
AN ABSTRACT OF THE THESIS OF

Budiyoso Kumiawan for the degree of Master of Science in

Electrical & Computer Engineering presented on March 14, 2002.

Title: ASIC Design and Implementation of A Parallel Exponentiation Algorithm using

Optimized Scalable Montgomery Multipliers

Abstract approved:

Alexandre Ferreira 'lenca

Modular exponentiation and modular multiplication are the most used
operations in current cryptographic systems. Some well-known cryptographic
algorithms, such as RSA, Diffie-Heliman key exchange, and DSA, require modular
exponentiation operations. This is performed with a series of modular multiplications

to the extent of its exponent in a certain fashion depending on the exponentiation
algorithm used.

Cryptographic functions are very likely to be applied in current applications

that perform information exchange to secure, verify, or authenticate data. Most notable

is the use of such applications in Internet based information exchange. Smart cards,

hand-helds, cell phones and many other small devices also need to perform
information exchange and are likely to apply cryptographic functions.

A hardware solution to perform a cryptographic function is generally faster and

more secure than a software solution. Thus, a fast and area efficient modular
exponentiation hardware solution would provide a better infrastructure for current

cryptographic techniques.

In certain cryptographic algorithms, very large precisions are used. Further, the

precision may vary. Most of the hardware designs for modular multiplication and

Redacted for Privacy

modular exponentiation are fixed-precision solutions. A scalable Montgomery
Multiplier (MM) to perform modular multiplication has been proposed and can
operate on input values of any bit-size, but the maximum bit-size should be known and

is the limiting factor. The multiplier can calculate any operand size less than the
maximal precision. However, this design's parameters should be optimized depending

on the operand precision for which the design is used.

A software application was developed in C to find the optimized design for the

scalable MM module. It performs area-time trade-off for the most commonly used

precisions in order to obtain a fast and area efficient solution for the common case.

A modular exponentiation system is developed using this scalable multiplier

design. Since the multiplier can operate on any operand size up to a certain maximum

value, the exponentiation system that utilizes the multiplier will inherit the same
capability.

This thesis work presents the design and implementation of an exponentiation

algorithm in hardware utilizing the optimized scalable Montgomery Multiplier. The

design uses a parallel exponentiation algorithm to reduce the total computation time.

The modular exponentiation system experimental results are analyzed and

compared with software and other hardware implementations.

© Copyright by Budiyoso Kurniawan

March 14, 2002

All rights reserved

ASIC Design and Implementation of

A Parallel Exponentiation Algorithm

using Optimized Scalable Montgomery Multipliers

by

Budiyoso Kumiawan

A THESIS

submitted to

Oregon State University

in partial fulfillment of

the requirements for

the degree of

Master of Science

Presented March 14, 2002

Commencement June 2002

Master of Science thesis of Budiyoso Kurniawan presented on March 14, 2002

APPROVED:

sor, representing Electrical & Computer Engineering

Chair of the Department of

Dean of GrahtSchoo1

al & Computer Engineering

I understand that my thesis will become part of the permanent collection of Oregon

State University libraries. My signature below authorizes release of my thesis to any

reader upon request.

Budiyoso Kurniawan, Author

Redacted for Privacy

Redacted for Privacy

Redacted for Privacy

Redacted for Privacy

r

ACKNOWLEDGEMENTS

I would like to thank Dr. Alexandre Tenca and Dr. Cetin Koc for giving me the

opportunity to work on this interesting project. Dr. Tenca's reviews, comments, and

discussions on this thesis work were really valuable.

I would like to thank Dr. David Kim for giving me information, comments,

and discussion for the optimization portion of the thesis.

I would like to thank all my friends, especially Georgi Todorov, Donald Heer,

Jirachai Buddhakulsomsiri, and Shakib Shaken, for their ideas, comments, and
discussions related to the thesis as well as their support.

Finally, I would like to thank my family, who makes it possible for me to
explore this degree.

11

TABLE OF CONTENTS

1. INTRODUCTION . 1

1.1. Montgomery Multiplication (MM) Algorithm .. 3

1.2. Binary Method Algorithm for Exponentiation ... 6

1.3. Literature Review ... 8

2. PARALLEL EXPONENTIATION ALGORITHM AND CURRENT
SCALABLE MONTGOMERY MULTIPLICATION IMPLEMENTATION 11

2.1. Parallel Binary Method Algorithm for Exponentiation 11
2.2. The Scalable Montgomery Multiplication Hardware Implementation 13

3. PARALLEL EXPONENTIATION ALGORITHM IMPLEMENTATION
USING THE SCALABLE MONTGOMERY MULTIPLIER 19

3.1. Parallel Binary Method Implementation .. 19

3.2. Modular Exponentiation in a System Implementation 21

3.2.1. Motivations for using parallel binary method in the modular
exponentiation system ... 21
3.2.2. System level description of the system .. 23
3.2.3. Control and status signal implementation .. 26
3.2.4. System functionality in performing MM operation 28
3.2.5. System functionality in performing modular exponentiation operation 29
3.2.6. Op control logic block functionality .. 31

4. OPTIMIZATION OF THE SCALABLE MONTGOMERY MULTIPLIER 35

4.1. Problem Description .. 35
4.2. Considerations and Methods Discussion ... 40

4.2.1. Finding p for particular w and N ... 40
4.2.2. Finding p and w for a particular N ... 47
4.2.3. Finding p for particular w and multiple N ... 50
4.2.4. Finding p andw atmultipleN ... 53

TABLE OF CONTENTS (Continued)

4.3. Kernel Design Tool .55

4.3.1. KDT input parameters ... 55
4.3.2. KDT Implementation ... 58

4.4. Optimization Results for Particular Case ... 60

4.4.1. Analysis for kernel design for N = 160 bits and max area of 26,500
gates ... 60
4.4.2. Analysis for kernel design for N = 1024 bits and max area of 26,500
gates ... 62
4.4.3. Analysis for equalized optimal design for max area of 26,500 gates 64

5. EXPERIMENTAL RESULTS AND ANALYSIS .. 67

5.1. Total Area Approximation for the Proposed System Implementation 67

5.2. Experimental Result and Analysis of the Proposed System Operating
Montgomery Multiplication (MM) ... 69

5.3. Experimental Result and Analysis of the Proposed System Operating
ModularExponentiation ... 71

5.4. System Performance Comparison to Other Modular Exponentiation
HardwareSystems ... 74

6. CONCLUSIONS AND FUTURE WORK .. 79

6.1. Conclusions .. 79
6.2. Future Work ... 80

BIBLIOGRAPHY.. 83

APPENDICES .. 86

Appendix A. Kernel Design Tool Flowchart .. 87

Appendix B. Delay Data File Arrangement.. 89

Appendix C. Kernel Design Tool Source Code .. 90

Appendix D. Kernel Design Tool Input and Output Example 100

iv

LIST OF FIGURES

Figure Page

1.1. Modular Multiplication using MM .. 4

1.2. Radix-2 MM algorithm ... 5

1.3. Binary Method algorithm .. 6

2.1. Parallel Binary Method Algorithm .. 11

2.2. System level architecture for MM hardware (datapath only) 14

2.3. System Level Diagram of MM Module (datapath only) 16

2.4. System Level Diagram of Kernel (datapath only) ... 17

3.1. Parallel Binary Method Algorithm using MM .. 19

3.2. System level block diagram (datapath only) ... 24

3.3. Control word description ... 27

3.4. Status word description ... 27

3.5. Repeating the same data to be outputted by the register 28

3.6. Op control logic state diagram performing MM ... 32

3.7. Op control logic state diagram performing modular exponentiation 33

4.1. Area to time comparison graph for N = 256 bits ... 37

4.2. Area to time comparison graph for N = 256 with w = 8 42

4.3. Scaled_area to scaled_time comparison graph for N = 256 with w = 8 44

4.4. Area to scaled_time comparison graph for N = 256 with w = 8 45

4.5. Resorted data according to area versus time for N = 256 48

4.6. Resorted data according to area versus scaled time for N = 256 49

4.7. Area to time comparison at w = 8 for N = 256 and N = 512................................. 52

4.8. Area to expected time comparison at w = 8 for N = 256 and N = 512 52

4.9. Area to expected time considering multiple values of w and N 53

4.10. Resorted area to expected time comparison at multiple values of w and N 54

V

LIST OF FIGURES (Continued)

Figure Page

4.11. RC delay for each w by p (from flattened design results) 55

4.12. RC delay extraction by using the linear interpolation method 57

4.13. Conceptual design for KDT implementation .. 58

4.14. Kernel designs for N = 160 bits up to 26,500 gates .. 61

4.15. Kernel designs for N = 1024 bits up to 26,500 gates .. 63

4.16. Equalized designs up to 26,500 gates .. 65

LIST OF TABLES

Table

vi

Page

1.1. Binary method implementation example .. 7

2.1. Parallel binary method implementation example .. 12

3.1. Parallel binary method implementation using MM ... 20

3.2. Parallel binary method implementation in the system .. 30

4.1. Area, time (clock cycles), and time (j.ts) for each w and p with N = 256 bits 36

4.2. Minimal area for each w with N = 256 ... 38

4.3. Minimal time for each w with N = 256 ... 39

4.4. Trade off between area and time with equal importance 46

4.5. Results for each w with time importance of 50% at N = 256 48

5.1. Area consumption of several configurations with d = 32 bits 68

5.2. Timing result of the system performing MM operation .. 69

5.3. Timing result of the system performing modular exponentiation operation 71

5.4. Decryption time result of software implementations and the two systems........... 73

5.5. Speedup result of the two systems compared to software implementations 73

5.6. Comparison to Blum and Paar's FPGA implementation 75

5.7. Comparison of different exponentiation hardware systems 76

ASIC DESIGN AND IMPLEMENTATION
OF

A PARALLEL EXPONENTIATION ALGORITHM
USING

OPTIMIZED SCALABLE MONTGOMERY MULTIPLIERS

1. INTRODUCTION

Modular exponentiation and modular multiplication are the most used
operations in current cryptographic systems. Some well-known cryptographic
algorithms are Rivest-Shamir-Adleman (RSA) [1, 3], Diffie-Hellman key exchange

[2], Digital Signature (DSA) [4], and elliptic curve cryptography (ECC) [5]. All these

algorithms, except for ECC, need to perform modular exponentiation. Modular
exponentiation is performed as a series of modular multiplications to the extent of its

exponent in a certain fashion depending on the algorithm used.

In current applications, almost all information exchange apply some kind of
cryptographic function to secure, verify, or authenticate data. Applications such as

Secure Socket Layer (SSL), Internet Key Exchange (IKE), and many others are used

to secure information exchange over the Internet. Many small devices where area and
power are limited, such as smart cards, hand-helds, and cell phones, are also likely to

apply cryptographic function since they perform information exchange.

A hardware solution is generally more secure and faster than software solution

in performing a cryptographic function. A fast and area efficient exponentiation
hardware solution would provide a better infrastructure for current cryptographic
techniques.

For modular multiplication, the Montgomery Multiplication (MM) algorithm

[6] provides advantages in a hardware implementation. The main advantage of this

algorithm is that instead of performing division by the modulus, it performs simple bit

shifts, which are easier to implement and much less costly in terms of execution time.

Another issue is the operand precision. In most cryptographic techniques, very large

precision numbers are used. Several scalable Montgomery Multiplier (MM) module

designs have been proposed and implemented in [8, 9, 10, 11]. These designs allow

the computation on operands of any size over a limited hardware implementation.

Several exponentiation algorithms [1] can be implemented over the scalable

MM module [10]. The kernel inside this scalable MM module consists of a number of

processing elements configured to receive input at a certain word size. As in any
hardware solution, tradeoff issues between area and time are always present. The total

computation time of the kernel varies for different precisions. Since the modular
multiplication time varies depending on precision, modular exponentiation time,
which utilizes modular multiplication, will reflect the variation on a much larger scale.

The objective of this thesis work was to design and implement an
exponentiation algorithm in hardware utilizing the optimized scalable Montgomery

Multiplier [10]. The design uses a parallel exponentiation algorithm to reduce the total

computation time. A software application was developed in C to find the optimized
design for the scalable MM module. It performs area-time trade-off for the most
commonly used precisions in order to obtain a fast and area efficient solution for the

common case.

The next two sections in this chapter introduce the MM algorithm and a
general exponentiation algorithm suitable for hardware implementation. Chapter 2

introduces a parallel exponentiation algorithm and a scalable MM hardware
implementation. Chapter 3 shows the parallel exponentiation algorithm using MM and

the system level architecture for modular exponentiation. Chapter 4 discusses the
issues related to the scalability of the MM module and methods to find an optimized

design for its implementation. It also describes a software application implementation

and its results. Chapter 5 presents the experimental results of the system proposed.

Chapter 6 concludes this work and presents some possible future improvements.

3

1.1. Montgomery Multiplication (MM) Algorithm

The following notation will be used throughout this text. New fields will be
added as appropriate.

M modulus for modular multiplication;

X multiplier operand for modular multiplication;

X1 a single bit of X at position i;

Y multiplicand operand for modular multiplication;

N number of bits in the operands, operand's precision;

raconstant, r
S partial product in the multiplication process, final result of modular
multiplication;

S, a single bit of S at position i.

The application of the Montgomery Multiplication (MM) algorithm, given 2

integers X and Y, with a required parameter for N bits of precision is defined as
follows:

MM(X, Y)=XYr' modM,
where r 2N and M is an integer in the range 2' M 2N1 such that gcd(r, M) = 1.

The Montgomery multiplication algorithm is used to transform an integer in the range

[0, M-l] to another integer in the same range called the image or the M-residue of the
integer.

To obtain the modular multiplication C XY mod M, the following series of
MM operations are performed.

The image of X and Y are calculated as:

X=MM(X,r2)=XrmodM
Y=MM(Y,r2)=YrmodM

The image of C is then calculated as:

C=MM(X,Y)=MM(Xr,Yr)= XYrmodM

4

. To return from the image to the original integer value the following operation is

performed.

C=MM(C,1)=CmodM =XYmodM

This can be done provided that r2 (mod M) is pre-calculated and saved. The advantage

is the low complexity of the MM algorithm.

As can be seen from Figure 1.1, for a single modular multiplication of two
integers, four (minimal of two) MM operations are required. However, if multiple
multiplications are required, the numbers can be kept in the Montgomery domain and

further multiplications can be performed without transformation. The next modular

multiplication only requires one MM operation. After all multiplications are

performed, a final MM operation is executed to convert back from M-residue to

integer field.
In modular exponentiation implementation, this MM is very beneficial since

multiple multiplications can be performed prior to transferring the result back to the

integer field.

r2 mod M Montgomry Image

X .. (MM ') .
7* XrmodM

Xm

\ / P Yr mod M

MM
r2 mod M

Figure 1.1. Modular Multiplication using MM

The Montgomery multiplication (MM) algorithm has been expanded from its

original form [6], which is a fixed-precision implementation in radix 2, to a scalable,

word-based implementation on multiple radices [8, 9, 10, 11].

Figure 1.2 shows the radix-2 MM algorithm. Radix-2 implies that X is scanned

one bit in each iteration loop. As can be seen from the algorithm (step 2c), the division

step for modulus is substituted with a division by 2, which is implemented by a simple

shift operation. The algorithm represents a fixed-precision implementation since the S,

Y, and M operands are full size. For implementation in hardware, the maximum
precision of S, Y, and M operands should dictate the allocation of hardware resources.

Even if the actual precision used for computation is smaller; the algorithm will still

perform as if S, Y, and M are at the maximum precision. Thus, the multiplier will
consume a lot of area, require a high number of pins, have an increased load for gates,

and longer wires.

1. S=0
2. Fori=OtoN-1

2.a. S=S+XY
2.b. S=S+So*M
2.c. S=S/2

3. IfSMthenS=SM

Figure 1.2. Radix-2 MM algorithm

In order to make the MM scalable and perform in higher radices, the algorithm

is modified to the Multiple-Word High Radix MM algorithm [8, 10, 11]. This

algorithm allows the multiplier to run at word size instead of full precision. This

allows for the system design as described in Section 2.2.

1.2. Binary Method Algorithm for Exponentiation

The following list extends the notation used in this thesis. New fields will be

added as appropriate.

Z exponent operand of modular exponentiation;

Z, a single bit of Z at position i;

C temporary result of each ioop, final result of modular exponentiation;

K number of bits in the exponent operand (exponent operand's precision).

