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Abstract approved:

A problem of interest to forest managers is the optimum arrange-

ment of truck roads and landings for economical logging operations.

This problem becomes more complex if,a combined yarding and swinging

operation is considered. It is possible to formulate a mathematical

model to express the cost per unit volume for a particular configu-

ration of truck roads, landings, and swing roads arranged to accom-

modate this type of harvest operation. Then, any of several

numerical methods may be employed to assess the sought-for optimum

configuration. The parameters of interest are the truck road spacing,

landing spacing, and swing road length that produce the smallest

logging cost. This paper critically examines several assumptions

made in formulation of the problem, including yarding cost computation,

tractor movement patterns, and average yarding distance.

This paper uses a numerical method not frequently employed with

constrained objective functions: Newton Multivariate Gradient

Iteration. A computer program was developed to implement the

iteration procedure, using a Hewlett-Packard 9830A Desktop Computer.

The solution procedure reduced iterations required for convergence



from several thousand experienced with exhaustive enumeration tech-

niques to less than thirteen. The use of this gradient method,

observations on its behavior, and insights into the analytical

approach to a complex problem are the subjects of this paper.
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A MODEL FOR THE DETERMINATION OF OPTIMUM SETTING
DIMENSIONS FOR TRACTOR YARD/SWING OPERATIONS

PROBLEM STATEMENT

The density of truck roads and landings in timber harvest units

is a matter of concern to the forest manager seeking to minimize

logging costs. Several approaches to optimum road and landing spacing

have been made in the literature of forest management. One special

case involves the use of tractor swings to shorten yarding distance.

J

J
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Figure 1. Tractor Yard/Swing Problem.
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Although many other authors have studied optimal road and landing

spacing for a single yarding machine (Matthews, 1942; Rowan, 1976;

Weller, 1977), operations involving both yarding and swinging have

not been investigated. Current consideration of this practice on

timberlands in Borneo prompted the following examination of the

problem.

Consider a block of forest land, large enough to be regarded as

infinite, with a system of parallel, evenly spaced truck roads.

Along each truck road, landings are spaced at regular intervals.

From each landing a tractor swing road extends in both directions at

right angles to the truck road. (This scheme is shown in Figure 1.)

OBJECTIVES

The objectives of this study are:

1) Prepare a mathematical formulation for the average logging cost

associated with a combination yard/swing operation.

2) Set up a solution procedure using a gradient search method, to

find optimum dimensions for:

a) the spacing between truck roads,

b) the spacing between landings, and

c) the distance that the tractor swing road must extend

into the setting.

3) Critically examine any assumptions which must be made in the

formulation of the problem.

4) Write a computer routine to perform the optimization calculations.
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5) Run through several examples to become familiar with the solution

procedure and draw managerially applicable conclusions from the

outcome.

6) Discuss the overall validity and practicality of the model, and

make suggestions for its improvement.



4

LITERATURE REVIEW

The classic discussion of road/landing spacing problems is a

forest economics text published in 1942 (Matthews, 1942). Matthews'

treatment of yarding costs, breakeven analysis, and minimization is

excellent, although perhaps limited by the nonexistence of advanced

digital computers in 1942. Matthews' assumptions on average yarding

distance are used in this paper, although other authors have

developed more mathematically precise formulations (Peters, 1977;

Suddarth and Herrick, 1964). More recently, other studies of

road/landing spacing optimization have been published which sought

to bring more detail into the costing-out of road construction,

yarding, and landing construction. One of these was oriented to

iterative solution by computer (Carter, Gardner, & Brown, 1973).

Another took a practical approach to road/landing suacing optimiza-

tions, de-emphasizing the preciseness of the basic mathematical

model (Rowan, 1976). Yet another author developed nomographs for

finding optimum spacing (Weller, 1977). None of these writers have

addressed the problem set forth in this paper: a combined

yarding/swinging operation.

Many texts exist on the subject of optimization of non-linear

multivariate functions. McMillan (197!) presents a concise matrix

formulation for Newtor multivartlie gradient iteration. Himmelblau

(1972) discusses a host of related topics, including other gradient

methods, direct search methods, and penalty function methods.

Simmons (1975) devotes considerable discussion to analytical
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approaches such as use of Lagrange multipliers. A chapter on

constrained local optima was particularly useful in explaining some

apparently contradictory results in the early phases of this study.

Gottfried & Weismann (1973) discuss several direct search algorithms,

including binary series, Fibonacci series, and golden section series.

My first attempt at a solution algorithm used a direct-search scheme

of my own design: exponential increment (Nickerson, 1976). An

operations research text by Wagner (1969) discusses topics which

suggested an alternate formulation of the problem, using the integral

of a "density" function for logging cost. The literature is so

rich in techniques for analysis of problems like the one in this

paper, that it was an exercise in restraint to remain focused on

one approach.

MATHEMATICAL FORMULATION

Throughout this paper, metric units will be used: volume in

cubic meters, distance in meters, area in hectares. A "front-end"

and "back-end" to translate between metric and non-metric units are

simple additions to the solution technique discussed here.

We have assumed a simplified model for both yarding and swing

cost:

Yarding Cost per Unit Volume

= Fixed Cost, Yarding + (Variable Cost per Unit Distance

x Yarding Distance)
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Swing Cost per Unit Volume

= Fixed Cost, Swing + (Variable Cost per Unit Distance

x Swing Distance)

This is a simple model that says yarding cost is a linear

function of yarding distance. In reality, it may also be a function

of ground slope, log size, soil condition, and other factors.

Innumerable time studies, such as those upon which U.S. Forest

Service yarding cost adjustment factors are based (USFS, 1976),

support this observation. But on a given piece of ground, these

other factors may be uniform enough to be regarded as constant;

this is the assumption we will proceed upon in this study. Tables

of yarding costs generated by the U.S. Forest Service and the Bureau

of Land Management, based on cost studies, bear out the near-linear

relation of yarding cost to yarding distance, assuming other factors

are held constant (USFS, 1976; BLM, 1977).

Variable names used in this formulation are:

Variable or coefficient Units

K = average logging cost $/m3

Y = one-half truck road spacing meters

X = landing spacing meters

L =swing road length meters

Fl = swing machine movein cost

F2 = yarding machine movein cost

F3 = landing construction and setup cost $
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V = volume removed m
3
/hectare

A = yarding distance factor meter/meter

C = swing road construction cost $/meter

R = truck road construction cost $/meter

Vi = swing variable cost $ /m3 /meter

V2 = yarding variable cost $ /m3 /meter

V3 = swing fixed cost $/m3

V4 = yarding fixed cost $/m3

One must investigate the movement of logs from stump to landing

before formulating a cost function. Looking at Figure 1, the first

question to resolve is, "May logs be yarded onto the truck road?"

If this is permissible, let us assume the logs may be loaded at their

point of arrival on the truck road; surely if a yarding tractor can

operate onto the truck road surface, the loader can operate along the

truck road, too. If yarding onto the truck road is allowed, we will

call this condition "Case 1." Also, in order for us to have a clear

understanding of average yarding distance, we must make an assumption

about the path the yarding vehicle will travel. Let us assume it

takes the shortest path: the yarding tractor moves directly to the

road in a direction perpendicular to the road. The yarding distance

factor (A), equal to or greater than 1, is used to allow for "weave"

in the yarding tractor's route caused by obstacles such as stumps

and terrain roughness.

Let us examine Case 1 in detail. If yarding is permitted onto

the truck road, it obviously follows that there is a segment of the

setting that will be yarded to the truck road (segment 1 in Figure 2
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and another segment that will be yarded to the swing road, then

swung to the landing (segment 2 in Figure 2). We are interested

in defining the boundary, or breakeven line, between these two

segments.

P1-P2

Segment 2

)w/

II Segment 1

,ice 3

2

Figure 2. Breakeven Point if Yarding Allowed to Truck Road

Consider a log lying along the boundary of the unit, on the

breakeven line we are seeking to define. Let the distance from the

truck road be P
1.

The cost to yard the log to the truck road is:

AV P1 +VV2
1

V4 (eq. 1)

The cost to yard the log to the swing road, and then swing it

to the landing is:



(Yarding) (Swinging)
A V X \

2 + V
4
) (V1 P1 + V3)

2

9

(eq. 2)

Since the two costs are by definition equal at the breakeven

point, we have:

(A V2 P1) + V4 = ((1 /2)A V2 X) + (V4) (V1 P1) + (V3) (eq. 3)

or:

p
1 A V

2
- V

1

((1/2)A V2 X) + V3
(eq. 4)

Now consider a log along the swing road, a distance from the

truck road. More specifically, the log lies just off the swing

road, so that the yarding tractor will have to deliver it to the

swing road, thereby experiencing only the fixed yarding cost. The

associated costs are:

Cost yarded to truck road = (A V2 P2) + V
4 (eq. 5)

Cost yarded to swing road
= (V

4
) + (V

1
P
2
+ V

3
) (eq. 6)and swung to landing

(Yarding) (Swinging)

Again equating the two costs to define the breakeven condition:

(A V2 P2) + V4 = V4 + (V/ P2) + V3 (eq. 7)

or:

A V2 - V1
1

(eq. 8)

It can be demonstrated that the breakeven line is a straight

line: consider a log somewhere along the breakeven line, located

a distance P
3

from the truck road and P
4

from the swing road. The

associated costs of moving this log are:



Cost yarded to truck road = A V2 P3 + V4

10

(eq. 9)

Cost yarded to swing road
and swung to landing

= ((A V2 P4)+ V4) + ((V1 P3)+ V3)

(Yarding) (Swinging) (eq. 10)

Once again equating the two costs, we obtain:

(A V2 P3) + V4 = (A V2 P4) + V4 + (V1 P3) + V3 (eq. 11)

or:

(A
V2

) + V
2 4 V3

P
3 A V

2
- V1

(eq. 12)

Now, if the breakeven line is truly a straight line, it can be

seen that similar triangles exist, described by the arbitrary position

of the log at (P3, P4) and by the log at (P1, boundary). This is

described mathematically by equating the ratios:

P3 P2 P1 P2

P4 X/2

Substituting expressions (4) (8) and (12) we obtain:

(l /2)(A V2
X)+ V

3
V.V.

V P4)+ V3 V 3

A V
2

- V1 A V - V
2 1

P
4

A V
2

- V
1

A V
2

- V1

A V
2

P
4

? X/2 A V2
1

A V
2

V
1

A V
2

- V
1

X/2

A V2

A V V
2 1

A V
2

A V
2

V
1

Q. E.

X/2

An assumption that will greatly simplify the computation of

average yarding distance for logs that are moved directly to the

truck road is that P2 = 0, i.e., that the breakeven line intercepts
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the landing. An examination of this assumption is made in Appendix C,

concluding that the assumption is a safe one.

The above derivations, although somewhat lengthy and tedious,

demonstrate the mechanics employed in deriving the cost functions for

each case. Detailed examination for other segments and other cases

will be omitted.

It develops that there are several distinct configurations of

yarding patterns that may occur. Figure 3 shows Case la--yarding

permitted to the truck road, YzPi. The configuration can be sub-

divided into five segments with distinct geometry. Similarly,

Figure 4 shows. Case lb--yarding permitted to the truck road, Y5131--

depicted with three segments. Case lc, shown in Figure 5, is a

degeneration to a condition of yarding directly to the truck road,

which bears checking as a possible alternative. Figure 6 shows

Case 2--yarding not permitted onto the truck road. Note that each

"setting" is symmetric about both the truck road and the swing road.

Total cost for each setting is the sum of yarding cost for

each segment, plus the sum of swing cost for each segment, plus

road, landing, and movein cost. Average cost--the quantity we wish

to minimize--is the total cost divided by the volume on the setting.

The average cost functions for Cases la, lb, lc, and 2 are shown in

Equations 13-16.

