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A hypothesis used to explain the relationship between timber harvesting

and landslides is that tree roots add mechanical support to soil, thus increasing

soil strength. Upon harvest, the tree roots decay which reduces soil strength and

increases the risk of management -induced landslides. The technical literature

does not adequately support this hypothesis. Soil strength values attributed to

root reinforcement that are in the technical literature are such that forested sites

can't fail and all high risk, harvested sites must fail. Both unstable forested sites

and stable harvested sites exist, in abundance, in the real world thus, the

literature does not adequately describe the real world.

An analytical model was developed to calculate soil strength increase due

to root reinforcement. Conceptually, the model is composed of a reinforcing

element with high tensile strength, i.e. a conifer root, embedded in a material

with little tensile strength, i.e. a soil. As the soil fails and deforms, the reinforcing

element also deforms and stretches. The lateral deformation of the reinforcing

element is treated analytically as a laterally loaded pile in a flexible foundation

and the axial deformation is treated as an axially loaded pile. The governing



differential equations are solved using finite-difference approximation

techniques.

The root reinforcement model was tested by comparing the final shape of

steel and aluminum rods, parachute cord, wooden dowels, and pine roots in

direct shear with predicted shapes from the output of the root reinforcement

model. The comparisons were generally satisfactory, were best for parachute

cord and wooden dowels, and were poorest for steel and aluminum rods.

A parameter study was performed on the root reinforcement model which

showed reinforced soil strength increased with increasing root diameter and soil

depth. Output from the root reinforcement model showed a strain

incompatibility between large and small diameter roots. The peak increase in soil

strength attributed to roots was controlled by the small (<4mm) diameter root

fraction.

These results were used to calculate the effect of timber harvesting on a

small, approximately 7.6 m3 (10 yd3) , hypothetical landslide in a shallow,

cohesionless, forest soil. The root reinforcement model predicted a post-harvest

reduction in soil strength of 14 artd 19 percent for a soil with and without 5 kPa

(105 lbs/ft2) of cohesion, respectively.
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Modeling Root Reinforcement in Shallow Forest Soils

INTRODUCTION

Forested headwater streams of the Pacific Northwest continue to be the

focus of ongoing forest resource management conflict. At issue is whether or not

it is possible to simultaneously manage the forests of these headwater

watersheds and maintain a viable and productive fishery in the streams. Of

particular interest to this project are the small, steeply-sloping, first order

watersheds which are the source areas for many naturally occurring landslides

from forested areas. These watersheds are of particular interest for a number of

reasons. First of all, they are the most numerous of all other size and order

watersheds, thus, most forest management activities occur on them. Secondly,

being topographically at the highest elevations in a large watershed, the rest of

the stream system is downstream of these steeply-sloping, first order watersheds.

Finally, forest management activities on these watersheds can cause accelerated

erosion by increasing the size and/or frequency of landslides from these

watersheds. Thus the resource management conflict.

Landslides associated with forest management from the steeply-sloping

headwater watersheds are divided into two categories; road-related landslides

and in-unit landslides or landslides occurring in harvest units apparently

unrelated to roads. The causes of road-related landslides are fairly



straightforward and improvements in forest road design, layout, construction,

and maintenance appear to have reduced the rate of accelerated erosion due to

landslides from forest roads. In the case of landslides from forest roads, it

appears that definite steps can be taken to reduce the incidence of these

landslides with the promise of positive results. This same positive statement can

not be made regarding in-unit landslides and headwater watersheds. Even the

certainty of an increase in landslide rate in harvest units relative to forests can be

and is debated. If such an increase exists, its cause or causes are less than

straightforward and the steps to be taken to reduce the increase are less than

definite and certainly don't necessarily promise definite results. The one

statement that can be made regarding the occurrence of landslides within harvest

units it that they have served to establish a perception of the importance of tree

roots and, in particular, reinforcement from tree roots to the overall stability of

steep, forested slopes.

One of the reasons this project was undertaken was to investigate the

magnitude of the importance of root reinforcement to the overall stability of

steep, forested slopes. As an example, consider the graph in Figure 1-1. This

graph portrays the change in the stability of a forested slope, as represented by a

factor of safety, against a time line which shows years since timber harvest. The

annual reduction in hillslope stability due to positive pore water pressure from

seasonal winter storms is portrayed as a series of sharp valleys between

relatively straight line segments which represent summers. The reduction in
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hilislope stability due to loss of root reinforcement caused by timber harvesting

is portrayed by a larger scale, smooth valley which starts descending at age 0,

reaches a minimum at about 10 years, and approaches an uncut condition again

at about 20 years. If this is a true portrayal of the relative magnitude of the

factors affecting hillslope stability, it is clear that the magnitude of the influence

of root reinforcement to slope stability is three to four times the magnitude of the

seasonal reduction in slope stability due to winter storms. From the information

portrayed in Figure 1-1, it would appear to be almost impossible to have a

forested site fail during winter as a result of pore water pressure changes alone.

Yet the forested slopes of headwater watersheds fail regularly during large,

slide-producing winter storms. The content of the graph in Figure 1-1 is

coimterintuitive in that it doesn't explain the real world as it is observed and the

author of the graph (Ziemer, 1981b) provides no data to support its construction.

The technical literature can be searched to find data to confirm the

hypothesis implicit in Figure 1-1. Sidle et. al. (1985) presents a table which

summarizes research results quantifying the magnitude of soil strength

attributed to root reinforcement. That information is summarized in Table 1-1.

The change in soil strength attributed to root reinforcement ranges from a high of

17.5 kPa to a low of 1.0 kPa with a median value in the range of 8.0 to 10.0 kPa..

This information is of value only when compared with the inherent strength of

steeply-sloping forested slopes. From Schroeder and Alto (1983), average values



Table 1-1. Research results showing the soil strength increase attributed to root
reinforcement displayed as an apparent cohesion term, Ca in kPa (adapted from
Sidle et, al., 1985).

Literature Source Soil, Vegetation, & Location Ca (kPa)

Endo & Tsuruta (1969)

Swanston (1970)

O'Loughlin (1974)

Burroughs and Thomas (1977)

Wu, et. al. (1979)

Waidron & Dakessian (1981)

Gray &Megahan (1981)

O'Loughlin, et. al. (1982)

Sidle & Swanston (1982)

Waldron, et. al. (1983)

nursery loam soil w/alder

forest soil w/conifers - SE Alaska

forest soil w/conifers - B.C.

forest soil w/coriifers - W OR & ID

forest soils w/conifers - SE Alaska

clay loam w/pine seedlings - laboratory

forest soil w/conifers - Idaho

forest soil w/mixed evergreen forest - N.Z.