A classic algorithm for exponentiation is the binary method [1J. The binary
method scans the bits of the exponent either from left (most significant bit) to right
(least significant bit) or vice versa. Figure 1.3 describes the binary method algorithm

for C = XZ mod M calculation, scanning the exponent Z from left to right. At each
step, a squaring is performed. A multiplication follows depending on the scanned bit

value.

The number of squaring operations (step 2a) is K-i, where K is the number of

bits (precision) in the exponent. The number of multiplication operations (step 2b) is

H(e) 1 where H(e) is the Hamming weight (the number of is in the binary expansion

of the exponent). Thus, the total number of multiplications is averaged at 3(N-1)/2.

Input: K, X, Z, M

Output. C = Xz mod M

1. If Z1ç1 = 1 then C = X else C = 1

2. For i = K-2 downto 0

2.a. C C*C mod M (squaring)

2.b. If Z 1 then C C*X mod M (multiplication)

3. Return C

Figure 1.3. Binary Method algorithm

7

An example of the algorithm application is shown in Table 1.1 for

Z = 10110110 and K = 8. Since the most significant bit of Z (ZN.!) equals 1, then

C=Xin step 1.

i Zi Step2a Step2b

7 1

6 0 (X)2=X2 X2

5 1 (X2)2 = X4 X4.X = X5

4 1 (X5)2=X'° X'°.X=X11

3 0 (X")2=X22 X22

2 1 (X22)2 = X4 X.X = X45

1 1 (X45)2 = X9° X90.X = X9'

0 0 (X91)2=X'82 X182

Table 1.1. Binary method implementation example

This method can be called the serial implementation of the binary method. The

main issue with this algorithm is the data dependency. The multiplication (step 2b) can

only be performed after the result of a squaring operation (step 2a) and the following

squaring can only be performed after the result of the previous multiplication.
Therefore, the total number of multiplications dictates the total time for

exponentiation. This causes longer execution time since every single operation has to

be performed serially. In Section 2.1, a modified method that allows faster execution

time will be discussed.

8

1.3. Literature Review

As indicated earlier, modular exponentiation and modular multiplication are

common operations used in cryptographic algorithms [2, 3, 4, 5]. Modular

exponentiation is performed by a series of modular multiplication operations
depending on the exponentiation algorithm used. There are many exponentiation
algorithms proposed [1] and most of these algorithms have been implemented in
software.

There are also some exponentiation algorithms proposed and implemented in

hardware. A proposed implementation is the 0(n)-depth circuit algorithm for modular

exponentiation [12]. It uses logarithmic-depth circuits for powering/exponentiation.
This algorithm utilizes the primes that compose the modulus operand and performs

several modular exponentiations in parallel before combining the results.

Another hardware implementation uses the MM algorithm for modular
exponentiation on reconfigurable hardware in [13]. The MM algorithm used is very

similar to the original MM algorithm by P.L. Montgomery in [6]. The radix-2
algorithm implementation is based on a systolic array of processing elements. For the

multiplication of operands X and Y with modulus M, each processing element takes a

u-bit word of Y and M operands. The u-bit words presented in the literature [13] are 4,

8, and 16 bits. For a precision of N bits, the number of processing elements required is

equivalent to N/u since it needs that number of processing elements for full precision

to be reached. In the implementation, the intermediate data are represented in
redundant form and are only resolved back to binary representation in the end and in

the intermediate result feedback. The use of the MM algorithm for modular
multiplication makes it less difficult and time consuming compared to other modular

multiplication methods. The hardware design was targeted to FPGA technology so

that it can be reconfigured easily for different precisions. Designs for FPGAs have

certain advantages giving the flexibility comparable to software implementations as

well as good performance since it is a hardware implementation. However, it is also

typically a challenge to fit a large fixed precision modular arithmetic architecture due

to the limited resources on FPGA chips. The exponentiation algorithm used in this

implementation is the binary method as discussed in Section 1.2. The design also

utilizes the F4 exponent for RSA encryption and CRT [1] for RSA decryption to speed

up the execution time.

The MM algorithm [6] has been developed into several different variants from

its original form. Further work has been done in [7] to analyze and compare several

fixed precision MM algorithms in terms of time and space requirements. A word-
based MM algorithm and architecture is proposed in [8], where the operand precision

applied to the system may vary instead of being fixed. In [8], the radix-2 word-based

MM algorithm is developed and implemented in a pipeline of processing elements.

The number of processing elements can be selected arbitrarily unlike the

implementation in [13]. A processing element consists of carry save adders and the

intermediate data is represented in carry save form. Only in the end of the MM
process, is the data resolved back to binary representation by use of a final reduction

step.

Further work from [8] is done in [9] to develop a scalable and unified
multiplier architecture. The unified architecture refers to the use of the multiplier in

both Galois Fields of GF(p) and GF(2k). The implementation is possible without
substantially increasing the required area since in GF(2k) operation, carries do not
need to be propagated.

An ASIC implementation of the radix-2 word-based MM algorithm was
developed in [10]. High Radix MM algorithm [10, 11] has been developed for certain

maximum precision implementation. In [10, 11], high radices were applied over the

word-based MM algorithm, introducing the ASIC design for radix-8 implementation.

The result shows an improved execution time compared to that of the radix-2
implementation, especially when a larger number of processing elements are used. The

radix-2 ASIC implementation of the scalable MM algorithm is used to develop the

scalable modular exponentiation system.

Chiou in [16] proposed a parallel implementation of the RSA public-key
cryptosystems. A parallel binary method algorithm is introduced to utilize

exponentiation operation in certain parallel hardware implementations. This algorithm

has advantages where certain operations can be performed in a parallel instead of
serial fashion as in the regular binary method in Section 1.2. This parallel binary
method algorithm is also used for the scalable modular exponentiation system in this

work.

11

2. PARALLEL EXPONENTIATION ALGORITHM AND
CURRENT SCALABLE MONTGOMERY MULTIPLICATION

IMPLEMENTATION

2.1. Parallel Binary Method Algorithm for Exponentiation

The following notion extends the notation used for the exponentiation
algorithm: Sq temporary result of squaring operation.

The parallel binary method proposed by Chiou [16] is a modified version of

the regular binary method. This algorithm is developed to perform fast exponentiation

in a parallel processing environment. Similar to the regular binary method, this
method scans the bits of the exponent; however, the scanning is performed from the

least significant bits (LSB) to the most significant bits (MSB). The Figure 2.1
describes a modified algorithm from the original parallel binary method of
C=XZmodMas proposed in [16].

Input. K, X, Z, M

Output: C = Xz mod M

1. SetC=1,Sq=X
2. Fori=OtoK-1

parallel
2.a. Sq = 5q*Sq mod M (squaring)

2.b. If 74 = 1 then C = Sq *C mod M (multiplication)
parallel

3. Return C

Figure 2.1. Parallel Binary Method Algorithm

12

It can be seen that this algorithm performs somewhat differently than the
previous algorithm discussed in Section 1.2. In this algorithm, both operations in step

2a (Sq*Sq mod M) and step 2b (C*Sq mod M) are performed simultaneously on

specific parallel hardware. The total number of multiplication and squaring operations

is still the same as the regular binary method. However, by performing multiplication

and squaring operations simultaneously, the total time for exponentiation corresponds

to the time to perform K multiplications. The total time is the same despite the number

of 1 bits in the exponent Z. Thus, this algorithm performs a faster exponentiation,
provided the existence of parallel hardware. Table 2.1 shows an example of the
algorithm implementation for Z = 10110110.

i Zj Step 2a Step 2b

mit X 1

0 0 (X)2=X2 1

1 1 (X2)2=X4 X2.1=X2

2 1 (X4)2=X8 X4.X2=X6

3 0 (X8)2=X'6 X6

4 1 (X16)2=X32 X'6.X6=X22

5 1 (X3 = X X32.X22 = X54

6 0 (X64)2 = X1 X54

7 1 (X128)2 X256 X'8.X= X'82

Table 2.1. Parallel binary method implementation example

The LSB to MSB scanning means that it has no way of knowing whether
further squaring is necessary before the whole Z is consumed. Consider the case where

13

Z = 00000001. This will cause the system to continually perform squaring until i = 7,
only to find that the result is already available when i = 0. This can be avoided by

performing pre-scanning of the Z operand to get the location of the last or most
significant 1 bit. Once the location is known, the K is set to that value. In the case

where Z = 00000001, then K = 1 instead of K = 8. By doing this, there will be no
unnecessary squaring operations performed.

2.2. The Scalable Montgomery Multiplication Hardware Implementation

From the Multiple-Word High Radix Montgomery algorithm, Todorov [10]

has developed ASIC implementations of the scalable Montgomery multiplier in radix-

2 and radix-8, which will be called MM module from now on. Roger Traylor has
implemented the input/output (JO) portion for the MM module in order to make it
appropriate for a system design. This 10 includes the memory blocks (FIFOs) and
controls. The system level datapath architecture can be seen in Figure 2.2.

The system has a d-bit 10 bus that can be used to input control signals and
operands' data as well as output the system status and result data. The system also has

a 4-bit address line as well as 1-bit signal for read (rd_n), write (wr_n), chip select

(cs_n), and data ready (rdy_n). The address line indicates which register to read or
write, controlled by the rd_n or wr_n signal. At the beginning, the operands X, Y, and

M data need to be inputted to the FIFO registers inside the system. Although the MM

module can perform despite the operand's precision, these FIFOs are the limiting
factor since they have to be able to hold the full precision of the data.

After the data load operation is complete, the address line can point to the d-bit

control register, where the control information word now provided in the 10 bus will

be stored. The d-bit control word contains information regarding the operation to be

performed, start, operand size, and software reset among others. When a new control

word is written to the control register, a start op pulse generator (part of control

14

block) is invoked. This pulse generator will create a one-cycle start op signal inside
the system. When all the data are loaded, the conmand requesting to begin an MM

operation can be issued as part of the control information.

During the multiplication, individual bits of X must be isolated. A w-bit word

of operand X is loaded to the funnel to feed the conect k-bit word of X to the MM
module depending on the radix implementation. Following the Multiple Word High

Radix MM algorithm, k bits of X have to be provided to the MM module, where k 1

for radix-2 and k = 3 for radix-8 implementation. The operands Y and M are read and

transferred at w-bit words to the MM module.

:TJ
Figure 2.2. System level architecture for MM hardware (datapath only)

15

The MM module sends out w-bit words of the partial results to SS and SC
registers since it produces partial results in redundant (Carry Save) form. The SS and

SC partial results are fed back to the MM module repeatedly until all the bits of X are

processed. h the final step of the MM module's operation, either the SS or SC register

will hold the correct final result of the multiplication.

At any time, the system status can be read by setting the address line to the

status register. The status register reports information such as MM operation done, and

empty/full status of FIFO registers. The FIFOs information reported are that of X, Y,

M, SS, and SC registers.

When the MM module completes its operation, it issues a done signal that is

forwarded to the status register and is reflected on rdy_n line. After the rdy_n signal is

issued, the user can check for status and pick up the result data from the system. The

result data is stored in either the SS or SC register as indicated earlier. The MM
module informs the location of the correct result through its status signal. The result

can be picked up at the 10 bus by setting the address line to point to the result register.

The result register is used to recompose the w-bit data from SS or SC to d-bit suitable

for the JO bus. This re-composition will be referred to as data reformatting. In case d

and w are of the same size, data reformatting and result register are not necessary.

In general, there are two main functional blocks inside the MM module: Kernel

and Final reduction block. The Kernel is the block where the computation takes place.

The final reduction block conditionally subtracts M from the Kernel output in order to

keep the final result within the modulus M. This can be seen in the Figure 2.3.

The datapath control coordinates the operation of the kernel block. As
indicated in the system level description, k-bit words of X and w-bit words of Y and

M are fed to the MM module. The words of X are held in the REGF register for 2
cycles following the operation of the kernel block, which will be discussed later. The

y and M* indicate w-bit words of Y and M operands. They are held in DFFR (D-

FlipFlop with Reset) register for 1 cycle only. In the beginning, SS and SC registers

are filled with zeros, indicating that there are no previous partial results. Again SS*

and SC* refer to w-bit words of SS and SC. The kernel is fed with a new word of X

every 2 clock cycles and fed with *, M*, SS, and SC* every clock cycle.

Figure 2.3. System Level Diagram of MM Module (datapath only)

17

Xj

4, Xii 4,X12 4,XiNS
datapath I

control r r
__cntr_kout

Y1n___ MM MM MM

M in cell S cell $ cell
1 2 NSss in SS k_out

SC in r SC k_out

4
processing element

(stage)

Figure 2.4. System Level Diagram of Kernel (datapath only)

The kernel is composed as a pipeline of MM cells separated by registers as can

be seen in Figure 2.4. An MM cell and the preceding register are referred to as a
processing element or stage. The unit receives w-bit words of Y, M, SS, and SC each

clock cycle. Over 2* NS clock periods, (NS*k) bits of X are fed to the kernel. At
every second clock period, k bits of X are loaded in a stage. The MM cell propagates

the * and M* as well as the partial results in redundant (CS) form referred as SS"

and SC* to the next MM cell, which performs the next iteration of the Montgomery
Multiplication algorithm. In turn, the following MM cell propagates Y*, M* and the

newly computed SS* and SC* to the next MM cell. These results are kept in DFF (D-

Flip-Flop register) for 1 cycle before being forwarded to the final reduction block.

The final reduction block performs addition of SS and SC as well as reducing

the addition result to the range [0, M-1]. This is being performed after the last iteration

of the ioop scanning the bits of X. During the intermediate iterations, the final
reduction block only propagates the results and data from the kernel datapath without

operating on them. This block basically performs the final step of the Montgomery

Multiplication algorithm where S M is being checked. Since this condition is not

18

known until the final pair of words result are coming out of the kernel datapath, this

block implements the computation of both conditions whether S M is true or not.

The final reduction block takes advantage of the word size output of the kernel
datapath, where the final reduction is performed serially as words are coming out of

the kernel. Both results are sent to the DFF registers where they will be stored for 1

cycle before being stored in SS and SC registers. When the last pair of words of S is

processed, a status flag is set to indicate which register contains the correct result.

Todorov [10] has proposed several different implementations of the MM
module. The simplest design is a radix-2 implementation, which has also been referred

to in previous works [8, 9]. Further high radix implementation of the MM module is

discussed in [10, 11].

19

3. PARALLEL EXPONENTIATION ALGORITHM

IMPLEMENTATION USING

THE SCALABLE MONTGOMERY MULTIPLIER

3.1. Parallel Binary Method Implementation

Modular exponentiation is performed by a series of modular multiplications.

Montgomery multiplication provides the most benefit if multiple multiplications are

executed instead of just a single one. It also simplifies modular multiplication by
comparison to regular modular multiplication method. Thus, the usage of Montgomery

multiplier is adequate to implement the parallel binary method for exponentiation.

The parallel binary method uses regular integer field multiplication to perform

exponentiation. Since the Montgomery multiplication requires multiplication to be
performed in the M-residue field, the parallel binary method has to be modified to
work with this multiplier. Figure 3.1 describes the algorithm using MM.

Input: N, X, Z, M

Output: C = XZ mod M

1. SetC=1,Sq=X
2. Sq = MM(X,r2) = Xrmod M (transformation)
3. Fori=OtoK-1

parallel
3.a. Sq = MM(Sq,Sq) (squaring)
3.b. If Zj = 1 then C = MM(Sq,C) (multiplication)

parallel
4. Return C

Figure 3.1. Parallel Binary Method Algorithm using MM

20

The transformation from integer field to M-residue field is performed only
once in the 2nd step of the algorithm. The squaring operation is actually a
multiplication operation with the special case that both variables being multiplied have

the same value. In exponentiation, there are 3 variables X, Z, and M; however, only

X and M will be used as inputs for multiplication (including squaring) operations.
Since C is equal to 1 (one) in the beginning, the first multiplication (step 3b) will be

between the previous value of Sq and one. This means that the C value will already be

in the integer field and recursively so until the last Z bit. The final result of the
algorithm will be in C; therefore, only one X integer-to-image transformation is
required (step 2) when compared to exponentiation using regular multiplication.

