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This work sets forth a reformulation of Levins' loop analysis for the qualitative

modeling of complex dynamical systems. Relationships between members of ecological

communities can be analyzed through a qualitatively specified community matrix,

whereby +1, -1, or 0 represent effects of one species upon another. A contribution is

made to the analysis of ambiguity in predictions of system response to disturbance and

system stability. The equilibrium response of a perturbed model system is determined

by the countervailing balance of complementary feedback cycles, which are composed

of all direct and indirect effects. The degree to which the correct sign or direction of a

response can be predicted is determined by the proportion of countervailing feedback, as

detailed in a 'weighted predictions' matrix. Similarly, the potential for qualitative

stability is determined by a countervailing balance of overall system feedback, through

the measure of 'weighted stability'. These measures are determined by system structure,

are independent of system size, and are derived through the use of the matrix permanent,

and classical adjoint matrix.

These qualitative techniques are tested against an array of ecological systems

selected from the published literature, and are used to pose falsifiable hypotheses for

previously unexplained results, and provide novel insights into system behavior. Further

validation is accomplished through simulations that suggest the weighted measures of

prediction and stability are a robust means to assess system ambiguity. A discovery was

made of the occurrence of the Fibonacci number series embedded within the prediction

matrices. The reciprocal relationship between community members can be described, in

a dynamical sense, by a convergent value of Phi. This work supports Levins' original

theme that a qualitative understanding of community structure can provide critical

insights into biological complexity.
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QUALITATIVE ANALYSIS OF THE COMMUNITY MATRIX

CHAPTER 1

INTRODUCTION

While the need to research and manage whole ecosystems rather than just single

species has been recognized, working notions of how to accomplish this daunting task

have been vague. Part of this challenge comes from the recognition that ecosystems are

complex, response times are long, and the self-determined nature of biological systems

can produce counterintuitive outcomes. These features present complexities and

dynamics beyond the limits of our immediate cognition, and thus require simplification

and abstraction in the form of models. The task of community ecology is to integrate the

biological community in context with the physical environment. This can be

accomplished through the community matrix (Levins 1968), which details the interaction

of all populations in a biological community.

Levins (1966) ascribes three properties to all models: generality, realism, and

precision. For a model to be practical only two of these can be emphasized in a given

application. Maximizing all three would essentially require a duplication of nature,

which, besides being unwieldy, would be impossible. The critical decision then, is to

decide which property to sacrifice for the other two. Models that sacrifice generality for

realism and precision can be described as mechanistic models; they are commonly

applied by natural resource managers, especially in fisheries (e.g. stockrecruitment and

yield models, bioenergetic models). Intensive data collection and comprehensive

equations yield precise and testable predictions, but these are restricted to a narrow range

of initial conditions. Statistical models sacrifice realism, and emphasize generality and

precision. While these models are useful for describing general patterns with measured

confidence, one is left with little understanding of the real world, as correlation is not

synonymous with causation. Qualitative models sacrifice precision for the sake of

generality and realism. They are free from the constraints of extensive and expensive

data collection, and while predictions are imprecise, they are nonetheless rigorous in
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their derivation, and are testable. This approach was used extensively in the

development of island biogeography theory.

Levins (1974, 1975) developed a qualitative analysis of the community matrix,

termed 'loop analysis', but more generally referred to herein as qualitative modeling,

which is ideally suited to the study of complex biological systems. Qualitative

community matrix models are ideally suited to meet the requirement of ecosystem or

community-level problems. They accommodate large temporal and spatial scales, are

generally applicable, mathematically rigorous, and have high correspondence between

model parameters and the biology of the system. Community matrix models are

centered in the populationcommunity approach to ecosystems (O'Neill et al. 1986), and

operate under the assumption that systems are at or near equilibrium. System variables

are based upon, but not limited to, interacting populations within a community. Through

qualitative modeling, complex physical and social/human variables can also be

incorporated into community matrix models, and the effects of environmental and

human impacts can be assessed through the method. Qualitative modeling is a powerful

technique that has basic data requirements (essentially food web structure, but also

nontrophic variables and interactions), and it can be used to quickly and rigorously

evaluate community stability, predict ecological change due to disturbance or

experimental input, and focus research efforts on critical interactions and hypotheses.

In Chapter 2, qualitative modeling is applied to a meta-analysis of the

experimental record of the snowshoe hare in boreal forests, with the result of a novel and

testable hypothesis of system structure. While the use of qualitative models for the study

of complex systems has proven insightful, it nonetheless is difficult to apply to large or

highly connected systems. This has been due, in part, to difficulty in the hand

calculation of symbolic algorithms, but also to the interpretation of ambiguous results

that arise in large complex systems. Recent computer software advances in symbolic

processors, however, have eliminated the tedium of hand calculations. The present work

takes advantage of these advances, and sets forth, in Chapter 3 a reformulation of

Levins' loop analysis technique. More importantly, this work presents a theoretical

advance in the treatment of model ambiguity, which is validated herein through

published studies of biological communities in Chapter 3, and through computer
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simulations in Chapter 4. Arising from this treatment, a novel insight is gained in

Chapter 5 that shows that reciprocal relations between community members adhere to an

underlying dynamical pattern related to the Fibonacci number series, and the golden

mean, Phi. This work demonstrates an increased scope of inference for the qualitative

analysis of large complex systems, and highlights Levins' original theme of the

importance of system structure in advancing useful theory for the discipline of

community ecology.



CHAPTER 2

PARSIMONIOUS INTERPRETATION OF THE IMPACT OF VEGETATION, FOOD,

AND PREDATION ON SNOWSHOE HARE

Jeffrey M. Dambacher, Hiram W. Li,
Jerry 0. Wolff and Philippe A. Rossignol

Published March 1999 in Oikos 84(3):530-532
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The cyclical fluctuation of snowshoe hares (Lepus americanus) and their

predators is a prominent feature in the boreal forests of North America that has been

intensively studied by biologists for over 50 years. Controversy exists as to the

causative mechanism, and research has focused on what factors initiate the decline phase

of the cycle. Opinions are split between bottom-up, or top-down control. Keith

proposed that food becomes limiting for hares during peak densities, and their decline is

intensified by increased predation and decreased reproduction (Keith 1963, 1990, Keith

and Windberg 1978, Keith et al. 1984). Others have come to favor predation pressure as

sufficient to initiate and complete the decline of hares (Krebs et al. 1986, Sinclair et al.

1988). Hypotheses have been based on observations of hare and predator demographics

throughout the cycle, and on experimental manipulation of vegetation, hare, and predator

populations.

Krebs et al. (1995) summarized an 8-year experiment that measured the response

of hare density to feeding, predator reduction, and plant fertilization, and concluded that

the system has three interacting trophic levels. Food addition and predator reduction

treatments each had positive effects, and together were multiplicative. These results

were consistent with working assumptions of the importance of food and predation to the

hare cycle, but the authors were puzzled by results of fertilization. They reported that all

elements of the flora in the boreal forest responded dramatically to fertilization, but in

spite of this, no response in hares was measured. Fertilization, it was concluded, was an

ineffective method of food addition.

This paradox could be resolved if it were understood how the three elements of

this natural system interact, and whether or not they are sufficient to account for

experimental observations. Therefore we constructed a parsimonious three-trophic-level

model to account for the experimental results of Krebs et al. (1995), and to gain further

insight into the interaction among vegetation, hares, and predators.



Application of Qualitative Modeling

Using qualitative analysis (Levins 1974, Riebesell 1974, Puccia and Levins

1985) and based upon the literature available in published journals, we compared model

behavior with experimental results. In qualitative analysis, herbivory-vegetation and

predator-prey interactions are depicted in terms of system feedback to populations, with

consumers receiving a positive link, and the consumed receiving a negative link.

Negative feedback connecting a population to itself is termed a self-effect. In plants this

is commonly manifested as a density-dependent effect through nutrient limitations, and

is called 'self-regulation'. A predator that obtains food from outside the model system,

through alternate prey, allows the predator population to not depend solely on prey from

within the model. From the context of the model, this equates to a self-effect, and the

predator is termed 'regulated'. A population that receives all predation losses and food

from variables within a model system has no self-effect, and its growth rate is

determined solely by variables from within the model.

Experimental manipulations are interpreted as input to the population elements of

a system in terms of increases or decreases to birth and death rates. An exclusionary

reduction of predators is equated as a decrease in the death rate of prey, but not as an

increase in the death rate of predators; addition of hare food pellets is an increase in hare

birth rate (a basic LotkaVolterra assumption) and is mathematically equivalent to

reduction in predation pressure. Similarly, the fertilization of vegetation is viewed as

input to vegetative growth, but not a direct input to hares. Procedures for carrying out

these calculations on a PC-based symbolic processor such as Mathcad (Mathsoft,

Cambridge, MA) are available in Li et al. (1999).

Model Linkages and Predictions

Interactions among vegetation, hares, and predators are most simply portrayed by

model A (Figure 2.1). Predators in the model represent a guild of mammalian and avian

predators that are regulated, whereby hares are a dominant, but not exclusive source of

6



Model A
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Figure 2.1. Models of possible interactions between vegetation (V), snowshoe hares
(H), and predators (P). Lines with arrows indicate positive links, those with filled circles
denote negative links. The self-effect to vegetation represents self-regulation and to
predators, another prey source.

food (Nellis et al. 1972, Rusch et al. 1972). Vegetation is also depicted as being self-

regulated, which connotes density-dependent effects common to this trophic level, but is

also indicated by nitrogen limitation in boreal forests (Bonan and Shugart 1989, Nams et

al. 1993).

Using techniques for deriving the effects of input (Levins 1974, Riebesell 1974,

Puccia and Levins 1985), model A's predictions (Table 2.1) of a positive response of

vegetation to fertilization, and a positive response of hares to feeding and predator

reduction is consistent with results of all published field experiments (Windberg and

Keith 1976, Krebs et al. 1986, 1995, John and Turkington 1995). But the Krebs et al.

(1995) observation of no response of hares to plant fertilization is in contradiction to a

positive response predicted by model A. The parsimonious model with predictions

consistent with this result, and with results in all other reports, was attained from model

B (Figure 2.1, Table 2.1), by the addition of a positive link from vegetation to predators.



Table 2.1. Calculated response to input for alternative
models depicted in Figure 2.1; effects of positive input to
vegetation, snowshoe hare, or predators, are portrayed as
changes that are positive (+), negative (), or neutral (0).
The boxed-in areas (dashed-lines) represent the extent of
measured responses in Krebs et al. (1995).

Positive Direction of response of
Model input to vegetation hare predator

A vegetation

hare

predator

vegetation

hare

predator
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The predictions for models A and B (Table 2.1) differ only in the response of hares to

input in vegetation, and of predators to input to hares, both of which are positive in

model A, and neutral in model B. Neutral responses in the context of experimental

results arise as treatment effects that are not discernable from control values (Puccia and

Levins 1985). They occur where countervailing positive and negative system feedback

upon a variable cancel out, either completely or to an extent that measured responses are

weak and statistically insignificant. Two additional models, variations of A and B with

no self-effect to predators, were considered in our analysis, but were discounted, as their

prediction of a neutral response from hares to feeding, or to an exclusionary reduction of

predators was inconsistent with a positive response in reported experiments (Windberg

and Keith 1976, Krebs et al. 1986, 1995).

Predicted responses for model B imply an important link between vegetation and

predators that in effect neutralizes any net benefit from fertilization being passed on to

snowshoe hare. In model B, fertilization could translate to an increased birth rate of

hares, but it would also effect an increased death rate in hares through predation, with no

0

0
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net change in the population size of hares. In this context fertilization of vegetation is

not equivalent to food addition to hares, which is apparently the source of the

puzzlement in Krebs et al.'s (1995) interpretation of their data.

The exact nature of the vegetation-predator link is as of yet undefined, but is

presumably nontrophic, and we submit, may be associated with increased predator

efficiency through vegetative cover. This link is admittedly counterintuitive and, by our

examination, does not appear in the literature on snowshoe hares; this should not be

surprising, as nontrophic interactions are difficult to substantiate, and most likely to be

revealed through unexpected experimental results. We speculate that vegetative growth

might confer a tactical advantage to lynx (Lynx canadensis). O'Donoghue et al. (1998)

report that lynx use hunting beds to ambush both hare and red squirrels (Tamiasciurus

hudsonius), and use of hunting beds increased during the decline and low phases of the

hare cycle. The vegetation-predator link that we are suggesting here need not occur for

all species in the predator guild; model B only requires that an overall positive link,

possibly quite weak, be present.

Verification and Properties of Model B

Experimental studies of this natural system have focused on responses of

vegetation and hares. Our analysis suggests a critical test would also include

measurement of the experimental response of predators, either density or predation

pressure, to an input to hares. A neutral response (Table 2.1) would favor model B over

model A.

An important difference between models A and B, is that A can be globally

stable, and B can only achieve conditional stability (Levins 1974, Puccia and Levins

1985). A stable system is difficult to disturb and not likely to oscillate, which is

inconsistent with the well known fluctuations exhibited by hares and their predators.

Oscillatory response to input inherently arises in model B from the large positive loop

through a vegetation-to-predator-to-hare-to-vegetation linkage. Cyclical fluctuations in

abundance could be a natural feature of the positive feedback running through all
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elements of this biological system, and the effects of a perturbation to any one element

of the system would likely be carried on through time to all elements of the system.

System oscillations could be manifested and maintained both by external input to the

system and internal system dynamics Top-down or bottom-up influences may vary

temporally and spatially (Ranta et al. 1997) and need to be considered in the context of

the overall effects of the system's linkages.



CHAPTER 3

RELEVANCE OF COMMUNITY STRUCTURE IN

ASSESSING INDETERMINACY OF ECOLOGICAL PREDICTIONS

Jeffrey M. Dambacher, Hiram W. Li and Philippe A. Rossignol

11



Abstract

The community matrix is potentially a powerful tool for community ecology.

While it details the direct interactions between community members, it can also be used

to quantify all of the indirect effects that occur in a community, and thereby make

predictions regarding population response to experimental treatments or natural

disturbances. These predictions are essentially hypotheses of system behavior that can

be rigorously evaluated. Use of the community matrix, however, has been hindered by

indeterminacy and ambiguity in response predictions. In this study we reveal a

theoretical source of the problem that arises as a consequence of community structure.

Using a qualitative analysis of the community matrix, we detail the

complementary feedback cycles that contribute to the response of a population following

a sustained or press perturbation. Complementary feedback is the sum of all direct and

indirect effects that can contribute to a response. We develop a 'weighted predictions

matrix' that assigns a probability scale to sign determinacy of predicted responses. This

matrix is formed by the quotient of the net sum of complementary feedback cycles and

the absolute number of complementary feedback cycles.

A qualitative analysis of system structure provides a theoretical benchmark for

understanding a spectrum of behavior in biological systems, and for framing and

prioritizing management interventions for whole communities. This advance clarifies

much of the uncertainty and ambiguity found in predicting the behavior of large and

complex systems. We validate these tools by analyzing published studies of community

response.

Introduction

An important approach for understanding and analyzing natural communities is

analysis of perturbations, whether through planned experiments, or experiments

capitalizing on natural disturbances (Diamond 1986, Walters and Holling 1990).

Perturbations alter community equilibrium through input to one or more populations,

12
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ultimately changing rates of birth or death. The direct relationships between populations

define community structure, and consequently determine how the effects of a

perturbation are propagated through both direct and indirect paths of interaction.

For a LotkaVolterra dynamical system of n interacting species or resource

variables N, change in the equilibrium population N of species i

dNi*Idt = f(N1,N2, ,N rpi,p2, ,pc) (3.1)

is a function (f) of other species or variables in the system, and their associated growth

parameters (pc). At or near equilibriumfi =f2 =. . = 0. Direct relationships between

community members, formally organized in the Jacobian, or community matrix A,

determine the interplay between population abundance N, and carrying capacity K (both

column vectors), by the equation AN = K (Levins 1968).

The inverse of the community matrix provides an estimate of the change in

equilibrium abundance of each community member resulting from sustained input to the

birth or death rates of a jth species, such that its carrying capacity is altered.

dN = (3.2)
"-EJ

In derivation of the effects of sustained positive input to a variable (i.e increase in

birth rate or decrease in death rate), the inverse of the negative community matrix (A-1)

is obtained (Nakajima 1992). Taking the inverse of the negative community matrix

maintains a sign convention for both even- and odd-sized systems, whereby positive

input at species/ is read down the columns of the inverse, and response of species i

along the rows. When input is negative (increased death rate or decreased birth rate), the

response signs are reversed. Nakajima (1992) presents a thorough derivation of the

inverse, but see also those of Yodzis (1978, 1988), Bender et al. (1984), and Stone

(1990).

Bender et al. (1984) formalized the use of the inverse matrix for conducting

'press' experiments in ecology, whereby change in the equilibrium level of community

members is measured following a sustained alteration in the abundance or density of a

species or variable within the community. The goal of the experiment is to apply as

large an input as is practical, so that equilibrium responses are relatively large and



14

measurable, but not so dramatic as to cause the extinction of a community member.