By carefully keeping the cost equations in the form of a

summation of terms, the obtaining of the partial derivatives is made

to be an easier task. Considering Case la, we must obtain partial

derivative expressions with respect to L, Y, and X, and second
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X = setting width
= landing spacing

Y = 1/2 setting depth

= 1/2 truck road spacing

L = swing road length

arrows show general
direction of yarding

SEGMENT 5

e
.

SEGMENT 4

SEGMENT 3

SEGMENT 2

SEGMENT 1

Figure 3. Case la: Yarding Permitted onto Truck Road, POSY



L

4 4 4 4 4

13

Figure 4. Case lb: Yarding Permitted onto Truck Road, >Y

4 4 4 4

Figure 5. Case lc: Yarding Direct to Truck Road
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Figure 6 Case 2: Yarding not Permitted onto Truck Road
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Equation 13: Cost Function for Case la

COST/UNIT VOLUME = K =

1
2 A2 V2X+3AN

Y "2)
AV -V

2 1

.?cit I(A6X) (v

Y t(4X)4

X)

(V2

1 1

V41-A

V
2
X+4 V

3

1

V X+4

]V

8AV2-V4

L

2

1 1
-A
4 2 2 31

V X+-V

AV -V
2 1

-2YL+L2+X ) (V2

VIA VY 1 \
(V-2YL+L

2
+--X

2
/ V [-

16 2
) +

4

2 1,(1AV2X+3

AV2-V1

2

Y 2-

1

AV X
4

AV
2
-V

1

1
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(V ) + V

2 1

R
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V3 [L 7"2"3-1

(V1)
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2 1
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2
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Equation 14: Cost Function for Case lb

COST/UNIT VOLUME = K

(!;vrg v4)

C
AYV2

+ (2Y) + V4)

AV - V1
1

AV
2
X + 2

V3

(AV -
2

V1

2AV
2
X + 4V3

A
2
V
2

2
- AV1

2
(2Y) ( XY +

3AV
2
X + 6V

3

AV - V
( 2 1

2AV 2X + 4V

(2y)(
2YV

1 v3)
AV

2
- V

1

3 2AV
2
X + 4V3

2YV

F
1

+ F
2
+ F

3
+ 2CL

2YXV

Equation 15: Cost Function for Case lc

COST/UNIT VOLUME = K =

AV
2
Y

+ +
R

2 2YV



17

Equation 16: Cost Function for Case 2

COST/UNIT VOLUME = K =

AV2LX V4L

[1 /3AV'Y2- 2YL +L2 +X2 (V2) + V41
4

2 r rYL2/3A)/Y2-2YL+L 2+1/16X
2 L(V2) +V41

Y 4

V1L
2

V3L
2Y

[Lvi + v31 [ 4 - 41

2W

2CL + Fl + F2 + F3

2YXV
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partials with respect to L2
, Y

2
, X

2
, LY, LX, and YX. We can do this

on a term-by-term basis for the ten terms comprising Equation 1.

Liberal employment of the basic rules of calculus leads us to the

desired expressions shown in Equations 1.1a-c (Appendix A) and 1.2a-f

(Appendix B). A systematic procedure for checking our derivations is

to calculate a derivative artificially, by making a differential incre-

ment in one variable while holding the others constant, and comparing

this value on a term-by-term basis with the value obtained by our

expressions for the derivative.

DISCUSSION OF ASSUMPTIONS

It is necessary to make some assumptions to clarify or simplify

the problem at hand. For this formulation, some of the most signifi-

cant assumptions are:

1) We are seeking to design an optimal layout on a block of land
without existing transportation systems, with uniform timber
distribution, uniform topography, and sufficient size that we
may consider a set of regular, rectangular settings without
concern about "leftover" land.

2) Yarding or swinging costs vary directly with yarding or swinging
distance, in the form:

Yarding Cost = Fixed Cost + (Variable Cost x Yarding Distance)

The average yarding distance for a triangular segment of a setting
is the distance from the centroid of the segment to the landing
Matthews, 1942).

4) Yarding along the length of the swing road will be perpendicularly
into the swing road, and yarding along the truck road will be
perpendicularly into the truck road.

Let us examine several of these assumptions in some detail.
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Linear Yarding Distance/Yarding Cost Relationship

Yarding cost curves developed by the U.S. Forest Service and the

Bureau of Land Management show a linear or near-linear relation between

yarding distance and yarding cost. These curves were derived empiri-

cally, from a limited pool of cost studies. Similar cost curves might

be obtained, however, by a deterministic approach. Were we to know the

expected velocity of the yarding tractor, the expected time associated

with hookup, unhook, etc., the necessary labor, fuel, operating, depre-

ciation, overhead, and maintenance costs, we could assemble a yarding-

cost model. In doing this, it would become clear that certain phases

of the yarding operation would be linearly dependent on yarding distance

(move unloaded, move loaded), and other phases would be fixed amounts

(hook, unhook, turnaround). Of course, this presupposes that other

factors such as slope, soil conditions, and stump spacing are at a con-

stant level; variation in these factors could be expected to affect

yarding cost.

Average Yarding Distance for Triangular Segment

LANDING

Figure 7. Centroid of Triangular Setting for Matthews' Average
Yarding Distance
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Matthews (1942) assumes that the average yarding distance of a right

triangle segment of ground equals the distance from the centroid of the

segment to the landing (Figure 7). Although this is nearly correct, a

more mathematically precise result is obtained by integrating over the

area:

area
distance

AVERAGE YARDING DISTANCE =
area

d AREA

Fortunately, this integration was performed by Suddarth and Herrick

(1964) for a right triangular segment, and generalized by Peters (1977)

for any triangular segment, leading to the following formulation for

averaging yarding distance:

AYD =
R1 +2R2

R32 + ( )

2
]

6 R
3
2

R

(R 2 _

r 3

-R2)
2
)k(R +R

12R
3

3

2
- R3

2
)

Ri+R2-R3) (eq. 17)

Where R1, R2, R3 can be dimensions of the sides of the right

triangular segment, as shown in Figure 7. Using this same convention,

Matthews' formulation for average yarding distance is:

R 21

AYD = 2/3R121V (eq. 18)

It should be apparent that the less-correct Matthews' formulation is

more computationally attractive, particularly when faced with the

necessity of differentiating twice. If Matthews' formulation is not

too far off, we may be safe in using it.

We can reduce both Matthews' and Paters' formulations to ones in

volving a single variable. Let R=R1 /R3. This is tantamount to scaling
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the right triangular setting down until the sides take on the

dimensions:

R3 = 1

R1 = R

pm----,
R2 =VR2 + 1

We can then compare the two methods on the basis of the

scaled-down setting, where:

AYD*
m tthews

= 2/3 \/R2 + (1/2)
2

(eq. 19)

AYD*peters 1/3(N/R2 4. 1
R +VR2+1 1)

(eq. 20)
R + -R +1 +1

This is equivalent to the formulation by Suddarth and Herrick for

right triangles. A plot of the percent difference between the two

methods (see Figure 8) shows the interesting result that a peak

difference of about 4 1/2% is experienced, when the ratio of Ri/R3

is about 0.42, and that the Matthews formulation is strictly less

than the Peters formulation. The difference is a magnitude that can

be accepted, in view of the computational advantages.

Yarding Perpendicular to the Swing Road

The assumption that yarding to a road is accomplished by a

yarding tractor moving into the road at right angles is implicit in

formulations by Matthews, by Carter, Gardner, & Brown, and by Rowan.

The same assumption is made in this formulation (see Figure 9).

There may be physical or procedural restrictions that effectively
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result in perpendicular yarding into the swing road, but the options

should be investigated.

F

F

E

R

E

N

C

E

MAXIMUM DIFFERENCE = -4.48%
AT A RATIO OF 0.42

1 2 3 4

RATIO, SIDE R1 /SIDE R3

Figure 8. Difference between Peters and Matthews Average
Yarding Distance
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Consider the incremental cost of yarding from point A to point

B as shown in Figure 11:

Cost = AV
2
d + V

1
(r - b)

now, let:

and let:

k

= AV2 \b2 + x
2

+ V/ (r - b)

Cost
xAV

2

b2 , x2
V

1 r b,

)72- + AV
2

V1
r

k
1

= k -
AV

2
)C

/=V(b/x) 2
+ 1 -

(eq. 21)

(eq. 22)

eq. 23)

This in effect isolates on the right side .of the equation the

terms that describe the angle of inclination from the perpendicular,

labelled 9 in Figure 10. From Figure 11 it can be seen that b/x =

tan 9. Therefore, the economically optimum angle of inclination can

be inferred from the minimum k1, i.e.:

d kl

d (b/x)

d kl

d (b/x)

0 ==> b/ ==>
xoptimal goptimal

b/x
V1

+ (b/x)2
AV

2

b/x =

U1

), 1 + (b/x)
2

AV2

=0
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squaring both sides:
V

(b/x)2 = ( 1

2

s2Av ) (1 2b/x + (b/x)2 )

,

V1 V1

0 =
V1

)

2
- 1) (b/x)

2
+ 2kry b/x + ( )

'AV ' (eq. 24)
2 2 2

Vi

Now, let v ) N. Equation 24 becomes:
2

(N2-1) (b/x)2 + 2N2 (b/x) + N2 = 0

which can be solved by the quadratic equation:

and

b/x-

b/xopti
mal

-2N2 + V/4N4 - (4) ( 2- ) (N2)

2 (N
2
-1)

N2 +417

2(N2-1)

-N (N + 1)

(N+1)(N-1)

1 - N

eoptimal
= arctan

V1

AV
2

V1

AV

(eq. 25)

(eq. 26)
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Figure 12 is a graphical display of optimal angle of inclination
V,

from the perpendicular over a range of TFL for various values of A.
"2

It appears that the perpendicular yarding assumption is not too good:

goptimal is significantly different from zero for most of the range

of values we can imagine. However, if we investigate the difference

in variable yarding cost between perpendicular yarding and yarding

at goptimal, we see the assumption in a much more favorable light.

8.1 8.2 8.3 8.4 8.E 8.5 0.7 1.8 8.5 1

V
1

/V2

Figure 12. Optimum Yarding Angle for Various Values of A



27

Assume that x = 50 and r = 300:

A
V

1
V
2

A
optimal

cost, yarding cost, yarding
at °optimal differenceperpendicular

2.0 0.03 0.30 3.0 39.00 38.96 0.1

1.2 0.10 0.10 78.7 36.00 35.59 1.2
2.0 0.10 0.10 45.0 40.00 39.14 2.2
1.2 0.03 0.30 5.2 27.00 26.94 0.2

The percent differences shown are of a magnitude that we can

readily accept. In view of the computational advantages of the

yarding-perpendicular assumption, we will proceed on this basis.

Nonetheless, our findings on optimum angle of inclination as shown

nondimensionally in Figure 12, can stand alone as a significant

observation with applicability in other circumstances.

SOLUTION PROCEDURE

The recursion equation for the Newton multivariate nonlinear

gradient iteration, in matrix notation (McMillan, 1975), is:

"

3-1 9T
n+1 n "

(eq. 27)

where, )(

n
= mxl column vector of variable estimates at the nth

iteration

AT
Y = transpose of the lxm row vector of the gradient of

the function--the mxl vector of partial derivatives

H
A_A

'= inverse of the Hessian matrix--the mxm matrix of
second partial derivatives

For this problem:

m = 3
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3K/3L-
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3K/3X

2 2
3 K/31.

2
3 K/3L3Y 3

2K/DOX
A
H= a

2 KnY3L 3
2K
/3Y

2
3
2Kmax

3
2
K/3X3L 3

2K/M3Y 3
2
K/3X

2

By determining the first and second partial derivatives for the

cost functions in each case, it is possible to make an initial guess

at the optimum values for L, Y, and X, and by means of equation 27,

improve upon these guesses in an iterative fashion until the optimal

solution is reached.

Separation of Cases

Each case was examined separately. The objective was to arrive

at the optimum point for each case, and compute the associated cost.