An example of the algorithm execution can be seen in Table 3.1 for

Z = 10110110. The X transformation is performed earlier to produce Xr.

i Zj Step3a

mit Xr

0 0 MM(Xr, Xr) = X2r

1 1 MM(X2r, X2r) = X4r

2 1 MM(X4r, X4r) = X8r

3 0 MM(X8r, X8r) = X'6r

4 1 MM(X'6r,X'6r)=X32r

5 1 MM(X32r, X32r) = X64r

6 0 MM(X64r, XMr) = X'28r

7 1 MM(X'28r, X'28r) = X256r

Step 3b

1

1

MM(X2r, 1) = X2

MM(X4r, X2) = X6

x6

MM(X'6r, X6) = X22

MM(X32r, X22) = X54

x54

MM(X'28r, X54) = X'82

Table 3.1. Parallel binary method implementation using MM

21

3.2. Modular Exponentiation in a System Implementation

Based on the Montgomery Multiplier system implementation discussed in
Section 2.2, an exponentiation system implementation was developed. It has been

established that modular exponentiation can be performed by a series of modular
multiplications. In the previous section, it was shown that a parallel binary method

could be performed by using MM. However, two MM modules are required to explore

the parallelism. The system basically should be able to perform both MM and modular

exponentiation operations since an image transformation is always necessary in the

beginning. The control word loaded by the user or any interface attached to the system

would determine what it should do.

3.2.1. Motivations for using parallel binary method in the modular
exponentiation system

The main consideration of using the parallel binary method is actually two

fold. First, the parallel binary method allows for fast exponentiation execution time as

discussed in Section 3.1. Each MM operation is so time consuming that even reducing

one MM operation from a series required for exponentiation is a significant reduction

in total exponentiation time. Comparing the regular binary method from Section 1.2

and the parallel binary method in Section 2.1, the difference is quite significant in
terms of total computation time. Second, the system does not require to double its
internal components to run both series of MM operations in parallel. This saving in
area consumption while achieving significant reduction in computation time is a
benefit in itself.

For a single MM, there are five registers required, namely X, Y, M, SS, and

SC. The X register data is fed to the funnel that forwards k-bit words to the MM
module. The Y and M registers' data are fed to the MM module at w-bit word. The

outputs of the MM module are fed to the SS and SC registers at w-bit word. The

22

exponentiation system will implement the parallel binary method, which needs two
MM modules namely MMO and MM 1.

Looking at the parallel binary method example in Table 3.1, it can be seen that

step 3b may or may not perform MM while step 3a always perform MM for squaring

purposes. However, whenever step 3b performs an MM, one of the input operands is

the same with the corresponding operand in step 3a that is running parallel with step

3b. Thus, this multiplicand can be stored in a single register and is fed to both MM
modules simultaneously instead of having two separate registers. Further, by having

this operand stored in X instead of Y, more saving can be achieved by removing the
need of an extra funnel.

Having the first multiplier operand in X means that the second operand is
stored in Y. In this case, for step 3a and step 3b, the second operand is not the same.

For step 3a, which is performed using MMO, the second operand is the same as the

first since it performs squaring. For step 3b, which is performed using MM1, the
second operand is the value from the previous step 3b calculation. Thus, each of these

MM modules requires separate Y registers. The Y register is now named YO register

purposely to feed the second operand to MMO. A new Yl register is added to store the

result and feed the second operand to MM1.

The modulus M value is stored in the M register. This register can also feed

both MM modules w-bit at the same time. Both MM modules require the w-bit data at

the same time. The SS and SC for both MM modules need to be separated since the
outputs will be different. Thus, for MMO, the original SS and SC registers will be used

and renamed as SSO and SCO registers. For MM1, new SS1 and SC1 registers are
added. Both SS and SC registers will be fed back to the MM module in mid operations

and the timing will be the same for both MM modules. Therefore, the control can be

done by one of the modules instead of having replication of the control unit for each

MM module.

23

An extra register Z is required to hold the exponent value. Following the
parallel binary method implementation, 1 bit of Z is needed to determine whether
MM1 needs to execute. Thus, a 1-bit funnel is required at the output of the Z register.

Since the system should be able to perform both MM and modular
exponentiation, there has to be an extra block that will control the internal system
operations. This extra block is called op control logic block from now on. The op
control logic block is composed of state machines that will send out control signals to

the rest of the system depending on its state and the input signals it receives. The
details of the op control logic implementation will be discussed later in Section 3.2.5.

3.2.2. System level description of the system

The basic hardware design of the system is similar to the MM system
implementation discussed in Section 2.2. The system level block diagram can be seen

in Figure 3.2. There are a few additions to the original design. The number of full size

registers (FIFOs) is increased by four (Z, Yl, SS1, and Sd). An extra one-bit funnel,

op control logic block, and MM module are also needed. There are several small
additions such as multiplexers (MUXes) and non-full size registers such as result
registers for data reformatting. The result registers' outputs are d-bit wide following

the size of the JO bus.

The X, YO, Yl, M, and Z registers are full precision registers with d-bit input

and w-bit output. The input is connected to the d-bit JO bus. In exponentiation, it is
sometimes necessary that the MM results be copied back to some of the registers;
namely to X, YO and Yl registers. MUXes are used to allow selections of inputs for

these registers. The details of this requirement will be explained further in Section

3.2.4.

24

)
doneO/ i.

1 bit funnel
nextZ

s op control logic

t...
counter . S3

I

counter *CoPyl
copyO

k-bit funnel starti
s startO

counter
S5]

4,cou.ü

S4 startO doneO

MMstatusO

/ R3 M -4--f-----*

MM module statusi/ R5=C(Yl)
' J(mulfl

copyl statusO

registeri
-

I

- SC1

d'
d lastZstatusl

°r:giste'

Figure 3.2. System level block diagram (datapath only)

25

The Z register output is fed to a one-bit funnel. The funnel consists of w-bit
shift register and two counters. The purpose of the funnel is to change the input word

size to a different word size for output. In this case, the data from Z comes at w-bit

words, but the op control logic block needs only one bit of Z each time. Thus, the
funnel stores the w-bit data and performs right shifts each time a new Z bit is
requested. The rightmost 1-bit of the w-bit register in the funnel is the 1-bit output fed

to the op control logic block. This will determine whether only one or both MM
modules should be activated.

The X register output is fed to a k-bit funnel. In this case, the w-bit input of the

funnel is outputted as k-bit words each two cycles. If radix-2 MM modules are used,

then k = 1, which it is the same as the one-bit funnel. The output of the funnel is
connected to both MM modules as their first operand input. The YO and Yl registers

feed w-bit words to the MMO and MM1 modules. The M register feeds w-bit word

each time to both MM modules simultaneously.

The system designed is restricted to have d less than or equal to w. The full
size register has d-bit word input and w-bit word output. Both d and w are at 2h where

each h is a positive integer and the h for d is larger than the h for w. This way, the w is

always a factor of d. The funnel has w-bit word input and k-bit word output. This is

inherently different than the full size register such that the k-bit output is arbitrary in

size and not necessarily a factor of w. The funnel has a w-bit register to perform k-bit

shifting. This would be very beneficial compared to performing shift for large N at the

full size register. Further, this way, the full size registers can be general for all rather

than specifically designed for a particular operand.

The outputs of the MM module are stored in SS and SC registers. MMO
outputs are stored in SSO and SCO registers, while MM 1 outputs are stored in SS 1 and

SC 1 registers. The SSO, SS1, SCO, and SC 1 registers' input and output are w-bit wide.

Most of the time, these registers will hold partial results of the MM modules. When

the MM modules are done; either the SSO or SCO register will hold the final MMO

result and either the SS1 or SC 1 register will hold the final MM 1 result.

26

In case the correct results of MMO and MM1 need to be copied from
corresponding SS and SC registers to other registers with different input size, data
reformatting is required. Again, this is where the result registerO and result register 1

are used to compose several of the w-bit words to d-bit word. The result register itself

is a d-bit register with w-bit input and d-bit output. The MUXes prior to the result
registers are used to choose the location of the correct final results, which may be held

in either the SS or SC. if MM operation is performed, the final result will be
composed in result registerO. However, if modular exponentiation operation is
performed, the final result will be composed in result register 1. Thus, an extra 2-to-i

MUX is placed after these result registers in order to account for these two options.

As indicated before, the final result of the MM operation may be held in SSO

or SCO register. A 2-to-i MUX is required in order to forward the correct final result

to the result registerO. The exponentiation final result may be held in SS1 or SC1
register if the last bit of Z equals to 1 or held in Yl register if the last bit of Z is 0.
Thus, the MUX before result register 1 has to be a 3-to-i MUX.

3.2.3. Control and status signal implementation

As indicated earlier, the control and status signals are composed to be d-bit
words stored in d-bit registers in the system. The contents of the control and status
words can be seen in Figure 3.3 and Figure 3.4.

The software-reset field in the control word is used to reset the system by
means of software for warm boot purposes. The start field is used to start execution of

a certain operation (multiplication or exponentiation, for example). The reuse register

field is used to retain data in the registers. Test features field signal is used when the

system needs to be tested. The operation (op) field is used to identify operation to

perform. Reserved field is reserved for possible future need. The Z operand size word

and other operands size word fields indicate the number of words in the Z operand

(representing K) and other operands (representing N).

27

d-bit

other operands
test features size word

reuse registers reserved Z operand

start operation (op) size word

software reset

Figure 3.3. Control word description

d-bit

I I

reserved done Yl FIFO not empty
op done

M FIFO full

X FIFO full

YO FIFO full

Yl FIFO full

YG FIFO not empty

X FIFO not empty

SCO FIFO not empty

SCO FIFO not empty

SSO FIFO not empty

Figure 3.4. Status word description

The status word consists of multiple internal signals regarding the condition of

the system. Only a small portion of the status word is currently used while the rest is

reserved. The done and op done indicates whether the operation has finish execution.

The FIFO full signals indicate whether certain FIFOs are full. The FIFO not empty

signals are used to inform whether the FIFOs have data inside.

28

3.2.4. System functionality in performingMM operation

The system performs MM operation in the same way as the MM system
originally designed. The multiplicand and modulus operands are loaded to X, YO, and

M registers. The system then receives the control signal with information regarding

the MM operation, operand size, and others. This is stored in the d-bit control register

and forwarded to the op control logic block. Every time a new d-bit control word is

written to the control register with the start signal set high, the one-cycle pulse signal

will be issued as the start op signal.

When the op control logic receives the start op pulse signal, it will issue start

signal for MMO to begin performing. The X register data is loaded one bit each time

by using the one-bit funnel. The operands YO and M are loaded at w-bit to the MMO

module. The YO and M operands are recursively used until the X operand is totally

consumed. This requires the YO and M registers to be able to repeatedly provide the

data until X is consumed. Conceptually, this is done as in Figure 3.5. The data
outputted by the register is also fed back to the FIFO register's input as long as the
reuse signal is high. In case, the output size is not the same to the input size, data
reformatting is performed in the feedback loop.

input output

Figure 3.5. Repeating the same data to be outputted by the register

The MMO module outputs w-bit data of temporary results, which are kept in

the SSO and SCO registers. The SSO and SCO registers' input and output are w-bit

29

wide. Thus, no data reformatting is required. The SSO and SCO outputs are fed back to

the MMO module following the MM operation while X is not consumed. When the

MMO module is done, it will issue a done signal and the final MM result will be in
either the SSO or SCO register. The MMO module will also send out a statusO signal

indicating where the correct result is located. This signal is used by the MUX
following SSO and SCO such that the correct final result can be reformatted to d-bit

word and outputted to the JO bus where it can be picked up.

3.2.5. System functionality in performing modular exponentiation
operation

The system performs modular exponentiation operation following the parallel

binary method implementation in Section 3.1. This modular exponentiation operation

is performed with a series of MM operations running in parallel on both MMO and

MM1 modules. The operand to be exponentiated is first transferred to its image by
performing MM of the operand X and the r2 mod M. The X operand is loaded into the
X register and the r2 mod M is loaded into YO register. The MM operation is
performed and the result is taken out from the system and stored by user.

This Xr data is reloaded back to X and YO registers. The Yl register is loaded

with a value of 1. The Z register is loaded with the exponent data. At this point, the

modular exponentiation is ready to start. The control word is applied to the system and

stored in the d-bit control register. Knowing that modular exponentiation operation has

to be performed, the op control logic block will need to analyze the Z operand bit by

bit to determine whether MM 1 needs to be activated. MMO will always be activated

since it will perform squaring. The synchronization of both MM modules during their

simultaneous execution is crucial since both are fed by the X and M registers.

Both MM modules will output w-bit words at the same time to the
corresponding SS and SC registers. When both SS and SC hold the temporary results,

those will be fed back to the MM modules at the same time also. Further, when the

30

corresponding SS or SC hold the final results of each module, they are received and

stored at the same time. Thus, the control does not need to be duplicated for each
module's operation. When the MM1 is not executing, it doesn't really matter what
kind of control signals are received since they will just be ignored by MM 1.

Registers data

before

MM

execution

Copy

function

Registers data

after

Z X Y0 Y 1 MMO MM 1 copyo copy 1 X Y0 Y 1

0 Xr 1 v V X2r 1

1 X2r 1 v V v V X4r
1 X4r v v v V X8r
0 X8r v V X16r x6
1 X16r X6 v V V V X32r X22
1 X32r X22 V V V V X64r X54
0 X64r X54 V V X'28r x54
1 Xl28r X182 V V V V X256r X182

Table 3.2. Parallel binary method implementation in the system

A series of MM operations need to be performed for exponentiation and the

final result of each MM operation is in either the SS or SC. During the intermediate
MM operation, these temporary final results need to be copied back to the registers

that will feed the MM module input for the next run. In MMO case, the result will

always need to be copied back to both X and Y0 registers. In MM1 case, the Z bit will

determine whether this is necessary. Yl may just need to retain its previous result or

31

copy the result from SS1 or SC1. Using the same example as in Section 3.1, Z =
10110110 is used to compose Table 3.2.

The table shows what the registers are holding before and after MM operations

and copying are performed. As indicated, MM1 and copyl may or may not be
performed depending on the value of Z. The 'v' sign under MM and copy indicate
whether MM and copy operations need to be performed depending on Z. It can be
seen that if MMO is executed then copy0 is executed and if MM 1 is executed then

copy 1 is executed. This happens at different times since copy can only be performed

after the MM operation is done.

As can be seen from Table 3.2, in the end, the final exponentiation result will

always be in the Y 1 register. If the last bit of Z is 0, the final exponentiation result will

already be at Yl register. The Yl register output is w-bit wide; therefore, data
reformatting is necessary before it is forwarded to the d-bit JO bus. If the last bit of Z

is 1 then the correct final result can be directly taken from either SS1 or SC1 after data

reformatting as in regular single MM operation. Overall, the final exponentiation
result may come from Yl, SS1 or SC1. Thus, a 3-to-i MUX is used to select the input

stream for the data reformatting module. The MUX selection is done by combining the

last Z bit and the status] signal from the MM 1. After data reformatting, the final result

can be taken out of the system using the d-bit 10 bus.

3.2.6. Op control logic block functionality

The op control logic block is responsible for generating the system's internal

control signals. Its operation depends on the op field, which is part of the d-bit control

word given to the system.

When the op is a "no op", the op control logic block remains idle. As
discussed earlier, aside to the control word, the system also has input signals for rd_n,

wr_n, cs_nt, and address. When these signals are issued, read and write to and from

certain registers can be done to the system at this time depending on the address line

32

signal. This operation has to be done before the system can perform any other
operations.

