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Abstract approved:

A problem of interest to forest managers is the optimum arrange-
ment of truck roads and landings for economical logging operations.
This problem becomes more complex if. a combined‘yarding and swinging
operation is considered.’ it is boésfbig fo formulate a mathematical
model to express the cost ber‘unit Qoiume for a particular configu-
ration of truck roads, landings, and&swing roads arranged to accom-
modate this type of harvest operation. Then, any of several
numerical methods may be,employéd tbrgssess the sought-for optimum
configuration. The'pakaméters of }hte¥g§t are the truck road spacing,
landing spacing, and swing road length that produce the smallest
logging cost. This paper critically examines several assumptions
made in formulation of the problem, including yarding cost computation,
tractor movement patterns, and average yarding distance.

This paper uses a numerical method not frequently employed with
constrained objective functions: Newton Multivariate Gradient

Iteration. A computer program was developed to implement the

iteration procedure, using a Hewlett-Packard 9830A Desktop Computer.

The solution procedure reduced iterations required for convergence




from several thousand experienced with exhaustive enumeration tech-
niques to Tess than thirteen. The use of this gradient method,

observations on its behavior, and insights into the analytical

approach to a complex problem are the subjects of this paper.
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A MODEL FOR THE DETERMINATION OF OPTIMUM SETTING
DIMENSIONS FOR TRACTOR YARD/SWING OPERATIONS

PROBLEM STATEMENT

The density of truck roads and landings in timber harvest units
is a matter of concern to the forest manager seeking to minimize
logging costs. Several approaches to optimum road and landing spacing
have been made in the literature of forest management. One special

case involves the use of tractor swings to shorten yarding distance.
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Figure 1. Tractor Yard/Swing Problem.
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Although many other authors have studied optimal road and landing
spacing for a single yarding machine (Matthews, 1942; Rowan, 1976;
Weller, 1977), operations involving both yarding and swinging have
not been investigated. Current consideration of this practice on
timberlands in Borneo prompted the following examination of the
problem. .

Consider a block of forest land, large enough to be regarded as
infinite, with a system of parallel, evenly spaced truck roads.
Along each truck road, landings are spaced at regular intervals.
From each landing é tractor swing road extends in both directions at

right angles to the truck road. (This scheme is shown in Figure 1.)
OBJECTIVES

The objectives of this study are:
1) Prepare a mathematical formulation for the average logging cost
associated with a combination yard/swing operation.
2) Set up a solution procedure using a gradient search method, to
find optimum dimensions for:
a) the spacing between truck roads,
b) the spacing between landings, and
c) the distance that the tractor swing road must extend
into the setting.
3) Critically examine any assumptions which must be made in the

formulation of the problem.

4) ‘Write a computer routine to perform the optimization calculations.




5) Run through several examples to become familiar with the solution
procedure and draw managerially applicable conclusions from the
outcome. |

6) Discuss the overall validity and practicality of the model, and

make suggestions for its improvement.



LITERATURE REVIEW

The classic discussion of road/landing spacing problems is a
forest economics text published in 1942 (Matthews, 1942). Matthews'
treatment of yarding costs, breakeven analysis, and minimization is
excellent, although perhaps limited by the nonéxistence of advanced
digital computers in 1942. Matthews' assumptions on average yarding
distance are used in this paper, although other authors have
developed more mathematically precise formulations (Peters, 1977;
Suddarth and Herrick, 1964). More recently, other studies of
road/landing spacing optimization have been published which sought
to bring more detail into the costing-out of road construction,
yarding, and landing construction. One of these was oriented to
iterative solution by computer (Carter, Gardner, & Brown, 1973).
Another took a practical approach to road/landing spacing optimiza-
tions, de-emphasizing the preciseness of the basic mathematical
model (Rowan, 1976). Y=t another author developed nomographs for
finding optimum spacing (Weller, 1977). None of these writers have
addressed the problem set forth in this paper: a combined
yarding/<winging operation.

Many texts exist on the subject of optimization of non-linear
multivariate functions. McMillan (1975) presents a concise matrix
formulation for Newtor multivariaie gradient iteration. Himmelblau
(1972) discusses a host of related topics, including other gradient

methods, direct search methods, and penalty function methods.

Simmons (1975) devotes considerable discussion to analytical




5
approaches such as use of Lagrange multipliers. A chapter on
constrained local optima was particularly useful in explaining some
apparently contradictory results in the early phases of this study.
Gottfried & Weismann (1973) discuss several direct search algorithms,
including binary series, Fibonacci series, and golden section series.
My first attempt at a solution algorithm used a direct-search scheme
of my own design: exponential increment (Nickerson, 1976). An
operations research text by Wagner (1969) discusses topics which
suggested an alternate formulation of the problem, using the integral
of a "density" function for logging cost. The Titerature is so
rich in techniques for analysis of problems like the one in this
paper, that it was an exercise in restraint to remain focused on

one approach.
MATHEMATICAL FORMULATION

Throughout this paper, metric units will be used: volume in
cubic meters, distance in meters, area in hectares. A "front-end"
and "back-end" to translate between metric and non-metric units are
simple additions to the solution technique discussed here.

We have assumed a simplified model for both yarding and swing
cost:

Yarding Cost per Unit Volume

= Fixed Cost, Yarding + (Variable Cost per Unit Distance

x Yarding Distance)




Swing Cost per Unit Volume
= Fixed Cost, Swing + (Variable Cost per Unit Distance

X Swing Distance)

This is a simple model that says yarding cost is a linear
function of yarding distance. In reality, it may also be a function
of ground slope, log size, soil condition, and other factors.
Innumerable time studies, such as those upon which U.S. Forest
Service yarding cost adjustment factors are based (USFS, 1976),
support this observation. But on a given piece of ground, these
other factors may be uniform enough to be regarded as constant;
this is the assumption we will proceed upon in this study. Tabies
of yarding costs generated by the U.S. Forest Service and the Bureau
of Land Management, based on cost studies, bear out the near-linear
relation of yarding cost to yarding distance, assuming other factors
are held constant (USFS, 1976; BLM, 1977).

Variable names used in this formulation are:

Variable or coefficient Units
K = average logging cost §/m’

Y. = one-half truck road spacing meters
X = landing spacing meters
L = swing road Tength meters
F1 = swing machine movein cost $

F2 = yarding machine movein cost $

F3 = landing construction and setup cost $
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V = volume removed m3/hectare
A = yarding distance factor meter/meter
C = swing road construction cost  $/meter

R = truck road construction cost $/meter

V1 = swing variable cost $/m3/meter
V2 = yarding variable cost $/m/meter
V3 = swing fixed cost §/m

V4 = yarding fixed cost §/m°

One must investigate the movement of Togs from stump to landing
before formulating a cost function. Looking at Figure 1, the first
question to resolve is, "May logs be yarded onto the truck road?"

If this is permissible, let us assume the logs may be loaded at their
point of arrival on the truck road; surely if a yarding tractor can
operate onto the truck road surface, the loader can operate along the
truck road, too. If yarding onto the truck road is allowed, we will
call this condition "Case 1." Also, in order fqr us to have a clear
understanding of average yarding distance, we must make an assumption
about the path the yarding vehicle will travel. Let us assume it
takes the shortest path: the yarding tractor moves directly to the
road in a direction perpendicular to the road. The yarding distance
factor (A), equal to or greater than 1, is used to allow for "weave"
in the yarding tractor's route caused by obstacles such as stumps

and terrain roughness.

Let us examine Case 1 in detail. If yarding is permitted onto
the truck road, it obviously foliows that there is a segment of the

setting that will be yarded to the truck road (segment 1 in Figure 2),
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and another segment that will be yarded to the swing road, then
swung to the landing (segment 2 in Figure 2). We are interested

in defining the boundary, or breakeven line, between these two

segments.
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Figure 2. Breakeven Point if Yarding AlTlowed to Truck Road

Consider a Tog lying along the boundary of the unit, on the
breakeven line we are seeking to define. Let the distance from the

truck road be P]. The cost to yard the log to the truck road is:

A V2 P1 + V4 (eq. 1)

The cost to yard the log to the swing road, and then swing it

to the landing is:




(Yarding) (Swinging)
A V2 X
< > + V4> + (v Py V) (eq. 2)

Since the two costs are by definition equal at the breakeven
point, we have:

(AVy )+ Vg = ((1/2)A Wy X) + (Vy) + (Vg Py) + (V) (eq. 3)
or:

((1/72)A Vo X) + Vs

P. = (eq. 4)
1 A V2 - V.|

Now consider a Tog along the swing road, a distance from the
truck road. More specifically, the log lies just off the swing
road, so that the yarding tractor will have to deliver it to the
swing road, thereby experiencing only the fixed yarding cost. The

associated costs are:

Cost yarded to truck road = (A V2 P2) + Y, (eq. 5)
Cost yarded to swing road _
and swung to landing - (V4) ¥ (Vl P2 ¥ V3) (eq. 6)

(Yarding) (Swinging)

Again equating the two costs to define the breakeven condition:

(A V2 P2) + V4 = Wy (V] P2) + Vs (eq. 7)
or:
v
P2 = __—3__ (eq. 8)

It can be demonstrated that the breakeven 1ine is a straight
Tine: consider a log somewhere along the breakeven line, located

a distance P3 from the truck road and P4 from the swing road. The

associated costs of moving this log are:
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Cost yarded to truck road = A V, Py + V, (eq. 9)

Cost yarded to swing road _
and swung to landing = ((A V2 P4)+ V4) * ((V] P3)+ V3)
(Yarding) (Swinging) (eq. 10)

Once again equating the two costs, we obtain:

(A V2 P3) + V4 = (A Vs P4) 0, (V] P3) + V3 (eq. 11)
or:
(A Y, P4) * V¥,
I (eq. 12)

Now, if the breakeven line is truly a straight Tine, it can be
seen that similar triangles exist, described by the arbitrary position
of the log at (P3, P4) and by the log at (P1, boundary). This is

described mathematically by equating the ratios:

3° "2 _ 177
P4 X/2
Substituting expressions (4) (8) and (12) we obtain:
(A V., P )+ V v (172) (A VpX)+ V5 V3
A 5 : v > - AV : v Aty -V S AV, -
2 " 2 " ?
P N X/2

A V2 P4 1 K X/2 A V2 1

A V2 - V] P4 A V2 - V1 X/?