forest soil w/conifers & brush - SE Alaska

clay loam w/pine seedlings - laboratory

5

2.0-12.0

3.4-4.4

1.0-3.0

3.1 - 17.5

5.9

5.0

10.3

3.3

2.2

8.9-11.8

of internal angle of friction, saturated unit weight, and unit weight of in situ soils

at field moisture content are 3540, 18.2 kN/m3, and 16.0 kN/m3, respectively. The

frictional component of the inherent soil strength is 11.4 kPa and the frictional

component of the soil saturated with water is 6.0 kPa. It is commonly accepted

that the effect of saturating a soil profile reduces the frictional component of soil

strength by roughly half. In this particular case the reduction is53 percent which

is roughly what is expected. From Table 1-1, soil strength attributed to root

reinforcement ranges from a high of 17.5 kPa, which is 154 percent of inherent

soil strength, to a low of 1.0 kPa, which is 9 percent of inherent soil strength. So

from these data the soil strength attributed to root reinforcement can be as much



as 1.5 times in situ frictional strength or as little as 9 percent of it. On average, the

in situ frictional strength and the median value of strength increase from Table 1-

1 appear to be roughly equal. These data certainly do not explain Figure 1-1 and,

in fact, raise even more questions. For example, is root reinforcement really a

minority of the available soil strength (9 percent) or is it a primary source of

strength? Or, are both of these numbers correct and the amount of soil strength

that can be attributed to root reinforcement depends on the particular slope and

situation in question? It appears that the knowledge base, at present, is

inadequate to answer these questions. Therefore, to manage these steep, forested,

landslide-prone sites while simultaneously considering the true effect of the

management on soil strength will require more knowledge at a more refined

level. Thus, a second reason to undertake this project is the need for better

knowledge and management tools with which to manage forest resources,

specifically the stability of steep, landslide-prone forested slopes.



OBJECTIVES

The concern about root reinforcement and its affect on slope stability has

far outstripped the knowledge available upon which to base management

decisions. In the Oregon Forest Practice Rules it is recommended that operators

.establish or maintain plant species that will enhance slope stability in

harvested areas..." on landslide-prone sites (Oregon Department of Forestry,

1994). On certain federal forest lands in the Pacific Northwest the policy is less

ambiguous. On any site with a risk of landslides, no matter how slight,

management activities are eschewed.

These policies are based largely on findings which are an outgrowth of

empirical data sets. There is little theoretical knowledge regarding the

fundamental mechanisms that govern the behavior of root reinforcement.

Through the collection of more and bigger empirical data sets, progress can be

made in root reinforcement research and it will certainly be successful.

Undoubtedly, over time, this research will result in an improved understanding

of root reinforcement. However, this course of action also harbors shortcomings.

The development of a primarily empirical database means progress is made by

trial and error. For every new soil, landform, tree species, and vegetation type, a

new research project is needed to set management guidelines for root

reinforcement. This process could become onerous as ecosystem management

7



becomes a reality and results in various new and different alternative

silvicultural prescriptions.

It would seem better to develop management tools based on the

mechanical behavior of the soil, as described by standard parameters, the

physical properties and size of the roots, and an understanding of both the

failure and reinforcement mechanisms at work in the soil. This latter goal is the

direction of this project.

The objectives of this project are:

To develop an analytical model of root reinforcement that predicts the shear

strength increase of a sandy soil due to the presence of conifer roots. The

model will predict the deformed shape and stresses that accompany the

deformed shape of a conifer root based on the physical properties of the soil

and the physical properties and size of the roots.

To validate or verify the model using information and data from the technical

literature.

Use the model to calculate the magnitude of the increase in soil strength that

can be attributed to reinforcement by conifer roots in sandy soils.

The balance of this dissertation is presented in four chapters. The first

chapter is the Literature Review in which the development of a testable

hypothesis of a root reinforcement mechanism is presented along with the

research that has gone into testing the hypothesis. Then the development of both

8
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the conceptual and analytical model for predicting root reinforcement is

presented including a description of the flowpath of the model algorithm. In the

chapter on results, the output from the model is compared with research results

from the technical literature to determine if the output from the root

reinforcement model is realistic. Also, a parameter study is presented that was

used to investigate how the predicted stresses and strains in the model

reinforcing element are affected by different input values of model parameters

and how this, in turn, affects root reinforcement. In a final chapter, conclusions of

this project are presented and their ramifications are discussed along with

suggestions for future research.



LITERATURE REVIEW

The subject of timber harvesting and landslides is a relatively young area

of study. Research on this subject did not appear in the technical literature until

the 1950's. Even in the early references, tree roots and root reinforcement are

tightly linked with the subject of landslides and timber harvesting (Croft and

Adams, 1950; Flaccus, 1959). In these early references, the link between timber

harvesting, landslides, and root strength is, truly, anecdotal and not the result of

rigorous investigation (i.e. Croft and Adams, 1950). This illustrates the degree to

which root reinforcement, timber harvesting, and landslides have been closely

associated in the minds of the researchers investigating this field of study. This

perceived close association has greatly influenced and continues to influence the

kind and quality of research being undertaken to study the management of

landslide prone forested slopes.

Debris Avalanche Inventories

Bishop and Stevens (1964) is one of the first published articles that

involved timber harvesting and landslides and had more rigor than the

references cited above. It is probably the single most cited reference regarding

root strength, timber harvesting, and landslides. The research method used in

this article is a technique that is the foundation of research into the association

between timber harvesting and landslides - - the landslide or debris avalanche

10
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inventory. A debris avalanche inventory is simply an accounting of the

occurrence, and in some cases the size, of landslides within a fixed area. These

inventoried landslides are then sorted and stratified by land use and other

independent variables such as geology, landform, soils, and slope to name a few.

The research results from debris avalanche inventories which report timber

harvesting effects on landslides cover a wide range of conditions and variables.

Landslide inventories have been reported from New Zealand, Alaska, British

Columbia, and the Pacific Northwest over the past 30 years and thus, cover a

wide range of geology, soils, precipitation regimes, and timber harvesting

systems and practices.

The results from these debris avalanche inventories are usually presented

in a table such as Table 3-1 (see Swanston and Swanson, 1976; Swanson, et. al.,

1981). The implications of the results presented in Table 3-1 are really quite clear.

Without fail, across different continents, regions, geology, and researchers,

timber harvesting activities, as represented by logging roads and clearcut harvest

units, have caused accelerated erosion by landslides.

The results which portray the influence of logging roads is really quite

unequivocal. In every case where results have been reported, logging roads

caused an increase in the frequency of landslides by at least one order, of

magnitude and up to four orders of magnitude. In two cases, the Oregon Coast

Range and British Columbia, the average landslide volume also increased. The

net results are that logging roads increased the erosion rate by landslides from 25
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implicitly or explicitly states that tree roots "bind the soil together" and "add

mechanical support to the soil thus increasing soil strength". Loss of root

strength after timber harvesting due to the decay of the roots of harvested trees

results in decreased soil strength and an increased landslide rate (or erosion

rate). Research results from debris avalanche inventories, by themselves without

any other supporting research, are perceived to support the root reinforcement

hypothesis by, first of all, showing an increased erosion rate in clearcut logged

areas compared with forested areas. In this case, the hypothesis is supported on

the basis of the argument that because only the vegetation is being manipulated,

there must be a vegetative link to the increase in landsliding and that link is,

most likely, through the root system. Secondly, debris avalanche inventory

results show a perceived lag time between clearcut harvest and the occurrence of

landsliding. This is interpreted as the time required for the small roots of the

harvested trees to decay which, in turn, reduces root reinforcement and soil

strength thus leading to the delayed occurrence of increased landsliding after

harvest.