Reciprocally, it is possible to estimate each element of the community matrix through n

press experiments, measuring each of n responses in abundance, and then 'inverting' the

inverse matrix itself. Press experiments assess the long-term consequence of direct and

indirect effects at a new equilibrium. Conversely, a 'pulse' perturbation experiment

provokes an instantaneous alteration of a species' abundance, and examines the return of

the community to a previous equilibrium state. This experiment addresses only the

immediate effects from direct interactions detailed in the community matrix.

The inverse community matrix is potentially a powerful tool for community

analysis because it predicts the ultimate effect of an input on all community members.

Each prediction, or element of the inverse matrix, is in essence a testable hypothesis of

expected system behavior that can be rigorously evaluated by the Malthusian parameters

of birth rate, death rate, population size, and mean generation time. Experimentalists

have commented, however, that predictions based on the inverse community matrix can

be highly indeterminate, and appear to be overly sensitive to the values of the interaction

coefficients. Response predictions that incur a high proportion of sign reversals are

considered to have high 'sign indeterminacy'. Yodzis (1988) portrayed the problem of

sign indeterminacy via computer simulations that randomly assigned the strength of

interactions in elements of community matrices. Relatively small changes in interaction

values were often found to reverse the direction (or sign) of a response, causing for

example, a population increase instead of a decrease. As an example, the following two

community matrices demonstrate sign reversal in an inverse matrix prediction (bold

font) that arises from small changes (+7- 0.1) in interaction strength.

Thus predictions from the inverse matrix have been obscured, to an unknown

degree, by a cloud of indeterminacy, the source of which has been attributed to natural

variation in the values of interaction coefficients and to measurement error (Bender et al.

-0.8 -0.2 -0.4 1.0 -0.8
A' = 0.7 0 -0.5 -A" = -2.1 1.7

0.71
-4.7

0.6 0.3 0 1.4 0.8 1.0

-0.8 0.3 -0.5 2.0 -2.5
= 0.6 0 -0.4 -A' = -7.0 8.7

3.01
-15.5

0.7 0.2 0 3.0 -1.2 4.5
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1984, Yodzis 1988, Schmitz 1997, Laska and Wootton 1998). This conclusion has been

reached more or less by default, since the inverse matrix has been treated essentially as a

black box, and a theory of indeterminacy, in and of itself, has not been formally

addressed.

We submit that beyond variation in interaction strength, community structure can

itself be an important, and at times overriding source of indeterminacy. We provide an

analysis of this source of indeterminacy to shed further insight into the theory and

practice of press perturbations and the interpretation of community responses. Three

theoretical advances to the problem are presented herein. First, we use the so-called

classical adjoint matrix to identify the relative strength of complementary feedback (as

defined below), with the conclusion that a source of indeterminacy arises from the value

and number of complementary feedback cycles. Second, we derive an absolute feedback

matrix that details the total number of complementary feedback cycles involved in each

community response. Finally, we derive a weighted predictions matrix that scales the

responses of the adjoint, and allows for assessing the reliability of each prediction. We

apply these tools to a number of published studies of biological communities, reinterpret

conclusions, and illustrate practical management applications.

Analysis of the Classical Adjoint Matrix

Community response for LotkaVolterra systems was first addressed in the

ecological literature by Riebesell (1974) and Levins (1974, 1975). Riebesell presented a

general derivation, leading to (adapted from his equation 19),

= 1 [(-1)i±i det(min Aii)K jdetA j=i

where Aq is the matrix formed by replacing the jth column of the community matrix A

with the column vector K of carrying capacities, det is the matrix determinant, and min

denotes the n-1 by n-1 minor matrix formed by deleting the row and jth column in a

matrix. Input is assessed here through change in the inserted column vector K. This is

an application of Cramer's Rule to determine how the general solution of AN = K is

(3.3)



affected by change in K (such as in O'Neil 1995). Levins presents an equivalent matrix

formulation,

dNi*

dp,

det

dfi
a1,1 a1,1+1

dp,
df2

a2,1 a2,2 a2, j+1 a2,n
dp,

df
an1 a,j n an,1+1 an,n,

"P

df

dp
c

det A

(overall)Feedback

[PathVl[Feedbackn(c° kmPlementary)]
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(3.4)

where the vector [df/dp ] is substituted in the jth column of the determinant of the

community matrix. Via Cramer's Rule, the cofactor expansion in Equation 3.4 gives, to

the system of differential equations in Equation 3.1, a solution for the change in

equilibrium abundance of an ith species or resource variable, due to a change of

parameter pc for a ith variable. Since quantification of terms in Equations 3.3 and 3.4 is

rarely possible, Levins developed an algorithm for hand computation, which interprets

signed digraph structure for a qualitative assessment of community response.

(3.5)

We discuss the terms of this algorithm below; but note first that Equations 3.3

3.5 all include analogous formulations of a cofactor expansion of the community matrix.

These can generally be expressed as

N 1 C..K . (3.6)
detA

where Cii is a cofactor of A (i.e. Cii = (-1)i±i det(minAii), Appendix 1). Each matrix

cofactor, when transposed (trans) and divided by the system determinant, is the same as

corresponding elements of an inverse matrix. Considering the matrix of all cofactors C,

we have the following algebraic equalities,

c trans adj AA = (3.7)
det A det A
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where the transposed matrix of cofactors is by definition the same as the classical adjoint

(adj) or adjugate matrix (Searle 1966). When taking the inverse of the negative

community matrix, to predict the effects of press disturbance, we can also apply the

adjoint of the negative community matrix through the equality

A-1 = adi - A (3.8)
det - A

The denominator (det A) will be positive in stable systems of both even and odd size,

and therefore it will not affect the sign of the adj Aii elements. Thus the sign of

elements will be the same as adj Au elements in any stable system (Appendix 1). We

emphasize these equalities for their ease of computation by symbolic processors in

computer software that are now widely available. Appendix 1 briefly explains these and

subsequent matrix methods used in this work.

Following Levins' terminology from Equation 3.5, and the equalities in Equation

3.8, each response in the inverse matrix can be considered as a quotient of the feedback

that is affecting a variable, divided by the feedback of the overall system. Overall

feedback is the highest level of feedback of the entire system, and is calculated as the

determinant of the community matrix (Appendix 1). The determinant is a measure of a

system's resistance to perturbation, and it scales the magnitude of each response. When

disturbed, the stability of a system depends on its ability to exhibit self-damping or

negative overall feedback. Thus a necessary condition for stability is negative overall

feedback. The numerator of Equation 3.5 is a sum of the products of the sign of three

terms: 1) all inputs to the jth variable [df/dp ], 2) the different paths (length k, where k

n) of linkages connecting variable j to i [Pathil], and 3) the linkages of complementary

I complem en tary )j Togethersubsystems of nk variables not on a j-to-i path [Feedbackn_k

these terms constitute a feedback cycle (or loop), n-1 in length that contributes to change

in the size of a population, or to the amount of a resource variable (see Levins 1974,

1975, or Puccia and Levins 1985, 1991 for a more detailed derivation and explanation of

Equations 3.4 and 3.5). Levins (1974) coined the term 'loop', but now prefers the term

'cycle' for its original and broader usage in graph theory (Levins and Puccia 1988).

Calculation of the entire set of n by n predictions from Equation 3 5 makes up

Levins"table of predictions', which, when transposed, is equivalent in sign to the



18

inverse and adjoint matrices in Equation 3.8. In this work, rather than coin a new term,

we extend the use of the term 'complementary' to mean more than a subsystem of

variables not on a j-to-i path, but also to describe the entire feedback cycle constructed

from the terms in Equation 3.5. Complementary feedback cycles then, comprise the

ultimate effects of a sustained perturbation to a system, and propagate through both

direct and indirect paths.

The inverse of a matrix is equal to its classical adjoint matrix (referred to

hereinafter as the adjoint matrix) divided by the determinant (Equation 3.8). By

extension, the adjoint of the negative community matrix is equivalent to Levins' table of

predictions (but transposed), and therefore represents the complementary feedback

contributing to each response in a system. Since the denominator, or determinant, is

constant for all elements of the inverse matrix, the numerator, or adjoint, therefore

contains all variation of responses within the system.

The above calculations presume that a system exhibits Lyapunov, or

neighborhood stability (Lyapunov 1892), whereby a system is attracted to a local point

of equilibrium, such that the abundance of all community members remain > 0.

Unstable systems are extinction prone, while stable systems are not. From Equations 3.7

and 3.8 we see that matrix inversion requires a nonzero system determinant A system

with a negative determinant can have a local attractor and be stable (but not necessarily),

while one with a positive determinant can never be stable (note sign convention of

determinants in Appendix 1). A system with a determinant equal to zero has no local

attractor, and is termed 'neutrally stable'. A system at or close to neutral stability is

prone to be controlled by exogenous input, with little or no self-determined response, or

familiar states of equilibrium. The stability properties of a system are based on its

eigenvalues, which can be analyzed through both quantitative (such as in O'Neil 1995)

and qualitative means (May 1973, 1974; Puccia and Levins 1985).



Absolute Feedback and the Weighted Predictions Matrix

Each element of the adjoint matrix represents a sum of positive and negative

cycles. To illustrate, we consider a community matrix specified by only the signed unity

(-1, +1, 0) of its interaction terms (denoted as °A). Qualitatively specified as such,

calculations of system feedback, either complementary (adjoint) or overall

(determinant), are rendered in the whole units of feedback cycles. Sign indeterminacy of

a response prediction arises as follows. Any particular value, +4 for example, of an

adjoint matrix element is difficult to interpret because it is derived from the sum of both

positive and negative cycles. Three specific scenarios for the +4 value may be either 44

positive minus 40 negative cycles, or 6 positive minus 2 negative cycles, or only 4

positive cycles. If cycles contributing to a negative response were 15 percent stronger

than the positive, then a negative response would occur in the first scenario, a positive

response in the second, but only a positive response could occur in the third. This

varying potential for sign indeterminacy illustrates that these are not equivalent

predictions. The adjoint matrix, however, cannot be used to distinguish among them

without a complete accounting of all the complementary feedback cycles.

Each element of the adjoint matrix can be weighted by the total number of cycles

contributing to it (both positive and negative). This result is obtained from the following

formula that yields the 'absolute feedback' matrix (T)

\trans
per(min (3.9)

where the matrix permanent (per) is applied to each matrix minor of a community matrix

that is specified by absolute qualitative values (i.e. by either 1 for all aq # 0, or by 0;

denoted as A). The matrix permanent is computed as the determinant, but expansion is

without alternating sign, or subtraction (Mine 1978, Appendix 1); it is also referred to as

a 'plus determinant' (Eves 1980, Marcus and Mine 1964). Equation 3.9 is similar to a

cofactor calculation, as in Equation 3.3, but without any negative elements in A, or sign

alternation in the expansion of minors (Appendix 1). Each element of T is merely a

count of the total number of both positive and negative feedback cycles in a response.
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Dividing the absolute value ( I I ) of each element of the adjoint matrix by each

corresponding Tj, yields a matrix of ratios, or the 'weighted predictions' matrix (W)

lad/ A IW (3.10)

with Wq = 1 when absolute feedback Tii = 0, and where is a vectorized matrix

operator that denotes element-by-element division.

Possible values of range between 0 and 1. Values of Wii near zero yield

predictions that would be highly indeterminate. Reliability would increase with the

value of Wii, such that predictions of = 1 would be expected to be completely

reliable in terms of their response sign or direction. In the three previous scenarios (2

paragraphs above), these ratios are 0.05, 0.5, and 1, respectively, ranging from high

indeterminacy to absolute certainty. Where there is zero absolute complementary

feedback (i.e. Tij = 0), there is a neutral response in the adjoint, and the weighted

prediction is constrained to 1. Zero absolute complementary feedback often occurs in

small (n < 5) or weakly connected systems, and is likely to be absent in large or highly

connected systems.

Signed Digraphs and Example

To illustrate the above techniques, we present an example system in signed

digraph (sign di-rected graph) and matrix form. Signed digraphs depict relationships of

system variables based on sign of interactions, with positive effects denoted by links

terminating in an arrow and negative effects terminating in a filled circle (--e). In

ecological systems, they represent community structure, and have direct correspondence

with community matrices. Subscripts of aij matrix elements are interpreted as the direct

effect of species/ upon species i. Off-diagonal, or ail, terms of the community matrix can

include predator-prey (.-4 ), competitive (-), mutualistic (<--->), commensal (>),

amensal (--*), or neutral interactions. Self-effects, or aii diagonal terms, pertain to

intraspecific interactions, such as density-dependent or self-regulation feedback



(negative), or self-enhancing feedback (positive), and are depicted by links that connect

a variable to itself.

The following system, depicted in signed digraph and community matrix form,

corresponds to the quantitatively specified matrices on page 14; it has three sets of

predator-prey interactions, one of which is omnivorous.

[
a2,3a3,2

adj - A = -a2,3a3,1

a2,1a3,2

-a1,3a3,2

a3,1a1,3

a1,1a3,2-a1,2a3,1

21

Stability is ensured when the overall feedback, or determinant of this system (ai,1a2,3a3,2

+ a3Jai,2a2,3 a3,2a2, al ,3) is negative (Appendix 1). This result requires that the strength

of a single positive feedback cycle be less than that of the two negative cycles combined.

From Equation 3.8 we obtain, in symbolic form, a set of predictions corresponding to the

inverse matrix, and to Levins' transposed table of predictions.

a1,2a2,3

-au a2,3-a1,3a2,1

a2,Pai,2

If one wanted to symbolically portray the absolute feedback matrix (T) for this system, it

would simply be the absolute value of the above matrix elements. In this example

positive input to species 2 results in a decrease in its prey, species 1, by way of the

complementary feedback cycle ai,3a3,2. The response prediction of species 3 from

input to 2, however, is ambiguous, and contingent upon the countervailing balance of

complementary feedback cycles ai,1a3,2 ai,2a3,1. The ai,2a3,1 cycle, which here is

negative, is also included in the system determinant (in conjunction with a2,3) as a

positive feedback cycle that must be weak for the system to be stable. Thus one could

draw inferences about expected system behavior based on these contingencies. Correct

prediction of the sign of the response of species 3 from input to species 2 requires

quantitative knowledge of the relative strengths of the interaction terms involved.

Where certain predictions are critical in the understanding or management of a system,

development of key research questions can be based on this kind of analysis and

knowledge of system structure.

-a11 -a12 -a1,3

A= a2,1 0 -a2,3

a31 a3,2 0
_



Equivalent analysis of this system's qualitatively specified matrix,

A=

from Equations 3.8-3.10, gives the following results,

22

which can be seen to correspond with the above symbolic analysis and the quantitative

matrices on page 14.

Interpretation of the symbolically rendered adjoint matrix is an equivalent

formulation of Levins' loop analysis technique, which can provide rich insight into the

behavior of complex systems. In ecological systems it is exceedingly rare that we have

sufficient knowledge for a quantitative analysis; indeed, techniques for field

measurement of interaction strengths have only recently been available (Paine 1992,

Laska and Wootton 1998). Often available, however, is much descriptive information

on community structure that can be incorporated into a symbolic or qualitative analysis.

In small, or sparsely connected systems, analysis of a qualitatively specified community

matrix (A) with the adjoint, absolute, and weighted predictions matrices is of less value

than a symbolic analysis, as loss of the symbolic contingencies represents an enormous

sacrifice of information. In large or highly connected systems, however, symbolic

output is difficult, if not impossible to interpret, for as will be shown, the number of

complementary feedback cycles, and hence logical contingencies, multiply factorially

with system size and connectivity. In these circumstances, use of the qualitatively

specified adjoint and weighted predictions matrices can distinguish between the relative

contribution of community structure and interaction strength, and help interpret

community response to input. To illustrate this point, we analyze four published studies

in which indeterminacy plays an important role in the interpretation of presses. Except

for a noted exception, the systems below are qualitatively or quantitatively stable.

--O.
-1 1

11 11

ladj A I 111
adj - A = -1 1 -2 T= 211 111W

1 0 1_ 1 2 1 101



Applications

A Paradox From Plankton: Stone (1990) presented a plankton community model

(Figure 3.1) with a community matrix specified by plausible interaction terms. He

analyzed both quantitative inverse matrix predictions, and symbolically rendered

predictions, to explain the paradoxical benefit to phytoplankton that is possible from its

commensal contribution of organic carbon to a resource competitor. We use Stone's

system as a point of departure to compare qualitative and quantitative predictions of

response sign and magnitude.

Comparing Stone's quantitative results with a qualitative analysis of the adjoint

matrix, we found that a third of the predictions did not match in terms of response

direction or sign (Figure 3.2). We calculated the weighted predictions matrix for this

system (Figure 3.2) and found that all inconsistencies had low weighted prediction

values. Examining the first column of the inverse of Stone's matrix (representing the

indirect effects to community members from positive input to protozoa, Figure 3.1), we

noticed that the second (K12,1) and fourth (A-14,1) elements have the same absolute

strength but are opposite in sign. The second element, however, does not match the sign

of the qualitative prediction. The cause for this inconsistency is identified in the

qualitative and symbolic rendering of the adjoint matrix (Figure 3.2). The second term

of the first adjoint matrix column consists of 7 countervailing cycles (4 positive and 3

negative) that yield a sum of +1 complementary feedback cycle. When divided by the

absolute number of cycles, as done in the weighted predictions matrix, a low value of

0.14 is observed, meaning that only 14% (1 cycle in this case) of cycles contribute to the

net direction of the response. Thus a minor quantitative change can easily reverse the

direction of this prediction. In the fourth term (of first column), only 2 cycles contribute

to the response, but both are positive; it therefore receives a value of 1 in the weighted

predictions matrix.