? A V2 i A V2 ( 0 E D

An assumption that will greatly simplify the computation of

average yarding distance for logs that are moved directly to the

truck road is that P2 = 0, i.e., that the breakeven 1ine intercepts
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the Tanding. An examination of this assumption is made in Appendix C,
concluding that the assumption is a safe one.

The above derivations, although somewhat lengthy and tedious,
demonstrate the mechanics employed in deriving the cost functions for
each case. Detailed examination for other segments and other cases
will be omitted.

It develops that there are several distinct configurations of
yarding patterns that may occur. Figure 3 shows Case la--yarding
permitted to the truck road, Y2P1. The configuration can be sub-
divided into five segments with distinct geometry. Similarly,
Figure 4 shows Case 1b--yarding permitted to the truck road, Y5P1—-
depicted with three segments. Case lc, shown in Figure 5, is a
degeneration to a condition of yarding directly to the truck road,
which bears checking as a possible alternative. Figure 6 shows
Case 2--yarding not permitted onto the truck road. Note that each
“setting" is symmetric about both the truck road and the swing road.

Total cost for each setting is the sum of yarding cost for
each segment, plus the sum of swing cost for each segment, plus
road, landing, and movein cost. Average cost--the quantity we wish
to minimize--is the total cost divided by the volume on the setting.
The average cost functions for Cases la, 1b, Tc, and 2 are shown in
Equations 13-16.

By carefully keeping the cost equations in the form of a
summation of terms, the obtaining of the partial derivatives is made

to be an easier task. Considering Case la, we must obtain partial

derivative expressions with respect to L, Y, and X, and second
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Figure 5. Case lc: Yarding Direct to Truck Road
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Figure 6. Case 2: Yarding not Permitted onto Truck Road




Equation 13: Cost Function for Case la
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Equation 14: Cost Function for Case 1b

COST/UNIT VOLUME = K =

@ (2w (3 - Sethy

AV,X + 2V,
AYV AV, -V
+ (2Y)(32+V4> <—————2 1)
: 20V,X + 4V,
AZv2 - AV, AV, - Vy
+ (2Y)(/ Xy + v%) < ———————————>
3AV,X + 6V, 2AV,X + 4V
2vv AV, -V
+ (2Y)< 1, v3> <___Jé___l__>
3 20V,X + 4V,
+ R
Al

Fy + Fp + Fy + 20L

2YXV

Equation 15: Cost Function for Case 1c

COST/UNIT VOLUME = K =

AVZY R

+ Vg o4

2 2YV
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Equation 16: Cost Function for Case 2

COST/UNIT VOLUME = K =

S ———
+ %— [1/3av Y22y (v2) + v4] [% i %]
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2 %2 LY, LX, and YX. We can do this

partials with respect to L2, Y
on a term-by-term basis for the ten terms comprising Equation 1.
Liberal employment of the basic rules of calculus leads us to the
desired expressions shown in Equations 1.la-c (Appendix A) and 1.2a-f
(Appendix B). A systematic procedure for checking our derivations is
to calculate a derivative artificially, by making a differential incre-
ment in one variable while holding the others constant, and comparing

this value on a term-by-term basis with the value obtained by our

expressions for the derivative.
DISCUSSION OF ASSUMPTIONS

It is necessary to make some assumptions to clarify or simplify
the problem at hand. For this formulation, some of the most signifi-
cant assumptions are:

1) We are seeking to design an optimal layout on a block of land
without existing transportation systems, with uniform timber
distribution, uniform topography, and sufficient size that we
may consider a set of regular, rectangular settings without
concern about "Teftover" land.

2) VYarding or swinging costs vary directly with yarding or swinging
distance, in the form:

Yarding Cost = Fixed Cost + (Variable Cost x Yarding Distance)

3) The average yarding distance for a triangular segment of a setting
is the distance from the centroid of the segment to the landing
Matthews, 1942).

4) Yarding along the length of the swing road will be perpendicularly
into the swing road, and yarding along the truck road will be
perpendicularly into the truck road.

Let us examine several of these assumptions in some detail.
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Linear Yarding Distance/Yarding Cost Relationship

Yarding cost curves developed by the U.S. Forest Service and the
Bureau of Land Management show a linear or near-linear relation between
yarding distance and yarding cost. These curves were derived empiri-
cally, from a limited pool of cost studies. Similar cost curves might
be obtained, however, by a deterministic approach. Were we to know the
expected velocity of the yarding tractor, the expected time associated
with hookup, unhook, etc., the necessary labor, fuel, operating, depre-
ciation, overhead, and maintenance costs, we could assemble a yarding-
cost model. In doing this, it would become clear that certain phases
of the yarding operation would be linearly dependent on yarding distance
(move unloaded, move loaded), and other phases would be fixed amounts
(hook, unhook, turnaround). Of course, this pre;upposes that other
factors such as slope, soil conditions, and stump spacing are at a con-
stant level; variation in these factors could be expected to affect

yarding cost.

Average Yarding Distance for Triangular Segment

N CO
N

LAND ING

Figure 7. Centroid of Triangular Setting for Matthews' Average
Yarding Distance




20

Matthews (1942) assumes that the average yarding distance of a right
triangle segment of ground equals the distance from the centroid of the
segment to the landing (Figure 7). Although this is nearly correct, a
more mathematically precise result is obtained by integrating over the

area:

area .
AVERAGE YARDING DISTANCE = ] ﬂgﬁ—ggﬁ d AREA

Fortunately, this integration was performed by Suddarth and Herrick
(1964) for a right triangular segment, and generalized by Peters (1977)
for any triangular segment, leading to the following formulation for

averaging yarding distance:

Ry +R
A = [ —E]IR2 + (& - Ry)°] +

6 R
3

[(R32 - (RyRy)%)((Ry#R,)%- Ry) R1+R2+R3> 17

1283 1n(R]+R2-R3 (eq. 17)

3
Where R], R2, R3 can be dimensions of the sides of the right

triangular segment, as shown in Figure 7. Using this same convention,
Matthews' formulation for average yarding distance is:
R3 2

AYD = 2/3\/'R]2 +[7] (eq. 18)

It should be apparent that the less-correct Matthews' formulation is
more computationally attractive, particularly when faced with the
necessity of differentiating twice. If Matthews' formulation is not
too far off, we may be safe in using it.

We can reduce both Matthews' and Paters' formulations to ones in-

volving a single variable. Let R=R]/R3. This is tantamount to scaling
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the right triangular setting down until the sides take on the

dimensions:
R3 =]
R1 =R
/nl
R2=VR + 1

We can then compare the two methods on the basis of the

scaled-down setting, where:

————

AYD = 2/3 \//Rz + (1/2)2 (eg. 19)

*
matthews

A

AYD* ters 1/3(\/R2 £1 +R%mn (eq. 20)

R + VRZ+1 +1>
———

R +VR2+1 - 1

This is equivalent to the formulation by Suddarth and Herrick for

right triangles. A plot of the percent difference between the two

methods (see Figure 8) shows the interestina result that a peak

difference of about 4 1/2% is experienced, when the ratio of R1/R3

is about 0.42, and that the Matthews formulation is strictly less
than the Peters formulation. The difference is a magnitude that can

be accepted, in view of the computational advantages.

Yarding Perpendicular to the Swing Road

The assumption that yarding to a road is accomplished by a
yarding tractor moving into the road at right angles is implicit in
formulations by Matthews, by Carter, Gardner, & Brown, and by Rowan.

The same assumption is made in this formulation (see Figure 9).

There may be physical or procedural restrictions that effectively
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result in perpendicular yarding into the swing road, but the options

should be investigated.

W 4
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Figure 8. Difference between Peters and Matthews Average
Yarding Distance
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Consider the incremental cost of yarding from point A to point

B as shown in Figure 11:

Cost = AVod + V, (r - b)

= AL\bBZ + x2 + V. (r - b)
2V X 1\ (eq. 21)
now, let:
g = Cost
xAV2
. R ¥ (eq. 22)
;2' ;? AV, x 7 X
and let:
k:k__Ylf.
1 AV2 X
N v
=\/(b/X)2 £ 1 - KVl (b/x) (eq. 23)
2

This in effect isolates on the right side of the equation the
terms that describe the angle of inclination from the perpendicular,
labelled 8 in Figure 10. From Figure 11 it can be seen that b/x =
tan 8. Therefore, the economically optimum angle of inclination can
be inferred from the minimum k], i.e.:

d k
1 =0 =>
d (b/x) ~ 0 b/xoptimal = 9optima]

TN~ TG T
V1 + (b/x) 2
v —
b/x = ——1/1+ (b/x)
AV

2
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squaring both sides:

v
(b/x)% = ;)" (1 2+ (o102
|
| ,, ,
v v Vy 5
2 1,2
0 - ((Av‘2>2 - 1) (b/x)% + 20 b/x + @) (eq. 20)
Y
Now, let (57) = N. Equation 24 becomes:
AV2
| (N>-1) (b/x)% + 2% (b/x) + N2 = 0
which can be solved by the quadratic equation:
b/x = =2+ VANt - (4) (v-1) (WP)
2 (N2-1)
_ 2N +Vgy?
1 2(N%-1)
|
_ =N (N+1)
(N+T)(N-1)
- N _
1 -N
Vi
| wre—
| A
; b/Xyptimal = ?_“T/]— (eq. 25)
1 - 55)
AVZ
and, _V]_
AV
- 2 (eq. 26)
eoptimal = arctan #
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Figure 12 is a graphical display of optimal angle of inclination

from the perpendicular over a range of Vl' for various values of A.

2
It appears that the perpendicular yarding assumption is not too good:

] 1 is significantly different from zero for most of the range

optima
of values we can imagine. However, if we investigate the difference

in variable yarding cost between perpgndicu]ar yarding and yarding

at goptima], we see the assumption in a much more favorable light.
Ay
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Figure 12. Optimum Yarding Angle for Various Values of A
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Assume that x = 50 and r = 300:

) ) * SR cost, yarding cost, yarding %
A 1 2 optimal perpendicular at Boptimal difference
2.0 0.03 0.30 3.0 39.00 38.96 0.1
1.2 0.10 0.10 78.7 36.00 35.59 1.2
2.0 0.10 0.10 45.0 40.00 39.14 2.2
1.2 0.03 0.30 5.2 27.00 26.94 0.2

The percent differences shown are of a magnitude that we can
readily accept. In view of the computational advantages of the
yarding-perpendicular assumption, we will proceed on this basis.
Nonetheless, our findings on optimum angle of inclination as shown
nondimensionally in Figure 12, can stand alone as a significant

observation with applicability in other circumstances.