The permissible case with the lowest cost would be the preferred

yarding configuration.

Initial Guess

As is frequently the situation with Newton-Raphson iteration,

the value of the initial guess is important in determining the

behavior of the iteration. It became apparent that a generally low

initial guess produced the least problem. Difficulties encountered

with bad initial guesses included non-convergent oscillation and
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extreme fluctuation. A "good" initial guess produced a

well-behaved monotonic convergence that was beautiful to behold.

Constrained Function

In all cases the function we are seeking to minimize is not

unconstrained. Moreover, the constraints operating are a little

extraordinary. To begin with, Y and X must be strictly greater

than zero, and L must be less than Y. In Case la, L and Y must

both be greater than P1 (which is a function of X). In Case lb,

Y must be less than P
1.

The iteration function described earlier

will not recognize these constraints, of course. Consequently,

if the iteration function takes us into a non-feasible region, the

computer algorithm must be prepared to nudge us back into the

feasible region. At each iteration, if the infeasible region is

entered, the variable values are readjusted in the direction of the

feasible region. Obviously, iteration must commence in a region of

feasibility. This procedure worked nicely in practice.

Stopping Criterion

The existence of constraints means that at the sought-for

minimum-cost point, the partial derivative of one or more indepen-

dent variables may not be zero. Inspection of the partial

derivative is not sufficient to act as a stopping criterion.

Similarly, the increment of each independent variable cannot serve

as a stopping criterion, since at a minimum point where the cost

hypersurface intersects a constraint hypersurface, the gradient
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may be far from flat. A practical stopping criterion is the change

in the cost function from iteration to iteration: if this change

drops below some small amount, we are not making a significant

gain by continuing to iterate.

Convexity/Non-convexity

It is of importance to know whether a minimum point determined

by iteration is a global minimum or a local minimum. In an

unconstrained problem, examination of the sign of the determinants

of the principal minor matrices of the Hessian matrix can be used

to assess convexity or non-convexity. In an unstrained function,

a global minimum would have to lie in a zone of convexity, and if

the function were convex over its entire range of interest, a

minimum found by an iterative search would be certainly a global

minimum. In a constrained situation, however, this need not be

true. A simplified example in one independent variable will

illustrate. Consider F(x) in Figure 13, where x is constrained

to lie between a and b. Note that the global minimum lies in the

convex zone, but that, were our gradient search to commence in part

of the non-convex zone, we would converge to an incorrect local

minimum at x = b. In Figure 14, an incorrect local minimum exists

within the convex zone, which we would converge on if we started

in the convex ( or part of the non-convex) zone, but the global

minimum at x = b will be reached only if we start looking somewhere

within the zone of non-convexity. In Figure 15, again the global

minimum lies within the zone of non-convexity where the constraint
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intersects the function, at x = b, but an initial guess anywhere

will reach this point, providing our stopping criterion is suffi-

ciently flexible to carry us past the inflection point. In this

case, the convex zone is actually a "quasi-convex" zone; it is

indistinguishable from a genuinely convex zone on the basis of

the Hessian matrix test. The upshot of all this is that one must

have some feel for the nature of the cost function if one is to

feel confident that the global minimum has been found. Therefore,

the solution algorithm for this problem includes a mechanism for

forcing the iteration into or out of a zone of convexity, by

readjusting the variable values at any iteration on the basis of

the Hessian matrix convexity test. Specifically, it was observed

that a non-convexity "hangup" sometimes occurred when swing road

length (L) equalled 1/2 setting length (Y). If this condition

occurred in the absence of a convexity force, subsequent iterations

continued to demonstrate the condition: L remained equal to Y,

and the function remained non-convex. By readjusting L to halfway

between the current iteration values for P
1

(minimum possible L)

and Y (maximum possible L), a zone of convexity was almost always

encountered in subsequent iterations.

Problems with zones of non-convexity and constraints making

up non-convex sets are certainly not unique to the Newton Multivariate

Gradient Method. Appendix D shows similar anomalies occurring with

several other well-known gradient algorithms.
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Figure 15. Global Minimum Not Within Quasi-convex Zone.

A computer program for performing the minimum search was

written in BASIC for the Hewlett-Packard 9830 computer. Results for

several example problems were obtained. A listing of this program

is included in Appendix E.

Case lc Direct Solution

Case lc involves a single variable (see eq. 15). A direct

solution is easily determined. Optimum Y occurs when dK 0:

dY

dK
AV

2

dY 2

R

2Y
2
V

R

AV
2
V
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PROBLEM STATEMENT SUMMARIZED

Case la: Minimize K = f(L,Y,X)

s.t. L > P
1

P
1

Y,X,L > 0

Case lb: Minimize K = f(L,Y,X)

s.t. L = Y

P
1

Y,X,L > 0

Case lc: Minimize K = f(Y)

s.t. Y > 0

Case 2: Minimize K = f(L,Y,X)

s.t. if L = 0 then swing movein = 0

Y,X > 0

L > 0

RESULTS

Three examples were run. For Examples 1 and 2, a run was made

without forcing the iteration into a zone of convexity, and another

was made applying this correction. Example 3 was based on actual

costs as currently listed in the Bureau of Land Management's

Schedule 20 of logging costs in the Pacific Northwest (BLM, 1977).
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Inputs were:

Example 1 Example 2 Example 3

A 1.2 1.2 1.2

V 300.00 300.00 300.00

V
1

0.06 0.08 0.0023

V
2

0.11 0.10 0.0035

V
3

0.25 0.25 0.38

V
4

0.55 0.40 0.59

C 0.60 1.60 0.60

R 33.00 33.00 33.00

F
1

180.00 180.00 180.00

F
2

325.00 325.00 320.00

F
3

200.00 200.00 200.00

Initial L 20 20 250

Initial Y 20 20 250

Initial X 20 20 250

Table 1. Inputs for Example Problems.

Output summaries can be seen in Figures 16-20. Note that for

Example 1, Case la and 2, an improvement (i.e., a lower minimum)

was made by forcing the iteration into the zone of convexity. The

function must be analogous in appearance to the two-dimensional

function in Figure 14. In Example 2, Case la, attempting to force

the iteration into the convex zone fails, suggesting that the convex

zone is actually quasi-convex, as diagrammed in Figure 15.
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Note that in all three examples, Case lb degenerates in the

direction of Case lc. A very high truck road cost biases this

outcome somewhat.

The interpretation of the results for each example is as

follows:

If yarding
is permitted
onto truck

Optimum
configuration

Example 1 Example 2 Example 3

la lc lc

road: Optimum L = 121.7 --

Optimum Y = 146.8 95.7 511.8

Optimum X = 66.5

Cost/m3 = $12.23 $11.89 $2.74

If yarding Optimum
not permitted
onto truck
road:

configuration

Optimum L =

2

133.5

2

58.8

2

557.0

Optimum Y = 156.4 126.1 703.2

Optimum X = 53.7 71.4 183.1

Cost/m3 = $12.50 $13.80 $2.93

Table 2. Results for Example Problems

CONCLUSIONS

This study was an attempt to build a deterministic model of

cost associated with a tractor yard/swing operation. If a model

such as this is employed with the caution deserved by its simplify-

ing assumptions, the forest manager may make some valuable inferences.
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Case la--P
1
<Y

Iteration L

20.0
28.2

39.7
55.8
77.2

103.1

128.3
144.0
147.8

L

20.0
29.7
43.7
62.2
80.5
83.1

85.3
87.6
89.1

90.1

90.7

Y X

20.0 17.1

28.2 22.4
39.7 29.0
55.8 37.4
77.2 47.5

103.1 57.8
128.3 64.9
144.0 66.3
147.8 65.9

Case lb-13

Y X

20.0 20.0
29.7 30.3
43.7 46.0
62.2 73.0
80.5 124.6
83.1 245.0
85.3 483.7
87.6 954.7
89.1 1892.5
90.1 3764.0
90.7 7504.3

Condition Cost/M
3

Convexity
1

2

3

4

5

6

7

8
9

Iteration

P <Y
Pl<Y
P

1
<Y

Pl<Y
P1 <Y

P
1
<Y

P
1
<Y

P
1
<Y

P
1
<Y

1

1

>Y

Condition

64.63
41.19
27.37
19.39
15.06
13.06
12.41

12.30
12.29

Cost /M3

Not convex
Not convex
Not convex
Not convex
Not convex
Not convex
Not convex
Not convex
Not convex

Convexity
1

2

3

4

5

6

7

8

9

10

11

P >Y
P

1
>Y

P
1
>11

P
1
>Y

P1 >Y

P
1
>V

P
1
>Y

P
1
>Y

P
1
>Y

P
1
>Y

1
p
1

>y

59.60
34.46
21.83
15.78
13.43
12.99
12.78
12.68
12.64
12.62
12.61

Convex
Convex
Convex
Convex
Convex
Convex
Convex
Convex
Convex.
Convex
Convex

Case lc--Yarding Perpendicular to Truck Road

Optimum Y = 91.3

Cost/M
3

= 12.60

Case 2--Yarding not Permitted onto Truck Road

Iteration L Y X Cost/M3 Convexity
1 20.0 20.0 20.0 59.94 Not convex
2 28.3 28.3 25.8 38.73 Not convex
3 40.3 40.3 33.0 26.20 Not convex
4 57.1 57.1 41.2 18.97 Not convex
5 80.0 80.0 49.3 15.08 Not convex
6 108.3 108.3 54.6 13.28 Not convex
7 136.0 136.0 55.3 12.67 Not convex
8 152.9 152.9 54.1 12.56 Not convex
9 157.0 157.0 53.8 12.55 Not convex

Figure 16. Example 1 Not Forced into Convex Zone
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Case la--P
1
<Y

Iteration L

20.0
26.1

35.2
37.9
57.2

80.7
103.8
118.3
121.7

L

20.0
29.7
43.7
62.2
80.5
83.1
85.3

87.6
89.1

90.1

90.7

Y

20.0
28.2
39.9
55.9
77.4

103.3
128.3
143.4
146.8

Y

20.0
29.7
43.7
62.2

80.5
83.1
85.3
87.6
89.1

90.1

90.7

X

17.1

22.4
29.4
37.5
47.5
57.9
65.2
66.8
66.5

Case lb--P1>Y

X

2070
30.3
46.3
73.0

124.6
245.0
483.7
954.7
1892.5
3764.0
7504.3

Condition Cost/M
3

Convexity
1

2

3

4

5

6

7

8

9

Iteration

P1< Y
P

1
< Y

P
1
< Y

P
1
< Y

P
1
< Y

P
1
< Y

P
1
< Y

P1< Y
P

1
< Y

Condition

64.63
41.12
27.02
19.19
14.93
12.96
12.33
12.24
12.23

Cost /M''

Not convex
Not convex
Convex
Convex
Convex
Convex
Convex
Convex
Convex

Convexity
1

2

3

4

5

6

7

8

9

10

11

P >Y
P
1

1
>Y

P
1

>Y

P
1
>Y

P
1
> Y

P
1
>,/

P >Y

P
1

>Y

P
1

1>
V'

P
1
>Y

P
1
>Y

59.60
34.46
21.83
15.78
13.43
12.99
12.78
12.68
12.64
12.62
12.61

Convex
Convex
Convex
Convex
Convex
Convex
Convex
Convex
Convex
Convex
Convex

Case lc--Yarding Perpendicular to Truck Road

Optimum Y 91.3

Cost/M
3

= 12.60

Case 2--Yarding not Permitted onto Truck Road

Iteration L Y X Cost/M
3

Convexity
1 20.0 20.0 20.0 59.94 Not convex
2 14.2 28.3 25.8 38.37 Convex
3 23.4 40.3 32.9 25.96 Convex
4 38.2 57.3 41.0 18.81 Convex
5 59.3 80.3 49.0 14.96 Convex
6 86.1 108.5 54.3 13.20 Convex
7 113.2 136.1 55.1 12.61 Convex
8 129.7 152.6 54.0 12.50 Convex
9 133.5 156.4 53.7 12.50 Convex