The data from the Oregon Coast Range landslide inventories (Ketcheson

and Froehlich, 1978; Swanson, et. al., 1977) show for a forested condition the

highest landslide frequency and smallest average landslide volumes illustrating

that the Oregon Coast Range has the most and smallest landslides on a per unit

area basis. However, these two landslide inventories are also the only ones

reported in which the inventory data was collected by field traverse under the
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to 342 times over background value. However, the effect of logging roads on

landslides does not involve roots and root reinforcement, but rather primarily

altered subsurface flow regimes on hilislopes, surface road drainage on logging

roads, and altered slope geometry in the form of cut banks and side cast and fill

slopes. Thus, the subject of logging roads and accelerated erosion by landslides

will not be discussed further in this dissertation.

The results from the debris avalanche inventories showing the effect of

clearcut harvest units on landslides is more equivocal. With the exception of the

results from the Olympic Mountains (Fiksdal, 1974), the debris avalanche

inventory results show an across-the-board increase in erosion rate. However,

the manner in which the increase in erosion rate is attained is not consistent. For

the inventories with erosion data from the Oregon Coast Range (Ketcheson and

Froehlich, 1978; Swanson, et. al., 1977), the increased erosion rate is the

consequence of an increase in the average size of the landslides while the

landslide frequency remained, in essence, unchanged. Conversely, the balance of

the landslide inventory results show a decrease in the average landslide volume

and an increase in landslide frequency. This increase is often drastic, by as much

as one to two orders of magnitude.

The conclusions regarding clearcut harvesting and landslides invariably

drawn from the results of these debris avalanche inventories is that the stability

of steep, landslide-prone forested hillslopes is inexorably linked to trees and tree

roots. Based on these conclusions, a hypothesis has been developed that either
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forest canopy. For the rest of the quoted studies, the inventory data for

landslides in the forests were collected from either aerial photographs or from an

aerial platform such as an airplane. The results from the published debris

avalanche inventories clearly show that for the forested condition, field traversed

landslide inventories show a higher landslide frequency and smaller average

landslide volume than the aerial landslide inventories.

A possible explanation for this observation is that in forested conditions,

landslide inventories carried out from aerial platforms "under sample"

landslides (Pyles and Froehlich, 1987), especially small landslides, which means

the results are skewed by the large landslides visible through the forest canopy.

Thus, landslide frequencies can be underestimated and landslide sizes can be

overestimated for forested conditions. Therefore, results like those shown in

Table 3-1, especially the results in which all the inventory data was collected

from aerial platforms and show increased landslide and erosion rates could, in

part, result from the increased visibility of the smaller landslides. The results of

landslide inventories which use aerial platforms for data collection exclusively

and which show an increased incidence of landslides and landslide related

erosion, may be as much the consequence of sampling methods as management

effects on physical processes.

Examples of this type of result can be illustrated using landslide

inventories from southeast Alaska (Bishop and Stevens, 1964) and the northern

Rocky Mountains of Idaho (Megahan, et. al., 1978). In Bishop and Stevens (1964),
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the authors use an examination of a chronological sequence of aerial

photographs to show an increase of four and one-half times in both the number

and acreage of landslides in the harvested area as compared with the same area

before logging. They also report that before logging in two aerial photo

sequences the average area of landslides was 4.2 and 2.3 acres and after logging

the average size of landslides in three photo sequences was 0.31, 0.77, and 1.3

acres. The authors discuss that with the forest canopy removed, the smaller

landslides, especially those within the small, steep, V-notch side-drainages, will

become much more visible than they were under the forest canopy. Therefore, it

is possible that the results could be explained, at least in part, by an increased

visibility of small landslides.

In Megahan, et. al. (1978) , landslides were located using aerial

reconnaissance, aerial photography, location of known slides by forest workers,

and reconnaissance by road. Over the area inventoried, locating landslides was

heavily dependent on aerial methods and the authors state that some landslides

were probably not detected. Landslides were found to be inversely correlated to

the density of both tree and shrub cover. Tree and shrub cover were used as an

index of root density and this result was used to illustrate the effect of root

density on landslide occurrence. However, tree and shrub density can also be

correlated with landslide visibility from the air. These same results that show a

correlation between landslide occurrence and root density also support a
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hypothesis of a positive correlation between vegetation density and landslide

visibility. Undoubtedly, both mechanisms are at work to unknown degrees.

It must be acknowledged that the cited landslide inventories were carried

out by different researchers and come from different geologys and geographic

provinces. Part of the differences seen in landslide size and frequency are

undoubtedly true differences due to rock types, climate, and landslide

measurement methods. The differences observed in the data, especially the

forested data, can not be solely attributed to differences in aerial versus field

methods of landslide location. However, it seems that the observed results can

not be attributed totally to changes in roots either. Pyles and Froeblich (1987)

present a thorough discussion of the pitfalls involved with sampling landslides

in forests from aerial platforms. In light of this discussion, it is obvious that

sampling methods must be considered when interpreting landslide inventory

results. For the debris avalanche inventory results from the Oregon Coast Range

(Ketcheson and Froeblich, 1978; Swanson, et. al., 1977) there can be no doubt that

vegetation manipulation, and undoubtedly root biomass, played a role in the

increase in the average landslide size and thus the increased erosion rate.

However, in the debris avalanche inventories using an aerial platform for data

collection, an explanation of the results must include the effect of both the

sampling scheme and vegetation manipulation because both seem equally

capable of effecting the results.
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As stated earlier, a second, often quoted, result from debris avalanche

inventories which links timber harvesting, landslides, and tree roots is a

perceived lag time between the harvest of landslide prone hillslopes and the

occurrence of landslides. Bishop and Stevens (1964) in southeast Alaska observed

an apparent lag time between harvest and the date of slide generation and

hypothesized that it may reflect root deterioration time. Also from southeast

Alaska, Swanston (1974) reports a roughly 3-5 year period between the time of

logging and the onset of debris avalanches. In the Oregon Cascades, mostly the

H. J. Andrews Experimental Forest, Swanson and Dyrness (1975) and Swanston

and Swanson (1976) report that most hillslope failures in clearcuts occurred

within 12 years after harvest and they further state that this is apparently a

period of increased susceptibility to debris avalanches. In the Oregon Coast

Range, Gresswell, et. al. (1979) reported 63 percent of inventoried landslides

occurred in 3 year old or younger clearcuts, 29 percent occurred in 4- 10 year old

clearcuts, and only 6 percent occurred in clearcuts greater then 11 years old.

O'Loughlin, et. al. (1982) reports from New Zealand that 89 percent of landslide

materials, by volume, originated from slopes clearfelled 20 to 40 months before

the landslide-producing storm. Megahan et. al. (1978) reports that in the northern

Rocky Mountains, on average, there is a 4 to 10 year lag between timber removal

and the greatest landslide hazard. Sidle et. al. (1985) in his synthesis book reports

that the 3 to 10 year lag time between forest removal and the accelerated
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incidence of landsliding provides a strong indication that small tree roots (<20

mm diameter) are the most important in slope stability.