SOLUTION PROCEDURE

The recursion equation for the Newton multivariate nonlinear

gradient iteration, in matrix notation (McMillan, 1975), is:

A _ A » /\_] /\T
Xn+] = Xy -H Y (eq. 27)
where, in = mx1 column vector of variable estimates at the nth
iteration
oT

Y = transpose of the 1xm row vector of the gradient of
the function--the mx1 vector of partial derivatives

A
H "= inverse of the Hessian matrix--the mxm matrix of
second partial derivatives

For this problem: -
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"3K/ oL
vT 3K/ aY

]

| 3K/ 3X

32k/aL%  3%k/aLaY  92K/AL3X
32k/avaL 3%K/aY2  32K/avaX

x>
]

o2k/oxaL  a%K/aXaY  aK/aX’

By determining the first and second partial derivatives for the
cost functions in each case, it is possible to make an initial guess
at theoptimum values for L, Y, and X, and by means of equation 27,
improve upon these guesses in an iterative fashion until the optimal

solution is reached.

Separation of Cases

Each case was examined separately. The objective was to arrive
at the optimum point for each case, and compute the associated cost.
The permissible case with the lowest cost would be the preferred

yarding configuration.

Initial Guess

As is frequently the situation with Newton-Raphson iteration,
the value of the initial guess is important in determining the
behavior of the iteration. It became apparent that a generally low

initial guess produced the least problem. Difficulties encountered

with bad initial guesses included non-convergent oscillation and
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extreme fluctuation. A "good" initial guess produced a

well-behaved monotonic convergence that was beautiful to behold.

Constrained Function

In a1l cases the function we are seeking to minimize is not
unconstrained. Moreover, the constraints operating are a Tittle
extraordinary. To begin with, Y and X must be strictly areater
than zero, and L must be less than Y. In Case la, L and Y must
both be greater than P] (which is a function of X). In Case 1b,

Y must be Tess than P]. The iteration function described earlier
will not recognize these constraints, of course. Consequently,

if the iteration function takes us into a non-feasible region, the
computer algorithm must be prepared to nudge us back into the
feasible region. At each iteration, if the infeasible region is
entered, the variable values are readjusted in the direction of the
feasible region. Obviously, iteration must commence in a region of

feasibility. This procedure worked nicely in practice.

Stopping Criterion

The existence of constraints means that at the sought-for
minimum-cost point, the partial derivative of one or more indepen-
dent variables may not be zero. Inspection of the partial
derivative is not sufficient to act as a stopping criterion.
Similarly, the increment of each independent variable cannot serve

as a stopping criterion, since at a minimum point where the cost

hypersurface intersects a constraint hypersurface, the gradient
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may be far from flat. A practical stopping criterion is the change
in the cost function from iteration to iteration: 1if this change
drops below some small amount, we are not making a significant

gain by continuing to iterate.

Convexity/Non-convexity

It is of importance to know whether a minimum point determined
by iteration is a global minimum or a local minimum. In an
unconstrained problem, examination of the sign of the determinants
of the principal minor matrices of the Hessian matrix can be used
to assess convexity or non-convexity. In an unstrained function,

a global minimum would have to lie in a zone of convexity, and if
the function were convex over its entire range of interest, a
minimum found by an iterative search would be certainly a global
minimum. In a constrained situation, however, this need not be
true. A simplified example in one independent variable will
illustrate. Consider F(x) in Figure 13, where x is constrained

to lie between a and b. Note that the global minimum lies in the
convex zone, but that, were our gradient search to commence in part
of the non-convex zone, we would converge to an incorrect Tocal
minimum at x = b. In Figure 14, an incorrect Tocal minimum exists
within the convex zone, which we would converge on if we started

in the convex ( or part of the non-convex) zone, but the global
minimum at x = b will be reached only if we start looking somewhere

within the zone of non-convexity. 1In Figure 15, again the global

minimum Ties within the zone of non-convexity where the constraint
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intersects the function, at x = b, but an initial guess anywhere
will reach this point, providing our stopping criterion is suffi-
ciently flexible to carry us past the inf]ecfion point. In this
case, the convex zone is actually a "quasi-convex" zone; it is
indistinguishable from a genuinely convex zone on the basis of
the Hessian matrix test. The upshot of all this is that one must
have some feel for the nature of the cost function if one is to
feel confident that the global minimum has been found. Therefore,
the solution algorithm for this problem includes a mechanism for
.forcing the iteration into or out of a zone of convexity, by
readjusting the variable values at any iteration on the basis of
the Hessian matrix convexity test. Specifically, it was observed
that a non-convexity "hangup" sometimes occurred when swing road
Tength (L) equalled 1/2 setting Tength (Y). If this condition
occurred in the absence of a convexity force, subsequent iterations
continued to demonstrate the condition: L remained equal to Y,
and the function remained non-convex. By readjusting L to halfway
between the current iteration values for P] (minimum possible L)
and Y (maximum possible L), a zone of convexity was almost always
encountered in subsequent iterations.

Problems with zones of non-convexity and constraints making
up non-convex sets are certainly not unique to the Newton Multivariate

Gradient Method. Appendix D shows similar anomalies occurring with

several other well-known gradient algorithms.
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Figure 15. Global Minimum Not Within Quasi-convex Zone.

A computer program for performing the minimum search was
written in BASIC for the Hewlett-Packard 9830 computer. Results for
several example problems were obtained. A listing of this program

is included in Appendix E.

Case 1c Direct Solution

Case 1c involves a single variable (see eq. 15). A direct

solution is easily determined. Optimum Y occurs when dK _ 0:

dy
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PROBLEM STATEMENT SUMMARIZED

Case la: Minimize K = f(L,Y,X)
p

s.t. L > 1
L <Y
Y 2 P
Y, X,L >0

Case 1b: Minimize K = f(L,Y,X)

s.t. L =Y
y < P]
Y, Xx,L >0

Case Tc: Minimize K = f(Y)
s.t.. Y
Case 2: Minimize K = f(L,Y,X)

s.t. if L = 0 then swing movein = 0

L o< ¥
Y,X >0
L >0

RESULTS

Three examples were run. For Examples 1 and 2, a run was made
without forcing the iteration into a zone of convexity, and another
was made applying this correction. Example 3 was based on actual

costs as currently listed in the Bureau of Land Management's

Schedule 20 of logging costs in the Pacific Northwest (BLM, 1977).
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Inputs were:

Example 1 Example 2 Example 3

A 1.2 1.2 1.2

v 300.00 300.00 300.00

V] 0.06 0.08 0.0023

v, 0.1 0.10 0.0035

V3 0.25 0.25 0.38

Vy 0.55 0.40 0.59

c 0.60 1.60 0.60

R 33.00 33.00 33.00

F 180.00 180.00 180.00

Fy 325.00 325.00 320.00

Fs 200.00 200.00 200.00
Initial L 20 20 250
Initial Y 20 20 250
Initial X 20 20 250

Table 1. Inputs for Example Problems.

Output summaries can be seen in Figures 16-20. Note that for
Example 1, Case la and 2, an improvement (i.e., a Tower minimum)
was made by forcing the iteration into the zone of convexity. The
function must be analogous in appearance to the two-dimensional
function in Figure 14. In Example 2, Case la, attempting to force
the iteration into the convex zone fails, suggesting that the convex

zone is actually quasi-convex, as diagrammed in Figure 15.
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; Note that in all three examples, Case 1b degenerates in the
direction of Case 1c. A very high truck road cost biases this
outcome somewhat.

The interpretation of the results for each example is as

follows:

Example 1  Example 2 Example 3

| If yarding Optimum

| is permitted configuration la 1c 1c
onto truck
road: Optimum L = 121.7 -- -
Optimum ¥ = 146.8 95.7 511.8
Optimum X = 66.5 -- -
Cost/m> = $12.23 $11.89 $2.74

If yarding Optimum

not permitted configuration 2 2 2
| onto truck
| road: Optimum L = 133.5 58.8 557.0
Optimum ¥ = 156.4 126.1 703.2
Optimum X = 53.7 71.4 183.1
Cost/m3 = $12.50 $13.80 $2.93

Table 2. Results for Example Problems

CONCLUSIONS

This study was an attempt to build a deterministic model of
cost associated with a tractor yard/swing operation. If a model
such as this is employed with the caution deserved by its simplify-

ing assumptions, the forest manager may make some valuable inferences.
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Case 1a--P]<Y

Iteration L Y X Condition Cost/M3 Convexity
! 20.0 20.0 171 P]<7 64.63 ot convex
2 28.2 28.2 22.4 P]<Y 41.19 Not convex
3 39.7 39.7 29.0 P]<Y 27.37 Not convex
4 55.8 55.8 37.4 P]<Y 19.39 Not convex
5 77.2 77.2 47.5 P]<Y 15.06 Not convex
6 103.1 103.1 57.8 P]<Y 13.06 Not convex
7 128.3 128.3 64.9 P]<Y 12.41 Not convex
8 144.0 144.0 66.3 P1<Y 12.30 Not convex
9 147.8 147.8 65.9 P]<Y 12.29 Not convex

Case 1b--P1>Y

Iteration L Y X Condition Cost/M3 Convexity
1 20.0 20.0 20.0 P]>V 59.60 onvex
2 29.7 29.7 30.3 P1>Y 34.46 Convex
3 43.7 43.7 46.0 P1>Y 21.83 Convex
4 62.2 62.2 73.0 P]>Y 15.78 Convex
5 80.5 80.5 124.6 P]>Y 13.43 Convex
6 83.1 83.1 245.0 P]>Y 12.99 Convex
7 85.3 85.3 483.7 P]>Y 12.78 Convex
8 87.6 87.6 954.7 P1>Y 12.68 Convex
9 89.1 89.1 1892.5 P1>Y 12.64 Convex .