Figure 17. Example 1 Forced into Convex Zone.
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1

<Y
39

Iteration L Y X Condition Cost/M
3

Convexity
1 20.0 20.0 8.8 P <Y 101.85 Not convex
2 27.6 27.6 12.0 Pl<Y 61.70 Not convex
3 38.0 38.0 16.4 Pl<Y 39.12 Not convex
4 51.8 51.8 22.3 P

1
<Y 26.36 Not convex

5 69.2 69.2 30.5
pl

<), 19.31 Not convex
6 89.0 89.0 42.0 P

1
<1, 15.68 Not convex

7 105.9 105.9 58.4 P
1
<Y 14.05 Not convex

8 110.2 110.2 68.9 Pl<Y 13.67 Not convex
9 102.8 102.8 61.9 Pl<Y 14.00 Not convex

10 107.4 107.4 66.9 P
1
el 13.76 Not convex

11 104.7 104.7
1

64.9 P .<1, 13.87 Not convex
12 105.9 105.9 64.8 P

1
<Y 13.84 Not convex

13 106.2 106.2 64.8 P
1
<Y

1
13.84 Not convex

Case lb - -P >Y

Iteration L Y X Condition Cost/M
3

Convexity
1 20.0 20.0 20.0 P >1, 61.12 Convex
2 29.6 29.6

1
30.4 P >Y 35.52 Convex

3 43.2 43.2 46.8 P1>Y 22.55 Convex
4 61.4 61.4 73.9 P1>Y 16.19 Convex
5 81.7 81.7 123.4 P1>Y 13.45 Convex
6 94.8 94.8

1
227.0 P >y 12.53 Convex

7 95.6 95.6 452.2 131>Y 12.21 Convex
8 95.4 95.4 905.1 P

1
>Y 12.05 Convex

9 95.6 95.6 1809.1 Pl>1, 11.97 Convex
10 95.6 95.6 3616.7 P1>Y 11.93 Convex
11 95.7 95.7 7231.4 Pl>11 11.91 Convex
12 95.7 95.7 14460.7 131>Y

1
11.90 Convex

Case lc--Yarding Perpendicular to Truck Road

Optimum Y

Cost/M
3

Iteration

= 95.7

= 11.89

Case 2--Yarding not Permitted

L Y X

20.0 20.0 2070
28.2 28.2 26.4
39.6 39.6 34.7
55.4 55.4 44.8
75.8 75.8 56.0
98.9 98.9 65.6

118.7 118.7 70.0
128.2 128.2 70.3
129.9 129.9 70.2

onto Truck Road

Condition Cost/M
3

Convexity
1

2

3

4

5

6

7

8

9

P <Y
P <Y
Pl<Y
Pl<Y

Pl<Y
p

1
<y

1
P <Y
Pl<Y
P1 <Y

61.59
39.88
27.23
20.07
16.34
14.76
14.31
14.24
14.23

Not convex
Not convex
Not convex
Not convex
Not convex
Not convex
Not convex
Not convex
Not convex

Figure 18. Example 2 Not Forced into Convex Zone
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Case la--P
1

<Y

Iteration L

20.0
25.9
35.3
51.3
93.9
108.1

106.7
106.5

L

20.0
29.6
43.2
61.4
81.7
94.8
95.6
95.4
95.6
95.6
95.7
95.7

Y X

20.0 8.8
27.6 12.0
38.9 17.0
57.3 26.1

93.9 48.6
108.1 64.7
106.7 64.7
106.5 64.6

Case lb--P

Y X

20.0 20.0
29.6 30.4
43.2 46.8
61.4 73.9
81.7 123.4
94.3 227.0
95.6 452.2
95.4 905.1

95.6 1809.1
95.6 3616.7
95.7 7231.4
95.714460.7

Condition Cost/M
3

Convexity
1

2

3

4

5

6

7

8

Iteration

P
1
<Y

P <Y
P

1

<Y

P
1
<Y

P
1
<Y

P
1

<Y

P
1
<Y

P
1
<Y

1

>Y

Condition

101.85
61.43
37.27
22.72
14.91

13.81

13.83
13.84

Cost/M
3

Not convex
Not convex
Not convex
Convex
Not convex
Not convex
Not convex
Not convex

Convexity
1

2

3

4

5

6

7

8

9

10

11

12

P >Y

P1>Y
P1 >11

P1 >Y

P
1
>Y

P
1

1
>Y

P
1
>Y

P1>Y
P

1
>Y

P
1
>Y

P >Y
P
1
>Y

1

61.12
35.52
22.55
16.19
13.45
12.53
12.21
12.05
11.97
11.93
11.91

11.90

Convex
Convex
Convex
Convex
Convex
Convex
Convex
Convex
Convex
Convex
Convex
Convex

Case lc--Yarding Perpendicular to Truck Road

Optimum Y

Cost/M
3

= 95.7

= 11.89

Case 2--Yarding not Permitted onto Truck Road

Iteration L Y X
3

Cost /M3 Convexity
1 20.0 20.0 20.0 61.59 Not convex
2 14.1 28.2 26.4 38.81 Convex
3 0.0 39.0 33.0 26.49 Convex
4 6.1 54.9 42.2 19.41 Convex
5 19.8 75.5 53.1 15.75 Convex
6 36.6 98.5 63.6 14.24 Convex
7 51.1 117.1 70.0 13.85 Convex
8 57.8 125.1 71.4 13.81 Convex
9 58.8 126.1 71.4 13.80 Convex

Figure 19. Example 2 Forced into Convex Zone
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1
<Y

41

Iteration L

250.0
304.2
330.1

429.3
488.6
486.0
546.0

L

250.0
348.4
449.0
496.6
489.5
495.7
501.5

Y X

250.0 43.7
340.9 61.1
443.8 82.8
551.2 116.3
619.5 163.3
629.9 225.5
604.1 313.0

Case lb--P

Y X

250.0 250.0
348.4 401.6
449.0 687.2
496.6 1301.6
489.5 2621.9
495.7 5210.5
501.5 10359.4

Condition Cost/M
3

Convexity
1

2

3

4

5

6

7

Iteration

P
1
< Y

P
1

< Y

P
1

< Y

P
1
< Y

P
1
< Y

P1< Y
1
P1< Y

1
>Y

Condition

4.89
3.78
3.21

2.95
2.84
2.81

2.81

Cost/M
3

Not convex
Convex
Convex
Convex
Convex
Convex
Convex

Convexity
1

2

3

4

5

6

7

P > V

P
1

> Y

P
1

1
>11

P
1

> Y

P
1

> Y

P
1

> V

P
1

> Y

3.62

3.06
2.83
2.78
2.76

2.75
2.75

Convex
Convex
Convex
Convex
Convex
Convex
Convex

Case lc--Yarding Perpendicular to Truck Road

Optimum Y

Cost/M
3

= 511.8

= 2.74

Case 2--Yarding not Permitted onto Truck Road

Iteration L V X Cost/M
3

Convexity
1 250.0 250.0 250.0 3.99 Not convex
2 179.8 359.5 217.2 3.35 Convex
3 335.9 493.1 193.1 3.05 Convex
4 468.9 617.8 186.3 2.95 Convex
5 541.4 688.0 183.6 2.94 Convex
6 557.0 703.2 183.1 2.93 Convex

Figure 20. Example 3 Forced into Convex Zone.
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For instance, based on Example 3, a manager might conclude:

1. If I permit logging onto the truck road, there is no
advantage to moving in a swing machine or building
landings. My truck spacing should be about 1000 meters.

2. If I do not permit logging onto the truck road, I will
spend about 6 1/2% more on logging costs. If I stand to
save an equal amount on reduced road maintenance or repair,
this is an alternative to consider.

3. If I do not permit logging onto the truck road, my
landings should be about 180 meters apart, my truck roads
should be about 1400 meters apart, and my swing roads
should extend about 550 meters into the setting from the
landing.

The efficiency of the Newton Gradient search is quite remarkable.

An early approach to this problem involved an exhaustive enumeration

technique, requiring about 18,000 iterations. By contrast, the

Newton algorithm closed on a solution in at most thirteen iterations.

Execution time for these two approaches was 85 minutes and 1 1/2

minutes, respectively; we could expect a proportionate reduction in

execution time if we were working with a computer system with a

generally faster operating speed.

There are several considerations that could improve the validity

of the model set forth in this paper. Any of these considerations

would be fertile ground for further investigations. Several topics

are:

Yard/Swing Synchronization

The ability of the swing machine to remove logs at a rate

matching the arrival of the yarding machine is an interesting as-

pect of the problem. Unaccounted costs that could arise are those

resulting from idle time for either machine, due to unmatched
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service rates or inadequate storage at the swing road. Queueing

theory offers tools for analyzing this aspect. Perhaps the model

developed here could infer costs assuming a theoretical 100%

matching efficiency between the two machines. Then, variation in

experienced cost could be attributed to inefficiencies in the match

of service rates.

Sensitivity and Risk

The sensitivity of the cost function at the optimum point to

variations in the variable values can be investigated as part of a

solution. This should be an easy task, since the Newton optimization

search necessitates calculation of the gradient at each iteration.

A simple investigation of the range of costs accompanying a variation

of ±10% of the optimum values, for example, may reveal that the

cost function is not very sensitive.

There may be a greater element of risk associated with one case

than with another. For example, if the swing tractor is moved in,

the risk of equipment breakdown, and consequent increase in logging

cost, is likely to change. This can be reflected, or rather hidden,

in the associated operating cost of the equipment. One should be

aware of its existence when making inferences from the model.

Time Value of Money and Changes in Technology

An optimization scheme such as the one presented here is a tool

that could be considered when planning the layout of long-term



44

management facilities for a large block of land. However, the

time effects--time value of money and significant changes in

technology--are not usually dealt with. Consider the effect on

optimum spacing made by a major change in skidder technology.

A company that operates with crawler tractors could find itself

managing its land with suboptimal road and landing spacing if it

were to convert to rubber-tired skidders. Similarly, if expendi-

tures for road construction are made in Year 0, an optimal solution

based on a five-year management framework may look quite different

than an optimal solution based on a 20-year management framework,

due to time value of money.

Verification

An attempt to verify a deterministic model by empirical cost

collection would be an interesting undertaking. It may be difficult,

however, to find many examples of operations similar to the

configurations discussed here. Even a small sample of such oper-

ations could be compared with logging cost predictions from this

model, offering some measure of non-rigorous verification of the

model's validity.

Further investigation of this problem in several areas would be

interesting:

1. Allow for variations in logging cost due to ground slope.

2. Investigate the effect of yarding into the truck road or

swing road in a non-perpendicular direction.
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3. Allow for setting shapes constrained by ownership lines,

topography, or existing roads or landings.

4. Generalize the model to provide insights for other types

of operations, such as pre-bunching under skyline

corridors or skyline operation with lateral yarding.

