness to channel impairment, easier multiplexing of various forms of informa-

tion(e.g., voice, data, and video), and great security, the detection and correction of

errors.



1.1. Nonlinearity of Amplifier in Wireless Digital Commu-
nication Systems

In wireless digital communication system digitally modulated signals can be trans-

mitted directly as baseband signals or converted to a radio frequency. In the latter case

these modulated signals are often generated at low power levels and then amplified to

high levels for transmission to distant destinations. Power amplifiers are usually in the

last stage of the transmitter. Power amplifiers have been traditionally categorized into

many classes: A, B, C, D, E, F, etc [5]. Power amplifiers can be evaluated in terms of

power efficiency and linearity. Linear power amplifiers are typically less efficient than

nonlinear power amplifiers. By efficiency we mean the power delivered to the load di-

vided by the power consumed by the HPA. Most high power amplifiers(HPAs) working

in radio frequency are nonlinear devices.

Digitally modulated signals can be categorized as constant-envelop signals, such

as FSK signals; and variable-envelop signals, such as QPSK signals and QAM signals.

Constant-envelop signals and variable-envelop signals behave differently in a nonlinear

system.

The modulated RF signals which are the input signals for power amplifiers can be

expressed by Equation 1.1.

x(t) = A(t) cos[wt + q5(t)] (1.1)

where A(t) is the envelop of the signal. For constant-envelop signals A(t) does not

vary with time, while for variable-envelop signals A(t) varies with time.

The simplified characteristic of a nonlinear system exhibiting a third-order mem-

oryless nonlinearity as its input-output relationship can be represented by,

y(t) = x(t) + a3x3(t) (1.2)

The different effects caused by the nonlinear device on constant- and variable-

envelop signals is summarized in the following.
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For constant-envelop signals let A(t) = A, the output is given by,

y(t) = A cos[wt + j(t)]
a3A

+ cos[3wct + 34(t)]

+ cos[wt + (t)] (1.3)

The second term in Equation 1.3 represents a modulated signal around w = 3w.

Since the bandwidth of the original signal, A cos{wt + q(t)], is typically much less than

w, we note from Carson's rule that the bandwidth occupied by cos[3wt + 3q(t)] is also

quite small. Thus, the shape of the spectrum in the vicinity of w remains unchanged.

The variable-envelop signals is expressed as,

as,

x(t) = xj(t) coswt XQ(t) sinwt (1.4)

where xj(t) and XQ(t) are the baseband I and Q components. The output is given

y(t) = xj(t) coswt XQ(t) sinwt

cos3wt + 3coswt+a3x1(t)

3 cos3wt+3sinwt
3XQ(t)

4
(1.5)

The output in Equation 1.5 contains the spectra of x(t) and x(t) centered around

w. Since these components generally occupy a broad spectrum than xj(t) and XQ(t) the

spectral width grows when a variable-envelop signal passes through a nonlinear system.

Since power efficiency is an important concern in today's wireless communication sys-

tems, especially in handset design, most power amplifiers used in mobile communication

system are nonlinear devices. Thus, it is desirable to employ modulation schemes with

constant-envelop signals which do not experience spectral regrowth when amplified by

nonlinear amplifiers.
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Constant envelop modulation such as FSK was widely used in the past because of

its immunity to noise. In constant envelop modulation schemes the amplitude compo-

nent of the signal generally does not carry information. As a result, it is not necessary to

transmit the waveform with strict fidelity. Thus these modulation schemes allow power

amplifiers to be operated in the nonlinear region near saturation for power efficiency.

Due to the constant envelop the nonlinearity doesn't generate intermodulation products

in nearby channels. However, with the increasing demand of the wireless communica-

tions, more and more services are available or under development, and the the number of

wireless subscribes will soon be equal to the number of wireline customers. The contin-

uing pressure on the limited radio spectrum available is forcing the use of more spectral

efficient modulation schemes, such as 4-state quadrature phase shift keying (QPSK) and

16-state quadrature amplitude modulation (16QAM) [1] [6], which can transmit in-

formation using a narrow frequency bandwidth as compared with constant modulation

schemes.

Unlike FSK signal, which has constant envelop and carries information only in

frequency, QPSK and 16QAM signals with variable-envelop carry signal information in

signal's amplitude and phase. Because QSPK and QAM are linear modulation schemes,

any distortion in amplitude and phase caused by nonlinear devices results in an increase

in bit error rate(BER), and hence degrades system performance. The above problem

is more predominant in handsets for CDMA system, where the peak-to-average ratio of

modulated signals can vary over a range of 3 to 12dB [6]. Furthermore power amplifiers

used in handsets must operate in nonlinear range to keep long battery life. However, the

nonlinear terms of a HPA transfer function give rise to spectral regrowth, which brings

out-of-band interference in adjacent channels. In the mobile environment, the restrictions

by FCC on out-of-band emissions are stringent. Generally in the mobile data communi-

cation systems, the adjacent channel interference (ACT) requirement ranges from 45 to

60 dBc relative to the in-band carrier level [7] [8] [9]. Therefore, highly linear power

amplifiers are required for the amplification of linearly modulated signals. A simple way

to achieve linear amplification is to back off the power amplifier from saturation so that it
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operates in the linear region of its transfer characteristic. However, such an amplifier has

a low DC-to-RF conversion efficiency as compared to an amplifier that operates in the

nonlinear region near saturation. Furthermore, low DC-to-RF conversion necessitates

the high current operating point, resulting in undesired thermal noise. Recall power am-

plifiers must have the highest possible efficiency for portable equipments, where cost and

heat dissipation are prohibitive factors. A major challenge in designing a high power am-

plifier is to maintain linearity without compromising the power efficiency of the amplifier.

Thus, the nonlinearity of amplifiers should be studied and techniques of linearization of

power amplifiers in mobile communication systems need to be investigated.

1.2. Linearization Techniques

To reduce the adjacent channel interference we most somehow linearize power am-

plifiers used for wireless communication systems that employ linear modulation schemes.

A number of linearization techniques have been studied, including: Cartesian Feedback

Loop, Linear Amplification with Nonlinear Components(LINC), Feedforward Loop and

Predistortion.

1. . 1. Cartesian Feedback Loop

The linearization technique of Cartesian Feedback Loop [1] [5] [7] [10] [11] forms

a complete linear transmitter, as opposed to simply a linear amplifier, and its structure

shown in Fig. 1.1. It takes baseband signals, in I and Q formats, and translates these

signals to an RF carrier frequency at a high power level. Thus, the upconversion and

power amplification processes are combined and the whole is subject to the distortion

improvement of the linearization. The transmitter output is sampled just after the

final RF amplifier, and synchronously demodulated, to recover quadrature cartesian

components of the modulation. These signals are used to provide negative feedback,

subtracting from the modulating signals to generate a loop error signal. Provided that
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FIGURE 1.1: Structure of Cartesian Loop linearization

the loop gain is of sufficient magnitude, the feedback ioop will, in theory, continuously

correct for any non-linearity in the upconversion RF amplification stages. As with any

feedback system, its performance is limited by the delay around the ioop and the linearity

improvement depends on the bandwidth over which the feedback operates. Moreover,

the stability of the feedback ioop is an obstacle in the design of such a system. The

RF amplifiers create a significant phase shift of the feedback signals, which varies with

frequency and output level. If this phase shift become excessive, oscillation will occur in

the feedback loop.