When the op is an "MM op", the op control logic will send out internal control

signals for the system to perform MM operation. The state diagram can be seen as
Figure 3.6. This operation should only be issued after the operands are loaded into the

registers during no op. When start op signal is high, the op control logic will issue
startO signal to the MMO module and wait for it to finish execution. MMO will issue a

doneO signal indicating that it is done. The final MMO result will be located in either

SSO or SCO register. The op control logic block will issue a done signal that will be

visible through the status register. At this point, the data is ready to be reformatted and

delivered to the user.

res!...artopdoneO
issue startO issue done

Figure 3.6. Op control logic state diagram performing MM

When the op is "modular exponentiation op" and start op pulse signal is high,

the op control logic block will perform a more complex task. The state diagram of the

op control logic performing modular exponentiation can be seen in Figure 3.7. It
basically performs the parallel binary method. Again, this operation should only be

performed after the operands are loaded to the registers during no op. The op control

logic first checks the bit of Z. If the bit of Z is 1, it will issue startO and start] signals

to MMO and MM1 modules, which would perform step 3a and 3b. If the bit of Z is 0,

it will issue startO signal only to the MMO module, which would perform step 3a

33

(squaring) only. The op control logic then waits for the doneO signal from MMO. Only

doneO signal from MMO needs to be checked because both MM modules will always

finish at the same time since both operands are of the same precision. Upon receiving

the doneO signal, the op control logic issues clear register signals to either X and YO

registers only or X, YO, and Yl registers. This is necessary to erase any previous data

in the corresponding registers.

doneO & copy count
reset start op Z !empty = #word

Issue startO
do:eO&

If Z=1 issue
start 1

Issue clear Issue copy
reg X, YO done and
If Z=1 issue Issue copyO nextZ
clearregYl IfZ=1 issue

copy 1

Issue done

Figure 3.7. Op control logic state diagram performing modular exponentiation

On the next cycle, the op control logic will issue a copy signal to the MUXes

and write signals to the corresponding FIFO registers. The copyO signal to copy data to

X and YO registers is always issued. The copy] signal to copy data to Yl register will

be issued based on Z = 1. The op control logic counts the number of copies until it fits

the operands' number of words described in the d-bit control word. Once the number

of copies is satisfied, it will issue nextZ signal to request for the next Z bit value
followed by a copy_done signal that will be used to reset the kernel, SS, and SC

34

registers. This reset phase is required since the kernel has information regarding its
previous state and the SS and SC registers may have a portion of their previous data in

them. This functionality is repeated until all Z bits are consumed. At the last Z bit,
after MMO issues the doneO signal, the op control logic will issue a done signal,
indicating that the operation is completed. This signal is visible from the status register

as in the MM operation. The final exponentiation result can be read from the system at

the d-bit JO bus at this point.

35

4. OPTIMIZATION OF THE SCALABLE MONTGOMERY
MULTIPLIER

4.1. Problem Description

The scalable Montgomery Multiplication kernel proposed in [8, 9, 10, 11]
consists of a number of processing elements (p) organized in a pipeline. As more
processing elements are added, larger area is required for the kernel and ideally, the

computation time would be reduced.

Each processing element operates on w-bit words (w) and all processing
elements in the same kernel should be of the same word size. Each processing
element's area is determined by its w-bit word. The larger the w, the more area is
required for each processing element. The total area of the kernel is determined by the

values of p and w. Area usage of the kernel (Akernel) in number of gates for radix-2

implementation acquired from [8, 10, 11] is approximated as:

Akernel 59.65pw + .51.44p 31w 35.52

The kernel computation time is determined by p, w, and the precision (N) in

bits of the input operands. The kernel may be used for any N. However, as indicated

earlier, ideally a kernel with more processing elements would require less computation

time for the same N. If N is of higher precision (larger number of bits) and p is the
same, then the computation time increases. The total computation time (I) in clock
cycles for radix 2 implementation also acquired from [8, 10, 11] are as follows:

TJ 2kp+e-1 :f(e+1)2p-
k(e +1) + 2(p - 1) otherwise

[Ni [Nwhere e= and k=
w p

Total computation time is T * RC_delay, where RC_delay is the time required

for each clock cycle in nanosecond (ns). The RC delay value in this work was
obtained from synthesis of the kernel using Leonardo software (Mentor Graphics tool)

based on 0.5 tm technology and further refined using IC station software. Ideally, the

delay should be the same for any number of processing elements in the pipeline
provided that the processing elements have the same w and each processing element is

isolated from the other by interstate registers. However, the experimental results in

[10] were obtained using flattened design, where processing elements are merged
together instead of being treated as blocks; the delay increases as p increases.

N= 256
w 8 16 32 64

Area Time Time Area Time Time Area Time Time Area Time Time
p (gates) (cycles) (us) (gates) (cycles) (us) (gates) (cycles) (us) (gates) (cycles) (us)
1 246 8448 56.7 475 4352 32.3 933 2304 20.(1,850 1280 13.7
2 774 4226 31.3 1,481 2178 18.3 2,893 1154 12.1 5,719 642 8.1
5 2,360 1698 13.5 4,498 879 8.7 8,774 527 6.8 17,326 523 8.8
6 2,889 1418 ll.L 5,504 736 7.3 10,734 523 7.1 21,195 519 9.2
7 3,417 1219 1(6,510 634 6.3 12,695 525 7.5 25,064 521 9.8
8 3,946 1070 8.9 7,516 558 5.5 14,655 519 7.8
9 4,475 955 8.2 8,522 537 5A 16,615 529 8.1

10 5,003 863 7.5 9,527 535 5.5 18,575 527 8.3
11 5,532 788 6.8 10,533 543 5.7 20,536 535 8.(
12 6,061 726 6.3 11,539 543 5.822,496 535 8.(
13 6,589 674 5.8 12,545 535 5.8 24,456 527 8.(
14 7,118 630 5.5 13,551 547 (26,416 539 8.8
15 7,647 592 5.1 14,557 555 6.2
16 8,175 558 4.9 15,562 527 (

20 10,290 551 519,586 535 6.7
26 13,462 551 4.825,621 535 8.3
35 18,219 591 5.1
5026,149 631 6.1

Table 4.1. Area, time (clock cycles), and time (p.$) for each w and p
with N = 256 bits

37

From the two formulas, the area and computation time can be calculated given

p, w, and N. For an N of 256 bits, the area and time for possible kernel configuration

with area less than 26,500 gates can be seen in Table 4.1. Not all data for all p is
shown due to space limitation, but in actual implementation all values of p have to be

considered. The reason that 26,500 gates is used as the limit is the available RC delay

information obtained in [10].

The information in Table 4.1 can also be seen in graphical form in Figure 4.1.

Each line represents area versus time information of an increasing number of
processing elements (p) with certain word size w. The graphical form allows for easier

manual tracing; just by looking at the graphic, it can be seen where the kernel
configurations are located.

0 5000 10000 15000 20000 25000 30000

area (gates)

Figure 4.1. Area to time comparison graph for N = 256 bits

In this case of a single given N, a simple lookup or trace can be performed on

the data in the table for each w. If an absolute minimal area is the objective, a p of one

38

is always the result for each w. Table 4.2 shows the absolute minimal area for some
values of w. If absolute minimal time is the objective, simply by going through the

computational time from the Table 4.1, a minimal value can be found. Hence, a p
value that provides the minimal computation time can be found for each w. Ideally in

a scalable design, increasing p should yield faster computation; however, as the data

indicate, this is not the case. The computation time may increase or decrease for
increasing values of p. Table 4.3 shows the absolute minimal computation time for

some values of w.

These absolute minimal area and minimal time solutions for each w are
extreme approaches and the p value for each w can be easily found. Looking at the

data in Table 4.1 more closely and modifying the objective slightly, what would be a

"reasonable" p to use instead of going for the absolute minimal area or minimal
computation time? Even before that, what is "reasonable"?

N= 256
w Area (gates) Time (cycle) Time (us)

56.7 1

32.3 1

20.6 1

13.7 1

Table 4.2. Minimal area for each w with N = 256

8 246 8,448
16 475 4,352
32 933 2,304
64 1,850 1,280

From Table 4.1, it can be seen that for w = 8 and p = 16, the computational

time is 4.9 J.ts with a total area of 8,175 gates. Going further, for w = 8 and p = 26, it

yields the minimum computational time of 4.8 is with a total area of 13,462 gates

consumed. Thus, is it "reasonable" to choose a computational time of 4.8 j.ts instead of

4.9 Ls while sacrificing extra 5,287 gates? A comparable question arises when looking

39

at w = 16, comparing p of 8 and 9, with only 0.1 .is improvements in computational

time while sacrificing an extra 1,006 gates. Are any of these worthy area-time trade
offs?

w Time (us) Time (cycle) Area (gates) p
8 4.8 551 13,462 26

16 5.4 537 8,522 9
32 6.8 527 8,774 5
64 7.4 519 9,588 3

Table 4.3. Minimal time for each w with N = 256

If a designer is certain on N and w, finding the minimal area or computation

time is straightforward. Even if the designer is uncertain on which w to use, the task is

still straightforward. Intuitively, w = 8 and p = 1 is always the absolute minimal area

for the kernel, provided that total computation time is irrelevant. Also, the absolute

minimal time is obtained at w = 8 and p = 26, yielding a total computation time of

4.8 ts, provided area is not relevant. However, given the previous modified question

regarding a "reasonable" p to use, which w would come up to be reasonable in the
end? Looking at Table 4.2, would w = 8 with an area of 246 gates and computation

time of 56.7 jis be better than w = 64 with an area of 1,850 gates and computation time

of 13.7 ts? Or, looking at Table 4.3, would w = 8 with an area of 13,462 gates and

computation time of 4.8 jis be better than w = 16 with an area of 8,522 gates and

computation time of 5.4 is?

As mentioned in the beginning, the kernel may be used for any value of N. In

the previous setup, a single N = 256 is used. However, in the actual usage of the
kernel, N may vary. These extra degree of freedom raises another question: which p at

40

each w should be used that would perform reasonably well for all the values of N
being used? Further, if the designer is uncertain about the w value to use, which p and

w should be used in order to perform reasonably well for all N values of interest? If

these questions are answered, the p and w values will be the parameters for the
optimized kernel design for the corresponding N sizes.

In summary, the first question to be solved is the trade off analysis method that

would yield the "reasonable" p given fixed w and N. Increasing the complexity, the

second question is to find the "reasonable" p and w for a single fixed N. The third and

fourth questions deal in finding the solutions for a set of N sizes.

As discussed earlier, modular exponentiation is performed with a series of
modular multiplications. Thus, an effective choice of w and p for kernel

implementation would provide an efficient solution in terms of time and area for the
kernel in the exponentiation system implementation.

4.2. Considerations and Methods Discussion

Given that the proposed design's problem increases in complexity at each
level, it makes sense to try to solve the lower level problem first and proceed from
there.

4.2.1. Findingp for particular w and N

The first problem is to find p for each w at a particular N that would consume

"reasonable" area while performing at a "reasonable" computation time. The term
reasonable is relative, thus it needs to be defined in order to find the correct approach

in solving the problem. Reasonable in this case means that given p, the design would

perform relatively fast while it consumes as minimal area as possible. This is
inherently different than going for the absolute minimal time where area usage is not

41

an issue or going for the absolute minimal area where the computation time is not an

issue.

Since the best solution for this first problem is to reach almost minimum
computation time while consuming almost minimal area, there has to be an evaluation

method that considers all possible trade offs and detennines if a design (with certain p)

is good enough. It is difficult to say that an addition of 1 ,000 gates is a worthy trade

off for a gain of 1 ts in computation time. Clearly, it is not possible to simply compare

gate unit and ts unit for trade off analysis purposes.

A common way to evaluate such trade off is by using a gain/cost estimate
method. This method quantifies the cost of each additional gate and the gain per
reduced execution time unit. If the total of the two is positive, meaning there are more

gain than cost, it is a worthy trade off. Instead, if the total is negative, then it is not a

worthy trade off. However, while it is possible to obtain a cost estimate for each
additional gate, it is relatively more difficult to obtain the gain value for each reduced

time unit.

Looking at the cost estimate method more closely, it is clear that the objective

is to scale area (in number of gates) and time (in .ts) to a common domain for
comparison. The comparison process itself is relatively easy and straightforward.
Consider three points in Cartesian coordinate system: A(2,7), B(4,4), and C(6,3). The

goal is to find the point with maximum gain in comparison to the other points. To
compare one point to the other, the differences in x and y values are calculated. Both
differences are then added, if the result is positive, the latter point is chosen. If the
result is negative, the prior point is retained to be the best point. If the result is equal to

zero, both points are the same and the best point can be chosen arbitrarily. The total
gain/cost formula and comparison procedure example is as follows:

Total gain/cost = (X1 X2) + (V1 Y2)

Point A is assumed to be the best point in the beginning.

Comparing point A and B: (2-4) + (7-4) = 1 B is chosen to be a best point

Comparing point B and C: (4-6) + (4-3) = -1 B is still the best point

42

Thus, point B is the best point amongst the three points.

While the cost estimate method cannot be implemented as is, there may be
another way to scale area and time into a single domain. If time and area can be
transformed into a common domain, then comparison can be implemented similar to

the previous example.

40
Co

E
4-

2)

10

0 I

0 5(XX) iO,(XX) 15,CXX) 2),(XX) ,0(X)

aea (gates)

Figure 4.2. Area to time comparison graph for N = 256 with w = 8

In any hardware implementation, it is not possible to have unlimited area for

hardware. The designer has to know the area limitation for hardware implementation.

From this information, the maximum and minimum area for each value of w can be

obtained. The maximum area (max_area) for the kernel implementation should be less

than the given area limitation. The minimum area (mm_area) for each w is found when

43

p is one. These maximum and minimum areas define the area range of the kernel.
Within this area range, it is also possible to find the maximum and minimal
computation time. The maximum time (max_time) for each w is found when p is one

where the least number of processing elements is used. The minimal time (mm_time)

may vary depending on N used. For the area limit of 26,500 gates, the graph that
compares area and time for N = 256 and w = 8 can be seen in Figure 4.2.

The main issue now is to transfer the area and time into a common domain in

order to evaluate trade offs and find the best design. It can be found that the mm_area

is 246 gates and the max_time is 56.7 ts, which is obtained at p 1. The mm_time is

4.8 jis with an area of 13,462 gates, which is obtained at p = 26. The max_area of

26,149 gates is reached at p = 50. The difference of max_area and mm_area as well as

max_time and mm_time can be calculated. The difference between max_area and
mm_area is called area_range, while the difference between max_time and mm_time

is called time_range.

Given this information, it is possible to present the data in magnitudes of time

and area domains into percentage changes of time and area domains. The way to do

this is by scaling time according to time_range and scaling area according to
area_range. The percentage changes represent the difference of each design relative to

time_range and area_range. The two originally different domains of time and area are

now represented in the same percentage change as can be seen in Figure 4.3. The
formulas to perform these scaling is defined as follows:

timescaled time =
time range

areascaled_area =
area range

where time_range = max_time mm_time

area_range = max_area mm_area

44

1.20

1.00

0.80

C)

E

0.60
0)

(C
C.)

0.40

0.20

. .

0.00

0.00 0.20 0.40 0.60 0.80 1.00 1.20

scaled_area

Figure 4.3. Scaled_area to scaled_time comparison graph for N = 256 with w 8

The previously discussed scaling requires calculation on both area and time

data into percentage changes of area and time. It is possible to modify the formula
slightly so computation is performed on only one domain of the data. Since area has a

limitation as given by the designer, time is selected to be scaled into area. Since time

is scaled to area, the area does not need to be scaled. The modified formula can be
seen as follows:

scaled time time * area to time ratio

area_rangewhere area _to time ratio =
time range

45

It can be seen that the scaled_time represents the percentage time changes in

terms of area and the other calculation is not needed. The originally two scaling
calculation can be reduced to one calculation for scaled_time only. The magnitude of

time and area in their separate domains can now be compared in a common percentage

changes in area domain. The result of the scaling for w = 8 and N = 256 can be seen in

Figure 4.4.

30,000

25,000

20,000
a)
a)
D)

a)
E 15,000

a,

a)

10,000

5,000

.

0

0 5,000 10,000 15,000 20,000 25,000 30,000

area (gates)

Figure 4.4. Area to scaled_time comparison graph for N = 256 with w = 8

It should be noted that the time is not actually converted to area in actual
physical term. The scaled_time just represents the percentage changes of time in terms

of number of gates for trade off analysis execution.

