
                                                                                                              
                                                                                                              

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



AN ABSTRACT OF THE DISSERTATION OF 
 

Geoffrey R. Hosack for the degree of Doctor of Philosophy in Fisheries Science presented on June 27 
2008. 
 
Title: Predicting the Stability, Equilibrium response, and Nonequilibrium Dynamics of Ecological 
Systems. 
 

 
 
 

Abstract approved:  

 

____________________________________________________________________________ 

Philippe A. Rossignol         Hiram W. Li 
 
 
 

In this dissertation, new theory and its applications are developed to predict three properties 

of complex ecological communities: stability, equilibrium response, and non-equilibrium dynamics. 

First, a graph-theoretic analysis identifies the interconnections in a complex ecosystem that promote 

or diminish stability (Chapter 2). The hierarchy of interactions that influences stability and feedback 

processes can guide resource allocation for environmental monitoring, investigate alternative 

management strategies, and help formulate novel research hypotheses. Second, a combined graph-

theoretic and probabilistic approach evaluates the potential for long-term changes in equilibrium 

(Chapter 3). Conditional probabilities of long-term increase and decrease in variables are transferred 

from the graph-theoretic models into a Bayesian network.  The Bayesian network allows researchers 

both to predict how an ecosystem might change given a perturbation and to diagnose which model 

structure best matches empirical observations.  Third, a threshold index predicts whether or not large-

magnitude short-term transitory changes in disease prevalence can occur (Chapter 4). The concept of 

reactivity is used to derive a threshold index for epidemicity, 0E , which gives the maximum number 

of new infections produced by an infective individual at a disease free equilibrium. This index 

provides a threshold that determines whether or not major epidemics are possible. The relative 

importance of parameters differs between control strategies that seek to reduce endemicity and those 



that seek to reduce epidemicity. The index 0E  therefore is an important measure of epidemic potential 

that may assist efforts to control epidemics. Together these approaches provide new theory that help 

bridge the gap between our need to understand complex ecological systems and the empirical data 

available for their characterization. 
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1 GENERAL INTRODUCTION 

 

Ecological researchers and managers often have to make decisions and recommendations 

while working in complex and often poorly understood systems.  Species exist in interconnected 

communities that demand a multispecies perspective for evaluating mechanisms that govern the 

viability of a population of interest (Sih et al. 1985, Wootton 1994), but learning how species within 

complex communities respond to human and environmental pressures remains one of the great 

challenges for community ecology (Ives and Carpenter 2007).  Ecologists are forced to conduct their 

research and decision-making responsibilities amidst uncertainty with respect to the processes, the 

structure, and the dynamics of complex communities (Francis and Shotton 1997, Ruckelshaus et al. 

2002, Fairbrother and Turnley 2005).  New theoretic tools are needed that allow ecologists and 

managers to deal with the uncertainty that usually characterizes ecological systems.  In this 

dissertation, three such tools are contributed to narrow the gap between the uncertainties inherent 

within complex ecological systems and the empirical data available for their characterization. 

A graph-theoretic approach is proposed that identifies critical linkages between members 

within a complex system (Chapter 2).  Graphical models are used to create complex models that relate 

the influence of each variable on another (Levins 1974, Dambacher et al. 2002).  These graphical 

models are food-web models with the addition of non-trophic interactions such as interference 

competition, mutualism, and modified interactions (Dambacher and Ramos-Jilliberto 2007).  These 

graphical models are used to derive positive and negative feedback cycles that determine the stability 

of the system.  A sensitivity analysis is developed that identifies the critical linkages that contribute to 

stabilizing or destabilizing processes within the system.  The approach is demonstrated using two 

theoretical models and two empirical models, each taken from the published literature.  Non-trophic 

interactions are investigated as critical interactions that determine the success of species invasions and 

the development of alternative stable states.
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If a system is stable, the next question is often: how will the system respond to an 

anthropogenic or environmental pressure over the long-term?  In these situations, ecological 

predictions and management strategies can be more sensitive to the structural uncertainty of a model 

than parametric uncertainty. In addition, when faced with insufficient quantitative knowledge, 

ecologists may forgo quantitative analysis and fill in this gap of empirical data with expert opinion 

incorporated into a Bayesian Belief Network (BBN). Including expert elicitation in BBNs can have 

the following disadvantages: (1) specifying conditional probabilities can be time-consuming, (2) 

expert opinion can be subject to cognitive bias, (3) expert opinion can be confounded with linguistic 

uncertainty, and (4) feedback cycles can be difficult to parameterize within a dynamic Bayesian 

network.  In Chapter 3, we present a method that addresses the problems highlighted above by 

merging BBNs with the form of graphical modeling used in Chapter 2. This method is designed to 

assist ecologists, risk practitioners and natural resources managers in understanding how ecosystems 

might respond to a changing pressures in the environment.   

Whereas Chapter 2 asks if a system exhibits a long-term return to equilibrium following a 

perturbation, and Chapter 3 asks how presses to ecological systems change the long-term levels of 

variables, Chapter 4 investigates whether or not important ecological changes may develop over the 

short-term. For example, clinically important changes in disease infection may develop over the short-

term in vector-borne diseases (Lotka 1923).  A threshold index, 0E , is developed that predicts 

whether or not a short-term epidemic can occur within a system of vector-borne disease.  The index 

0E  is used to investigate if vector behavior has a larger influence on the severity of epidemics than on 

the level of epidemicity within a given area of disease transmission. 

Each of the chapters 2-4 contributes a new theoretic approach designed to improve our 

understanding and our prediction of complex ecological systems.  The general conclusions are 

outlined in Chapter 5. 
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2.1 Abstract 

A community’s structure is formed by the direct effects among the species and variables 

within the community. The direct effects within a community form feedback cycles that confer the 

dynamical aspects of stability and resilience to the community. A community is stable, and resilient, if 

the levels of all community variables return to the original steady state following a perturbation. 

Although feedback cycles (loops) have an intuitive interpretation, identifying how they form the 

feedback properties of a particular community can be intractably complicated. Furthermore, the role 

that any specific direct effect plays in the stability of a system is not fully understood. Such 

information would allow experimental and management manipulation of complex communities. We 

therefore provide a sensitivity analysis that identifies the structural role of the direct effects among 

species using graph theory techniques. We formalize the model structure using a signed digraph that 

in turn has a mathematical representation. A sensitivity analysis then summarizes the degree to which 

each of these direct effects contributes to stabilizing feedback within the community. Sensitivity 

analysis is useful for identifying ecologically important feedback cycles within the structure of a 

particular community and for detecting direct effects that have strong influences on community 

stability. It may guide the development of management interventions and research designs. We 

demonstrate the power of this approach using two theoretical models and two empirical examples of 

different levels of complexity. Sensitivity analysis provides insight on how stability and coexistence is 

maintained within ecological communities. 

 

2.2 Keywords  

feedback cycle, signed directed graph, species interaction, qualitative modeling 
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2.3 Introduction 

Understanding how species stably coexist within complex communities remains one of the 

great challenges for community ecology (Ives and Carpenter 2007). Species coexist not in a vacuum 

but in large interconnected communities where they interact, sometimes very strongly, with other 

species whose vital rates are influenced by yet other species (Sih et al. 1985, Wootton 1994). Many 

species and populations appear to exhibit stability (Sibly et al. 2007). Stability is linked to other 

important ecological concepts such as resilience (Neubert and Caswell 1997) and alternative stable 

states (Scheffer et al. 2001), and as such is an important concept with a long history of applied use in 

ecology. Although stability has a clear mathematical definition (May 1974), it is not simply a 

theoretical measure, but also an applied one that asks how communities of species persist and respond 

to anthropogenic, climatic, and ecological pressures. 

The structure of the entire community is defined by the direct effects—also referred to as 

species interactions (e.g., Berlow et al. 2004)—between community members, and a community’s 

structure has important implications for its stability (Puccia and Levins 1985, Dambacher et al. 

2003b). Feedback cycles are formed by combinations of the direct effects among community 

members. Understanding these cycles leads to improved insight into the mechanisms that govern the 

dynamics of a community (Dambacher et al. 2002) or population (Guneralp 2007). Although feedback 

cycles may be conceptually identified in a community, the way that these cycles interact to form 

feedback for the entire community is often complicated and counter-intuitive (Levins 1974) and is 

particularly so in large communities (Dambacher et al. 2002). As we will show, sensitivity analysis of 

a community’s structural stability can elucidate why particular feedback cycles are important and 

resolve issues that appear to be counter-intuitive. 

Within population models, sensitivity analyses that determine the effect of life stage 

interactions on the long-term growth rate within population models have provided a very effective 

modeling tool for ecologists (Caswell 2001); these models usually rely on quantified life-table data. 

Sensitivity analyses applied to community models, however, have been restricted because community 
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models are more difficult to parameterize (Wootton and Emmerson 2005). Quantifying the direct 

effects in communities is expensive, time-consuming, and rarely possible (Bender et al. 1984, Yodzis 

1988, Schmitz 1997). A need exists for an approach that, based on the structure of communities, 

interprets how the direct effects influence feedback cycles and hence stability. 

Sensitivity analysis of a community’s structural stability is introduced as one such way to 

identify how each direct effect influences the stability of the community as a whole. Feedback cycles 

may exert stabilizing effects, destabilizing effects, or even both effects simultaneously on the 

community as a whole. Sensitivity analysis for community stability provides a method that establishes 

how each direct effect participates in stabilizing or destabilizing feedback cycles and thereby 

determines community stability. We illustrate from four examples the variety of mechanisms that 

influence coexistence among species and community stability, as revealed by this approach. The 

examples are (1) keystone predator model, (2) competitive exclusion modified by mutualism, (3) 

effect of introduced species in modifying interspecific interactions and subsidies between ecosystems, 

and (4) relative role of trophic versus non-trophic interactions influencing the structural stability of 

shallow lake communities. A computer program is provided that conducts the sensitivity analysis. 

 

2.4 Methods 

In the Methods, we first introduce definitions necessary for understanding a graph-theoretic 

approach to modeling communities. Second, we use a toy example to explore graphically these new 

definitions and introduce the concept of structural stability. Third, sensitivity analysis is heuristically 

defined, and then applied to this same example. The mathematical details that underlie sensitivity 

analysis are found in Appendix A. A computer program that implements the sensitivity analysis is 

provided in Appendix B. 
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2.4.1 Preliminary definitions 

Community structure is represented by a signed digraph (signed directed graph) that denotes 

the positive and negative direct effects between variables (Figure 2.1). A path is a sequence of these 

direct effects that starts at one variable and ends at another without crossing any variable more than 

once. A path that ends at the starting variable is a cycle (loop). Cycles that have no shared variables 

are disjunct. A cycle product is a product of one or more disjunct cycles. Cycle products define 

feedback. Feedback level is the number of variables included within a cycle product. Positive 

feedback occurs when an increase (decrease) is made to a variable and feedback further increases 

(decreases) that variable. Negative feedback occurs when an increase (decrease) is made to a variable 

and feedback decreases (increases) that variable.  

 

2.4.2 Structural stability of a simple model 

To better visualize feedback cycles, it is convenient to diagram the interrelationships 

between the species within a community using a signed digraph. A signed digraph depicts the direct 

effects that occur between species. For example, Figure 2.1 shows a three trophic level model: species 

1 is the basal resource, species 2 is an intermediate consumer, and species 3 is the top level consumer. 

In addition, the model specifies that species 3 has a positive direct effect on the basal resource as 

might occur through nutrient recycling.  

The signed digraph has an associated symbolic matrix, A. The matrix A represents the 

system linearized at a steady state, (i.e., it is the Jacobian matrix; May 1974). The matrix entry in the 

ith row and the jth column shows the magnitude (aij), and the sign (+, −) of the direct effect of species j 

on species i. The aij, which we assume are unknown, and their associated signs describe the direct 

effect of species j on species i. These direct effects incorporate parameters such as species interaction 

magnitudes and rates of growth and decay at a steady state. In practice, these direct effects are 

difficult to quantify (Bender et al. 1984, Wootton and Emmerson 2005). In this paper, we focus 
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instead on identifying ecologically important feedback cycles that arise from these mechanistic 

interconnections within the community. 

Every system requires negative feedback cycles as a necessary condition for stability. A 

necessary condition for stability is that all the feedback levels must be negative. In the above example 

model, feedback cycles can affect the system at 3 different feedback levels because there are 3 species 

in this community (Figure 2.2).  

For example, the growth equation of species 1 draws resources from variables not explicitly 

modeled in Figure 2.1, such as from light or nutrients; that is, species 1 has a carrying capacity set by 

external factors and exhibits logistic-type growth. Such a variable may be considered self-regulated 

(Levins 1998) and, in the signed digraph, a single negative feedback cycle starts and ends at the basal 

resource, species 1. This negative feedback cycle product, which only includes one variable, 

contributes stabilizing negative feedback to the first feedback level.  

Trophic interactions involve two variables: the consumer has a negative direct effect on the 

prey, and the prey has a positive direct effect on the consumer. A positive direct effect multiplied by a 

negative direct effect creates a negative feedback cycle. In this model, two such trophic relationships 

exist because species 2 feeds on species 1 and species 3 feeds on species 2. Thus, two negative 

feedback cycles contribute stabilizing negative feedback to the second feedback level. 

A single feedback cycle may affect the stability of the community at multiple feedback 

levels. Feedback cycles from lower feedback levels may combine with other disjunct cycles to form 

cycle products at higher feedback levels. An example of this can be seen in the third feedback level. 

The self-regulation of species 1 is multiplied by the disjunct trophic relationship between species 2 

and 3. This cycle product is stabilizing because it is the product of two negative feedback cycles. In 

contrast, a long feedback cycle that includes all three species introduces destabilizing positive 

feedback at the third feedback level. This long feedback cycle is positive because the product of the 3 

direct effects from which it is composed has a positive sign (+a13a32a21). If this positive cycle product 

is stronger than the negative cycle product, then the community cannot be stable.  
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A set of necessary and sufficient conditions for stability, given by the far less intuitive 

Hurwitz determinants, takes into consideration the relative strength of the different feedback levels. 

There are n Hurwtiz determinants, denoted Δk, constructed from the Fk, and these must all be positive 

for an equilibrium to be stable (Hurwitz [1895] 1964, Dambacher et al. 2003b; see Appendix A). For 

this example model, if all feedback levels are negative, then the remaining condition for stability as 

derived from the Hurwitz determinants is 

      ( )( ) ( ) 03223112132133223211211321 >−+−−−=+ aaaaaaaaaaaFFF .  (2.1) 

The inequality in Equation (2.1) always holds for this model system. Thus, if all feedback levels are 

negative, then the model system is stable. 

 

2.4.3 Sensitivity of the tri-trophic example 

The next question centers on how a particular direct effect influences the stability of the 

system, that is, its sensitivity. We introduce the concept of sensitivity weight, kF
ijW , to determine how 

each direct effect contributes to negative and positive feedback cycle products. Below, we provide a 

heuristic definition of sensitivity weight; the mathematical derivation is given in Appendix A. We 

measure the sensitivity of the kth feedback level Fk, k = 1…n, using the metric: 

ijk

ijkF
ij acontainsthatFinproductscycleoftotal

acontainsthatFinproductscycleofnet
k

#
#

=W .     (2.2) 

The sensitivity weight kF
ijW  is the ratio of the net number of cycle products to the total number of 

cycle products appearing within the kth feedback level that contain the direct effect’s aij. A sensitivity 

weight of −1.0 (+1.0) indicates that a direct effect’s aij is represented only within negative (positive) 

cycle products in the coefficient Fk. The sensitivity weight is 0 if an equal number of negative and 

positive cycle products that contain aij are present. Sensitivity weights between 0 and −1.0 (+1.0) 

indicate that more negative (positive) cycle products contain aij than positive (negative) cycle 

products.  
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For each Hurwitz determinant Δk, k = 1…n, we use an analogous metric k
ij
ΔW  to count the 

number of positive versus negative occurrences of a direct effect’s aij (see Appendix A). Since the 

Hurwitz determinants must be positive in stable systems, however, positive net sensitivity weights for 

Hurwitz determinants correspond to stabilizing feedback. This contrasts with the sensitivity weights 

of the feedback levels in Equation (2.2), where negative values correspond to stabilizing feedback. 

We apply these sensitivity weights to the feedback levels within the example model (Figure 

2.2). The positive direct effect of the top-level consumer, species 3, on the basal resource, species 1, 

denoted a13, occurs only once within the system’s feedback, at the third feedback level. The net 

sensitivity weight for a13 at the third feedback level is 113
13 +=FW , and this direct effect contributes 

only to destabilizing positive feedback.  

In contrast, the positive direct effect of the intermediate consumer, species 2, on the top-level 

consumer (a32) occurs not only in both negative and positive feedback cycle products at the third 

feedback level, 203
32 =FW , but also in a single negative cycle product at the second feedback level, 

112
32 −=FW . Although the direct effect a32 contributes to stabilizing feedback in F2, its effect in F3 is 

ambiguous. In the same trophic relationship, but unlike its partner a32, the direct effect –a23 

contributes only stabilizing feedback ( 112
23 −=FW  and 113

23 −=FW ). The net sensitivity weights 

thus inform how each direct affect affects the stability of the community. 

The mathematical derivation of the sensitivity weight matrices for the feedback levels and 

the Hurwitz determinants are provided in Appendix A. A computer program that implements the 

sensitivity analysis is provided in the Appendix B. 

 

2.5 Results 

Sensitivity analysis identifies the role and relative importance that each direct effect plays 

within community stability. This is a general mathematical method applicable to the structure of any 

complex system that can be represented using a signed digraph. We first illustrate sensitivity analysis 
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by applying it to two small theoretical communities. We interpret how the direct effects affect 

community stability at multiple levels of feedback and in the Hurwitz determinants. Second, after 

investigating these theoretical models, we apply sensitivity analysis to two empirical examples of 

community structures taken from the published literature.  

 

2.5.1 The keystone predator model 

The keystone predator model consists of an unstable subsystem of two interference 

competitors stabilized by the presence of a predator (Levins 1975, Vance 1978; Figure 3). The 

predator exerts a negative direct effect on prey through consumption; assimilation of prey produces a 

positive direct effect of prey on the predator. Multiplying these direct effects together forms a 

negative (stabilizing) cycle for each predator-prey relationship. Each prey species also engages in 

competition such that one exerts a negative direct effect on the other. Multiplying these direct effects 

together forms a positive (destabilizing) cycle for the competitive relationship. In the absence of the 

predator, the interspecific competition between the two prey species produces destabilizing positive 

feedback that, if stronger than the stabilizing intraspecific competition within the prey species, 

precludes stable coexistence. The presence of the predator produces stabilizing negative feedback 

such that coexistence among prey species becomes possible, even if interspecific competition between 

prey is stronger than their intraspecific competition. Adding a predator may change feedback quality 

from positive to negative, and so the predator is a keystone for community stability (Levins 1975). 

We use sensitivity analysis to derive this conclusion. 

Sensitivity analysis determines the contribution of each direct effect within these feedback 

cycle products. The weighted sensitivity matrices for each feedback level kFW are given in Table 2.1. 

The sensitivity analysis shows that self-regulation of prey is stabilizing because the weighted 

sensitivity of –1.0 is observed in all three feedback levels Fk for the direct effects –a11 and –a22. This 

means that self-regulation only occurs in negative cycle products that contribute negative (stabilizing) 

feedback to the community. In contrast, the interspecific competition occurring among prey, given by 
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–a12 and –a21, has a weight of +1.0 at feedback levels F2 and F3. Interspecific competition contributes 

only positive (destabilizing) feedback to the community. In the absence of the keystone predator, 

stability is impossible if the interspecific competition between prey species is stronger than their self-

regulation.  

The weighted sensitivity matrices also show that the predator creates negative feedback 

cycles, associated with predation, at level F2. Sensitivity analysis shows that if the strength of 

predation is greater than the interspecific competition, then the predator stabilizes an otherwise 

unstable system at this intermediate level of feedback, as in (Levins 1975). Each direct effect 

involving the predator, however, also occurs in both one positive and one negative feedback cycle 

product at the highest feedback level F3. This ambiguity at the highest feedback level indicates that 

the keystone predator does not guarantee stability for a community with strong interspecific 

competition between prey species, but only permits it. The sensitivity analysis demonstrates how the 

keystone predator makes the stable coexistence of an otherwise unstable community possible.  

 

2.5.2 Competitive exclusion modified by commensalism 

In the above keystone predator model, a predator stabilized its community by forming 

negative feedback at an intermediate feedback level. In this example, we will investigate how negative 

feedback may sometimes destabilize communities. We take an example where positive feedback is 

absent from all feedback levels and yet the community structure may be unstable.  

An axiom of ecology is that “complete competitors cannot coexist” (Hardin 1960). Two 

consumers completely dependent on a single resource, if described by a signed digraph equivalent to 

Figure 2.4 without the dotted path, cannot coexist at a stable equilibrium because the community lacks 

feedback cycle products at the highest feedback level, F3. That is, no products of disjunct cycles exist 

that involve all three variables. In contrast, the two lower feedback levels each have negative feedback 

cycles resulting from predation and self-regulation. 
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Stability is possible, however, if one consumer has a commensal relationship with its 

competitor. For instance, one consumer may excrete a substance or modify a habitat to benefit the 

other.  This modification creates a single negative feedback cycle at the highest level: the product of 

the three direct effects contributing to this feedback cycle has a negative sign (–a13a21a32). All 

feedback levels in this modified community are unambiguously negative.  

This commensal relationship permits stability by forming a negative feedback cycle at level 

F3, but the community may yet be unstable because of the length of this cycle. Long negative 

feedback cycles that involve more than two variables can overwhelm lower level negative feedback 

and subsequently lead to overcorrection and instability (Puccia and Levins 1985, Dambacher et al. 

2003b). This form of instability is detected by the Hurwitz determinants, and can usually be traced to 

the n–1st Hurwitz determinant (Dambacher et al. 2003b).  

Sensitivity analysis of the modified competitive exclusion community shows that the 

commensalism in this system, denoted by a32, contributes only to destabilizing feedback within the n–

1st Hurwitz determinant (Table 2.2). Two of the direct effects that correspond to resource 

consumption, –a13 and a21, which as noted above are stabilizing at feedback level 2, also participate in 

the long negative feedback cycle. Note that the weighted sensitivities show that these direct effects in 

turn contribute to both stabilizing and destabilizing feedback ( 0.022
2113 == ΔΔ WW ) in the second 

Hurwitz determinant. The sensitivity analysis straightforwardly identifies an interesting property of 

this community. The community may be unstable even though only negative feedback is present at all 

feedback levels, and the sensitivity analysis identifies the source of this phenomenon. 

 

2.5.3 Modified interactions and subsidy 

In riparian forests of northern Japan, both benthic and terrestrial insects provide food for 

native Dolly Varden charr (Salvelinus malma). Emerging benthic insects subsidize riparian spiders. 