1..2. LINC

The LINC technique {5] [7] [10] [11] is a linear transmitter technique involving

RF synthesis. This means that the linear RF waveform is only created at the output

of the transmitter with all of the internal processes within the transmitter being non-

linear. The basic format of the LINC technique is shown in Fig.1.2. The modulating

signal is generated in DSP from the input baseband information. The input signal with

variable-envelop is split into two constant amplitude phase-modulated signals, which are
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VCO RFAmp
(High-Efficient)

FIGURE 1.2: Structure of LINC linearization

then amplified using two well-matched nonlinear amplifiers. After RF upconversion and

non-linear power amplification, the two signals will add to produce the required linear

output signal with unwanted elements appearing in anti-phase and hence cancelling. The

difficulties with the method are the design of two well-matched amplifier chains since

gain and phase mismatch between the two signal path results in residual distortion, and

a method of combining the two high-power signals from the amplifiers because the out-

put adder might introduce significant loss since it must achieve a high isolation between

two power amplifiers. Also the split of the signal gives substantial complexity since it

involves the complex phase modulation.

1.2.3. Feedfocrward Loop

The structure of the feedforward amplifier [5] [9] [11] is shown in Fig.1.3. Its

operation may be clearly seen by referring to the two-tone test spectra shown at various

points throughout the diagram. The input signal is split to form two identical paths,

although the ratio used in the splitting process need not to be equal. The signal in the

top path is amplified by the main power amplifier and the nonlinearities in this amplifier

result in intermodulation and harmonic distortions. The directional coupler, Cl, takes



Time Delay Subtrter

FIGURE 1.3: Structure of Feedforward Loop linearization

E1

a sample of the main amplifier output signal and feeds it to the subtracter where a

time-delayed portion of the original signal, present in the lower path, is subtracted. The

result of this subtraction process is an error signal containing the distortion information

from the main amplifier; ideally none of the original signal energy would remain. The

error signal is then amplified linearly to the required level to cancel the distortion in the

main path and fed to the output coupler. The main-path signal through coupler, Cl, is

time delayed by an amount approximately equal to the delay through the error amplifier,

A2, and fed to the output coupler in anti-phase to the amplified error signal. The error

signal will then cancel the distortion information of the main path signal leaving only an

amplified version of the original input signal. The problems for Feedforward Loop are:

the match of subtracter and error amplifier; the precision of estimation of time delay for

analog system, and the sum of the two signal at output.

1.2.4. Predistortion

Predistortion [1] [2] [7] [9] [10] [11] is conceptually the simplest form of lineariza-

tion for a power amplifier. It simply involves the creation of a distortion characteristic

which is precisely complementary to the distortion characteristic of the power ampli-

fiers and cascading the two in order to ensure that the resulting system has little or no

input-output distortion. The basic form of a predistortion linearizer is shown in Fig. 1.4.
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FIGURE 1.4: Scheme of Predistortion

The predistortion function, P(.), operates on the input signal in such a manner that its

input signal is distorted precisely complementary manner to the distortion produced by

the power amplifiers, F(.). The output signal is, ideally, an amplified but undistorted

replica of the input signal. There are several kinds of predistorters as follows.

1. RF Predistortion - the non-linear predistorting element operates at the final carrier

frequency.

2. IF Predistortion - the predistorting element operates at a convenient intermediate

frequency, thereby possibly allowing the same design to be utilized for a number

of different carriers frequencies.

3. Baseband Predistortion - prior to the advent of digital signal processing devices,

this technique had few advantages over RF and IF techniques. It is now, however,

a powerful tool. In this case, the predistortion characteristic is typically stored as a

table within a DSP or represented by polynomials which represent the nonlinearity

of the predistorter. It is possible to use feedback to provide updating information

for these coefficients stored in the table or coefficients for polynomials; thus it is

called adaptive baseband predistortion.

The degree of linearity improvement which can be achieved in practice depends

upon a wide variety of different considerations, and in particular on the form of the

transfer characteristic of the power amplifiers since the aim of the predistorter is to

achieve the transfer characteristic which is inverse to those of power amplifiers.
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Both RF predistortion and IF predistortion need to fabricate a circuit with a

required transfer characteristic. This is not a trivial problem and a large number of

different networks have been utilized over these years in an attempt to mimic types of

characteristic. For such networks to achieve a high level of performance, however, they

often need to be designed, or at least adjusted, for each individual amplifier.

Among these above linearization techniques, Cartesian Feedback Loop, LINC and

Feedforward method, RF predistortion and IF predistortion have been utilized in com-

plex, expensive RF and microwave systems, but they have not yet found their way into

low-cost portable terminals. This is because the above methods generally complicate the

design, require frequent adjustments, and become less effective as device characteristics

drift. Also they suffer from limitations in bandwidth, precision or stability.

Since the baseband predistortion is implemented digitally, a greater degree of pre-

cision can be achieved when computing the predistortion coefficients, digital signal pro-

cessing techniques can be employed to improve the performance and, the implementation

can be programmable to fit different needs. Also, unlike analog systems, there is no con-

cern for stability in adaptive predistortion schemes. Finally, with the availability of high

speed DSP, adequate millions instruction per second (MIPS) levels are available to treat

the wideband signals found in today's advanced spread spectrum systems [6].

The simplified schematic of an adaptive digital baseband predistortion system is

shown in Fig. 1.5.

A fully adaptive digital predistortion system requires the addition of a predistortion

circuit consisting of a digital predisorter and a look-up-table(LUT) to the transmission

path in addition to a feedback path consisting of a demodulator and an adaptation circuit

for updating a LUT. Most common implementations of a digital predistortion utilize

standard DSPs. Such processes typical operate with a wordlength of 16 or 32 bits, which

provides sufficient accuracy for most applications. In specific applications, application-

specific ICs(ASIC) are designed to implement the predistortion systems, providing the

flexibility in controlling wordlength and power consumption.
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FIGURE 1.5: Structure of Digital Adaptive Predistortion

1.3. Content of Thesis

In this paper, several digital predistortion techniques are studied and simulated

with the objective to increase the performance of the overall system, in terms of linearity,

stability and speed of algorithm, and cost of implementation. We start from the method,

called the direct iterative method proposed by Cavers, with theoretical analysis and sim-

ulation. Then we move on to a new method, called the multi-stage method, which tries

to solve the problem caused by iteration and computational complexity and load. Based

on the idea of the multi-stage predistorter a very simple and fast digital predistorter

called the complementary method is proposed. In the following chapters comparisons on

the above three methods are provided. In the end of this thesis conclusions are reached

followed by several open issues for future research.
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2. DIRECT ITERATIVE DIGITAL PREDISTORTION

2.1. Introduction

As stated in the last chapter the digital baseband predistorter is a robust and

adaptive method for amplifier linearization in digital wireless communication systems.

Most digital baseband predistorters use LUT techniques. The methods to construct the

LUT differentiate the predistorters. Earlier in 1983 Saleh [12] proposed a method to

adjust the transmitting constellation points on a point by point basis. The algorithm

required the data to be in polar form. Later a simpler method based on Cartesian

co-ordinates was proposed by Feng [12], which used only the sign of the error signal

to perform the adaptation, removing the requirement for A/D converters in feedback.

Nagata [1] proposed the more successful method, called as mapping predistorter, whose

structure is shown in Fig. 2.1.

Vm On-line
Vd

Va

Adaptive -i
Modulator

Predistorter

LUT

Adapt
I I

Demodulatorl-1 BPF

FIGURE 2.1: Structure of Mapping Predistorter

It maps the input complex signal Vm, which consists (Vmi, Vmq), to the predistorted

equivalent complex value Vd consisting of (Vdi, Vdq). The mapping can be implemented

by two tables with the forms,

Vd = Hi(Vmi,Vmq) (2.1)
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Vdq = Hq(Vmi,Vmq) (2.2)

The disadvantage of the construction of LUT is that the speed of convergence is

slower than systems employing one-dimensional tables. If the size of LUT is kept low

the necessary interpolation between points is more difficult for a two-dimensional table

than a one-dimensional table. Nagata avoided interpolation by using a one-dimensional

LUT which represents each possible combination of Vmi and Vmq signal. The memory

requirement was large and the adaptation time was very slow.