Because the adjoint of a qualitatively specified system details the net number of

complementary feedback cycles contributing to a given response, it follows that there

should be some positive relationship between it and the inverse matrix of a quantitatively

specified system. A test of this assertion in the plankton community model found that
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Plankton-Bacteria-Protozoa Community

R: protozoa
B: bacteria
Z: zooplankton

A=

P: phytoplankton
N: nutrients

symbolically specified
community matrix

quantitatively specified
community matrix

1 0.6 0 0 0
0.6 -1 0 0.1 0.6
0 0 -1 0.2 0
0 0 -0.2 -1 0.5
0.6 -0.6 0.2 -0.5 -1

inverse community matrix
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Figure 3.1. Signed digraph, community matrix, and inverse matrix for plankton
community model; interaction terms quantitatively specified with plausible numeric
values (from Stone 1990).

a1,1 a1,2 0 0 0

a2,1 a2,2 0 a2,4 a2,5

0 0 -a33 a3,4 0

0 0a -_ 4,3 - a4,4 a4,5

a5,1 -a52 a5,3 -a54 - a5,5_

0.9 0.4 0.05 -0.06 0.2
-0.2 0.7 0.09 -0.09 0.3

- A-1 = 0.05 -0.01 1 0.1 0.07
0.2 -0.06 -0.09 0.8 0.4
0.5 -0.1 0.2 -0.3 0.7



adj - Ai,1 =

Qualitative and Symbolic Analysis of Plankton Community Model

first column of
symbolically rendered adjoint

a a a a +a a a a +a a a a +a a a a +a a a a +a a a a -a a a2,2 3,3 4,4 5,5 2,2 3,3 4,5 5,4 2,2 4,3 3,4 5,5 5,2 3,3 2,4 4,5 5,2 3,3 2,5 4,4 5,2 4,3 2,5 3,4 2,2 5,3 3,4a 4,5
a a a a +a a a a +a a a a +a a a a -a a a a -a a a a -a a a

2,1 5,3 3,4 4,5 5,1 3,3 2,4 4,5 5,1 3,3 2,5 4,4 5,1 4,3 2,5 3,4 2,1 3,3 4,4 5,5 2,1 3,3 4,5 5,4 2,1 4,3 3,4a 5,5

Figure 3.2. Qualitatively specified community matrix (X) for plankton community model (as in Figure 3.1), with adjoint (adj -X),
absolute feedback (T) , and weighted predictions matrices (W). Adjoint matrix elements that differ in sign from inverse matrix of
quantitatively specified system (Figure 3.1) in bold type, as are corresponding elements of T and W. The eight qualitative
predictions that do not agree with the quantitative response predictions have low prediction weights, all being < 0.3. Column 1 of
adjoint matrix is rendered symbolically to illustrate the net and absolute number of complementary feedback cycles. The ratio

adj Aq I Tti, defines the elements of the weighted predictions matrix W.

2 1 3- 7 4 4 3 3 0.7 0.5 0.5 0.3 1

2 1 3 7 4 4 3 3 0.1 0.5 0.5 0.3 1

4 2 2 T= 2 2 8 4 2 w= 1 0 0.5 0.5 1

0 2 2 2 2 6 4 2 1 0 0 0.51
4 0 4 4 4 6 6 4 1 0 0.70 1

a2,1 a5,2 a3,4 a4,5 + a5,1 a2,2 a3,4 a4,5

a2,1 a5,2 a3,3 a4,5
+

a5,1 a2,2 a3,3 a4,5

a a a a2,1 5,2 3,3 4,4 + a
2,1

a
5,2

a
4,3

a
3,4

+a
5,1

a
2,2

a
3,3

a
4,4

+a a a
5,1 2,2 4,3a 3,4

-1 1 0 0 0 5 2
-1 -1 0 1 1 0 1 2

°A = 0 0 -1 1 0 adj - A = 2 0
0 0 -1 -1 1 2 0
1 -1 1 -1 -1 4 0

qualitatively specified
community matrix adjoint absolute feedback weighted predictions
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complementary feedback accounted for 58% of the variation in quantitative responses

(Figure 3.3). However, this system was specified with antisymmetric interaction terms

(i.e. all predator-prey interactions were of equal magnitude but opposite sign), which are

not typical of other biological systems (Yodzis 1988, de Ruiter et al. 1995). We

repeated this test of Stone's system, but scaled the positive effects of prey to predators

(a1,2, a2,5, a3,4, a4,5) to 1110th, and 11100th of their original values, with proportional

reductions in terms (a5,1, a5,3, a2,4) for nutrient flux. Results of both tests were similar to

our first assessment; the same predictions remained incorrect in sign. Complementary

feedback explained 46% and 41% respectively, of the variation in quantitative response.

While a substantial proportion of the variation in quantitative response is explained by

system structure, we emphasize the equally high degree of variation due to system

quantification. We thus consider the net number of complementary feedback cycles only

as a theoretical benchmark for the expected relative magnitude of system responses. In

Chapter 4 we define the limits of qualitative predictions of response strength and sign

with computer simulations, across an array of system structure. We find weighted

prediction values > 0.5 to exhibit high (near 95%) sign determinacy.

Old-Field Food Web: Schmitz (1997) encountered indeterminacy in a field

experiment. This study is remarkable and noteworthy because it is one of the few

completely specified community matrices published that applies the experimentally

derived inverse method championed by Bender et al. 1984. He performed n press

experiments upon each species in an old-field food web (Figure 3.4) to estimate all

interaction terms of the community matrix, with an associated variance. He then pressed

the system in two separate ways (top-down and bottom-up), and compared the reliability

of observed results to predicted ones, in terms of response magnitude. He concluded

that the system had high indeterminacy, and attributed it to variation of interaction

strength.

We calculated the weighted predictions matrix of this system and found that the

vast majority of responses (32 of a total of 36) were zero (Figure 3.4). Our results

indicate that complementary feedback cycles contributing to indirect effects have an

inherent tendency to cancel each other, or to put it differently, most predictions are a

coin flip if positive and negative complementary feedback cycles are of similar strength.
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Figure 3.3. Relationship between the quantitative and qualitative response for
plankton community model. Each element of adjoint matrix from qualitatively

specified matrix (ad] X, Figure 3.2) is compared to corresponding element of
inverse matrix of quantitatively specified system (A-1, Figure 3.1).
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M: Melanolus borealis
F: Fragaria canadensis
P: Phleum pratense
S: Solidago altissima
H: Hieracium aurantiacum
N: soil nitrogen

Figure 3.4. Signed digraph of community matrix specified by Schmitz (1997,
adapted from his Table 3), for interactions between a grasshopper (Melanoplus
borealis), four perennial plants, and soil nitrogen in an old-field food web, with
corresponding adjoint of qualitatively specified community matrix (adj -A), absolute
feedback matrix (T), and weighted predictions matrix (W). Schmitz evaluated
shaded responses in nitrogen and herbivore press experiments, and found them to be
highly indeterminate in terms of response magnitude.

0 0 0 0 0 0
0 3 - 3 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
3 3 0 0 0

0 0 0 0 0 0

30 26 26 60 42 26
36 31 31 50 50 36
50 42 42 64 50 50
32 28 28 64 36 32
36 31 31 50 50 36
26 26 26 60 42 30

vv

0 0 0 0 0 0
0 0.1 0.1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0.1 0.1 0 0 0
0 0 0 0 0 0
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While variation in interaction strength is undeniably a source of indeterminacy in this

system, the large absolute number of countervailing complementary feedback cycles

(from 26 to 64) within each response clearly amplifies this phenomenon. Furthermore,

the overall feedback of the quantified system was relatively small (det A = 0.47), and

the qualitative model was neutrally stable and had zero overall feedback (det°A= 0).

The tendency towards cancellation of complementary feedback, and zero overall

feedback, arises from the webby structure of this system. We conclude that from a

theoretical perspective this particular system will exhibit little, if any, reliability in

predicting press experiments. Here we find community structure in and of itself to be an

overriding source of indeterminacy.

Danish Shallow Lakes: The adjoint and weighted matrices can each be used to

propose and prioritize alternative management options. Jeppesen (1998) thoroughly

documented changes in the level of guild community members in shallow lakes of

Denmark, resulting from decades-long nutrient press (anthropogenic phosphorous

addition) that resulted in eutrophication. Based on the results of numerous (25) studies

compiled and synthesized in the above citation, we constructed signed digraphs of the

mesotrophic (Figure 3.5) and eutrophic (Figure 3.6) states. For a bottom-up nutrient

press (positive input to variable 10), adjoint matrices and weighted predictions matrices

of both of these models match the reported responses, except for one element in the

eutrophic model (Figure 3.6), of low predictive weight. Top-down management

interventions in eutrophic systems to reduce phytoplankton populations were studied

through experiments that added macrophytes, reduced cyprinids, and increased juvenile

piscivorous fish. Model predictions for these inputs matched 6 of 8 observed responses

in the eutrophic system (Figure 3.6).

While we expected piscivorous fish to decrease when cyprinids were being

harvested in eutrophic systems (Figure 3.6; adjoint °A6,7 = 9, for a negative input to

variable 7 the sign is reversed in the effect to 6), no change in abundance was observed.

This discrepancy can be rationalized by the low predictive weight of the response (W6,7

= 0.4). No explanation can account for the one wrong prediction in the top-down effect

on nutrients (adjoint X10,7), which comes with a, theoretically speaking, perfectly



Mesotrophic Shallow Lake Model

adj -A
49 27 8 -8 1 1

27 27 8 -8 1 1

10 10 48 28 6 6

10 10-28 28 6 6

8 -8 -8 8 56 - 20

8 -8 -8 8-20 56
8 -8 -8 8 - 20 - 20
7 -7 12-12 11 11

15-15 4 -4 -9 -9
12 -12 -12 12 8 8

plant eating birds
submerged macrophytes
diving ducks
invertebrates (insects, snails,
mussels, etc.)
fish eating birds
piscivorous fish (pike, perch)
planktivorous fish (cyprinids)
zooplankton
phytoplankton
nutrients

Figure 3.5. Signed digraph of Danish shallow lakes in mesotrophic state, as described
in studies compiled in Jeppesen (1998), with corresponding adjoint of qualitatively

specified community matrix (adj 2A), and weighted predictions matrix (W). Shaded
regions of matrices refer to responses observed over a range of nutrient enrichment;
boxed-in region (dashed-line) of the adjoint matrix is compared to a deep lake model
(Figure 3.7) in discussion.
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Eutrophic Shallow Lake Model

adj -A
30 24 7 -7 1 1-1 10-11 -11
24 24 7 -7 1 1 -1 10 -11 -11
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Figure 3.6. Signed digraph representation of Danish shallow lakes in eutrophic state,
as described in studies compiled in Jeppesen (1998), with corresponding adjoint of
qualitatively specified community matrix (adj -2A), and weighted predictions matrix
(W). Shaded regions of matrices refer to responses observed over a range of nutrient
enrichment, and in manipulations of macrophytes (addition and protection), cyprinids
(experimental removals and winter fish kills), and piscivorous fish (experimental
additions of juveniles in spring). Additions of juvenile piscivorous fish were
interpreted as a negative input to their cyprinid prey, as stocked juveniles did not
survive beyond summer Adjoint predictions not supported by field observation are in
bold type. Boxed-in region (dashed-line) of adjoint matrix is compared to a deep lake
model (Figure 3.7) in discussion.
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weighted prediction (W10,7 = 1). This deviation indicates model error and implies that

important links or variables are missing. Indeed, nutrient cycling linkages, fluxes

between sediment stores, denitrification losses, and bacterial communities have been

proposed as essential, but undescribed features of these lakes (Jeppesen et al. 1998). If

more accurate predictions are required for top-down effects on nutrient stores, a more

detailed submodel of nutrient cycling must be described. Other than that, the model of

the system appears highly predictive.

Despite this limited and identifiable shortcoming, we conclude that the signed

digraph models and consequent qualitative community matrices that arise from

Jeppesen's description of the community are robust. Thus it has high heuristic value.

For instance, inspection of the entire adjoint matrix can suggest additional experiments

and management options. Reducing algal blooms in the eutrophic system can occur

most effectively in two ways: reduce nutrient inputs or increase zooplankton biomass.

These predictions have high weighted values, and the greatest potential response

magnitude (i.e. greatest number of complementary feedback cycles in 9t1 row of adjoint

matrix, Figure 3.6). We would predict input to the other members of the community

(first seven predictions in the 9th row of adjoint, Figure 3.6) to elicit a response in

phytoplankton of a more or less similar magnitude. All of these predictions have high

weighted values indicating a high potential for determinacy. Response strengths of

phytoplankton in the mesotrophic model (Figure 3.5) are similar to the eutrophic model,

input to macrophytes and their avian grazers, however, takes on a greater importance in

the mesotrophic model.

Lake Saint George Deep Pelagia: The adjoint matrix can also be used to interpret

results of 'natural' press-like perturbations to assess the structure of the community.

Puccia and Levins (1985) demonstrate how qualitative responses can be used to

reconstruct the structure of a community through the process of 'inverting the inverse'.

Bodini (1998) used published results to reconstruct, through qualitative analysis, a

community that experienced top-down and bottom-up inputs through fish kills and

nutrient loading.

Two alternative models were constructed that both yielded qualitative predictions

matching field observations (models A and B, Figure 3.7). These models display a
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Figure 3.7. (a) Alternative signed digraph models for trophic interactions in the pelagia
of Lake Saint George. Models A and B, constructed by Bodini (1998) using loop
analysis, invoke incomplete predator-prey interactions to explain apparent decoupling
between trophic levels, as suggested by McQueen et al. (1986, 1989). Shaded regions of
prediction tables correspond to observation by McQueen et al. (1989) of responses to
nutrient enrichment (positive bottom-up input) and winter fish kill (negative top-down
input). Model C, with complete predator prey interactions, agrees with predictions from

models A and B, except where complementary feedback (adj X) is weakest, as denoted
in bold type. (b) Predicted response of simultaneous top-down and bottom-up input

calculated by adding columns 1 and 5, in the adjoint (adj X) and absolute feedback
matrices (T). Negative top-down input calculated by reversing the response sign in
column 1 of adjoint.
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degree of uncoupling and support assertions by McQueen et al. (1986, 1989) that

community members had some one-way links between prey and predator guilds. We

tested whether or not a more plausible model, that is, of a system with complete

predator-prey linkages (model C, Figure 3.7) was not as consistent. Comparing the

adjoint matrix from model C with the prediction tables from models A and B,

mismatches occur where feedback strength is weakest in terms of the number of cycles

contributing to the response.

Results from model C suggest that the more plausible coupled model of a chain

of predator-prey interactions is acceptable. We submit that the lack of a measured

response was more likely due to the weakness of response, rather than to an actual

decoupling between trophic levels. All responses in model C are predicted to be

completely reliable in terms of their sign (i.e. all = 1), a feature of all straight chain

systems. Input to planktivorous fish would resolve the choice of models. An additional

application of the adjoint and absolute feedback matrices is that complementary

feedback can be added across columns to assess multiple inputs to the system.

Simultaneous negative top-down (winter fish kill) and positive bottom-up (nutrient

loading) presses on model C are assessed in Figure 3.7b. We observe a phenomenon of

cancellation and amplification of complementary feedback cycles that creates a

generally positive increase in three of the four lower trophic levels, with a neutral

response in the middle of the food chain. Predictability of the response for the middle

variable (zooplankton) is completely lost. This neutral response prediction is not the

result of decoupling, as complementary feedback cycles are transferred to the far ends of

the food chain.

Discussion

The inverse of the community matrix offers an estimate of community response

resulting from press experiments or natural disturbance. Its practical use in ecology,

however, has been hampered by ambiguous or sign-indeterminate predictions.

Equilibrium responses of communities are composed of both direct and indirect effects,
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and it is expected that these can produce counterintuitive long-term outcomes (Yodzis

1995). Previous theoretical and experimental treatments (Bender et al. 1984, Yodzis

1988, Schmitz 1997), however, have taken the inverse matrix at face value. While these

works identify the contribution of quantitative sources of indeterminacy, there has not

been an appreciation of the potential impact of system structure in the use of the inverse

matrix. Though qualitative techniques advanced by Levins have long encompassed this

issue, these techniques have been severely hampered by ambiguity in large or complex

systems. We recommend a qualitative analysis of the adjoint of the community matrix,

because it explicitly accounts for the feedback cycles that ultimately determine

perturbation response. Two additional mathematical tools augment the utility of the

adjoint. The first is the absolute feedback matrix, which details the absolute number of

cycles in a response. The second is the weighted predictions matrix, which gives the

proportion of cycles contributing to a response, and therefore its potential for sign

determinacy. We stress that quantitative considerations are still important, as Yodzis

(1988) so clearly demonstrated. Our study, however, complements these results with a

qualitative approach based only on system structure, providing practical insights when

quantification is unlikely or difficult.