Nonnative rainbow trout (Oncorhynchus mykiss) feed on terrestrial, but not benthic, insects. Rainbow 

trout also modify the foraging of Dolly Varden by inhibiting their feeding on terrestrial insects and 
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enhancing their feeding on benthic insects. Experimental manipulations show that these variables 

form an interconnected community (Baxter et al. 2004). Baxter et al. (2004) postulated that the 

addition of nonnative rainbow trout may displace native Dolly Varden and preclude the coexistence of 

the fish species in some natural settings. We use sensitivity analysis to identify which of the above 

direct effects produce destabilizing positive feedback, and thereby distinguish how each direct effect 

influences the stable coexistence of this community.  

In addition to the direct effects described above, the rainbow trout also modify the foraging 

behavior of Dolly Varden and form direct effects that arise from these modified interactions (sensu 

Dambacher and Ramos-Jiliberto 2007). Two such direct effects that can emerge are depicted in Figure 

2.5: rainbow trout greatly reduce the uptake of terrestrial insects by Dolly Varden (negative direct 

effect from rainbow trout to Dolly Varden) and simultaneously increase predation by Dolly Varden on 

benthic invertebrates (negative direct effect from rainbow trout to benthic invertebrates). For the 

purposes of this analysis, we focus on the signed digraph of Figure 2.5, but other alternatives are 

possible (see Dambacher and Ramos-Jiliberto 2007).  

The signed digraph that describes the above community structure assumes self-regulation 

(e.g., logistic growth) for all variables. Terrestrial invertebrates are assumed to enter the stream 

community at a constant rate, and some number is eaten by trout or charr with the remainder exiting 

the community by drift or decomposition. Benthic invertebrates emerge from the stream community 

and subsidize riparian spiders; this subsidy is represented as a positive direct effect from benthic 

invertebrates to spiders. 

For this example, we use the highest feedback level F5 as a guide for identifying important 

positive and negative cycles that affect the stability of this stream community. Although a full 

sensitivity analysis could be conducted, the highest feedback level often provides a synopsis of the 

salient feedback characteristics within a system (e.g., Thomas and Kaufman 2005, Dambacher and 

Ramos-Jiliberto 2007, Letellier et al. 2007).  

Sensitivity analysis of the stream community’s trophic relationships at the highest feedback 

level indicates that the negative direct effect of rainbow trout on terrestrial invertebrates, –aTR, 
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contributes only stabilizing negative feedback (Table 2.3). Inspecting Figure 2.5, it is seen that this 

direct effect participates in a single negative feedback cycle that corresponds to the predator-prey 

relationship between rainbow trout and terrestrial invertebrates. Within this same predator-prey 

relationship is the positive direct effect of terrestrial invertebrates on rainbow trout, aRT. Unlike the 

above associated negative direct effect –aTR, this positive direct effect has an ambiguous weighted 

sensitivity ( 05 =F
RTW ). Again inspecting Figure 2.5, it is seen that this direct effect aRT occurs not only 

in the predator-prey negative feedback cycle (–aRT aTR), but also in the positive feedback cycle (aRT aDR 

aTD); it therefore occurs in both positive and negative cycle products at the highest feedback level. 

Sensitivity weights similarly yield information on the other trophic relationships within the 

community. 

The negative paths created by the modified interactions, –aDR and –aBR, in contrast to the 

above trophic relationships, occur only in positive feedback cycles (Table 2.3). The analysis shows 

that the modifying effect of rainbow trout on Dolly Varden foraging, if strong enough, will preclude 

the stable coexistence of the stream community. The sensitivity analysis therefore supports the 

hypothesis of Baxter et al. (2004) that the rainbow trout may displace the Dolly Varden because of the 

modified foraging behavior. 

The subsidy offered by emerging benthic invertebrates to riparian spiders exhibits no return 

feedback because spiders do not directly affect the density of benthic invertebrates. This subsidy aSB 

does not appear in the highest feedback level ( {}5 =F
SBW , the empty set), nor does this direct effect 

occur at any other feedback level. The sensitivity analysis confirms the perhaps intuitive expectation 

that the rate of subsidy from the stream community to riparian spiders does not affect the stability of 

the community as a whole.  
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2.5.4 Stability of shallow lake communities 

 Dramatic shifts between steady states in natural communities may result from structural 

instability. Positive feedback cycles, although not necessary for ecological communities constrained 

to the nonnegative domain, are generally thought to engender alternative stable states (Soule 2003). 

The shallow lake community tends to exhibit two alternative stable states: a vegetated clear state and 

an algal dominated turbid state. Scheffer et al. (2001) described a conceptual model for shallow lake 

communities under nutrient loading. This conceptual model is translated into a corresponding signed 

digraph (Figure 2.6).   

We use sensitivity analysis to identify positive feedback cycles within shallow lake 

communities under nutrient loading. As in the above stream community example, we begin by using 

the highest feedback level F6 as a guide for identifying these feedback cycles. Sensitivity analysis of 

this feedback level indicates that most direct effects participate in both positive and negative cycle 

products (Table 2.4). A majority of these paths occur in more positive cycle products than negative 

cycle products, suggesting that the community structure promotes instability.       

A few of the non-trophic paths that incorporate vegetation occur only in positive feedback 

cycle products at the highest feedback level (–aVP, –aSV, –aFV). Inspecting Figure 2.6, the non-trophic 

paths leading between vegetation and the other community variables appear to form triangles, or loops 

involving three variables, within the signed digraph. This observation suggests that important 

feedback properties may arise at the feedback level involving three variables.  

A sensitivity analysis of feedback level F3 confirms this suspicion (Table 2.4). Every non-

trophic direct effect is present only in positive cycle products in F3. The non-trophic interactions 

introduce only destabilizing feedback into the shallow-lake community at this feedback level. In 

contrast, every trophic relationship contains at least one direct effect that is present only in negative 

cycle products in F3. The trophic interactions thus appear to have a stabilizing influence on the 

shallow lake community. The sensitivity analysis of feedback level F3 indicates that the non-trophic 
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direct effects created by vegetation are the primary source of structural instability within the shallow 

lake community.  

 

2. 6 Discussion 

Sensitivity analysis of structural stability identifies the important direct effects that determine 

the stability of a community. The capability to scale direct effects along their relative importance 

provides theoretical insight into complex communities as well as a new tool for generating 

experimental hypotheses. It is now possible to see how and why a small number of direct effects may 

strongly influence stability. Identifying such key direct effects may help guide the formulation of 

research hypotheses, the prioritization of data-collection efforts for quantifying important interactions, 

and the development of alternative management strategies. This contribution is made possible by the 

development of an index, sensitivity weight, which considers the relative number of times a particular 

direct effect appears in all the feedback cycles involved in stability. To facilitate this analysis, we 

developed an algorithm based on a graph-theoretic approach. The approach presented here is based on 

community structure and is thus broadly applicable across systems that have either quantifiable or 

non-quantifiable direct effects, or have elements of both. 

Applying sensitivity analysis to theoretical and empirical communities revealed the presence 

of key direct effects that determined the stability of their communities. For instance, some species or 

variables may have very important effects on community stability by forming key direct effects with 

other constituent variables, and these species or variables may deserve greater focus from research 

and management efforts. Sensitivity analysis can inform decision-making that targets specific species 

by identifying not only strong and weak stabilizing direct effects, but also those direct effects that 

contribute to destabilizing feedback within the community. Stability thus becomes more than a 

numeric index, as the sensitivity analysis shows how some community parts are more important than 

others for stability. Sensitivity analysis pinpoints the degree to which component species and 

variables have unequal contributions to the stability of their community.   
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The term “sensitivity”, in the context of community matrix models, has been applied to the 

magnitude of the response of a community following an external perturbation (Cottingham and 

Schindler 2000) and to a change in equilibrium levels due to a press perturbation (Nakajima 1992). 

Sensitivity analyses have been discussed in the context of measuring the effect of small changes in the 

magnitudes of species interactions, that is, elements of the community matrix, on both overall return 

time (Carpenter et al. 1992; Neubert and Caswell 1997), on the rate of initial displacement from 

equilibrium after a pulse perturbation (Neubert and Caswell 1997), and on transient dynamics in 

populations (Caswell 2007). Sensitivity analyses have also been applied on probabilistic models of 

community composition (Tanner et al. 1994, Wootton 2001, Hill et al. 2004). Population-based 

sensitivity analysis, as shown by its widespread use and popularity (Caswell 2001), is one of the great 

recent developments in ecology. All the above studies, however, rely on quantified interaction terms. 

Our use of the term more closely matches that used by ecologists in population studies. 

If the interactions among every community member could be accurately measured, then it 

would be a simple matter to calculate whether or not a community is stable and the degree to which it 

is resilient. Direct effects among community members are, unfortunately, difficult to measure (Bender 

et al. 1984). Quantifying direct effects in the field is expensive and time-consuming (Yodzis 1988, 

Schmitz 1997) and is not always possible (Bender et al. 1984, Wootton and Emmerson 2005). Even if 

all direct effects are observable, their exact specification is complicated by the measurement error and 

the natural variability that occurs in most community settings (Wooton and Emmerson 2005). 

Although quantification is and should be desired (Berlow et al. 2004), an unquestioning adherence to 

quantifying every direct effect may discourage the consideration of important aspects of the system. 

For instance, useful natural history information or variables that are known to be important, but are 

difficult to measure, may not be included in the analysis. Perhaps more dangerously, reasonable 

hypotheses may be discarded or not fully considered in an attempt to reduce a complex system into 

measurable components. 

Community sensitivity assessments have been hamstrung because of the paucity of 

experimentally verified interaction strengths (Wootton and Emmerson 2005). In this study, we present 
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novel theory and approach to the sensitivity analysis of a community and its structural stability. 

Although this sensitivity analysis cannot provide a single quantitative number as in the above 

numerical studies, the approach does yield a depth of understanding that is difficult to ascertain in 

numerical black-box methods. In the examples above, we demonstrate instances where a particular 

direct effect may contribute both negative and positive feedback that affects overall community 

stability. The sensitivity analysis parses the feedback contribution made by each direct effect at 

different levels within the community, and so identifies how each direct effect promotes or diminishes 

the stability of its community. 

The results of community sensitivity analysis suggest that the approach may provide insight 

for strategic management intervention. Understanding feedback properties provides an avenue for 

insight into the mechanisms that influence community stability. In the well-studied shallow lake 

example, vegetation was identified as the nexus of several positive feedback cycles. These feedback 

cycles were formed by non-trophic interactions, such as the refugia from foraging fish that vegetation 

provides for zooplankton. This finding agrees with empirical evidence suggesting that vegetation 

enhances itself through positive feedback mechanisms (Scheffer et al. 1993). Sensitivity analysis may 

similarly identify variables central to the dynamics of systems that are as yet not so well-understood.  

Sensitivity analysis should provide information on how the system might respond to a 

change in the magnitude of a direct effect following management action. First, the sensitivity analysis 

suggests that strategic intervention may have unexpected consequences for community stability. 

Altering the magnitude of a direct effect through management action may have very different 

consequences for stability depending on how the direct effect influences feedback cycles. For 

instance, direct effects may have simultaneously stabilizing and destabilizing influences on the same 

community. Sensitivity analysis identifies these scenarios. Second, the sensitivity analysis can 

identify direct effects that primarily form destabilizing positive feedback. Increasing the magnitude of 

these direct effects may lead to (1) a destabilized steady state or (2) a shift to an alternative signed 

digraph, as might occur at a boundary equilibrium where one or more species goes extinct. The 

predictive power of sensitivity analysis for empirical systems deserves further investigation. 
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The feedback sensitivity analysis is based on a signed digraph representing the interactions 

within the community at steady state. This graphical approach, which is meant to complement 

traditional quantitative techniques, is useful for building complex models that cross discipline 

boundaries (e.g., Dambacher et al. 2007). The ease of examining alternative signed digraphs makes 

the approach particularly useful for generating and evaluating alternative hypotheses during model 

formulation (Hosack et al. 2008). Variables that are difficult to measure, but are known to be 

important components, may be included within the community model. As such, the signed digraph 

may help to build an inclusive model that improves our understanding of the important mechanisms 

that underlie the community, and thereby inform future modeling efforts and hypotheses. 

The signed digraph represents a dynamical system of ordinary differential equations (ODEs) 

linearized at a steady state (May 1974). Any system that can be represented using ODEs that has a 

feasible steady state can also be represented with a signed digraph. The underlying ODEs, however, 

do contain more information. For instance, self-regulation in a signed digraph often corresponds to 

logistic growth, but it might also represent another ecological process (Levins 1998). In the above 

stream community example, there is a constant input of terrestrial invertebrates into the stream 

community that are consumed by fish. A simple ODE for terrestrial insects (T) with fish (F) predation 

and drift is dTTFIdt
dT

TF −−= α , where I is the constant input, αTF is the predation coefficient, and 

d is the rate of loss due to drift and export from the stream community. The growth equation 

linearized at steady state for terrestrial invertebrates is then 0
,

<−−=∂
∂ ∗

== ∗∗
dFTdt

dT
TFFFTT

α , 

where T* and F* corresponds to the terrestrial invertebrate and fish populations at steady state. In this 

example, negative self-regulation is placed on terrestrial invertebrates, not because of logistic growth, 

but because of predation and drift. Dambacher and Ramos-Jilliberto (2007) have recently 

demonstrated how functional responses, modified interactions, and other ODE modeling techniques 

may also be represented using signed digraphs; we apply their analysis in an example of modified 

interactions occurring between a native and a non-native species of fish. 
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Sensitivity analysis deepens our understanding of the mechanisms that determine community 

stability. Stability is arguably the most important mathematical concept—and the most debated—in 

community ecology, and it is closely linked to other important concepts in community ecology such 

as resilience and alternative stable states. The sensitivity analysis approach presented here is holistic 

and is capable of incorporating models that are informed by data or expert opinion, or constructed 

from existing knowledge of natural history. The ultimate goal is to increase our understanding of how 

species coexist and recover from perturbations, which is desirable as we attempt to predict the impacts 

of natural and anthropogenic change on ecological communities. 
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Table 2.1. Sensitivity weights kF
ijW  for the direct effects within each feedback level of the keystone 

predator model (Figure 2.3). The empty set {} indicates a lack of feedback. The symbol • indicates 
that the direct effect is absent from the community structure. The direct effects that correspond to the 
interspecific competition relationship are in bold, the predator-prey relationships are in italics, and the 
intraspecific competition relationships are in plain text. 
 

  1F
ijW      2F

ijW     3F
ijW   

              
 Sp1 Sp2 Sp3   Sp1 Sp2 Sp3   Sp1 Sp2 Sp3 

Sp1 –1/1 {} {}  Sp1 –1/1 1/1 –1/1  Sp1 –1/1 1/1 0/2 
Sp2 {} –1/1 {}  Sp2 1/1 –1/1 –1/1  Sp2 1/1 –1/1 0/2 
Sp3 {} {} •  Sp3 –1/1 –1/1 •  Sp3 0/2 0/2 • 

 

Table 2.2. Sensitivity weight 2Δ
ijW  for each direct effect within the n–1st Hurwitz determinant of the 

competitive exclusion community modified with commensalism (Figure 2.4). The sensitivity weight 
of the commensal direct effect a32 is in bold. 
 

  2Δ
ijW  

    
 Sp1 Sp2 Sp3 

Sp1 1 1 0 
Sp2 0 • • 
Sp3 1 –1 • 
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Table 2.3. Sensitivity weight 5F
ijW  for each direct effect within the highest feedback level F5 of the 

stream community (Figure 2.5). The modified foraging of Dolly Varden by rainbow trout generates 
additional direct effects in the community structure; these are in bold. R, rainbow trout; D, Dooly 
Varden charr; T, terrestrial invertebrates; B, benthic invertebrates; S, spiders. 
 

   5F
ijW   

      
 R D T B S 

R –1.00 • 0.00 • • 
D 1.00 –1.00 –1.00 –0.33 • 
T –1.00 0.33 –1.00 • • 
B 1.00 –1.00 • –0.50 • 
S • • • • –0.43 

 

Table 2.4. Sensitivity weights kF
ijW  for the direct effects within feedback levels F3 and F6 of the 

shallow lake community. Non-trophic direct effects are in boldface. 
 

   3F
ijW      6F

ijW   

               
 V N P G F S   V N P G F S 

V –
1.00 

–
1.00 

1.00 • • 1.00    
V 

–
1.00 

–
0.20 

1.00 • • 0.64 

N –
0.60 

–
0.85 

–
1.00 

• • •  N 0.00 0.27 0.25 • • • 

P • –
0.60 

–
0.85 

–
0.60 

• •  P • 0.33 –
0.25 

0.50 • • 

G 1.00 • –
1.00 

–
0.85 

–
1.00 

•  G 0.00 • 0.20 0.25 0.25 • 

F 1.00 • • –
1.00 

–
0.86 

•  F 1.00 • • –
0.11 

0.09 • 

S 1.00 • • • 1.00 –
1.00 

 S 1.00 • • • 0.33 –
0.14 

 



24 

1 32

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

−−
=

00
0

32

2321

131211

a
aa

aaa
A

 

Figure 2.1. The signed digraph and its associated matrix A for a 3 trophic level system with nutrient 
recycling. The signed digraph describes the direct effects between a basal resource (species 1) with 
self-regulating logistic growth, a herbivore (species 2), and a predator (species 3) that in turn 
subsidizes the basal resource through nutrient recycling.  Negative direct effects are shown by lines 
ending in a filled circle and positive direct effects are shown by lines ending in arrowheads. In trophic 
relationships, a consumer exerts a negative direct effect on its resource through consumption; 
assimilation of the resource produces a positive direct effect of the resource on the consumer. The 
subscripts of the aij are read as the magnitude of the direct effect of species j on species i.  
 
 

 

Figure 2.2. Feedback within the 3 trophic level model (Figure 1) for each feedback level Fk, k = 1…3. 
The disjunct feedback cycles that form each cycle product are identified by parentheses. 
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Figure 2.3. The signed digraph for the keystone predator model and its associated feedback levels. 
Variables 1 and 2 are self-regulated resources engaged in destabilizing interference competition. 
Variable 3 is a predator of both species 1 and 2. At feedback level F1, self-regulation (intraspecific 
competition) forms two negative cycle products. Feedback level F2 consists of three negative cycle 
products, formed by the two predation cycles plus the product of the two disjunct self-regulation 
cycles, and a single positive feedback cycle, formed by the interspecific competition. At feedback 
level F3, the disjunct products of self-regulation cycles and predation cycles form two negative cycle 
products, whereas two positive cycle products are formed by the long feedback cycles that include all 
three variables. 
 
 
 

 

Figure 2.4. The modified competitive exclusion system with commensalism. Two consumers compete 
for a single resource. The resource contributes negative feedback at the lowest level through logistic 
growth (–a11). The positive direct effect of the resource on each consumer taken together with the 
negative direct effect of each consumer on the resource creates two negative feedback cycles at the 
intermediate level (–a12a21, –a13a31). The addition of a commensal direct effect from species 2 to 
species 3 (a32, dotted line) creates a single negative feedback cycle at the highest level (–a13a32a21). 
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Figure 2.5. Stream community of fish and invertebrates in northern Japan. Rainbow trout (R) consume 
terrestrial invertebrates (T). Dolly Varden charr (D) consume terrestrial and benthic (B) invertebrates. 
Emergent benthic invertebrates subsidize riparian spiders (S). The dotted lines denote direct effects 
that arise from rainbow trout modifying the foraging behavior of Dolly Varden on terrestrial and 
benthic invertebrates (sensu Dambacher and Ramos-Jiliberto 2007). 
 
 
 

Direct effect Mechanism 
–aNP, –aNV Nutrient depletion by phytoplankton and vegetation 
aPN, aVN Nutrient uptake by phytoplankton and vegetation 
–aPG, –aGF Prey removal by consumers 
aGP, aFG Prey absorption by consumers 
–aVP Phytoplankton shade vegetation 
–aVS Suspended solids shade vegetation 
–aSV Vegetation prevents sediment resuspension 
–aFV Vegetation reduces foraging efficiency of fish on grazers
aGV Vegetation provides prey refugia for grazers from fish 
aSF Fish resuspend sediments 
  

Figure 2.6. The shallow lake community signed digraph representing the direct effects among 
nutrients (N), phytoplankton (P), vegetation (V), suspended sediments (S), grazers (G), and fish (F) as 
described by Scheffer et al. (2001). Self-regulation is assumed for all variables. 
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3.1 Abstract 

Ecological predictions and management strategies are sensitive to variability in model 

parameters as well as uncertainty in model structure. Systematic analysis of the effect of alternative 

model structures, however, is often beyond the resources typically available to ecologists, ecological 

risk practitioners, and natural resource managers. Many of these practitioners are also using Bayesian 

Belief Networks based on expert opinion to fill gaps in empirical information. The practical 

application of this approach can be limited by the need to populate large conditional probability tables 

and the complexity associated with ecological feedback cycles. In this paper, we describe a modelling 

approach that helps solve these problems by embedding a qualitative analysis of sign directed graphs 

into the probabilistic framework of a Bayesian Belief Network. Our approach incorporates the effects 

of feedback on the model’s response to a sustained change in one or more of its parameters, provides 

an efficient means to explore the effect of alternative model structures, mitigates the cognitive bias in 

expert opinion, and is amenable to stakeholder input. We demonstrate our approach by examining two 

published case studies: a host-parasitoid community centered on a non-native, agricultural pest of 

citrus cultivars and the response of an experimental lake mesocosm to nutrient input. Observations 

drawn from these case studies are used to diagnose alternative model structures and to predict the 

system’s response following management intervention. 

 

 

3.2 Keywords 

Bayesian Belief Network, risk assessment, feedback, expert opinion, model uncertainty, signed 

directed graphs 
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3.3 Introduction 

Ecologists, natural resource managers, and practitioners of ecological risk assessment operate 

in complex and often poorly understood settings. Each is forced to design experiments, make 

predictions or assess decisions without completely understanding the underlying processes, structure, 

and dynamics of complex ecosystems (Francis and Shotton 1997, Ruckelshaus et al. 2002, Fairbrother 

and Turnley 2005). The predictive, numeric, process-based models that each employs typically 

address parametric uncertainty using Monte Carlo simulations (Metropolis and Ulam 1949). However, 

process-based models of ecological systems inevitably have many possible alternative structures. A 

systematic analysis of the effects of different model structures is often not practicable with the limited 

resources available for any single study (Hoffman and Hammonds 1994, Reckhow 1994, Ferson 

1996), despite the fact that ecological predictions and management strategies may be more sensitive to 

the structural uncertainty of a model than parametric uncertainty (Punt and Hilborn 1997, Varis and 

Kuikka 1999, Dambacher et al. 2002). 