However since distortions caused by the nonlinearity of power amplifiers depend

only on the amplitude variation, it is possible to simplify the LUT by indexing the

LUT with the amplitude of the complex signal, Xm = IVmI = + Vq). Caver

proposed a new predistorter based on the complex gain in [1]. The structure of the

complex gain based predistortion is shown in Fig. 2.2. What makes it different from the

mapping predistortion is that the predistorter predistorts the signal only according to

the amplitude of the signal.

Vm Qn.IIne I

Vd
Va

Adaptive
Modulator

Predistorter

LUT

Adapt H I
DemoduIator.- BPF

FIGURE 2.2: Structure of Complex Gain based Predistorter
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2.2. Theory of Predistortion based on the Complex Gain

2.2.1. Model of a Nonlinear Power Amplifier

It is well known that high power amplifiers(HPAs) exhibit two kinds of nonlin-

earities: nonlinearities in the input-output power relationship; and in the input-output

phase relationship. These nonlinearities are referred to as AM/AM and AM/PM con-

versions. Also it is reasonable for many applications to assume that the nonlinearity of

HPAs is memoryless and varies extremely slowly with time. The generic expression for

an HPA can be written as the following Equation 2.3. The signal designations refer to

the complex baseband signals or the complex envelop of the bandpass signals.

V0 = . F(r) (2.3)

where, = I T7zn is the amplitude of the input signal, l/ and V0 are complex

equivalent baseband representations of the instantaneous HPA's input and output com-

plex envelops. F(r2) is the complex gain of the HPA. Fig. 2.3 and Fig. 2.4 show the

AM/AM and AM/PM conversions for a typical class AB amplifier. The effect of com-

pression is clearly evident at high input level. The AB class HPA with characteristics

shown in fig. 2.3 and Fig. 2.4 is used as the HPA model throughout this thesis.

2.2.2. Model of Predistorter

It is obvious that the characteristic of the predistortor is the inverse of that of HPA.

Specifically, the predistorter introduces amplitude distortion and phase predistortion in

terms of input signal amplitude. And the distortion introduced by the predistortor

cancels the distortions coming from the HPA. It is reasonable to conclude that the

predistorter is also a nonlinear device with the characteristic expressed by AM/AM and

AM/PM conversions, which leads us to describe the predistorter by,

Vd = Vm P(rm) (2.4)
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FIGURE 2.3: Nonlinear AM/AM conversion for a class AB HPA

where, rm = IVm is the amplitude of the input signal, Vm and Vd are complex

baseband representations of the instantaneous input and output of the predistorter.

P(rm) is the complex gain of predistorter. The desire is that P(rm) and F(r2) bring

distortions in a complementary manner.

2.2.3. System Analysis

Given Equation 2.3 and 2.4 the output at amplifiers is given by,

Va = Vm P(rm) F(rm. IP(rm)I) (2.5)

Ideally the above equation should be equal to the product of amplifier's input and

ideal gain, K, hence the final equation that the predistorter should meet is given by,

K P(rm) F(rm IP(rm)I) = 0 (2.6)

The problem is to find P(.) to make Equation 2.6 hold. Thus, the predistorter

is seen to be only dependent on the signal's amplitude. Since no information for F(rm)

is available, an analytical solution can't be obtained. A numerical iterative method is
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FIGURE 2.4: Nonlinear AM/PM conversion for a class AB HPA

employed to get the characteristic function of the predistorters, P(rm), by the adaptive

estimator which minimizes the ioop error as defined by Equation 2.7, which is the

difference between the actual complex modulation envelop of the HPA and the desired

modulation envelop.

E9VaKVm (2.7)

A direct link may be established between loop error and the characteristic function

of HPA and predistorter, thus the loop error can be written by,

E9(P) = VmP(rm)F(rmIP(rm)I)KVm (2.8)

The task of the adaptive estimator is to calculate the characteristic of the pre-

distortion such that for all values of rm, the loop error is equal to zero. A convenient

method of realizing P(rm) is to use a LUT, which is indexed by the amplitude of input

signal, Xm. The table entry is a complex number P(Xm,i) representing the complex gain

required to predistort the input signal with amplitude equal to Xm,i.

Since the derivative of Eg (P) is not available, Newton's method can't be applied

to Equation 2.8. A reasonable alternative, which offers convergence speed intermediate
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between linear and quadratic convergence, is the secant method. The iteration for Pj,K+1

is done by Equation 2.9.

Pi,k_1E9(Pi,k) Pi,kEg(Pi,k_1)
(2.9)Pj,K+1

Eg(Pj,k) Eg(Pj,k_l)

where, Pi,K is the kth value of ith table entry. The update is applied when rm

equals to the ith table entry Xm,i.

2.2.4. Table Spacing in LUT

For any amplifier there is a specific range corresponding to the defined ideal gain

where we try to linearize the amplifier. We will use a simple example to illustrate this

point. We created a simplified HPA with the piecewise linear AM/AM characteristic

shown in Fig. 2.5.

If the ideal gain is set as 20, which is the actual gain when the Tm < 5.0, it is

obvious that the maximum linearizable input range is [0, 8.125] since the output from

the HPA can't exceed 162.5, which is called the ceiling, or the saturation point for the

HPA. However, if the ideal gain is set as more than 20, say 25, the maximum linearizable



input range will be [0, 6.5]. For predistortion the first step is to scale the input signal

into the linearizable range if the range of the input signal exceeds this range. If the scale

factor is k3 the equivalent gain Ka is the product of k3 and K, generally Ka is less then

K. If the input signal occupies the range of [0, 12], in the first case: K, the ideal gain,

is set as 20, the scale factor K3 = 0.6770, the equivalent Ka = 13.54; in the second case:

K is set as 25, the scale factor K3 0.5416, the equivalent Ka = 13.54. Note Ka is

constant, a function of only the ceiling of the HPA. If the ideal gain is set higher, the

linearizable range will be smaller, which requires that the LUT has higher resolution.

It is important to set the target ideal gain, which should depend on the nonlinearity of

HPA and the dynamic range of the input signal, etc.

If the saturated output power for the HPA is Psat the maximum linearizable range

for amplitude of the input signal is [0, '/]. For an actual HPA whose AM/AM char-

acteristic is a smooth curve the predistorter tries to linearize HPA over a slightly smaller

range. Generally, the ideal gain k is set as the average gain over the full input signal

dynamic range. The span S is used to define the fraction of the saturated power over

which we attempt linearization. The maximum output power is given by SPsat. An

alternative description for the span is the peak backoff (PBO) of the HPA in decibels in

Equation 2.10.

PBO = 10 . log(S) (2.10)

Realistic values for the span S are in the range 0.95-0.98. The span in turn limits

the domain of the linearizer shown in Equation 2.11.

0<rm2<Pmm (2.11)

where, rm = IVmI. The maximum power of Vm, Pmm, is given by Equation 2.12.

SPsat
Pmm K2

(2.12)

Pmm gives the power range for the input signal over which we attempt linearization.
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FIGURE 2.6: Quantization in the complex gain table

If the actual input signal has the dynamic range as [0, r]. The first step is to scale

the input signal into the linearizable range by multiplying the input signal by the scale

factor K3 The equivalent gain equals to the product of K3 and K.