The problem of indeterminacy was insightfully treated by Yodzis (1988) through

computer simulations that randomly varied interaction strengths. He introduced the

concepts of directional (sign) and topological indeterminacy. Directional indeterminacy

is a statistical criterion, wherein an indeterminate prediction is one that is less than 95%

consistent in the direction or sign of a response. Topological indeterminacy addresses,

in relative terms, which responses are consistently the largest in each column and row of

the inverse matrix. The technique, however, does not consider the absolute value of a

response in itself, but only in comparison to others. A 'major' effect could be very weak

as long as it is the largest. Yodzis' topological indeterminacy is an original and valid

approach, but difficult to generalize to practical applications. The adjoint and weighted

matrix can yield a similar insight. With the adjoint and weighted predictions matrix, one

can predict which community members are likely to exhibit the greatest impact from a

disturbance or experimental treatment. Although large values of the adjoint matrix need

not be matched by high prediction weights, when they are, then quantitative responses
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should be consistently large. The old-field food web model (Figure 3.4) can be seen to

have no potential for topological determinacy, or any degree of sign determinacy for that

matter, while in the deep lake model C (Figure 3.7), all of the diagonal elements would

be expected to consistently predict the largest responses of the system.

Nakajima (1992) notes that diagonal elements of the inverse, and by extension

the adjoint, will always be the largest column element when the matrix is non-negative

(i.e. all elements? 0). The qualitative adjoint of the plankton community model (Figure

3.2) is an example of a non-negative matrix. Examination of the adjoint matrix columns

of the straight chain model C in Figure 3.7 illustrates further generalities. Top-down

responses are seen to exhibit the well known pattern of sign alternation between adjacent

variables, and of uniform sign for bottom-up responses. Overlying this pattern we find

that complementary feedback cycles attenuate in number away from the source (t1)

variable of input, along direct paths of system linkages. Models with more complex

structural linkages exhibit variations on these basic patterns.

The hierarchical structure of model subsystems provides important insights into

the behavior of the entire community. Tansky (1978) describes a rationale for assessing

whole-system stability, based on the branching pattern of interconnected subsystems.

By way of the adjoint matrix, similar subsystems from models of different ecosystems

can be delineated for comparison. For instance, variables 6 through 10 of the shallow

lake models form a subsystem that is trophically equivalent to variables 1 through 5,

respectively, in the Lake Saint George deep pelagia model. Inspection of the adjoint

matrices reveals identical system behavior for the mesotrophic subsystem (Figure 3.5,

see boxed area of adjoint) and the deep lake model C (Figure 3.7). The interference that

phytoplankton imposes on piscivorous fish in the eutrophic shallow lake model (Figure

3.6) creates different bottom-up predictions for piscivorous fish arising from input to

variables 9 or 10. Imposing this same interference link in the deep lake model creates

predictions matching those of the shallow eutrophic lake model, thus offering a working

hypothesis for expected system behavior in the event of an extreme nutrient press to the

deep lake system.

While community matrix theory is a powerful tool for applied ecology, there are

important limitations to bear in mind. The underlying premise, or requirement, that a
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system is near a local attractor, can be challenged by long lasting transient behavior,

chaotic behavior from nonlinearity in system parameters, or inequities of multiple

attractors (Hastings 1995). Furthermore, gradual change in the environment can produce

sudden and discontinuous shifts in the boundaries of basin attractors, resulting in

extinction (Vandermeer and Yodzis 1999). These difficulties add yet another layer of

complexity and ambiguity to management and research programs. While these cannot

be explicitly addressed by qualitative techniques, neither can they be addressed by

greater degrees of precision and quantification. And while managers will always want to

know precisely "how many more y will come from the money we put into x", often the

more critical question is knowing the suite of possible options, or the most important

variables to measure within a limited budget. Attempts to incorporate community-level

models into decision-making processes have been criticized (Hilborn 1992) for their

burdensome demands on collection and analysis of multi-scale data sets, and for their

failure to keep pace with decision-making schedules. Walters and Holling (1990) stress

that while testable hypotheses are trivial to define, strategies for adaptive management

must proceed from critical hypotheses relevant to the internal structure of ecosystems.

The strength of qualitative techniques is in their generality (Levins 1966).

Alternative models can be rapidly generated. We view them as a heuristic tool to

augment statistical and mechanistic approaches, and caution that making inferences

about the behavior of natural communities purely from statistical or quantitative

descriptions can be potentially misleading. Thus correlations between adjacent trophic

levels could lead to the conclusion that observed system behavior was due to decoupling,

or some inherent primacy of bottom-up influences, when in fact both bottom-up and top-

down influences can be operating together in frilly connected systems. In a review of

top-down vs. bottom-up control in food chains, Power (1992) called for ". . . testable

theory that can address dynamic feedbacks between adjacent and nonadjacent trophic

levels. These feedbacks may create indeterminacies that will impede the test of

mechanistic food web models, but they are too pervasive to ignore." Qualitative analysis

of the community matrix, made possible through use of the adjoint, absolute feedback,

and weighted predictions matrices provides, we submit, this much needed theoretical

perspective.
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Abstract

We compare the outcome of qualitative predictions of community matrix models

with those of a range of numerical simulations on the same models. A technique of

weighting the proportion of countervailing feedback cycles in qualitative response

predictions (weighted predictions) was tested against quantitative simulations.

Specifically, we randomly assigned quantitative values of interaction strength and

measured correspondence with qualitative predictions in terms of response strength and

sign determinacy. This technique, applied to the weighting of countervailing cycles at

each level of total system feedback, was used to develop an overall measure of stability

(weighted stability). This measure was tested in quantitative simulations against criteria

for Lyapunov stability: 1) all negative polynomial coefficients, and 2) all positive

Hurwitz determinants. Except in a limited and identifiable class of models, weighted

stability accounted for over 98% of model failures in quantitatively specified systems.

The Hurwitz determinants were insensitive to quantitative simulation, accounting for

less than 2 percent of model failures. The overall potential for model predictability and

stability was closely related, and consistently described by the single measure of

weighted stability. We report an expanded scope of inference for qualitative modeling

based on the techniques presented, and conclude that system structure is of overriding

importance.

Introduction

A formidable obstacle to the practice of community ecology is the gulf between

theory and observation, the latter rarely supporting assertions of the former (Peters

1991). A corollary also holds, namely, that the use of quantitative observations to verify

simulations still does not lead to widely accepted results. The conflict has also been

expressed in terms of qualitative versus quantitative modeling approaches (Levins 1966,

1974). Qualitative analysis addresses issues of generality or efficacy (does it work or

not?), whereas quantitative analysis addresses precision or efficiency (how well does it

40
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work?). The latter assumes the former issue or question has been assessed, which is

often not the case.

Community theory has developed potentially powerful tools such as the inverse

of the community matrix, which predicts response in all variables in a system following

input to a specific variable (Bender et al. 1984). Both in simulation studies (Yodzis

1988) and field trials (Schmitz 1997) reliable response predictions have proven elusive.

Correspondence between theory and actual systems appears obscured by a fog of

indeterminacy.

Quantitative models can incorporate a large number of variables, while

qualitative analyses have been restricted to small- or moderate-sized systems. It seems

that insight into complex systems thus tends to rely on specific simulations with poor

generalization, or from generalizations arising from theoretical analyses of far simpler

systems (May 1973, Pimm and Lawton 1978).

Underlying our study is the premise that the future of ecological modeling, if not

ecological research itself, will rest, in large part, with qualitative models. Acceptance of

qualitative models requires a semi-quantitative appreciation of their predictions. This

paper develops criteria to determine the degree of confidence to accept these predictions.

Paradoxically, the support for qualitative models stems from comparison with

quantitative numerical models, similar to May's approach (1974) in using model

ecosystems to study the relation between complexity and stability in real ecosystems.

We suggest that a major obstacle to the application of community matrix theory

has been the all-or-none results that arise from current tools of analysis. In applying the

inverse of the community matrix, there has been an emphasis on precision and

parameterization of community matrix models, with less attention paid to the influence

of community structure, in and of itself, as being of central importance, each perspective

corresponding to the conflict between practice and theory, respectively. A dissection of

the predicted theoretical response leading to a more flexible analysis has been lacking.

We propose that when system feedback is detailed in qualitative terms and is used as a

benchmark for the analysis of ecological communities, the gulf between theory and

practice will be narrowed.
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Here we contrast quantitative and qualitative analyses of community matrix

models, and examine the relative role that system feedback has in system response and

stability. Examples of particular model systems will be used to define general concepts

and specific measures of qualitative and quantitative responses. These concepts and

measures will then be applied, with numerical calculations, to an array of 5-variable

models to assess confidence in qualitative model predictions, first in terms of response

strength or magnitude, and then in terms of response sign. Applying these same

concepts to numerical analyses, we derive and test a new qualitative measure of system

stability. Finally, the interrelation between predictability and stability will be

demonstrated, as will the generality of our results to randomly constructed systems and

to larger systems. System structure will be seen as a key factor.

Qualitative and Quantitative Analyses of the Community Matrix- As a descriptor

of interactions among species in a community near equilibrium, the community matrix,

developed by Levins (1968), is first and foremost a predictive tool. It has been used to

predict species richness (Levins 1968, Vandermeer 1972), population abundance

(Yeaton 1972, Cody 1974), response of a community to a change in birth or death rates

due to disturbance, experimental manipulation (Levins 1979, Bender et al. 1984, Yodzis

1988, Schmitz 1997, Bodini 1998, Dambacher et al. 1999a), or natural selection (Levins

1975), and finally, determination of system stability (May 1974, Li and Moyle 1981,

Puccia and Levins 1985, Levitan 1987, Roxburgh and Wilson 2000).

As a theoretical tool, the community matrix lends itself to direct applications

when it is specified in quantitative interactions terms, whether actually measured or

given as plausible estimates. These results, however, have lacked generality, and appear

to be highly sensitive to the specific values of the interactions. Response predictions

have suffered from a high degree of indeterminacy (Yodzis 1988, Schmitz 1997), and

stability analyses have, at times, been inconclusive (Roxburgh and Wilson 2000, but see

Levitan 1987). Furthermore, properly specifying a community matrix requires an

extensive series of n press experiments (Bender et al. 1984), which at best is a laborious

and time consuming task (Laska and Wootton 1998), and at worst, is impossible when

important variables cannot be measured. The record is slim; we find only two published

examples that have applied Bender et al.'s method (Schmitz 1997, Roxburgh and Wilson
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2000), and both of these dealt with relatively simple communities (an old-field food web

and university lawn, respectively).

To address generality, and circumvent the difficulty of quantitative specification

of interaction terms, Levins (1974, 1975) developed a qualitative analysis technique that

specifies the community matrix by only the sign (+, 0) of the interactions between

species. Levins"loop analysis' interprets signed digraphs of community models to

predict system response and stability. Where system feedback is uniformly of the same

sign, then the generality of predictions is maintained. Where there is a countervailing

balance of feedback cycles, then predictions of response and stability are 'conditional',

and can be expressed in relative terms: e.g. an increase in species x, due to an increase in

its prey y, is dependent upon the self-regulation of species z being strong. Interpreting

conditional statements can lead to practical insights and identify reasons behind

counterintuitive behavior in the system (Lane and Levins 1977). Such insights are less

easily gained from the numerical results of quantitative analyses, where one is left with a

single number, the sign of which may or may not be generally consistent.

While qualitative analysis can be a useful technique, it has, in our estimation,

been underutilized. One difficulty with qualitative modeling is the all-or-none aspect of

its predictions. There is no theoretical basis to address response strength or magnitude.

Another difficulty is applying Levins' loop algorithm, which relies upon a graphical

interpretation of signed digraph models. For large (> 5 variable) or complex systems

(i.e. high connectance), signed digraph analysis grows not just exponentially, but

factorially. Moreover, the multiple contingencies that arise in conditional statements of

response and stability of large systems, can defy practical interpretation, leading to

overwhelming ambiguity. We have recently addressed these difficulties by

reformulating Levins' loop algorithm with equivalent matrix algebra equations. Our aim

in surmounting these difficulties has been to extend qualitative analysis of the

community matrix to large complex ecological systems.



Analysis Methods

Our analysis is patterned after that of Pimm and Lawton (1977, 1978) and Yodzis

(1981, 1988). We chose from the literature, or constructed ourselves, 12 signed digraph

model systems (Figure 4.1) that, as will be shown, exhibited a full spectrum of system

stability and predictability (i.e. relative level of ambiguity in qualitative response

predictions). Models were constructed by successively adding interactions involving

omnivory, competition, and mutualism. Qualitative predictions of system response and

stability were compared to those of quantitative analysis, in which community matrix

interaction terms were randomly varied over two orders of magnitude. Self-regulation

terms, in alternate numerical matrix simulations, were either varied randomly or fixed at

a value of maximum strength.

A quantitatively specified system is denoted here as #A , and quantitative response

predictions are calculated by -1-4A1, the inverse of the negative community matrix

(Bender et al. 1984). A qualitatively specified community matrix, where only the signs

of the interaction terms are entered as +1, -1, or 0, is denoted here as A. The adjoint

details the net response from input to a system in the qualitative terms of complementary

feedback cycles. It is directly analogous to Levins' loop analysis algorithm (Equation

3.5), and related to the inverse matrix by: -A-1 = adjoint (-A) / determinant (-A)

(Equation 3.8). The inverse and adjoint matrices are calculated with the negative of the

community matrix, which maintains a sign convention in both even and odd numbered

systems (see Appendices 1-4 for examples of these and all subsequent matrix

calculations and for corresponding computer commands).

Lyapunov stability (Lyapunov 1892) was assessed for both qualitatively and

quantitatively specified models using the Routh-Hurwitz criteria of 1) all negative

polynomial coefficients, given the convention of the base coefficient an = -1, and 2) all

positive Hurwitz determinants (Hurwitz 1895, Appendix 3). Both of these conditions

guarantee the existence of a local equilibrium neighborhood (Lewontin 1969) to which a

system will return following a disturbance. Polynomial coefficients (an) are calculated

for both qualitatively and quantitatively specified systems as: determinant (A-XI) = 0,
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Figure 4.1. Signed digraphs of 12 model systems analyzed in computer simulations.
Model g is from Stone (1990); i is patterned after Puccia and Pederson (1983), and 1
after Schmitz (1997); remaining models constructed by adding linkages to a and C.
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using A or #A respectively, where I is the identity matrix. Each polynomial coefficient

corresponds to a successive level of system feedback (Appendices 2 and 3).

All matrix calculations were symbolically detailed and entered into relative cell

references in a computer spreadsheet program (Microsoft Excel 2000). The

spreadsheet program had 5,000 rows and approximately 250 columns. A pseudo-

random number generator was used, that assigned interaction strengths from an even

distribution. A set of 5,000 matrices could be quantitatively specified and evaluated

within 35 seconds.

Complementary Feedback

The mathematical computations required in the assessment of system response

and stability are based upon feedback cycles (Puccia and Levins 1985, Levins and

Puccia 1988). A feedback cycle is a path between variables in a dynamical system,

along which effects are transmitted from one variable to the next; their countervailing

balance determines system behavior. We present below a discussion of complementary

feedback and system response, and in a later section, similar ideas relating to system

stability.

Complementary feedback cycles are the vehicle by which the direct interactions

detailed in the community matrix are translated, through matrix inversion, into the

ultimate effects that form the equilibrium response of a community. Within any

response prediction of the inverse matrix, there are, in mathematical terms, two

processes involved: 1) cancellation or summation of feedback cycles, and 2) a

diminution or multiplication of feedback cycles. The first is determined purely through

the qualitative aspects of community structure, while the second comes from the

intensity of interactions between community members. For example, a particular

response might be composed of 3 complementary feedback cycles: ai,i a2,2 a4,3 ai,2

a2,1 a4,3 + a1,1 a2,3 a4,2. In qualitative terms, a cancellation of one positive and negative

cycle leaves 1 negative cycle. However, when the system is quantitatively specified by



setting a4,3 equal to 0.4, and all other interactions equal to 1.0, there is a diminution of

the two negative cycles, and the overall response becomes positive.

Concepts and Measures of Correspondence

Since both qualitative and quantitative predictions involve the process of

cancellation, it follows that there should be some positive relationship between the net

number of complementary feedback cycles contributing to a response and the total

numerical response, the difference between the two resulting from diminution effects

occurring only in quantitative calculations.

Figure 4.2 compares qualitative to quantitative predictions of response strength

for two model systems; it is essentially a comparison of summation effects, based only

on community structure, and multiplication effects, based on specific biological

relationships. The models were specified with a single set of interaction terms that

varied by one or two orders of magnitude (0.05 to 1.0). In model a, the sign of all

qualitative predictions matched their corresponding numerical prediction; all points were

within quadrants I and III. In model g, 7 qualitative predictions had sign indeterminacy,

or points that occurred in quadrants II or IV (i.e. did not match the sign of the

quantitative response, see dashed-line boxed area of adjoint and inverse matrices in

Figure 4.2). For both models in Figure 4.2 there was a moderate correspondence (r2 >

0.5) between qualitative and quantitative predictions of response strength.