The application of a sophisticated mathematical algorithm to

a collection of constrained equations such as those generated in

this study has been shown to give reasonable, understandable

results; this alone was a major objective of the study.
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APPENDIX A

First Derivatives of Case la Objective Function

EQUATION 1.1a SUMMARY OF COST FUNCTION PARTIAL DERIVATIVE- CASE la

aK
aL-

+O

AV
2
X V

4

4Y Y

'2
((3 V2Y)(L..y)

4Y (Y2-2Y!_+1_2+x2
)1 /2)

((34V2y)(1.4)

2m2P2
(Y -2YL+L

,11
.16'

1

4Y

V
1

V
3

Y Y

-2V1

L + V1

C

YXV

((i Av0(1.4)

9
1/0AV2)(Y2-2YL+L2+x2)1/2)._ 2V4

(Y2-2YL+L'+X')

4
-8-AV2L)(L-Y)

(Y2-2YL+L2+142
1/0P2) (Y2-2YL+L2+--116X2112)

16

2V4



APPENDIX A

EQUATION 1.1b SUMMARY OF COST FUNCTION PARTIAL DERIVATIVE CASE la

2
V2X +

8

1 1

3
JAVi

V i
-V

2
-1- V4

-AV
2 4
X +

AV 2-V1 AV
2

- V1

50

3 K -2

y2

A X

Y2
2

I

6

-2

2 14
fAX

V
2

+

1
V-AV X +

18 2 4 31

AV V1

V2 + V4111,

2

1

1

(-AV
2
)(Y-L)

3
1

2
(Y2-2YL+L2+X2 )2-

1 2+ -
2 3

1 1
4 V2X + 2V3]

AV
2

- V1

(-13 L)(Y-L)
13_ +

2 2 2 2
Y(Y -2YL+L +X )

Y-L
1 _

1 z
(Y
2_

2YL+L
2
+--X

2
)

16

- 2 3

1
[-AV

2 3
X +

2
--V

3

Y AV
2

- V1

--A1V
1
-V

4 2
X +

2 3

AV2-V1Y
2 2

L
2V

1
+ LV

2
--AV L

2

V1 +

2

-R

2Y
2V

2CL - F1 - F2 - F3

2Y `X

-A
2

V L
3 2

3

1

-AV
2
L

Y
2

1

Y
2-2YL+L 2 +X2 2-

Y-L
1

Y
1

(Y
2
-2YL+L

2

16
)

-2YL+L2+1)(2
16

1 1

V3]

--AV
2

+ V
8 4 3

AV
2

V1

+ v3.1[12-

-V4L
4

Y
2

1
-AV X + V
4 2 2- 3]

AV
2

- V1 ]

V
4
L

Y2



APPENDIX A 51

EQUATION 1.1c SUMMARY OF COST FUNCTION PARTIAL DERIVATIVE - CASE la
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Second Derivatives of Case is Objective Function
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Examination of P = 0 Assumption

60

In Case la we must compute the average yarding distance for

segment 1. This segment is trapezoidal in shape if we assume some

positive value for the dimension P2, but is triangular in shape if

P
2

= 0 (see Figure 2). Let us investigate the merits of assuming

that P2 = O.

The unadjusted average yarding distance from segment 1 can be

determined by considering a strip of width dZ located a distance Z

from the swing road (see Figure 21). The average yarding distance

for the segment is:
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P1

P2

P2 + --- (P1 -P2)
X/2

z

dz

Figure 21. Integrating to Find Average Yarding Distance.
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(eq. 28)

This expression can be simplified a little by expanding terms:

12 + PIP2 + P22
AYD1 - 1/3

P1 +
P2

Substituting expressions (4) and (8) we obtain:

AYD =
1

1
1/2AV V + V

3

2 3 3[
1/2AV X + 2V (eq. 29)

3(AV2-V1) IL

2 3
1/2AV

2
X + 2V

3 j

This is a cumbersome expression! However, if we choose some values

for A, V1; V2, V3, and X, it appears that it is difficult to concoct

a combination resulting in a value for P
2

that is significant in

relation to P
1

(see Table 3). What is the effect of assuming that

P
2
= 0, i.e., that the breakeven line intercepts the landing? In

this case the yarding distance for segment 1 is:

Pi

AYD
1
(SIMPLIFIED) = 3

1/2AV2X V3

3(AV2 - V1)

(eq. 30)

The last two columns in Table 3 show the average yarding

distances corresponding to the full (eq. 29) and simplified (eq. 30)

models. Note that there is little significant difference in any of

the cases investigated, unless X is quite small. We will make the

assumption that the simplified model--breakeven line intercepts the

landing--is adequate.
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A
V1 V2 V3

X P1

FULL

AYD

SIMPLE DIFFERENCE
AYD

1.0 .03 .06 .85 500 528.3 176.6 176.1 -0.27

1.0 .05 .06 .25 500 1525.0 508.5 508.3 -0.03

1.0 .03 .10 .85 500 369.3 123.2 123.1 -0.10

1.0 .03 .12 .25 500 336.1 112.0 112.0 -0.01

1.5 .03 .06 .85 500 389.2 129.9 129.7 -0.13

1.5 .05 .06 .25 500 568.8 189.6 189.6 -0.01

1.5 .03 .10 .85 500 319.6 106.6 106.5 -0.05

1.5 .03 .12 .25 500 301.7 100.6 100.6 -0.003

1.0 .03 .04 1.20 500 1120.0 377.2 373.3 -1.03

1.5 .03 .06 .85 50 51.67 18.2 17.2 -5.58

Table 3. Difference Between Full and Simplified AYD Models
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Anomalies Occurring in Several Gradient Methods

Several classic gradient methods that can result in suboptimal

solutions are diagrammed in Figures 22-24. "Contours" of a hypo-

thetical constrained objective function in two variables, X1 and

X
2'

are shown, with a global optimum at A. In Figure 22, the

conjugate gradient method (Gottfried & Weisman, 1973) moves from

an unfortunate choice of starting point, along a path of steepest

gradient to a suboptimal point. One can see that the same point

would have been reached even without the constraint. Cauchy's

Method (Simmons, 1975) (Figure 23), in which iteration is in

cardinal directions (i.e., optimizing one variable at a time), also

moves to a suboptimal point, due to an unlucky choice of starting

point. Rosen's Gradient Projection Method (Gottfried & Weisman,

1973) (Figure 24) moves along a path of steepest gradient until

encountering a constraint, then along a path of steepest gradient

projected onto the constraint to an optimum--or in this example,

to a suboptimum. The conclusion is that none of these methods

are necessarily foolproof--the danger of closing on a non-global

optimal value is always present.

The well-known Kuhn-Tucker Conditions can be used to test

that a solution is an optimum for a constrained objective function.

But the conditions are necessary and sufficient to indicate a

global optimum only if the constraints define a convex set and the

objective function being minimized is convex throughout the feasible
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region. We have seen in our examples that the feasible region

contains zones of non-convexity. Therefore, we cannot rely on the

Kuhn-Tucker Conditions to verify that we have a global optimum.

STARTING POINT

A GLOBAL OPTIMUM

Figure 22, Conjugate Gradient Iteration Method.

X2
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X1
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0 STARTING POINT

A GLOBAL OPTIMUM

X2

Finure 23. Cauchy's Gradient Iteration Method.

0 STARTING POINT

GLOBAL OPTIMUM

Fioure 24. Rosen's Gradient Projection Method.

X2
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C5 DIM C[103,1(3,107,JC10,1],L(3,11KI20),a6,101H(3,3),113,3304(3,i),V(3,13
6 DIM 1413,13,a3,i)
8 PRINT
9 PRINT
10 DISP "TRACTOR YD DIST ADJ FCTR,A";
15 INPUT A
16 F'RINT "TRACTOR YARDING DISTANCE ADJUSTMENT FACTOR (A) ="A
20 DISP "VOLUME, M3 PER HECTARE V";
25 INPUT V
26 PRINT "VOLUME, CUBIC METERS PER HECTARE <V) ="V
30 DISP "SWING VRBL COST, V1 ";
35 INPUT Vi
36 PRINT "SWING VARIABLE COST $ PER CUBIC METER PER METER (VI) g="Vi
40 DISP "YARD VRBL COST.. V2";
45 INPUT V2
46 F'RINT "YARD VARIABLE COST $ PER CUBIC METER PER METER (V2) ="V2
50 DISP "OTHER SWING COST.. V3";
55 INPUT V3
56 PRINT "OTHER SWING COST $ PER CUBIC: METER (V3) ="V3
60 DISP "OTHER YARD COST.. V4";
65 INPUT V4
66 PRINT "OTHER YARD COST $ PER CUBIC: METER (V4) ="V4
70 V=V/10000
75 DISP "SWING RD CONST COST, C:";
PO INPUT C
81 PRINT "SWING ROAD CONSTRUCTION COST $ PER METER (C) ="C
85 DTSP "TRUCK RD CONST COST.. R";
90 INPUT R
91 PRINT "TRUCK ROAD CONSTRUCTION COST $ PER METER (R) ="R
95 DISP "SWING MACHINE MOVEIN,F1";
100 INPUT Fl
101 PRINT "SWING MACHINE MOVEIN COST $'(Fi) ="Fl
05 DISP "YARD MACHINE MOVEIN,F2";
110 INPUT F2
111 PRINT "YARD MACHINE MOVEIN COST $ (F2) ="F2
115 DISP "LANDING CONST COST.. F3";
116 INPUT F3
117 PRINT "LANDING CONSTRUCTION COST $ (F3) ="F3



118 PRINT
119 PRINT
120 PRINT
121 PRINT " CASE 1A--Pi<Y"
122 PRINT
123 PRINT "ITERATION L Y X CONDITION COST/M3 CONVEXITY
135 C9=0
136 PRINT
137 PRINT
138 DISP "INITIAL X, Y, L ";
139 INPUT Xl,Vi,L1
140 L=L1
145 Y=Y1
150 X=X1
155 P1=<A*V2*X/2+V3)/(A*V2-V1)
156 IF P1 <= Y THEN 159
157 X=0.95*X
158 GOTO 155
159 1 =L+01-L)*(L>Y)+<P1-L)*(L<P1)
185 C9=C94-1
190 WRITE (15,195)C9,L,Y,X;
195 FORMAT F6. 0,4F10. 1
200 GOSUB 5000
480 WRITE (15,481)K;
481 FORMAT 2F12. 2
490 GOSUB 1000
491 GOSUB 3000
492 X11,1)=L
493 Xf2,13=Y
494
495 vri,13=L[1,13
496 VE2,13=LE2,13
497 VE3,1)=L[3,13
498 MAT T=INV<H)
499 MAT W=T*V
500 MAT
501 L=H1,11
502 Y=7[2,1)

_503 X=7(3,13



505 OOSUB 6000
506 IF C9#1 THEN 509
507 K1=K
508 GOTO 512
509 K2=ABS(KK1)
510 K1=K
511 IF K2<0. 01 THEN 515
512 P1=<A*V2*X/2+V3)/(A*V2V1)
513 L=L1-((14-P1)/2L)*(U1<0 AND U2<0 AND U3<0)
514 GOTO 155
515 PRINT
516 PRINT
Si? PRINT
518 LINK 2,5,5
900 END
1000 REM PARTIAL-DERIVATIVE SUBROUTINE
1030 KE1)=-2/Y-2
1040 1(12)=<A*V2*X+2*V3)/(A*V2Vi)
1050 K[3]=SCIR(Y-*2-2*V*L+L"-24.X.-2)
1060 KE41=SOR(rs2-2*Y*L+L''2+0{-2/16))
1070 1(15)=(2/3)*A*V2
1080 KE6)=Y*(A*V2V1)
1090 KI7)=A.2*V22
1100 YE 83=41*(Fi*V2V1)-**2
1200 REM D1(/DL
1210 IC 1,1 3=IC 1, 23=IC 1, 63=1(1, 93=0
1215 IC 1, 33=,e, (.A*V2*).4)/(4*Y)+(V4/Y))
1220 It1,43=(((K[5.3*Y)*<LY)/K[3])(KE53*LWLY)/Kt33)<KC530a33)-42*V4))
1225 111,4)=111,43/(4*Y)
1230 IC1,53=<(2*K[53*Y)*(LY)/K(4))<42*K(5)*L)*(LY)/KE4))(2*KE53*Kt4))-0:2*V4)
1235 IC 1, 5 ] =IC 1, 5 3,1< 4,00
1240 II1,7)=(V1*L)/Y+(V3/V))
1250 IC1,8)=(Vi*L*2)/Y+Vi(V3/Y)
1260 It1,10)=C/("*X*V)
1300 REM DK /DY
1310 II2,1)=KE1)*(((KE2)*A/6)*V2)+V4)*(K(23/8)
1320 I[2,23=K113*((A*V2*X/6)+V4)*(KE21/8)
1330 I[2,31=K[1]*((11*V2*X/4)+V4)*(L/2<KE23/4))
1 340 I[2,43=K[5]/4)*(YL)/KE33)(WI53/4*L)*OeL)/(Y*KE3)))