For a LUT with N table entries, the N value for Xm are equally spaced in the

range of [0, the step size is given by Equation 2.13.

N
(2.13)

The range and midpoint of each step, and the corresponding entries, are given for

i=1,2,...,Nlas Equation 2.14.

Xmi = {Xm : iD9 <Xm < (i + 1)D9} = D9. (i + (2.14)

That is, the table is optimized according to Equation. 2.6 for the midpoint of each

cell, as shown in Fig. 2.6.
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2.3. Implementation of the Direct Iterative Method

2.3.1. Simplified Simulation

In this section a simplified case is simulated. The input signal is a periodic signal

with a period of N samples. In each period the sampled input signal is a monotonic

function with the constant phase as and with the N (the size of LUT) different ampli-

tudes equal to Xm,1, Xm,2,..., and Xm,N contained in the LUT. The above input signal is

called the training signal, and its constellation is shown in Fig. 2.7. The training signal

passes the forward path through the HPA. It is then demonstrated and digitized. The

difference between the recovered signal and the product of the training signal and the

target ideal gain can be used to iteratively update predisorter coefficients according to

Equation 2.9. The simulation is done in this way to test the direct iterative method

and the effect of the secant method.

We applied this method to the class AB HPA, whose characteristic is shown in

Fig. 2.3 and Fig. 2.4. The convergence of the power of the output error E9 is shown

in Fig. 2.8. The curves demonstrate that convergence is slow at high output power
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levels. With an additional 3dB backoff, the convergence is faster. Also it is obvious that

a larger table size results in slower convergence. Here, three different cases: PBO =

0.10dB, PBO = 0.22dB, PBO = 3.22dB were simulated. The larger span, the more

time it takes for the predistorter to converge. To achieve the same level for error, the

case with PBO = 0.10dB takes about 35 steps while the case with PBO = 3.22dB only

takes 10 steps.

When the LUT is obtained the predistortion can be done by multiplication of the

input signals with the correct complex coefficients of the LUT. Two kinds of baseband

signals have been simulated with the results are presented in the following sections.

Case 1:OQPSK

The input signal is Offset QPSK (OQPSK), pulse-shaped by the raised-cosine-filter

defined in the IS-95 standard. Using the LUT obtained by the training signal the effect

of predistortion is shown in the following Figures, 2.9, 2.10 and 2.11.

The spectrum for the output signals with predistortion gives more than 3OdBc im-

provement in adjacent channel interference(ACI) compared to the output signal without
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predistortion. The input-output amplitude relationship and input-output phase relation-

ship show that predistortion effectively corrects the AM/AM and AM/PM distortion.
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FIGURE 2.10: Input-Output Magnitude Relationship for OQPSK input signal
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Case 2:16 QAM

The second signal is a 16QAM signal with a square root raised cosine pulse having

25% rolloff and Hamming windows to 7 symbols [1]. Using the LUT obtained by the

training signal the effect of predistortion is shown in the following Figures, 2.12, 2.13

and 2.14.

The predistortion gives the system with 16QAM signal about 35dBc improvement

in ACT over the non-predistorted signal. The input-output relationship in terms of

amplitude and phase looks almost linear except for small input signal range where there

is a little fluctuation. Increasing the size of the LUT can improve the performance in

this small input signal range.

We will now use the constellations of the signals to explain how the predistortion

works. Fig. 2.15 gives the normalized constellation of 16-QAM signal. Fig. 2.16 gives the

received constellation if no predistortion is used. The nonlinear phase shift rotates the

constellation, and the nonlinear compression attenuates the corner of the constellation.

The constellation of the predistorted signal prior to amplification is shown in Fig. 2.17.

The received constellation with predistortion and HPA is shown in Fig. 2.18. This is
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almost identical to the input signal's constellation, which is consistent with what we

observed in the spectrum.
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FIGURE 2.13: Input-Output Magnitude Relationship for 16QAM input signal
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2.3.2. Phase Shift and Magnitude Adjustment

In the last subsection, we demonstrated that the iteration method and the asso-

ciated secant method were effective for our simple examples. However, when the above

method put into practice the simplified situation doesn't exist. Since the predistortion

08

0. ., ..

-02
4*!

CS .

i,-0.6 .. ... . .

Real Part for 1 6-QAM input signal

FIGURE 2.15: Normalized constellation for the input signal
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is running online no training signal can be fed to update Pm, instead, actual QAM or

QPSK signals must be used. Under this situation, the amplitude of the signal can't be

exactly equal to the center value of the table entry. Furthermore, a signal with the same

amplitude may not have the same phase. The situation means that if the secant method

is used to get predistortion coefficients, each point in the signal constellation should be
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FIGURE 2.17: Normalized constellation for the predistorted signal
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used as a index for the LUT. This results in a very large size table as in the mapping

method. In this section the phase shift and magnitude adjustment are used with the

secant method to keep the small size table, but without any loss in precision.

From Equation 2.9, to iteratively update P in every iterative step the values of

Vm,i must have the same amplitude as Xm,i and the phase of Vm,i should be kept constant.

However this is impractical. However we are fortunate because both the nonlinearity of

the predistortion and the HPA only depend on the signal's amplitude. Thus, the output

Va shifted by a phase ZVm is equal to the output that would have been obtained for

an input which has the same amplitude as Vm, but, zero phase. Equation 2.15 gives the

method for phase shift.

Eg(P) = Va - e3'm KVm - e3m (2.15)

In addition to this phase shift, a magnitude adjustment is needed to map an

equivalent error to an input signal value with exact table amplitude, X, when an input

signal with amplitude other than X is transmitted. First, relationship between the error

and the amplitude input signal should be found. Here, the error in each iteration step

is investigated via simulation: the training signal is the input signal, the LUT has 64
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values and PBO = 0.202dB. From Fig. 2.8 only in 7 steps the iteration converge for the

above case. In each step the predistortion is done according to the updated coefficients.

There are 64 bins that covers the entire range for the input signal. For each bin, the

input signal and its error are studied, and the results for the 30th bins at steps = 2,4,7

are shown in Fig. 2.19, 2.20 and 2.21.

From the results it is easy to see: 1) The power of the error decrease over time. 2)

In each iteration, both the real and imaginary parts of the error are linear with respect

to amplitude differences between the input signal and the center value of the bin, X. 3)

When the algorithm converges the error for the midpoint of the bin is almost equal to

zero.

The linear relationship between the real(imaginary) part of error and the amplitude

difference from the center value in each bin gives us a way to calculate the complex error

for an input signal with an amplitude not equal to X. Before we can update any

predistortion coefficient, two input signals, Vm,ii and Vm,i2, whose amplitude falls into

the same bin, and their corresponding errors, E1 and E2, must be collected. With the

above information the real part and imaginary of the error corresponding to the midpoint

of the bin can be linearly interpolated using the rm,jl, rm,i2 and the real and imaginary
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parts of E1 and E22. The linear calculation to find the real and imaginary parts of

equivalent error is illustrated in Fig. 2.22 and given by Equations 2.16 and 2.17.

Re(E9,) = SR . r,1 + Re(Ei, 2) SR r,2 (2.16)
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FIGURE 2.21: Error Output for 30th cell and the iteration step = 7



30

0.8 real pail

calculated real part of error

:: ,______

01 o the cell

ma ma artg ' p
calculated Iroragloaty part of error

0
for midpoint in the cell

midpoint p0511100

_04ii 11.2 11.3 11.4 11.5 11.6
Amplitude of the input ragout

FIGURE 2.22: Magnitude adjustment method based on linear interpolation

Irn(E9,2) = Si r,i + Im(Ei, 2) S r2,2 (2.17)

where, sR
Re(Ez)Re(Eu,i)

s1
Im(E,2)Irn(E0,i)

Re(.) is the real part of the

variable, and Im(.) is the imaginary part of the variable. r2 is the amplitude of the

midpoint of the ith bin, r,i and rjr2 are the amplitudes of IlTi,iI and IVi,21.