Predictions of Response Strength

Using the concepts and measures derived from the particular examples presented

in Figure 4.2, we next simulated a full range of possible values and combinations of

interaction strengths, for the purpose of defining the limits of qualitative predictions of

response strength. Interaction terms were randomly assigned to all off-diagonal Aq

elements of the community matrix. These elements were varied over a range of two
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orders of magnitude (0.01 to 1.0), while holding constant the sign of each interaction.

For each model, two separate numerical assignments were run; either 1) all Ali self-

regulation terms were fixed at a maximal strength of 1.0, or 2) all Au were randomly

varied (along with the off-diagonal elements).

The correspondence (r2) between qualitative and quantitative responses (Figure

4.3) was compared to both the weakest link, and spread of interactions (called here the

'standard deviation' of the quantitatively specified matrix elements). To gain a full

spread of points along the horizontal axis in Figure 4.3, interactions terms were

sequentially varied in lots of 5,000 matrices, over a successively constricted range.

Matrices in the first lot were assigned values between 0.01 and 1; subsequent lots were

varied from 0.10 to 1, 0.20 to 1, and so on, to 0.90 to 1. The weakest values in each lot

were clumped to the lower limit of each successive range, which created a saw toothed

pattern to the spread of data points in Figure 4.3. The use of a successively constricted

range was necessary, because random numbers were assigned from a uniform

distribution, and in any one assignation, there was a high probability that at least one

interaction term would be near the lower limit of the possible range. Thus to obtain

models with a full range of 'weakest' values, the lower limit had to be successively

moved from 0.01 to 0.90. For each model in Figure 4.3, we generated 50,000 separate

assignations of interaction strength.

Differences between predictions of qualitative models versus numerically

specified models stemmed from four components of the community matrix: 1) the

weakest interaction in the system, 2) the overall variation of the interaction strengths, 3)

limited self-regulation, and 4) system structure. We also examined the influence of the

variance of eigenvalues of the community matrix (Jorgensen et al. 2000), but found that

it did not account for any variation in model agreement. Qualitative and quantitative

models showed the best agreement in a straight chain system (model a) with strong self-

regulation. Increasing the range of variation in the interaction strengths by three orders

of magnitude (i.e. 0.001 to 1.0) did not affect the results.

In this stage of the analysis we are not concerned with the central tendency of the

model results, which depend on the randomized spread of interaction strengths. Rather,
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it is the borders of the clouds of points in Figure 4.3 that are important, which essentially

define the limits of qualitative predictions.

Weighted Predictions and Sign Determinacy of Response

This next stage of our analysis develops confidence levels for qualitative model

predictions. Here we seek to know what range of 'real' outcomes from 5,000 matrices

with randomly assigned interaction terms will correspond with qualitative model

predictions 80 percent (or 50, 75, or 95 percent) of the time. Qualitative ecological

models predict impacts on the components of the community matrix with a sign (+, 0)

rather than a number. For example, a population's abundance may increase (+) due to a

drop in the abundance of its competitor (), though the standing crop of their shared

resource may remain unchanged (0). In small systems (< 5 variables), most predictions

of population change can be unambiguous, but as model size increases, so does the

potential for complexity and ambiguity of response predictions.

Resolution of model ambiguities to determine the likely sign of a response

requires 'weighting' model predictions by a ratio of the net number to the total number

of complementary feedback cycles. The total number of complementary feedback

cycles in a response, both positive and negative in value, can be calculated as Tu =

permanent (minor Aid transpose, where A denotes a community matrix specified by only

0's or l's (i.e. absolute values of A). The permanent of a matrix is computed in a

manner similar to the determinant, but by addition only, in computation of matrix

minors, and without alternating signs during column and row expansion (Marcus and

Mine 1964, Mine 1978 Eves 1980). Dividing the absolute value of each element of the

adjoint Ati by each Tu element yields the weighted predictions matrix, W. Each

element of W scales the potential for sign determinacy of response predictions in the

adjoint. Note that when Tu = 0, Wu is taken to equal 1.0.

When all complementary feedback cycles are of the same sign (e.g. adjoint

= + ,+ ,+ ,+) , then sign determinacy is completely ensured and the weighted prediction

(WO is equal to 1.0. A complete absence of complementary feedback equates to a
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neutral response prediction in the adjoint, which also has a perfect prediction weight of

1.0. When there is an equal number of positive and negative feedback cycles (e.g.

adjoint + ,+ ,,) then Wij = 0, and there is no potential for sign determinacy A

prediction weight of 0.5 is based upon cancellation of half of the cycles (e.g. adjoint

= +,+,+,; and Wii = 2/4), and as we will show, a ratio of 0.5 is a critical threshold for

sign determinacy of all qualitative predictions.

Numerical matrices for model systems a through g (Figure 4.1) were analyzed

under two scenarios, with 5,000 matrices each. In the first scenario, all self-regulation

terms were varied along with ai; interactions, and interaction strengths were allowed any

value between 0.01-1.0, without restriction. These values imposed a conservative

condition for sign determinacy, because Ai values less than 0.2 had the least agreement

between qualitative model and simulation predictions (Figure 4.3), especially where self-

regulation was not fixed at a strong level. In the second scenario, self-regulation was set

to a maximum of 1.0 for all variables, and all else remained as in the first scenario. The

stability of each scenario was assessed 5,000 times, and only stable systems were

analyzed for sign determinacy. In stable systems, each iith quantitative prediction (2-Aqi)

was compared with the sign of the corresponding qualitative prediction (adjoint

and the percent correct sign plotted against the corresponding prediction weight (W)

(Figure 4.4). Repeated trials altered results by less than 2%.

Sign determinacy was consistently high for weighted predictions (W) greater

than 0.5 (Figure 4.4); above this, the proportion of predictions with correct sign was

generally greater than 95%. Below = 0.5, sign determinacy rapidly declined (Figure

4.4). Sign determinacy generally increased with strong self-regulation, by as much as 10

percent in some instances, but was also seen to sometimes decrease where prediction

weights were less than 0.20 (i.e. see model g, Figure 4.4).

The extremes of the graphs in Figure 4.4 represent the fixed endpoints of this

analysis. Weighted predictions equal to 1.0 contain no countervailing feedback cycles,

and the sign of the qualitative predictions is always maintained. At W = 0, there is an

equal number of positive and negative cycles creating, in qualitative terms, a neutral (or

zero) response. In quantitative terms, however, an exactly zero response rarely if ever

occurs, thereby forcing a y-intercept of zero correct predictions.
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Consideration of sign determinacy must also include the relative response

strength. A response that is highly predictable (i.e. W1 > 0.5) may still be too weak to

detect. Conversely, a neutral response with perfect prediction of sign determinacy (Wii

= 1), which results from a complete absence of complementary feedback (Tii = 0), must

be judged against a context of measurement or statistical error.

Weighted Stability: Derivation and Testing

We now determine whether a system that is qualitatively stable remains so when

its interaction terms are quantitatively specified. This is nearly the same question as that

addressed for sign determinacy The coefficients associated with the roots of the

characteristic equation can themselves be the result of a summation of both positive and

negative feedback cycles (Appendix 2 and 3). We derived the total number of positive

and negative cycles for each level of feedback by: permanent (A+2J) = 0. We name this

resulting type of characteristic equation the 'absolute polynomial', and denote its

coefficients as absolute F.

At each nth feedback level (Appendices 2), we divide the net number of feedback

cycles by the total number of cycles to create a measure of weighted feedback: wFn =

1Fnl I absolute Fn, (wF, is without sign, and we use the absolute value (i.e.: `1 1') of the

net feedback in the numerator, which can be different in value from the 'absolute

number' of feedback cycles, in the denominator). This calculation yields n number of

weighted feedback values. We chose the smallest as the indicator of overall system

stability, and so define minimum wF, as the 'weighted stability' of the system. Most

often, the minimum wFn is at the highest level of feedback in the system, but as will be

seen, this is not always the case. Weighted stability addresses only the first Routh

Hurwitz criterion for Lyapunov stability.

We tested weighted stability as an indicator of overall system stability by

numerically assigning values to matrix elements in the 12 models (Figure 4.1), which

together presented the full range of possible minimum wFn values, from 1.0 to 0. Eleven

of the models were qualitatively stable; model 1, however, passed the second criterion in
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qualitative terms (all positive Hurwitz determinants, Appendix 3) but failed the first (all

negative polynomial coefficients). With a minimum wF, = 0, model l's highest level of

feedback (and determinant) is zero, and in qualitative terms, is neutrally stable.

A total of 5,000 matrices were numerically specified for each model, for both

scenarios as above, by either fixing or varying the self-regulation terms. Under the

strong self-regulation scenario, over 98% of the matrices were stable for each model

(Figure 4.5). For the scenario of varied self-regulation, separate tabulations were made

of the sign of each Hurwitz determinant, and each polynomial coefficient (Table 4.1).

The proportion of stable systems generated from each model increased with its weighted

stability (Figure 4.5, Table 4.1). Model stability was high for minimum wFn 0.5, while

below 0.5, system stability sharply decreased. Most model failures were accounted for

by positive polynomial coefficients from the same feedback level associated with the

minimum wF n (Table 4.1). Up to 10% additional model failures occurred at other

feedback levels, and usually at the next lowest level.

A surprising and practical result was that if the qualitative models met the second

criterion for stability, then nearly all of the numerical matrices also met the second

stability criterion, failing in less than 2% of the time. Moreover, it was exceeding rare

(< 1%) for quantitatively specified matrices to fail the second stability criterion after

passing the first (Table 4.1, section D). We conclude therefore, that it is practical to

dispense with consideration of the Hurwitz determinants after they have first been

assessed qualitatively. One can then rely upon weighted stability as an indicator of

overall potential for system stability. Below, however, we place a caveat on this

assertion that excludes an identifiable class of models from the predictive scope of the

weighted stability measure.

Tests of Randomly Constructed Models

We were concerned that the generality of the above results might be limited to

the class of models we tested in Figure 4.1. Specifically, we had observed a high degree

of model failure from the second stability criterion in a variant of model 1, in which wF 4
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Table 4.1. Summary of stability analysis for 5,000 matrices specified with randomly assigned numeric values to each of 12 models
(a-1, Figure 4.1). Stability was assessed by the criteria of 1) all negative polynomial coefficients for each Fn level of system
feedback, and 2) all positive Hurwitz determinants (det.). All models were stable, in qualitative terms, except for model 1, which
failed the first criterion at its highest (n = 5) level of feedback. All all and aij interaction terms were randomly assigned values that
were varied by 2 orders of magnitude, except as indicated in F below. A) Qualitative measure of weighted feedback (wF n) for each
n level of system feedback. Percent model failure of respective stability criterion for B) negative polynomial coefficients, and C)
positive Hurwitz determinants D) Percent potential error for relying only upon the first criterion, and E) the overall percentage of
models failing either criteria 1 or 2. Weighted stability measure derived from minimum wFn values, in bold font, which in all of
these models occurs at the highest, n = 5, level of feedback. F) Overall percentage of model failure in separate assignments to
matrices where an terms were fixed at a strong value.

Model system: a 1

A. Weighted feedback Qualitative Measures of System Feedback
wF 5 1.0 0.82 0.78 0.60 0.50 0.45 0.29 0.23 0.20 0.13 0.048 0
wF4 1.0 0.85 0.82 0.82 0.68 0.48 0.63 0.43 0.55 0.43 0.20 0.15
wF3 1.0 0.93 0.91 0.91 0.88 0.63 0.84 0.63 0.74 0.69 0.47 0.51
wF2 1.0 1.0 1.0 1.0 1.0 0.87 1.0 0.87 0.86 0.87 0.75 0.88
wFi 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Weighted stability 1.0 0.82 0.78 0.60 0.50 0.45 0.29 0.23 0.20 0.13 0.048 0
B. Percent polynomial
coefficients > 0 Results of Quantitative Matrix Analysis

F5 0 1.1 2.3 8.0 5.4 11 25 29 36 38 43 51

F4 0 0.46 0.84 0.86 0.78 8.8 3.2 11 12 15 31 31
F3 0 0 0.080 0.060 0.020 2.2 0.080 2.3 1.5 1.5 7.6 4.0
F2 0 0 0 0 0 0.020 0 0.020 0.060 0.040 0.16 0
Fl 0 0 0 0 0 0 0 0 0 0 0 0

Percent failure 1st
stability criterion 0 1.2 2.5 8.1 5.5 14 25 30 36 40 53 55



Table 4.1 (continued).

t: Potential error of relying only on 1st Routh-Hurwitz stability criterion, calculated as: [100*(number of matrices passing 1st
criterion, and failing 2nd) divided by number passing 11.

Model system: a b c d e f g h i j k 1

C. Percent Hurwitz
determinants > 0

0 0 0 0 0 0 0 0 0 0 0 01st Hurwitz det.
2nd Hurwitz det. 0 0.020 0 0 0.020 0 0 0 0.18 0.020 0.020 0
3rd Hurwitz det. 0 0.16 0.080 0.14 0.12 1.7 0.22 1.1 1.7 0.12 1.6 1.4

Percent failure 2nd
stability criterion 0 0.16 0.080 0.14 0.12 1.7 0.22 1.1 1.7 0.14 1.7 1.4
D. Percent error of
using only 1st criteriont 0 0.16 0.021 0 0.13 0.90 0.11 0.29 0.72 0.033 0.17 0.18
E. Percent failing 1St or
21d criteria if aii varied 0 1.3 2.5 8.1 5.6 14 25 30 37 40 53 55
F. Percent failing 1st or
2' criteria if aii fixed 0 0 0 0 0 0 0 0.12 0 1.0 0.44 1.4
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and wF 5 were both equal to 0 (an extreme case of neutral stability). This led us to

consider models in which feedback was more severely compromised at intermediate

feedback levels, such that wF3 or wF4 was less than wF 5. Unable to devise our own, we

sorted through over 20,000 randomly constructed 5-variable models. We chose 6 that

were qualitatively stable, and in which wF 3 or wF 4 was less than wF 5, and greater than 0,

thus avoiding neutrally stable models. The resulting models (Figure 4.6) had a high

degree of connectance via omnivorous, competitive, and mutualistic linkages. While

these randomly constructed models violate general notions of what is biologically

plausible (Lawlor 1978, DeAngelis 1975), we do not exclude them from being so, as

systems similar to models mr appear to be common in vertically compressed

environments, such as benthic estuarine communities (Castillo et al. 2000).

We constructed numerical matrices corresponding to the models, as before, by

either randomly assigning self-regulation terms, or fixing them at a strong level (Table

4.2). Where self-regulation was varied, the models failed the first stability criterion by a

proportion similar to models gj, (i.e. models gj, and mr exhibit a comparable degree

of failure due to the first criterion (16% to 47%), over a similar range of weighted

stability (0.12 to 0.31; Tables 4.1 and 4.2). In the randomly constructed models,

however, a substantial proportion of failures (7% to 49%) resulted from violations of the

second criterion. Moreover, there was a large potential error (8% to 43%), in relying

only upon weighted stability as an indicator of overall potential stability. Model failure

from the second criterion was greatest in model q, where the minimum wFn occurred at a

level lower (31d level) than in any other model system.

The randomly constructed models exhibited a high level of stability (> 94%)

where self-regulation was fixed at a strong level (Table 4.2). We also tested, but do not

show here, the reliability of weighted predictions from 2,000 randomly constructed 5-

variable models, and found results identical to those for models a-1.

While weighted stability (minimum wFn) does not directly address the status of

the Hurwitz determinants, the relative value of weighted feedback (wF) at each level of

a system does, however, identify the potential for nonpositive Hurwitz determinants.

Models with positive second (H2) or third (H3) Hurwitz determinants suggest that
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Figure 4.6. Signed digraphs of 6 randomly constructed model systems. Large open
circles represent model variables, or species, with links ending in an arrow signifying a
positive effect, and links ending in a small filled circle indicating a negative effect.
Negative self-effects (self-regulation) are denoted by links starting and ending in the
same variable.
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Table 4.2. Summary of 5,000 numerical matrices in which system stability was assessed
in 6 randomly constructed models (m-r, Figure 4.6) by criteria of 1) all negative
polynomial coefficients for each Fn level of system feedback, and 2) all positive Hurwitz
determinants (det.). All models were qualitatively stable, and all all and au interaction
terms were randomly assigned values that were varied by 2 orders of magnitude, except
as indicated in F below. A) Qualitative measure of weighted feedback (wF,) for each n
level of system feedback. Percent model failure of respective stability criterion for B)
negative polynomial coefficients, and C) positive Hurwitz determinants D) Percent
potential error for relying only upon the first criterion, and E) the overall percentage of
models failing either criterion 1 or 2. Weighted stability measure derived from minimum
wF, values, in bold font, which in these models occurs at the 3rd or 4th level of feedback.
F) Overall percentage of unstable matrices where aii terms were fixed at a strong value
(-1), and au elements were assigned random values.