10 90.1 90.1 3764.0 P]>Y 12.62 Convex
11 90.7 90.7 7504.3 p.>Y 12.61 Convex

1

Case Tc--Yarding Perpendicular to Truck Road

Optimum Y = 91.3
Cost/M> = 12.60
Case 2--Yarding not Permitted onto Truck Road

Iteration L Y X ‘Cost/M3 Convexity
1 20.0 20.0 20.0 59.94 Not convex
2 28.3 28.3 25.8 38.73 Not convex
3 40.3 40.3 33.0 26.20 Not convex
4 57.1 57.1 41.2 18.97 Not convex
5 80.0 80.0 49.3 15.08 Not convex
6 108.3 108.3 54.6 13.28 Not convex
7 136.0 136.0 55.3 12.67 Not convex
8 152.9 152.9 54.1 12.56 Not convex
9 157.0 157.0 53.8 12.55 Not convex

Figure 16. Example 1 Not Forced into Convex Zone
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Case 1a—-P]<Y

[teration L Y X Condition Cost/M3 Convexity
1 20.0 20.0 17.1 *'P1< Y 64.63 Not convex
| 2 26.1 28.2 22.4 P1< Y 41.12 Not convex
| 3 35.2 39.9 29.4 P1< Y 27.02 Convex
4 37.9 55.9 37.5 P1< Y 19.19 Convex
5 57.2 77.4 47.5 P1< Y 14.93 Convex
6 80.7 103.3 57.9 P1< Y 12.96 Convex
7 103.8 128.3 65.2 P1< Y 12.33 Convex
8 118.3 143.4 66.8 P1< Y 12.24 Convex
9 121.7 146.8 66.5 P1< Y 12.23 Convex

Case 1b--P1>Y

[teration L Y X Condition Cost/M3 Convexity
T 20.0 20.0 20.0 P]>Y 59.60 Convex
2 29.7 29.7 30.3 P1>Y 34.46 Convex
3 43.7 43.7 46.3 P1>Y 21.83 Convex
4 62.2 62.2 73.0 P1>Y 15.78 Convex
5 80.5 80.5 124.6 P1>Y 13.43 Convex
6 83.1 83.1 245.0 P1>Y 12.99 Convex
7 85.3 85.3 483.7 P1>Y 12.78 Convex
8 87.6 87.6 954.7 P1>Y 12.68 Convex
9 89.1 89.1 1892.5 P1>Y 12.64 Convex

10 90.1 90.1 3764.0 P1>Y 12.62 Convex
11 90.7 90.7 7504.3 P1>Y 12.61 Convex

Case 1c--Yarding Perpendicular to Truck Road

Optimum Y = 91.3
Cost/M3 = 12.60

Case 2--Yarding not Permitted onto Truck Road

[teration L Y X Cost/M3 Convexity
1 20.0 20.0 20.0 59.94 Not convex
2 14.2 28.3 25.8 38.37 Convex
3 23.4 40.3 32.9 25.96 Convex
4 38.2 57.3 41.0 18.81 Convex
5 59.3 80.3 49.0 14.96 Convex
6 86.1 108.5 54.3 13.20 Convex
7 113.2 136.1 55.1 12.61 Convex
8 129.7 152.6 54.0 12.50 Convex
9 133.5 156.4 53.7 12.50 Convex

Figure 17. Example 1 Forced into Convex Zone.
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Case 1a--P1<Y

. ey . 3 .
Iteration L Y X Condition Cost/M Convexity
1 20.0 20.0 8.8 P]<V 107.85 Not convex
2 27.6 27.6 12.0 P]<Y 61.70 Not convex
3 38.0 38.0 16.4 P]<Y 39.12 Not convex
4 51.8 51.8 22.3 P]<Y 26.36 Not convex
5 69.2 69.2 30.5 P]<Y 19.31 Not convex
6 89.0 89.0 42.0 P]<Y 15.68 Not convex
7 105.9 105.9 58.4 P1<Y 14.05 Not convex
8 110.2 110.2 68.9 P]<Y 13.67 Not convex
9 102.8 102.8 61.9 P]<Y 14.00 Not convex
| 10 107.4 107.4 66.9 P]<Y 13.76 Not convex
1 104.7 104.7 64.9 P]<Y 13.87 Not convex
12 105.9 105.9 64.8 P1<Y 13.84 Not convex
| 13 106.2 106.2 64.8 P]<Y 13.84 Not convex
| Case 1b--P >Y
. ., 3 .
Iteration L Y X Condition  Cost/M Convexit
| T 20.0 200 2070 P]>Y 61.12 Convex
2 29.6 29.6 30.4 P]>Y 35.52 Convex
| 3 43.2 43.2 46.8 P]>Y 22.55 Convex
] 4 61.4 61.4 73.9 P]>Y 16.19 Convex
| 5 81.7 81.7 123.4 P]>Y 13.45 Convex
| 6 94.8 94.8 227.0 P]>Y 12.53 Convex
7 95.6 *95.6 452.2 P]>Y 12.21 Convex
| 8 95.4 95.4 905.1 Py>Y 12.05 Convex
9 95.6 95.6 1809.1 P]>Y 11.97 Convex
10 95.6 95.6 3616.7 P]>Y 11.93 Convex
11 95.7 95.7 7231.4 P]>Y 11.91 Convex
12 95.7 95.7 14460.7 P]>Y 11.90 Convex
Case Tc--Yarding Perpendicular to Truck Road
| Optimum ¥ = 95.7
Cost/M> = 11.89

Case 2--Yarding not Permitted onto Truck Road

| Iteration L Yy X  Condition Cost/M3 Convexity
] 20.0 20.0 20.0 P]<Y 61.59 Not convex
2 28.2 28.2 26.4 . P]<Y 39.88 Not convex

W 3 9.6 39.6 34.7  P<Y 27.23  Not convex
4 55.4 55.4 44.8 P]<Y 20.07 Not convex
5 75.8 75.8  56.0 P]<Y 16.34 Not convex
6 98.9 98.9 65.6 P]<Y 14.76 Not convex
7 118.7 118.7 70.0 P]<Y 14,31 Not convex
8 128.2 128.2 70.3 P]<Y 14.24 Not convex
9 129.9 129.9 70.2 P, <Y 14.23 Not convex

1
Figure 18. Example 2 Not Forced into Convex Zone




40
Case 1a--P1<Y

[teration L Y X Condition Cost/M3 Convexity

| 20.0 20.0 8.8 P]<? 107.85 ot convex

2 25.9 27.6 12.0 P]<Y 61.43 Not convex

3 35.3 38.9 17.0 P]<Y 37.27 Not convex
4 51.3 57.3 26.1 P]<Y 22.72 Convex

5 93.9 93.9 48.6 P]<Y 14.91 Not convex

6 108.1 108.1 64.7 P]<Y 13.81 Not convex

7 106.7 106.7 64.7 P]<Y 13.83 Not convex

8 106.5 106.5 64.6 P]<Y 13.84 Not convex

Case 1b--P]>Y

[teration L Y X Condition Cost/M3 Convexity
1 20.0 20.0 20.0 *_P]>Y 61.12 Convex
2 29.6 29.6 30.4 P]>Y 35.52 Convex
3 43.2 43.2 46.8 P]>Y 22.55 Convex
4 61.4 61.4 73.9 P]>Y 16.19 Convex
5 81.7 81.7 123.4 P]>Y 13.45 Convex
6 94.8 94.8 227.0 P]>Y 12.53 Convex
7 95.6 95.6 452.2 P]>Y 12.21 Convex
8 95.4 95.4 905.1 P]>Y 12.05 Convex
9 95.6 95.6 1809.1 P]>Y 11.97 Convex
N 10 95.6 95.6 3616.7 P]>Y 11.93 Convex
. 11 95.7 95.7 7231.4 P]>Y 11.91 Convex
12 95.7 95.7 14460.7 P]>Y 11.90 Convex

Case l1c--Yarding Perpendicular to Truck Road

Optimum Y = 95,7
Cost/M3 = 11.89
Case 2--Yarding not Permitted onto Truck Road
Iteration L Y X Cost/M3 Convexity
1 20.0 20.0 20.0 61.59 Not convex
2 14.1 28.2 26.4 38.81 Convex
3 0.0 39.0 33.0 26.49 Convex
4 6.1 54,9 42.2 19.41 Convex
5 19.8 75.5  53.1 15.75 Convex
6 36.6 98.5 63.6 14.24 Convex
7 51.1 117.1 70.0 13.85 Convex
8 57.8 125.1 71.4 13.81 Convex
9 58.8 126.1 71.4 13.80 Convex

Figure 19. Example 2 Forced into Convex Zone
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Case 1a-—P]<Y

[teration L Y X Condition  Cost/M3 Convexity
I 250.0 250.0 43.7 P] <Y ~4.89 Not convex
2 304.2 340.9 61.1 P]< Y 3.78 Convex
3 330.1 443.8 82.8 P]< Y 3.21 Convex
4 429.3 551.2 116.3 P]< Y 2.95 Convex
5 488.6 619.5 163.3 P]< Y 2.84 Convex
6 486.0 629.9 225.5 P]< Y 2.81 Convex
7 546.0 604.1 313.0 P]< Y 2.81 Convex
Case 1b--P]>Y
[teration L Y X Condition Cost/M3 Convexity
1 250.0 250.0 250.0 P] >Y 3.62 Convex
2 348.4  348.4 401.6 P] >Y 3.06 Convex
3 449.0 449.0 687.2 P] > Y 2.83 Convex
4 496.6 496.6 1301.6 P] >Y 2.78 Convex
5 489.5 489.5 2621.9 P] >Y 2.76 Convex
6 495.7 495.7 5210.5 P] >Y 2.75 Convex
7 501.5 5071.5 10359.4 P] >Y 2.75 Convex
Case 1c--Yarding Perpendicular to Truck Road
Optimum ¥ = 511.8
Cost/M® = 2.74
Case 2--Yarding not Permitted onto Truck Road
[teration L Y X Cost/M> Convexity
1 250.0 250.0 250.0 3.99 Not convex
2 179.8 359.5 217.2 3.35 Convex
3 335.9 493,17  193.1 3.05 Convex
4 468.9 617.8 186.3 2.95 Convex
5 541.4 688.0 183.6 2.94 Convex
6 557.0 703.2 183.1 2.93 Convex

Figure 20. Example 3 Forced into Convex Zone.
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For instance, based on Example 3, a manager might conclude:
1. If I permit logging onto the truck road, there is no
advantage to moving in a swing machine or building
landings. My truck spacing should be about 1000 meters.
2. If I do not permit Togging onto the truck road, I will
spend about 6 1/2% more on logging costs. If I stand to
save an equal amount on reduced road maintenance or repair,
this is an alternative to consider.
3. If I do not permit logging onto the truck road, my
landings should be about 180 meters apart, my truck roads
should be about 1400 meters apart, and my swing roads

should extend about 550 meters into the setting from the
Tanding.