However, all these published accounts of debris avalanche inventories fail

to account for the stochastic occurrence of large storms and the effect this has on

both the temporal and spatial distribution of landslides. The above-quoted

authors all recognize that the widespread occurrence of landslides happens in

response to large, slide-producing storms. In fact, in each article quoted above,

research was carried out on the effect of timber harvest on landslides, a debris

avalanche inventory was used as a research tool, and the research was

undertaken only after a large, slide-producing storm. Furthermore, this research

generally focused on areas that experienced widespread landslides. Comparable

areas without landslides weren't studied. The authors of the quoted articles all

recognize and state that large, slide-producing storms of the magnitude studied

occur on a more regular basis than is expected. Large, landslide-producing

storms are stated to have a recurrence interval of 5 to 10 years (Bishop and

Stevens, 1964; Dyrness, 1967; Gorisior and Gardner, 1971; O'Loughlin, et. al.,

1982; Schroeder and Brown, 1984). It is probably not a coincidence that the 5 to 10

year recurrence interval of slide-producing storms is the same order of

magnitude and almost the same exact length of time as the 3 to 10 year lag time

generally observed between harvesting and landslideoccurrence. This lag time

may simply represent the average time between harvesting and the occurrence of

a landslide producing storm (Froehlich, 1978).
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O'Loughlin, et. al. (1982) reports on the occurrence of landslides with

respect to time since clearfelling during a landslide-producing storm in New

Zealand. The authors report that during a landslide-producing storm, 89 percent

of the landslide derived sediment produced came from harvest units that had

been clearfelled 20 to 40 months prior to the storm of interest. No landslides

occurred on the forested watersheds or the two watersheds that had been

clearfelled only 12 and 10 months prior to the large storm. This information is

summarized in Table 3-2.

O'Loughlin, et. al. (1982) also lists the maximum, instantaneous peak

discharge for each experimental watershed and those values are also listed in

Table 3-2. For small watersheds of this size, it is reasonable to assume that the

maximum instantaneous peak discharge can be used as a surrogate for the

maximum short-term precipitation intensity delivered to the watershed. If an

assumption is made that the M14 watershed had the highest peak discharge, a

reasonable assumption given the sediment yield, then the landslide occurrence

can be correlated with storm magnitude which varied by over 100 percent from

M8 to M9.

The role of root strength is emphasized in the O'Loughlin et. al. (1982)

paper by comparing the occurrence of landslides during a large storm when the

watersheds were unharvested with the occurrence of landslides during a large

storm after harvesting. Before timber harvest, there were four landslides on all

the experimental watersheds during a large storm compared with 18 landslides
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which occurred after timber harvest during a second large storm. All of the post

harvest landslides occurred in harvested watersheds. This appears to be a strong

indictment of the effect of timber harvesting on landslides. However, if

instantaneous, maximum peak discharges are compared between pre- and post-

harvest storms, the post-harvest peak discharges were greater. This could be

interpreted as meaning that the post harvest short-term peak rainfall intensities

were greater than those that occurred pre-harvest. Furthermore, for the

watersheds in which landslides occurred arid especially those with multiple

landslides, post harvest peak discharges were significantly higher than for pre-

harvest peak flows arid often up to double the pre-harvest peak discharge. This

reinforces the importance of short-term precipitation intensity as a causative

factor in landslide occurrence especially when the precipitation occurs in

conjunction with timber harvesting.

Obviously, it is not possible to say that root deterioration plays no role in

the perceived lag time between timber harvest arid the occurrence of landslides

arid the development of such a hypothesis is reasonable. However, it is just as

obvious that the stochastic occurrence of large, landslide-producing storms arid

the spatial variability of short-term, high intensity rainfall also provides an

explanation of the lag time between harvesting and landslide occurrence and the

spatial distribution of landslides.

As a result of debris avalanche inventory research, the dominate

hypothesis that has been reported in an attempt to explain the link between
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timber harvesting, especially clearcut harvesting, and landslides is root strength

or root reinforcement. This hypothesis results from the reported increase in

erosion by landslides from clearcuts relative to forested sites and the perceived

lag time between timber harvesting and the occurrence of landslides in harvest

units. The hypothesis is that tree roots add mechanical support to soil and

increase its shear strength. After timber harvest, the roots of the harvested trees

decay which reduces both the biomass and strength of the roots in the soil

resulting in a loss in root reinforcement and thus a decrease in soil shear

strength. This hypothesized situation is analogous to the concept of reinforced

earth (Vidal, 1969).

Root Strength and Biomass Changes After Timber Harvest

Results from debris avalanche inventory research has lead to the

development of a root reinforcement hypothesis or reinforced earth concept to

explain the perceived relationship between timber harvesting and the occurrence

of landslides. A parallel line of research conducted simultaneously with debris

avalanche inventories investigated the strength of roots after timber harvest. The

intent of the research was to test aspects of the root reinforcement hypothesis.

This research investigated the tensile strength, shear strength, and biomass of

roots from uncut forests and from a series of different aged clearcuts.
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As expected, the tensile strength of roots declines after the parent tree is

harvested. The curve describing the decline in tensile strength over time is a

negative exponential curve with a sharp decline in tensile strength in the months

and years directly after harvesting. Then the curve levels off and the rate of

decline in tensile strength becomes much less. The shape of this trend is

illustrated in Figure 3-1.

O'Loughlin (1972,1974) found that small, 1 to 12 mm in diameter,

Douglas-fir roots from coastal British Columbia lost half their tensile strength

within three years of the parent tree being cut while western red cedar roots of

the same size from the same location took up to five years to lose half their

tensile strength. In the Oregon Coast Range, small, less than 1.0 cm in diameter,

Douglas-fir roots lost 49 percent of their tensile strength in one year and 74

percent in four years (Burroughs and Thomas, 1977). This same study showed

that small Douglas-fir roots from the Northern Rocky Mountains in Idaho had

weaker roots when alive but lost tensile strength much more slowly after

harvesting with small roots losing only 30 percent of their tensile strength after

12 years. The decline in tensile strength of small radiata pine roots from New

Zealand also exhibited an exponential decay form after timber harvest. These

roots were both weaker initially and lost tensile strength more quickly with an

estimated time to half strength of only 14 months (O'Loughlin and Watson,

1979).
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unit area, N/rn2, for 0-1 cm diameter roots of Douglas-fir growing in the Oregon
Coast Range. Data is from Burroughs and Thomas (1977).
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Ziemer and Swanston (1977) also investigated the strength of tree roots,

however, in their study, the shear strength of the roots was determined and used

as a surrogate for tensile strength (Ziemer, 1978). The effect of time after harvest

on root strength was determined for sitka spruce and western hemlock growing

in southeast Alaska. The same trend was observed for this study as was observed

in the previous root strength studies, root strength after harvest showed a

declining trend with an exponential shape. Small hemlock roots lost

approximately one third of their strength within the first two years after harvest

and small spruce roots lost about one half of their strength in the same two years.