Model system: m n
A. Weighted feedback Qualitative Measures of System Feedback

wF 5 0.38 0.25 0.26 0.25 0.28 0.21
wF4 0.31 0.24 0.23 0.20 0.19 0.12
wF3 0.37 0.30 0.39 0.41 0.16 0.13
wF 2 0.63 0.58 0.67 0.68 0.53 0.44
wFj 1.0 1.0 1.0 1.0 1.0 1.0

Weighted stability 0.31 0.24 0.23 0.20 0.16 0.12
B. Percent polynomial
coefficients > 0 Results of Quantitative Matrix Analysis

F5 6.8 9.5 12 11 9.5 16
F4 10 11 14 17 19 27
F3 7.9 9.9 4.3 2.6 28 30
F2 1.6 1.3 0.50 0.15 2.7 5.7
F1 0 0 0 0 0 0

Percent failure 1st criterion 16 19 19 21 36 47
C. Percent Hurwitz
determinants < 0

0 0 0 0 0 01st Hurwitz det.
2nd Hurwitz det. 3.2 2.4 1.9 1.7 1.7 3.9
3rd Hurwitz det. 31 34 12 6.5 49 41

Percent failure 2nd criterion 31 34 13 7.0 49 41
D. Percent error of using only
1st criteriont 31 34 14 7.8 43 38
E. Percent failing 1st or 2nd
criteria if all varied 42 47 30 27 64 67



Table 4.2. (continued)

Model system: m n o P q r
F. Percent failing 1st or 2"
criteria if aii fixed at strong
level 1.1 2.2 1.8 1.8 5.1 6.2
t: Potential error of relying only on 1st RouthHurwitz stability criterion, calculated as:
[100*(number of matrices passing 1st criterion, and failing 2nd) divided by number
passing 1st].

feedback at lower levels is greater than feedback at higher levels (i.e. H2> 0 when F1F2

> F3, and H3> 0 when F i[F iF 4+F 5] > F 3[F iF 2+F 3]; remembering that Fn terms are, by

convention here, negative). Where feedback at intermediate levels is compromised by a

countervailing balance of cycles, as indicated by relatively low values of weighted

feedback, then there arises a significant potential for negative Hurwitz determinants, and

failure of the second RouthHurwitz criterion (Tables 4.1 and 4.2).

System Predictability and Stability

A comparison of Figures 4.4 and 4.5 demonstrates that the processes of

cancellation and diminution of feedback cycles are similarly involved in system response

and stability, when self-regulation is not fixed at a strong level. The shape and threshold

points in the graphs of both figures are roughly the same except for their y-intercepts. In

Figure 4.5, a minimum wFn value of 0 indicates approximately an equal chance for

feedback to be either positive or negative, while in Figure 4.4 the intercept is forced to

zero, as there are no exactly neutral responses. Beyond this difference, Figures 4.4 and

4.5, under the varied self-regulation scenario, show numerical simulations to have an

equal effect upon the countervailing balance of feedback cycles, whether from

complementary feedback or total system feedback. In fact, the relationship between the

potential stability and overall predictability of response signs for a system is linear

(Figure 4.7). A system that has a high potential for stability will also have a high
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potential for sign determinacy in its responses; one of low stability will tend towards low

sign determinacy. A single measure of weighted stability can thus be employed as an

overall descriptor of a system's potential for stability and predictability.

Differing Effect of Self-Regulation

Why does strong self-regulation stabilize each model in nearly all quantitative

matrices (>98% models a-1, and >94% models mr), whereas sign determinacy is only

marginally (roughly 10%) improved? The answer is to be found in the symbolic

descriptions of system feedback, where we see an unequal distribution of self-regulation

terms among cycles of different sign. Within any given response, there was a general

tendency for au terms to be associated with feedback cycles that were of the same sign as

the net response of the adjoint. This caused a small increase in sign determinacy when

the all terms were strengthened (Figure 4.4), though in some instances the opposite

occurred, and there self-regulation terms were more closely allied to cycles opposing the

net response of the adjoint.

In overall system feedback, all terms were found to be associated with negative

cycles in two ways that practically guaranteed a stable balance of cycles when self-

regulation was fixed at a strong level: 1) aii terms are more numerous within negative

cycles, and 2) aii terms were more frequently arranged as multipliers of each other in

negative cycles than in positive ones. This arrangement produces a dramatic effect in

the quantitative value of feedback. For example, consider two sets of feedback cycles,

each with three cycles of equal length: set 1) [0.2*0.2*1] + [0.2*0.2*1] + [0.2*0.2*1]

and set 2) [0.2*0.2*0.2] + [0.2*0.2*0.2] + [1*1*1]. While both sets of cycles are

composed of the same number and strength of interactions, in the second set the stronger

terms are combined together, and this arrangement causes the value of overall feedback

(1.02) to be 8.5 times greater than that of the first (0.12).

In model 1 there is, at the highest level of feedback, an equal number of positive

and negative cycles, which affords the least potential for stability of the 12 models

considered in this study (Figure 4.4). Yet at this highest level of feedback, there were 31
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au terms within negative cycles, and 23 within positive cycles (Table 4.3). In negative

cycles, the all terms were more frequently combined together in groups of 3 or more.

This general pattern of the amount and arrangement of the au terms occurs at all other

levels of feedback in model I (Table 4.3); it is in fact a feature general to all community

matrix models, and the mechanism by which strong self-regulation can exert an

overwhelming influence on system stability.

Table 4.3. Arrangement of self-regulation (au) terms in positive (+) and negative ()
feedback cycles, at each nth level of system feedback in model I (Figure 4.1). Self-
regulation terms in negative feedback cycles are more numerous, and more frequently
at higher degrees of combinationt, than in positive feedback cycles.

Total number of au
terms
Number of cycles
with all terms
Total number of
cycles
1.: Defined here as number of au terms per cycle, e.g. a1,1 a2,2 a3,3 a4,5 a5,4 is a negative

cycle of length n = 5, and 3"d degree of combination.
*: Feedback at level n is composed of cycles of length n; and a degree of combination

can exist only within a cycle of equal or greater length.
**: Self-regulation terms comprise 'disjunct loops' (as in cti,i a2,2 a3,3 above), which

are joined with 'conjunct loops' (as in a4,5 a5,4 above) in formation of feedback
cycles (Puccia and Levins 1985); n-1 degrees of combination are therefore
precluded from cycles of length n.

** ** 0 5

0 1 * *

1 6 ** ** 0 10
6 0 3 18 ** ** 0 10
8 8 12 0 3 10 ** ** 0 5

23 31 18 56 3 40 0 20 0 5

15 15 15 23 3 20 0 10 0 5

21 21 23 31 9 28 1 16 0 5



Large Systems

While we have shown the utility of 'weighting' feedback cycles for 5-variable

model systems, we question the generality of these results for larger systems. Though

larger systems have feedback cycles that are longer and usually more numerous, the

processes of cancellation and diminution act uniformly upon cycles of any length and

number. To demonstrate this, we assigned values to 5,000 matrices from a 10-variable

system, and analyzed response strength and sign determinacy. This 10-variable model is

a representation of eutrophic Danish lakes (Jeppesen 1998) and is discussed in Chapter 2

of this work. Results (Figure 4.8) were identical to those from 5-variable models

(Figures 4.3 and 4.4).

Limitations of computer spreadsheet software prevented us from evaluating the

Hurwitz determinants for matrices with 10 variables. We were, however, able to

calculate the determinant of each numerically specified matrix, which is also the

polynomial coefficient at the highest (n = 10) level of system feedback. The weighted

stability for this system, equal to 0.59, was also derived from the highest feedback level.

In this 10-variable system, the determinant of each of the 5,000 matrices was negative

95% of the time, which is similar to results for the 5-variable model d (Table 4.1), which

had a weighted stability of 0.60, and was stable in 92% of its numeric matrices. The

relationship between system stability and predictability for the 10-variable system

(Figure 4.8), was in agreement with that of the smaller systems (note *' in Figure 4.7).

Discussion

We have set 'semi-quantitative' confidence levels on qualitative models by

attributing a weight to the countervailing balance of feedback, and by analysis of

thousands of randomly assigned numeric matrices. Elements of a qualitatively specified

adjoint matrix can serve in a limited capacity as a benchmark of expected quantitative

response strength. The potential sign determinacy of adjoint predictions was
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Figure 4.8. Sign determinacy and correspondence between quantitative and qualitative
response predictions for a 10-variable model system; from 5,000 matrices with
randomly assigned elements, as in Figures 4.2 and 4.3. Model system derived from a
study of shallow eutrophic Danish lakes (Jeppesen 1998).
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consistently gauged by elements of the weighted predictions matrix. The corollary

measure of weighted stability exhibited a similar degree of reliability except in an easily

identifiable class of models. System predictability was shown to be closely related to

stability, and consistently described by the single measure of weighted stability. We

explain a differential effect of strong self-regulation on system stability and

predictability, by variation in both the amount and arrangement of au terms within

complementary and total system feedback cycles. Tests of these qualitative techniques

were mainly on 12 5-variable models, but also a single 10-variable model. The

applicability of these results, however, depends only upon the processes of cancellation

and diminution of feedback cycles, which pose no theoretical limit on system size.

While predictions of response strength from the adjoint matrix exhibit in some

instances a high degree of correspondence with numerical responses, we consider this

correspondence to be unreliable, as it is easily eroded by a single weak interaction in the

system. Qualitative predictions of response strength can be used, however, as a heuristic

tool in structuring hypotheses of expected system behavior.

Our demonstration that correlation between qualitative and quantitative

predictions of response is reduced by the variation of interaction strengths, and by the

weakest interaction within the community, has important implications for the process of

model building. A species known to be only weakly connected to a system should

perhaps be included with similar species in a trophic or functional guild. Bender et al.

(1984) present a quantitative argument to altogether exclude weakly connected species

from community models. Through model simplification, predictability is increased, but

at a trade-off with resolution. Thus an intermediate level of resolution will likely

optimize understanding of community dynamics (Levins 1966), the level of which is

likely to differ from one system to the next.

High sign determinacy of weighted predictions greater than or equal to a general

threshold value of 0.5 creates an expanded scope of inference for community matrix

theory. Employing techniques of qualitative analysis, it is possible to attribute a

structural context to each response prediction, thereby gaining an important investigative

tool to complement press-type experiments (Bender et al. 1984), or studies of natural

disturbances (Diamond 1986). Whereas qualitative analysis has in some respects
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previously been limited to all-or-none predictions of response sign, predictions can now

be judged across a spectrum of expected reliability. Previous findings of high

indeterminacy of response predictions have resulted, in part, from treating the inverse

matrix essentially as a black box, with no context provided for which predictions should

or should not be reliable. For instance the potential for reliable response predictions was

severely limited in the Narragansett Bay food web studied by Yodzis (1988), whichwe

find to have prediction weights no greater than 0.31. In an old-field food web studied by

Schmitz (1997), we find only 4 of 36 responses to have nonzero prediction weights, and

all of these were equal to 0.10. Encountering a high level of indeterminacy is an

expected feature of these two systems, but we stress, not for all systems.

The weighted stability measure provides a novel means to assess the potential

stability of large complex systems, and also serves as an indicator of a system's overall

potential for sign determinacy. Systems of various sizes and complexity can now be

compared by a single unifying measure based on system structure. Our results suggest

that Hurwitz determinants primarily address the structural aspects of a system, and

depend only to a negligible degree upon the relative value of the interaction terms.

While the measure of weighted stability is unreliable in models where total system

feedback is compromised at an intermediate level, these models are easily identified by

their relative wF, values. Such models will have an inherently low potential for

stability, and therefore little predictive scope is forfeited by this caveat.

Symbolic analysis of the community matrix forms the basis of this work, nearly

all of which is reducible to the simple concept of countervailing balances in feedback

cycles. At a fundamental level, nothing more is at work here than the processes of

addition, subtraction, and multiplication. Processes of cancellation and diminution of

feedback cycles work similarly in the formulation of system response and stability. The

question 'what is the difference between the qualitative and quantitative behavior of a

system?', is reducible to 'what is the difference between the effects of addition and

subtraction among feedback cycles, and the effects of multiplication within feedback

cycles?'

We purposefully chose 12 biologically plausible models (a-1) that exhibited a

full spectrum of potential system stability and predictability. Sequential additions of
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links for competition, mutualism, and omnivory resulted in a general diminishment of

system stability, which supports May's (1973, 1974) conclusion that system stability is

ultimately at odds with system complexity. However, we found stability to diminish

significantly only beyond a threshold value of minimum wF,= 0.5. One sees in Figure

4.5 that models with a substantial degree of complexity were highly stable in numerical

analyses.

This work has led us to consider that neutral stability is not a "razor's-edge"

division (May 1974). Rather we consider the possibility that neutral stability can exist

practically over a much broader dynamical space. Communities can be driven toward

neutral stability through species invasions (Dambacher et al. 1999b) and still persist

(Castillo et al. 2000). In the overall feedback of model k, there are 11 negative cycles

balanced against 10 positive cycles. In qualitative terms this system is near neutral

stability (i.e. minimum wF,= 0.048). It exhibited positive overall feedback in 43% of

the numeric matrices where both inter- (au) and intraspecific (au) interactions were

varied, but was completely self-damped (100% stable) when au terms were fixed at a

strong level. In some ecosystems, the relative intensities of inter- and intraspecific

interactions can be expected to wax and wane over time, with successional cycles

(Holling 1992) or evolutionary change. Variation in interaction intensity could cause a

system like model k to librate in negative and positive feedback, and be held in check by

a large balance of countervailing feedback. Indeed, Goh (1977) proves that sufficient

conditions exist for global stability in LotkaVolterra systems where self-regulation is

strong relative to interspecific interactions. He postulates a differential effect of self-

regulation on system stability as communities cycle through high and low population

densities. Our findings of nearly complete stability in numeric models where self-

regulation was fixed at a strong value agree both with Goh's theoretical analysis and

Yodzis' (1981) computer simulation. Our symbolic analysis of system feedback (Table

4.3) attributes the underlying cause to the unique affinity and arrangement of au terms

within self-damped or negative feedback cycles.

The above results emphasize the overriding importance of system structure. In

ecological systems it is exceedingly rare that the actual values of the interaction terms

are defined for all community members or variables, or for that matter, that they are even
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measurable. But often the composition and structure of the community is well known,

or it can be sufficiently encompassed by a manageable number of alternative models.

These results offer hope that if we know the structure of a community, we can to a

discernable degree also know its theoretical potential for system predictability and

stability. Qualitative models of ecological communities can thus be used to rigorously

evaluate results of quantitative models and manipulation experiments, allowing one to

separate the structural influences of countervailing feedback cycles from parameter noise

and measurement error. We submit that these techniques, and the insights they provide,

should increase agreement between the theory and practice in community ecology.



CHAPTER 5

THE GOLDEN RULE OF COMPLEMENTARY FEEDBACK

Jeffrey M. Dambacher and Philippe A. Rossignol
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Abstract

This work demonstrates the occurrence of the Fibonacci number series in the

complementary feedback of LotkaVolterra dynamical systems; herein we show a

convergent value of Phi to govern reciprocal effects between neighboring variables. The

impact to the entire community from input to a population variable can be predicted

from the adjoint of the community (Jacobian) matrix, which we render in qualitative

terms of complementary feedback cycles. Sequences of complementary feedback cycles

follow the Fibonacci number series, and are also configured as multiples and

overlapping harmonics thereof We derive an absolute feedback matrix that clarifies the

series. Patterns of complementary feedback are determined by community structure,

which can also be portrayed and understood in terms of signed digraph structure.

Introduction

In the l3th century, Fibonacci (Leonardo Pisano) pondered the rate of

reproduction in rabbits. This seemingly benign question brought forth a most enduring

and powerful mathematical paradigm, namely, series. Fibonacci's solution to the rate of

reproduction in rabbits also gave birth, so to speak, to the discipline of population

dynamics Fibonacci's rabbits, history tells us, were immortal. Benefiting from the

protection of an enclosing wall, they reproduced unchecked by the forces of predation,

disease, and starvation. While modern analyses otherwise make more realistic

assumptions, Fibonacci's basic principle of exponential population growth nevertheless

endured, to be taken up much later, and more apocalyptically, by Thomas Malthus.

Fibonacci's recursive relation nt+2 = nt +nt +1 , where t is generation class, can be

expressed in Leslie matrix form as:
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which projects, through time, mating pairs of rabbits and offspring over t generations.

First row elements represent births of two offspring to each mating pair in generation t,

and subdiagonal elements represent survival of each year class (here 100%). The final

diagonal element confers immortality to the population. The largest positive real

eigenvalue of this matrix (ki) is the exponentiated growth rate of the population (i.e. ki

e').. For successive generations of Fibonacci's rabbits, k1 converges to the golden ratio

Phi (1.618...), and the next largest eigenvalue (k2) converges to a negative value of phi

(0.618..., where phi = 1 / Phi). Left to themselves in the 799 yr since their discovery,

Fibonacci's rabbits would today have a 'global' population of nearly 5.34,102003; given

that the number of electrons in the visible universe has been estimated at 1079, some

biological control is clearly in order!

We are concerned therefore with the limits to growth for an entire ecological

community, which for n interacting species, is described by the Lotka-Volterra

equations in the general form of:

c/N =--NIN
dt Ki

nK- EaN
j=1

74

(5.1)

where N is the column vector of population size or density of species i, K is the column

vector of carrying capacities, and oc'ii is the interaction coefficient that represents the

direct per capita effect of species j on i. At equilibrium, with growth rates equal to zero,

the carrying capacity for each population in the community becomes:

Ki = Eajj' NT (5.2)
i=1

where N* represents the equilibrium abundance of a population. Substituting this

equilibrium into Equation 5.1 gives, for each species, the nonlinear function:

0 1 1 1 1

1 0 0 0 0
0 1 0 0

0 0 0 0 0
0 0 0 1 1



ci
= ri Ni E aii Ni Ni

*dt Ki j=i

Equation 5.3 can be linearized through a Taylor series expansion, with m variables,

around the equilibrium values of N*i, to give:

dls4

dt

where ci = ri/Ki . In this derivation, ci represents a general parameter related to growth

and carry capacity of a population.