Besides the problem of choosing an appropriate model structure, practitioners of ecological 

risk assessment and natural resource managers, when faced with insufficient quantitative knowledge 

to adequately capture parametric uncertainty, typically eschew quantitative analysis methods in favor 

of methods based on expert opinion (see Burgman 2005, p. 381; OGTR 2005, p. 25). A popular way 

to fill gaps in empirical information is to incorporate expert opinion into a Bayesian Belief Network, 

or BBN, (Varis and Kuikka 1999, Marcot et al. 2001, Borusk et al. 2004, Pollino et al. 2007). Without 

empirical data, however, experts must, in what is typically a laborious and time-consuming process, 

specify the relevant conditional probabilities in the BBN (Ticehurst et al. 2007). Furthermore, expert 

opinion can be subject to cognitive bias unless carefully elicited (Morgan and Henrion 1990, Burgman 

2005), and might be further confounded by linguistic uncertainty (Regan et al. 2002). Another 

difficulty is that including feedbacks via cyclic network structures requires dynamic time-explicit 

BBNs that depend on extensive parameterization (Burger and Gochfeld 1997, Ong et al. 2002, Borusk 
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et al. 2004, Dojer et al. 2006). Hence, BBNs based on expert opinion do not usually include 

ecological feedbacks in their network structure (e.g., Marcot et al. 2001, Stiber et al. 2004).  

Here we present a method that addresses the problems highlighted above by merging BBNs 

with another form of graphical model used in ecology - signed directed graphs (Levins 1974, 

Dambacher 2002, 2003b). This new method incorporates ecological feedback and facilitates 

comparison of alternative model structures and thereby provides a practical way to explore the effects 

of model structure uncertainty in complex ecosystems. This method is designed to assist ecologists, 

risk practitioners and natural resources managers in predicting how ecosystems might respond to a 

disturbance, in exploring the dynamics of alternative model structures, in performing model diagnosis, 

and in optimizing the allocation of resources for monitoring programs. It also eliminates the need for 

experts to estimate complex conditional probabilities, thereby reducing opportunities for the 

introduction of cognitive bias into the BBN. 

 

3.3 Materials and Methods 

 

3.3.1 Analyzing the Effect of Press Perturbations  

Bayesian Belief Networks allow the probabilistic representation of a system based on 

multiple sources of knowledge. The conditional relationships between a system’s variables (nodes) 

are visually depicted using directed acyclic graphs (Pearl 2000). By definition, a directed acyclic 

graph lacks feedback; that is, a path traced along its links cannot pass through a variable more than 

once. Signed directed graphs (SDGs), however, can incorporate feedback cycles, provide predictions 

of increase (+), decrease (-), or no change (0) for specified variables, and can quickly evaluate the 

consequences of alternative model structures (Levins 1974, Dambacher 2002). 

Just as the DAG graphically describes the probabilistic relationships within a Bayes network, 

the SDG describes an underlying deterministic, mathematical model. The model underlying a SDG 

describes the dynamics of n number of variables Xi in a system of differential equations 
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( ) mknippXXf
dt

dX
kni

i KKKK 1,1  ;;, 11 === ,   (3.1) 

where m number of parameters pk control the rates of increase or decrease. The Jacobian matrix A is 

composed of the first partial derivatives of the growth functions fi taken with respect to the variables 

and evaluated at equilibrium, such that 

∗
∂
∂

=
j

i
ij X

f
a ,    (3.2) 

where * denotes evaluation at equilibrium (May 1974). 

Both the SDG and the matrix A represent the qualitative relationship between variables in a 

model ecosystem (Levins 1974). A three-variable SDG model (Fig. 3.1) translated into matrix form is 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−−
−−−

=

3,32,31,3

3,22,21,2

3,12,11,1

aaa
aaa
aaa

A , 

where the matrix entry in the ith row and the jth column shows the magnitude (aij), and the sign (+, -) 

of the direct effect of species j on species i. The rows are the receiving variables and the columns are 

the source variables of the direct effects shown in Fig. 3.1. For example, the direct effect of X3 on X2 

is negative and is represented by –a2,3 since the predator imparts mortality to its prey. 

A sustained change to a parameter, referred to here as a “press perturbation” (Bender et al. 

1984) will shift the system to a new equilibrium. The average values of the system’s variables at this 

new equilibrium point (which variously may have increased, decreased, or remained unchanged) can 

be estimated by inverting the negative of the matrix A in the equation 

kk pp ∂
∂

−=
∂
∂ −

∗ fAX 1 ,    (3.3) 

where kp∂  is the parameter shift in the press perturbation, and f is the vector of growth functions for 

the system of Eq. (3.1). The inverse matrix –A-1 accounts for both direct and indirect effects resulting 

from the press perturbation, and is equivalent to the classical adjoint of –A divided by its determinant 
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( )
( )A

AA
−
−

=− −

det
adj1 .   (3.4) 

Because det(–A) is a common denominator for all entries within the adjoint matrix, the long-term 

direction of change in the levels of the variables Xi following a press perturbation on parameter pk can 

be determined by examining elements of the adjoint matrix (Dambacher et al. 2002, 2005). The 

entries of adj(–A), are feedback cycles (addends) that are the direct and indirect effects which govern 

the response of each variable to a press perturbation (Dambacher et al. 2002, 2003a). 

 

3.3.2 Analyzing the Qualitative Effect of Feedback 

The elements of a quantitatively specified Jacobian matrix (denoted #A) contain numerical 

entries, such as 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−−
−−−

=
1.2.03.0
4.05.6.0
7.08.09.0

# A . Note, however, that n2 experiments are needed to 

empirically estimate the magnitude of all entries within A (Bender et al. 1984), an arduous task for 

even a moderately complex system. This clearly limits the applicability of quantitative approaches 

(Levins 1998). Further, the predictions of numeric matrices can be overly sensitive to the exact values 

of the matrix entries (Yodzis 1988). For instance, if the magnitude of #a1,2 in the above system was 

increased by just ten percent to –0.88, then the prediction given by 1
3,1

# −− A  would shift from a 

negative to a positive value. Here, we instead focus on a qualitative specification of A, and define the 

matrix °A with entries that are either +1, –1, or 0, depending on whether a variable acts to increase, 

decrease, or exert no direct influence on the growth rate of another variable (the matrix °A can be 

formally defined as a transposed signed adjacency matrix).  

The sign of an entry within adj(–ºA) gives the net number of feedback cycles that contribute 

to a variable’s response. It provides a prediction of whether the equilibrium values of a variable will 

increase, decrease, or remain unchanged following a press perturbation (Dambacher et al. 2002). If the 

feedback cycles in an adjoint matrix entry are all of the same sign, then the prediction is completely 

determined. But the prediction sign will be ambiguous if both positive and negative feedback cycles 
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are present. To measure the degree to which there are feedback cycles with countervailing sign, we 

consider the ratio of the net to the total number of feedback cycles in an adjoint matrix entry. The total 

number of cycles is calculated by use of an adjacency matrix •A, with entries of +1 corresponding to 

each nonzero entry in the matrix °A. A matrix of absolute feedback T is calculated by use of the 

matrix permanent (Minc 1978) in each matrix minor of •A, where T = permanent(minor(•A)ij)Transpose. 

The prediction weights associated with elements of the adjoint matrix are given by 
( )
T

A
W

→
−

=
oadj

, 

where the arrow superscript is a vectorized matrix operator denoting element-by-element division and 

“| |” denotes absolute value—see Dambacher et al. (2002) for a detailed discussion of these matrix 

operations.  

Elements of W range from 0 to 1. A value of zero indicates an equal number of both positive 

and negative cycles. As prediction weights approach 1 then relatively more cycles are of the same 

sign, and elements with a weight of exactly 1 have cycles that are all of the same sign. When there are 

no feedback cycles in a response, such that Tij equals zero, then the variable is predicted to remain 

unchanged following a press perturbation. In this circumstance the sign of adj(–ºA)ij will be zero and 

the associated prediction weight is set equal to 1. 

 

3.3.3 Verifying sign determinacy 

Dambacher et al. (2003a) tested the sign determinacy of elements within adj(–ºA) by 

randomly allocating values to aij from a uniform distribution, and comparing the qualitative 

predictions from the adjoint matrix with responses calculated from the inverse of quantitatively 

specified matrices. The sign determinacy of responses (i.e., the proportion of quantitative response 

signs that have the same sign as the qualitative prediction) with prediction weights ≥0.5 was shown to 

generally exceed >90%; below this threshold the sign determinacy of responses declined to 50% for 

weighted predictions that approached zero. While these tests of sign determinacy were based on a 

uniform distribution of random interaction strengths, recent studies emphasize the importance of 
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considering skewed distributions in simulations applied to model ecosystems (Berlow et al. 2004, 

Emmerson and Yearsley 2004, Wootton and Emmerson 2005). 

We evaluated the effect of strong and weak interactions on the sign determinacy of adj(–

ºA)ij, for the models tested by Dambacher et al. (2003a), by randomly allocating values to aij from four 

different distributions with markedly different types of skew. We also introduced “trophic 

dependence” by forcing ecologically realistic trophic transfer efficiencies into each simulation. 

Trophic relationships occur when a variable X2 consumes another and thus has a negative direct effect, 

–a1,2, on the prey X1. The prey X1 provides a positive direct effect a2,1 on the predator. However, |a2,1| 

< |–a1,2| because of energetic costs resulting from the metabolization of ingested matter and the 

typically pyramidal distribution of predator and prey population abundances. We use the notation #A 

to denote a simulated matrix with numeric entries. Dependence between #a1,2 and #a2,1 is invoked by 

first drawing the magnitude of the direct effect of predator on prey, |#a1,2|, from its respective 

distribution (Fig. 3.3a). This value of |#a1,2| is then multiplied by a random variable with a Uniform (0, 

0.01) distribution that reflects the constraints on density and energy transfer to produce the magnitude 

of #a2,1. The 0.01 upper limit reflects the assumption that the equilibrium biomass between the prey 

and its consumer differ tenfold, and the assumption that maximum ecological efficiency is 10%. Other 

forms of trophic dependence with different upper limits gave qualitatively similar results (see 

Appendix C for details).  

We used Monte Carlo simulations to create 500 stable numeric matrices (May 1974, 

Dambacher et al. 2003a), where stability was determined by the real parts of all eigenvalues of #A 

being negative. We assume that the simulated matrices represent generalized Lotka–Volterra systems 

with non-zero equilibriums for all species. Separate simulations were done for each model structure 

under each combination of parameter shape and dependence assumptions. 

We examined the proportion of simulations with the “correct” sign, i.e., 

( )( ) ( )( )ijij AA #adjsgnadjsgn −=−o , for all elements of adjoint matrices combined across all 18 model 

systems. We used a least squares fit to the nonlinear function 
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exp

adjsgnadjsgnPr #o . (3.5) 

Eq. 3.5 is a logistic-type function that incorporates the influence of prediction weights and absolute 

feedback on the expected proportion of correct sign. The logistic form allows a flexible curve to be fit 

to the simulation results with a priori bounds between 0.5 and an upper asymptote of 1.0. The 

parameter βW incorporates the direct effect of the prediction weights, and βWT the interaction between 

prediction weights and total feedback. The intercept at Wij = 0 is fixed at a value of 0.5 to impose an 

equal chance of the response being either positive or negative when it is composed of an equal 

number of positive and negative feedback cycles contributing to a response. Note that a variety of 

different functions could be used to translate the simulation results into the probabilities of having the 

correct sign (e.g., see Appendix C for a 95% lower bound on the proportions of correct sign). 

 

3.3.4 Translating Model Predictions into Conditional Probabilities 

The transition from SDGs to BBNs is completed by translating the prediction weights 

associated with each element of adj(–ºA) into a probability that is then incorporated into the 

conditional probability tables of a BBN. A choice needs to be made about how the BBN will be 

implemented and we suggest two possible conventions. The first preserves the three categories of 

response predicted by the SDG. That is, in addition to the binary response fit by Eq. (3.5) for 

predictions with feedback, there may also be predictions of no change due to a lack of feedback (see 

Materials and Methods - Analyzing the Qualitative Effect of Feedback). In this approach the binary 

response of Eq. 3.5 is translated to the three-category BBN via the linear relationship 

( ) ( )
3

1,4
)(adjsgn(Pr

−
=− ijij

ij

g TW
Ao ,   (3.6) 

where g(Wij, Tij) is the function given by Eq. 3.5. The remaining probability ( )ij)(adjsgn(Pr1 Ao−−  

must then be divided in some proportion between the two other categories at the analyst’s discretion. 

In the examples presented here the remaining probability is simply apportioned equally. For instance, 

if adj(– ºA)ij is negative, then Pr(Decrease) is substituted into the left-hand side of Eq. 3.6, and the 
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remaining probability 1 – Pr(Decrease) is equally apportioned to the categories of increase and no 

observable (obs.) change. If, however, Wij = 0 and Tij > 0, the SDG is uninformative and Eq. 3.6 

assigns probability equally among the three categories.  

The second convention allows the assignment of nonzero observation likelihoods only to the 

categories of increase or decrease, and Eq. 3.5 is applied without the linear transformation in Eq. 3.6 

to give probabilities of increase and decrease. If Wij = 0 and Tij > 0, Eq. 3.5 automatically allocates 

equal probability to increase and decrease. The implications of these two conventions are discussed 

further in the Discussion. 

   

3.3.5 From Signed Directed Graphs to Bayesian Belief Networks 

Here we embed the consequences of cyclical SDGs into the conditional probabilities of an 

acyclic BBN (Fig. 3.2). Each variable in the SDG has a corresponding observation-prediction node 

that denotes a set of conditional probabilities (a conditional probability table; CPT) in the BBN. For a 

given SDG, Eq. (3.5) and Eq. (3.6) are used to estimate the probability of predicted response for all 

possible inputs (press perturbations) to the SDG. The CPTs within the observation-prediction nodes 

record the probability of observing an increase, decrease, or no apparent response conditional on: 1) l 

input nodes that have probabilities of positive input, negative input, or no input where l is the number 

of variables in the SDG that are subject to a press perturbation; and, 2) a structure node that represents 

all alternative model structures (SDGs) that describe the system. We define the probability of a model 

being “true” as the degree to which it is consistent with observations relative to the other alternative 

models. It is always possible, however, that none of the SDGs accurately depict the sign response of 

the system in question. A “null model” is therefore introduced as a benchmark to judge the 

performance of the SDGs. The null model allocates equal probabilities of observing an increase, 

decrease, or no response across every possible prediction given a press perturbation, and is 

structurally equivalent to a fully connected matrix (i.e., a matrix of size n filled with +1’s). For details 

on the process of constructing BBNs from conditional probabilities see, for example, Cain (2001).  
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3.4. Results 

 

3.4.1 Verifying sign determinacy 

Our results showed that prediction weights are informative when strong and weak 

interactions, and ecologically realistic trophic transfer efficiencies (i.e., trophic dependence) are 

introduced into the simulations. Sign determinacy was strongly related to prediction weights (Wij) for 

all parameter distribution shapes and forms of dependence tested (Fig. 3.3). Moreover, sign 

determinacy of adj(–oA)ij for a given prediction weight was found to increase as a function of the 

absolute number of feedback cycles (Tij). The parameters βW and βWT were highly significant for all 

fits (Table C.1).  

Introducing trophic dependence among the elements of A had a much greater effect on sign 

determinacy than did the skewness of the distribution of interaction strengths. The relative frequency 

of strong and weak links, described by the different distribution types, was relatively unimportant and 

had only a minor effect on the fitted values of βW and βWT. Conversely, trophic dependence between 

the elements of matrix A introduced a non-random pattern of weak interaction strengths that 

diminished the proportion of correct qualitative predictions (Fig. 3.3c), and increased the standard 

error of βW and βWT (Table C.1). Even with this increased scatter, however, the parameters of Eq. 3.5 

remained significant, and therefore informative, under all the scenarios examined in our simulations. 

In the succeeding examples, we employ the fit of Eq. 3.5 with trophic dependency and uniformly 

distributed magnitudes of interactions (Fig. 3.3c, top) to generate the conditional probability tables for 

the example BBNs. In Appendix C, we provide a more conservative alternative to Eq. 3.5 for 

calculating proportion of correct sign, and apply a 95% bound to the points in Fig. 3.3c. 
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3.4.2 Example Applications 

The red scale Aonidiella aurantii is a common non-native insect pest of orange, grapefruit, 

and lemon crops in California. The red scale is parasitized by two non-native wasps Encarsia 

perniciosi and Aphytis melinus. A SDG of this host-parasitoid community is identical to the model 

introduced in Fig. 3.1. Rather than explicitly including the three species of scale insect and wasps, we 

identify three variables describing different states of parasitization among the red scale host: 

unparasitized hosts (X1), hosts parasitized by E. perniciosi (X2), and hosts parasitized by A. melinus 

(X3). Unparasitized hosts are transferred into a parasitized state following an attack by either E. 

perniciosi or A. melinus. These parasitoids are assumed to attack scale hosts at a rate proportional to 

the number of scale hosts already parasitized; this produces a predator-prey type relationship of 

parasitized hosts on their “prey”, the unparasitized hosts. In another predator-prey type relationship, 

attacks by A. melinus on scale hosts already parasitized by E. perniciosi are assumed to transfer these 

hosts into a state of parasitization by A. melinus (Borer et al. 2003, 2004). All three variables exhibit 

intraspecific density-dependent growth; for unparasitized hosts it is via intra-specific competition for 

the basal citrus resource (Borer et al. 2003); for hosts parasitized by A. melinus and E. perniciosi, it is 

via intraspecific reattack on previously parasitized hosts (Murdoch et al. 2005). The underlying 

system of equations for this host-parasitoid community model and instructions for constructing the 

associated BBN are given in the  

Supplement. We use a BBN to test whether the host-parasitoid community (H-PC) model is consistent 

with the observational results of Borer et al. (2003). The corresponding BBN has three observation-

prediction nodes, an input node, and a model structure model node (Fig. 3.4). The performance of the 

H-PC model is judged against the null model. 

We begin by allocating equal prior probabilities to the H-PC model and the null model 

within the model structure node. Setting the probability of a positive press perturbation, or input, to 

the scale pest X1 equal to 1.0 represents an unequivocal increase in the reproductive rate of 

unparasitized scale pests (Fig. 3.4a). In practice this could correspond to regional increase in red scale 
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reproduction across grapefruit, orange, and lemon crops (Borer et al. 2003). If the number of red scale 

hosts that are parasitized by A. melinus (X3) was observed to increase, then the H-PC model becomes 

more likely than the null model, i.e., Pr(H-PC model is True) = 0.74. Given this updated information, 

the BBN now predicts that unparasitized hosts have an 80% chance of increase whereas before it was 

65% (Fig. 3.4b). Since the H-PC model has been supported, it has contributed more to this subsequent 

prediction than the null model, and the probability of increase for the density of unparasitized hosts 

has also risen. If, as in the field observations of Borer et al. (2003), the density of unparasitized hosts 

was also observed to increase, then the estimated probability that the H-PC model is true increases to 

0.89 (Fig. 3.4c). Note how the density of red scale parasitized by E. perniciosi remains ambiguous 

(equal probability of observing increase, decrease or no change) and is therefore uninformative.  

A researcher, with limited resources, who wishes to test the H-PC model by experimentally 

increasing red scale reproduction, might ask “What variable should be measured to falsify the H-PC 

model?” For instance, it may be least costly to measure the density of red scale hosts parasitized by A. 

melinus wasps that develop outside the host (Luck and Podoler 1985), rather than E. perniciosi wasps 

that develop inside the host (Yu et al. 1990). A sensitivity analysis shows how the probabilities of one 

node are affected by changes made to other nodes; that is, the analysis shows whether or not one node 

is sensitive to another. A sensitivity analysis on the top node “Alternative Models” within the BBN 

(Table 3.1) suggests that the researcher should measure the density of scale hosts parasitized by A. 

melinus and the density of unparasitized scale hosts. These nodes best discriminate between the 

hypothesized H-PC model and the null model because they are the most informative: the probabilities 

of the alternative models are most sensitive to observations made on these variables. Within the 

context of our qualitative analysis, the researcher would be ill-advised to measure the density of hosts 

parasitized by E. perniciosi, because this variable is uninformative, as both the H-PC and the null 

model provide equal probabilities of observing an increase, decrease, or no response. 
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3.4.3 Analyzing the effect of alternative model structures 

The previous example compared a single model structure with a null model. Where there are 

alternative models to be considered with the same number of variables, then it is a straightforward 

matter to incorporate multiple alternative models in the structure node of the BBN. Here we explore a 

slightly more complicated BBN structure that allows comparison of SDG models having a different 

number of variables, and thus a different number of observation-prediction nodes in the BBN. Hulot 

et al. (2000) explored the ability of alternative SDGs to explain the response of experimental lake 

mesocosms to nutrient input. Their experimental mesocosms consisted of nutrients (phosphorus) and 

three trophic levels: autotrophs, herbivores, and carnivores. They used SDGs to analyze two 

alternative four-variable food chain models (with assumptions of either prey- or ratio-dependence) 

and an eight-variable model based on functional groups (Fig. 3.5).  

 We recast the mesocosm lake experiment into an example BBN, and show how it can 

synthesize empirical data into a common framework facilitating model diagnosis and prediction, as 

well as suggest management options. We consider a nutrient input into the experimental mesocosm 

BBN (Fig. 3.6). First, we use the BBN to predict how variables might respond to the experimental 

nutrient input if the prey dependent model or the functional group model are true (Fig. 3.6a). Second, 

we use the BBN to determine which model structure may be best supported by the observations (Fig. 

3.6b). As a starting point, the alternative model structures and the null models are assigned equal prior 

probability within their respective model structure nodes, and an experimental input to phosphorus is 

assumed. 

To incorporate empirical observations, we use the statistical results of Hulot et al. (2000) to 

assign the likelihood of having observed an increase, decrease and no response in the levels of the 

variables. These observation likelihoods may reflect our belief of the applicability of the statistical 

tests, the power of the tests, interpretation of classical hypothesis testing, and so forth. For purposes of 

this example, we allocate 100% likelihood that there was an observed increase (decrease) in a variable 

if the statistical result was classified by Hulot et al. (2000) as significant, and the variable was 
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observed to increase (decrease) in the nutrient-enriched treatment versus the control. If the statistical 

test was categorized as nonsignificant, then the variable is assumed to have a 100% likelihood of 

remaining unchanged. While there are a number of ways to assign these likelihoods, our purpose here 

is simply to demonstrate how observational data can be incorporated into a BBN to yield information 

on hypothesized model structures. 

Sensitivity analysis (Table 3.2) of the food chain models reveals that, given an unequivocal 

increase in phosphorus due to an experimental manipulation, monitoring the levels of phosphorus and 

herbivores would best discriminate between the prey-dependence model, ratio-dependence model, and 

the null model. Entering into the BBN the observed significant increase in phosphorus and the 

nonsignificant effect of nutrient enrichment on herbivores updates the probability of the null model 

being true to about 85%; the alternative models of prey and ratio dependence have a 0% and 15% 

chance of being true. Including the additional observation of no significant change in algae elevates 

the estimated probability of the null model being true to 99% (Fig. 3.6b). Clearly, neither linear food 

chain model finds much support within the experimental lake mesocosm data observed by Hulot et al. 

(2000). 