The efficiency of the Newton Gradient search is quite remarkable.
An early approach to this problem involved an exhaustive enumeration
technique, requiring about 18,000 iterations. By contrast, the
Newton algorithm closed on a solution in at most thirteen iterations.
Execution time for these two approaches was 85 minutes and 1 1/2
minutes, respectively; we could expect a proportionate reduction in
execution time if we were working with a computer system with a
generally faster operating speed.

There are several considerations that could improve the validity
of the model set forth in this paper. Any of these considerations
would be fertile ground for further investigations. Several topics

are:

Yard/Swing Synchronization

The ability of the swing machine to remove logs at a rate
matching the arrival of the yarding machine is an interesting as-

pect of the problem. Unaccounted costs that could arise are those

resulting from idle time for either machine, due to unmatched
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service rates or inadequate storage at the swing road. Queueing
theory offers tools for analyzing this aspect. Perhaps the model
developed here could infer costs assuming a theoretical 100%
matching efficiency between the two machines. Then, variation in
experienced cost could be attributed to inefficiencies in the match

of service rates.

Sensitivity and Risk

The sensitivity of the cost function at the optimum point to
variations in the variable values can be investigated as part of a
solution. This should be an easy task, since the Newton optimization
search necessitates calculation of the gradient at each iteration.

A simple investigation of the range of costs accompanying a variation
of *10% of the optimum values, for example, may reveal that the
cost function is not very sensitive.

There may be a greater element of risk associated with one case
than with another. For example, if the swing tractor is moved in,
the risk of equipment breakdown, and consequent increase in logging
cost, is Tikely to change. This can be reflected, or rather hidden,
in the associated operating cost of the equipment. One should be

aware of its existence when making inferences from the model.

Time Value of Money and Changes in Technology

An optimization scheme such as the one presented here is a tool

that could be considered when planning the layout of Tong-term
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management facilities for a large block of land. However, the

time effects--time value of money and significant changes in
technology--are not usually dealt with. Consider the effect on
optimum spacing made by a major change in skidder technology.

A company that operates with crawler tractors could find itself
managing its land with suboptimal road and landing spacing if it
were to convert to rubber-tired skidders. Similarly, if expendi-
tures for road construction are made in Year 0, an optimal solution
based on a five-year management framework may look quite different
than an optimal solution based on a 20-year management framework,

due to time value of money.
Verification

An attempt to verify a deterministic model by empirical cost
collection would be an interesting undertaking. It may be difficult,
however, to find many examples of operations similar to the
configurations discussed here. Even a small sample of such oper-
ations could be compared with logging cost predictions from this
model, offering some measure of non-rigorous verification of the
model's validity.

Further investigation of this problem in several areas would be
interesting:

1. Allow for variations in logging cost due to ground slope.

2. Investigate the effect of yarding into the truck road or

swing road in a non-perpendicular direction.
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3. Allow for setting shapes constrained by ownership lines,
topography, or existing roads or landings.

4. Generalize the model to provide insights for other types
of operations, such as pre-bunching under skyline

corridors or skyline operation with lateral yarding.

The application of a sophisticated mathematical algorithm to
a collection of constrained equations such as those generated in

this study has been shown to give reasonable, understandable

results; this alone was a major objective of the study.
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APPENDIX A
First Derivatives of Case la Objective Function

EQUATION 1.1a SUMMARY OF COST FUNCTION PARTIAL DERIVATIVE - CASE 1la
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EQUATION 1.1b SUMMARY OF COST FUNCTION PARTIAL DERIVATIVE - CASE la
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j EQUATION 1.1c SUMMARY OF COST FUNCTION PARTIAL DERIVATIVE - CASE la
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Second Derivatives of Case la Objective Function

EQUATION 1.2a
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EQUATION 1.2¢

Y{AV,-Vy) 6X2YAV2(Y-L)

oY 2oy 2o AV, (Y-L) - V(2 7 7

YT-2YL+L7+X

36 v2 (v2-2yL+L24+x9)

3x% YAV, (V-L)
1,2

- 2 _ _ 5
QYL HraX® AV, (Y-L) V2o oyt 24l
2 2,142

2

48y Vy

2304 Y2 (Y2-2YL+L +1X

2CL + F] + F2 + F3

3

XV




56

APPENDIX B
EQUATION 1.2d
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APPENDIX B
EQUATION 1.2e
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EQUATION 1.2f
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Examination of P2 = 0 Assumption

In Case la we must compute the average yarding distance for
segment 1. This segment is trapezoidal in shape if we assume some
positive value for the dimension P2, but is triangular in shape if
P2 = 0 (see Figure 2). Let us investigate the merits of assuming

that P, = 0.

2

The unadjusted average yarding distance from segment 1 can be
determined by considering a strip of width dZ Tocated a distance Z
from the swing road (see Figure 21). The average yarding distance

for the segment is:

X/2
*
AYD, = d_AREA*AYD,
TOTAL AREA
X/2 Z(P,-P,) Z(P,-P,)
1772 1772
P, +P, X
2 2
2
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- 2 / [ 2 2V 1772 1772 2]
= pey ¢ 1 ¢ 74 & 7%0dz
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P1

z
P2+i7§-(P1-P2)

P2

PO ><

Figure 21. Integrating to Find Average Yarding Distance.
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2

0 2 (P1-P,)

YD, = )t PZ(P]-PZ) t—a (eq. 28)
1

This expression can be simplified a little by expanding terms:

P]2 + PP, + P22
AYD, = 1/3

+P2

Substituting expressions (4) and (8) we obtain:

3

3 (eq. 29)
3 ] ;

: 1/2M,V5 + V
AYD, = — 1 [1/2AV2X + 2y
)

1
3(AV2-V]

37 17280,k + 2u
This is a cumbersome expression! However, if we choose some values
for A, Vi3 V,, Vs, and X, it appears that it is difficult to concoct
a combination resulting in a value for P2 that is significant in
relation to P] (see Table 3). What is the effect of assuming that
P2 = 0, i.e., that the breakeven line intercepts the landing? In

this case the yarding distance for segment 1 is:

p

AYD, (SIMPLIFIED) = T%‘ = V/2AVK + V5 (eq. 30)

The last two columns in Table 3 show the average yarding
distances corresponding to the full (egq. 29) and simplified (eq. 30)
models. Note that there is Tittle significant difference in any of
the cases investigated, unless X is quite small. We will make the

assumption that the simplified model--breakeven 1line intercepts the

landing--is adequate.
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FULL SIMPLE DIFFERENCE
1 AYD AYD %

.03 .06 .85 500 528.3 176.6 176.1 -0.27
.05 .06 .25 500 1525.0 508.5 508.3 -0.03
.03 .10 .85 500 369.3 123.2 123.1 -0.10
.03 .12 .25 500 336.1 112.0 112.0 -0.01
.03 .06 .85 500 389.2  129.9 129.7 -0.13
.05 .06 .25 500 568.8 189.6 189.6 -0.01
.03 .10 .85 500 319.6 106.6 106.5 -0.05
.03 .12 .25 500 301.7 100.6 100.6  -0.003
.03 .04 1.20 500 1120.0 377.2 373.3 -1.03
2

.03 .06 .85 50 51.67 18. 17.2 -5.58

Table 3. Difference Between Full and Simplified AYD Models
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APPERDIX D

Anomalies Occurring in Several Gradient Methods

Several classic gradient methods that can result in suboptimal
solutions are diagrammed in Figures 22-24. "Contours" of a hypo-
thetical constrained objective function in two variables, X] and
XZ’ are shown, with a global optimum at A. In Figure 22, the
conjugate gradient method (Gottfried & Weisman, 1973) moves from
an unfortunate choice of starting point, along a path of steepest
gradient to a suboptimal point. One can see that the same point
would have been reached even without the constraint. Cauchy's
Method (Simmons, 1975) (Figure 23), in which iteration is in
cardinal directions (i.e., optimizing one variable at a time), also
moves to a suboptimal point, due to an unlucky choice of starting’
point. Rosen's Gradient Projection Method (Gottfried & Weisman,
1973) (Figure 24) moves along a path of steepest gradient until
encountering a constraint, then along a pathAof steepest gradient
projected onto the constraint to an optimum--or in this example,
to a suboptimum. The conclusion is that none of these methods
are necessarily foolproof--the danger of closing on a non-global
optimal value is always present.

The well-known Kuhn-Tucker Conditions can be used to test
that a solution is an optimum for a constrained objective function.
But the conditions are necessary and sufficient to indicate a

global optimum only if the constraints define a convex set and the

objective function being minimized is convex throughout the feasible
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region. We have seen in our examples that the feasible region
contains zones of non-convexity. Therefore, we cannot rely on the

Kuhn-Tucker Conditions to verify that we have a global optimum.

X1

STARTING POINT

A GLOBAL OPTIMUM

X2

Figure 22, Conjugate Gradient Iteration Method.




X1

‘ STARTING POINT

A  GLOBAL OPTIMUM

X2

Ficure 23. Cauchy's Gradient Iteration Method.