1345 IC 2, 4 3= I C 2, 4 3 +4 <KC 5 3*L*KC 3 3)/ (4444.2) )+(/4*1../(2*kr2) )
1350 IC 2, 5 3=(4K.0 5 Iv( ) )/(2*KC 4 37)-4. (KC 5 3*L ) )/<2*Y*KC 4 3) )
1355 IC 2, 5 3= I C 2, 5 3+ ( <KC 5 3*L*Kt 4 3)/( 24:4'2) )+<(V4*L )/( 2*Y-2) )
1360 IC 2, 6 3=KE 1 3*( (Kt 2 3*V1/3)+V3)*(KE 2 3/8)
1370 IC 2, 7 3=KE 1 3*(L*V1/2+< <C 2 3*V1/4)+V3) )*(L/2-KC 2 3/4)
1180 IC 2, 8 3 =c. ( L-2*V1 )+(1..*V3) )/0'2)
1390 JC 2, 9 1=-R/(24441.-2*V)
1400 IC 2, 10 3= ( -C*L-F1-F2-F3 ) / (2,1T"'2*X*V )
:1.500 REM 1.4:::/DX
157 ft IC 3, 1 3= < <KC 7 3*R*V2*X)/(12*KE 8 3) )+( (R*V2'-'2*V3)/(6*KE 8 3) )+ ( (A*V2000614)/(4*KE 63)

1520 IC 3, 2 3= ( (KC 7 1*X )/(12*KC 6 3) )+ ( (3*FWV2*V4 )+(A*V2*V3) )/<12*KE 6 7) )

1530 IC 3, 3 3= ( ( -KC 7 3*X )/ (4*KE 63)) +4(A*: +12 *:L) /(4*Y))
1535 IC 3, 3 3= I C 3, 3 ( (FI*V2*V3)+ (2*A*V20/4) )/44*KC 6 3) )

1540 IC 3, 4 3= (A*V24:X*(Y-L ) )/(6*Y*KE 3 3)
155171 IC 3, 5 3= ( A*V2*X* ( Y-L ) )/ 48*Y*KE 4 3)
156,1,17. I C 3, 6 3= < (KC 7 3*%/1*X)/<6*K.0 8 3) )+1( (A*V10/2*V3)/(3*KE 8 3) )+ < 4A*V2*V3)/44*KC 6 3) )

1570 IC 3, 7 3= ( <-KE 3*VivtiX )/ (44:KC 8 3) ( (A*V1012*V3)/<2*KE 8 3) )-.< (A*V2*V3)/(2*KE 6 3))
1580 IC 3, 8 3= I C 3, 9 3=0
1590 IC 3, 3=<(- C*L *2)- F1- F2- F3) /(2 *:Y*X"'2*V)'n2*V
2000 MAT J=CON
2020 MAT L=
2120 RETURN
3000 PEMHESS I ANMATR I X
3010 SC 1, 1 3=5C 1, 2 3=St 1, 3 ] =SC 1, 6 3=SE 1, 9 ] =SC 1, 10 7=0
3020 SC 1, 4 3= A*V2 )/ ( 6*Y*KC 3 3-3)
3030 SC 1, 4 ] =SC 1, 4 3*(2*4-.3-6*Y`-.2*L+6*4'*L-2+3*Y*K-.2-2*L.-.3-3*L*W*2)
3:040 SC 1, 5 3=2*Y.'"3-6W'2*L+6*Y*L'"2+34<Y*X`2/16-2*C"3-3*L*X`"2/16
3050 SC 1, 5 3= (SC 1, 5 3*Ft*V2) / (3*Y*KE 4 3.-.3)
3060 SC 1, 7 3=V1/Y
3070 SE 1, 8 3=-2*V1 /Y
3100 KC 9 3=4/Y-.3
3110 SC 2, 1 3= ( <KC 2 3/6*V2 ) +V4 )*KC 9 3*KC 2 3/8
3120 SC 2, 2 3= ( A*X/6*V2+V4 )*KE 9 ] *:KC 2 3/8
3130 SC 2, 3 3= ( A*X/4*V2+V4 )*KC 9 3* (L/2-KC 2 3/4)
3140 SE 2, 4 3=< <.A*V2/6)*( (1/KE 3 3)-( (Y*(Y-L. ) )/KE 3 r""3 ) )-( <A*V2*L/3>*( <1...-Y)/KC 3 r".3) )
3145 SC 2, 4 ] =SC 2, 4 3+ (A*1612*1-2/6)*( (1..-Y) /(Y*K( 3 r3) (1/(Y-20a 33)) )
3150 SC 2, 4 3=SC 2, 4 3+ (A*V2*L/6)*( ( (Y-L)/(Y-2*KE 3 3) )-(2*KE 3 3/kr'3)
3155 SC 2, 4 ] =SC 2, 4 3-1.,14*L/IT'S



3160 KC 17 W3-Y-2*L-Y*L'-'2+L'3+)C-2*L/16
3165 SC 2, 5 3= <3*Y"2-2*Y*L-1-:2)/ <SP--2*KC4])
3170 SC 2, 5 3=SC 2, S 3-1<117 3*(Y-L) (Y-2*KE 4 r3)
3175 5( 2, 5 3=SC 2, 5 3-2*K117 3/ (4"-.3*KE 4])
3180 Sc 2.. 5 3=51 2, 5 3*A*V2/3-(1443+:L/11'3)
3200 SC 2, 6 3= <KC 2 3/30/1.0.13)*KE 9 3*KE 2 3/8

3210 SE 2, 7 ]=< <L/2+KC 2 3/4)*V14-V75)*(L/2-KE 2 314)*KE 9]

3220 SC 2, 8 3= < ---2*L-2*V1-2*L*V3 ) /Y".3

3230 SC 2, 9 3=R./(Y"'3*V)
3240 SE 2, 10 3= (2*C*L+Fl+F24-F3)/ (4'3*)<*V)
":ISici SE 3.. 1 3= <KC 7 3*V2*FI)/(12*K.E 8 3)

33:10 SE 3, 2 3=KE 73/ (12*KE 6))
3320 SE 3, 3 3=KC 7 V( -4*KE 6)>
33:25 1<1 10 )=Fi*V2*Y*(Y-L )
330:0 SC 3, 4 3= (6*KE 3 3*1(C 10 3)-160r2*KE 10 3/K1 3 3)
7340 SC 3, 4 )=SE 3, 4 3/ (3:64:4'2*KE 3r2)
3350 SC 3, 5 )=<48*KE 4 3*KC10 3)- (3*X'-'2*KE 10 3/KC 4])

3360 SE 75, 5 3=51 3, 5 3/ (22:04*4'2*KE 4 r2)
3370 SC 3, 6 1=KE 7 3:011/< KC 8 3*6)

SC 3, 7 3=1(E 7 3*V1/(KE 8 3*-4)

3390 sr 3, 8 3=SC 3, 9 3=0

3400 5( 3, 10 3= <2*(:*L+Fl+F2+F3 Y*W**3*V )

3500 SC 4, 1 3=SE 4.. 2 3=SE 4.. 6 )=SE 4, 9 3=0

3510 5( 4, 3: 3= < --A*V2*X/ (4*Y".2)-144/ (V'2) )

3:520 KE 11 3=Y-3:-Y-.2*L-Y*L.2+1..'n3+L:VrIr2
3530 KC 12 3=3*C2-2*Y*L-1T'2+X'-'2
3:540 KC 13 3= L-Y )*Y"-'2/KE 3 3
3550 SC 4, 4 3= Or'2*KC 3 )*KE 12 3-KE 11 3*KE 13 3)/(Y".4*K( 3 Y2)

1:560 SC 4, 4 )=SC 4, 4 l*Fi*V2/6÷%/4/ (2*Y-2)

3570 Fa ii 3=KE 11 )-(15/16*X*-241.)
KE 12 3=KE 12 3- (15/16*X*-2)

3590 KC 13 3= (L-Y)*Y"2/KC 4 3
3600 SE 4, 5 3= OTP-'2*KC 4 3*KE 12 3-KE 11 3*KE 13 3)/ Or.4*K( 4r2)

3610 5( 4.. 5 3=SE 4, 5 3*Fi*V2/3+V4/ (2*Y-2)
3620 SC 4, 7 3= ( -V1*L-V3 Y2)
3630 SC 4, 8 3= < 2*V1*1-+V3: )/ (1-r2 )

3640 SE 4, 10 3=-C./(Y-2*X*V)
3700 5( 5.. 1 3=SC 5.. 2 3=SC 5, 6 3=SE 5, 7 3=SE 5, 8 3=51 5, 93=0



-3710 5( 5, 3 3=A*V2/(4*Y)
3720 SC 5, 4 3= (Y-L )/KC 3 r3
3725 SC 5, 4 3=SC 5.. 4 3*(A*V2*X/6)*(1.-L/Y)-(A*V2*Xl(6*Y*K( 3 3) )

37.30 SC 5, 5 3= ( Y-L )/KC 4 r3
3735 5( 5, 5 3=SC 5.. 5 344( A*V2*X/48)*(1-L/Y )-< A*V2*X/( 48*Y*KE 4 3) )

3760 51 5.. 10 )=-C/( Y*X-2*V)
1:800
3810
3820
3830
3840
3850

SE 6, 1 3=1E 3, i3/-Y
SC 6, 2 3= IC 3, 2 3/-Y
SC 6, 3 3= IC 3, 3 3/-Y
SE 6.. 6 3= I 3.. 6 3/-Y
SC 6, 7 3= IC 3, 7 3/-y
SC 6, 8 3=51 6, 9 3=0

3870 KC 15 3=-A*V2*(Y-L)*(1-L/Y)*X
3880 Kr 16 3=A*V2*L*X
3890 SC 6.. 4 3=1(1 15 3/ (6*K( 3 3"3) +KC 16 )/ (6*Y`-'2*KC 3))

3900 SC 6.. 5 3=1(1 15 3/(48*K( 4 r3)+KE 16 3/ (48*Y*-2*KC 4))
4000 516.. 10 3= I C 3, 10 3/-Y

4010 MAT H=ZER
4020 FOR 1=1 TO 10
4040 HE 1, 1 3=HE 1, 1 3+SC 1, I)
4050 HE 2, 2 3=HC 2, 2 3+SC 2, I)
4060 HC 3, 3: 3=HC 3, 3 3+SC 3, I]

4070 NEXT I
4110 FOR 1=1 TO 10
4130 HC 1, 2 3=HC 2, 1 ]=HE 1.. 2 3+SC 4, I)

4140 HE 1, 3 3=HE 3, 13=141, 3 3+SC 5, I 3
4150 HE 2.. 3 3=141 3, 2 )=HE 2, 3 3+5( 6, I)

4160 NEXT I
4220 RETURN
5000 REM COST SUBROUTINE
5012 PRINT " P1<Y ";
57,:00 CC 13= < (F1-2*V2*X/6+V3*A/3)/(A*V2-V1)*V2)+V4
5310 CC 1 3= ( <CC 1 3*2/Y)*< (A*V2*X/8+V3/4)/(.A*V2-V1) ) )

5320 1:1 2 )=( A*X*V2/6+V4)*( 2/Y)
5330. CC 2 3=C( 2 3+< (A*V2*X/8+V3/4)/(A*V2-V1) )
5340 CI 3 3= (A*X*V2/4+V4 )*(. 2/Y )
5350 CC _3 ]=CC 3 3* (L/2-< (A*V2*X/4+V3/2)/<A*V2-V1 )