Conducting a sensitivity analysis on the functional group model node (Fig. 3.6), again with 

an unequivocal increase in phosphorus, suggests that observations on phosphorus (P), large herbivores 

(H2), and periphyton (AP) would best discriminate between the null model and the functional group 

model (Table 3.2). Hulot et al. (2000) observed a significant increase in these three variables. Entering 

these findings into the respective nodes of the BBN gives an estimated probability of about 0.96 that 

the functional group model is true. The sensitivity analysis also suggests that fish (C2) and small 

herbivores (H1) would not distinguish between alternative model structures. In fact, the response of 

fish and small herbivores is invariant to the alternative model structures, and observations of these 

nodes would not improve model diagnosis. 

Given these observations the BBN now predicts a 50% chance for a decrease in edible algae 

(A1), a 56% chance for a decrease in invertebrate carnivores (C1), and a 47% chance for an increase in 

protected algae (A2). In the lake mesocosms, the observed effect of nutrient enrichment on these three 
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variables was nonsignificant (Hulot et al. 2000). Entering these remaining observations drops the 

probability that the functional group model is true to 0.90 (Fig. 3.6b). Although this functional group 

model is not perfect and, as Hulot et al. (2000) state, there are other conceivable alternative model 

structures possible, nevertheless, the functional group model appears more consistent with the data 

compared to either of the food chain models or the null model. 

 

3.5 Discussion 

Ecologists and natural resource managers often represent impacts to ecological systems as a 

linear sequence of cause and effect relationships using methods such as fault and event trees (Hayes 

2002), path analysis (Shipley 2000), and non-dynamic belief networks (Marcot et al. 2001, Borusk et 

al. 2004, Pollino et al. 2007). These approaches, however, do not explicitly account for complex 

dynamics driven by feedbacks in ecological systems. Feedback cycles can create counterintuitive 

results that confound predictions and effective management interventions. The modeling framework 

presented here addresses this problem by embedding the feedback properties of signed directed graphs 

into the conditional probability tables of a Bayesian Belief Network. 

The basic structure of the BBNs used here is relatively simple, yet reflects the essential 

features of the qualitative dynamics of complex systems in a probabilistic framework. The SDG has a 

probabilistic interpretation within a BBN that addresses three basic questions: 1) Prediction—what are 

the probabilities that equilibrium levels will change given a sustained change to a parameter that 

affects the dynamics of the system? These probabilities are conditional upon a) the likelihoods of 

observing an increase, decrease, or no change in the level of the system’s variables, b) likelihood of 

an input to one or more of the system’s variables; and, c) prior belief in model structure. 2) 

Diagnosis—which alternative model structure provides predictions that best match the field 

observations? A model will increase in probability of being true when its predictions are consistent 

with observations, whereas inconsistent models will decrease in probability. Alternative models are 

diagnosed based on their probabilities relative to each other and to the null model. (3) Sensitivity—
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which nodes are most sensitive to press perturbations on other nodes? Sensitivity analyses deduce the 

influence of one node on another (e.g., Marcot et al. 2001). This technique is especially useful in 

deciding which variables to measure or observe in order to distinguish between competing alternative 

models, and is readily available for use in BBN software packages (e.g., Norsys 2006).  

Incorporating the cyclic behavior of feedback systems within the acyclic framework of a 

BBN provides a novel way to address uncertainty in the structure of ecological models, and to 

validate qualitative model predictions with field observations. More importantly, this approach 

provides an explicit means to record and compare the assumptions that underpin the model and 

uncertainty in its structure. One of the advantages of this framework is that it eliminates many of the 

problems associated with traditional BBNs. The conditional probability tables that underlie a BBN 

must usually be pre-specified by experts, who are set the task of allocating probabilities to an event 

occurring over an array of varying conditions (Borusk et al. 2004, Ticehurst et al. 2007). For complex 

BBNs, these tables can be difficult and time consuming to complete. Our approach constructs the 

conditional probability tables at a key-stroke and thereby encourages ecologists and managers to 

explore a fuller range of alternative model structures and impact scenarios.  

The use of the SDG allows continuous time models to inform BBN parameterization. We 

have used simulations to test the robustness of SDG predictions for an array of network structures to 

establish a general rule, and provide an alternative to direct parameterization of conditional 

probabilities by expert opinion (Marcot et al. 2001) or empirical data (Pollino et al. 2007). However, 

if a particular community structure is of concern, then simulations generated from that model could be 

used to inform conditional probabilities directly. Implicit is the assumption that dynamics return to 

approximately steady-state between observations. Otherwise, a time-explicit dynamic Bayes network 

would be required to estimate transient behavior between successive observations. Once the 

conditional probability tables and the BBN are created, the modularity of BBNs (Mortera et al. 2003, 

Borusk et al. 2004) allows interconnection with other models developed outside the system described 

by the SDG. For instance, the lake mesocosm BBN described in the results may be combined into a 
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larger BBN that addresses management options, water quality monitoring programs, and risk pathway 

analyses.  

Our simulation studies allowed us to translate the prediction weights of the SDG into 

conditional probabilities, and they are based upon the distributions of the interaction strengths and 

also the structure of the 18 models used in our simulations. Application of these probabilities within 

the BBN contains an important challenge and a choice among alternative conventions. The challenge 

is associated with the dependency both in ecological interactions and in feedback cycles. The 

convention is associated with the two-sign state versus three-sign state versions of a BBN, with the 

latter requiring one to choose how to allocate prior probability in the conditional probability tables.   

We recognize two forms of dependence that will affect the conditional probabilities derived 

from the qualitative predictions of the SDG: dependence between pairwise interaction terms (i.e., 

including but not limited to trophic dependence) and the dependence created between different 

elements of the adjoint matrix that have feedback cycles with common combinations of terms 

(feedback dependence). We discovered that trophic dependence had a greater effect on sign 

determinacy than the distribution of interaction strengths, but did not seriously undermine the 

significance and utility of the prediction weights. Feedback dependence is important because it affects 

the likelihood of multiple observations following an input to the system. In our approach these are 

treated as independent entities in our BBN structure, but the effect of feedback dependence on the 

qualitative predictions and diagnosis of alternative model structures, given multiple observations, is in 

theory available in the SDG and is an avenue for future research. 

The practical implications of the convention regarding a two- or three-sign state BBN 

depends on: a) how observation likelihoods are subsequently entered into the BBN; and, b) how the 

prior probabilities are allocated in the three state case. In both conventions, the focus during model 

diagnosis is on the relative probabilities of alternative models. We have not fully explored the 

implications of different prior probability assignations and different observational likelihoods for the 

two conventions. We note that the two conventions produce identical ranks in model diagnosis if prior 

probability is allocated equally between the two cases not predicted by the SDG (for the three-sign 
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case), and 100% observational likelihood is apportioned to any single sign prediction. This will not be 

true, however, if one of the models being compared produces an unambiguous prediction of a zero 

response, and the other does not. This is because the three state case can discriminate between 

uninformative prediction weights (i.e., Wij = 0 and Tij > 0) and unambiguous predictions of no 

response (i.e., Wij = 1 and Tij = 0), whereas the two state convention disallows both ambiguous and 

unambiguous predictions of no response. It is therefore misleading to compare the rank order 

diagnosis between the two conventions in this situation. 

The decision to use the two- or three-state convention depends on the particular application. 

Under certain circumstances it may be desirable to disallow predictions of zero response, for example, 

when there is a zero probability of precisely measuring two identical sample means from a continuous 

probability distribution. It is also easier in the two state case to assign non-zero observation likelihood 

across the two categories of increase and decrease. In the three-sign state examples provided here, we 

have avoided assigning non-zero observation likelihood to more than one category because the effects 

of such an approach on the rank ordering of alternative models are confounded with the potentially 

arbitrary prior probability allocations that are necessitated by the three state case. Thus, in applying 

the three state case as developed in this work, we recommend that the observation likelihood entered 

for a particular category should be either 0 or 1.0. 

Incorporating the graphical BBN and SDG allows the analyst to quickly compare the effects 

of different model structures. Traditional simulations studies typically emphasize parameter 

uncertainty rather than model uncertainty (Reckhow 1994, Ferson 1996, Punt and Hilborn 1997, 

Levins 1998). We do not present this approach as an alternative to traditional simulation studies, but 

rather as a complement, or precursor, to such studies. In the context of ecological risk assessment, the 

approach provides a valuable tool for the problem formulation stage in risk analysis (USEPA 1992, 

Hayes et al. 2007). The graphical nature of the underlying dynamical model, in particular, lends a 

common symbolic language capable of capturing the understanding and opinions of researchers and 

stakeholders across a broad array of disciplines (Dambacher et al. 2007). This approach thus 
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documents and enhances understanding in systems that are poorly understood, difficult to quantify, or 

both. 
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Table 3.1. Sensitivity analysis of the agricultural pest BBN given a positive input to X1. High values 
indicate shared information between the structure node and a finding at a node; the structure node in 
such a case is sensitive to findings at that node (Norsys 2006)†. 
 

Finding Node Mutual Information

Alternative models 1.00 

X1 0.36 

X3 0.36 

X2 0.00 

 

†Sensitivity analysis uses the change in mutual information between two nodes due to the reduction of 
entropy in node X because of a finding at node Y. The expected reduction in entropy of X due to a 
finding at Y is zero if X is independent of Y. The mutual information for a finding at the query node Q 
is the maximum possible for a finding at any node and is included here for scale (italics). 
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Table 3.2. Sensitivity analysis of the structure nodes for the BBN in Fig. 3.6. High values indicate 
increasing shared information between the observation nodes and their respective structure node. The 
values of the structure nodes serve as a reference (italics). 
 
Food Chain 

Node 

Food Chain Models 

Phosphorus (food chain), 

Pfc   

Herbivores, H    

Autotrophs, A    

Carnivores, C    

 

Mutual 

Information 

1.585 

0.787 

0.783 

0.345 

0.343 

Functional Group 

Node 

Func Group Models 

Large herbivores, H2        

Phosphorus (func. groups), 

Pfg        

Periphyton, Ap        

Invertebrate carnivores, C1       

Edible algae, A1        

Protected algae, A2        

Small herbivores, H1        

Fish, C2        

  

Mutual 

information 

1.000 

0.358 

0.358 

0.358   

0.039 

0.022 

0.014 

0.000 

0.000 
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Figure 3.1. Signed directed graph depicting a top predator X3 consuming prey X1 and X2 from two 
different trophic levels. Negative direct effects are shown by lines ending in a filled circle ( ) and 
positive direct effects are depicted with arrows ( ). Intraspecific density-dependent processes are 
represented by a line returning to the source variable.  
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Pr ( No Obs. Change = 
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X2

Pr ( Increase = True )
Pr ( No Obs. Change = 

True )
Pr ( Decrease = True )

X3

Pr ( Increase = True )
Pr ( No Obs. Change = 

True )
Pr ( Decrease = True )

Input to X1

Pr ( Positive = True )
Pr ( None = True )

Pr ( Negative = True )

 
Figure 3.2. Bayesian Belief Network of the signed directed graph model from Fig. 3.1 (SDG 1) and 
competing null model. A press perturbation is made only on variable X1. 
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Figure 3.3. The influence of interaction magnitude and interdependency on prediction weight 
accuracy. (a) The four different distributions used to simulate the relative frequency of strong and 
weak interactions between the matrix elements #aij. The #aij’s of 500 stable matrices were drawn 
independently from each these distributions for eighteen different community models (Dambacher et 
al.2003a). (b) The proportion of qualitative response predictions with the same sign as the quantitative 
response predictions plotted against the prediction weight of the qualitative model. Each point 
represents the proportion of the #aij elements whose sign is correctly predicted by the qualitative 
model, for all community models. The fitted curves denote the expected correct proportion given 
prediction weight and total feedback (Eq. 3.5, Table C.1), for three values of total feedback, T (from 
bottom to top): Tij = 10, Tij = 100, Tij = 1000. (c) As in (b), but with #aij of a predator-prey 
relationship conditionally dependent such that if the predator is species i and the prey species j, then 0 
< #aij < 0.01×#aji, where the #aji are drawn independently from the distribution in the corresponding 
row of Fig. 3.3(a) (see Appendix A). Non-trophic #aij are drawn independently from the distribution in 
the corresponding row of Fig. 3.3(a). Note that points are overlapping. 
 
 
 
 
 



51 

 
 
 
 
 
 
 
 
 
 
Figure 3.4. Bayesian Belief Network of the Californian red scale pest community (Borer et al. 2003), 
where X1 is unparasitized red scale ( Aonidiella aurantii), X2 is red scale parasitized by the wasp 
Encarsia perniciosi, and X3 is red scale parasitized by the wasp Aphytis melinus. In this example, 
there has been a positive input (e.g., increased rate of birth) to unparasitized red scale as shown by 
100% chance of a positive input to X1. Nodes that have specified observation likelihoods are darker 
than those that do not.  In (a), equal prior probabilities are allocated to the competing models in the 
structure node. In (b), an observed increase in X3 supports the H-PC model, thereby increasing the 
probability of observing an increase in X1.  In (c), observing an increase in X1 further supports the H-
PC model. BBNs were created using Netica 3.14 (Norsys 2006). 
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a) 

X2_E_perniciosi
Increase
No Obs Change
Decrease

33.3
33.3
33.3

Alternative_models
H PC
Null

50.0
50.0

Input_X1
Positive
None
Negative

 100
   0
   0

X3_A_melinus
Increase
No Obs Change
Decrease

64.8
17.6
17.6

X1_A_aurantii
Increase
No Obs Change
Decrease

64.8
17.6
17.6

b) 

X2_E_perniciosi
Increase
No Obs Change
Decrease

33.3
33.3
33.3

Alternative_models
H PC
Null

74.3
25.7

Input_X1
Positive
None
Negative

 100
   0
   0

X3_A_melinus
Increase
No Obs Change
Decrease

 100
   0
   0

X1_A_aurantii
Increase
No Obs Change
Decrease

80.0
9.99
9.99

c) 

X2_E_perniciosi
Increase
No Obs Change
Decrease

33.3
33.3
33.3

Alternative_models
H PC
Null

89.3
10.7

Input_X1
Positive
None
Negative

 100
   0
   0

X3_A_melinus
Increase
No Obs Change
Decrease

 100
   0
   0

X1_A_aurantii
Increase
No Obs Change
Decrease

 100
   0
   0

 

Figure 3.4. 
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Figure 3.5. Alternative model structures of experimental lake mesocosms tested by Hulot et al. 
(2000). SDG representation of linear trophic food chains with (a) prey dependence, (b) ratio 
dependence, and (c) a model separating trophic levels into functional groups. A: algae, A1: edible 
algae, A2: protected algae, AP: periphyton, C: carnivores, C1: invertebrate carnivores, C2: fish, H: 
herbivores, H1: small herbivores, H2: large herbivores, P: Phosphorus. Adapted by permission from 
Macmillan Publishers Ltd: Nature (Hulot et al. 2000), copyright (2000). 
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Figure 3.6. General structure of Bayesian Belief Network incorporating both four 
and eight variable SDG models corresponding to Hulot et al’s (2000) lake mesocosm 
experiments.  Separate structure nodes correspond to the comparison of four variable 
models and to the comparison of eight variable models.  The two structure nodes 
each have a set of corresponding observation nodes.  Since all of the models describe 
the system’s response to the same experimental manipulation, the probability of 
input to phosphorus is a node common to all observation nodes. A: algae, A1: edible 
algae, A2: protected algae, AP: periphyton, C: carnivores, C1: invertebrate 
carnivores, C2: fish, H: herbivores, H1: small herbivores, H2: large herbivores, 
P(fc): Phosphorus in food chain model, P(fg): Phosphorus in functional group model. 
In this example, there is a positive input of phosphorus. In (a), prior probabilities are 
allocated to the competing models in each structure node such that the prey 
dependent and functional group models have 100% chance of being correct. The 
predictions of these models are given in the observation-prediction nodes. In (b), the 
prior probabilities of competing models within each model structure node are given 
equal probabilities and observation likelihoods are entered as described in 3.4.3 
Analyzing the effect of alternative model structures. Nodes that have specified 
observation likelihoods are darker than those that do not. 



55 

 
4 THE CONTROL OF VECTOR-BORNE DISEASE EPIDEMICS 

 

 

Geoffrey R. Hosack 
a

, Philippe A. Rossignol 
a

, 

and P. van den Driessche 
b

 

 

a
 Department of Fisheries and Wildlife 

Oregon State University 

104 Nash Hall 

Corvallis, OR 97331-3803 USA 

 

b
 Department of Mathematics and Statistics 

University of Victoria, BC, V8W 3R4, Canada 



56 

4.1 Abstract 

The theoretical underpinning of our struggle with vector-borne disease, and still our strongest 

tool, remains the basic reproduction number, 0R , the measure of long term endemicity. Despite its 

widespread application, 0R  does not address the dynamics of epidemics in a model that has an 

endemic equilibrium. We use the concept of reactivity to derive a threshold index for epidemicity, 

0E , which gives the maximum number of new infections produced by an infective individual at a 

disease free equilibrium. This index describes the transitory behavior of disease following a 

temporary perturbation in prevalence. We demonstrate that if the threshold for epidemicity is 

surpassed, then an epidemic peak can occur, that is, prevalence can increase further, even when the 

disease is not endemic and so dies out. The hierarchy of parameters in 0E  may differ from that in 0R  

and lead to different strategies for control. Both the transmission efficiency from hosts to vectors and 

the vector-host ratio may have a stronger effect on epidemicity than endemicity. The duration of the 

extrinsic incubation period required by the pathogen to transform an infected vector to an infectious 

vector, however, may have a stronger effect on endemicity than epidemicity. We use the index 0E  to 

examine how vector behavior affects epidemicity. We find that parasite modified behavior, feeding 

bias by vectors for infected hosts, and heterogeneous host attractiveness contribute significantly to 

transitory epidemics. We anticipate that the epidemicity index will lead to a reevaluation of control 

strategies for vector-borne disease and be applicable to other disease transmission models. 

4.2 Keywords 

transitory behavior, basic reproduction number, heterogeneous transmission, extrinsic incubation 

period, vector-borne disease 
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4.3 Introduction 

 Soon after proving the transmission of malaria by biting mosquitoes, Ronald Ross (1911) 

demonstrated that the prevalence of malaria tends to a fixed limit depending on the rates of 

transmission, recovery, and mortality within the host and vector populations. Ross's model showed 

that the prevalence of malaria tends toward zero, in the long-term, if a control strategy holds the 

number of vectors at a sufficiently low level. The realization that malaria transmission could be halted 

by reducing, but not eradicating, the vector population greatly influenced the modeling and control of 

infectious disease (Bailey 1982). Macdonald (1952) suggested that targeting the rate of vector 

mortality more effectively reduced malaria prevalence than targeting other rates. Macdonald (1952) 

placed these rates into an index that we denote by 0R . If 10 <R  then malaria prevalence declines to 

zero in the long-term. Otherwise, malaria can become endemic. The index 0R  was used to develop 

and evaluate control strategies meant to reduce malaria prevalence (Garret-Jones 1964, World Health 

Organization 1975).  

The index 0R  is widely applied to the mathematical modeling of diseases in general 

(Diekmann and Heesterbeek 2000, van den Driessche and Watmough 2002, Thieme 2003). Early in 

the mathematical study of malaria, however, Lotka (1923) used Ross's model to show that significant, 

but transitory, changes in prevalence often occur before reaching the long-term equilibrium 

determined by 0R . We use this model to investigate potential causes of transitory epidemics within 

vector-borne disease.  

The model first proposed by Ross (1911) and subsequently modified by Macdonald (1952) 

has influenced both the modeling and the application of control strategies to vector-borne disease. 

Models of malaria that investigate complications arising from host superinfection, immunity, and 

other factors are based on this fundamental model (Aron and May 1982, Dietz 1988, Koella, 2003). 

The model has also influenced the mathematical analysis of many other vector-borne diseases (Dye 

1992), including dengue fever (Feng and Velasco-Hernandez 1997), rickettsia in cattle (Yonow et al. 
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1998), trypanosomiasis (McDermott and Coleman 2001), and West Nile Virus (Foppa and Spielman 

2007). A standard model consistent with the assumptions of Ross (1911) and Macdonald (1952) that 

relates the proportion of infected hosts x to the proportion of infected vectors y is given by,  

 

( )

( ) .

1

yyexab
dt
dy

rxxmyab
dt
dx

n
y

x

μμ −−=

−−=

−
   (4.1) 

  

The standard model consists of two coupled ordinary differential equations that describe the change in 

prevalence for the vector and host populations. This model uses several assumptions to simplify the 

complexity of malaria transmission and identify the important aspects of malaria transmission 

between vector and host (Bailey 1982, Aron and May 1982, Smith and McKenzie 2004). Each 

equation corresponds to a Susceptible-Infected-Susceptible model for the vector and host populations. 

Infected vectors do not recover but die at rate μ , and newly born vectors are susceptible. The specific 

effects of immunity and superinfection on hosts are ignored such that hosts recover at rate r  and 

again become immediately susceptible. Vectors bite hosts at rate a and transmit infection with 

efficiency xb . The proportion of vectors that acquire infection by biting infected hosts is yb . The 

number of vectors per host is m, and n  is the length of the extrinsic incubation period.  

In vector-borne disease, the period of time between a vector becoming infected to becoming 

infectious may be long compared to the lifespan of the vector. Vector mortality during this extrinsic 

incubation period of the pathogen within the vector has important consequences for endemicity 

(Macdonald 1952). The growth equation for prevalence within vectors includes vector mortality 

during the extrinsic incubation period. In the standard model, the probability of an infected vector 

surviving the extrinsic incubation period is given by the quantity ne μ−  (see Smith and McKenzie 

2004, Smith et al. 2007). Other formulations have explicitly modeled the time lag between when a 

vector becomes infected and when it becomes infectious (Aron and May 1982, Ruan et al. 2008) but 
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we do not consider this here. We refer to the model given by Eq. (4.1) as the standard model because 

it reflects the assumptions of both Ross (1911) and Macdonald (1952) as contained in the original 

index 0R  for malaria. 

Unlike the long-term case for endemicity, no index has summarized the short-term behavior 

of transitory epidemics in vector-borne disease. We therefore derive a threshold index for transitory 

epidemics 0E , such that if 10 >E  then transitory epidemics are possible; otherwise, transitory 

epidemics are not possible (Section 4.2). The index 0E  contains the same parameters as 0R , but the 

way in which these rates affect each index differs (Section 4.3). For example, we demonstrate how the 

vector-host ratio m  has a greater influence on epidemicity than endemicity. We investigate how the 

hierarchy of potential target rates differs for control strategies that reduce epidemicity versus 

endemicity. We determine the conditions for which epidemics preferentially elevate prevalence within 

the host population versus the vector population (Section 4.4). We also show that epidemics, although 

transitory, have lasting effects on disease prevalence. The index 0E  permits comparison of 

epidemicity across models, and we use it to show how different assumptions of vector feeding 

behavior and host susceptibility affect epidemicity (4.5). The models in this paper assume constant 

population sizes and can be formulated in terms of either the change in prevalence or the change in 

prevalent number over time. We apply these indices to prevalence and in Section 4.6 discuss how the 

alternative formulation for prevalent number affects the results.  