The structure correcting both the phase and magnitude is shown in Fig. 2.23.

Recall the process of linear interpolation to find the equivalent error for the mid-

point in each bin. Thus, a second LUT is used to store the two different values of

magnitude of signal and the corresponding complex value for error. After V2,1, E,1, and

Vj,2, E2,2 are collected, the corresponding B9 can be estimated by linear interpolation for

real part and imaginary part.

2.4. Simulation Results

Simulation results are shown in Fig. 2.24 for the OQPSK signal, and in Fig. 2.25

for the 16QAM signal. Comparing to these results obtained by using the training signal

the results with OQPSK and 16QAM signals give nearly identical performance. As
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discussed previously, the first step of the predistortion is to scale the input signals to

the linearizable range. By scaling the signals to the linearizable range the out-of-band

power will decrease because in this range HPA looks more linear than over the original

range. Thus to be fair in Fig. 2.24 and Fig. 2.25 the spectra for output signals are

shown by dotted lines, in these cases, the input signals are only scaled down to the

linearizable range before going to the HPAs. The predistorter is seen to reduce ACT by

anther 20dB for 16QAM signal. However even though the performance is impressive the

computational load required to construct the LUT for the phase shift and magnitude

adjustment, the sorting of the signal, the filling the table and the linear interpolation

consume a lot of time and power. In the next chapter another method will be proposed,

which doesn't need the phase shift and magnitude adjustment.

In the direct iterative method the predistorter gives AM/AM and AM/PM con-

versions. The nonlinear characteristics of the predistorter in terms of AM/AM and

AM/PM are shown in Fig. 2.26 and Fig. 2.27. With a 32-size LUT and a 128-size LUT

the characteristics of predistorters are almost the same, however, a 128-size LUT gives

more coefficients in the range for small input signal, and thus makes the predistorter

perform better in this region.
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3. MULTI-STAGE DIGITAL PREDISTORTION

3.1. Problem of the Direct Iterative Method

In the last chapter we presented the direct iterative method for the predistortion.

A drawback is that for each step of updating the LUT the algorithm has to wait until

the next time the HPA output data associated with the updated predistorter coefficient

is used by LUT to see the effect of the previous update of the complex coefficient. This

slows convergence, furthermore, we found that the convergence is sensitive to the starting

points chosen for the iteration. When the secant method is used to update the complex

coefficients, the phase shift and the magnitude adjustments must be done to find the

equivalent error, which introduces more computational load and further slows the speed.

More memory must be used to keep another table for the magnitude adjustment. The

process of filling the tables consumes a lot of time and power. Also in the iteration

any noise or measurement error unavoidably influences the convergence process. The

problem is that this method uses feedback to directly solve the inverse problem, which

makes the direct iterative method unstable in some cases.

From the Equation 2.6 it is obvious that if the characteristic of the HPA, which

is expressed as F, can be estimated then a perfect solution for the predistortion of this

model can be found. To avoid delays caused by feedback in the previous approaches, we

first find an explicit expression for F. In [2] two polynomials are used, one is an odd

order polynomial to describe the AM/AM conversion, the other is an even polynomial to

describe the AM/PM conversion, both of which have the real coefficients. Once a model

for the HPA's AM/AM and AM/PM is constructed, the next step is to find predistortion

polynomials for the AM/AM and the AM/PM, which are inverse to the models for the

HPA's AM/AM and AM/PM conversions. These inverse models are used to predistort

the input signal's magnitude and phase. This two-step approach is called the multi-stage

predistortion.

In our approach a multi-stage predistorter is also adopted because of its reported
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advantage [2]. However, instead of two real polynomials we use one complex polynomial.

The predistortion is then done by simultaneously predistorting the magnitude and phase.

First, we construct a Complex Gain Polynomial(CGP) model (feedforward model)

for the HPA as opposed to the real polynomials used in [2]. Since this is an identification

problem we do not pass our modeled signal through the HPA and thus eliminate the delay

associated with the direct iterative method. Second, we construct the LUT based on

the complex gain polynomial as in [2], which is done closed ioop with respect to our

model but open ioop with respect to the actual HPA. Predistortion entails multiply by

the input signal by the complex coefficient according to LUT as in the direct iterative

method.

3.2. Theory and Implementation of the Multi-Stage Pre-
distorter

A descriptive block diagram for our new multi-stage digital adaptive predistorter

is shown in Fig. 3.1. The output Va is decided by Equation 2.5 and the predistorter tries

to achieve the function described by Equation 2.6. To determine P(rm) the first step

in the multi-stage method is to find a CGP to describe F. From Fig. 3.1 it can be seen

that the CGP is obtained by collecting a block of data (Vd, V1) and using a curve-fitting

method. Since there is a delay in the transmission path the data Vd must be delayed by

the same amount to align with Vf.

After the CGP is obtained, a numerical iterative method is employed to find the

complex numbers as the roots of Equation 2.6 for all table entries. Although iteration

is still used to solve the inverse problem, the difference is that the iteration now use

synthetic data instead of measured data, and the iteration ioops through our model and

not through the actual system.
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FIGURE 3.1: Structure of the multi-stage predistortion

3.2.1. Complex Gain Polynomial

As is well known a Taylor series is a valid representation for a memoryless nonlinear

function. Generally, a Taylor model can be written as Equation. 3.1.

P(rm)=>aj.r (3.1)

Our CGP is basically a truncated Taylor's representation. What order truncation

is good depends on the characteristic of the HPA and system requirement for linearity etc.

Traditionally the nonlinearity of a HPA is described by lIP3. However, experience and

analysis indicate that using only the lIP3 is not enough to describe the nonlinearity.

Using a high order CGP obviously gives more precision, however, it also brings more

computational load. As an example we collected 128 data samples of Vd and V1 and

generated different orders of CGP to model the HPA. We used Pj(rm), i = 3,5,7,11,13.

The calculated output according to CGP can be described by the Equation 3.2.

VaVdPi(rm) (3.2)

The error in amplitude between the actual output Va from the HPA and the calcu-

lated output i2 is calculated as shown in Equation. 3.3. The error in phase shift between

the actual output Va and calculated output i2 is calculated as shown in Equation. 3.4.

EamVaVa (3.3)
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FIGURE 3.2: Effect of different orders of the CGP on error in amplitude

E9 = LVa /Va (3.4)

Fig. 3.2 shows the power of the amplitude error between the actual output and

calculated output for the different orders of CGP. Fig. 3.3 shows the power of the phase

error between the actual output and calculated output for different orders of CGP. The

above results are for the class AB HPA depicted in the 1st chapter

From the above results the 5th order CGP is enough to describe the nonlinearity

of the class AB HPA; the 3th order CGP gives too much error. Higher orders for the

CGP give less error, however, they also create more computational load. For any specific

HPA the proper order of the CGP depends on the specific nonlinear characteristic of the

HPA. Fig. 3.4 gives the spectrum for output signal using predistortion with different

orders of the CGP.
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FIGURE 3.3: Effect of different orders of the CGP on error in phase

3.2.2. Construction of LUT

If the HPA has a saturation power of Psat, and the LUT has N table entries, then

the step size is given by Equation 3.5.