46

N=256 w8
p

Area Actual
.time Scaled time Total

. Best p(gates) (gates) gain/cost

1 246 56.7 28,299 1

2 774 31.3 15,622 6,075 2
3 1,303 21.5 10,731 2,181 3
4 1,832 16.8 8,385 909 4
5 2,360 13.5 6,738 560 5
6 2,889 11.4 5,690 260 6
7 3,417 10 4,991 86 7
8 3,946 8.9 4,442 10 8
9 4,475 8.2 4,093 -90 8
10 5,003 7.5 3,743 -89 8
11 5,532 6.8 3,394 -90 8
12 6,061 6.3 3,144 -140 8
13 6,589 5.8 2,895 -140 8
14 7,118 5.5 2,745 -190 8
15 7,647 5.1 2,545 -165 8
16 8,175 4.9 2,446 -215 8
20 10,290 5 2,495 -1,082 8
26 13,462 4.8 2,396 -1,537 8
35 18,219 5.1 2,545 -2,453 8
50 26,149 6.1 3,044 -4,215 8

Table 4.4. Trade off between area and time with equal importance

Having time scaled into area, the previously two different domains are
currently in a common area domain. Thus, trade off analysis can be performed as
discussed earlier. If the trade off analysis were performed as is, this would imply both

area and time have the same importance. It can be assumed that the total importance of

both area and time is 100%. If both area and time are of the same importance, this
means that area is 50% important and time is 50% important. For the case where
absolute minimal time is the goal, it can be said that time is of utmost importance, thus

the time importance is 100%. On the other hand, if absolute minimal area is the goal,

the area importance is 100%. This importance ratio is to be determined by the designer

47

and can be implemented over the trade off analysis method. The total gain/cost
formula can be modified slightly to implement the importance ratio as follows:

Total importance = R1 + R = 100%

Total gain/cost = R (X1-X2) + R (Y1-Y2)

where R is the X importance and R is the Y importance.

In terms of area and time consideration, the X domain is area in number of
gates and the Y domain is time (scaled time) in number of gate. R is the area
importance while R is the time importance.

Table 4.4 represents the trade off analysis when area and time are equally
important (50% importance each). It can be seen that for w = 8 and N = 256, the p = 8

is the best amongst all possible configurations with area less than 26,500 gates given

as the limitation.

4.2.2. Finding p and wfor a particular N

The second problem is to find the best p and w to use at particular N, assuming

that the designer is not sure of what w to use. The kernel still has to perform in a
reasonable computation time while consuming reasonable area. The previous solution

can be used to find the best p for a given w and N. The best p of each w can be found

using the trade off analysis method. A simple example would be by looking at Table
4.5 for N = 256 and time importance of 50%. However, these results cannot be
compared between one to another since they are obtained separately for each w. The

separation implies different area_to_time_ratios and thus, the designs are scaled
differently at each w. For fairness, all configurations have to be scaled in the same

way to insure equal comparison.

Instead of separating the data for each w, the data can be looked at differently.

A way to do this is to look only at the area consumption of each configuration. The

area and computation time for all the possible designs for all values of w are first

48

calculated. From here, the information of w is retained, but not used to categorize or

separate the data as in Table 4.1. The data is re-sorted according to the area
consumption. The result can be seen in Figure 4.5.

N= 256
w Time (jis) Area (gates) p
8 8.9 3,946 8
16 7.2 5,504 6
32 6.9 6,814 4
64 8.1 5,719 2

Table 4.5. Results for each w with time importance of 50% at N = 256

60

50

40

0 5,000 10,000 15,000 20,000 25,000 30,000

area (gates)

Figure 4.5. Resorted data according to area versus time for N = 256

49

The computation time in Figure 4.5 can be scaled to number of gates as in the

previous section implementation. In the same way, the maximum and minimum area

and time information are obtained. The differences between the maximum and
minimum are used to find the time-to-area ratio. The area versus scaled time can be

seen in Figure 4.6.

30,000

25,000

20,000

15,000

0

U
(a)

10,000

0

5,000

0 5,000 10,000 15,000 20,000 25,000 30,000

area (gates)

Figure 4.6. Resorted data according to area versus scaled time for N = 256

Again having the originally different domains into a single one, comparison

between designs can be analyzed for trade offs. Similar importance ratio can also be

50

implemented to allow the designer specification in the trade off analysis. A best design

can be determined without the data being separated to each w. With this
implementation, all the configurations can be compared fairly since all of them are
compared equally in the same way. Thus, all the possible designs are compared to
each other to find the better design despite its w.

4.2.3. Finding p for particular w and multiple N

As indicated earlier, the kernel can be used for any N. The commonly used N

sizes should be considered since the kernel is likely to perform computations for
common cryptographic algorithms. For example, the RSA algorithm uses N sizes of
1024, 2048, and 4096 bits. The values may increase in time because the higher the N,

the more secure the encryption will be. Thus, if the designer knows which algorithms

will be used, he/she would know the sizes of N that the kernel will be performing at.

In high performance computer architecture, where the processor performs
many different operations, it is important to make the commonly used operations fast.

This is known as Amdahl law. The same principle applies in this case of kernel design,

which is to make the execution time on commonly used N fast. The quantitative
approach in regular multi operations processor design uses the formula as follows:

V
Expected time = 7'. * usage. , where usage. = 1

i=l all.i

where v represents the number of operations, T1 is the execution time of operation i,
and usage1 is the frequency of operation i.

From the formula, the expected time that the processor needs to perform all the

operations can be known. Reducing the time of the operation, which affects the
expected time the most, would make the processor finish faster.

In this case, the kernel has to work in a similar way for multiple N values. The

designer should know approximately the usage distribution of the corresponding N

51

values. In case where the kernel is only used for a single N, the expected time will
reflect the kernel computation time since the kernel will 100% of the time perform at

this N. If the kernel needs to perform modular exponentiation at N of 1024 bits 50% of

the time, 2048 bits 25% of the time, and 4096 bits the rest of the time, then this
information may be used as a profile to optimize the kernel design. The method will

focus on the N values that affect the expected computation time the most, in order to

find the best kernel configuration. The formula for the expected time stays the same

except for the change in notation as follows:

V

Expected time = Ti
* usage.

i=l

where v represents the number of precision values the kernel will be used at, T1 is the

time for kernel to finish computation with precision N1, and usage1 is the frequency

usage of operators of size i bits.

Figure 4.7 shows the area to time comparison at w = 8 for two values of N: 256

and 512 bits. It can be seen that area increases of designs is the same for both N,
indicating the same kernel configuration. However, the performance of a kernel
configuration is not the same at different N. Using the expected time formula, if N =

256 is used 50% of the time and N = 512 is used for the rest of the time, the two
different lines can be merged into one single line as shown in Figure 4.8. The y-axis

now indicates the expected time of kernel execution instead of the actual time. The
same method can be used for multiple values of N as long as the usage distribution
data is available. Figure 4.9 is constructed for N of 256, 512, 768, and 1024 equally
distributed at 25% usage each at w of 8, 16, 32, 64, and 128.

Reaching this stage, the expected time to area scaling can be performed for
each w of interest using merged N in the same way as discussed in Section 4.2.1.

Trade off analysis can then be performed after scaling expected time into area. The

best p for each w can be determined for all N values used in the kernel will be used at,

given the usage distribution and importance ratio.

52

250

200

150

E
- 100

50

0

s N=256

--N=512

0 5,000 10,000 15,000 20,000 25,000 30,000

area (gates)

Figure 4.7. Area to time comparison at w = 8 for N = 256 and N = 512

160.0

140.0

120.0

.E. 100.0

E
80.0

0)

0
0)

x

40.0

20.0

0.0

0 5,000 10,000 15,000 20,000 25,000 30,000

area (gates)

Figure 4.8. Area to expected time comparison at w = 8 for N = 256 and N = 512

53

Figure 4.9. Area to expected time considering multiple values of w and N

4.2.4. Finding p and w at multiple N

The expected time method implemented in Section 4.2.3 can again be applied

here for the problem of finding the best p and w values when the kernel is used for
multiple N. In Section 4.2.2, sorting according to area is implemented over all the
designs despite their different w for fairness of comparison. This is performed in case

the designer is not certain about which w will be used for the kernel implementation.

The same methods can be applied here since it faces similar problems regarding the

use of multiple N values and the separation of possible designs according to their w

values.

The expected time is first calculated for each p and w. The result will be
similar to Figure 4.9, however, instead of separating the possible designs according to

54

w, the possible designs are sorted according to area. The result can be seen in Figure

4.10.

600

500

400
w
E

300
w
U

200

100

0
0 5,000 10,000 15,000 20,000 25,000 30,000

area (gates)

Figure 4.10. Resorted area to expected time comparison at multiple
values of w and N

At this stage, again scaling can be perfonned. This implementation is similar to

the implementation in Section 4.2.7 with the exception that the possible designs are
not categorized according to their w. After scaling, the best design can be determined.

55

4.3. Kernel Design Tool

A software application was developed in C to implement the discussed
methods and find the reasonable configurations for the kernel given the design
constraints. This software application is called kernel design tool (KDT) from now on.

4.3.1. KDT input parameters

In the KDT implementation, there are certain parameters that are considered to be
fixed information. Some information is fixed inside the KDT code to remove the
necessity of inputting them every time. This fixed information are:

. The w for the kernel implementation (8, 16, 32, 64, and 128)

The RC delay information, which was gathered with other simulation tool

25

20f

1

-.- . -*-- 128

p

Figure 4.11. RC delay for each w by p (from flattened design results)

56

As indicated earlier in Section 4.1, the RC delay information is gathered from

Leonardo software synthesis. This represents the delay for each clock cycle
(maximum frequency) needed by the kernel at particular design and any larger delay

(lower frequency) can be used. The RC delay data available is limited since only data

until area up to approximately 26,500 gates are available for each w. Further, this
information does not cover all existing values of p and w. Thus, interpolation method

needs to be implemented to estimate the RC delay values for the configurations that

are not available.

As mentioned before, the simulation to acquire RC delay was using flattened

design approach. When w is constant and p increases, the number of gates used will

increase. This also means higher fan out requirements. Both contributes to the increase

of the RC delay in flatten design synthesis. When w increases and p is constant, the

similar case as above also occurs. If each processing element is treated as a block and

flattened design is not used, only the increase of w would increase the RC delay.
However, since flattened design is used, this is not the case. The RC delay increases

for each w and p as shown in Figure 4.11.

Instead of keeping all the RC delay of each kernel configuration, which is not

available, RC delays of some configurations are collected. At the beginning of the
section, it was mentioned that there are only the values of 8, 16, 32, 64, and 128 used

as w. The data points were for p values of 1, 3, 9, 33, 65, 129, etc. The last data point
of each w should be at the p value, where the kernel's area has not exceeded the
maximum area limit or the RC delay available. RC delay can be estimated for any p
and w until either case is reached.

In Cartesian coordinate system, one way to find a point in between two points

is by linear interpolation. The RC delay between two others of consecutive p with the

same w can be found through the same method with the following formula:

d3=dl+(d2d13 foranygivenp3 while p1 <p3<p2P2Pl)
The graphical implementation of the formula can be seen in Figure 4.12.

57

Delay

he same

p

Figure 4.12. RC delay extraction by using the linear interpolation method

As discussed earlier, there are certain inputs that the designer should provide to

the KDT in order to find a reasonable design. The designer knows how the kernel will

be used, and thus, can provide this information. The result quality of the KDT will be

determined on how much the designer knows regarding its kernel use. The necessary

inputs are:

. The maximum area limit for the kernel, which at present the maximum equals to

26,500 gates due to the available RC delay data. This is easy to change if further
data is available in the future;

The values of N that will be used and their usage distribution;

The area to time importance ratio;

The core clock frequency, if any, that the designer would like the kernel to
perform at. This additional information is used in case the designer knows that the

kernel needs to perform at a certain clock frequency. This is necessary when the

kernel shares the same clock with other components in an embedded system
implementation;

There are two types of usage distribution methods available to the designer:

Even distribution, when all values of N are used at about the same ratio. The
sample range here is useful to determine how many N values should be taken into

58

account. In this case, the designer has no information regarding the N usage
distribution. It will assume the N values are equally distributed to the sample size.

The higher the sample size, the closer to real optimal the result will be.

. Discrete distribution, when the designer knows exactly the N values used and their

probability of use. The designer has to enter each N value and provide the
information regarding the usage of each N. This method would yield a better result

than the even distribution method since it is more precise.

4.3.2. KDT implementation

In programming the KDT application, a conceptual design is developed as a

guide. The conceptual design of the KDT can be seen in Figure 4.13.

Input Area-time
/et) trade off 9
I of

Best
ofeachw

'
designs

lWworthy for for each
)expected N w

Expected
time

\
[_Scaling expected time to

calculation
(merging N)

of
P Area-time

trade off est

worthy of
expected N

RC delays
I

"delay.dat"
[

Sort according
1 1

Scaling expected
to area time to area I

Figure 4.13. Conceptual design for KDT implementation

The KDT starts by loading the delay data value from RC delay extracted as
discussed in the previous section. The extracted RC delay data for some kernel
configurations are placed inside a text file called 'delay.dat', which contains
information about w, p. and delay (c) separated by a single space. If the RC delays

information is changed or expanded, this delay file can be updated or replaced.

The KDT computes all the possible designs' area and computation time for
each N value provided as inputs, applying the RC delay from linear interpolation by

using the data from delay file. The next step is to calculate the expected time by
merging all computation time values for each N of each design configuration using

their usage distribution. After these steps, the data will be similar to the data available

for Figure 4.9. From this point on, the KDT will perform the methods previously
discussed in previous sections.

Using the data, the KDT splits two ways at this point. The upper part of Figure

4.13 will assume the designer is uncertain regarding the w to use and would like to

find the better design for each w. The KDT tries to find the best p for each w in order

to make the kernel perform well at all used N sizes. Before the KDT can find these p

values for each w, it has to perform expected time to area scaling first. After this is
being performed, trade off analysis can be executed under each w. Thus, the better p

for each w can be found. This better p for each w is called the optimal designs for each

w to perform at certain used N.

The lower part of Figure 4.13 will assume the designer is uncertain about the w

to use and would like to find the better design despite the w. The KDT tries to find the

better design amongst all available p and w that will perform well at all used N. As
prescribed earlier, sorting the possible designs by their area is first performed. The
table is reconstructed after the sorting and if represented in figure, it will look like

Figure 4.10. Following the same construct, expected time is scaled to area to allow

trade off analysis. After trade off analysis is performed, a better design for all used N

will come out as the optimal design to perform at certain used N.

4.4. Optimization Results for Particular Case

This section provides optimized designs for two particular N sizes of 160 and

1024 bits. In this case, the designer would like the best design considering all possible

w and p. The execution time of each optimized design at its precision is also
calculated. This execution time result is then compared to that at the other precision.

Slowdowns are then calculated from these results. Slowdown is used since it is likely

that an optimized design for specific N will not perform as well on different N.
However, as previously indicated, the more p, the better the execution time would be.

Equalized design is also provided as an alternative to optimizing the model for

one particular precision only. The equalized model assumes that each precision is used

equally. Overall, this equalized model should perform better than the models
optimized only for particular precision.

4.4.1. Analysis for kernel design for N = 160 bits and max area of26,500
gates

Figure 4.14 describes all the possible designs given that the kernel is designed

to obtain the best performance for N = 160 bits. These data used in the figure is
gathered after sorting the possible designs according to their area, but before
converting expected time to area. It is easy to see that not all the designs are good to

implement.

The proceedings are the KDT results with different ratio of time importance. It

also shows how the kernel performance at different precision. The column labeled
"time using 160 bit optimized design" indicates the computation time of the kernel at

precision N using the optimized kernel configuration for N = 160 bits. The "time using

N bit optimized design" indicates the computation time of the kernel at precision N

using the optimal design for N itself. Since a design optimized for 160 bits is not

61

going to perform well at N = 1024 compared to another designed optimized for 1024

bits, the slowdown can be seen in the following tables.

25

20

I::
0

05

0 5,000 10,000 15,000 20,000 25,000
area (gates)

Figure 4.14. Kernel designs for N = 160 bits up to 26,500 gates

Time Importance = 100% result: w 8, p = 16, area consumed = 8,175 gates

Max frequency = 114 MHz

Running at different precisions:

N Time using 160 bit Time using N bit Slowdown
optimized design optimized design

160 2.979 2.979 0%

1024 73.167 27.271 63%

62

Time Importance = 95% result: w = 8, p = 11, area consumed = 5,532 gates

Max frequency = 116 MHz

Running at different precisions:

N Time using 160 bit Time using N bit Slowdown

optimized design optimized design

160 3.001 3.001 0%

1024 104.958 38.737 63%

Time Importance = 90% result: w = 8, p = 11, area consumed = 5,532 gates

Max frequency = 116 MHz

Running at different precisions:

N Time using 160 bit Time using N bit Slowdown

optimized design optimized design

160 3.001 3.001 0%

1024 104.958 48.402 54%

4.4.2. Analysis for kernel design for N = 1024 bits and max area of
26,500 gates

The following Figure 4.15 describes all the possible designs given that the
kernel is designed specifically for 1024 bits. Similar to the previous section, this data

is gathered after sorting the possible designs according to their area, but before
converting expected time to area. Here however, it is not as easy to see that not all the

designs are good to implement.