5360 Cl 4 3= 2./Y )*( (Fi*V2/3*SOR(Y`n2-2*Y*L+12-.20r2) ) +V4 )

_5370 CE 4 3=CE 4 3*( Y/4-L/4)



5 REM
7 PRINT " CASE 16--P1>Y"
8 PRINT
9 PRINT
122 PRINT
123 PRINT "ITERATION L Y X CONDITION COST/M3 CONVEXITY
1.24 M1=A*V2*V3-V1*V3
125 M3=4*A*V1*V2-2*R-2*V2-2-2*V1-2
126 M5=A-3*V2-3-2*A-2*V1*V2-2+A*V1-2*V2
135 C9=0

"136 PRINT
1.37 PRINT
140 L=L1
145 Y=Y1
150 X=X1
155 P1 =(A*V2*X/2+V3)/<A*V2-V1)
156 IF P1 >=, Y THEN 159
157 X=1. 05*X
158 GOTO 155
159 L=Y
185 C9=C9+1
190 WRITE <15,195)C9,L,Y,X;
195 FORMAT F6.0,4F10. 1
200 GOSU8 5000
480 WRITE <15,481)K;
481 FORMAT 2E12.2
490 GOSUB 1000
491 GOSUB 7:000
492 X[1,1)=L
49 2 XC2,1]=Y
494 XE3,1]=X
495 VE1,1)=LE1,13
496 VI2,13=LC2,1]
497 VI3,1]=LC3,17
498 MAT T=INV<H)



5380 C[5]=(2/Y)*(42*A*V2/3*SOR(Y-2-2*Y*L+L 2.4X-2/16))+V4)

5390 CE53=C[53*(Y/4,-Ll4)
5400 CE6I-1--(2/Y)*(A*V2*X/3+2*V3/3)*Vi?(A*V2-V1)+V3)
5410 CC6)=CL67*(A*V2*Xi/8+V3/4)/(8*V2-V1)
5420 CE7)=<2/Y)*(.(L*V1/2+CA*V1*V2*X/44-Vi*V3/2)/(A*V2-V1))+V3)
5430 C[7]=CE73*(L/2-(4A*V2*X/44-V3/2)/(A*V2-V1)))
5435 CE83=(4/Y)*(L*V11-V3)*(Y/4-L/4)
5450 er93=R/(2*Y*V)
5460 C1103=(2*C*L-1-F14.F2+F3)/(2*Y*X*V)
5470 K=C[1].+CC23+C(33+C[4]+C(5)+CE6J+C(7)+CE811-C(93+C(107
5480 RETURN
6000 REM CONVEXITY CHECK
6010 UJ=HE1,1]
6020 U2=HE1,1)*HC2,23-HE2,1)*HC1,27
6030 U3=DET(H)
6040 IF (U1 >=, 0 AND U2 >= 0 AND U3 >=, 0) THEN 6070

6050 PRINT " NOT CONVEX"
6060 GOTO 6080
6070 PRINT " CONVEX"
6080 RETURN



499 MAT W=T*V
500 MAT Z=XW
501 L=ZC 1, 1 ]
502 Y=Z( 2, 1)
503 X=ZE 3, 1 3
505 GO!'..11..1B 6000

506 IF C9#1 THEN .509
507 K1=K
508 GOTO 155
ticig K2=ABS(KK1)
510 K1=K
511 IF K2<0. 01 THEN 514
512 GOTO 155
514 PRINT
515 PRINT
516 PRINT
517 PRINT
518 PRINT " CASE IC--YARDING PERPENDICULAR TO TRUCK ROAD"
519 Y=SQR(R/(A*V2*V))
521 K=A*V2*Y/2+V4+R/(2*Y*V)
522 WRITE <15, 524)"OPTIMUM Y = "V
523 WRITE <15, 525)"COST/M3 = "K
524 FORMAT F10.
525 FORMAT F8. 2, /, /, /
526 LINK 3, 5, 5
900 END
1000 REM PARTIAL DERIVATIVE SUBROUTINE
1.252 FOR 3=1 TO 9
1253 IC 1, J ]=0
1254 NEXT J
1260 I ( 1, 103=C/(Y*X*:V)
1300 REM DK/DY
1382 IC 2, 1 )=M1/M2+A*V2/2
1383 I C 2, 2 3=2*Y*M3/M4
1384 It 2, 3 3=2*Y*X*M5/116
13.85 IC 2, 4 )=IC 2, 5 3=1C 2, 6 3=1( 2, 7 3=It 2, 8 3=0

1390 IC 2, 9 ]=R./(2*Y-2*V)
1400 1(2, 10 )= <C*LF1F2F3)/< 2*Y'-'2*X*V)



1500 REM DK/DX
1572 IC 3, 1 3=-Y*A*V2*M1/CM2'.'2)
1573 IC 3, 2 3=-3*W"2*A*V2*M3/<M4'-'2)
1574 IC 3, 3 3= <4 "-.2*M5/M6 Wn2*X*M7*M5/(M6'-'2) )
1575 IC 3, 4 3= IC 3, 5 3= I C 3, 6 3= IC 3, 7] =0

1500 IC 3, 8 3= IL 3, 9 3=0

1590 IC 3, 10 3=. (-C*L*2 )-Fi-F2-F3)/(2*Y*K-2*V)
2000 MAT J=CON
2020 MAT L= I*J
2120 RETURN
3000 REMHESS I ANMATR I X
3072 FOR J=1 TO 10
3073 Si I, J 3=0
3074 NEXT J
3222 SC 2, 1 3=SC 2, 4 ] =SC 2, 5 ] =SC 2, 6 3=SC 2, 7 ] =SC 2, 8 3=0

32.23 SC 2 3=2*M3/M4
3224 SC 2, 3 3=2*X*M5/M6
121:0 SC 2, 9 3=R/ <Y'-'"Z.*V )

3240 SC 2, 10 3=(2*C*1-4.F1+F2+F3)/(Y."3*X*V)
3392 SC 3, 1 3=2*Y*A--2*V2"-.2*M1/1(M2"'3)
3393 SC 3, 2 3=6*Y.-.2*A''.2*V2""*2*M3/<M4.-.3)
3394 SC 3, 3 3=- Y'-'2*M5 )* ( M7/ < )+M8/ -.2*M7/ ( M6'"3 ) )

3395 SE 3, 4 3=SC 3, 5 3=SE 3, 6 3=SC 3, 7 3=SC 3, 8 3=5C 3, 9 3=0

3400 SC 3, 10 3= ( 2*C*L-W1+F24-F3 )/(Y*X.-'3)4cV )

3632 FOR J=1 TO 9
3633 Si 4, J3=0
3634 NEXT J
3640 SE 4, 10 3=-C/(Y.-`2*X*V
3737 FOR J=1 TO 9
3730 SE 5, J 3=0
3739 NEXT J
3760 SC 5, 10 3=-C/(Y*X'-'2*V)
3902 SC 6, 1 3=SE 3, 13/Y
39071' SE 6 2 3=SC 3, 2 3/ Y/2 )

3904 SC 6, 3 3=SC 3, 3 3/(Y/2)
3.:105 Si 6, 4 3=5C 6, 5 ] =SC 6, 6 3=SC 6, 7 ] =SC 6, 8 ] =SC 6, 9 3=0

el 0110 Sr 6, 10 3=1C 3, 10 3/-Y

4010 MAT H=7-ER



4020 FOR I=1 TO 10
4040 HE 1, 1 3=141, 1 3+SE 1, I 3
4050 HI 2, 2 3=HE 2, 2 3+SE 2, I]
4060 HE 3, 3 ] =HC 3, 3 3+SE 3, I 3
4070 NEXT I
4110 FOR I =1 TO 10
413:0 HE 1, 2 3=HE 2, 1 3=HE 1, 2 3+SE 4, I 3
4140 NIL 3 3=HE 1 ] =HC 1, 3 3+SE 5, I 3
4150 HI 3 3=HE 3, 2 ] =HC 2, 3 3+SE 6, I 3
4160 NEXT I
4220 RETURN
5000 REM COST SUBROUTINE
5002 M2 =A*V2:+:X+2,+:V3
5003 M4=3:*M2
5004 M6=M4*M2
5005 M7=6*A-2*V2-2*X+1.2*A*V2*V3
51106 M8=12*Fi-2*V2-2*X+12*Fi*V2*V3
5441 (":1 1 3=1-?*( 011/M2)+<A*V2/2) )
5442 C:1 2 3=Y-2*<M3/M4)
5443 CC 3 3=Y-2*X*CM5/M6)
5444 CC 4 )=V4
5445 C:E 5 3=CE 6] =%:C 7 3=CE 8 3=0
5446 PRINT " P1>Y ";
5450 1:1 9 3=R/ <2*Y44',1 )
5460 C:1 10 3= if. 2*C*1.+Fl+F2+F3)/( 2*Y*X*V)
5470 K=CE 1 3+CE 2 1+CE 3 3+CE 4 3+CE 5 3+CE 6 3+CE 7 3+CE 8 3+CE 9 3+CE 10 3
5480 RETURN
6000 REM CONVEX I TY CHECK
6010 t1 =1-ir 1.. 13
6020 U2=HE 1 ]*HC 2.. 2 3-HE 2, 1 ] *HC 1, 2 3
603:0 ij3=(:'ET (H)
6040 IF (U1 >= 0 AND U2 >= 0 AND U3 >= 0) THEN 6070
r,T.050 PRINT " NOT CONVEX"
6060 GOTO 6080
6070 PRINT " CONVEX"
6080 RETURN



5 DIM CC 10 3, IC 3, 10 3, JC 10, 3, LC , 3, KC 20 3, SC 6, 10 3, HE 3, 3 3, 11 3, 3 3, X( 3, ), VC 3, 1. 3

6 DIM WC 3, 1 3, a 3, 1 3

8 PRINT
9 PRINT
121 PRINT " CASE 2 -- YARDING NOT PERMITTED ONTO TRUCK ROAD"
1.22 PRINT
123 PRINT "ITERATION L Y X CONDITION COST/M3 CONVEXITY
135 C9=0
136 PRINT "
137 PRINT
148 L=L1
145 Y=Y1
150 X=X1
151 F4=F-1
155 1 =L*4L>0)+(Y-L)*(L>Y)
185 C9=C9+1
198 WRITE (15, 195)C9, L, Y, X.
195 FORFiT F6. 0, 4F10.
20471 GO!'711B 5080
480 WRITE <15, 481)K;
481 FORMAT 2F12. 2
49n GO SUB 1800
491 GOSUB 3000
492 XCl 1 ] =L
493 ',`<3. 2, 1 3=Y

494 XE 3, 1 ] =X

495 VC 1, 1 3=L(1, 1 3
496 VC 2, 1 3=1.1 2, 13

497 VC :3, 1 3=--LE 3, 1 3

498 MAT T =INV(H)
499 MAT W=T*V
500 MAT Z=X-W
501 L=Z1 1, 1.7
502 Y=7C 2., 1

co

50 X=7C 3, 1]
505 GO SUB 6000
506 IF C9441 THEN 509
507 K1=K.
508 GOTO 513



509 K2=ABS<KK1)
510 K1=K
511 IF K2<0. 01 THEN 515
513 L=L+01/2L)*<U1<0 AND U2<0 AND U3<0)
514 GOTO 155
515 PRINT
516 PRINT
517 PRINT
900 END
1000 REM PARTIAL DERIVATIVE SUBROUTINE
1030 KC :1 3=-.2/Y'.2

1040 KC23=(A*V2*X+2*V3)/CA*V2V1)
1050 KC33=SQR(Y-2-2*Y*1-+L.--24r2)
1060 KC 4 3=SQR Y-2-2*V*L+L'-'2+ X.-.2/16 ) )

1.070 KU 5 3= ( 2/3 )*A*V2

1080 KC 6 3=Y*(A*V2V1)
1090 Kr. 7 1=Fr2*V2 -'2
1100 KC 8 3=Y*(FI*V2V1)".2
1200 REM DK/DL
12.1.0 IC 1, 2 3= IC1, 3 3=IC 1, 7 3=IC 1, 9 3=0