A
K

- - 5th order CGP
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FIGURE 3.4: Spectrum of the output signal with different orders of the CGP

(3.5)
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And the corresponding table entries are gives for i = 0, 1, ..., N 1 in Equation

.1
rm,j = A. (z + (3.6)

The initial value for P(m,j) must be set in the root-finding problem when an itera-

tive method is employed. Since the nonlinearity of the HPA doesn't change dramatically

from its neighbor, the initial value for the next table entry is set to be the root of the

previous table entry. For the first table entry the initial value is set to be 1. After the

root for the first table entry is calculated, the initial value for the root of the second

table entry is set equal to the value of the first root, and the third to the second, etc.

When solving for the root for each table index, a threshold, , must be specified

to stop the root-finding process. When the value of Equation. 2.6 is less than , the

associated P(rm) is taken as the predistorter coefficient for the corresponding table

entry. When the amplitude of the input signal approaches the saturation point of the

HPA it takes more time to reach the threshold. As discussed earlier for any specific

HPA there exists a limited range over which the output can be made linear to the input.

In the direct iterative method the PBO is specified before the iteration process, which

means that users must have some prior knowledge about the HPA to set the reasonable

PBO. If the PBO is set unreasonably the predistorter gives worse performance. The

drawback is that the algorithm can't set proper value for PBO automatically. In the

multi-stage method the algorithm detects the linearizable range during the second stage.

The algorithm tries to find roots for all table indexes. When it finds there is no root for

a table index, say, rm,jmax, it means that the [rm,i, rm,jmax_1} is the linearizable range.

Through this method the largest possible linearizable range can be obtained. Also there

is no need to find the roots for table entries whose index is larger than imax. And no

prior knowledge about the HPA is needed for the algorithm automatically to detect the

linearizable range.
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3.2.3. Method of Interpolation

After all the roots are specified the LUT is complete. The predistortion process

is quite simple, and the complex input signal is multiplied by the complex predistortion

coefficient which is specified by the amplitude of the input signal. In general the input

signal doesn't have an amplitude that is exactly one of the table entries. Under this

situation interpolation is used to estimate the corresponding complex coefficient from

the table entries. In the last chapter the nearest neighbor interpolation was used, which

is by far the simplest way, however, for points other than the midpoint in each cell the

resulting coefficient can be far from the best value. In the direct iterative method no

interpolation methods other than the nearest neighbor interpolation can be used because

the linear relationship between the real(imaginary) part of the error and the amplitude

difference is only valid when nearest neighbor interpolation is used. The above linear

relationship must be kept true to make the magnitude adjustment valid. Fortunately

in the multi-stage method a more precise interpolation method can be used since the

construction of LUT is only dependent on the CGP. Here, we use three interpolation

methods for comparison: nearest neighbor, linear and spline interpolation. Fig. 3.5

shows the spectrum for the output signal with predistortion for the different interpolation

methods. For each case a LUT with 64 table entries and a 5th order CGP were used.

As expected the nearest neighbor interpolation gives the poorest results, and spline

interpolation gives the best result. However, the difference between the linear interpola-

tion and the spline interpolation is not significant. Furthermore, the linear interpolation

is faster and requires far less computation than spline interpolation.

3.2.4. Size of Table

A LUT is used because the computation required to calculated the predistortion

real time is prohibitive. Obviously, the larger the table size, the more precise the predis-

tortion. However, it is a tradeoff between cost and performance. For a 16QAM signal

and the class AB HPA, if linear interpolation is used, we found that a LUT with 16
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table entries was needed. Fig. 3.6 gives the spectrum for a 8-LUT, 16-LUT, 32-LUT and

64-LUT.

3.3. Simulation Results

From the above discussion for the class AB HPA with the 5th order CGP, a LUT

with 32 table entries and linear interpolation method is seen to be the best tradeoff

between performance and cost. In Fig. 3.7 and 3.8 the spectra for the output signals

are shown when OQPSK and 16QAM signal are used as input signals.

The 5th-order CGP used to represent the class AB HPA is given in Equation 3.7.

P(rm) = (0.0107 + 0.0047i) r + (-0.2317 0.1316i)

+(1.9296 + 1.2995i) r + (-8.3443 5.9910i)

+(16.2592 + ll.1304i) rm + (4.6449 + 30.9432i) (3.7)

The LUT predistorts the input signal according to the 32 complex coefficients

stored in the LUT. The predistorter provides nonlinear AM/AM and AM/PM conver-

- spline interpolation

-10 -. linear interpolation
- - nearest interpolation

-20
input signal

,

V
,30

-40

(I)

0.2 0.4 0.6 0.8
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FIGURE 3.5: Spectrum of the output signal with different interpolation methods
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FIGURE 3.6: Spectrum of the output signal with different size LUTs

sions as shown in Fig. 3.9 and Fig. 3.10. Also, for 16QAM signal the input-output

relationships in amplitude and phase are shown in Fig. 3.11 and Fig. 3.12.

Better improvement for predistortion can be achieved by using a higher order of

CGP(to get a better representation for HPA's nonlinearity), however, the larger the

LUT, the more complex the computation. The results in Fig. 3.13 show the simulation
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FIGURE 3.7: Spectrum of the output signal with OQPSK input signal
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FIGURE 3.8: Spectrum of the output signal with 16-QAM input signal

results when a 9th-order CGP, a 128 size LUT and the linear interpolation are applied

to the class AB HPA. The reduction of out-of-band power emission is almost 40dB.

In summary, the predistorter has nonlinear characteristics represented by AM/AM

and AM/PM conversions shown in Fig. 3.9 and Fig. 3.10. Compared to the AM/AM

and AM/PM conversions for the case with the 5th-order CGP and the 32-size table these

1.3&

1.3 - -. 128 size LUT, 9-order CGP
- 32 size LUT, 5-order CGP

1.25

1.2'

1.15'

1.1

1 2 3
Amplitude of Input Signal

4 5

FIGURE 3.9: AM/AM conversion for the predistorter
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FIGURE 3.10: AM/PM conversion for the predistorter

conversions with the 9th-order CGP and the 128 size LUT are similar except in this case

the predistorter operates over a larger range of the input signal.

FIGURE 3.11: Input-output relationship on amplitude for 16QAM input signal
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FIGURE 3.12: Phase shift for 16QAM input signal
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4. COMPLEMENTARY DIGITAL PREDISTORTION

4.1. Problem of the Multi-Stage Method

The multi-stage method doesn't require the feedback and online iteration. How-

ever, the problem of this method is its computational load. The explicit expression

of function P(rm) can oniy be obtained through significant computation [2]. In the

multi-stage method we presented in the last chapter, although we don't find the explicit

expression of function P(rm), instead, a numerical method is employed to find the root

of the objective function. The process of finding-root is burdensome. The computational

load of this process limits the update speed. The above problem will limit the use of the

multi-stage predistortion in applications where the power is limited and the algorithm

must be kept as simple as possible. In this chapter a simpler method is introduced to

find the predistorter's AM/AM and AM/PM conversions.

4.2. Introduction

Theoretically the predistorter distorts the signal in such a manner that its output

signal is distorted in a precisely complementary manner to the distortion produced by

the HPA. The output signal is therefore, ideally, an amplified, but undistorted replica of

the input signal as shown in Fig. 4.1.

rm

ra

rd

ra /

rm

FIGURE 4.1: Theory of Complementary System
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FIGURE 4.2: AM/AM conversions for nonlinear system A and B

However, the inverse characteristic is difficult to determine, especially for AM/AM

conversion. In [2] the AM/AM and AM/PM conversions for the predistorter were

obtained by polynomial fitting. As in [2] the forward model is identified first from

the measured data, and then the inverse to the forward model is computed by iteration

method, which is a major limitation due to computational load. We propose a simpler

method to find predistortion polynomials based on the complementary nature exhibited

by the nonlinearity of the predistorter and the HPA, which gives the method the name

as the complementary method.