63

1,000

900

800

700

600

;500
400

x
C)

200

100

0 I P

0 5,000 10,000 15,000 20,000 25,000

area (gates)

Figure 4.15. Kernel designs for N = 1024 bits up to 26,500 gates

The KDT results of different time importance and the kernel configurations result
comparison can be seen as follows:

Time Importance = 100% best design: w = 8 and p =49

Area consumed = 25,620 gates and max frequency = 103 MHz

Running at different precisions:

N Time using 1024 bit Time using N bit Slowdown
optimized design optimized design

160 3.976 2.979 25%
1024 27.271 27.271 0%

Time Importance = 95% best design: w = 8 and p = 32

Area consumed = 16,633 gates and max frequency = 108 MHz

Running at different precisions:

N Time using 1024 bit
optimized design

160 3.119
1024 38.737

Time using N bit Slowdown
optimized design

3.001 4%
38.737 0%

Time Importance = 90% best design: w = 8 and p = 25

Area consumed = 12,933 gates and max frequency = 111 MHz

Running at different precisions:

N Time using 1024 bit Time using N bit Slowdown
optimized design optimized design

160 3.330
1024 48.402

3.001 10%
48.402 0%

64

4.4.3. Analysis for equalized optimal design for max area of26,500 gates

This equalized method takes into consideration the usage distribution of the

related precisions (160, 256, 512, 1024, and 2048 bits). In this case, equalized
distribution is assumed where each N is used 20% of the time.

The Figure 4.16 describes all the possible designs given that the kernel is
designed specifically for the five mentioned N. The expected time plays a large role in

determining which design would come out to be the optimal result. Further, given the

combined effect of N on each particular possible kernel configuration, it is much
harder to see which design would come out to be the better design.

65

1,000

900

800

700

600

500

4O0
a.
x
C' 300

200

100

0

0 5,000 10,000 15,000 20,000 25,000

aea (gates)

Figure 4.16. Equalized designs up to 26,500 gates

Time Importance = 100% best design: w = 8 and p =49

Area consumed = 25,620 gates and max frequency = 103 MHz

Running at different precisions:

N Time using equalized Time using n bit Slowdown
optimized design optimized design

160 3.976 2.979 25%
256 5.983 4.899 18%
512 11.020 10.244 7%
1024 27.271 27.271 0%
2048 105.494 105.494 0%

Time Importance = 95% best design: w = 8 and p = 32

Area consumed = 16,633 gates and max frequency =108 MHz

Running at different precisions:

N Time using equalized Time using N bit Slowdown
optimized design optimized design

160 3.119
256 4.991
512 10.258
1024 38.737
2048 152.066

3.001 4%
5.030 -1%
10.258 0%
38.737 0%
152.066 0%

Time Importance = 90% result: w 8 and p = 25

Area consumed = 12,933 gates and max frequency = 111 MHz

Running at different precisions:

N Time using equalized Time using N bit Slowdown
optimized design optimized design

160 3.330 3.001 10%
256 5.238 5.030 4%
512 12.906 11.819 8%
1024 48.402 48.402 0%
2048 190.836 190.836 0%

67

5. EXPERIMENTAL RESULTS AND ANALYSIS

5.1. Total Area Approximation for the Proposed System Implementation

In calculating the total area, each block's area of the proposed system's
internals is first determined. Straightforward approximation is used for common
implementation such as MUXes and FIFOs. The MM module's area can be
determined using the formula in Section 4.1. The op control logic's and counters'
areas are determined from synthesis using Leonardo software. If d and w are of the

same width, the result registers are not needed since there is no data reformatting
required.

The proposed system's blocks and area consumption are as follows:

Memory

o 9 full size FTFOs for X, YO, Yl, M, Z, SSO, SCO, SS1, and SC1 registers

Total area for each N-bit FIFO = 6N

Total area for memory = 54N

Control and data reformatting

o 4 d-bit size FIFOs for control, status, resultO, and result 1 registers

Total area for each d-bit FIFO = 6d

o MUXes
1 4-to-i d-bit MUX = 8d

3 2-to-i d-bit MUXes = 4d each

1 2-to-i w-bit MUX =4w

1 3-to-i w-bit MUX =7w

o 2 funnels

1 w-bit FIFOs = 6w

Shift control = w

68

1 e-bit counter (e = = r, which is acquired from synthesis.

1 f-bit counter (f ji) = t, where N = 8192 (acquired from

synthesis)

Total funnel area = 7w + (r + t)

o Op control logic block

Total area = 350 gates, which is fixed, acquired from synthesis.

If d w, then total area for control and data reformatting= 44d + 24w + 2(r + t) +

350

If d = w, then total area for control and data reformatting= 32d + 24w + 2(r + t) +

350

2 MM modules

Total area for MM modules = 2A, where A is acquired from the area formula in

Section 4.1 after p and w is selected by the KDT.

For examples, the d-bit JO bus is set at 32-bit following current common
computer bus size. The area for MM modules can be substituted using the area
formula in Section 4.1 after p and w is known from the KDT. As an example, Table

5.1 shows the area consumption of several selected MM module configurations.

w p Control & data
.reformatting

MM module
(each) Total area

8 8 2,334 3,946 10,226
8 16 2,334 8,175 18,684
8 25 2,334 12,932 28,198
8 32 2,334 16,632 35,598
16 8 2,550 7,515 17,580
16 16 2,550 15,562 33,674
32 8 2,574 14,655 31,884

Table 5.1. Area consumption of several configurations with d = 32 bits

69

5.2. Experimental Result and Analysis of the Proposed System Operating
Montgomery Multiplication (MM)

For testing purposes, certain initial setup is determined for the system. The d-

bit JO bus is set at 32-bit. For the first experiment series, the MM module is set to use

w = 8 and p = 8. The N used in the preceding experiment is of 96, 256, and 1024 bits

wide. For the second experiment series, the MM module is set to use w = 8 and p = 16.

The same series of N are used for this experiment as well. These actual experimental

results are compared to the calculated result from the time formula in Section 4.1.
Time is represented in terms of clock cycles instead of actual seconds since the RC

delays may vary for different implementation. The results can be seen in Table 5.2.

Initial setup Actual time (clock cycles) Calculated time
(clock cycles)

Control MM Control and
w p N delay execution data Total MM execution

reformatting
8 8 96 2 266 23 291 203
8 8 256 2 1,078 53 1,133 1,070
8 8 512 2 4,182 101 4,285 4,174
8 8 1024 2 16,534 197 16,733 16,526
8 16 96 2 236 23 261 203
8 16 256 2 626 53 681 558
8 16 512 2 2,118 101 2,221 2,110
8 16 1024 2 8,294 197 8,493 8,286

Table 5.2. Timing result of the system performing MM operation

The control delay time is always fixed at 2 cycles. These 2 cycles are used to

decode operation op and issue start op signal.

70

The control and data reformatting time consists of a fixed 5 cycles for control
and a variable number of cycles for data reformatting. The variable number of cycles

depends on the size of the N, d, and w. In both proposed systems case where d = 32,

w = 8, and N = 96, data need to be reformatted from 8 bits to 32 bits first, which will

take 4 cycles each. After reformatting, the composed data can be picked up and
cleared, which takes 2 cycles. A total of 96 bits data means this have to be done three

times. The total time for control and data reformatting (Td) is:

N[d
Td =5+i +2d[w

The MM execution time is quite different between the actual and calculated
results. The actual MM execution time includes 1 cycle for start signal and 1 cycle for

done signal, which are not included in the original formula. There is also 1 extra cycle

to process one extra word in the final reduction block. These add up to a fixed 3 cycles

in the MM execution.

Further, the original formula in Section 4.1 is based on the ideal model of the

MM, while the experimental time result is based on actual implementation. In the
actual implementation, there are 5 interstate registers that delay the data by 5 clock
cycles each time data goes through the processing elements pipeline. The formula
should be modified (without including the fixed 3 clock cycles) as follows:

T={ k(2p+5) + e -1
k(e+1) + (2p+S-2)

where ri ande=i1 k=
wi IpI

if(e+1) £ (2p+5)
otherwise

71

5.3. Experimental Result and Analysis of the Proposed System Operating
Modular Exponentiation

For the first test, similar experimental scenario as in Section 5.2 is

implemented. The d-bit 10 bus is set at 32 bits. The MM module is set to use w = 8.

The p = 8 and p = 16 are used. The N used in this particular experiment is of 96, 256,

512, and 1024 bits wide. The Z operand is set at precision N. Execution time is
presented in terms of clock cycle and the results can be seen in Table 5.3.

Actual time (cycle)

Initial setup Control, data
Control delay MM reformatting, andexecution copy

TotalFirst &First Intermediate All Last
w p N MM & last MM MM intermediate MMMM

8 8 96 3 2 266 23 23 27,937
8 8 256 3 2 1,078 58 53 291,324
8 8 512 3 2 4,182 114 101 2,201,075
8 8 1024 3 2 16,534 226 197 17,164,260
8 16 96 3 2 236 23 23 25,057
8 16 256 3 2 626 58 53 175,612
8 16 512 3 2 2,118 114 101 1,144,307

8 16 1024 3 2 8,294 226 197 8,726,500

Table 5.3. Timing result of the system performing modular exponentiation operation

As indicated before, modular exponentiation is performed with a series of MM

operations. The timing results are separated according to control delay, MM execution,

and control, data reformatting, and copy. It can be seen that the control delay on the

72

first MM is one cycle longer than that at the remaining MM. This is needed since the

Z bit needs to be scanned before issuing start signals to the MM modules. The MM

execution itself takes the same amount of time for all MM operations. The control,

data reformatting, and copy takes the same number of cycles in any MM operation

except for the last. In the last MM, the time used is the same as that when performing

a single MM operation. Only in the last MM operation, the system performs data
reformatting for output purposes. In the first and intermediate MM, it typically
requires more time because it needs to perform clear registers and copying. The time

(Td) required for control, data reformatting, and copy at the first and intermediate MM

is as follows:

N[d
'd =2+I+3

dLw

The next test will compare the timing results of the two configured proposed

hardware system to those of software implementations. The software implementations

selected for performance comparison are Fast Machine Code [18] and Crypto++
version 4.0 [19]. In these two software implementations, performance for RSA
encryption and decryption are available. RSA encryption and decryption use the basic

modular exponentiation operation and therefore, can be compared directly to the
system performing modular exponentiation. The main difference between RSA
encryption and decryption are the key size or exponent (Z) used for modular
exponentiation. In RSA decryption, the Z operand size should be close to the modulus

operand size. Thus, these are the software performances to which the system
performance should be compared.

The Fast Machine Code [18] uses Knuth's m-ary method with nonzero sliding-

windows variation [1]. It also exploits the use of Chinese Remainder Theorem (CRT)

[1], where only two half-size Z and M operands calculations are required. The original

results are obtained for Fast Machine Code implemented on Pentium 60MHz system.

The Crypto++ version 4.0 [19] also exploits the usage of CRT to speed up the
computation. Its' original results are obtained from its implementation on Pentium

73

850MHz system. Both software implementations' results are interpolated to obtain the

timing results if Pentium 100MHz system is used.

RSA
Decryption_time

Fast Machine Crypto-i-+ Proposed system Proposed system
modulus

Code version4.0 (w=8&p25) (w=8&p=32)
512 15.00ms 16.4lms 7.87ms 6.58ms
1024 87.00 ms 86.96 ms 57.07 ms 45.29 ms
2048 624.00ms 545.11ms 442.00ms 347.55ms

Table 5.4. Decryption time result of software implementations and the two systems

RSA
modulus

Fast Machine Code Crypto-H- version 4.0
Proposed system Proposed system Proposed system Proposed system
(w=8&p=25) (w=8&p=32) (w=8&p=25) (w=8&p=32)

512 90.60% 127.96% 108.51% 149.39%
1024 52.44% 92.10% 52.37% 92.01%
2048 41.18% 79.54% 23.33% 56.84%

Table 5.5. Speedup result of the two systems compared to software implementations

The proposed system is set at two different configurations of p and w with
d = 32 for comparison. For the first configuration, the system is set at w = 8 and
p = 25. For the second configuration, the system is set at w = 8 and p = 32. These two

best configurations are used following the KDT result in Section 4.4.3, where the MM

module was optimized for equal usage of N for the values 160, 256, 512, 1024, and

2048 with 90% and 95% time importance. Both systems are set to perform at a clock

frequency of 100MHz so they can be fairly compared with the software

74

implementation on Pentium 100MHz system. It should be noted that the two
configured systems perform straight exponentiation (without using CRT) at full
precision modulus and exponent operands. The time results comparison between
software implementations and the proposed systems can be seen in Table 5.4. The

speedup percentages from software implementations can be seen in Table 5.5.

From either table, it can be seen that both proposed hardware configurations

perform better than software implementation. The first system with w = 8 and p = 25

requires an area of approximately 28,200 gates (not including area for memory). The

second system with w = 8 and p = 32 requires an area of approximately 35,600 gates

(not including area for memory). As expected, the second system yields better timing

results, but consumes more area, when compared to the first.

5.4. System Performance Comparison to Other Modular Exponentiation
Hardware Systems

Blum and Paar in [13] have implemented a Montgomery modular
exponentiation system on Xilinx XC4000 FPGA board. The Montgomery multiplier

implemented is a fixed-precision solution. FPGA is selected since it can be easily
reconfigured for different precision. Thus, their design area increases correspondingly

with the precision used. An FPGA implementation cannot really be compared with an

ASIC implementation. However, since their work describes the algorithms used in the

implementation, it provides some ideas regarding a fixed precision design

implementation, which requires reconfiguration when different precisions are used.

These results are compared with the results of the proposed system.

The MM algorithm used in [13] is similar to that proposed by Montgomery in

[6], but slightly modified for hardware implementation. It is designed as a systolic

array of processing element each taking u-bit of Y and M operands. The X operand is

taken 1-bit each time. All these operands are represented in redundant form. The

exponentiation algorithm used is the binary method as discussed in Section 1.2. For

75

different precision, this FPGA implementation has to be reconfigured. The larger
precision used means more area consumed. The area in FPGA is given in terms of

Common Logic Blocks (CLBs) instead of gates as in ASIC implementation.

Two configurations of the Blum and Paar design are selected with u = 4 and

16. The frequencies used by each design vary depending on the u and the modulus

size. Total execution time at each configuration best frequency is used for comparison.

Blum and Paar Blum and Paar Proposed system Proposed systemFPGA design FPGA design (w=8&p=32) (w=8&p=25)(u=4) (u=16)
Modulus and Area Time Area Time Area Time Area Time
exponent size (CLBs) (ms) (CLB5) (ms) (gates) (ms) (gates) (ms)

512 2,555 9.38 2,001 11.56 31.9k 6.58 28.2k 7.87
768 3,745 22.71 2,946 25.68 31.9k 19.74 28.2k 24.84
1024 4,865 40.50 3,786 49.78 31.9k 45.29 28.2k 57.07

Table 5.6. Comparison to Blum and Paar's FPGA implementation

The proposed system is set at two different configurations of p and w with
d = 32 for comparison. For the first configuration, the system is set at w = 8 and
p = 32. For the second configuration, the system is set at w = 8 and p = 25. These two

configurations are used following the optimization result in Section 4.4.3, where the

MM module is optimized for equal usage at N of 160, 256, 512, 1024, and 2048 with

95% and 90% time importance. Both proposed systems are set to perform at a
frequency of 100MHz. The comparison results can be seen in Table 5.6.

As indicated earlier, it is difficult to compare an FPGA and ASIC
implementation. However, the timing results suggest that the proposed ASIC
implementation can perform as well as the FPGA implementation by Blum and Paar.

76

Whereas the ASIC implementation cannot be reconfigured, this proposed word size
solution design allows the system to work on any precision so long as the precision

does not exceed certain limit size. The Blum and Paar design has its own difficulty

where it requires increasing large number of CLB when the precision used is large.

Further, it has to be reconfigured each time larger precision is used.

There are several other hardware solutions in performing modular

exponentiation available in the market. Most of these hardware solutions typically can

perform other modular arithmetic operations (add, sub, multiply) as well. The
proposed system has the final reduction block that can actually perform modular
addition and modular subtraction; however, it is not intended to run such operations

separately at current time. The main objective in this section is to compare modular
exponentiation execution time and area consumption of the existing hardware
solutions to those of the proposed system.