 

Section 4. 2 Derivation of threshold indices 

 The index 0R , which we refer to as the basic reproduction number, can be calculated using 

established methods (Diekmann and Heesterbeek 2000, van den Driessche and Watmough 2002). For 

a matrix A , let ( )As  denote the spectral abscissa (i.e., the largest real part of any eigenvalue of A) 

and ( )Aρ  denote the spectral radius (i.e., the maximum modulus of any eigenvalue of A). For an 

ordinary differential equation system with a unique disease free equilibrium (DFE), the Jacobian 
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matrix evaluated at the DFE is written as 
000 JJ VFJ −= , where the matrix 

0JF  contains the rates of 

new infection in vectors and hosts linearized at the DFE, and the matrix 
0JV  contains the rates of 

recovery and mortality linearized at the DFE. The basic reproduction number is  

( ).1

000
−= JJ VFρR    (4.2) 

 For a model defined in terms of prevalent numbers, the basic reproduction number 0R  is defined as 

the expected number of new infections produced by an infective individual in a population at a DFE. 

The DFE is locally stable if 10 <R  (equivalently ( ) 00 <Js  ), but unstable if 10 >R  (equivalently 

( ) 00 >Js ) (van den Driessche and Watmough 2002).  

Reactivity is the maximum instantaneous amplification rate of the state variables from 

equilibrium in Euclidean distance following a perturbation, and is equivalent to the maximum of the 

Rayleigh quotient (Neubert and Caswell 1997). Thus reactivity is equal to the maximum eigenvalue, 

( )( )0JHs , of the Hermitian part ( )0JH  of the system's Jacobian matrix evaluated at the DFE, where 

( ) ( ) 2/000
TH JJJ += . By Bendixson's theorem, the risk of endemicity given by ( )0Js  is always less 

than or equal to the risk of epidemicity given by ( )( )0JHs  (Householder 1964). In the models 

examined in this paper, ( )0JH  is quasipositive (i.e., has off-diagonal entries nonnegative). The 

eigenvector associated with ( )( )0JHs  is in the nonnegative orthant (Berman et al. 1989), as is the 

predicted cone of epidemicity in systems with positive reactivity. We determine a threshold index for 

epidemicity 0E  such that if 10 >E , then ( )( ) 00 >JHs  and the system is reactive, and, if 10 <E , then 

( )( ) 00 <JHs  and the system is non-reactive. Set ( ) ( ) 2/
000

TH JJJ FFF += , and, since 
0JV  is diagonal, 

( ) ( )
0000

2/ JJJJ VVVV =+= TH . The threshold for epidemicity is  

( ) ( )( ) .
2

1

0
00

00

1
0 ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ +
== −−

J
JJ

JJ V
FF

VF
T

HH ρρE   (4.3) 
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 The first equality comes from the definition of 0E  and an equivalent condition (as stated above for 

0R ), and the second comes from 
0JV  being diagonal.  

Consider the linear system,  

( ) ,0 xJx H
dt
d

=    (4.4) 

 where the vector x  refers to the number of infected hosts and infected vectors. As the time t  after a 

perturbation goes to infinity, the vector x  will approach the eigenvector 1u  that corresponds to the 

maximum eigenvalue of ( )0JH . The eigenvector 1u  maximizes the Rayleigh quotient formed with 

the Hermitian matrix ( )0JH  (Horn and Johnson, 1985). For any non-zero perturbation, the linear 

system, in the long-term, provides the maximum amplification rate of infection near the DFE for the 

original linearized system, xJx
0=dt

d . The matrix ( )0JH , as with the partition of the matrix 0J  

above, may be partitioned such that ( ) ( ) ( )
000 JJ VFJ HHH −= , where the matrix ( )

0JFH  is 

nonnegative and the matrix ( )
0JVH  is nonsingular and has a nonnegative inverse. Without 

reinfection, the change in the number of infected individuals is ( ) ( ) ( )tHdt
td zVJ

z
0

−= , where ( )tz  gives 

the number of individuals infected at time t . This has the solution ( ) ( ) ( )00 zz JV tHet −= . The maximum 

number of infected individuals at time t  is given by ( ) ( )tH zFJ0
. We integrate this expression, from 

zero to infinity with reinfection turned off,  

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ).0

0

1
00

00

0
00

zVF

zFzF

JJ

V
JJ

J

−

−∞∞

=

= ∫∫
HH

dteHdttH tH

  (4.5) 

We call ( ) ( ) 1
00

−
JJ VF HH  the maximum next generation matrix. We are interested in the 

multiplicative growth per generation of the maximum next generation matrix over all generations, and 

so examine the quantity ( ) ( )[ ] kk
HH

/1
1

00

−
JJ VF  as ∞→k . This is given by the spectral radius of the 
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maximum next generation matrix. Thus, for a model defined in terms of prevalent numbers, the 

threshold index for epidemicity 0E  gives the maximum number of new infections produced by an 

infective individual at a DFE. For a model defined in terms of prevalence, as in Eq. 4.1, the analyses 

for the threshold indices 0R  and 0E  are similar, and give threshold conditions for the proportion of 

infected individuals.  

 

4.3 Standard model and epidemicity 

 The standard model either has a globally asymptotically stable DFE, or a globally 

asymptotically stable endemic equilibrium with 0>x , 0>y  (Lotka 1923, Bailey 1982). The DFE is 

stable if 1
2

0 <=
−

μ

μ

r
mebba n

yxR  ; endemicity occurs if 10 >R  (Table 4.1, Section 4.2). The basic 

reproduction number (also called the reproductive rate), 0R , is a threshold index for long-term 

endemicity (Macdonald 1952; Aron and May 1982; Smith and McKenzie 2004).  

Temporary perturbations in prevalence, such as those that occur when vectors bite relapsing 

hosts (Paul et al. 2004), might initiate a transitory epidemic. Note that sometimes a disease 

introduction that results in an endemic state, where 10 >R , is referred to as an epidemic; we avoid 

such usage in this paper. We define an epidemic as a transitory increase in prevalence following a 

perturbation such that the trajectory moves away from a stable DFE ( 10 <R  ) to higher levels of 

prevalence in the vector or host population before eventually returning (Figure 4.1a). If this can occur 

then the DFE is termed ``reactive'' (Neubert and Caswell 1997). The epidemicity threshold index 

evaluated at the DFE, 0E , is derived from the maximum rate of change in prevalence immediately 

following a perturbation such that 10 <E  is equivalent to the DFE being nonreactive (Figure 4.1b), 

and 10 >E  is equivalent to the system being reactive (see Section 4.2). Thus, a nonreactive system 

cannot generate epidemics, whereas a reactive system can generate epidemics.  
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We first investigate vector-borne disease epidemics using the standard model (4.1). A 

marked increase in host prevalence can occur when the threshold for epidemicity is surpassed, such 

that ( ) 140

22

>=
−+

μ

μ

r
ebmba n

yxE  (Table 4.1), even when 10 <R  (Figure 4.2a). Clearly, some trajectories 

in Figure 4.2a show a marked transitory increase in host prevalence before returning to the DFE. Not 

all stable DFEs, however, are equivalent in epidemicity. We demonstrate that another system with 

identical asymptotic return rates to equilibrium (i.e., identical eigenvalues) cannot be reactive and will 

thus have no epidemic risk (Figure 4.2b). In this system, the DFE is again stable ( 10 <R  ), but it is 

not reactive ( 10 <E  ). Here, all trajectories show a monotonic decrease in the distance from the stable 

DFE throughout their return and no large transitory increases in prevalence are observed for either 

hosts or vectors. We note that an intuitive argument may suggest that epidemicity increases as the 

equilibrium level of prevalence goes down because of an increased proportion of susceptibles. Figure 

4.2b plainly shows that this intuition is not always useful. A reduced, even zero, equilibrium level of 

prevalence is not a reliable estimate of epidemicity risk because some DFEs are not reactive. 

However, 0E  is a useful index to identify epidemicity.  

The hierarchy of parameters best suited for disease control differs between 0R  and 0E . 

Similar to the insight 0R  gives into potential control strategies for endemicity, the threshold index for 

epidemicity 0E  suggests target parameters that may reduce the risk of epidemics. The product of 

transmission efficiency from infected vectors to hosts and the vector-host ratio, mbx , appears as a 

multiplicative factor with the transmission efficiency from infected hosts to vectors, yb , and the 

probability of mortality during the extrinsic incubation period, ne μ− , under the square root in 0R , and 

any of these quantities are effective targets for a control strategy aimed at reducing 0R  (Figure 4.3a). 

These same parameters, however, appear as the quantity ( )2n
yx ebmb μ−+  under the square root in 0E . 

The transmission efficiencies and the probability of vector mortality during the extrinsic incubation 

period, ne μ− , range between 0 and 1, but m  is any nonnegative number and can be much greater than 



64 

1. Thus, ( ) 222
mbebmb x

n
yx ≈+ −μ  as m  becomes large. If the number of vectors is large relative to the 

number of hosts, then targeting the transmission efficiency xb  and the vector host ratio m  may 

effectively reduce epidemicity (Figure 4.3b). Of course, if the vector-host ratio m  is sufficiently small 

such that 10 << mbx , then a control strategy that targets any of these parameters will have similar 

effects on both 0R  and 0E  (Figure 4.3b). In general, however, the transmission efficiency from 

vector to host and the vector-host ratio are much stronger candidates for a control strategy that aims to 

reduce epidemic increases in prevalence than is the transmission efficiency from hosts to vectors or 

vector mortality during the extrinsic incubation period.  

 

4.4 Epidemics and elevated prevalence in hosts 

Using phase plane analysis, we further examine epidemic behavior near the DFE. In 

particular, we show that the product of transmission efficiency and the vector-host ratio, mbx , 

determines whether an epidemic elevates prevalence in hosts or in vectors. The standard model has no 

oscillatory solutions (nor do the models considered in Section 4.5 below). We describe the transitory 

behavior of trajectories following a perturbation through an analysis of eigenvectors, which describe 

the direction of trajectories within the phase plane, and their associated eigenvalues, which describe 

the trajectories' rate of change in the directions given by the eigenvectors.  

For example, in Figure 4.2a-c note that the trajectories that start near the DFE initially 

parallel the dashed line, and later asymptotically approach the line with open circles when drawing 

close to the DFE. The rate of return to a stable DFE is determined by the eigenvalue with the 

maximum real part, which we denote 1λ  (i.e., ( )01 Js=λ , the spectral abscissa; see Section Methods). 

As the time t  after a perturbation goes to infinity, the prevalence in hosts and vectors will be 

proportional to the eigenvector associated with 1λ , denoted ( )1w , that is ( ) ( )[ ] ( )1,lim 1 w∝
∞→

Tt

t
tytxeλ . 
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The eigenvector ( )1w  is represented by the line with open circles in Figure 4.2a-c. All trajectories 

asymptotically approach this eigenvector as they move close to the DFE.  

On the other extreme, as the time t  after a perturbation goes to zero and we trace a trajectory 

backwards in time toward the perturbation event, the change in prevalence per time unit c  will be 

proportional to the eigenvector associated with the eigenvalue 2λ  having the least real part. This 

eigenvector is denoted ( )2w , and so ( ) ( ) ( ) ( )[ ] ( )2
0

,lim 2 w∝−−−−
→

Tt

t
ctytyctxtxeλ . In Figure 4.2a-c, 

the eigenvector ( )2w  is represented by the dashed line. All trajectories near the DFE initially parallel 

this eigenvector ( )2w  before they asymptotically approach the eigenvector ( )1w . Epidemics generate 

trajectories that not only elevate prevalence but also enable higher levels of prevalence to persist for a 

longer duration (Figure 4.1a) compared to trajectories within the non-reactive system (Figure 4.1b). 

This occurs because 1λ  gives a slow rate of return along ( )1w  (relative to 2λ ), and epidemics 

generate trajectories that approach ( )1w  at a point farther from the DFE (Figure 4.2a) compared to 

trajectories within the non-reactive system (Figure 4.2b). 

We define the shaded area of Figure 4.2a as the cone of epidemicity where reactivity is 

positive and trajectories are predicted to move away from the DFE such that 0/22 >+ dtyxd  

(Section 4.2). The epidemic occurs because a trajectory that originates near the DFE and passes 

through this cone of epidemicity must doubleback before returning to equilibrium: prevalence in hosts 

must first increase as trajectories parallel ( )2w  before asymptotically approaching ( )1w  and the DFE. 

This happens when the system is reactive and the angle θ , formed by the eigenvectors at DFE, is 

obtuse. The angle θ  is obtuse if n
yx ebmb μ−>  (Appendix F). When n

yx ebmb μ−= , the eigenvectors 

are orthogonal and no epidemic in either hosts or vectors is possible in a system with a stable DFE 

(Figure 4.2b; 100 <= RE  ). If n
yx ebmb μ−< , then the angle θ  is acute and an epidemic cannot 

elevate prevalence in hosts, but instead increases prevalence in vectors (Figure 4.2c). The difference 

between the quantities mbx  and n
yeb μ−  therefore determines both the behavior and the presence or 
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absence of epidemics. As noted in Section Standard model, the range of n
yeb μ−  must be between 0 

and 1, but mbx  can be any nonnegative number. This suggests that the ratio of vectors to hosts m  

might often determine whether epidemics amplify prevalence in hosts or in vectors.  

 

4.5 Modifications to the standard model and epidemicity 

The epidemicity index 0E  gives us the ability to investigate how modifying the standard 

model affects epidemicity. For example, evidence shows that vectors prefer to bite infected hosts 

(Day et al. 1983, Lacroix et al. 2005), parasites increase vector biting rates (Koella et al. 1998), and 

hosts have heterogeneous susceptibility to biting vectors (Woolhouse et al. 1997, Smith et al. 2005). 

The effects of such variations on the endemicity of vector-borne disease have been addressed by 

comparing the index 0R  generated under the different assumptions. In this Section, we apply the 

same strategy to examine epidemicity using the index 0E .  

 

4.5.1 Vector bias 

Feeding bias by vectors may have an important effect on epidemics. Empirical evidence 

suggests that the modified physiological (Rossignol et al. 1985) and behavioral (Day et al. 1983) state 

of infected hosts may predispose these individuals to foraging vectors. For example, mosquitoes show 

some bias for humans infected with malaria (Lacroix et al. 2005). These empirical observations have 

consequences for disease transmission because more vectors are exposed to infection than in the 

standard model. Bias for infected hosts by feeding vectors is described by the parameter p  in the 

model (Kingsolver 1987)  
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Values of 1>p  indicate vector bias for infected hosts, values 10 << p  indicate bias for uninfected 

hosts, and 1=p  reduces to the standard model (4.1). The parameter yb  describes the transmission 

efficiency from hosts to vectors and is here made explicit ( 1=yb  in Kingsolver (1987)). As in our 

formulation of the standard model (4.1), in the vector bias model (4.6) we include vector mortality 

during the extrinsic incubation period, ne μ− , whereas Kingsolver (1987) implicitly assumed that 

infected vectors were instantly infectious, 0=n . Kingsolver (1987) developed this model within the 

context of malaria transmission and derived its basic reproduction number.  

Vector bias for infected hosts affects endemicity as a linear term under the square root in 0R  

(Table 4.1). This bias, however, has a larger effect on the value of the threshold index of epidemicity, 

0E , because it is squared under the square root. Also, increasing vector bias favors increased 

prevalence in vectors during epidemics (Table 4.1).  

 

4.5.2 Parasite-modified vector behavior 

Behavior modification of the vector by a parasite, such as through an enhanced biting habit, 

may also have consequences for epidemics. For example, mosquitoes infected by the malaria parasite 

may have difficulty feeding (Rossignol et al. 1984), resulting in multiple feeding attempts (Rossignol 

et al. 1986, Koella et al. 1998). A parasite can modify the vector's biting rate a or transmission 

efficiency xb  by a multiplicative factor α  (Dobson 1988). This factor α  appears linearly under the 

square root of 0R  (Table 4.1). The parasite-induced change in vector behavior, however, enters the 

threshold index for epidemicity 0E  as a squared term under the square root, and so parasite-modified 
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vector behavior has a more important effect on epidemicity than on endemicity. In contrast to vector 

bias, increasing the biting habit of infected vectors favors increases in prevalence within hosts, not 

vectors, during epidemics (Table 4.1).  

 

4.5.3 Heterogeneous host attractiveness 

In the models examined above, we have assumed that the host population is homogeneous. 

Evidence suggests that the majority of disease infections occur in only a fraction of the total 

population (Woolhouse et al. 1997) and this may enhance the prevalence of infection in vector-borne 

disease such as malaria (Smith et al. 2005). Factors promoting heterogeneity in infection among hosts 

include distance from vector habitat (Ross 1911), host attractiveness (Takken and Knols 1999), and 

susceptibility to infection (Smith et al. 2005). We investigate change in vector biting preference for 

host subpopulations differing in susceptibility and recovery using a patch-dynamic model for 

prevalence. Previous patchy transmission models for the number of infected individuals have shown 

that a patchy host population leads to a basic reproduction number greater than or equal to non-patchy 

models even without differences in susceptibility and recovery (Dye and Hasibeder 1986, Hasibeder 

and Dye 1988). Hasibeder and Dye (1988) found that including both patchy host and vector 

populations leads to a basic reproduction number greater than or equal to the patchy host model alone. 

They concluded that the patchy host model is more useful in practice for addressing heterogeneous 

contact between hosts and vectors. We focus on a patchy host population model for prevalence, 

although the model can be extended to a patchy vector population. We derive the thresholds for 

endemicity and epidemicity for vectors feeding on a host population with heterogeneous recovery and 

susceptibility,  
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The parameter iη , with 10 ≤≤ iη  and 11 =∑ = i
N
i η , gives the preference of feeding vectors for 

susceptible host subpopulation i  with recovery rate ir , transmission efficiency ib , and ratio of 

vectors to susceptible hosts im .  

Just as in the standard model, Eq. (4.7) has a globally asymptotically stable DFE when 

10 <R . If 10 >R , then the DFE is unstable and there is a single globally asymptotically stable 

endemic equilibrium (Appendix F). The threshold index for endemicity is  
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where ( )i
0R  denotes the threshold index for epidemicity of host subpopulation i  in the event that 

vectors feed only on that subpopulation i , ( )1=iη  (Appendix F). The threshold index for epidemicity 

is  
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where ( )i
0E  denotes the threshold index for epidemicity of host subpopulation i  in the event that 

vectors feed only on that subpopulation i , ( )1=iη . Small fluctuations in vector feeding preference 

for hosts that differ in susceptibility or recovery will affect both long-term endemicity and short-term 

epidemicity.  

Comparing the indices of 0E  across the modified models of bias, modified behavior, and 

heterogeneous biting leads to 3 general conclusions. First, changes in vector bias and parasite 
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modified feeding behavior affect epidemicity more than endemicity. Second, vector bias favors 

amplified prevalence within vectors during epidemics, whereas parasite modified feeding behavior 

favors amplified prevalence within hosts. Third, heterogeneity in the vector feeding habit affect 

endemicity and epidemicity similarly and can have large effects on both. The index 0E  allows a 

comparative approach that identifies how these factors increase or decrease the likelihood of an 

epidemic.  

 

4.6 Discussion 

 Our analysis contributes two unexpected and novel concepts to vector-borne disease 

epidemiology. First, epidemics can occur in areas where long term transmission cannot be maintained. 

The index for epidemicity based on reactivity that we propose identifies the dynamics of recovery 

following a perturbation. These dynamics are often characterized by further increase in prevalence 

before eventual disappearance. Active monitoring and prompt reaction against new cases may still be 

required even after a disease has been eliminated locally. Second, strategies for control of epidemicity 

can differ from those that have been used for reducing endemicity. The parameters of the threshold 

index for epidemicity are the same as in the basic reproduction number because both are derived from 

the same model. The hierarchy of parameters, however, may differ between the two indices. The 

impact of a specific control campaign therefore could differ between risk of epidemicity and 

endemicity, and what proves efficient against one may be less so against the other. Overall, we 

suggest that the index of epidemicity, with its objective formality, familiar parameters, and relative 

ease of application, be incorporated alongside the traditional basic reproduction number in both 

strategic and tactical approaches to vector-borne disease control.  

The threshold indices for epidemicity and endemicity are different in parameter emphasis 

and suggest alternative control strategies for epidemics. Vector life expectancy has long been a 

preferred target in reducing malaria prevalence, as exemplified by indoor residual spraying 

(Macdonald 1957, Gunasekaran et al. 2005). In the case of epidemics, transmission efficiency from 
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vectors to hosts and the vector-host ratio are also strong predictors and therefore may merit focused 

targeting. The product of transmission efficiency from vectors to hosts and the vector-host ratio, mbx , 

is a particularly important factor in epidemicity for two reasons. First, this product can have a stronger 

effect on epidemicity than the product of transmission efficiency and vector mortality during the 

extrinsic incubation period, n
yeb μ− . Second, if mbx  is greater than n

yeb μ− , then it is possible for an 

epidemic to elevate prevalence in hosts. Vaccines are important tools for control (Girard et al. 2007), 

and our findings may have implications for their role in vector-borne disease. We find that, although 

both parameters are equally effective targets for reducing endemicity, if the ratio of vectors to hosts 

m  is large then xb  may be a more effective target parameter than yb  for targeting epidemics that 

increase prevalence. In addition, decreasing xb  instead of yb  diminishes epidemics that enhance 

prevalence in hosts. Thus, an immunization strategy that decreases the transmission efficiency from 

vectors to hosts xb  could reduce the threat of epidemics. In malaria, for example, this could be 

accomplished by administering pre-erythrocytic or erythrocytic vaccines. Similarly, and somewhat 

unexpectedly, vector abundance control (e.g., Fillinger and Lindsay 2006) that targets m  may be 

more effective in reducing epidemicity than endemicity when vectors outnumber hosts. The above 

discussion examines how a change in a parameter affects the levels of 0R  and 0E , but in real 

applications the cost of a control strategy must also be taken into account (Killeen et al. 2002).  

The indices for epidemicity and endemicity also allow predictions on how natural and human 

alterations to disease systems affect disease transmission outside the context of control strategies. For 

instance, the length of the extrinsic incubation period n  is determined by temperature (Macdonald 

1957). Climate change and land use practices may affect temperature and therefore n  (Craig et al. 

1999, Afrane et al. 2005). If vectors outnumber hosts, such a change in n  could have a large effect on 

the value of 0R  and a negligible effect on the value of 0E  . On the other hand, both climate change 

and land use practices may affect vector productivity (Munga et al. 2006, Pascual et al., 2006) and 
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hence m , the density of vectors relative to hosts. A substantial increase in m may have a large effect 

on epidemicity and a relatively small effect on endemicity.  

We find that vector behavior strongly affects the epidemicity of vector-borne disease. Bias 

by feeding mosquitoes for infected hosts substantially increases epidemicity. Reducing bias by vectors 

for infected hosts, such as through the targeted administration of drugs (Lacroix et al., 2005, Smith et 

al., 2007) or insecticide treated netting, may effectively combat epidemics. Vector behavior modified 

by infection, such that infected vectors bite more often, also increases epidemicity more than 

endemicity. Heterogeneous attractiveness in hosts that differ in susceptibility or recovery can either 

increase or decrease both epidemicity and endemicity.  