4.3. Theory and Implementation of the Complementary
Predistorter

4.3.1. Symmetric Systems

Consider a nonlinear system A and a nonlinear system B, both of their nonlinear

characteristics can be represented by AM/AM and AM/PM conversions shown in Fig. 4.2

and 4.3.
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FIGURE 4.3: AM/PM conversions for nonlinear system A and B

The two systems are connected in cascade. For the overall cascaded system the

input-output relationship will be perfect linear. This point can be easily seen since:

(1): The AM/AM conversion curve for system A is symmetric to that for system B with

respect to the line Y = X, (2): The AM/PM conversion curve for system A is symmetric

to that for system B with respect to the line Y = 0.

If the HPA and the predistorter can be made to have the same properties, respec-

tively , as system A and system B, to be detail, the predistorter looks like the system

B, and the HPA looks like the system A, the overall system becomes an ideal linear

amplification system. This is the idea for the complementary predistortion.

4.3.2. Complementary AM/AM and AM/PM Conversions

From the previous chapters and [2] we know that it is possible to find a CGP

to represent the HPA. From the complex gain, it is easy to get AM/AM conversion(the

magnitude of complex gain) and AM/PM conversion(the phase of complex gain).

The question is if it is possible from the HPA's AM/AM and AM/PM conversions

to find the complementary characteristics for the AM/AM and the AM/PM conversions
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for the predistorter? For AM/PM conversion it is trivial {2]. However for AM/AM it is

not easy.

If the HPA can be normalized like system A, the answer is straightforward. We

notice it is not difficult to normalize the HPA's input signal and the HPA's output signal

as in the following Equations.

v.n
Vin

(4.1)Zn I vrrnax I
I in I

Vn
Vout

(4.2)out IvmaxI
I out I

where, is the maximum amplitude of the input signal, and VI is the

maximum amplitude of the output signal.

As discussed earlier, the normalized AM/AM conversion for the predistorter should

be symmetric to the normalized AM/AM conversion for the HPA with respect to the line

Y = X. Thus, we get the normalized AM/AM conversion curves for both the HPA and

the predistorter as shown in Fig. 4.2. The normalized AM/AM curve for the predistorter

gives the range for the input signal and the output signal for the predistorter as (0, 1).

However, since the output signal from the predistorter is the input signal for HPA, and

the HPA operates in the range as (0, IVI), the output signal from the predistorter

obtained by mapping the normalized AM/AM curve should be re-scaled to fit the HPA's

input signal range by multiplying the normalized output signal by IVI.

The AM/PM conversion for the predistortion can be obtained in a simple way

similar to [2].

.
3.3. Implementation

By collecting a block of data (vd, v1), the AM/AM conversion for the HPA can be

represented by a block of data, (IvdI, Iv! I) and AM/PM conversion for the HPA can be

represented by a block of data, (lvdI, 0), where 0 is the phase shift between vd and v1.
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The normalized AM/AM conversion for the HPA is represented by normalizing

the amplitude of vd and v1, (M, M). The normalized AM/AM conversion for the

predistorter can be easily obtained as (M, 1v21). The following step is to scale the range

of the normalized output signal to fit the range for the HPA's input signal by multiplying

Iv2I by a factor, IV aXI. Thus, the input-output relationship in terms of amplitude of

signal for the predistorter is represented by a block of data, (M, M I'I). We

can use a real polynomial to represent (M, Ivj V.mI) for AM/AM conversion for the

predistorter, which is called the normalized amplitude polynomial(NAP). The amplitude

correction can be done according to NAP.

The AM/PM curve for predistorter is easily represented by a block of data, (IvdI, 0),

where 0 is the phase shift between vd and v1. Also a real polynomial can be used to

represent the AM/PM conversion for the predistorter, which is called the phase shift

polynomial(PSP). The phase correction can be done according to PSP. The predistor-

tion on phase follows the predistortion on amplitude. The block of the complementary

predistorter is given in Fig. 4.4.

4.4. Simulation Results

Simulations were performed with the class AB HPA and a 16QAM signal. It was

found that that a 7th-order NAP and 6th-order PSP give good results.

The 7th-order NAP used to represent the normalized AM/AM conversion for the

predistorter is given in Equation 4.3.

rd = 51.5936 r 168.8278 r + 218.7429 r

142.1784 r + 48.8585 r

8.4926 r + 1.2802 rm 0.004 (4.3)

The 5th-order PSP to represent the AM/PM conversion for the predistorter is

given in Equation 4.4.
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FIGURE 4.4: Structure of the Complementary Predistorter

o = 0.0006 r + 0.0077 r 0.0503

+0.1841 0.3341 rj + 1.4004 (4.4)

The improvement in ACI is shown in Fig. 4.5, and the nonlinearity of the AM/AM

and AM/PM conversions are shown in Fig. 4.6 and Fig. 4.7. As for the direct iterative

method and the multi-stage method the AM/AM conversion and AM/PM conversion

can also be represented as in Fig. 4.8 and Fig. 4.9.

Ideally, all of these predistortion methods under the best situation introduce the

equivalent pre-distortion for the input signal. Fig. 4.10 and Fig. 4.11 give the input-

output relationships in terms of amplitude and phase shift for the predistorter based

on the complementary method and the predistorter based on the multi-stage method(a
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9th-order CGP and a 128-size LUT). As mentioned earlier, when a 9th-order CGP and

a 128-size LUT are used in the multi-stage method for the AB class HPA and 16-QAM

input signal the spectral regrowth is negligible. Compared to the AM/AM conversion

and AM/PM conversion for the predistorter given by the multi-stage method in this best

case the complementary method has almost the same AM/AM and AM/PM conversions
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FIGURE 4.6: Input-output relationship on amplitude for 16QAM input signal
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for the predistorter. This illustrates that even the complementary method gives the

significant reduction in computation the performance is fairly good.
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FIGURE 4.8: Gain for AM/AM conversion by NAP
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5. COMPARISONS OF PREDISTORTION METHODS

In the previous chapters three methods are discussed: direct iterative method,

multi-stage method and complementary method. In this chapter comparisons in terms

of the complexity, stability and speed for the approaches are made. We also study the

adaptability of the predistorter for the drift in HPA's characteristics and the sensitivity

to the noise.

5.1. Computational Complexity

The main part computation for the direct iterative method is the iteration by the

secant method. Since no derivative of E9 can be known the secant method is applied

with the convergence speed between linear convergence and quadratic convergence. Each

update involves 4 complex subtractions and 3 complex multiplications. Also the phase

shift and the magnitude adjustment contain 1 complex multiplication, 10 real subtrac-

tions and 4 real multiplications in each update. After the complex coefficient for each

table index is obtained, the predistortion is done by multiplication of the input signal

by the complex coefficient.

The multi-stage method first finds the CGP for the HPA. It collects hundreds of

sampled input data and output data and uses a curve-fitting method to find the poly-

nomial complex coefficient in a Least Square Sense. The next step is to find the inverse

to the HPA in the form of complex coefficients. Since the derivative of the objective

function is available a Newton method can be used, which gives the quadratic conver-

gence. Each update involves one complex multiplication, which is much simpler than the

secant method in the direct iterative method. The implementation of the predistortion is

similar to that in the direct iterative method. However, different interpolation methods

can be used to achieve better tradeoff between cost and performance.