OthersProposed
SIDSA SCIWorx HIFNsystem

(w=8 & p=32) RSAC2O48A RSA 6500DesignObjectTM
Key or exponent Up to 8192 Up to 8196 Up to 8192 1024-2048(bits)

Area without
memory 35.6k 18k 15.5k
(gates)

Clock (MHz) 100 60 150
Tech (jim) 0.5 0.35 0.18 0.18

Time result for E 235 us
1024-bit modulus 45.29ms D 60 ms l8ms 5ms

Table 5.7. Comparison of different exponentiation hardware systems

77

Three other systems are selected for comparison purposes, namely: SIDSA
RSAC2O48A [20], Sd Worx RSA DesignObjectTM [21], and Hifn 6500 [22].
Information about these systems was gathered from the products' information. Table

5.7 shows the comparison. Further explanation regarding each system follows.

For comparison, the proposed system is configured with d = 32, w = 8, and

p 32. This configuration is used again since it provides the best result in Section 5.3.

The clock frequency is set at 100MHz with IC technology of 0.5jm. This system
performs straight modular exponentiation (without using CRT). The time result when

performing modular exponentiation of 1024 bits on both modulus and exponent
operands is 45.29ms.

The closest comparable system is RSAC2O48A [20] developed by SIDSA. It

uses MM algorithm, but it is not disclosed whether a modified version is used. The
exponentiation algorithm used is also undisclosed. The clock frequency of 60MHz is

used with IC technology of 0.35 jim. It also performs straight modular exponentiation.

The data provides two separate results for RSA 1024-bit encryption and decryption.

As indicated earlier in Section 5.3, RSA decryption uses modular exponentiation with

close to full size (1024-bit) operands and, therefore, takes longer than RSA encryption.

This decryption time result is the one that should be compared with the proposed
system result since it is unclear the Z size used for the RSA encryption. This system

requires 60 ms to perform decryption operation, which is slower than the proposed
system. However, it does consume less area than the proposed system.

Another comparable system is RSA ObjectDesignTM [21] developed by SCI

Worx. The algorithms used in this system are not disclosed. In the product
information, there are 5 available designs to choose from. For comparison purposes, a

design with an internal datawidth of 32-bit (with smallest area) is chosen since it
performs at a clock frequency closest to that of the proposed system. The clock
frequency is 150MHz and the IC technology used is 0.18j.ts. The execution time
presented in the table shows the proposed systems performing straight exponentiation

with both modulus and exponent operands at 1024-bit. The exponent operand is

78

selected to have 50% bit "1" and 50% bit "0" without clarification on how they are
distributed. The time result is 18 ms, which is much faster than the proposed system,

but it is also unclear if this is an average execution time result. Looking at the data just

as is, this system performs faster and consumes less area than the proposed system.

The last comparable system is Hifn 6500 [22]. The algorithms used in this

system are not disclosed as well as its' clock frequency and area consumption. It

performs RSA decryption using CRT. It uses 0. l8im IC technology and claims to be

able to perform 200 RSA 1024-bit private key computations per second. This means

that it perform RSA 1024-bit decryption in 5 ms, which is much faster than any
system discussed in this section. The closest time result to this system is that of SCI

Worx with 64-bit internal datawidth of 64-bit (with fastest execution) running at
>200MHz that takes less than 4 ms to perform, which were not mentioned here. Due

to the limited information regarding this particular system, it is difficult to conclude its

comparison result to the proposed system. Based on the data available, this system

uses CRT method to speed up the execution time and outperforms the proposed

system by almost ten times.

It is difficult to compare these different systems straightforwardly due to
several reasons. First, most of the algorithms used by the other systems are not
disclosed. Second, the clock frequency and IC technology used varies. Finally, the

execution time results are obtained differently. Therefore, it cannot be concluded
which of these systems is the best.

79

6. CONCLUSIONS AND FUTURE WORK

6.1. Conclusions

This work presented a modular exponentiation ASIC implementation using the

radix-2 scalable Montgomery Multiplier by Tenca and Todorov. The parallel binary

method by Chiou is used as the exponentiation algorithm. Since the Montgomery
Multiplier is flexible enough to perform in any precision, this flexibility is inherited by

the proposed modular exponentiation system.

The radix-2 scalable Montgomery Multiplier is optimized for the precisions

that the system will be used. A software application is specifically developed to find

the best design for the scalable Montgomery Multiplier configuration. The best
configuration will vary depending the designer specification and the precisions where

it will perform.

The proposed system performance is compared with several selected software

implementations. It is performing faster than the software implementations running at

the same frequency. The timing results of the proposed system are comparable to the

FPGA implementation by Blum and Paar. Although this proposed system is not
reconfigurable, it can perform at any precision without modification. This is true as

long as the maximum precision does not exceed the memory size. The proposed
system is also compared with several other modular exponentiation hardware systems

that are available on the market. However, it is very difficult to draw any solid
conclusion from the limited information available about them.

80

6.2. Future Work

Finding the best configuration for the MM module implementation is complex

and the result varies significantly depending on the designer criteria. The KDT
application introduced in this work is designed to find the best kernel configuration in

the MM module for MM operation, which is the basic operation for modular
exponentiation. In order to determine the best system design for modular
exponentiation operation, the KDT may be improved to include the details area
requirements and extra time of the proposed system implementation when performing

modular exponentiation. For example, if the d and w are of the same size, data
reformatting and result registers will not be necessary. Nevertheless, the design
without data reformatting may not be better than the design with it in terms of overall

execution time and area consumption. The improved KDT can be developed from
experimental result described in Section 5.1, 5.2, and 5.3.

The main focus of this work is to get a reasonably fast modular exponentiation

system using the MM hardware. The approach taken in this work consists in analyzing

the available exponentiation algorithm and optimizing the MM module particularly

used in the system. There are higher radices scalable MM hardware designs proposed

in [10] that can also be used. The higher radices MM design can be used by the
parallel binary method algorithm and may yield faster execution time.

Improvement over the MM module design itself may improve the overall
system execution time in performing modular exponentiation. The MM module was
designed for single MM operation each time. In case of modular exponentiation
operation, which includes series of MM operation, elimination of the final reduction
block maybe possible. Data in carry save form originally located in SS and SC prior to

final reduction can be fed back to the system. This requires extra input on the carry

save adder and some other modifications. However, the elimination of final reduction

block may improve the RC delay of the MM module and reduce total number of clock

cycles.

81

Another potential improvement is by utilizing CRT [1] in the proposed
hardware system implementation for certain cryptographic algorithms. This will
reduce the execution time significantly. There is no modification required for the
proposed system to use CRT. The only thing that needs to be done is to rearrange the

input data for the system accordingly with the right operations to perform in the
correct sequences.

Further analysis of how the modular exponentiations are used in most
cryptographic algorithms may produce other approaches to achieve even faster
execution time. For example in RSA implementation, RSA public keys typically only

contain a small number of bits while its private keys contain near the full size (N)
number of bits. This means that RSA encryption, which uses the small size public key,

has small size exponent. Currently, the proposed system handles this in the number of

words fashion. Thus, if the last most significant 8-bit word consists of a single 1 in the

LSB followed by Os, the proposed system will waste seven MM operations. By adding

a "last 1 bit detector" for the exponent Z operand, the system does not need to perform

unnecessary squaring in anticipation of other 1 bit in the Z operand. This detector can

simply perform a simple scanning of the Z bit prior to starting the modular
exponentiation operation. If the Z is scanned one bit each cycle, it will take N cycles

to scan the whole Z operand. However, this is still a small price to pay considering

that it takes more than N cycles even for a single MM operation to finish.

Along the line of analyzing how the modular exponentiations are used in
cryptographic applications, sometimes in RSA, Diffie-Helman and El Gamal
algorithms, the precision size of modulus (M) operand may not be the same with that

of exponent (Z) operand. It is likely that the Z operand size is smaller than the M
operand size. In current system implementation, these precisions are assumed to be the

same since it would be the most secure implementation. Having separate operands'

size for both M and Z can save significantly in terms of modular exponentiation
execution time. Even if the "last 1 bit detector" is already implemented in the system,

this Z operand size information can make the detection finish faster.

The system proposed in this thesis provides

82

a basic underlying

implementation and can be enhanced to incorporate most of the future work discussed

in this section.

83

BIBLIOGRAPHY

1. C.K.Koc, "High-Speed RSA Implementation," RSA Laboratories, version 2.0,
November 1994.

2. M.E. Heliman, W. Diffie, "New Directions on Cryptography," IEEE transactions
on Information Theory, vol. 22, pp. 644-654, November 1976.

3. L. Adelman, R.L. Rivest, A. Shamir, "A Method for Obtaining Digital Signature
and Public-Key Cryptosystems," Comm. ACM, vol. 21, no. 2, pp. 120-126,
February 1978.

4. National Institute for Standard and Technology, "Digital Signature Standard
(DSS)," Tech. Rep., FIPS PUB 186-2, January 2000.

5. N. Koblitz, "Elliptic Curve Cryptosystems," Mathematics of Computation, vol. 48,
no. 177, pp. 203-209, January 1987.

6. P.L. Montgomery, "Modular Multiplication Without Trial Division," Mathematics
of Computation, vol. 44, no. 170, pp. 5 19-521, April 1985.

7. B.S. Kaliski, C.K. Koc, T. Acar, "Analyzing and Comparing Montgomery
Multiplication Algorithms," IEEE Micro, vol. 16, no. 3, pp. 26-33, June 1996.

8. A.F. Tenca, C.K. Koc, "A Scalable Architecture for Montgomery Multiplication,"
in Cryptographic Hardware and Embedded Systems, Ed. 1999, number 1717 in
Lecture Notes in Computer Science, pp. 94-108, Springer, Berlin, Germany.

9. A.F. Tenca, C.K. Koc, E. Savas, "A Scalable and Unified Multiplier Architecture
for Finite Fields GF(p) and GF(2m)," in Cryptographic Hardware and Embedded
Systems, Ed. 2000, Lecture Notes in Computer Science, pp. 94-108, Springer,
Berlin, Germany.

84

10. G. Todorov, "ASIC Design, Implementation, and Analysis of A Scalable High-
Radix Montgomery Multiplier," MS thesis, Oregon State University, December
2000.

11. A.F. Tenca, G. Todorov, C.K. Koc, "High Radix Design of a Scalable Modular
Multiplier," in Cryptographic Hardware and Embedded Systems, Ed. 2001,
Lecture Notes in Computer Science, pp. 189-205, Paris, France.

12. Et al. T. Hamano, "0(n)-Depth Circuit Algorithm for Modular Exponentiation," in
IEEE 121/1 Symposium on Computer Arithmetic. 1995, pp. 188-192, IEEE
Computer Society Press, Los Alamitos, CA.

13. T. Blum, C. Paar, "Montgomery Modular Exponentiation on Reconfigurable
Hardware," in IEEE 14th Symposium on Computer Arithmetic. 1999, pp. 70-77,
IEEE Computer Society Press, Los Alamitos, CA.

14. C.C. Chang, D.C. Lou, "Parallel Computation of The Multi-Exponentiation for
Cryptosystems", Computer Mathematics, Institute of Computer Science and
Information Engineering, The Gordon and Breach Publishing Group.

15. S.C. Goldstein, R.R. Taylor, "A High-Performance Flexible Architecture for
Cryptography," in Cryptographic Hardware and Embedded Systems, C. Paar, C.K.
Koc, Ed. 1999, number 1717 in Lecture Notes in Computer Science, pp. 23 1-245,
Springer, Berlin, Germany.

16. C.W. Chiou, "Parallel Implementation of The RSA Public-Key Cryptosystem,"
International Journal ofMathematics. 1993, pp. 153-155.

17. C.D. Walter, "Spaceul'ime Trade-Offs for Higher Radix Modular Multiplication
using Repeated Addition," IEEE Transaction on Computers, vol. 46, no. 2, Feb
1997.

18. M. Scott, "Fast Machine Code for Modular Multiplication," School of Computer
Applications, Dublin City University. January 1995.

85

19. http://www.eskimo.com/weidailbenchmarks.html, Crypto++ 4.0 Benchmark.

20. http://www.sidsa.com/datasheetsfRSA/ds_rsa2048a_short.html, SIDSA
RSA2O48A RSA Coprocessor IF.

21. http://www.sci-worx.comlinternetlhomepage_internet_e.html, Sci-Worx RSA
Design ObjectTM.

22. http://www.hifn.comlproducts/6500.html, Hifn 6500 Public Key Processor.

86

APPENDICES

87

Appendix A. Kernel Design Tool Flowchart

C StartD

gns input

/ dat:load /
y.dat

....

Time calculation
using specified

core clock
frequency

(clock cycles)

Time calculation
using maximum
clock frequency
(clock cycles)

Expected time
Expectedtime andarea

calculation of both calculation for
core and all possible

maxim urn clock configurations
frequency

Delay linear
interpolation

Area calculation
(gates)

Expected time
conversion from
clock cycles to
microseconds

88

Expected time to
area scaling

Area-time
7 trade-off to find

Trade-off best
execution to find configurations

best configuration for each w
at each w value value

,,-'6Ipiay best
7 configuration

for each w
I u e

.11111..

Resorting all
possible

configurations
according to area

I
Area-time

+
trade-off to find

best
Expected time to configurations

area scaling

Trade-off
execution to find

best configuration

('Display best
'\.onfiguration

(End)

89

Appendix B. Delay Data File Arrangement

The format of the "delay.dat" data file can be seen as follows. It also shows the

actual data used for the KDT operation in this thesis work. Respectively according to

the set of numbers, it represents the w, p and RC delay separated by a single space.

0008 0001 0006.7
0008 0003 0007.6
0008 0009 0008.5
0008 0017 0008.8
0008 0033 0009.2
0008 0065 0010.1
0016 0001 0007.4
0016 0003 0009.9
0016 0009 0010.0
0016 0017 0011.5
0016 0033 0020.0
0032 0001 0008.9
0032 0003 0011.2
0032 0009 0015.3
0032 0017 0017.0
0064 0001 0010.7
0064 0003 0014.1
0064 0009 0020.7
0128 0001 0011.4
0128 0003 0018.3

Appendix C. Kernel Design Tool Source Code

#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <math.h>

/* Kernel Design Tool (KDT) version 1.0 */

1* *1
/* 07/15/2001 *1
/* Developed by Budiyoso Kurniawan *1

*1

/* This KDT is designed to find best design configuration for /

/ radix-2 Montgomery Multiplier kernel. The time and area
/* formulas used in this implementation is based on *1
/ "A Scalable Architecture for Montgomery Multiplication" *1
/* by A.F.Tenca and C.K.Koc. *1

/* The w used are set at 8, 16, 32, 64, and 128. *1
/* The 'delay.dat" data file containing RC delay data is */

/* required. *1

/ data array used to hold all the possible kernel configurations *1
/ w = number of bits in each processing element word *1
/* p = number of processing elements */

ettime = estimated time */

/ fmax = maximum clock frequency for the configuration
/* ettimef = estimated time at maximum clock frequency */

struct resultOl {

mt w, p;
float area, fuse, ettime, fmax, ettimef;

} cand[5] [200];

/ data array used to hold the best kernel configurations of each w*/
struct result02 {

mt w, p;
float area, fuse, ettime, fmax, ettimef;
} bcand[5];

/* data array used to hold all the sorted possible kernel /

/* configurations */
struct result03 {

mt w, p;
float area, fuse, ettime, fmax, ettimef;
} mcand[l000];

91

I data array used to hold the best kernel configuration for all w /

/ and N *1
struct resultO4 {

mt w, p;
float area, fuse, ettime, fmax, ettimef;
} bdesign;

char tempd[19];

/ data array used to hold the extracted RC delay and kernel */
1* configuration from "delay.dat" file *1

struct dataOl {

mt w, p;
float c;
} delay[801;

struct ul (

mt n;
float r;
} usage[lOO];

float E[lOO];

/ Procedural call to execute power calculation */
mt power(int a, mt b) {

mt i, c=l;
if(b==O) {c1;}

else {for(i=l;i<=b;i++) {c = c*a;}}

return c;

/ Procedural call to calculate the area given p and w
/ Radix-2 MM area formula is used in this implementation */

float area(int w, mt p) {

float area;
area = 59.65*p*w + 51.44*p - 31*w 35.52;
return area;