X1

STARTING POINT

GLOBAL OPTIMUM

X2

Fioure 24. Rosen's Gradient Prcjection lethod.
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5 DIM CL18), 102,181, J(10,1 L LI3, 1 LKI23), S[6, 18 L HLR, 2L, TI2 3L X211 VL2, 1]
£ DIM W[X, 13,203, 1)

5 FRINT

S FRINT

1@ DISF "TRACTOR YD DIST ADJ FCTR, A";

15 INFUT A _

1€ FRINT "TRACTOR YARDING DISTANCE ADJUSTMENT FACTOR ¢A> ="A

26 DISF “WOLUME, MX PER HECTARE, V";

25 TNFUT v

FRINT "VOLUME, CUBIC METERS FER HECTARE (V> ="V

LISF "SWING YREL COST,vi";

INFUT %1

PRINT “"SHING YARIABLE COST $ FER CUBIC METER PER METER (V1) ="v4
DISF “YARD YREL COST, v2";

INFUT w2

FRINT "YARD VARIAELE COST ¢ PER CUBIC METER PER METER ¢VY2)> ="\2
DISF "OTHER SWING COST, Y3";

INFUT Y3

FRINT "OTHER SWING COST $ FER CUBIC METER (Y3) ="V3

DISF "OTHER YRARD COST, V4"

INFUT V4

FRINT “OTHER YARD COST ¢ FPER CUBIC METER (Y4) ="y4

76 W=\ ALRBEE

?5 DISF "SWING RD CONST COST, G";

£@ INFUT C ,

g1 PRINT “SWING ROAD COMNSTRUCTION COST $ FER METER <G> ="C

§%5 DISF “TRUCK RD CONST COST. R";

@ INFUT R

NEHASHASH AT
3 X1aK3ddy

BUuL3sL wedboud

Qv G OO & o B dad dad LT D

[e4]

21 PRINT "TRUCK ROAD CONSTRUCTION COST ¢ PER METER C(R)> ="R
95 DISP "SWING MACHIME MOVEIN. F1v;
130 INPUT Fi

161 FRINT "SHING MACHIMNE MOYEIM COST $ (Fi) ="F1
145 ISP "YARD MACHIMNE MOMEIN. F2¢;

118 INFUT F2

111 PRINT "YARD MACHINE MOVEIN COST $ (F2) ="F2
115 DISFE “LANDIMNG COMST COST. F3";

11e INPUT FZ

117 FREINT "LAMDING CONSTRLUCTION COST $ (F) ="FX
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D DD

Dl
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AN &b b

PRINT

FRINT

FRINT

FRINT *

FRINT

FRINT "ITERRTION L
C9=r

CASE 1A—~-—-P1LVY"

b

CONDITION COST/M3

CONVEXITY

FRIMT *
FRINT
DIZP “"INITIAL X, ¥, L";
INFUT X1,vY1i,L4
L=L1
'=Yq
n=nd
F1=C AW 2RKA/2+VR) /A Z-V1)
IF P1 <= % THEN 138 ‘
=3, 95kE ’
GOTOD 155
L=l+ (Y=L LoYI+PL~-L ) (LLP1D
CO=C9+1
WRITE (15,185)>C9, L, ¥, ¥
FORMAT F&. @, 4F1G. 1
GOSLUE S000
MEITE <15, 4810K;
FORMAT 2F1z. 2
GOSUE 1958
GOsUE Zapna
#r1,431=L
®rz,1=Y
ot WO B £
VWE1.14)=0L01.11
Wiz, 11=Liz, 1]
Wl 11=Li=,11
MAT T=INYCHD
MAT =T+
MAT Z=x-H
=201.11
Y=s[2.11]
w=rlx.1]
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GOSUB coEa
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5070 51z

Kz=AESJK-K1)

K=K

IF K2<B8. 81 THEN 515
FA1=CAMVZ2HX /243D /A=Y
LeL+ 0 cY+F1)/2-L0#(UJ1<8 AND U2<B AND U3<a)
GOTO 1555

FRINT

FRIMNT

FREINT

8 LINK 2,5 95

END
FEM PAERTIAL- DERIVATIVE SUBROUTINE
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I01,131=101,23=1{4, 61=1(1, 9 )=0
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IC4, 7 3=C08 1L DAY+ CNEAY DD

IC4. &)=~V 1HL42) Y+ CYEAY)
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FEEM DEZDY

102,41 1=K 1 I (KL 2 IHRZEDHVZD+YA DKL 2 1/8)

IL 2, 2 I=K0 1 RO 2aK/6 0+ k(KL 2 1780
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1[2;4]=I[2;4]+((K[5]*L*K[3J)/(4*?"2))+(V4*L/(2*V“2))
1[2,5]=((K[5]*(V—L))/(2*K[4]))—((K[S]*L*(V—L))/(Z*V*K[4]))
1[2,5]=I[2;5]+((K[5]*L*K[4])/(2*?“2))+((V4*L)/(2*V“2))

102, 6 1=K L PeCCKE 2 YL 304V R(KI 2 178D
1[2,?]=K[1]*(L*Vi/2+((K[2]*Ui/4?+VE))*(L!2—K[2]/4)

102, 81=C L7 2)+CL#MYED 2 /(Y720

102, 9 1=—F/ (24472440

102, 18 1=(~CHL—FL-F2-F 3D/ (24Y 7 2% K4V )

FEM DEZDN
1[3;i]=((K[?]*H*?E*H)/(iz*ﬁt8]))+((H*U2“2$V3)/(6*K[8]))+((H*V2*V4)/(4*K[6])
1[3;2]=((K[?]*%)/i12*K[6]))+(((3*H*V2*V4)+(H*V2*93))/(12*K[6]))

103 T 1=CC—K[ 7 34X 2 C4K0 6 12 )+ CORRMZHL D 7 (444D )

ICZ 31210 %, X 1€ CCARVZANID+ C2RRANYZHYAD D /C4*KL € 1))

103, 4 =0 A Z2apk (Y=L D/ ExYEL 2 1D

IL 2 5 J=C Ay 2aXE (Y-0 0 3 /48wy 4 1D
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d I(% 81103 9)=0

I %, 18 3= C—CHL#2I-FL~F2-F 33/ 24Y4 X7 2%V)

MAT J=C0M

MAT L=1I%J

RETURM

FEMHESSIANMATRIRX ‘
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L4, SI=CS04, S FRAFVZ) AR 4 173D
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21, & )=-24VL/Y

EL9I=4/Y"2

SL 2,4 1=Kl 2 /6w 2> 444K 9 14K 2178

SL 2, 2 I=CARR/ERVZ+YAIHKI 9 Ikl 2 3-8

SL 2, X I= A 4 2404 4K 8 I (LAZ-K0 21/4)
S[Za4]=((H*V2/6)*((1/K[3]3—((?*(?—L))/K(3]”3)))—((H*VZ*L/Z)*((L—V)/K[3]"3))

= 5[2;4]=S[2;4J+¢H$VE*L“2/6}*£((L—Y)/(?*K[3]”3))-(1/(9“2*K[3])))

S[2a4]=S[2,43+(H$V2*L26)*({(V~L)J£Y“2*K[3]))—(2*K[3]/?“3))
L2, 41=502, 4 -4l /YT
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SL 2, 8= —2xl "2 L2V AYTZ
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SLX 2)=K071/CL2Z24KIE DD
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KL 18 I=AsEsY+ Y -1
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SL%, 41=SL3 4 1/CZawy 28K 3 172D

SLZ, 51=C484K0 4 TRk 18 1=~ ex 724K 18 /KL 4 1D

SLX, SI1=S03, 51702204y 24K0 4 172)

Sl 2 € 1=K0 7 VLKL S 146D

SL =, 7 1=K 7 4L/ (KL & Dx—d)

S 3 &1=503% 9 )=a

L %, 10 1= (2L +F L+F 2+F 30 /(YR T28Y)

Sl4,1)=504. 21=SL 4, 61=504, 91=0

SL 4, T IS0 —FHVZHES Y720 -/ (YT 2D D

KL A1 1= 7 3= "2kl =4l T2+ T34+l AR T2

([12 1=3#L 7224wl -Y72+572

KL1X )= L-Yo+"2, [ %)

SC4, 41=CY 24kl 3 IR0 12 1-KE 41 ELAZ 1D /CYT4KI 3 172D

SL4. 4 1=S0 4, 4 PHAFYZA6+VE/ (20 T2)

KL11 1=K0 11 I-{45 18487 2+L0

EL12 1=K 12 I~ 15 7164K72)

KLAZ I=CL-YosyY 2 Kl 4] :

S, 5 1= 2wkl 4 KL 12 1-K0 14 KL AZ 1D /(Y T44KI 4 172D

SL4. 51=SL 4, S A2/ (24YT2) '
SLd, 7 1=~k L-YZ2 /0N T2D

SL4, 8 1=(2ZaVLHL+YID S CYT2)

SL4, 10 1=—C/ YT 2HRKEY D

505, 11=505, 21=8[S, 51=S[5, 7?1=505, §1=S[ 5. 9 1=

J! : [‘ P S S
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= Ty

SLS, 3 1=ARV2/(4%Y)

505, 4 1=CY-LI/K[ 2173

SL S, 4 1=5L S 4 PRCAKRVZHRR /6 I (L=L Y ) = CRRV 2N/ (EHRYRKL X 1))
S[S, 51=CY-L)>/K[ 4173

SLS, 51=5L 5. 5 W ARV ZHRK /48 )k CL=L /Y D= CRARVZAR/ CABHYHKL 4 1D )
SIS, 16 1=—C/ (YR "ZHY)

SLE,11=1032, 11/-Y

506, 21=103 21/-Y

SC&, TI=10 3, 21 -Y

SLE: 61=103, 61/-Y

SL& 71=10%, 71/-Y

S &, 81=50 6, 91=0

KL 1S 15—y 2aC Y=L D% (1L Y D #X

K4S I=F# 2aL R

SL &, 4 1=KL 15 1/ CEHKE 3 173> +KL 1€ 1/ CEXY 24K 3 1)
SL 6. 5 1=K[ 15 1/ C4E#KL 4 1732 +KL 16 1/ <48+ 24K 4 1D
S06, 181=10 %, 16 1/-Y

MAT H=ZEF:

FOR I=1 TO 1@

HC1,13=HC{1, 1 +5041, 12

HLZ, 21=H[ 2, 2 450 2, 1]

HL %, T1=H[ 3, 2 +SL03, 1)

MEXT 1

FOR I=1 TO 1@

HC4, 21=HL 2, 1 1=H[ 1. 21454, 11

HL1, XI=H[ %, 4 1=H[ 1, 3 1+S[ 5, 13

HL 2, 3 1=HL %, 21=H[ 2, 3 1+S[6, 11

MEXT 1

RETURN

REM COST SUBROUTINE
FRINT »  PA<Y

CL A 1=¢ CATZRVERKZEHVIHRA/Z) Z CARYZ-YL ) #V2)+V4

LA 1= (0L 22/ Dk CAANM 2% X/ BHYZ /4D / CRAVZ-YA) D)
(L 2 1= CARRANZ /544D R (279D

DL 2 1=00 2 1RV 2RX/BHVEAZY D/ (RRVYZ-Y1) D

CL X 1= CRARANZ /444404 (2°Y)

CL 3 1=CL 3 % LA22- (R 2R /443720 A CRRYE-Y1D D)