We have restricted our analysis to epidemics in the region of the DFE. The concept of 

reactivity also applies to the case where 10 >R  and Eq. (4.1) has an endemic equilibrium. In this case, 

an index ∗E  similar to 0E  can be derived (Appendix F). If 1>∗E , then a perturbation that 

temporarily increases prevalence relative to the endemic equilibrium may result in a transitory 

epidemic. If 1>∗E  and a perturbation temporarily decreases prevalence relative to the endemic 

equilibrium, however, then total levels of prevalence may dramatically decrease toward the DFE, in 

the short-term, before returning to the endemic equilibrium (Appendix F). Such a reverse epidemic, or 

hypodemic, may be of particular concern because a control strategy that temporarily decreases 

prevalence in areas of endemicity may initially appear more effective than it actually is. A short term 

control strategy, such as through the one-time administration of infection clearing drugs or insecticide 

treated netting, may result in a substantial but temporary reduction in prevalence before a gradual 

return to the original endemic state.  

The above analyses define the term epidemic in a mathematical context for the prevalence 

within hosts and vectors (Section 4.2). We note that other linguistic, mathematic, and statistical 

definitions are equally useful and the best choice depends on the context of their application. Indeed, 

multiple definitions for an epidemic are possible even with the mathematic definition provided in 

Section 4.2. For example, Eq. (4.1) can be reformulated to describe the change in the prevalent 
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number of infected individuals. The substitutions HXx /= , where X  is the number of infected 

hosts and H  is the total number of hosts, and VYy /= , where Y  is the number of infected vectors 

and V  is the total number of vectors, produce the growth equations HdtdX /  and VdtdY /  ; note that 

HVm /= . These equations, when multiplied by H  and V  respectively, give the change in the 

prevalent number of infected hosts and vectors over time, dtdX /  and dtdY / . When prevalent 

number is used, instead of prevalence, 0R  is unchanged but the index for epidemicity becomes 

( )
μ

μ

r
mebba n

yx

40

22 −+
=E  and the condition that epidemics elevate the number of infected hosts is 

n
yx mebb μ−> . Here, the nonnegative number m  is multiplied by the transmission efficiency from 

hosts to vectors yb  and the probability of a vector surviving the extrinsic incubation period ne μ− . 

These latter factors assume greater importance, compared to the epidemics based on a definition of 

prevalence, because m  is any nonnegative number (c.f. Section 4.3). An epidemic thus defined in 

terms of the prevalent number of infected hosts and vectors, instead of the prevalence of infection, 

may lead to different conclusions about the nature of epidemicity, whereas the index of endemicity, 

given by 0R , remains unchanged. This highlights the importance of a precise definition for epidemic 

that is suited to the problem at hand.  

Although the standard model identifies the general aspects of transmission between vector 

and host (Bailey, 1982, Aron and May, 1982, Smith and McKenzie, 2004), the results of this study 

should be interpreted in light of the constraints and limits set by its underlying assumptions. The 

standard model given by Eq. (4.1) is a general model with several assumptions that simplify the 

complex interactions between host and vector. Superinfection (Aron and May, 1982, Dietz, 1988), 

drug resistance (Koella and Antia, 2003, Bacaër and Sokhna, 2005), immunity (Dietz et al., 1974, 

Ngwa, 2004, Chitnis et al., 2006), age structure (Dietz, 1988), and dynamic population sizes (Ngwa, 

2004, Chitnis et al., 2006) are not explicitly modeled; nor does the model include stochasticity (Lloyd 

et al., 2007) or seasonal and climatic factors (Aron and May, 1982, Thomson et al., 2006, Mabaso et 
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al., 2007) that affect disease transmission. Future research is needed to investigate how these 

complications affect epidemicity.  

The threshold index of epidemicity 0E  proposed above, like 0R , is a complementary 

approach for identifying important features of disease transmission. The return of trajectories to a 

disease free steady state requires not only a stable disease free equilibrium ( 10 <R  ) but also depends 

on the absence of further perturbations. Similarly, the development of epidemics requires not only a 

reactive equilibrium ( 10 >E  ) but also depends on the direction of initial perturbations. Although the 

threshold index for epidemicity is here applied to a general vector-borne disease model, we suggest 

that application of the epidemicity threshold index is useful for other models of disease transmission. 

Taking account of the differences between epidemic and endemic threshold indices is crucial because 

the risk of epidemicity is always greater than or equal to the risk of endemicity (Section 4.2).  
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Table 4.1. Threshold indices for endemicity, 0R , epidemicity, 0E , and condition for epidemics to 
elevate prevalence in hosts. Parameters are: a biting rate; xb , transmission efficiency from vector to 
host; yb , transmission efficiency from host to vector; m, ratio of vectors to hosts; r, recovery rate of 
hosts; μ , mortality rate of vectors; n , duration of the extrinsic incubation period; p , feeding bias by 
vectors for infected hosts; α , parasite-modified vector behavior; iη , feeding preference for host 
subpopulation i  with susceptibility 

ixb , recovery rate ir , and ratio of vectors to susceptible hosts im ; 
N  is the total number of host subpopulations. 
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Figure 4.1. Comparison of systems with stable disease free equilibria (DFE) for the standard model ( 
179.00 <=R  ); the Jacobian matrices have identical sets of eigenvalues { }256.0,00366.0 21 −=−= λλ  

for each system evaluated at the DFE. The open diamond ◊ denotes the initial level of prevalence 
immediately following a perturbation. Black solid lines are sample trajectories returning to the DFE. 
The dashed line marks the radius of the initial perturbation across the feasible region. In both figures, 
the first arrowhead marks prevalence 6 days after the perturbation and the second arrowhead marks 
prevalence 200 days after the perturbation. ( a  ) A reactive system ( 1175.30 >=E  ). The trajectory 
begins to head away from the DFE at the point marked by the open triangle Δ , and returns to the DFE 
at the point marked by the upside down triangle ∇ . Prevalence in hosts more than doubles relative to 
the initial perturbation before declining. The parameter values are 005.0=a , 5.0=xb , 1=yb , 

125=m , 01.0=r , 25.0=μ . Susceptible vectors that bite infected hosts are assumed to become 
instantly infectious ( 0,1 == nby  ). ( b  ) A nonreactive system ( 163.00 <=E  ). The trajectory 
returns to the DFE with only a small increase of prevalence in hosts. The parameter values are 

0395.0=a , 1.0=xb , 1=yb , 10=m , 01.0=r , 25.0=μ , 0=n .  
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Figure 4.2. Comparison of systems with stable DFE with identical sets of eigenvalues. The line with 
open circles in each graph is the eigenvector ( )1w  corresponding to ( )01 Js=λ , the maximum 
eigenvalue of the Jacobian matrix of Eq. evaluated at the DFE. The dashed line in each graph is the 
eigenvector ( )2w  corresponding to 2λ , the minimum eigenvalue at DFE. The angle θ  is the angle 
formed by these eigenvectors. The shaded area is the cone of epidemicity where the Rayleigh 
quotient, which at its maximum is equivalent to reactivity, is positive and predicts increasing total 

levels of infection ⎟
⎠
⎞⎜

⎝
⎛ >+ 0/22 dtyxd . The eigenvectors and associated cone of epidemicity 

approximate the nonlinear system near the DFE. Black solid lines are sample trajectories returning to 
the DFE. ( a ) A reactive system ( 1175.30 >=E  ). The product of transmission efficiency from 
vectors to hosts and the ratio of vectors to hosts, mbx , is greater than the transmission efficiency from 

hosts to vectors ( n
yx ebmb μ−> ), and an epidemic will elevate prevalence within human hosts. The 

parameter values are as in Figure 1a. ( b ) A nonreactive system ( 163.00 <=E  ) with n
yx ebmb μ−= . 

No epidemic is possible. The parameter values are as in Figure 1b. ( c  ) A reactive system 
( 1175.30 >=E ) with n

yx ebmb μ−< . An epidemic elevates prevalence within vectors. The parameter 
values are 3125.0=a , 01.0=xb , 1=yb , 6.1=m , 01.0=r , 25.0=μ , 0=n .  
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Figure 4.2a. 

 

Figure 4.2b. 
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Figure 4.2c. 

 

 

Figure 4.3. Contour graphs of 0R  and 0E  for combinations of mbx  and n
yeb μ−  in the standard model 

(4.1). Constant parameter values are 025.0=a , 01.0=r , and 25.0=μ . (a) Contours give the values 
of 0R  for combinations of mbx  and n

yeb μ− . (b) Contours give the values of 0E  for combinations of 

mbx  and n
yeb μ− . The transmission efficiency from vectors to hosts xb  and the vector-host ratio m  

are strong candidates for control strategies designed to reduce 0R  and even more effective for 
reducing 0E . The transmission efficiency from hosts to vectors yb  and the length of the extrinsic 

incubation period n  have a strong effect on 0R  but is less important for 0E . Note that 00 RE ≥  ; this 
can be seen from the arithmetic-geometric means inequality applied to the threshold indices. 



80 

 

5 GENERAL CONCLUSIONS 
 

Models are developed and applied to bridge the gap between existing empirical data and our 

need to understand and predict ecological systems.  In complex communities, uncertainty is high and 

existing modeling techniques are unable to bridge satisfactorily this gap. New modeling tools are 

needed to understand and predict how these systems will react to anthropogenic and environmental 

pressures.  In this dissertation, I addressed three forms of uncertainty associated with complex 

ecological systems: stability, equilibrium response, and non-equilibrium dynamics. 

A graph-theoretic approach (Levins 1974, Dambacher et al. 2002) is used that enables 

researchers to include natural history information about the system of interest.  Positive and negative 

feedback cycles, which enhance or dampen system response to perturbation, are identified (Chapter 

2).  These feedback cycles determine the stability of the ecosystem.  Sensitivity analysis identifies 

critical links that form these feedback cycles.  An algorithm based on the graph-theoretic approach 

provides an index that measures the relative contribution of a mechanistic link between variables to 

positive and negative feedback cycles.  A proposed sensitivity weight index prioritizes direct effects 

relative to their effect on ecosystem stability.  The resulting hierarchy can help guide researchers and 

managers to optimize resources for environmental monitoring, to explore alternative management 

strategies, and to formulate new testable hypotheses.   

This graph-theoretic approach is developed further into a probabilistic model in Chapter 3.  

Here, the focus is on predicting the change in the long-term equilibrium of ecosystem variables under 

different perturbation scenarios.  In addition, this chapter develops a theoretic method to compare 

alternative hypotheses for model structure.  Conditional probabilities of increase and decrease are 

transferred from the graph-theoretic models into a Bayesian Belief Network (BBN).  The BBN allows 

researchers to both predict how an ecosystem might change given a perturbation and also diagnose 

which model structure matches empirical observation.   
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In some ecological systems, the transitory dynamics are important.  Under this scenario, 

management typically seeks to avoid large magnitude deviations from equilibrium.  For instance, in 

vector-borne disease, many individuals might be exposed to a pathogen introduction, and public 

health will seek to minimize the risk of an epidemic.  The concept of reactivity is used to derive a 

threshold index for epidemicity, 0E , which gives the maximum number of new infections produced 

by an infective individual at a disease free equilibrium (Chapter 4). This index provides a threshold 

that determines whether or not major epidemics are likely. The relative importance of parameters 

differs between control strategies that seek to reduce endemicity and those that seek to reduce 

epidemicity. Vector behavior more strongly affects epidemicity than endemicity.  The index 0E  

therefore is an important measure of epidemic potential that helps guide efforts to combat epidemics. 

Three new theoretic approaches are presented.  First, a graph-theoretic approach identifies 

the interconnections in a complex ecosystem that promote or diminish its stability. Second, a 

combined graph-theoretic and probabilistic approach evaluates the potential for long-term changes in 

equilibrium. Third, a threshold index predicts whether or not large-magnitude short-term transitory 

changes in disease prevalence can occur.  Thus, each theoretic approach deals with a different facet of 

uncertainty and advances our understanding of the complexity and interconnectedness in ecological 

systems 
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APPENDIX A. MATHEMATICAL DERIVATION OF 
SENSITIVITY MATRICES 

 

A.1 Stability criteria 

The direct effects of a signed digraph translate into the entries within the signed digraph's 

corresponding Jacobian matrix A  (Figure 2.1). The matrix entry in the thi  row and the thj  column 

shows the magnitude ( ija  ), and the sign ( + , –) of the direct effect of species j  on species i  near a 

steady state. The ija , and their associated signs, describe the direct effect of species j  on species i  

and incorporate parameters such as species interaction magnitudes and rates of growth and decay at a 

steady state (May 1974). The eigenvalues of A  determine whether or not a community is stable and 

are derived from the characteristic equation 

( ) ,0det 1
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where kF  are the polynomial coefficients, k  denotes the feedback level, 10 −=F  by convention, and 

n  is the number of species within the community. The polynomial coefficients kF  are sums of cycle 

products that include k  variables. The n  roots of Equation (A.1) are the eigenvalues of A . 

A negative real part for all eigenvalues implies that the equilibrium is stable. There are two 

criteria for all eigenvalues of Equation (A.1) to have negative real parts: 

1) The coefficients kF , nk K0= , of the characteristic polynomial must all have the same sign. 

Since we adopt the convention that 10 −=F , this means that all coefficients kF  must be negative. 

2) All n  Hurwitz determinants, kΔ , nk K1= , must be positive. The signs of the Fk  as specified 

above are reversed to conform with the convention of Hurwitz ([1895] 1964). The second 

criterion thus takes the form 
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where the hF−  with 0<h  or nh >  evaluate to zero. 

The first criterion is a necessary condition for stability. The second criterion is both 

necessary and sufficient (Hurwitz [1895] 1964). Further, the condition in the second criterion that 

01 >Δ −n  and 0>Δn  is equivalent to the condition that 01 >Δ −n  and 0<nF , that is, the condition 

that 0>Δn  is redundant (Hurwitz [1895] 1964). 

 

A.2 Structural stability 

The community structure is given a matrix representation. The entries of the matrix Ao  take 

the values 0 , 1+ , or 1  depending on the sign associated with the ija  in the matrix A . The matrix 

Ao  can be formally defined as the transposed signed adjacency matrix of the signed digraph. The 

following calculations provide qualitative measures of structural stability (see Dambacher et al. 2003 

for details). 

The net number of cycle products at each feedback level, that is, the net number of positive 

and negative monomial terms within each kF , is denoted kFo  and is calculated by substituting the 

matrix Ao  for the symbolic matrix A  in Equation (A.1). The total number of cycle products within 

each coefficient, denoted kF• , is calculated using the matrix permanent (Minc 1978) and the matrix 

A• . The matrix A•  is defined by the absolute value of the entries within Ao  and is equivalent to the 

(unsigned) transposed adjacency matrix of the signed digraph. The kF•  are calculated using the 

equation 
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where 
→
A  denotes the absolute value of the entries within the symbolic matrix A , and per  refers to 

the matrix permanent. The matrix A•  is substituted for A  in Equation (A.3) to obtain the kF• . 

Weighted feedback is defined as kkk FFwF •= /o , for nk K1= . The measure kwF  is the 

ratio of the net number of cycle products to the total number of cycle products appearing within the 

thk  coefficient. Weighted feedback of 0.1−  ( 0.1+  ) indicates that a coefficient is composed entirely 

of negative (positive) cycle products. Weighted feedback is 0  if an equal number of negative and 

positive cycle products are present. Weighted feedback between 0  and 0.1−  ( 0.1+  ) indicates more 

negative (positive) cycle products are present than positive (negative) cycle products. 

The net number of addends in each Hurwitz determinant, kΔ
o , nk K1= , are derived by 

substituting the net polynomial coefficients, kFo , for the symbolic coefficients, kF , in Equation (A.2). 

The absolute number of terms in each Hurwitz determinant, kΔ
• , nk K1= , are derived from the 

equation 
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   (A.4) 

by substituting the kF•  for ′
kF  in Equation (A.4). 

Weighted Hurwitz determinants compare the relative magnitudes of different level of 

feedback and are computed as kkkw ΔΔ=Δ •/o . The measure kwΔ  is the ratio of the net number of 

addends to the total number of addends appearing within the thk  Hurwitz determinant (Dambacher et 

al. 2003). A weighted Hurwitz determinant of 0.1+  ( 0.1−  ) indicates that the Hurwitz determinant is 
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composed entirely of positive (negative) addends. A weighted Hurwitz determinant is 0  if an equal 

number of positive and negative addends are present. A weighted Hurwitz determinant between 0  

and 0.1+  ( 0.1−  ) indicates that more positive (negative) addends are present than negative (positive) 

addends. The nwΔ  provide a measure of structural stability (see Dambacher et al. 2003). 

 

A.3 Stability sensitivity 

 

A.3.1 Partial derivatives of determinants and permanents 

We use partial derivatives of determinants and permanents to determine how the direct 

effects affect feedback in a community. The direct effects that compose the entries in the matrix A  

usually consist of a combination of parameters that describe rates of birth and death. Let γ  represent 

one such parameter, and assume that the entries in ( )γA  are differentiable functions of γ . The partial 

derivative of the determinant of this matrix with respect to γ  is calculated using the equation 

( ) ( ) ,detdet
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where ( )qγAdet  is the determinant formed by replacing the thq  row of ( )γA  with the row of partial 

derivatives 
( )
γ
γ
∂

∂ qjA
, nj K1=  (Franklin 1993). It can easily be shown that the partial derivative of the 

permanent of this same matrix with respect to γ  is 
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where ( )qγAper  is the permanent formed by replacing the thq  row of ( )γA  with the row of partial 

derivatives 
( )
γ
γ
∂

∂ qjA
, nj K1= . 

 

A.3.2 Sensitivity matrices for the feedback levels 

For each of the k  polynomial coefficients, we define a net sensitivity matrix, kFN , that gives the net 

number of cycle products containing each of the direct effects. The nn×  net sensitivity matrix for 

each polynomial coefficient is calculated by differentiating the characteristic polynomial in Equation 

(A.1) with respect to each ija . This is accomplished by substituting the matrix ( ) λγ −A  for ( )γA  and 

substituting ija  for γ  in Equation (A.5). Each such differentiated equation is evaluated with the 

entries of the matrix Ao  substituted for those of A  to derive the equation 
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The last equality in Equation (A.7) occurs because the direct effects do not affect the value of 0F , 

which by convention is always 1− . An array of n  net sensitivity matrices, with one net sensitivity 

matrix for each level of feedback nk K1= , is constructed from Equation (A.7): 

[ ] .1,, njikk F
ij

F K== NN    (A.8) 

Similarly, the nn×  total sensitivity matrix for each polynomial coefficient, kFT , is calculated by 

differentiating the absolute characteristic polynomial in Equation (A.3) with respect to each ija . The 

matrix ( ) λγ +
→

A  is substituted for ( )γA  and ija  is substituted for γ  into Equation (A.6). Each such 
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differentiated equation is evaluated with the entries of matrix A•  substituted for those of A  to derive 

the equation 

( )
.

per

1

knF
ij

n

kij

ij
k

a

a
−

=

=

→

∑=∂

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+∂

•

λ

λ

T

A

AA

  (A.9) 

An array of n  total sensitivity matrices, with one total sensitivity matrix for each level of feedback 

nk K1= , is constructed from Equation (A.9): 

[ ] .1,, njikk F
ij

F K== TT    (A.10) 

The total sensitivity matrix for the thk  polynomial coefficient gives the total number of cycle 

products that contain each ija  for the thk  feedback level. 

The nn×  weighted sensitivity matrix for the thk  polynomial coefficient is defined as 
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where { } is the empty set. This weighted sensitivity matrix gives the ratio of the net number to the 

total number of cycle products containing each ija  at the thk  feedback level. 

 

A.3.3 Sensitivity matrices for the Hurwitz determinants 

The net sensitivity for an ija  in a Hurwitz determinant provides the net number of positive 

and negative occurrences of ija  in kΔ . A nn×  net sensitivity matrix is defined for each Hurwitz 

determinant, kΔN , by differentiating the Equation (A.2) with respect to each ija  and substituting the 
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matrix Ao  for A . This is accomplished by substituting the Hurwitz determinant ( )γkΔ  for ( )γAdet  

and substituting ija  for γ  in Equation (A.5), and evaluating with the matrix Ao  to derive the net 

sensitivity matrix for each Hurwitz determinant, nk K1=  : 
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Equation (A.12) is, for each partial derivative taken with respect to a particular ija , a sum of k  

determinants following from Equation (A.5). The undifferentiated rows within each of these 

determinants are, when evaluated, constructed from the net polynomial coefficients kFo , as derived 

from Equation (A.1), but reversed in sign as with the kF  in Equation (A.2). The differentiated rows 

are constructed from the net sensitivities of these polynomial coefficients kF
ijN , as defined by 

Equation (A.7), also reversed in sign. 

The total sensitivity for an ija  in a Hurwitz determinant provides the total number of 

occurences for ija  in kΔ . The nn×  total sensitivity matrix for each Hurwitz determinant, kΔT , is 

calculated by differentiating the Equation (A.4) with respect to each aij  and substituting the matrix 

A•  for A . The permanent ( ) λγ +Δ′k  is substituted for ( )γAper  and ija  is substituted for γ  in 

Equation (A.6), and the matrix A•  is substituted for A  to derive the net sensitivity matrix for each 

Hurwitz determinant, nk K1=  : 
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The undifferentiated rows within the partial derivative of Equation (A.13) are constructed from the 

total polynomial coefficients kF• , derived from Equation (A.3), and the differentiated rows are 
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constructed from the net sensitivities of these polynomial coefficients kF
ijT , as defined by Equation 

(A.9). 