By ten years after harvesting, all root sizes sampled (up to 50 mm) of all species

had lost appreciable strength.

In all the studies quoted above, the authors recognized that not only was

the strength of the dead roots changing after harvest, but also the biomass of the

roots was declining as the smaller roots disappeared from the subsoil due to

decay. While the tensile strength of the roots declined, the total number and the

biomass of the conifer roots also declined after harvest. O'Loughlin (1972, 1974)

recognized the biomass trends and discussed their importance but didn't study

them. He did measure the diameter of 150 roots at the headscarps of each of

three landslides and found the average diameters to be 1.4, 0.7, and 1.1 cm. He

inferred from these measurements that this size class of roots must be the most

important to stability because they were the most numerous.
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Ziemer and Swanston (1977), again, did not study changes in root biomass

explicitly. However, they observed an increasing trend in root strength over

time in some species and size classes of roots. They found that in some

stratifications of time, species, and size class, the sampled roots were dominated

by resinous roots which had maintained their shear strength. The non-resinous

roots had all decayed and were not present to be sampled so the average

strength of the roots was an artifact of the roots that were available to be

sampled. Thus, the combination of both root strength and biomass is perceived

to be more important than simply the strength of the roots alone. Ziemer and

Swanston (1977) also recognized the importance of the invasion of primary

succession species to the live and total root biomass of clearcuts. In southeast

Alaska, clearcuts are quickly invaded by red huckleberry (Vaccinium parvfolium)

and because the clearcut studied supported extensive stands of red huckleberry,

the authors measured the shear strength of live huckleberry roots. However,

they went no further with the subject and did not measure the biomass of live

huckleberry roots and didn't discuss how these roots might be important.

Burroughs and Thomas (1977) explicitly studied the effect of time since

harvest on the number of roots found in the subsoil. As expected, the number of

roots in the subsoil declined after harvest and the trend of the decline also

described an exponential decay curve with a sharp decline in the months and

years directly after harvest (Figure 3-1). In the Oregon Coast Range, the decline

in the number of Douglas-fir roots was more pronounced than in the Rocky
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Mountains where roots in a given size class remained intact 35 percent longer.

The authors went through an exercise of combining the change in root numbers

with time after harvest with the change in the tensile strength of the roots with

time after harvest. This combination attempts to represent the trend of total root

tensile strength available to a site as a function of time after harvest. As expected,

this curve exhibited a very strong exponential decay function (Figure 3-1). For

the Rocky Mountains, the estimated time to one half of the total root tensile

strength was a little less than two years for all size classes. For the Coast Range,

the estimated time to one half of the total tensile root strength was about one

year, also for all size classes.

Ziemer (1981a) also studied the effect of forest harvest on root strength as

a function of time since harvest. Ziemer (1981a) measured the total biomass of

roots, both dead and alive, in an uncut forest and a chronosequence of clearcuts

up to 24 years old. He studied not only the decline in the biomass of dead roots

of the harvested conifer and hardwood trees but also the increase in live root

biomass due to the invasion of brush species. The trend over time in the biomass

of the small (<25 mm) dead root fraction was, as expected, an exponential decay

curve. For the small fraction, only two thirds of the biomass of the uncut forest

remained in the 3-year old clearcut and only about 30 percent remained in the 7-

year old clearcut. In the 12- to 24-year old clearcuts, all but the very largest of the

dead roots had decayed. Ziemer (1981a) also measured the increase in live root

biomass as primary invasion species became established in the different age



29

clearcuts. In the 3-year old clearcut, 10 percent of the live root biomass of the

uncut forest had been recovered due to the establishment of a bracken fern

(Pteridium aquilinum) cover. The live root biomass dropped to only 3 percent of

the uncut forest biomass in the 7-year old clearcut as the bracken fern was

replaced by scattered brush and herbs. The 12- to 24-year old clearcuts became

fully vegetated with ceanothus (Ceanothus velutinus) causing the live root

biomass to increase rapidly. In the 12-year old clearcut, the biomass of live roots

less than 2 mm in diameter was 82 percent of that in the uncut forest. However,

the biomass of the larger roots recovered more slowly. In the 12-year old

clearcut, the biomass of the live roots less than 17 mm in diameter was only 30

percent of that in the uncut forest and total live root biomass was only 10

percent. So, by 12 years after harvest, the subsoil had become mostly recolonized

with roots, they were just a different species and size distribution.

The live shear strength of the roots of the tree and brush species

encountered at the study site in northern California were also determined. While

there were differences in root shear strength by species and root size class, on

average Ziemer (1981a) found that the invading brush species had the highest

shear strength followed by the hardwood tree species with the conifer tree

species having the lowest shear strength. The tested species listed from the

strongest to the weakest in descending order are; elderberry (Sambucus

callicarpa), ceanothos (Ceanothus velutinus), chinkipin (Castanopsis chrysophylla),

madrone (Arbutus menziesii), Douglas-fir (Pseudotsuga menziesii), incense cedar
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(Libocedrus decurrens), white fir (Abies concolor), sugar pine (Pin us lainbertiana),

and ponderosa pine (Pin us ponderosa).

Ziemer (1981a) did not present raw data on the trend of root biomass over

time. He combined the biomass data with an empirical relationship which

correlated root biomass with soil shear strength, (root biomass versus soil shear

strength relationships determined by in-situ direct shear soil strength testing is

covered in the next section of this dissertation). The empirical relationship was

developed for mature, live, lodgepole pine (Pinus con torta) roots in a coastal sand

and not for the combination of live and dead roots of the species of trees and

brush encountered at the northern California site. Therefore, soil shear strength

can not be predicted and, instead, Ziemer (1981a) presented the output as a

relative root reinforcement index with 1.0 being the root reinforcement of the

uncut stand. This relationship as presented, however, is widely cited as

representing the true effect of harvesting on root strength, root biomass, or root

reinforcement with time after harvest. The relationship is shown in Figure 3-2.

Strength of Soil/Root Composites

One of the research approaches used to investigate the root reinforcement

hypothesis regarding timber harvesting and landslide occurrence on landslide-

prone terrain has been strength testing of soil/root composites. In general,

testing is carried out to determine the strength of unreinforced soils and then this
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strength value is compared with the strength of the same soil only with plant or

tree roots or some other fibers running through it. Results from two different

types of soil strength tests are reported; direct shear tests and triaxial tests.

However, two variants of the direct shear test are reported including both

laboratory direct shear and field or in-situ direct shear. Before reporting the

results of the strength testing literature, a brief discussion of the general topic of

soil strength and soil strength testing will be presented.

Soil Strength

In general, when the subject of soil strength is considered, soils are

divided into two broad categories: sands or cohesionless soils and clays or

cohesive soils. The dominate type of residual soils formed on steep, landslide-

prone slopes are sands or cohesionless soils. This same type of soil is the type of

soil generally found in the colluvial deposits of headwalls or hollows in

landslide-prone terrain. Most soils studied in conjunction with the stability of

steep, landslide-prone terrain around the Pacific Rim are cohesionless sands. This

fact has been repeatedly reported in research results from New Zealand

(O'Loughlin et. al., 1982), southeast Alaska (Swanston, 1970), coastal British

Columbia (O'Loughlin, 1972), the Olympic Mountains in Washington and the

Oregon Coast Range (Schroeder and Alto, 1983; Schoeneman and Pyles, 1984). In

general, the texture of this soil type is most often described as a sandy loam and
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in the Unified system this soil is classified a silty sand (SM). Therefore, in the

following discussion of soil strength and soil strength testing, on'y the strength

and strength testing of cohesionless soils or sands will be presented.