1215 IC 1, 1 3=A*V2*X/ ( 4*Y )+V4/Y
1220 IC 1, 43=(((.K.0 53*Y)*(LYVKE 33)^.((KE 53*L)*(L^Y)/KE 33)<KE 5 ] *KC 3 3) 2*V4 )

1225 IC :1, 4 ] =IC 1, 43/(4*Y)
1230 IC 1, 5 3=( ( 2*KC 5 3*Y)*(t......Y)/KC 4 3).( (2*KC 5 3*L )*(.1.-Y)/KC 4 3)^(.2*KC 5 3*KC 4 3):-.(2*V4)
1235 IC 1., 53=IC 1, 53/(4*Y)
1240 IC 1, 6 1=V1*L/Y.0/3/Y
1250 IC 1, 8 3= ('"/1*L*2 )/Y+Vi-.(V3/Y)
126 IC 1, 10 3=12./ ( tra*X*V

1300 RFM DK/DY
13:1.0 IC 2.. 1 3=R*V2*L*X/(4*Y'.2)*Y4*L/Y''2
1320 IC 2.. 2 3= IC ?, 3 3= IC 2, 7] =0
1340 IC 2, 4 3=( (KC 5 3/4 )*(Y--L )/K.0 33)(CKE 53/441-)*(YL)/(Y*KE 33))
1345 IC 2, 4 ] =IC 2, 4 ] +C (KC 5 J*L*KC 3 3V( 4*V-2) )+0/4144../(2*Y-2))
1 350 IC 2, 5 3= ( (KC 5 3*(YL) )/(2*KE 4 3) )--( (KC 5 3*L*(YL ) ),"2*Y*KE 4 3) )
1355 IC 2, 5 ] =IC 2, 5 3 +C CIE 5 3+t*KC 4 3)/(2*Yn2) )+ ( (1444t. 2*Y"-2 )
1-'1:60

1380
174:90

I C 2, 6 3=V141....n2/ ( 24:11-'2

IC 2, 8 3= ( (.12*V1 ) L*V71: ) ) / ( )
I C 2, 9 3=R./ ( 241Y-2*1.,0)

14110 IC 2, 10 3= ( C*LFlF2F3 )el(24Ars'-'2*X*V)



1500 REM DK/DX
1510 IC 3, 1 3=A*V2*Ll< 4*Y)
1540 IC 3, 4 3=<FI*V2*X*(Y-L))/<6*Y*KC 3 3)
1550 IC 3.. 5 3= ( A*V2*X*( Y-L ) )/(48*Y*KE 4 3)

158.71 IC 3, 8 3= IC 3, 9 3= IC 3, 2 3= I C 3, 3 3= I C 3, 6 3= I C 3, 7] =0

1590 IC 3.. 10 3= ( (-C*L*2)-F1-F2-F3)/(2*Y*K-201)
2000 MAT J=CON
2020 MAT L=I*J
2120 RETURN
3000 REPINES'S I ANMATR I X
3010 SC 1, 1 ]= SC 1, 2 3=SC1, 3 3=5E1, 7 ] =SC 1, 9 3=51 1, 10 3=0

1.020 SC 1, 4 3= ( A*V2 )/(6*Y*KC 3 r3
30-471 SC 1, 4 3=SC 1, 4 3*(2*Y'..3-6*Y-2*L+6*Y*L-2+3*Y*W-2-2*C"3-3*L*W2)
3040 SC 1, 5 3=2*Y.-`3.:-6*4.'2*L+6*Y*L-2+3*Y*K-2/16-2*L-'3-3*LOr2/16
3050 SC 1, 5 ] =<SC 1, 5 3*A*V2)/(3*Y*KE 41.'3)

7:060 SC :1, 6 3=1.11/kri

7370 SC L. 8 3=-2*V1/Y
3:100 RI 9 3=4/4'3
3105 SC 2, 1 3=A*V23+;L*X/(2*Y.-.3)+24.414*L1 Or.3)
110 SC 2.. 2 3=51 2, 3 3=SC 2.. 7 3=0

3140 1-7.0 2, 4 3= ( (A*V2/6)*< (1/KC 3 3)-( (Y*(Y-L) )/KC 3 T-'3) ) )-< <A*V2*L/3)*< <L-Y)/KE 3 3'-'3) )

3145 SC 2.. 4 3=5C 2.. 4 3+ (A*V2*L-2/6 )*( < (.1...-Y)/<Y*KC 31'3) )-<1/<Y*-2*KC 3 3)) )

3150 SC 2.. 4 ] =SC 2.. 4 3+ ( A*V2*L/6)*(. ( (Y-L)/01.-2*KC 3 3) )- (2*KC 3 3/Y-.3) )

3155 SC 2, 4 3= SC 2, 4 3-1.14*L/Y'-'3

3160 KC 17 3=Y-.3-Y-2*L-Y*L-2+Un3+K-2*L/16
3165 SC 2, 5 3= < 3*Y-2-2*Y*L-LZ-2)/ ( Y.-2*KC 4 3)
3170 SC 2, 5 3=51 2, 5 3-KC 17 3*(Y-L)/(Y-2*1(1 4 r.3)
3175 SC 2.. 5 ] =SC 2, 5 3-2*KC 17 3/ (kr'3*KC 4 3)

3180 SC 2, 5 J=51 2.. 5 3*Fi*V2/3-0,4*L/Y.-.3)
3..700 SC 2, 6 3=Y1*U-2/Y-'3+2*'./3*1_/'-f'3
3 220 SC 2, 8 3= < -2*L'-'2*V1-2:4L*V3
32 ":0 SC 2, 9 ] =R / <Y" )

3240 SC 2,10 3= (.2*C4C+Fl+F2+F3 )/ < 4rt.3*X*Y )

KC 10 3=A*V2*Y*<Y-L)
3330 SC 3.. 4 3= <64:KC 3 3*KC10 3)-<6*K-2*K.0 10 3/141 3 3)

3340 SC 3, 4 3=5C 3, 4 3/ (36W-2*KC 3 r2)
3350 SC 3, 5 3= (48*KC 4 ]*KC 10 3)- (3*W-2:+*::C 10 3/KC 4 3)

3360 SC 3, 5 ] =5C 3, 5 V< 23334*Y.-2*KC 4 3)



3390 SE 3, 8 3=SC 3, 93=SC 3, 1 )=SE 3, 2 3=SC 3, 3 3=SC 3.. 6 3=SC 3, 7 3=0
3400 SC 3,10 3= ( 24,C*L+F1+F2+F3)/ Y*X-'3*Y)
3500 SE 4, 1 3=-A*V2*X/ (4*Y-2 )-V4/Y's2
3510 SC 4.. 2 3=SE 4, :< )SE 4, 7 3=SE 4, 93=0
3520 KC 11 3=Y--3-Yn2*L-Y*L-2+L'-'3+L*X-2
3530 KC 12 3=3*L-2-2*Y*L-Y-2+X:-.2
3540 KE13 3= (1..-Y)*Y-2/KI 3: 3
3550 SC 4, 4 3= (.Y".2*KE 3 3.41 12 3-KC 11 3*KC 13 3)/(4r4*KE 3 3.-.2)

3560 SE 4, 4 3=5E 4, 4 344:0012/6+1./4/(.2*Y-2)
3570 KC 11 3=KC 11 3- (15/164,X2*L)
3580 KC 12 3=KE 12 )- (15/16*X*-2)

KC 13 3= (1---Y )*4"."%2/KE 4)
36 071 SC 4, 5 3= ( Y-2*K.E 4 3*K:E 12 3-KE 11 3*KC 13 3)/(Y's4*KC 4 r2)
3610 SC 4, 5 )=SC 4, 53*A*V2/3+%/4/(2414'2)
3620 SE 4, 6 )=-V1*L/Y-2-V3/Y-2
1:67:0 SC 4.. 8 3=(.23+Al1*L+1.13)."0'2)
3640 SC 4, 10 3=-C/CT'2444,44V)

SE 5, 2 3=SE 5, 6 3=51 5, 7 3=SC 5, 8 3=S1 5, 9 3=St 5, 33=0
7:710 Si 5.. 1 3=A*V2/ (4*Y )
3720 SE 5.. 4 3= < Y-L )/KE 3--**3

5( 5, 4 3=SC 5, 4 344<A*V2*X/6)*(1-L/Y)-(A*V2*X/(6*Y*KC 3 3) )
3:710 Sr S.. 5 3= ff. Y-L ) /KC 4 1-3:

51 5.. 5 3=SE 5.. 5 lc( AV.:12*X/48)*(1.-L/Y )- < A*V2*X,I(48*Y*KC 4 3) )
7.;,..7F31 5r5,103=-c/(Y*x-2*v)

li:Roci SC 6.. 1 3=-A4Ar12:+1./(.4*Y-2)
3A50 SC 6.. 8 1=SE 6, 9 3=SC 6.. 2 3=SE 6, 33=SE 6, 6 3=SC 6, 7 3=0

KC 15 3=-A*V2*( Y-L )*(.1-1-/Y )*X
75:8:=31 KT. 16 3=A:0:124:L0e,
3890 SE 6.. 4 ]=KE 15 3/(6*:KE 3 r3)+KI 16 3/(6*Y-2*KE 3))
3900 SC 6, 5 3=1(1 15 3/(48*KE 4 r.3)+KC 16 3/(48*Y"2*KE 4))
4000 SE 6, 10 3= II 3, 10 3/-Y
4010 MAT H=ZER
4020 FOR 1=1 TO 10
4n40 HE 1, 11=HE 1, 1 3+SC 1, I 3

HE 2, 2 3=HE 2, 2 3+SC 2, I 3
4060 HE 3, 33=HE 3:, 3 3+SC I]
4070 NEXT I



4110 FOR I =1 TO 10
4130 HE 1, 2 ] =HC 2, 1 ] =HC 1, 2 ] +St 4, I 3

4140 HI 1, 3 ] =HC 3, 1 )=HE 1, 3 3+SE 5, I 3
4150 HE 2, 3 3=HE 3, 2 ] =HC 2, 3 3+51 6, 13

4160 NEXT I
4220 RETURN
5000 REM COST SUBROUTINE
5012 PRINT "
54:10 CE 1 3=A*V2*L*X/(4*Y)+V4*L/Y
5310 Cl 2 ] =CC 3 3=CE 7 3=0

CE43=(2/Y)*(A*V2/3*SQR(Y^2-2*Y*L+L'-'20C-2))+V4)
5370 CE 4 ] =CE 4 3*(Y/4-L/4)
51:80 CC 5 3= ( 2/Y ) * (( 2*A*V2/3*SQR (Y-2-2*Y*L+L'2+X.-2/16 ) )+V4 )
5390 Cr 5 3=CE 5 )*(Y/4-L/4)
5400 CC 6 3=k,,i*L'2/ < 2*Y )+V3*L/Y
5435 CE83=(4/Y)*(L*Vi+V3)*(Y/4-L/4)
5450 Cf93=R/<2*Y*V)
5460 CC103=(2*C*L+F1+F2+F3)/(2*Y*X*V)
5470 F= =C 1 3+CE 2 3+CE 3 3+CE 4 3+CE 5 3+CE 6 3+CE 7 3+CE 8 3+CE 9 3+CE 10 3
5480 RETURN
6000 REM CONVEXITY CHECK
6010 U4=HC1,13
6020 U2=HE1,13*HE2,23-HE2,13*HE1,23
60 -371 10:=DET H )
6040 IF (U1 >= 0 AND U2 >= 0 AND U3 >= 0) THEN 6070
F.050 PRINT " NOT CONVEX"
6060 150TO 6080
6070 PRINT " CONVEX"
6080 RETURN CO

4=.