As in the above weighted sensitivity matrix for the thk  polynomial coefficient kFW , the 

nn×  weighted sensitivity matrix for the thk  Hurwitz determinant is defined as 
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APPENDIX B. MAPLE CODE FOR SENSITIVITY ANALYSIS 

 
> restart;with(LinearAlgebra): 
Provide the signs of the entries within the matrix A; then hit the above !!! button. 
> sA := Matrix([ [-1,-1,1],[1,0,-1],[0,1,0] ]);  
interface(rtablesize=RowDimension(sA)): 
A free graphical editor that constructs the transposed signed adjacency matrix of a signed digraph is 
available at Ecological Archives E083-022-S1-R1 on the web: 
 http://www.esapubs.org/archive/ecol/E083/022/suppl-1.htm#anchorDownload2 
 
Procedures 
 
Procedure taking partial derivative of polynomial coefficients with respect to Aij.  
> pcoeffs := proc(A,M,N) 
local j, k, l, Msil, Mabl, Fd, Fp, CMd, CMp, Fw, S; 
S := RowDimension(A); 
Fd := Vector(S); 
Fp := Vector(S); 
Fw := Vector(S); 
Msil := DiagonalMatrix(Vector(S,fill=lambda))-A; 
Mabl := DiagonalMatrix(Vector(S,fill=lambda))+abs(A); 
for j from 1 to S do 
 if j = N then 
  Msil[M,j] := A[M,j]; 
  Mabl[M,j] := abs(A[M,j]); 
 else 
  Msil[M,j] := 0; 
  Mabl[M,j] := 0; 
 fi; 
od; 
CMd := Determinant(Msil); 
if coeff(CMd,lambda,S) > 0 then 
 CMd := CMd*(-1); 
fi; 
CMp := Permanent(Mabl); 
for k from 1 to S do 
 Fd[k] := coeff(CMd,lambda,S-k); 
 Fp[k] := coeff(CMp,lambda,S-k); 
od; 
for l from 1 to S do 
 if Fp[l] > 0 then 
  if Fd[l] = Fp[l] then 
   Fw[l] := 1; 
  elif (-1)*Fd[l] = Fp[l] then 
   Fw[l] := -1; 
  else 
   Fw[l] := evalf[3](Fd[l]/Fp[l]); 
  fi; 
 else 
  Fw[l] := {}; 
 fi; 
od; 
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Fd,Fp,Fw; 
end: 
Procedure taking partial derivative of Hurwitz determinants with respect to Aij.  
> hdets := proc(Cd,Cp,A) 
local Harrd, Harrp, Hd, Hp, i, j, k, Hnpd, Hnpp, o, p, CPd, CPp, S, 
l, m, n, arrd, arrp, oldd, oldp, Matd, Matp, q, arrw; 
S := Dimension(Cd); 
Hd := Matrix(S); 
Hp := Matrix(S); 
Hnpd := Matrix(S); 
Hnpp := Matrix(S); 
arrd := Array(1..S); 
arrp := Array(1..S); 
arrw := Array(1..S); 
CPd := Determinant(DiagonalMatrix(Vector(S,fill=lambda))-A); 
if coeff(CPd,lambda,S) < 0 then 
 CPd := CPd*(-1); 
fi; 
CPp := Permanent(DiagonalMatrix(Vector(S,fill=lambda))+abs(A)); 
for i from 1 to S do 
 for j from 1 to S do 
  if 2*j-i > S then 
   Hd[i,j] := 0; 
   Hp[i,j] := 0; 
   Hnpd[i,j] := 0; 
   Hnpp[i,j] := 0; 
  else 
   if 2*j-i > 0 then 
    Hd[i,j] := Cd[2*j-i]*(-1); 
    Hp[i,j] := Cp[2*j-i]; 
    Hnpd[i,j] := coeff(CPd,lambda,S-(2*j-i)); 
    Hnpp[i,j] := coeff(CPp,lambda,S-(2*j-i)); 
   elif 2*j-i = 0 then 
    Hnpd[i,j] := coeff(CPd,lambda,S-(2*j-i)); 
    Hnpp[i,j] := coeff(CPp,lambda,S-(2*j-i));     
   else 
    Hd[i,j] := 0; 
    Hp[i,j] := 0; 
    Hnpd[i,j] := 0; 
    Hnpp[i,j] := 0;     
   fi; 
  fi; 
 od; 
od; 
for k from 1 to S do 
 arrd[k] := 0; 
 arrp[k] := 0; 
 oldd := 0; 
 oldp := 0; 
 Matd := Matrix(k); 
 Matp := Matrix(k); 
 for l from 1 to k do 
  for m from 1 to k do 
   for n from 1 to k do 
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    if m = l then 
     Matd[m,n] := Hd[m,n]; 
     Matp[m,n] := Hp[m,n]; 
     else 
     Matd[m,n] := Hnpd[m,n]; 
     Matp[m,n] := Hnpp[m,n]; 
    fi; 
   od; 
  od; 
  arrd[k] := Determinant(Matd) + oldd; 
  oldd := arrd[k]; 
  arrp[k] := Permanent(Matp) + oldp; 
  oldp := arrp[k]; 
 od; 
od; 
for q from 1 to S do 
 if arrp[q] > 0 then 
  if arrd[q] = arrp[q] then 
   arrw[q] := 1; 
  elif (-1)*arrd[q] = arrp[q] then 
   arrw[q] := -1; 
  else 
   arrw[q] := evalf[3](arrd[q]/arrp[q]); 
  fi; 
 else 
  arrw[q] := {}; 
 fi; 
od; 
arrd, arrp, arrw; 
end: 
Procedure constructing arrays of senstitivity matrices for the polynomial coefficients and the Hurwitz 
determinants.  
> coeff_hrtz := proc(Q) 
local i, j, Y, Z, pnet, ptot, pwts, hrtn, hrtt, hrtw, m, pwtt,hwtt; 
pnet := Array(1..RowDimension(Q)); 
ptot := Array(1..RowDimension(Q)); 
pwts := Array(1..RowDimension(Q)); 
hrtn := Array(1..RowDimension(Q)); 
hrtt := Array(1..RowDimension(Q)); 
hrtw := Array(1..RowDimension(Q)); 
for m from 1 to RowDimension(Q) do 
 pnet[m] := Matrix(RowDimension(Q)); 
 ptot[m] := Matrix(RowDimension(Q)); 
 pwts[m] := Matrix(RowDimension(Q)); 
 hrtn[m] := Matrix(RowDimension(Q)); 
 hrtt[m] := Matrix(RowDimension(Q)); 
 hrtw[m] := Matrix(RowDimension(Q)); 
 for i from 1 to RowDimension(Q) do 
  for j from 1 to RowDimension(Q) do 
   if Q[i,j] = 0 then 
    pnet[m][i,j] := `.`; 
    ptot[m][i,j] := `.`; 
    pwts[m][i,j] := `.`; 
    hrtn[m][i,j] := `.`; 
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    hrtt[m][i,j] := `.`; 
    hrtw[m][i,j] := `.`; 
   else 
    Y := pcoeffs(Q,i,j); 
    Z := hdets(Y[1],Y[2],Q); 
    pnet[m][i,j] := Y[1][m]; 
    ptot[m][i,j] := Y[2][m]; 
    if Y[3][m] = 0 then 
     pwts[m][i,j] := 0; 
    else 
     pwts[m][i,j] := Y[3][m]; 
    fi; 
    hrtn[m][i,j] := Z[1][m]; 
    hrtt[m][i,j] := Z[2][m]; 
    if Z[3][m] = 0 then 
     hrtw[m][i,j] := 0; 
    else 
     hrtw[m][i,j] := Z[3][m]; 
    fi; 
   fi; 
  od; 
 od; 
od; 
Array([pnet,ptot,pwts,hrtn,hrtt,hrtw]); 
end: 
Procedure displaying results of the sensitivity analysis for the polynomial coefficients 
> res_coeff := proc(A, out) 
local t; 
`print`('``'); 
for t from 1 to RowDimension(A) do 
 print('`FEEDBACK LEVEL`'); 
 `print`(t);  
 `print`('``');  
 `print`(N^F[t]); 
 `print`(out[1][t]);  
 `print`('``');  
 `print`(T^F[t]);  
 `print`(out[2][t]);  
 `print`('``');  
 `print`(W^F[t]);  
 `print`(out[3][t]);  
 `print`('``');  
od; 
end: 
Procedure displaying results of the sensitivity analysis for the Hurwitz determinants 
> res_hurtz := proc(A, out) 
local t; 
`print`('``'); 
for t from 1 to RowDimension(A) do 
 print('`HURWITZ DETERMINANT`'); 
 `print`(t);  
 `print`('``');  
 `print`(N^Delta[t]); 
 `print`(out[4][t]);  
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 `print`('``');  
 `print`(T^Delta[t]);  
 `print`(out[5][t]);  
 `print`('``');  
 `print`(W^Delta[t]);  
 `print`(out[6][t]);  
 `print`('``');  
od; 
end: 
 
Partial derivatives of polynomial coefficients and Hurwitz determinants with respect to all elements 
aij 
> PH := coeff_hrtz(sA): 
See Appendix A for definition of sensitivity matrices. 

Sensitivity matrices for the polynomial coefficients 

> res_coeff(sA,PH); 

Sensitivity matrices for the Hurwitz determinants 

> res_hurtz(sA,PH); 
>  
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APPENDIX C. METHODS AND RESULTS FOR SECOND-ORDER 
MONTE CARLO SIMULATION 

 

This appendix details the methods and results of a second-order Monte Carlo simulation 

(MCS) that explores the effects of different model structures, dependence, and interaction strength on 

the prediction weights of a qualitative model. For consistency with previous research, we have used 

an array of models investigated in prior simulations (Dambacher et al. 2003a). In that study, it was 

assumed that matrix elements were independently, identically, and uniformly distributed. All 

simulations discussed here used 500 replicate stable matrices, i.e. max(Re(λ(A))) < 0, of 18 different 

models. 

In the MCS we varied the distribution shape of elements of matrix #A to compare how the 

proportion of strong and weak links affect the predictive ability of SDGs. The magnitudes of #aij were 

drawn from four different distributions (Fig. 3.3(a) from top): 

(1) Uniform(μ = 0, σ2 = 1) distribution; 

(2) Normal(μ = 0, σ2 = 1/9) distribution doubly truncated at #aij = 0 and #aij = 1; 

(3) Normal(μ = 1, σ2 = 1/9) distribution doubly truncated at #aij = 0 and #aij = 1; 

(4) Normal(μ = 1/2, σ2 = 1/36) distribution doubly truncated at #aij = 0 and #aij =   

   1. 

All matrix elements were drawn independently from the chosen distribution. Each distribution ranges 

from 0 to 1; simulations which drew matrix elements using distributions with supports from 0 to ∞, 

for example an Exponential(1) or Gamma(scale = 2, shape = 3), produced qualitatively similar results. 

We fit a nonlinear least-squares function, Eq. 3.5, to each of the four distributions of interaction 

strength (Fig. 3.3a) using nls (Venables and Ripley 2002) in R (RDCT 2005). All of the parameter 

fits were highly significant (p < 0.001; Table C.1).  

An infinite number of assumptions on the dependence relationships between matrix elements 

are possible. We limited our investigations to the effect of dependence conferred through trophic 

relationships. Trophic relationships occur when a variable X2 consumes another and thus has a 



106 

negative direct effect, - a1,2, on the prey X1. The prey X1 provides a positive direct effect a2,1 on the 

predator. However, |a2,1| < |− a1,2| because of energetic costs resulting from the metabolization of 

ingested matter and the typically pyramidal distribution of predator and prey population abundances.  

In the MCS summarized in Figure 3 we assumed that the ecological efficiency ranges 

uniformly from 0 to 0.1 and that the equilibrium density of the predator is one order of magnitude less 

than the prey equilibrium density. We assume that the simulated matrices represent Jacobian matrices 

(Eq. 3.2) of generalized Lotka-Volterra systems of equations with feasible interior equilibrium points. 

Dependence between #a1,2 and #a2,1 is invoked by first drawing the magnitude of the direct effect of 

predator on prey, |#a1,2|, from its respective distribution (Fig 3.3a). This value of |#a1,2| is then 

multiplied by a random variable drawn from a Uniform(0, 0.01) distribution to produce the magnitude 

of #a2,1, reflecting the assumptions on ecological efficiency and difference in densities above. Thus the 

maximum possible magnitude of #a2,1 is equal to one hundredth of the magnitude of #a1,2.   

The results from these simulations are in Table C.1. Introducing dependence results in very 

weak direct effects of prey on predator. This non-random patterning of very weak direct effects erodes 

the sign determinancy associated with prediction weights relative to the scenario where all 

interactions are drawn independently. The fits for all parameters were highly significant in all cases, 

however, and prediction weights were informative even when dependence was introduced.   

The assumptions on the rates of ecological efficiency and trophic structure above may be 

overly restrictive, and we compared results to a less restrictive scenario where the value of |#a1,2| is 

multiplied by a random variable drawn from a Uniform(0, 0.1) distribution to produce the magnitude 

of #a2,1. Further scenarios explored the effect of weak non-trophic effects, with maximum magnitudes 

set to 1/100th of the maximum magnitude of the negative direct effect of predator on prey, and strong 

non-trophic effects, with maximum magnitudes equal to the maximum magnitude of the negative 

direct effect of predator on prey. Weak non-trophic effects were created by drawing a magnitude from 

the appropriate distribution (1-4 above) and multiplying by 0.1 or 0.01, matching the level of 

dependence introduced into the trophic relationships.  Table C.2 summarizes the effects of varying the 

assumptions of dependence on prediction weights. Strong non-trophic effects reduced the value of βW. 
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Alternatives to Eq. 3.5 may be applied to modify the robustness of probabilities of increase, 

decrease, and weak response given a particular value of prediction weight. Eq. 3.5 fits the expected 

proportion of correct sign (excluding occurrences where an element of adj(− ºA)hij = 0). It was 

assumed that the proportion of correct sign when Whij = 0 was 0.50, that is, there is a 50/50 chance 

that the numeric sign of adj(−#A)hij equals the sign of adj(− ºA)hij when weights are uninformative. An 

alternative approach may seek to bound numeric simulations such that 95% of the points are above 

the fitted line. Some points drop below a 0.50 proportion of correct sign (Fig. 3.3c), therefore Eq. 3.5 

is modified to allow a varying intercept, β0, 
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Here we use quantile regression (Koenker 2005, Koenker 2006) to provide a 95% lower bound on the 

fit of Eq. C.1 to the simulation results (Fig. C.1). Unlike the expected proportion of correct sign (Eq. 

3.5, Figs. 3.4b, 3.4c), the 95% bound on the proportion of correct sign fitted to Eq. C.1 drops below 

0.50. Weights are either informative or uninformative, therefore, a lower limit of 1/3 is set to the 

respective probabilities of the three categories of increase, decrease, and weak response. Eq. C.2 is 

substituted for Eq. 6 to account for this lower threshold on probabilities  
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where h(Wij, Tij) refers to Eq. C.1 evaluated at particular values of prediction weight Wij and total 

feedback Tij. Probabilities of increase, decrease, and weak response are calculated as described in the 

methods with Eqs. C.1 and C.2 substituted for Eqs. 3.5 and 3.6, respectively. 
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Table C.1. Results from the nonlinear least-squares fits shown in Figure 3.3b,c. Distribution types are 
those in Fig. 3.3a, numbered from top to bottom respectively. 
 

Distribution Dependence βW SE P-value βWT SE P-value 
1 No 4.04151 0.05876 <0.0001 0.02614 0.00086 <0.0001 
2 No 3.77860 0.05564 <0.0001 0.02240 0.00083 <0.0001 
3 No 6.96539 0.11434 <0.0001 0.06148 0.00164 <0.0001 
4 No 8.13840 0.13976 <0.0001 0.07910 0.00217 <0.0001 
1 Yes 3.45962 0.17286 <0.0001 0.03417 0.00348 <0.0001 
2 Yes 3.44285 0.16548 <0.0001 0.03254 0.00326 <0.0001 
3 Yes 3.51374 0.19870 <0.0001 0.03962 0.00429 <0.0001 
4 Yes 3.51746 0.20164 <0.0001 0.04175 0.00449 <0.0001 

 

 

Table C.2. Parameter estimates and standard errors using a nonlinear least squares fit for the function 
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dependence and uniformly distributed interaction strength magnitudes. Within pairwise predator-prey 
relationships, PN denotes the negative direct effect of predator on prey, PP denotes the positive direct 
effect of prey on predator, and NT denotes non-trophic relationships. The inequalities denote the 
maximum values of aij depending on whether they are part of trophic or non-trophic relationships. The 
inequalities were compared for three scenarios: zero, one, and two orders of magnitude difference 
between maximum values for the categories PN, PP, or NT.  
 

Scenario Order  βW SE P-value  βWT SE P-value 
PN = NT = PP -  4.0415 0.0588 <0.0001  0.0261 0.0009 <0.0001 
PN > PP = NT 1  3.8921 0.1353 <0.0001  0.0318 0.0023 <0.0001 
PN > PP = NT 2  4.0617 0.1847 <0.0001  0.0339 0.0031 <0.0001 
PN = NT > PP 1  3.4744 0.1348 <0.0001  0.0321 0.0026 <0.0001 
PN = NT > PP 2  3.4596 0.1729 <0.0001  0.0342 0.0035 <0.0001 

 

Table C.3. Fitted parameters for the 95% lower bound on the numeric simulations of Appendix C for 
different values of Wij and Tij.  Simulated data are those of Fig. 3.4c for uniform #aij. 
 

Parameter Estimate 
β0 1253.992
βW 9.766 
βWT 0.139 
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Figure C.1. 95% lower bound on the numeric simulations of Appendix C for different values of Whij 
and Thij.  Simulated data are those of Fig. 3.4c for uniform #aij. 
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APPENDIX D. INSTRUCTION GUIDE FOR BUILDING 
CONDITIONAL PROBABILITY TABLES 

 

This instruction guide describes in detail the transition from a signed directed graph (SDG) to 

a Bayesian Belief Network (BBN). Required software includes: 

 

CPT Builder.mws (Maple file; code in Appendix D), used to create the conditional probabilities 

Netica, BBN software, available at www.norsys.com 

SDG Graphical Editor, used to create the matrix ºA (available on the web at 

http://www.ent.orst.edu/loop/download.aspx) 

 

We start with the qualitative mathematics underlying the red scale Aonidiella aurantii 

example. The system of equations for unparasitized hosts (X1), hosts parasitized by Encarsia 

perniciosi (X2), and hosts parasitized by Aphytis melinus (X3) are: 

( )

( )

( )33,322,311,333
3

33,222,211,222
2

33,122,111,111
1

d
d
d

d
d

d

XXXrX
t

X

XXXrX
t

X

XXXrX
t

X

ααα

ααα

ααα

−++−=

−−+−=

−−−=

  (D.1) 

Here ri describes the number of per capita births – deaths experienced by the scale insect under the 

different states of parasitism. The αij, i ≠ j, represent the coefficient of transfer between parasitism 

states due to interaction with scale insects. The αij, i = j, correspond to self-regulation through 

competition for resources by unparasitized scale insects or reattack by wasps on scale hosts previously 

parasitized by their own species. Rates of parsitization are assumed to be linearly proportional to the 

number of hosts parasitized. 
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The matrix of first partials of the above system of equations evaluated at equilibrium (*) is 

⎥
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which is represented symbolically with the matrix 
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The classical adjoint of –A is then 

⎥
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aaaaaaaaaaaa
aaaaaaaaaaaa

aaaaaaaaaaaa
.  (D.4) 

A positive press perturbation to the intrinsic growth rate of the unparasitized host X1, such as through 

increasing fecundity due to enhanced resource availability, is read down the first column of adj(–A). 

The qualitative response (increase, decrease, or weak response) is registered along the rows. 

Therefore, the qualitative response of X1 and X3 is unambiguously positive, whereas the qualitative 

response of X2 depends on the magnitudes of the elements occurring in adj(–A)2,1. Puccia and Levins 

(1985) discuss the interpretation of such inequalities within small systems based on empirical data. 

Here we employ weighted feedback to provide probabilities of qualitative change in the absence of 

the natural history information necessary to establish the sign of adj(–A)2,1. 

 

D.1 Application 

 

D.1.1 Creating the model ecosystem 

Open the SDG Graphical Editor. Variables are created by clicking on the button 1  and 

then left-clicking at the location where you wish it to be placed. Connecting arrows are drawn by first 
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clicking either the  button or  button at the top of the screen, then clicking on the 

originating variable. While holding the button down, drag the arrow to the receiving variable and 

release. Self-regulating loops are added by selecting the negative arrow, then clicking and releasing 

on the chosen variable. Variable names may be entered by right-clicking on a variable and selecting 

“Edit”. Mistakes can be corrected by clicking first on the trashcan icon followed by the problem 

variable or arrow. 

To build Fig. 3.1, begin by entering the variables X1, X2, and X3 in sequence, then draw the 

connecting arrows and self-regulation loops. After recreating Fig. 3.1, click on “DataTools” in the 

upper left, and then select “Show Matrix View” from the options provided. The matrix is described in 

four ways: (1) the matrix ºA and variable names; (2) the variable names numbered in the order they 

were entered into the SDG editor; (3) a list of the rows of matrix ºA; and (4) a Maple command for 

creating an array that corresponds to ºA. Make sure that the matrix ºA listed (#1 above) has the same 

sign structure as matrix A listed above. Doubleclick on the second row from the bottom (#3 above), 

select all the contents, and copy to the clipboard.  

 

D.1.2 Building conditional probabilities 

Open the Maple file CPT Builder.mws. Place the cursor on the first line and hit the enter 

key. Then hit the enter key once more to execute the procedures; these may then be hidden from view 

by scrolling back up to the text “Procedures” and clicking on the downward pointing grey arrow.  

Next, enter the variable names into the “Namevec” vector between the brackets [] after 

clearing out any previous contents that may be there. These variable names should be listed in the 

same order as they were entered into the SDG editor, i.e. the sequence listed in #2 above (see 

description of “Show Matrix View” function of the SDG editor). For this example, the Namevec 

vector will look like: 

> Namevec := Vector([X1,X2,X3]);  (D.5) 
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After typing in the change in contents, hit enter to execute. You should see Maple rewrite the vector 

in blue immediately below the command line. 

Next the model matrices are specified. In this example we will compare the H-PC model of 

Fig. 3.1 to the null model. The H-PC model has just been created using the SDG editor, and the 

associated matrix ºA is currently on the clipboard. Take the existing command naming a matrix M1 

and delete the contents (a list of matrix rows) located between the outermost brackets [] occurring on 

the right hand side of the assignment operator :=. Paste the rows copied from the SDG between the 

outermost brackets. Then rename the model matrix to “HPC” so that the command appears as follows: 

> HPC := Matrix([[-1,-1,-1],[1,-1,-1],[1,1,-1]]); (D.6) 
 

Then, while holding down the “Shift” key, press the “Enter” key. The cursor will now be blinking 

below the above command line. This is where we will place the command line that will create the null 

model. 

The null model may be created in one of two ways:  

1) Use the SDG editor to create a fully connected three-variable system, including self-regulation, 

then use the “Show Matrix View” function of the SDG editor to copy the resulting matrix rows of ºA. 

This will be use to paste a second model matrix into the Maple file. This matrix will be a 3x3 matrix 

full on 1’s. The resulting command line should look like: 

> HPC := Matrix([[-1,-1,-1],[1,-1,-1],[1,1,-1]]); (D.7) 
 Null := Matrix([[1,1,1],[1,1,1],[1,1,1]]); 

 

2) A better option is to use the shortcut command Matrix(3,fill=1) which creates a 3x3 matrix 

filled with one’s. The command line in this case should look like this: 

 
> HPC := Matrix([[-1,-1,-1],[1,-1,-1],[1,1,-1]]);  (D.8) 
 Null := Matrix(3,fill=1); 
 

After specifying the null model using method 1 (Eq. D.7) or 2 (Eq. D.8), hit enter and verify 

that Maple received the commands. The H-PC and null model matrices should be written in blue font 
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immediately below the command line. It should be noted that a null model is not essential for running 

the program. 