/* Procedural call to calculate the time in clock ticks given p I

/ andw *1

1* Radix-2 MN area formula is used in this implementation
mt tticks(int n, mt w, mt p) {

mt k, e, T;
double nl,pl,wl,el;
(double)nl = (int)n;
(double)pl = (int)p;
(double)wl = (int)w;
k = ceil(nl/pl);
el = (nl+l)/wl;

92

e = ceil(el);
if (e+l<=2*p) (T = (2*k*p)+e_l;}

else {T = k*(e+l) + 2*(p_l);)
return T;

/* Procedural call to calculate RC delay using linear interpolation*/
/ given p and w as well as preloaded delay[x] data array from the *1
/ delay.dat data file (using delayinit() procedure) *1

float delaycalc(int w, mt p) {

float dly;
mt 1;
for(l=O;delay[l].w.z2*w;l+i)

if (w==delay[l} .w)
if (p>delay[l] .p && p<delay{ll] .p && delay[l] .w ==

delay[l+l] .w)
dly = delay[l] .c + (p-delay{l] .p) * (delay[l+l] .c-

delay[1] .c) I (delay{l+l] .p-delay[l] .p);

else if (p == delay[l] .p) {

dly = delay[l].c;

return dly;

7* Procedural call to change the time from clock ticks to I
1/* microsecond given n (precision), w, p. and dly *1
1* (RC delay) *1
float ttime(int n, mt w, mt p. float dly) {

float tT;
tT = tticks(n,w,p)*dly/l000;
return tT;

I Procedural call to calculate the expected time (evalue) for each*I
1* configuration by merging computation time at each precision n /

I using the usage distribution. The result is stored in cand[x][y]*/
/* data array. *1

void evalue(float maxarea, mt maxn, mt minn, mt cf, float duse,
mt sample, mt maxw, char dist) {

mt i, j, w;
float temptime, maxftime;
mt n, nfl, x;

float dly;

for(i=3;i<=maxw;i+)
w = power(2,i);
for(j=l; area(w,j)<=maxarea; j++)

temptime = 0;
maxftime = 0;
dly = delaycalc(w,j);
if (cf == 0) {duse = dly;}
if (diy <= duse)

if (maxn == minn)
x = maxn;
temptime = ttime(x,w,j,duse);
maxftime = ttime(x,w,j,diy);
} else {
nfl = 0;
for(n=minn;n<=maxn;n=n-1-((maxn-minn) I (sample-i)))

if (dist == 'd) {x=usage[nn].n;) else (x=n;}
temptime = temptime + (ttime(x,w,j,duse) *

usage[nn] .r);
maxftime = maxftime + (ttime(x,w,j,diy) *

usage [nfl] .r)
flfl++;

cand[i-3] [j] .ettimef = maxftime;
cand[i-3][j].fmax = l000Idly;
cand[i-3] [ii .ettime = temptime;
cand[i-3] [ii .fuse = 1000/duse;
cand[i-3] [ii .area = area(w,j);
cand[i-3][j].p =
cand[i-3][j).w = w;
} else (
cand[i-3] [ii .ettimef = 1000000;
cand[i-3][j].fmax = l000/diy;
cand[i-3J [ii .ettime = 1000000;
cand[i-3] [ii .fuse = l000/duse;
cand[i-3] [ii .area = 1000000;
cand[i-3][j].p =
cand[i-3][j].w = w;

I

93

/* Procedural call to execute trade off and find the best design */

/* configuration at each w. The result is stored in bcand[x] *1

void attcsearch(float maxarea, mt maxw, float areap, float timep) {

mt 1, j, w;
float areadiff, timediff, diff;
float maxttime, minttime, maxdarea, mindarea;
float areavalue[5];

1* scaling time to area portion *1

II printf('maxdarea mindarea maxttime minttime\n");
for(i=3;i<=maxw;i++) {

w = power(2,i);

94

minttime = 1000000;
maxttime = 0;

mindarea = 1000000;
maxdarea = 0;

for(i=1; (area(w,i)<=maxarea && cand[i-3] [ii .fuse <= cand[i-

3] [ii .fmax) ; i--) {

if (mindarea > cand[i-3] [ii .area) (mindarea = cand[i-
3] [ii .area;}

if (maxdarea < cand[i-3] Li] .area) (maxdarea = candLi-
3] Li] .area;}

if (minttime > cand[i-3] Li] .ettime) (minttime = cand[i-
3] Li] .ettime;)
if (maxttime < candLi-3] [ii .ettirne) {maxttime = candLi-3] [ii .ettirne;}

if (maxdarea != mindarea) {

areavaiueLi-3] = (maxdarea-mindarea) / (maxttime-minttime)
else {

areavalueLi-3] = 1;

/ trade-off execution portion *1
for(i=3;i<=maxw;i++) {

w = power(2,i);
bcandLi-3] .ettime = candLi-3] Li] .ettime;
bcandLi-3] .area = cand[i-3] Li] .area;
for(i=i; (area(w,j)<=maxarea && candLi-3] Li] .fuse <= candLi-

3]Lil.fmax); i+) {

if (areavaiue[i-3] == 1) {

diff = 1;

else {
areadiff = (bcand[i-3] .area candLi-3] [ii .area);
timediff = (bcandLi-3] .ettime candLi-

3] Li] .ettime) *areavaiueLi3];
diff = areap*areadiff + timep*tirnediff;

if (diff >= 0) {

bcandLi-3] .ettimef = candLi-3] [ii .ettimef;
bcandLi-3] .fmax = cand[i-3] Li] .fmax;
bcandLi-3] .ettirne = candLi-3] Li] .ettime;
bcand[i-3] .fuse = candLi-3] Li] .fuse;
bcandLi-3] .area = candLi-3] Li] .area;
bcand[i-3].p = cand[i-3]Li].p;
bcandLi-3].w = candLi-3]Li].w;

}

printf (\nBest Candidates \n);
printf(" w p area fuse(MHz) ettime(ns) fmax(MHz)
ettirnef(ns)\n°)
for(i=3;i<=maxw;i++)

95

printfY%4d %4d %6.3f %6.3f %6.3f %6.3f %6.3f\n", bcand[i-3] .w,
bcand[i-3].p, bcand[i-3].area, bcand[i-3].fuse, bcand[i-3).ettime,

bcand{i-3] .fmax, bcand{i-3J .ettimef);

}

/ Procedural call to perform sorting of possible design *1
1* configuration according to area increment ignoring the */
1* different w. The results are stored in mcand[x] data */
I array. *1
mt sortdesignbyarea(float maxarea, mt maxw) {

float maxdarea;
mt w, td, i, j, k, 1;

td = -1;
for(i=3;i<=maxw;i+) {

w = power(2,i);
if(i==3) {

for(j=l; area(w,j)<=maxarea; j++) {

if(cand[i-3] [j] .area != 1000000) (

td = td + 1;
mcand[td] .ettimef = cand[i-3] [ii .ettimef;
mcand[td] .frnax = cand[i-3] [j] .fmax;
mcand[td] .ettime = cand[i-3] Li] .ettime;
mcand[td] .fuse = cand[i-3] [j] .fuse;
mcand[td] .area = cand[i-3] [ii .area;
mcand[td].p = cand[i-3][j}.p;
nicand[td].w = cand{i-3]Lj].w;

maxdarea = mcand[td] .area;

} else {
for(j=1; area(w,j)<=maxarea; j++) {

if(cand[i-3] [ii .area != 1000000) {

if (cand[i-3] [ii .area<maxdarea) {

for(k=0; k<td; k++)
if(cand[i-3] [ii .area>mcand[k] .area && cand[i-

3] [j] .area<mcand[k+l] .area) {

mcand[k+l] .area, cand[i-3] [j] .area);
td td + 1;

for(1=td; l>k+1; 1--) {

mcand[1] .ettimef = mcand[l-1] .ettimef;
mcand[1] .fmax = mcand[1-l) .fmax;

rncand[1].ettime = mcand[l-l].ettime;
mcand[1] .fuse = mcand(l-1] .fuse;
mcand[1] .area = mcand[1-1] .area;
mcand[l] .p = mcand[l-1] .p;
mcand[l] .w = mcand[1-l] .w;

} /1 shifting
mcand[k+l] .ettimef = cand[i-3] [j] .ettimef;
mcand[k+l] .fmax = cand[i-3] [ii .fmax;

mcand[kl] .ettime = cand[i-3] [ii .ettime;

96

mcand[k-s-l] .fuse = cand[i-3] [ii .fuse;
mcand[k+lJ .area = cand[i-3} Li] .area;
mcand[k-t-1].p = cand[i-3}[j].p;
mcand[k+1].w = cand[i-3][j].w;
) 7/ check if in between and insert

} II next between
} else {
td = td + 1;
mcand[td] .ettimef = cand[i-3] [ii .ettimef;
mcand[td] .fmax = cand[i-3] [ii .fmax;
mcand[td].ettime cand[i-3][jJ.ettime;
mcand[td] .fuse = cand[i-3] [ii .fuse;
mcand[td] .area = cand[i-3] [j] .area;
mcand[td].p = cand[i-3][j].p;
mcand[td] .w = cand[i-3] [ii .w;

} /7 insert or add to the last
7/ check if 0

I

return td;

/ Procedural call to execute trade off and find
1* configuration for all w and N. The result is
void btatcsearch(float areap, float tirnep, float
mt i, td;
float areadiff, timediff, diff;
float rnaxttime, minttime, maxdarea, mindarea;
float areavalue;

td = sortdesignbyarea(maxarea, maxw)

/ scaling time to area portion
mirittime = 1000000;
maxttime = 0;
mindarea = mcand[0] .area;
maxdarea = mcand[td] .area;
for(i=0;i<=td;i+-i-) {

if (minttime > mcand[i] .ettime)
if (maxttime < mcand[i] .ettime)

the best design *7

stored in bcand. /

maxarea, mt maxw)

*1

{minttime = mcand[i].ettime;}
{maxttime = mcand[i] - ettime; }

printf("%f %f %f %f\n", maxdarea, mindarea, maxttime, minttime);
printf("total data = %d\n, td);
if (maxdarea mindarea) {

areavalue = (maxdarea-mindarea) / (maxttime-minttime);
} else C
areavalue = 1;

97

/* trade-off execution portion *1

bdesign.ettime = mcand(O] .ettime;
bdesign.area = mcand[O] .area;
for(i=O;i<=td;i) {

if (areavalue == 1) {

diff = 1;

) else {
areadiff = (bdesign.area mcand[iJ .area);
timediff = (bdesign.ettime - mcand[iJ .ettime)*areavalue;

diff = areap*areadiff + timep*timediff;

if (diff >= 0) {

bdesign.ettimef = mcand[iJ .ettimef;
bdesign.fmax = mcand[i] .fmax;
bdesign.ettime = mcand[i] .ettime;
bdesign.fuse = mcand[i] .fuse;
bdesign.area = mcand[iJ .area;
bdesign.p = mcand[i] .p;
bdesign.w = mcand[i] .w;

}

printf(\nBest design for area-time tradeoff: \n);
printfVtime importance: %2.5f area importance:
%2.5f\n,timep,areap);
printf('word size= %4d pipe stages= %4d area consumed= %f\n',
bdesign.w, bdesign.p, bdesign.area);
printf(frequency use= %6.3f max frequency=%6.3f\n, bdesign.fuse,
bdesign.fmax);

/* Procedural call to calculate and display MM time result */
/ at each used precision *1

void timeit(int maxn, mt minn, mt sample, char dist)
float dly, ftime, maxftime;
mt n, nfl, x;

printf(' n time-fuse time-fmax\n");
if (maxn == minn) {

ftime = ttime(maxn, bdesign.w, bdesign.p, l000/bdesign.fuse);
maxftime = ttime(maxn, bdesign.w, bdesign.p, l000/bdesign.fmax);
printf(%5d %6.3f %6.3f\n', maxn, ftime, maxftinie);
} else {

nn = 0;

for (n=minn;n<=maxn;n=n+ (maxn-minn) I (sample-i)) {

if (dist == 'd') {x=usage[nnJ.n;} else (x=n;}
ftime = ttime(x, bdesign.w, bdesign.p, l000lbdesign.fuse);
maxftime = ttime(x, bdesign.w, bdesign.p, i000lbdesign.fmax);
printf('%5d %6.3f %6.3f\n', x, ftime, maxftime);
flfl++;

98

/ Procedural call to open the delay.dat data file *1
/* and load the data to the delay[x] data array
void delayinit() {

FILE *fp;
char *fjlename = 'delay.dat;
mt i, imax;
char tmp;

if ((fp = fopen(filename, 'r")) == NULL) {

printf(File can not be opened. \n");
exit (1)

while(!feof(fp)) (

fgets(ternpd, sizeof(tempd), fp);
i++;
delay[i] .w = atoi(strtok(tempd,
delay[i].p = atoi(strtok(NULL,
delay[i].c = strtod(strtok(NULL, \n\0"), NULL);

fclose(fp)

/ The main code */

main() {

mt i, j, w;
mt maxw = 7;
float maxarea = 26500;
mt maxn = 2048;
mt minn = 256;
mt sample = 8;
mt n, nfl;
float areap = .5;
float timep = .5;
char dist;
mt cf;
float fuse, duse;

1* Designers inputs portion *1

printfYMaximum area = '); scanf(%f, &maxarea);
printfYMaximum precision = '); scanf("%d, &maxn);
printf(Minimum precision =); scanf("%d', &minn);
printf(Frequency used (MHz or 0 for none) = "); scanf(%f, &fuse);
printf(Time importance (max importance 1.0) = '); scanf(%f,
&timep);
printf(Sampling size =); scanf(%d', &sample);
printf(Distribution [(n)ormal, (e)ven, (d)iscretej =
scanf(" %c%*c, &dist);
tolower(dist)

1* selection of usage distribution type *1

switch(dist) {

case 'e':
for(i=0;i<sample;i-s-+) (

usage[i}.r = 1.0/sample;

break;
case d:

printf(Please make sure the total usage = 1.0 (100%)\n);
for(i=0;i<sample;i++) {

printfY'Enter precision bits: ");scanf(%d", &usage[i] .n);
printfYEnter usage ratio:) ;scanf('%f", &usage[i] .r);

break;
default:

printf(Defaulted to even distribution\n");
for(i=0;i<sample;i++) {

usage[i].r = 1.0/sample;

}

/* calculating the RC delay for given core clock frequency
if (fuse 0) (duse = 1000/fuse; cf=l;} else {cfO;};
printf(duse = %f\n, duse);

/* calculating the area importance from the given time importance */
areap = 1 timep;

delayinit ()

evalue(maxarea, maxn, minn, cf, duse, sample, maxw, dist)
attcsearch(maxarea, maxw, areap, timep)

sortdesignbyarea(maxarea, maxw)
btatcsearch(areap, timep, maxarea, maxw)

timeit(maxn, minn, sample, dist);

Appendix D. Kernel Design Tool Input and Output Example

INPUT
Maximum area = 26500
Maximum precision = 2048
Minimum precision = 160
Frequency used (MHz or 0 for none) = 0
Time importance (max importance 1.0) = .95
Sampling size = 5
Distribution [(n)ormal, (e)ven,
Please make sure the total usage
Enter precision bits: 160
Enter usage ratio: .2

Enter precision bits: 256
Enter usage ratio: .2

Enter precision bits: 512
Enter usage ratio: .2

Enter precision bits: 1024
Enter usage ratio: .2

Enter precision bits: 2048
Enter usage ratio: .2

OUTPUT
Best Candidates:

(d)iscrete} = d
= 1.0 (100)

w p area fuse(MHz) ettime(us) fmax(MHz) ettimef(us)
8 32 16632.961 108.992 41.834 108.992 41.834

16 17 16567.760 86.957 50.177 86.957 50.177
32 14 26415.840 61.115 46.479 61.115 46.479
64 7 25063.760 54.054 53.731 54.054 53.731

128 3 19056.400 54.645 64.398 54.645 64.398

Best design for area-time tradeoff:
time importance: 0.95000 area importance: 0.05000
word size = 8 pipe stages = 32 area consumed = 16632.960938
frequency use = 108.992 max frequency = 108.992

n time-fuse time-fmax
160 3.119 3.119
256 4.991 4.991
512 10.258 10.258

1024 38.737 38.737
2048 152.066 152.066