There are several aspects of soil strength that make the discussion of this

topic less than straightforward. First of all, soil strength is not a theoretically

derived quantity, but rather it is empirically derived. Therefore, all soil strength

values come from soil strength testing, at some point, and are thus affected by

the kind and conditions of the soil strength test carried out. Secondly, for a given

soil strength test and soil type, soil strength is not a constant, but a function of

the effective normal stress on the failure plane at failure.

The relationship between soil shear strength and normal stress for a given

soil and soil strength test can be represented by the Mohr-Coulomb strength

envelope. This relationship is illustrated in Figure 3-3 and is described by the

Mohr-Coulomb strength equation which takes the form,

S=c'+a'tanØ' 3-1

where S is soil shear strength and is expressed in units of stress or pressure

generally either kilopascals (kPa) or pounds per square inch (psi), c' is the

effective soil cohesion and is expressed in the same units (kPa or psi), a ' is the

effective normal stress also expressed in the same units (kPa or psi), and 0'is the

effective internal angle of friction of the soil.
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The Mohr-Coulomb strength equation is simply the equation of a straight

line. The soil cohesion, c', is the y-intercept of the line and is often referred to as

the cohesion intercept and the slope of the lirLe is tan 0' The effective normal

stress, o , and the soil strength, S. are the independent and dependent variables

or x-, y- coordinates, respectively, of the relationship. The soil strength

parameters c' and 0' are often assigned importance and characteristics beyond

being simply the y-intercept and slope of the Mohr-Coulomb strength equation.

The frictional component of soil strength is referred to by the internal angle of

friction and is given the label 0' Likewise, c' is called soil cohesion and any

cohesive properties associated with soils like the electrochemical properties of

clay minerals are assigned to cohesion. It is not improper to segregate and think

about the different aspects of soil strength in this manner and it may even be

beneficial to the understanding of soil strength to think of it in this manner. But it

is important to remember that at the most elementary level, c' and 0' are merely

the y-intercept and slope of the Mohr-Coulomb strength equation derived from

soil strength testing.

The Mohr-Coulomb strength envelope is referred to as an effective

strength envelope when effective strength parameters (c' and 0') are used

which means that the relationship was developed using effective stresses.

Effective stresses are determined by subtracting the pore water pressure, u, from

the total normal stress, o, on the failure plane. Effective strength parameters are
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the preferred way to report and use soil strength values. The form of the Mohr-

Coulomb strength equation using total stresses and pore water pressures is,

S = c - u) tan ' 3-2

All the parameters in the above equation have been defined previously.

A Mohr-Coulomb strength envelope is developed from a number of

individual soil strength tests. Each individual soil strength test contributes a

unique data point of peak soil strength and effective normal stress. Obviously, at

least two soil strength tests are required to establish a Mohr-Coulomb strength

envelope consisting of a straight line. The more soil strength tests the better,

because more data points will more fully characterize the strength relationship

and more data will extend the range of utility of the strength equation.

A soil strength test, in general, measures the ability of a soil sample to

resist deformation while in a given and known stress state. The general

procedure is to, first of all, secure a soil sample and install it in a testing device at

a given and known state of stresses. An external load is then applied to the soil

sample with the objective of causing the soil sample to shear. The deformation of

the soil sample in response to the external load and the ability of the soil sample

to resist the external load are recorded. The soil sample may exhibit a well-

defined peak resistance at a given deformation or the sample may asymptotically

approach a maximum resistance with increasing deformation. In either case, the
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value of maximum resistance, expressed as a nominal shear stress, is paired with

the effective normal stress state of the soil and this information is used to

establish the Mohr-Coulomb strength envelope.

For the resalts of any soil strength test to truly reflect the strength of the

soil in the field during failure, the conditions under which the soil is tested must,

as closely as possible, represent the conditions in the field at failure. Some of the

parameters that are important include:

soil parameters - these include soil density, void ratio, and particle size

distribution which puts a premium on testing "undisturbed" soil samples,

in-situ and at-failure stress states - the most important parameters being

the correct confining stress corresponding to the correct overburden

pressure on the sample and the location of the water table at failure which

defines the normal effective stress on the failure plane at failure, and

the stress path to failure.

No single soil strength test can truly mimic all field conditions and each

soil strength test has aspects that make its use favored as well as aspects which

detract from its use. As stated previously, the results from two methods for

testing soil strength will be discussed; direct shear tests and triaxial tests. The

discussion will include two variants of the direct shear test; the laboratory direct

shear test and the field or insitu direct shear test. A brief discussion of each

method for testing soil strength will be presented before the soil strength

research results are presented. As each soil strength test is presented, the
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strengths and weaknesses of the test relative to the determination of soil strength

for shallow1 cohesionless forest soils will be discussed.

Laboratory Direct Shear Test

The laboratory direct shear test is perhaps the oldest, simplest, and most

inexpensive soil strength test to perform. A soil sample is placed in a direct shear

device which is split horizontally into two halves. The bottom half of the direct

shear device is usually fixed which allows the top half to move relative to the

bottom. A load can be applied to the top of the sample which becomes,

nominally, the normal stress when it is divided by the cross-sectional area of the

sample. Because the failure surface will be imposed horizontally on the soil

sample, the applied normal stress also becomes the normal stress on the failure

plane. A lateral load can then be applied to the top half of the device and it is

moved horizontally relative to the bottom half. The resistance to the horizontal

movement is recorded along with the rate of horizontal deformation. The test

continues until the capacity of the testing device is reached.

The soil strength is the maximum shear stress on the failure plane at

failure which is defined as the peak resistance of the soil to deformation. The

peak resistance to deformation is divided by the cross sectional area of the

sample and the result is, nominally, the maximum shear stress. Figure 3-4 shows

some idealized results for three direct shear tests run at three different effective



39

normal stresses. This figure also shows how that data is used to develop a Mohr-

Coulomb strength envelope. Direct shear tests are covered in most geotechnical

engineering texts. Dunn, Anderson, and Kiefer (1980) and Holtz and Kovacs

(1981) were used as references for this discussion.

The advantages of laboratory direct shear tests are that they are easy to

perform, relatively inexpensive, and can be carried out quickly. "Undisturbed"

samples can be tested in laboratory direct shear, however the size of these

samples is usually quite small usually 5 to 15 cm (2 to 6 inches) in diameter and

2.5 to 5 cm (1 to 2 inches) deep. This sample size rules out the inclusion of rock

fragments or other inclusions larger than the sample size which, undoubtedly,

affects the reported soil strength. Quite often laboratory direct shear tests will be

used for disturbed or remolded samples.