CL 4 I=0 2/ Y4l CFRY 2/ ZHSHR (Y 2-24Y4L+L 24X 72 ) +V4)
L4 1=CL 4 1Y A 4~L. 4D

174




5 REM

7 FPRINT “ CASE 1B--F1>vy"
8 FRINT

9 PRINT

122
123
174
125
12€
135
136
127
148
145
158
155
155
157
158

BoURN GRS O
DA OO IR O R

DD AL D LD D WD A

[ O C O N N O N N N LN L TR AT
DNOD LW

FRINT

FRINT "ITERATION L Y #
ML=AHY 2T -Y1 kYT

MZ=4 R4\ L k2= 2HA T2 RV2 2~ 2%Y 172
MS=R"ZW2 722" 20 VL Y2 Z+HARY LT 28V 2

=0

CONDITION COST/M3

CONVEXITY

FRINT Y=—- -
FRINT

L=L1

'Y.=‘ I1

HK=R4
Fl=C(RsY24K/249 30 2 CABYZ-VL )
IF P1 >= ¥ THEM 159
A=l @Dk

GOTO 455

L=v

Co9=Ca+1

FORMRT F&. &, 4F1@. 1
GosUE Seaa

WRITE (15, 481)0K;
FORMAT zZF12. 2
GOSUBE 1808

GOSLUE 06
®L1,13=L

wl &, 1I1=Y

“L 31 31=X
Vid.13=L041.1)
YIZ,141=LL2,1]
VIZ,131=L0X 1]

MAT T=IHVC(HD

o '“}

74




5z86
D390
5400
5416
5420
5430
5425
5450
S54c0
5470
S4aa

[ AR A S
o iy

OO I X
DO O

Ty T Ty T O Iy
[ RN v SR B N VA %

TR

ar

CLS 1= 2/ D% ¢ (2RARY 2/ IRSOR (Y 2-20 Y HL+L "2+ K" 2/16) ) +V4)
CLSI=CLS H(Y/4-L/4)

CL & 1= 2,9 )k ( (AR 2HX/Z+2HVR /I DY/ (RFV2-V1 D +4 32D
C[6]=E£6]*(H*VE*K/8+V3/4)/(H*VZ—Vi)
C[?J=(2/V)*((L*V132+(ﬁ*Vi*VQ*X/4+Vi*V3/2)/(H*VZ—Vi))+V3)
CL 7 1=00 7 WL Z72= CCREVZHK/44HVE/2) Z TRRVE-VLD D)
CLSI=C4/ D (LAY (YA 4L 4D

CL 9 =R/ 244D

CL A6 1= 2RCRLAF LHF2+F 30/ (2% A+ )

KeCll WCE2I+CE T IHCL4 HOLS IHCIS IHCI 7 HCI 8 HCI 9 +CL 18]
FETLIEN

REM CONVEXITY CHECK

Ui=HC1, 1]

Uz=HL1, 1 PRHL 2, 21-HL 2, 1 *HL 1. 2]

UZ=DET(H?

IF Ul >= B AND U2 >= @ AND UZ >= @) THEN e@7a

FRINT “ NOT CONVEX"

GOTO SBs0

FRINT " CONVERY

RETURM

e e .} . f,, .

9.




499 MRT =Ty

504 MRT Z=X-U

Sa1 L=2{1.11]

Sa2 ¥Y=2{2,141

S632 x=2{%, 11

SE3 GOELE €830

S0 IF Co#l THEN S5@9

507 Ki=k

582 GOTO 155

S99 E2=RES K-K1)

S1i8 Ki=K

S11 IF KE2<B 01 THEN 514

512 GOTO 155

514 PRIMT

915 FRINT

S15 FRINT

S17 FRINT

S48 PRINT ® CASE 1C—-YARDING PERFENDICULAR TO TRUCK ROAD"

519 YV=SHRIR/CARVYZ2EV) )

521 K=RA#V2ZeY/Z4Y44+RA (24w ) -
522 WRITE <415, 524> "0FTIMUM ¥ = "¢

SZZI MRITE <45, 5293"COSTAMZ = "K

S24 FOEMAT Fi8. 4

FORMART F& 2,7/, 7.7

LINE X, 5,5

END

FEM FARTIAL DERIVRTIVE SUBROUTINE
FoOr J=4 TO 9

11, J)=5

MNEXT J

104, 40 1=C/CYHKEY D

FEEM DK/DY

IC 2, 1 1=ML/M2+ARY2/-2

I 2. 2 I=2+Y+MZ /14

1L 2, 3 I=24Y+X4+M3/ME

12, 43=1L2,. 5)=1(2.8)=1L2, ?)=1L 2, & )=0
L2, 3 1=—R/C24Y 724

102, 18 1= 0 —Chl —FL1-F2-F 33 /C24Y724X%Y )

I NERRARRERERE I R RS- N Y
LL

LY RO FAAAD O

PRE R R SRR
SR EWNNOITEWNE




1509
1572
1573
1574
1575
1528
1558
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REM DK/DX

IC 3, 4 I=-YRARY2RML/ (M272)

10 2, 2 1=~y 2Ry 26M32/ (M472)

IL %, 3 1=CY T 2HMS/ME )= (Y 2K M7#MS/ (MET2) )
L2 431=1[325)=1[% 61=1[ 3, 7)=0

I3 8)=1L% 91=0

IL %, 18 150 (—CaL#2)—F1-F2-F 33/ (2hY*L724V)

HMAT J=C0ON

MAT L=1I=J

RETURN

REMHESSTANMATRIX

FOor J=31 TO 4@

sl 1, J 3=

MEXT I -

a2z, 11=502,41=S[2,51=S[ 2, 61=5S( 2, 71=5[ 2, 81=8
S 2, 2 1=2+%M3I M4

SL 2, X 1=2+X#M5/M6

S 2, 3 I=RACYTIHY)

SL 2, 10 J=C 2#CHL+FL+F2+F 2 /(YT 2kRXHY)

SL 2, 1 I=2HYRAT SR 2T Z28ML/ (M27 3D

5L 2. 2 =6 T ZRRT 22T 24M2 /A (M4T 3D
5[333]=—(VH2*M5)$(N?f(NEAZ)+M3/(N6”2)—2*M?/(N6“3))
{2, 41=S0% S51=30 % 61=80 %, ?1=50 3, €1=C0 % 2 1=
SL %, 18 1= 2#CHL+FL+F24F 20 /(YR KTIHYD

FOrR J=1 TO 9

af 4, Ji=4

NERT J

Sl 4, 10 J=-CA2 YT 28XV

FOR J=1 TO 9

SL5, J1=a

NEXT I

SL S, 18 J=~C/ (YT 24D

SLs,11=51% 1Y

SLE, 21=SL 3, 214972

SLE, TI=S1 3, 21002

ol &, 4 1=5[ &, 51=5[ 6. 61=5[6, 71=SL &, &§1=S[ K, 91=0
aré, 18 1=1L 2, 16 17/-Y

MAT H=ZER

8L




4620 FOR I=1 TO 10

4846 HL1,11=H[1,11+501, 11

4058 HI 2, 2)=HLZ,21+3[2, 1]

4eed HIZ, 2I=HL 2, TI+SLZ, 1)

4378 NEXT I

4116 FOR I=1 TO 16

4133 HL1, 2)=HL 2,1 1=H[ 1, 21+5( 4, 1]
4148 HI 4, 2I=HLX, 1 1=HL1, TI+SL5, 11
4178 HIL 2, 2)=HL 3, 21=HL 2, 3 I+S[6, 1 ]
4156 MEAT 1

4228 RETURN

5o REM COST SUBROUTINE

SEBZ MI=R+4VZEX+2%YE

SOOI M4=3wM2

e84 Me=M4M2z

SEAS MP=E#[ ™22 ZHK+ L 2R ZHYE
SREE M= 24RT2EVE T 2K 1LZRARY 2RV
3441 CLA J=Y#ML/AMZY+CR#VZ2/20)
S442 T2 I=YT2HR M3/ M4

443 CL3 I=Y7 24Xk (M5 /MED

CF 4 1=
CLS I=00 6 1=CL 7 1=CL 8 1=8
S FRINT * FL3Y "

CE 3 1=k /20N ) .
CLA1E 1= 2RCHL+FL+F Z24F 20 /(2% YV )
V K=Cl1HCL2HHCLEHCL4 OIS HCI S HCL 7 HCL 8 IHCL S HCL 16 ]
428 RETURN
AR REM CONYEXITY CHECK
Ui=Hr1.11]
UZ=HL A, L #H[ 2, 21-HL 2, 1 3+HL 1, 2]
WZ=DETCHY
400 IF ikl 5= 8 AMD 12 >= 8 AMND Uz >= 6> THEN &é87a
FRINT " MNOT CONVEX"
GOTO Sasa
FRINT *
FFTURM

64

CONYER"




S5 DIMCl18), I[3,10), J[16,1 )L L3, 1L KI20), S[6,18L HIZ. 2L TIZ, 2L X3, 4L V(2. 1)
& DIM W(* 11, 202,11

g PRINT

S FRINT

124

-~

)

B
NENENEIEN

S A0 L0 0 0 D v n 0 L0 00 0 S

=
AT AP GO RNDDE W RS R S5

l'_'!:';fi".ﬂLﬂLﬂf_ﬂ*'.H&J‘-&&&&J‘-D-D-&&&
NI ]

on
&

FRINT " CASE 2--YARDING NOT PERMITTED ONTO TRUCK RORD"
FRINT

FRINT "ITERATION L Y X CONDITION COST/ZM3  CONVEXITY
Co=0
FRINT *
PRINT
L=L1

v Y=Yl

w=ml

Fd4=F1 .
P =L@+ Y=L x>y
CO=29+1

MREITE (45, 1935C9,1., Y, X;
FORMAT F& @, 4F10. 1
GOSHIE  Saaa

HRITE ©415. 481)K:
FORMART 2F12. 2

GOSUE 1809

GOSLIE Tang

AL, 143=L

wlao1 =Y

“lXo 1 1=K
Yi1.41=L{1,1]
wlz,13=LL2. 1)

Y, 1 I=L[Z, 1]

MAT T=INYCH>

MAT bi=T+Y

MAT Z2=XK-W

L=2[1.11

¥Y=7[z:, 11

w=r0z1]

GOSUE a3

IF C2#1 THEN 569
K=k

GOTo 513

08

SR W} ; ifm,.”




569 KZ=ABSC{K-K1)

S168 Ki=K

514 IF K2<{8. @1 THEN S1S5

51% L=L+0Y/2-L)#(U1<@ AND Uz<@ AND UZ{8)

Si4 GOTO 1S5 .