Other forms of the LotkaVolterra equation can subsume additional parameters

within c,, such as the capture efficiency for predators, etc. The first order partial

differential of Equation 5.4 is

ciN;'` n
= E N,

dt j=iaNi

where fi is the function for the growth rate of N1. The Jacobian matrix J is composed of

the first partials of each ith ith term in Equation 5.5:

Each afi 1 aNi* term of the Jacobian matrix is equivalent to the interaction coefficients

ce,, that comprise the community matrix A, where

(5.5)

J=

f1 fi afi

(5.6)

aN1

af2

aN2

af2

aN3

af2

aNn

af2

aN1

af3

aN2

af3

aN3

af3

aNn

af3

aNi

OA

aN2

in

aN3

f
aNn

a.fn

aNi aN2 aN3 aNn

A=

a11

a21
a31

a12

a22
a32

ao
a23
a33

a2n
a3n (5.7)
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= (Ni , N2, N3, .. , Nn ; , c2 , c3 , , cm , t ) (5.4)



In matrix form Equation 5.6 is expressed as

dN *
= AN

dt

Perturbations to the equilibrium of the community, through alterations in the rates of

population birth or death, can be assessed as a change in the parameter avachin

Equation 5.5, at or near equilibrium. Employing the rules of partial derivatives, with ch

as an independent variable

*
a dNi a r,

= 0 (5.9)
ach di' )Ch

and

aNT

aCh aN; ach

Knowing afi/ach , the parameters through which disturbance is acting upon the

system, a solution for aNiiach is obtained through Cramer's Rule which, by cofactor

expansion (Appendix 1), calculates the total direct and indirect effects on species i

through a change in parameter ch. We obtain this solution by replacing the ith column of

the system determinant with the column vector afi/ach:

a21 a22 a23

a31 a32 a33

fi
ach

af2
aCh

af3

aCh

. . . . .

an1 an2 an3 ann

a2+1

a3, j+1

aln

a2n

a3n

(5.10)

aiN4'
an1 an2 an3 an,1_1

'fn
a CYn,j+1

ch

ach a11

a21
a31

au a13
a22 a23
a32 a33

a2n

(5.11)

a13 al, j-1
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The denominator of the right side of Equation 5.11 is the determinant ( ) of the

community matrix A, and the numerator is the cofactor Cji, which details the effect of

subsystems complementary to species i and j. Complementary feedback is formed by

subsystems of populations that are not on the direct path between species i and j, and is

the product of disjunct loops. A solution for the entire community system is obtained

through a matrix of all cofactors, the signs of which correspond to Levins' table of

predictions (Puccia and Levins 1985):

=
det A .1

where det is the determinant Elements of the classical adjoint, or adjoint matrix are

equivalent to transposed cofactors (i.e. adjoint At; = CO, thus a solution for the entire

equilibrium system can reached by:

N* =
adjoint A

K
det A

and by definition of an inverse matrix:
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(5.13)

N* = A-1K (5.14)

In Equations 5.12-5.14 we can anticipate the fate of equilibrium population

levels due to input to the system. The carrying capacity, K is constant in these

equations, as is the denominator, det A, which represents overall system feedback. The

full numerical response of a population is mediated or scaled by a system's overall

feedback, which provides resistance to perturbations. It is useful to distinguish the

adjoint from the inverse of the community matrix, as the adjoint contains all of the

variation of response within a system, and is an expression of complementary feedback.

In dynamical systems, complementary feedback propagates as cycles (or loops) through

direct and indirect paths, and these cycles convey the impact of system input to all

community members.

In derivation of the effects of input to a system variable (Nakajima 1992), we

obtain the inverse of the negative community matrix (-A-1), and by extension the adjoint

of the negative community matrix (adjoint -A). This maintains a sign convention for

both even- and odd-sized systems. Input in the inverse and adjoint matrices is, by

convention, interpreted as positive, through either an increase in birth rates or a decrease



in death rates. Input to the inverse and adjoint matrices is read down column, and

responses along rows. If input is negative, then the signs of the inverse and adjoint

matrix elements are reversed.

Signed Digraphs and Qualitative Analysis

Signed digraphs (di-rected graphs) portray relationships between populations in an

ecological community (Figure 5.1), all of which can be qualitatively rendered with

positive, negative, or neutral links (edges) between system variables (vertices).

Qualitative specification of a system's linkages is often the best that ecologists can do,

since it is difficult, or often impossible, to actually measure all elements of the

community matrix. Yet simply knowing the signs of the interactions can provide

important insights into behavior of complex systems. Counterintuitive behavior in a

system often results from complex interactions, and this behavior can often be revealed

through qualitative analysis (Puccia and Levins 1991). When community matrix

elements are qualitatively specified with +1, 1, or 0, calculating the adjoint matrix

yields the net number of complementary feedback cycles in a response.

As an example, we present a model (Figure 5.2) of the dynamics of snowshoe

hare (North American relatives of Fibonacci's rabbits) interactions with vegetation, and

a guild of predators, including lynx and great horned owls (Dambacher et al. 1999a,

Chapter 2). In this system we reveal the counterintuitive response that fertilization of

vegetation (a positive input observed down the first column of the adjoint), can result in

an increase of plant biomass, and hence forage, but can also lead to a neutral response in

hares (read along the second row, i.e. adjoint A2,1). One might expect that more forage

would equal more hares, but a null response occurs due to a countervailing balance of

complementary feedback cycles (a2,I a3,3 a2,3 a3,1) exerting opposing effects. This

results from the positive effect that vegetative cover (a3,1) confers upon predators, which

are known to use cover from which to ambush their prey.

The adjoint matrix reveals the net number of complementary feedback cycles in a

response. We are, however, also interested in the absolute number of cycles, which we
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Signed Digraphs of Ecological Relationships

predator-prey or
parasitism self-effects0 o Q

interference
mutualism competition

04 )0 00
commensalism amensalismo0 3

Figure 5.1. Signed digraphs of possible pair-wise ecological relationships and self-
effects, graph links (edges) can include either one-way or two-way interactions;
arrows denote positive effects, filled circles negative effects.
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Figure 5.2. Signed digraph model of interactions between boreal forest vegetation
(V), snowshoe hare (H), and predator guild (P), with symbolically and qualitatively
specified community matrices, and adjoint matrix predictions of system response.
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calculate through use of the permanent in minors of a community matrix specified only

by the absolute values of its linkages (A; i.e. by l's or O's only, essentially an adjacency

matrix that includes self-loops). This gives us the absolute feedback matrix T:

= permanent(minor A )transpose (5.15)
ij

Taking the ratio of each element of the adjoint to the absolute feedback matrix, we can

obtain a potential for ambiguity in system response, a sort of signal-to-noise ratio

(Appendices 1 and 2).

Fibonacci's Series

Having defined the terms of our argument, we turn to special properties of the

adjoint and absolute feedback matrices, where we find complementary feedback cycles

that follow Fibonacci's series. To reveal clearly the occurrence of this series, we

consider a system much larger than our snowshoe hare example. From a 10-variable

straight-chain system, we obtain the following adjoint matrix:

55 34 21 13 8 5 3 2 1 1 -

34 34 21 13 8 5 3 2 1 1

21 21 42 26 16 10 6 4 2 2

13 13 26 39 24 15 9 6 3 3

8 8 16 24 40 25 15 10 5 5

5 5 10 15 25 40 24 16 8 8

3 3 6 9 15 24 39 26 13 13

2 2 4 6 10 16 26 42 21 21

1 1 2 3 5 8 13 21 34 34

1 1 2 3 5 8 13 21 34 55
In this matrix, ignoring the signs, one sees the Fibonacci number series along the first

and last columns and rows. The left and right off-diagonal elements of the other

columns are multiples of the first or last column, respectively, and the multipliers

themselves are of the Fibonacci series. Considering the signs, where positive input

propagates down the trophic chain (read down the columns), impacts alternate between

co
40

0
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positive and negative values, corresponding to a reversed Fibonacci series (i.e.

nt_2= ntnt _1 , giving: ... , 13, 8, 5, 3, 2, 1, 1, 0, 1, 1). One also sees negative

starting values for the series embedded within the matrix columns (i e , 13, 8, 5, 3,
2, 1, 1, 0, 1, 1). As positive input propagates up the trophic chain, impacts are

uniformly positive. The matrix is trans-diagonally symmetrical. Since there is no

countervailing feedback in this particular system, elements of the absolute feedback

matrix T are equivalent to the absolute value of the adjoint matrix elements.

While a straight-chain system is a simple portrayal of interactions between

trophic levels in an ecosystem, a 10-tiered system is highly improbable due to limitations

in transfer efficiencies between trophic levels. In Figure 5.3 we portray a more complex

and plausible 10-variable system, where there is direct (interference) competition

between variables 6 and 7, and indirect (scramble or resource) competition for shared

food resources between variables 1, 3, and 5. While the signs of the adjoint matrix

elements in this system do not always correspond to a Fibonacci series, the values do.

Here we find a break in the regular Fibonacci series in variables adjacent to 6 or 7.

Comparison of the adjoint and absolute feedback matrices reveals this break to be from

separate harmonic sequences that underlie an absolute number of cycles following a

regular Fibonacci series (or multiple thereof). The absolute feedback matrix T for the

model in Figure 5.3 is identical to that for the 10-variable straight-chain system

discussed above (there T is not shown, but is the same as the absolute value of the

adjoint). In this respect, the model in Figure 5.3 behaves as a straight-chain system.

Although opposing cycles of complementary feedback create overlying harmonics, and

thus different net responses in the adjoint, the regular Fibonacci series becomes clear in

the system's absolute feedback matrix T.

We consider next, in Figure 5.4, the behavior of an asymmetrical model with a

branched structure incorporating interference competition and mutualism between basal

species. Here competitive and mutualistic interactions impart positive feedback to

subsystems of the model, causing counterintuitive responses. We also see the curious

result that increasing the birth rate of variables 5 and 10 can result in a decrease in their

equilibrium populations. In this system the Fibonacci series splits at the nodal 4th
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Figure 5.3. Ten-variable model system with direct and indirect competition. Three
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response graphs, which detail the number of complementary feedback cycles generated
from a given input; variables receiving input are denoted by thick-lined circles.
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Figure 5.4. Asymmetrical and branched model system with mutualism and interference
competition linkages specifically associated with nodal variable 4 (format follows
Figure 5.3). Complementary feedback passing through variable 4 is split into separate
series, but maintains an overall Fibonacci series in terms of absolute feedback.
Complementary feedback to variables that are immediately posterior to both variable 4
and the input variable (encompassed by dashed-line) sum to the absolute number of
cycles in the variable that is either medial to the nodal and input variables, or the input
variable itself (where either are denoted by terminus of dashed-line).

-4 2 -2 -5 5 52 31 21 10

-4 2 -2 -5 5 31 31 21 10

-8 4 -4 -10 10 21 21 42 20

12 -6 6 15 -15 10 10 20 30

2
-1 1 9 -9 6 6 12 18

10 -5 5 6 -6 4 4 8 12

5 4 -4 3-3 2 2 4 6

5 4 9 3-3 2 2 4 6

6 -3 3 14 -14 5 5 10 15

6 -3 3 14 5 5 10 15

4 2 2 5 5

4 2 2 5 5

8 4 4 10 10

12 6 6 15 15

26 13 13 9 9

38 19 19 6 6

19 32 32 3 3

19 32 51 3 3

6 3 3 34 34

6 3 3 34

1 11 -10

-1 1 11 -10

11 -11 22 -20

-10 10 -20 30

-6 6 -12 18

-4 4 -8 12

-2 2-4 6

-2 2-4 6

-5 5 -10 15

-5 5 -10 15
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variable into separate sequences of unequal magnitude (or into Fibonacci series with

different starting values). Harmonic sequences are isolated within branch segments

containing the variable of input, and do not pass through variable 4. As in the previous

example (Figure 5.3), countervailing complementary feedback cycles sum to a greater

Fibonacci series in the absolute feedback matrix T, however, the absolute feedback

matrix T from this system differs from those of straight-chain systems.

We have observed, but do not show here, that in systems with long interaction

loops (as might be caused by an omnivorous relationship between variables 6 and 10 in

the above models), aperiodic sequences of complementary feedback cycles become

folded back upon themselves, and the Fibonacci series become less interpretable. With

increased structural connectivity the pattern becomes lost altogether, and the sequences

appear as so much noise, although the number and sign of the responses remain

biologically interpretable.

Discussion

In biological terms, impacts from perturbations propagate through ecosystems

via complementary feedback cycles that diminish in number away from the source of

input, according to a Fibonacci number series. While we have seen that Fibonacci's

celebrated description of reproduction leads us to a convergent value of Phi for a

population's growth rate, so too does a convergent value of Phi (or phi) denote the

proportion of complementary feedback cycles passed between adjacent members of an

ecological community, as in the golden rule (doing unto others . . .), and thus determines

the reciprocal effect of neighbor upon neighbor.

We report the discovery of the Fibonacci number series in the adjoint of the

community (Jacobian) matrices, arising from simple food web models. The presence of

this series seems to have been unnoticed, or unreported, in matrix or graph theory

literature. Given that complementary feedback cycles can be positive or negative under

different conditions and therefore cancel each other, we present the derivation of the

novel 'absolute feedback' matrix, the elements of which represent the absolute number
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of cycles in each response. This derivation makes use of the permanent rather than the

determinant of matrix minors. Both the adjoint and permanent are recursive functions,

which give rise to the observed Fibonacci series in our qualitatively specified systems.

Our aim at this point has been to describe a previously unobserved pattern and its

underlying cause. It is also our hope that the general observations presented in the above

examples may lead to a more formal analysis by matrix and graph theoreticians.



CHAPTER 6

CONCLUSIONS

Nothing is more practical than theory.

Richard Levins

In the quarter-plus century that has ensued since Levins (1966, 1974) introduced

qualitative modeling to ecologists, there has been inadequate attention paid to the theory

and technique. This can most surely be attributed, in part, to the reductionistic slant of

western science. While generality and realism are dearly sought attributes of even the

most ardent reductionist, to sacrifice precision is surely a heretical act. Inroads,

however, are being made. Bayesian inference is a thin wedge that is exerting greater

influence in both applied and theoretical ecology. Qualitative predictions of system

behavior provide an obvious source of Bayesian priors. Furthermore, ecological

research and management efforts are increasingly more inclined to address indirect

effects, which are best understood in terms of complementary feedback.

A qualitative analysis of the community matrix provides a theoretical basis from

which to judge the relevance of community structure to the behavior of ecological

systems. This work demonstrates practical application to the research and management

of real systems drawn from the published literature. It also provides simulations that

define the limits to predictions of qualitative models.

Although this work makes it possible to analyze larger and more complex

systems than previously possible, it is important to keep in mind a number of limitations

inherent in any treatment of LotkaVolterra systems. 1) The assumption of being ator

near equilibrium can be easily violated where a system is frequently impacted by

disturbance. Here a statistical model of the system is likely to be more useful than one

assuming deterministic behavior. 2) There is an assumption of instantaneous, or at least

time invariant, responses. Time lags produced by distinctive biological features of

community members can produce staggered transitions to equilibrium, and interpretation

of system response needs to be judged accordingly. 3) Elements of the community

matrix are formed by linearizable relationships. Nonlinear interactions, such as

87
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functional responses, can produce community (Jacobian) matrix terms that vary in their

sign, depending on the relative abundance of community neighbors. Although

nonlinearities can present critical limitations to qualitative analyses, opting for a more

quantitative approach is no guarantee of success, as knowing the exact form of the

equations involved is still a theoretical exercise. Moreover, obtaining precise

measurement of all model parameters is a nearly futile exercise.

In Chapter 2, qualitative modeling is used to explain an extensive record of

published results pertaining to snowshoe hare, vegetation, and predator interactions in

the boreal forest. A strength of qualitative modeling is here demonstrated by the

hypothesis of a system linkage that is likely beyond quantification or immediate

perception. In Chapter 3 further comparisons are made with various examples from the

published literature, thus demonstrating the applicability of the technique to a broad

class of ecological systems.

This work sets forth in Chapter 3 an algebraic reformulation of Levins' original

loop analysis technique. It takes advantage of recent advances in software to remove the

tedium of hand calculation, which previously posed a serious limitation to large and

complex systems. The concept of weighting feedback cycles is a fundamental advance,

which now enables one to address model ambiguity, both in terms of response

predictions and stability analysis. Qualitative predictions were previously limited to an

either-or assessment, primarily in small and simple systems; the weighting of feedback

cycles now provides for such assessments by potential degree for large and complex

models of any size, based solely on system structure.