The direct shear device forces a failure plane, horizontally, halfway

through the sample. This tends to cause the strength of the soil sample to be

overestimated due to the fact that a failure plane was forced through the soil and

not allowed to develop along a zone of weakness. At the same time, because the

location of the failure plane is fixed, the normal stress on the failure plane can be

managed by loading the top of the sample. Other stresses in the sample besides

the normal stress and the stress path to failure cannot be managed. For

cohesionless, sandy soils, the direct shear test is considered a drained test

meaning that pore water pressures in the sample during the test are not

measured or accounted for and assumed to not impact results.
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In Situ Direct Shear Test

In situ direct shear tests are direct shear tests carried out in the field.

Instead of securing a soil sample for transport back to a laboratory, a column or

pedestal of soil is isolated in the field for shearing. A shear frame, of various

design, is fitted onto the soil pedestal and then a lateral load is applied to the

shear frame to carry out the direct shear test. Shear frames can be open only on

the bottom (Endo and Tsuruta, 1969; O'Loughlin, 1972), open on two sides and

not the bottom (Ziemer, 1981a) or open on two sides and the bottom

(O'Loughlin, et. al., 1982). The shear frames reported in the literature are 30 cm to

1 m in length and width and 15 to 30 cm deep. The pedestal of soil to be sheared

can be formed by either forcing the shear frame into the soil and then removing

the soil from around it or by excavating around a column or pedestal of soil and

then "trimming" the shear frame onto the pedestal. The in situ direct shear test

can either be run at in situ overburden pressures, or a load can be applied to the

soil at the top of the shear frame to allow the test to be run at normal stresses

greater than in situ overburden pressures. In the reported literature, a small cable

winch or hydraulic jack is used to apply a lateral load. When a lateral load is

applied to the shear frame, a horizontal failure surface is forced at the base of the

shear frame. The horizontal deformation of the shear frame is observed and

recorded as is the resistance to deformation.

41
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At this point, the in situ direct shear test becomes identical to a laboratory

direct shear test. The test is continued until the lateral deformation capacity of

the apparatus is reached. The maximum value of resistance is divided by the

cross-sectional area of the shear frame to give the maximum shear stress which

is, by definition, the shear strength of the soil at that normal stress. Maximum

shear stresses and effective normal stresses for a number of these tests are plotted

to yield a Mohr-Coulomb strength envelope.

The advantages of the in situ direct shear test is that a true undisturbed

sample is tested and it is big enough to include most large soil fragments and

inclusions, like tree roots. Also, the test can be run at in situ normal stresses or

overburden pressures. The disadvantages include the fact that a failure surface is

being forced instead of being allowed to develop and for a sandy, cohesionless

soil the test is a drained test with no control over the stress path. Because the test

is carried out in the field, data collection is often much more difficult and such

tasks as applying a constant strain rate, measuring deflection, and measuring soil

resistance to load become both less accurate and precise.

Triaxial Tests

Triaxial tests for soil strength represent an entirely different way to test

soil strength. The strength test is performed on a cylindrical soil sample with a

diameter which is nominally several centimeters and a length which is 2 to 2.5
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times the diameter. The soil sample is encased in a rubber membrane and placed

in a test cell which allows the sample to be surrounded by a fluid, usually water.

The water can be pressurized which applies an all around consolidation pressure

or confining stress to the soil sample. The cell is put in a load frame and an axial

load is applied to the sample through a piston. The axial load causes deformation

of the sample which is observed and recorded. The axial load is increased until

the sample fails. The applied axial load is divided by the nominal cross sectional

area of the sample and is called the deviator stress.

The triaxial test is fundamentally different from the direct shear test

because a failure plane is not forced through the sample, but rather failure is

allowed to occur on any weak plane or sometimes the sample simply bulges.

Because the failure plane is not parallel to one of the principal stresses, the

normal stresses on the failure plane at failure are not readily known. To find the

stresses on the failure plane at failure and develop a Mohr-Coulomb strength

envelope, the Mohr's circle of stresses is used. The principal stresses on the

sample are known. They are the minor principal stress (03) which is the

confining stress and the major principal stress (o ) which is the confining stress

plus the deviator stress. The magnitude of these two principal stresses at failure

define a Mohr's circle which can be used to get the magnitude of the principal

stresses on all the planes in the sample including the failure plane.

To obtain a Mohr-Coulomb strength envelope for the soil, a number of

triaxial tests are performed on a number of samples all at different confining
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pressures. The Mohr's circles from the tests are all plotted on the same graph and

a line can be drawn which is tangent to all the Mohr's circles. The point of

tangency between the line and any Mohr's circle represents the stress conditions

on the failure plane at failure and the line connecting the points of tangency is

the Mohr-Coulomb strength envelope. Stress-strain relationships for several

triaxial tests are shown in Figure 3-5 along with a strength envelope shown

tangent to three Mohr's circles. Holtz and Kovacs (1981) has an excellent

discussion of Mohr's circle of stresses and the triaxial test.

The primary disadvantage of the triaxial test is the sample size. While

triaxial testing apparatus exists which can test larger samples, the triaxial testing

apparatus generally available is made for samples that are fairly small and it

limits the inclusion of larger rock fragments and other large inclusions.

11Undisturbed" samples can be run in a triaxial test but getting these samples for

loose, shallow, forest soils can be difficult. Triaxial tests can also be carried out on

disturbed or reconstructed samples. These disadvantages of triaxial tests are

more than offset by the advantages which consist of control over both the stress

states in the sample and the stress path to failure. The sample can be

consolidated, even anisotropically consolidated if that is needed, before the test

at very low confining pressures or high confining pressures. A failure surface is

allowed to develop, it is not forced, and the correct stress path to failure can be

modeled.
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Soil Sampling

Obtaining adequate "undisturbed" soil samples is the bane of soil testing.

Residual soils for shallow, forest soils on steeply sloping landslide prone terrain

have very low densities and very high void ratios (Schroeder and Alto, 1983; Wu

et. aL, 1988b). The densities are so low and the void ratios so high that it is very

hard, if not impossible, to recreate these conditions in a reconstructed sample.

Therefore, for these soils, there is a high premium put on getting "undisturbed"

soil samples for soil testing.

"Undisturbed" soil samples are not really undisturbed and thus the

quotation marks. They are soil samples gathered by either driving a sampling

tube into the ground and then extracting it and collecting the sample in that

manner or isolating a soil column or pedestal and trimming the tube onto the soil

pedestal (Schoeneman and Pyles, 1984). These "undisturbed" soil samples are

then extruded into soil testing devices or further trimmed to fit a soil testing

device. In getting these "undisturbed" samples for laboratory strength testing,

large fragments or corestones and roots or other inclusion must be avoided

because they can make getting the sample impossible. Inclusions such as rocks or

roots can affect the integrity of the strength test as well. Thus, they must be

avoided so soil samples are collected in areas below rooting depth or between

and among roots in soil deposits, hopefully, without many large stone
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fragments. Of course, exclusion of these materials from the soil sample can cause

the estimate of soil strength to be non-representative.