Compared to the direct iterative method and the multi-stage method the corn-



putational complexity for the complementary method is the simplest one. It collects

hundreds of sampled input data and output data to find the input-output relationship in

terms of amplitude and phase shift for the predistorter. NAP and PSP are obtained by a

curve-fitting method. The predistortion is implemented by operation of real polynomial

evaluation. Simple operations, like normalization, scale, and swap, are used to get the

block of data to represent AM/AM and AM/PM conversions for the predistortion from

(vd, vf). Furthermore, there is no LUT necessary here to store the predistortion.

5.2. Computation Speed

From the analysis of computational complexity the complementary method is sim-

plest, and the direct secant method is the most complex one. From simulation it is

found that the secant method takes the longest time. For 16QAM signal with 5000 sam-

pled data, the simulation running on SUN Ultra Sparc 10 workstations takes about 4-6

seconds to converge for the direct iterative method, and about 0.4-0.6 seconds for the

multi-stage method, about 0.12-0.20 seconds for the complementary method.

5.3. Algorithm Stability

Among the three methods only the direct iterative method has the potential prob-

lem of instability because of feedback.

5.4. Sensitivity to Noise

Among the three methods, the direct iterative method is most sensitive to noise

because the method attempts to directly solve the inverse problem. The convergence

behaviour as a function of the iteration number is shown in Fig. 5.1.

We know that when there is no noise after the 7th step iteration step, the resulting
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predistortion coefficient is close enough to make the output equal to the ideal linear value.

The ratio of the power of the error to the power of the signal is about 40dB. When noise

is present, the corresponding spectra for the output signals are shown in Fig. 5.2.

When SNR for the input signal is less than 40dB the predistorter gives improve-

ment in ACT, but not as much as when SNR for the input signal is greater than 40dB.
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FIGURE 5.2: Spectrum of output signal with the AWGN
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The multi-stage method is involved in the forward problem to characterize the

HPA nonlinearity by the CGP in the first stage. The second stage has nothing to do

with the measured data, so it has nothing to do with noise. Thus, if in the first stage

there are ways to make the CGP insensitive to noise the predistorter will gain immunity

to noise. The multi-stage method uses curve-fitting method to find the CGP based on

a least square sense from the sampled data (vd, vf). Block processing can be employed

to reduce the influence from noise. There are several ways to improve the algorithm

when noise is present. Since the nonlinearity is memoryless the data pairs (vd, vf) can

be re-ordered based on the amplitude of vd. The re-ordered data pair can be treated

as a very low frequency process and can be filtered to reject the out-of-band noise [2].

Another way is that the corrected output can be obtained by average in time domain

from the re-ordered output.

5.5. Adaptability of Algorithms

For the direct iterative method the predistortion coefficients contained in LUT

are updated online. When the iteration converges the complex coefficients will be kept

unchanged according to the Equation 2.9. If the characteristic of the HPA changes

the ioop error becomes an indicator for the iteration and, the complex coefficient will

be updated. The direct iterative method is inherent an adaptive algorithm since the

feedback loop always keeps track of the drift in the HPA.

The multi-stage method achieves adaptability by updating the CGP. Periodic sam-

pling of input data and output data, comparing the actual output and the estimated

output, which calculated from the input data and the CGP which is stored in memory,

and the resulting error between the actual output and estimated output is an indica-

tor for the necessary of re-generation of the CGP. Other way to get the indicator for

re-generation of the CGP can be measurement of the adjacent channel power emission.

The complementary method also needs to judge whether it is necessary to re-sample the

data to estimate the input-output relationship for the HPA to replace the obsolete one
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like the multi-stage method. For some applications periodic update might be an efficient

solution.

5.6. Conclusion

The direct iterative method is the most computationally complex. It does keep

track of the drift in the characteristic for the HPA, however the problem of potential

instability exists for the feedback structure. The multi-stage method is better than

the direct iterative method when it comes to the computation load and computational

complexity. The improvement on linearity is better than the direct iterative method,

especially for small input signals, and no stability problems exist. The complementary

method has the simplest structure, and the lightest computational load.
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6. CONCLUSIONS AND FUTURE RESEARCH

6.1. Conclusions

The increasing demand for wireless communications, and the pressure on the lim-

ited radio spectrum available are forcing the development of more spectral efficient mod-

ulation schemes. The result is that linearization of the power amplifiers associated with

linear modulation schemes become a critical design issue. In this thesis, several pre-

distortion methods have been studied: direct iterative method, multi-stage method and

complementary method. By analysis and simulation the direct iterative method requires

the most computation and has potential instability problems. Also, noise severely hurts

the system performance. The multi-stage methods don't use feedback, and instead use a

two-stage structures. The multi-stage methods heavily rely on the precision of character-

ization of nonlinearity of the HPA represented by the CGP. The improvement on linearity

of the system by multi-stage methods is significant. Furthermore, block processing of

the sampled data can improve the performance when noise is present. Although the

multi-stage methods decrease the computational load, and there is no stability problem,

we still want to simplify the method to meet the requirement for low cost and fast speed.

The complementary method is a simplified multi-stage method that uses symmetry in the

normalized AM/AM for the predistorter and the HPA to get the normalized magnitude

polynomial, and symmetry in the AM/PM for the predistorter and the HPA to get the

phase shift polynomial as in [2]. No LUT is needed to store the predistorter coefficients.

Instead two polynomials for magnitude and phase predistortion are generated. The al-

gorithm is the fastest and simplest. Also like the multi-stage method block processing

of sampled data can be used to increase SNR for AM/AM and AM/PM conversions for

the HPA.
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6.2. Future Research

There are many topics for future research in the linearization of power amplifiers.

In this paper several possible digital adaptive predistortion methods were studied. All

the methods are based on characterization of the HPA in the digital domain, and they all

depend on demodulation. The demodulator increases the complexity in the predistortion

which makes it might not the best solution for some applications. To overcome the above

problem a method based on the adjacent channel power emission is being investigated.

Theoretically the adjacent channel power emission is related with HPA's nonlinearity.

By monitoring the out-of-band power the distortion introduced by HPA can be estimated

[8]. Adaptation is accomplished by iterative adjustment of the predistortion coefficients

to minimize the out-out-band power. The approach on how to best estimate the out-

of-band power is still not solved. Also the numerical method used to iteratively adjust

the predistortion coefficients based on out-of-band power need to be studied to achieve

efficiency and stability.

In the direct iterative method and multi-stage method uniform spacing for LUT

was used. There is no doubt that if more table values are used in the area where the

HPA's characteristic varies sharply that the predistorter will give better performance

[13]. The method to carry out the optimum table space, the tradeoff between uniform

spacing and optimum spacing are the possible topics for future research.

For the direct iteration method the phase shift and the magnitude adjustment

are each a large computation burden. To speed the algorithm new methods must be

found to avoid the phase shift and the magnitude adjustment. For the multi-stage

method and the complementary methods polynomials are used to represent the complex

gain and the predistorter's AM/AM and AM/PM conversions. System performance is

heavily dependent on the accuracy of these polynomials. Different HPAs require different

orders of polynomials. To design a baseband digital predistorter that can be used with

different systems a function to automatically choose proper order of polynomial must be

developed.
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For all methods there is time delay between the input data and the output data.

Exact estimation of time delay is important. In analog predistortion system adjustment

of the delay line will be necessary, which even makes the adaptability more difficult. For

digital predistortion methods the time delay still exists. However DSP techniques can

be used here to make the estimation of the time delay accurate and efficient as in [2].
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