Arising from the literature comparisons in Chapter 3, we find a general reliability

of weighted predictions > 0.5. This is more rigorously supported by simulation studies

in Chapter 4. The concept of weighted stability evolved out of these simulation studies,

and it provides a novel metric that rates both the potential predictability and stability of a

model system. The concept of weighted stability now offers a means of judging the

degree of potential stability, except in an identifiable class of models (i.e. where the

minimum wFn does not occurs at the highest level of feedback). Model systems that are

compromised at lower feedback levels appear prone to failure by the second Routh

Hurwitz criterion. This result falls in line with the general intuitive understanding that
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feedback at lower levels must be greater than that at higher levels, to achieve positive

Hurwitz determinants and overall system stability.

Complementary feedback cycles are emphasized in this work as the basis for

understanding the perturbed response of dynamical systems. The concept of feedback

cycles (or loops) arises from elementary graph theory, and was applied to Lotka-

Volterra dynamical systems by Levins in his hand-calculated algorithm. The present

work demonstrates that community structure provides a template upon which the

reciprocal relationships between community members are organized and resolved,

through the countervailing balance of complementary feedback cycles. In Chapter 5 we

have the novel discovery that complementary feedback cycles propagate according to the

Fibonacci number series, which means that in a dynamical sense, the reciprocal

relationships between community neighbors are determined by a convergent value of

Phi.

It has been demonstrated that a qualitative understanding of community structure

can provide critical insights into the behavior of complex biological systems. This work

furthers Levins' original theme that a theoretical perspective is by far the most practical

means to approach biological complexity. While many research and management efforts

have shown that 'everything is connected' and 'life is complex', these phrases are often

provided as closing apologies for indeterminate results or unexpected outcomes. A

qualitative analysis of the community matrix allows one to rigorously confront these

difficulties and to proceed with, and celebrate, the notion that life is indeed

interconnected and complex.
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Appendix 1. Matrix Algebra Methods

,The determinant (det) of a 2nd system is: det[a11
a12]

a2,1 a2,2

Calculation of the determinant of larger systems is by expansion of its matrix minors

(min) along either its columns or its rows. For a 31-1 order system, the A1,1 minor is

formed by deletion of the first row and column, giving

1,1 "1,2 "1,3

i2 ,1 a2,2 a2,3
0 a3,2 a3,3

min Am =[a2'2
a3,2

a2,3]

a3,3

Calculation of the determinant for the entire matrix thus becomes:

a2,31 [a2 a2,3
a1,1 det[a2'2

a3,3
2 det

a3,1
a13 det a2'/ a2'2

a3,2 a3,3 a3,1 a3,2

Expansion of the determinant can proceed along any row or column, provided the

correct sign is applied in the terms of the minors, according to the formula:

Determinants of matrices greater than 3rd order are calculated by expansion with the

minor method, but calculations become tedious.

Stability is equated with self-damping or negative overall feedback in a system

(Levins 1975). Overall feedback is defined as the determinant of a system. The concept

of self-damping being synonymous with negative overall feedback, however, is

confounded by determinants of stable even-sized systems always being positive. A sign

convention is therefore employed of (-1 n+1). det A, which ensures that stability can be

equated with negative overall feedback in both even- and odd-sized systems.

Another source of potential confusion is associated with the denominator of

Equation 3.8, where A-1 = adjoint A / det A. In stable systems with negative overall

feedback (following the convention of the 11 multiplier), the sign of the det A term

in the denominator will be always be positive in both even- and odd-sized systems (the

1n+1 multiplier is not applied to the det A term in Equation 3.8). Thus the det A term

will not alter the equality of the signs of corresponding elements of the inverse and

adjoint matrices. In unstable systems with positive overall feedback, however, the

det A term will be negative in both even- and odd-sized systems. Thus the sign of the

= a11a2,2 a1,2a2,1
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adjoint -Aij elements will be opposite to those of corresponding elements.

Confusion notwithstanding, this inconsistency leaves us with a useful condition for

unstable systems, for the adjoint -Aki elements will always have response signs as if a

system were stable. As a consequence, systems that are conditionally or neutrally stable

can be assessed in terms of an expected or possible equilibrium behavior-a result not

possible through use of the inverse matrix, which depends on a nonzero determinant for

matrix inversion.

Calculation of a matrix permanent (per) is similar to the determinant, but

without subtraction within matrix minors, and with an all positive sign convention for

expansion terms: (+1)i+1. Thus the permanent of a 2'd order matrix becomes

per al'l a"I = a1,1a2 + a1,2 a2,1
a 2,1 a2,2

and that of a 3rd order

per a2,2

a3 2

Cofactors of a matrix (C) are simply the determinants of each matrix minor,

with the same (-l)'' sign convention applied in the expansion, such that the matrix of

a2,2
a,,2

a1,2 1

a3,2

a1,2

a2,2

The adjoint matrix is simply a transposed matrix of cofactors, such that adjoint

Aij = Cii. Calculation of the absolute feedback matrix (T) from Equation 3.9 is similar

to the above cofactor calculations (transposed), but it uses the matrix permanent

instead of the determinant, and all expansion terms are positive.
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all cofactors becomes

C1,1 = +det a2,2 a2,3 C1,2 = -det[612'1
a2,,1

" C1,3 = det a2'1
a3,2 a3,3 a3 1 a3,3 _a3 1

C2,1

C3,1

= - det

= + det

a1,2

a3.2

a1,2

a1,3

a1,3

C22 = det

C3,2 - det

a11,

a31

a1,1

a1,3

a3,3

a1,3

C2,3

C3,3

=

=

[Cii 1- det '

a3,1

. a, ,
+ det "'[

_a2,2 a23
_
a21 a2,3 a2,1

a2,3

a3 3,
+a12 per

a2,1 a2,3

a3, 1 a3,3
+ al, per a2,1 a2,2

a3,1 a32



Appendix 2. Symbolic, Qualitative, and Quantitative
Analyses of the Community Matrix

Example calculations of system response and stability for a 3-variable

community matrix model using symbolic, qualitative, and quantitative analysis

techniques. The signed digraph below describes possible interactions between boreal

forest vegetation V, snowshoe hare H, and predator guild P, from model B (Figure 2.1).

A positive effect from vegetation to predators is interpreted as a benefit of cover to

predators, such as lynx (Lynx canadensis), which ambush their prey from hunting beds.

Response Predictions:

a2, 3 a3, 2

a2, 1 a3, 3 a2, 3 a3, 1

a2, 1 a3, 2

SYMBOLIC ANALYSIS

Community Matrix: A

adjoint A

al, 1 a3, 3

al, 2 a2, 3

al, 1 a2, 3

al, 1 a3, 2 al, 2 a3, 1 a2, 1 al, 2

The symbolic adjoint details complementary feedback to each ith variable in the system

resulting from positive input tof' variable. Complementary feedback is the product of

conjunct and disjunct paths, which define the subsystem of all elements that are not

directly in line with linkages connecting variables j to i. Two response predictions,

adjoint A1,2 and acljoint A3,2, are conditional, and therefore ambiguous without
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knowledge of the relative strengths of interactions in the community matrix. Both of

these responses have in common the a3,1 linkage, and so depend on the relative strength

of the vegetationpredator interaction.

Stability Analysis: System feedback (Fn) for each nth level in the system is derived from

the an coefficients of the characteristic polynomial (determinant (AXI) = 0):

F3: ai,i a2,3 a3,2 a2,1 al,2 a3,3 + a3,1 (4,2 a2,3 = a3

F2: a2,3 a3,2 ai,i a3,3 a2,1 a1,2 = az

F1: a3,3 alj =

Fo: 1 =a0

where I is the identity matrix. System stability depends on the criteria that 1) all F, < 0

(given convention of F0 = 1), and 2) all positive Hurwitz determinants In this system,

the first stability criterion is met only when the one positive feedback cycle in F3 is

relatively small; that is to say, the positive effect of vegetation on predators (a3,i) must

be weak compared to self-regulation and predator-prey (including vegetation-herbivore)

interactions in the system. The first Hurwitz determinant (H1= F1), here is always

positive, the second (H2 = F1F2+F3) is negative when feedback at the highest level (F3)

is weaker than the product of lower levels (remembering that Fn terms are, by

convention here, negative), a condition that again depends on the relative weakness of

the vegetationpredator (a3,1) linkage (see Appendix 3 on Hurwitz determinants).

QUALITATIVE ANALYSIS

Response Predictions: Based on number of complementary feedback cycles for a given

response. For example, at a2,1 (circled below) there is a net response of zero

Qualitatively Specified Community Matrix: A

-1 -1 0-

1 0 -1

1 1 -1_



We obtain the total number of complementary feedback cycles in a response,

both positive and negative in value, by T1 = permanent (minor'AO transpose, where A

denotes the community matrix specified by only O's or l's (i.e. absolute values of A).

The permanent of a matrix is computed in a similar way as a matrix determinant, but

with no subtraction in computation of matrix minors, and no alternating signs during

column and row expansion (Appendix 1; Marcus and Mine 1964, Mine 1978, Eves

1980). Dividing the absolute value of each element of the adjoint Ati by each Tii

element yields the weighted predictions matrix W; when Tij = 0, Wii is taken to equal

1.0. The adjoint is calculated with the negative of the community matrix, which

maintains the correct sign convention in even and odd numbered systems.

Stability Analysis: System feedback (F0) for each nth level in the system derived from

coefficients of the characteristic polynomial (determinant (A-2J) = 0): F0 = 1, F1= 2,
F2 = 3, F3 = 1. In qualitative terms, all polynomial coefficients of the system are of

the same sign, and both Hurwitz determinants are positive, i.e. H1= F1= 2, and H2 =

F1F2-FF3 (-2)(-3)+(-1) = 5 (see also Appendix 3 on Hurwitz determinants). The

absolute feedback (absolute Fn) at each nth level in the system, is derived from the

coefficients of what we term the 'absolute polynomial', computed as permanent (A-1-A1)

= 0, where A denotes a community matrix specified by only O's or l's (i.e. absolute

values of A). Dividing the net feedback by the absolute feedback, gives the weighted

feedback (wFn) for each nth level of feedback in the system (i.e. wFn = Fn).

Note that wF, is without sign, we therefore use the 'absolute value' ( 1) of the net

feedback in the numerator, which is different in value from the 'absolute number' of
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complementary feedback cycles (adjoint A2,1), formed by the cancellation ofa total of

two cycles (absolute feedback T2,1), giving a weighted prediction (W2,1) of 0.

adjoint A
1 -1 1

1 4

1 0

absolute feedback

- 1 1 1-

1 1

1 2 1_

T weighted predictions

1 1 1-

@ 1 1
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Response Predictions: The numerical response of all populations in a community is

detailed by the inverse of negative of the community matrix.

Stability Analysis: System feedback (Fn) for each nth level in the system derived from

coefficients of the characteristic polynomial (determinant (4A-21)= 0): F0 = 1, F1 =

1.2, F2 = 0.5, F3 = 0.5. In quantitative terms, the system meets both RouthHurwitz

criteria: 1) all polynomial coefficients are of the same sign, and 2) both Hurwitz

determinants (Appendix 3) are positive, i.e. H1= F1= 0.5, and H2 = F1F2±F3 = (-1.2)

(-0.5)+(-0.5) = 0.1. This particular specification of the model thus achieves Lyapunov

(neighborhood) stability.
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feedback cycles in the denominator. At the highest level of feedback (F3), there is a net

number of one negative cycle, and an absolute number of three feedback cycles (two

negative and one positive), giving a wF,= = 0.33. Since there is no countervailing

feedback in lower levels in the system, this value is also the minimum wF,, or weighted

stability of the system.

QUANTITATIVE ANALYSIS

We present here a community matrix that is quantitatively specified with a single

set of plausible interaction terms.

Community Matrix: #A

--1 -.5 0 -

.5 0 -.5

.2 .1 -.2_

Inverse Matrix: #X1

-1.0 -2.0 5.0

0 4.0 -10

_1.0 0 5.0



Appendix 3. Hurwitz Determinants

The characteristic equation for any homogenous set of equations is derived from

= 0, where here and below, `1 denotes the determinant (elsewhere it is taken to

mean absolute value). The resulting polynomial is of the form aok" + ikn-1 a2r-2 +.

. .+ an= 0. Here an is taken as negative; if not, we multiply the polynomial by 1. This

maintains a sign convention, whereby each polynomial coefficient is interpreted as the

strength of feedback (F,i) at each nth level of the system, and negative feedback is

understood to be stabilizing to the system (Puccia and Levins 1985). Interpretation of

actual characteristic polynomials requires deciphering, without the aid of subscript

notation, which corresponds to which an coefficient. This is done thru the power of

the X, terms. The highest level of feedback to the system, F, corresponds to the an

coefficient that lacks a companion X, term (i.e. it has a 2., to the power of zero: kin. The

lowest level of feedback in the system is with the term with the highest power (i.e. VI.

We thus have the correspondence of F0 with X," , F1 with X', F2 with 2."-2, . . . and

with kri-n.

In 1893 Adolf Hurwitz was presented with the problem of how to determine the

conditions under which the characteristic equation has only roots (eigenvalues) with

negative real parts, without knowing the complete solution to the differential equations

involved. A system with all negative real roots meets the necessary and sufficient

conditions for local neighborhood stability that had been recently proved by Alexander

Lyapunov in 1892. The problem was given to Hurwitz by Aurel Stodola, who was

interested in the stability of a 7th order regulatory system for a high-pressure water

turbine at a spa in Davos, Switzerland. At that time, before the advent of computers and

efficient algorithms, it was very difficult to even approximate solutions for characteristic

equations above degree 5. Hurwitz's (1895) solution to the problem involves a sequence

of determinants constructed from the polynomial coefficients of characteristic equations

of a system of any order. An equivalent solution was discovered independently by

Edward Routh; consequently we have the so-called 'RouthHurwitz' criteria for

stability.
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Calculation of the Hurwitz determinants is here adapted from Hurwitz (1895),

but with the notational difference of Fy, for the a, polynomial coefficients, and the sign

convention of F0 = -1. In practical terms we are given two criteria. If 1) all Fn are the

same sign (here negative), and none are zero, then the below conditions of 2) all positive

Hurwitz determinants (HO, ensure that all roots of the characteristic polynomial have

negative real parts.

= -F1> 0 , H2 = F3
> 0 , H3 =

F3 F5

F0 F2 F4 > 0 . .

- Fn

Together, these two criteria guarantee the existence of a neighborhood of local

stability to which a system will return after being disturbed (Lyapunov 1892). In terms

of system feedback, positive Hurwitz determinants, and therefore system stability,

generally depend on lower levels of feedback being stronger than higher levels. For

instance, a positive H2 requires that F 1F2 > -F3, a positive H3 requires that F1[FIF4+F5]

> F 3[F IF 2+F 3], remembering that terms, by convention herein, are negative.

Interpretation of inequalities from higher order Hurwitz determinants, however, are less

straightforward. See also Gantmacher (1960, page 195), and Puccia and Levins (1985,

page 167) for additional discussions of the Hurwitz determinants.

Appendix 4. Maple V Program Commands for Qualitative and Symbolic
Analysis of the Community Matrix

Commands are for Maple V Release 5. Matrix input below includes example

input for model a (Figure 4.1). Input n:=x, at second command line, for x number of

species or system variables, and input A11 community matrix elements as 0, 1, or -1.
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F0 F2

F3 F5

0 F3

F2n-1

,

F0 F2 F4 F2n-2

Hn =
0 F3
0 -F0 -F2

F2n-3
F2n-4

>0



Matrix Input

[>with (linalg) :with (share) :with (Hurwitz)

I>n:=5:A:=array(1..n,l..n, H-1,1,0,0,0], [-1,-1,1,0,0], [0,-1,-1,1,0],

Qualitative Analysis

[>p:=charpoly (A, 1) : P : =permanent (abs (A) +band ( [1] ,n) ) :Pc := [seq (-1*coeff

(p, 1, degree (p) -i) ,i=0. . degree (p) ) :polynomial_coefficients : =Pc ;

Hurwitz _criterion=Hurwitz (p, 1) ;aPc := [seq(coeff (P, 1, degree (P) -i) ,

i=0 . degree (P) )] : z :=proc (x, y) if y=Othen 1; else x/y; fi ; end: evalf

(wFn=matrix (1, degree (p) +1, (i, j ) ->abs (z (Pc [j], aPc [j
) ) ) 2) ;

1>adjoint_A=adj (-A) ; T : =matrix (n,n, (i, j ) ->permanent (minor (abs (A) , i) ) ) ;

evalf (weighted_predictions_W=matrix (n,n, (i, j ) ->abs (z (adjoint (A) [i,

T[i,j]))),2);

Symbolic Analysis: input [n] in 211d-to-last command line below to detail symbolic

conditions of nth level of system feedback; input [i,j] in last command line to detail it

adjoint element, use 'evalm(symbolic_adjoint) ; to show entire matrix.

[>t : =proc (x, y) x*y: end: a=array (1. . n, 1. n) : Symbolic_A: =matrix (n,n, (i, j ) -

>t ( (A) [i, j] , (a) [i, j]) ) ; symbolic_feedback:= [seq(-1*coeff (charpoly

(Symbolic_A, 1) , 1, degree (p) -i-1) , i=0 . . degree (p) -1) 3 :symbolic_adjoint :=

adj (-Symbolic A)

[>symbolic_feedback[n];

[>symbolic_adj oint[ij];
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