The alternative models will now be placed within a single vector. Again, first delete any 

existing contents between the outermost brackets [] of the Modelvec command. Then enter the names 

of the alternative model matrices; in this case the command line will appear as follows: 

> Modelvec := Array([HPC, Null]);  (D.9)
  
Then hit enter and verify the command execution. 

The Inputvec command declares the variables which receive a press perturbation. These 

should be entered in an order reflecting their introduction into the SDG editor and the Namevec 

command (Eq. D.5). For this example, if press perturbations occur in both X1 and X3, then X1 should 

precede X3 and not vice versa. This procedure will later make pasting conditional probabilities into 

Netica much simpler. Here, though, as in the Results, we will limit the investigation to a press 

perturbation on a single variable, X1. The Inputvec command will then look like: 

> Inputvec := Vector([X1]);  (D.10) 
 

which should be entered and the execution verified. 

Next, hit enter to execute the command: 

> Checkinputs(Namevec,Inputvec);  (D.11) 

The Checkinputs command will doublecheck whether the Inputvec statement was correctly set 

relative to Namevec. If so, a vector of “Ok” entries will appear, with a length equal to the number of 

input variables requested. Otherwise, an error message will appear. 

Now choose a transformation specifying the relationship between prediction weights and 

probabilities. Two choices are given. Method 1 corresponds to the expected response shown using the 

uniform distribution in Fig 4c, and was used in the construction of the BBN models presented in the 

Results. Method 2 uses a 95% lower bound on these points instead (Appendix C). Select method 1 to 

compare this BBN with that presented in Results. After selecting an option, hit enter to execute the 

appropriate trans command. No blue verification will be issued in this instance. 
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At this point, move the cursor so that it is blinking by the X on the last line of code: 

> X := CPTconstruct(Namevec,Modelvec,Inputvec,trans,NoFBtrans,no); 
    (D.12) 

This is the object that will be created using the above information provided by the user. Hit enter and 

the conditional probabilities will be evaluated. The resulting matrix of conditional probabilities is 

assigned to the name X and appears in blue font. Rightclick on the blue placeholder for the matrix, 

select the option “Export As”, and choose “Tab Delimited”. Save the file in an appropriate directory. 

Saving the file with a “.txt” extension will allow it to later be opened with Excel. For this example, 

save the file under the name “HPCcpts.txt”. The conditional probabilities derived from the SDG 

models are now stored in this tab-delimited text file. 

 

D.1.3 Constructing the Bayesian Belief Network 

Construction of the BBN begins with drawing its graph structure (e.g., Fig. 3.4). Open the 

program Netica, select “File”, then “New Network”. First we will enter the “Structure” node 

containing the alternative models (refer to Fig. 3.4). Click on the yellow ellipse  located on the top 

toolbar. Then click within the white blank space to place the node. To rename the title of the node 

from the default “A”, first doubleclick on the node, then type in the appropriate name in the “Name” 

field. Likewise, in the “State” field enter the first model matrix name entered into the Maple 

worksheet (in this case, “H_PC”). Enter the next alternative model name (“Null” in this example) into 

a second state. States can be added by clicking “New”. Then hit “Okay”. The Netica help file is a 

good resource for guiding the BBN construction if there are questions. 

Next, create the row(s) of “observation nodes” below the structure node (see Fig. 3.4). In this 

example, we have three variables and therefore three nodes. Again click on the yellow ellipse  and 

place three nodes into the network. It is convenient to name these in sequence, from left to right, just 

as they were first entered into the SDG editor and the vector Namevec in the Maple file. Title the first 

node “X1”. In the “State” field enter “Increase”, and then add the states “No_Obs_Response” and 
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“Decrease”. Again, new states can be added by clicking “New”. Complete by hitting “Okay”. Repeat 

this process for the two remaining observation nodes, X2 and X3. 

Now construct the “Input nodes” (Fig. 3.3). Click on the yellow ellipse icon, and click on the 

location where the node is to be placed. If there are multiple nodes, place these in the same order 

(from left to right) as their names appeared in the vector Inputvec in the Maple file. In this example, 

with the single input to X1, doubleclick on the single node and change the name to “Input_to_X1”. 

Change the state names to Positive, None, and Negative. 

The nodes are now all in place and they just require connections. While holding down the 

“Ctrl” key, click on all of the observations nodes so that they are all highlighted. Click on Netica’s 

arrow icon. Place the mouse pointer over the structure node and press the left mouse button. While 

holding down the left button, guide the pointer over an observation node and then release. Arrows will 

now connect the structure node to all of the observation nodes.  

After connecting the structure node, check to make sure all observation nodes are still 

highlighted. If so, click on the arrow icon and place the pointer over the input node farthest to the left 

(if there is more than one). Then, as above, click the left mouse button and drag an arrow up to an 

observation node and release. Repeat for all input nodes, moving from left to right, so that all input 

nodes connect to every observation node. 

The network structure is now set and we can begin entering conditional probabilities. First, 

navigate to the CPT output file, in this example saved under the name “HPCcpts.txt”. Open with 

Excel (change the file extension to “.txt” if necessary) to view the calculated conditional probabilities 

which will be transferred into the BBN Netica file. Select all cells containing the probabilities and 

click on “Format”  “Cells”. Select the “Number” tab, then highlight the Category “Numbers”. 

Increase the number of decimal places to 10 and click “Ok”. The conditional probabilities are now 

ready to be pasted into Netica. 

The format of the data file is as follows. The first column lists all possible models in the 

order that they were entered into the Maple file. This column is followed by m columns, where m is 

the number of input nodes, listed in the sequence that they were entered into the vector Inputvec. 
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These input columns, together with the “Model” column, describe all possible permutations of 

conditions within the BBN. Following the input columns are the conditional probabilities. These are 

listed in groups of three, where each observation node (variable) has three adjacent columns giving 

probabilities of increase, unchanged, and decrease. These sets of observational node columns are 

listed in the order that their respective variable names were entered into the vector Namevec.  

Select and copy the conditional probabilities belonging to all three columns of the 

observational node X1 (just the numeric cells). Go to Netica and click on the observation node X1 so 

that it is highlighted. Select the command “Table”  “View/Edit”. Make sure that probabilities, and 

not percentages, are selected from the options tab above the table. Select the entire Conditional 

Probability Table (CPT). (The easiest way to do this is to press “Ctrl” and “A” simultaneously). Then 

paste the content clipboards into the CPT. Note that the columns denoting the conditions in the CPT, 

on the left hand side of the double line, appear in the same sequence as in the data file. The 

conditional probabilities should be matched with their conditions in the CPT, just as they are in the 

datafile. Hit “Okay”, and return to the datafile to select the next three columns of conditional 

probabilities to paste into observation node X2. Repeat the process until the CPT’s for all observation 

nodes have been entered. 

Click and highlight the input node, then select “Table”  “View/Edit”. The CPT for this 

node has a different appearance then the observation nodes because this node has no parents. We will 

begin with equal probabilities of a press perturbation having an input effect of increase, weak 

response, or decrease on variable X1. Select “Table”  “Uniform Probabilities” to specify equal 

probabilities of increase, weak response, and decrease and hit “Okay”. Repeat this process again for 

the structure node to allocate equal prior probabilities for each alternative model being true. 

The network structure and conditional probabilities have now all been added, and the net is 

ready to be compiled. Select “Network”  “Compile” and the BBN is ready for use. Consult the 

Netica help files to learn how to enter findings (observation likelihoods), interpret BBN predictions, 

and conduct sensitivity analyses. 
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APPENDIX E. MAPLE CODE FOR BUILDING CONDITIONAL 

PROBABILITY TABLES 
 

> restart: with(LinearAlgebra): 
 
See Appendix D for instructions. 
 
Procedures 
 
Hit enter to execute, then click upper left grey arrow to hide code: 
 
> Checkinputs := proc(Names,Ins) 
local i, test, j, entrs, k; 
test := Vector(Dimension(Ins)); 
entrs := Vector(Dimension(Ins)); 
for i from 1 to Dimension(Ins) do 
 test[i] := 0; 
 for j from 1 to Dimension(Names) do 
  if Ins[i] = Names[j] then 
   test[i] := 'Ok': 
   entrs[i] := j; 
  fi; 
  if test[i] = 0 then 
   test[i] := 'Input <> Name': 
   entrs[i] := -9; 
  fi; 
 od; 
od; 
for k from 2 to Dimension(Ins) do 
 if (entrs[k] <> -9) and (entrs[k-1] <> -9) then 
  if entrs[k] < entrs[k-1] then 
   test := "Inputvec Sequence Out of Order"; 
  fi; 
 fi; 
od; 
if nops(convert(entrs,set)) <> Dimension(Ins) then 
 test := "Duplicate Name in Inputvec"; 
fi; 
test; 
end: 
 
 
CPTconstruct := proc(Nvec,Mods::Array,Ins,f,NFT,Other) 
local i, j, k, N, Ads, M, Nrows, Ncols, counter, Ind, ModV; 
N := op(ArrayDims(Mods))[2]; 
Ads := Array(1..N); 
Ncols := Dimension(Ins)+1+3*Dimension(Nvec); 
if Other = 'no' then 
 Nrows := N*3^Dimension(Ins); 
elif Other = 'yes' then 
 Nrows := (N+1)*3^Dimension(Ins); 
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else 
 print(Other, yes or no); 
 break; 
fi; 
Ind := Array(1..Dimension(Ins)); 
M := Matrix(Nrows+1, Ncols); 
for i from 1 to N do 
 Ads[i] := Adjoint((-1)*Mods[i]); 
od; 
for j from 1 to Ncols do 
 for k from 1 to Nrows do 
  if j = 1 then 
   M[1,j] := Model; 
   if Other = 'no' then 
    ModV := [seq(op([seq(z,y=1..Nrows/N)]),z=1..N)]; 
    M[k+1,j] := ModV[k]; 
   elif Other = 'yes' then 
    ModV := [seq(op([seq(z,y=1..Nrows/(N+1))]),z=1..N)]; 
    if k+1 < Nrows-(3^Dimension(Ins))+2 then 
     M[k+1,j] := ModV[k]; 
    else 
     M[k+1,j] := 'other'; 
    fi; 
   fi; 
  elif (j > 1) and (j < (2 + Dimension(Ins))) then 
   M[1,j] := In||op(Ins[j-1]); 
   if Other = 'no' then 
    Ind[j-1] := [seq(op([seq(Incr,zz=1..3^(Dimension(Ins)-(j-1))), 
             seq(Unch,zz=1..3^(Dimension(Ins)-(j-1))), 
             seq(Decr,zz=1..3^(Dimension(Ins)-(j-1)))]), 
         y=1..N*3^(j-2))]; 
   elif Other = 'yes' then 
    Ind[j-1] := [seq(op([seq(Incr,zz=1..3^(Dimension(Ins)-(j-1))), 
             seq(Unch,zz=1..3^(Dimension(Ins)-(j-1))), 
             seq(Decr,zz=1..3^(Dimension(Ins)-(j-1)))]), 
         y=1..(N+1)*3^(j-2))]; 
   fi; 
   M[k+1,j] := Ind[j-1][k]; 
  elif j > 1 + Dimension(Ins) then 
   counter := j-(1+Dimension(Ins)); 
   if frac(counter/3) = 1/3 then    
    M[1,j] := Incr||op(Nvec[trunc(counter/3+2/3)]); 
    if Other = 'no' then 
     M[k+1,j] := 
Avg_SpR_IUD(N,Ins,Incr,trunc(counter/3+2/3),k+1,M,Ads,trans,Nvec,NFT
,Mods); 
    elif Other = 'yes' then 
     if k < Nrows-(3^Dimension(Ins))+1 then 
      M[k+1,j] := 
Avg_SpR_IUD(N,Ins,Incr,trunc(counter/3+2/3),k+1,M,Ads,trans,Nvec,NFT
,Mods); 
     else 
      M[k+1,j] := evalf(1/3); 
     fi;    
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    fi;    
   elif frac(counter/3) = 2/3 then 
    M[1,j] := Unch||op(Nvec[trunc(counter/3+2/3)]); 
    if Other = 'no' then 
     M[k+1,j] := 
Avg_SpR_IUD(N,Ins,Unch,trunc(counter/3+2/3),k+1,M,Ads,trans,Nvec,NFT
,Mods); 
    elif Other = 'yes' then 
     if k < Nrows-(3^Dimension(Ins))+1 then 
      M[k+1,j] := 
Avg_SpR_IUD(N,Ins,Unch,trunc(counter/3+2/3),k+1,M,Ads,trans,Nvec,NFT
,Mods); 
     else 
      M[k+1,j] := evalf(1/3); 
     fi;    
    fi;    
   else 
    M[1,j] := Decr||op(Nvec[trunc(counter/3+2/3)]); 
    if Other = 'no' then 
     M[k+1,j] := 
Avg_SpR_IUD(N,Ins,Decr,trunc(counter/3+2/3),k+1,M,Ads,trans,Nvec,NFT
,Mods); 
    elif Other = 'yes' then 
     if k < Nrows-(3^Dimension(Ins))+1 then 
      M[k+1,j] := 
Avg_SpR_IUD(N,Ins,Decr,trunc(counter/3+2/3),k+1,M,Ads,trans,Nvec,NFT
,Mods); 
     else 
      M[k+1,j] := evalf(1/3); 
     fi;    
    fi;    
   fi; 
  fi; 
 od; 
od; 
M; 
end: 
 
Avg_SpR_IUD := proc(N,Ins,SpRIUD,SpR,row,M,Ads,f,Nms,NFT,Mods) 
local k, j, AvgPr, NetVec, SumIns, Prb, Nelem, counts, TotVec, 
SumTot; 
NetVec := Vector(N); 
TotVec := Vector(N); 
NetVec := Vector(Dimension(Ins)); 
TotVec := Vector(Dimension(Ins)); 
for k from 1 to Dimension(Ins) do 
 if M[row,1+k] = 'Incr' then 
  NetVec[k] := Ads[M[row,1]][SpR,GetEntryIndex(Ins[k],Nms)]; 
  TotVec[k] := 
Permanent(Minor(map(abs,Mods[M[row,1]]),GetEntryIndex(Ins[k],Nms),Sp
R,output='matrix')); 
 elif M[row,1+k] = 'Decr' then 
  NetVec[k] := (-1)*Ads[M[row,1]][SpR,GetEntryIndex(Ins[k],Nms)]; 
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  TotVec[k] := 
Permanent(Minor(map(abs,Mods[M[row,1]]),GetEntryIndex(Ins[k],Nms),Sp
R,output='matrix')); 
 elif M[row,N+k] = 'Unch' then 
  NetVec[k] := 0; 
  TotVec[k] := 0; 
 fi; 
od; 
SumIns := add(NetVec[cc],cc=1..Dimension(Ins)); 
SumTot := add(TotVec[cc],cc=1..Dimension(Ins)); 
if SumTot = 0 then 
 if SpRIUD = 'Unch' then 
  Prb := NFT; 
 else 
  Prb := (1-NFT)/2; 
 fi; 
else 
 Prb := ProbTransform(SumIns,abs(SumIns/SumTot),SumTot,SpRIUD,f); 
fi; 
Prb; 
end: 
 
ProbTransform := proc(AdjElem,WtElem,TotElem,SpRIUD,f) 
local P; 
if (AdjElem = 0) then 
  P := evalf(1/3); 
elif sign(AdjElem) > 0 then 
 if SpRIUD = 'Incr' then 
  P := f(WtElem,TotElem); 
 else 
  P := (1-f(WtElem,TotElem))/2; 
 fi; 
elif sign(AdjElem) < 0 then 
 if SpRIUD = 'Decr' then 
  P := f(WtElem,TotElem); 
 else 
  P := (1-f(WtElem,TotElem))/2; 
 fi; 
fi; 
eval(P); 
end:  
 
GetEntryIndex := proc(inp,nms) 
local i, x; 
for i from 1 to Dimension(nms) do 
 if inp = nms[i] then 
  x := i; 
 fi; 
od; 
eval(x); 
end:   
 
 
Enter variable names in same order as qualitative matrix 
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> NamevecFC := Vector([P,A,H,C]); 
NamevecFG := Vector([P,A1,A2,Ap,H1,H2,C1,C2]); 
 
Specify model matrices: 
 
> PD:=Matrix([[-1,-1,0,0],[1,0,-1,0],[0,1,0,-1],[0,0,1,0]]); 
PR:=Matrix([[-1,-1,0,0],[1,-1,-1,0],[0,1,-1,-1],[0,0,1,-1]]); 
NullFC := Matrix(4,fill=1); 
FG := Matrix([[-1,-1,-1,-1,0,0,0,0],[1,0,0,0,-1,-1,0,0],[1,0,0,0,0,-
1,0,0],[1,0,0,-1,0,0,0,0],[0,1,0,0,0,0,-1,-1],[0,1,1,0,0,0,0,-
1],[0,0,0,0,1,0,0,-1],[0,0,0,0,1,1,1,-1]]); 
NullFG := Matrix(8,fill=1); 
 
Place alternative models into single array: 
 
> ModelvecFC := Array([PD,PR,NullFC]); 
ModelvecFG := Array([FG,NullFG]); 
 
Specify vector of inputs: 
 
> Inputvec := Vector([P]); 
 
Check spelling to make sure input vector elements match an element of the name vector: 
 
> Checkinputs(Namevec,Inputvec);Translation function (execute only one from below) 
  
Execute only the option you wish to use; leave the other option unexecuted: 

Translation function, Option 1: Expected value, Fig 3,2c (uniform); Results 

> trans := proc(w,t) 
local p, yprop; 
 yprop := 
evalf(exp(3.45962*w+0.03417*w*t)/(1+exp(3.45962*w+0.03417*w*t))); 
 p := evalf((4/3)*yprop-1/3); 
p; 
end: 
NoFBtrans := trans(1.0, 0): 

Translation function, Option 2: 95% bound, Fig 2c (uniform); Appendix C 

> trans := proc(w,t) 
local p, yprop; 
 yprop := 
evalf(exp(9.766*w+0.139*w*t)/(1253.992+exp(9.766*w+0.139*w*t))); 
 if yprop < 0.5 then 
  p := evalf(1/3); 
 else 
  p := evalf((4/3)*yprop-1/3); 
 fi; 
p; 
end: 
NoFBtrans := trans(1.0, 0): 
> X := CPTconstruct(Namevec,Modelvec,Inputvec,trans,NoFBtrans,no); 
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APPENDIX F. EPIDEMICS IN HOSTS, IN HETEROGENEOUS 
POPULATIONS, AND IN ENDEMIC AREAS 

 

F.1 Elevated prevalence in hosts 

  We determine the condition for an epidemic elevating the prevalence within hosts for the 

standard model. Similar calculations can be made for the vector bias and modified vector behavior 

models. Epidemics elevate prevalence in hosts when the angle θ  (see Figure 4.1) between the 

eigenvectors at the DFE is obtuse. The matrix 0J  has negative entries on the main diagonal and 

positive entries in the off-diagonal elements. The slope of the eigenvector associated with ( )0Js  is 

always positive, and the slope of the eigenvector associated with ( )0Jρ  is always negative. The 

vertical (opposite) angle of θ  therefore always includes part of the positive quadrant.  

Let the matrix W contain the right eigenvectors of the matrix 0J . Let ( )1w  denote the right 

eigenvector corresponding to the maximum eigenvalue, ( ) ( )001 JJ s=λ , and ( )2w  denote the right 

eigenvector corresponding to the minimum eigenvalue, ( ) ( )002 JJ ρλ = , of 0J . The angle θ  is 

determined by the Law of Cosines:  

( ) ( )

( ) ( ) .arccos
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21
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ww
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 The sign of the numerator in Eq. (F.1) determines whether the angle θ  is obtuse:  

( ) ( )( )
( ) ( )( ) acute. is 0sgn

obtuse. is 0sgn
21

21

θ

θ

⇔>•

⇔<•

ww

ww
   (F.2) 

 For the standard model, Eq. (F.2) gives sgn ( )mbeb x
n

y −−μ . Epidemics will elevate prevalence in 

human hosts when n
yx ebmb μ−>  and the angle θ  is obtuse. Epidemics will elevate prevalence in 

vectors when n
yx ebmb μ−<  and the angle θ  is acute.  
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F.2 Heterogeneous susceptibility 

 

F.2.1 Stability of equilibria 

Hasibeder and Dye (1988) use the results of Lajmanovich and Yorke (1976) to show that 

their patchy host-vector model of infected individuals has the same properties as the standard model. 

In the model of gonorrhea transmission investigated by Lajmanovich and Yorke (1976), either the 

DFE is globally asymptotically stable, or there is a single globally asymptotically stable endemic 

equilibrium. The heterogeneous susceptibility model is equivalent to the model of Lajmanovich and 

Yorke (1976) following appropriate substitution, and so it also shares the same properties.  

 

F.2.2 Threshold indices for endemicity and epidemicity 

For the 1+N  dimensional system, the matrix 1

00

−
JJ VF  (see Appendix A) has nonnegative 

entries, and this matrix has rank 2. Only two of the 2+N  coefficients in the characteristic 

polynomial of 1

00

−
JJ VF  are nonzero, giving  

( ) .det 1
2

11

00

−+ +=−− NN c λλλJJ VF    (F.3) 

 In Eq. (F.3), the terms within the coefficient 02 <c  are formed by the cycles of length 2 that define 

disease transmission between the vector and the host subpopulations. There are 1−N  zero 

eigenvalues. The two nonzero eigenvalues are 2c−±=λ . A similar result holds for ( )0JH  since 

( )
0JVH  is diagonal. The cone of epidemicity includes a portion of the nonnegative orthant because 

the matrix ( )0JH  is quasipositive.  
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F.3 Epidemicity at the endemic equilibrium 

 The endemic equilibrium for the standard model (provided that 10 >R  ) is  

( ) ( ) .,
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 van den Driessche and Watmough (2002) show that if the matrix F is nonnegative and the matrix V is 

a non-singular M-matrix, then the spectral radius ( ) 11 >−FVρ  if the spectral abscissa ( ) 0>−VFs , 

and ( ) 11 <−FVρ  if ( ) 0<−VFs . The Hermitian part of the Jacobian matrix of Eq. evaluated at the 

endemic equilibrium, ( )∗JH , has negative entries on the main diagonal and positive entries in the off-

diagonal elements. The matrix ( )∗JH  may be partitioned into nonnegative matrix ( )∗JFH , containing 

the offdiagonal elements of ( )∗JH , and matrix ( ) ( ) ( )∗−= ∗∗ JFV JJ HHH , where ( )∗JVH  is a positive 

diagonal matrix. Thus, the methods described in Section 4.2 and Appendix F.1 may also be applied to 

the standard model at the endemic equilibrium. The threshold index for epidemicity at the endemic 

equilibrium is  

( ) ( )( )
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 An epidemic elevates prevalence within hosts if ( ) ( )22222 rmeabbabrmb n
xyyx +>+ −μμμ . The 

eigenvector associated with ( )( )∗JHs  lies in the quadrant of higher prevalence levels relative to the 

endemic equilibrium, and also continues into the quadrant of lower prevalence levels relative to the 

endemic equilibrium.  



                                                                                                              
                                                                                                              
 