515 PRINT

S1& PRINT

FRINT

EMD

REM FRETIAL DERIVATIVE SUBRUOUTINE

kLA I=-2/°Y72

KL 2 =0 ARy 20X+ 20430 / CAY2-Y1)

KL 2 I=SaR Yy 2=2aY %L+ 7 2+K™2)

KL 4 I=50R (YT 2=24Y4L+L. 724+ (XT2/716) 0

FIS1=02/30%R4Y2

KL E J=YeCREY2-41)

EL?I=R"2%W2"2

KOS =Y+ Aey'2-41072

REM DEASDL

14, 2)=104,23=10(1, 71=1[1, 9 1=0

IC 4, 1 I=A 2 (da? d+d /Y

IC4. 43=¢ RS I dCL~Y) /KL 31>~ C LKL S IL (L~ ) /KL 3 1D =CKL 5 PEKE 3 1D~ C2:4V4 3D
IC3,41=I01, 417044

IL1, 51=¢ oKL S I DR L=-YD /KL 4 1D~ ¢2HKL S P Dk CL=¥) 7KL 4 1>~ 2%KL S BkKL 4 3>~ (244D
101,95 1=IL1, S1/ 744y

IC4. & 1=VIslL /Y +YEA/Y

IC1, & 1=C-V1alx2) /Y+YL-C(YZI/Y)

101, 48 1=C/ YYD

FEM DEZDY

IL 2, 1 J=~F# ol i/ (a2 -Vl /Y2

Lz, 2)=1l2,21=1L2, 7 =@

IL2, 4 1= KL S 174 0% Y=L AKL 2 10 = C LRI S 17440 % (Y=L A/ (Y4KI 2 1))
IL2. 41=102, 41+ CEDS PelaKL 2 1) A4 T2 0444/ C24YT2))
IL2, S5 1=CiKL S 1Y —LD D 2C2%E0 4 1)~ O KL S L Y=L) 2 /(244K 4 1D
I[2:51=1L2, S+ CKDS Il 4 10 /24 T2 240 Nkl D A 20720 )
IL 2, B IVl "2/ 2Y T2 0=V EHL /Y2

IL2, &=l 2o+ 0 Ley3r s A0 T20

I[2, 8 1==RAC2HY 7284

IC2, 18 1= ~Cl~F1-F2-F3) /{247 24444 )

T =

RO TR

PR IRCN N (N ol B VIR K Rt e O B O T
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1586 FEM DK/DX .
1546 103, 1 1=RkY2xL/Ca%Y)

1546 103, 4 I=CARY2RRR (Y=L ) /(6K 2 1)

1556 102, 5 1= RV 2aXe(r=L) ) /(48+Y+K[ 4 1)

1580 103, 8)=I03%, 91=1(% 2)=1(3, 2 )=1(3, 6 )=1[X. 7 ]=@
1 103, 18 1= -Coal 2 ) =FL-F2-F 23/ (2HY+4RT24V)

2 MAT J=C0N

& MAT L=I=%J

RETURM

FEMHESSIANMATRIX

S01.41=501, 21=501, 1=501, 71=5[41, 91=5[1, 161=06

SLA, 4 1= ARNZ O ZCERYREL 21730

SC4, 4 1=501, 4 J*C ZANY T I ERY T 2L+ G R T 24 kR T2 - 2L T~ ARKT2)

Sl A, 5 1=2ay " E—Gty 2hL+EtPhl “ 2+ IV AR "2 L E- 2L T3~ RLRKT2/16

SLA, SI=CSL4, S IAFYZI/CZRYREL4 172D

S, 6 1=y :

S0l 81=-24%1/Y

Ef91=4-Y"3

5 GL 2, 1 I=AY 28l aX/ L 28Y 73D+ 260 L /(YT 2D : -
118 S[2.21=502,3)=502.71=@

1A SL 2, 4 1= CARVZAEDHCCLZKE T D)= Cova (Y=L D /KL 317353 )=( CARVZRL/ZO#(L-YI/KL 2 T30

S SC2. 41=50 2, 4 1+ CREY2RLTZ/6) 40 L= /YKL 21720 )= (L (Y 24KL 2 1) »

T1ER S 2, 41250 2, 4 I+ CARYZHLAE R CIY=LD /Y 24KE 2 10D = (24K X I/ T3D 3

1SS S[2.41=502, 4 1-Yaal /Y72

T1EA KLA7 I=Y " E-T2hl=Y*L " 2+L 7 Z+X 72415

I1ES SL2, 5 1=0EayT2-24Yel—L72) /Y 724E0 4 1D

3170 S[2, S1=502, S1-KL17 JxiY-LDd /Y T2+ 4 172D

SL2,51=502, 51-2¢K017 3/ Y7300 4 10

SL2, S51=CL 2, S MHAFNZAZ~HWIL Y70

SL2, & 1=Vl 7 2/Y T+ ZRVIRL Y TR

SL2, 81=C~2hL "2 1-26L 433 YT

SLE, B1=RAY TN

SL 2018 1= 2alal+FL+F 24F X0 /0y T Eaidad)

KL AE I=A N 2a Y=L

SL . 4 =0kl 2 34KE0 16 1) (a4 T2+ 10 1/KL 3 1D

R AR R
Do R BN U

DX
SR DI XU X
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SE3 41=S0 3, 4 17 CEasy 24Kl 31720
W SCZ S i=0d@ekl 4 L1 10— CZ4R72+K0 18 1/K04 10
B SLE S5I1=803 S1/02Eadey T 2akKl 41720




S[3 81=5[3 91=5[%,11=S[3, 2)=5[ X, 2 1=S[ I, 61=5[ 3, 7 1=0

SL X, 1@ I=(2RCHLHFL+F 2+F X0 /(YN 2%Y)

SL4, 1 I==A%Y2RK/(4RYT2) =44 72

T[4, 21=S[4, 2)=504, 71=504, 2 1=6

KL1d J=Y " 3-y2sl~YeL 72+l "I+ eNT2

KL 12 =34l 72-2#Y4L-Y"2+r72

K13 I=0L-Yo#Y"2/K[ 2]

SL4, 41=CY 24Kl T 3k 12I-KL 11 HKLALZI DD /YW T4KI 2 172D

SC4. 4 1=50 4. 4 PERFVI G+ C26YT2)

EL11 I=k0 11 1= 1S a2+ )

KL12 1=K 12 1- 215 16" 2) -
KL1Z J=CL-Yore"2K0 4 ]

SL4, SI=CY 2Kl 4 KL L2 =KL 11 4K 1L DD /(YK 4 172D

SLd, S 1=50 4, 5 RS2/ /(2472

SL4, & J=-V1aL /Y T2~-VINTZ

SL4. &)= 284l +V I /0 T2)

SLA, 18 J=—CA 0N 72N D

SLS, 23=S[S. €1=505, 71=S[5. 8)=S[5, 91=SL 3, X 1=6

SE 5. 1 I=A22 04D .
S5, 41=dY-LIAKLZ]7Z

S NI B WSS AD
LIRS IRV ITT O

N WO TG I AN A S W

Bobe T e b PO O Y

-,

MShege Ie Do

1ol bad bl Lol Gk Sl Tal bl Bad iat kel bal Lal Lol bab tad Bal tad Gal bad bal dal bl ) LAl dad Lad i

725 S5, 4 1=505, 4 PeCHEYZHRRAE D H (A=LAY )= (AKX (ErYHKL 2 10D
7O S5, 5)=dY-LOAKI4]73

7IS SLS 51=S0 5. 5 I+ A 2N/ 480 (L —L /Y o~ LAY 26X,/ (484K 4 10D
TER S5, 19 I=—C/0YEXT 2440

oad SLE. 1 I=—A#YEel /Oy T2)

aSh SLe, 81=505, 91=505, 2)=506, TI=5[ &, &€ I=S[&, 7 J=a

BTPE KLLS I=s—A+ 2w Y=L 0w (1-L A Y DK :

=] BN o W S BT 2 s

293 SLE. 4 1=K0151205K0 3 I7E0+KE0 16 1/ (ExY 724K X 1D

Sai SLE, S I1=ELAS 120484k 4 173 0+KE0 16 1/ (484 72%KL 4 1)

aoa Sleé, 1e3=10%, 18 1/-Y

o

MAT H=ZER

FOR I=1 TO 41&
H[1,11=H[ 1,1 3+502. 1]
HL 2, 21=Hl 2, 21+502, 1]
H[Z, Z)=HC 2, 23+50 32, 1)
MEXT I

i&&&&&&-ﬁ-‘.«‘lﬂ-
Do
S RO OO O
oo T
£8

(R Ot O




T4116
41%@
4141
4156

&
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i

[etLS £ 2 e B0 A ORI E (8 3 0 5
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b ek ] tad dad & S 3

of i

A
Yk’

MR RA AN RS

QR SN SR SRR R DN
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DA DO

XIS B

FOR I=1 TO 16

HLA1,2)=H[2,11=Hl1. 21+5[4, 1]
HI4, TI1=ML X, 4)=H[1, I+ELS, 11
HLZ2, 21=HL X, 21=HL 2, 2 +8(6, 11

MEXT 1

RETURN

REM COST SUBROUTINE
FRINT * "

CL A IsAEY2EL 4R/ C A% D4kl Y

CL2 =03 1=CL7 1=8

CLd 1=5 2/ 3k CRY 2/ TR SAR Y "2~ 24 YL +LT2+K 721 ) +V4)
CL 4 1= 4 B0 /4~

CL 5 1= 027 ke € 2R 2/ THSOR Y T2~ 26l +L "2+ X 72/16) ) +V4)
S 1=00 5 (Y /94-L 240

CLE 1=l "2/ 2 a4 el /Y

CLE )=Cd /Y ol Lal+v3Ids Y 4-L 4

Cf 9 I=RAC2HYHY )

CLAA 1= 2aCHL+F L+F24+F 20 /(2N R0 )

E=l1 HCI2IHCI T 0L I+ S HCLS HCI 7P HCL S I+CL S I+CL 18]
FETURM

FEM COHVEXITY CHECK

t=HC1. 4]

Uz=HL 1, 1 I#HL 2, 23-HL 2, 4 I*HL 1, 21

UR=DETOHD>

IF cUl »= @ BMD U2 »>= @ AND U3 >= @) THEN Ssa7a
FPRIMNT "  NOT CONYEXY

GOTO ooz

FRINT " CONVER"®

FRETURN
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