Large stone fragments and roots can be excluded from soil samples by

sieving and then reconstructing the sample for testing. This has several

disadvantages, the most important of which is that the reconstructed sample will

undoubtedly have different physical parameters from the in situ soil, most

notably increased soil density and reduced void ratio, both which should affect

soil strength. But one of the more important considerations is that the sample

will be missing any of the relic strength that is derived from incomplete

weathering of geologic material or soil structure derived from weathering in

place (Yee and Harr, 1977a, 197Th). Thus the primary value of "undisturbed"

samples is to preserve in situ physical properties like density and void ratio and

allow for sampling of any relic soil strength.

Effect of Inclusions on Soil Strength

In general, adding fiber reinforcements to a sand increases soil strength by

increasing the cohesion term, c, while leaving the internal angle of friction, 0,

unchanged. While the mechaiiism which explains this behavior is not readily

understood, this behavior is expected based on knowledge of the drained

strength of sands. The primary factors that affect 0 during strength tests are void

ratio, confining pressure, particle size distribution, and angularity and surface
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roughness of individual grains (Holtz and Kovacs, 1981). If all these factors are

left constant and inclusions are added, the friction angle should not be affected.

Inclusions will affect the internal state of stresses and strains and result in an

increased deformation modulus for the soil/fiber complex (Yang, 1972; Maher

and Gray, 1990). The net result of inclusions is to leave the slope of the Mohr-

Coulomb strength envelope unchanged and cause the entire envelope to move

upward by increasing the y-intercept of the relationship or the cohesion

intercept.

This effect of increasing the cohesion intercept while leaving unchanged

was clearly illustrated by Gray and Ohashi (1983) using small diameter

laboratory direct shear tests on sands bOth unreinforced and reinforced with a

variety of fiber inclusions. However, the strength tests all occurred at confining

pressures higher than would be expected for shallow forest soils. Endo and

Tsuruta (1969) also illustrated this concept using in situ direct shear tests on a

prepared nursery soil with or without alders growing on it. They also carried out

their tests at normal stresses greater than in situ overburden pressures. Dakessian

(1980) showed the same effect with direct shear tests on soil samples which were

either fallow or growing alfalfa or harding grass. These tests were conducted at

in situ confining stress levels in 10 cm (4 inch) diameter by 25 cm (10 inch) long

cylindrical samples. An example of these results is shown in Figure 3-6.

For the reasons presented above, the increase in strength attributed to root

reinforcement is referred to as cohesion. From early research carried out on the
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Figure 3-6. Strength envelopes for an unrooted soil and the same soil permeated
with Harding grass roots and alfalfa roots. The strength envelopes illustrate the
increase in soil strength associated with root reinforcement as an increase in the
cohesion intercept of the strength envelopes (from Dakessian, 1980).
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backanalysis of existing landslides (Swanston, 1970), the missing strength that

was solved for was assigned to root reinforcement or root cohesion and given the

label "apparent cohesion". This convention has been sustained and throughout

the root reinforcement literature the increased soil strength attributed to root

reinforcement is treated like cohesion in Mohr-Coulomb strength equations and

is labeled apparent cohesion. This term is also applied to other non-organic

forms of cohesion such as capillary tension. The differentiation between forms of

apparent cohesion is not addressed in the root reinforcement literature and all

apparent cohesion is assigned to root reinforcement.

Strength Results with Geotechnical Engineering Applications

There is a substantial body of work that exists within the geotechnical

engineering community in which standard soil testing has been used to

investigate the effect of fiber reinforcement on soil strength. The standard soil

tests used were the laboratory direct shear test (Gray and Ohashi, 1983) and the

triaxial test (Yang, 1972; Verma and Char, 1978; Maher and Gray, 1990). The

objective of this research was a better understanding of the principle of

reinforcedearth thus, research results presented a comparison of the strength

and deformation characteristics of reinforced and unreinforced cohesionless

sand.
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The research results show, as expected, that reinforced sand has an

increased peak shear strength and decreased post peak reductions in strength

(Yang, 1972; Verma and Char, 1978; Gray and Ohashi, 1983). Also, reinforcement

increased the stiffness and the deformation modulus of the sand (Yang, 1972;

Maher and Gray, 1990). All of this research increased the insight into the

mechanics and the processes involved in the reinforcement of cohesionless sands.

But, for the most part, this research is not applicable to the problem of root

reinforcement of shallow forest soils because the range of the experimental

parameters used during the laboratory strength tests were outside of the

normally expected range of these values for shallow forest soils. These

experimental parameters include soil density, the modulus of elasticity of the

reinforcing elements, and soil confining stress.

The range of soil densities tested by most studies match in situ field values

for a cohesiordess forest soil better than the other experimental parameters.

Verma and Char (1978) tested only one soil density which was a relatively high

density (1.5 gms/cm3) with respect to a forest soil. All the other cited authors

include a low soil density treatment in which the soil has a relative density of

approximately 20 percent (Dr = 20 %) which for sands yields a density of

approximately 1.28 gms/cm3 (80 lbs/ft3).

With regard to the modulus of elasticity for the reinforcing fibers, Gray

and Ohashi (1983) and Maher and Gray (1990) both included lower modulus

reinforcements as a part of their experimental treatment. They included both
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rubber and standard reeds as reinforcing fibers, both of which have a modulus

comparable to conifer roots. The balance of the reinforcing fibers they used and

the reinforcements used by Yang (1972) and Varma and Char (1978), which

include Palmyra, glass, copper, aluminum, and steel, have elastic modulus

values that are higher than conifer roots. Experimental results using these higher

modulus reinforcements are not applicable to root reinforcement conditions.

By far the most critical experimental parameter is the confining pressure

for the triaxial tests and the normal stress for the direct shear test. All of the

confining stresses are very high when compared with the confining stresses that

might be expected for a shallow forest soil. If a conservative soil density of 1.6

gms/cm3 (100 lbs/ft3) is used to convert the experimental confining pressures to

soil depths, the effective soil depths modeled in the experimental tests range

from a low of 1.5 m (5 ft) (Maher and Gray, 1990) to a high of greater than 4.5 m

(15 ft) (Varma and Char, 1978). A soil depth of approximately 0.6 m (2 ft) is a

reasonable depth for the extent of tree roots in a forest soil. Furthermore,

experimental results can not be simply scaled down beyond the range of

experimental values because a change in performance would be expected at

smaller and smaller confining pressures. Evidence of this fact is found in Gray

and Ohashi (1983) where in their direct shear tests the reinforcing elements

simply pulled out of the soil samples at confining pressures below 0.72 Ksf (-05

psi). For these tests, the behavior at high confining pressures could not be just

scaled down because at low confining pressures the behavior changed, totally.



Thus, to understand the performance of low modulus reinforcing elements at

low confining pressures, they must be tested at those confining pressures.

Laboratory Direct Shear Tests

The problems which were discussed regarding the previous research,

namely reinforcing elements with elastic moduli which were orders of

magnitude greater than the elastic moduli of tree roots and confining pressures

representing soil depths which were two to three times greater than the soil

depths at which roots normally exist, were eliminated in a series of non-standard

laboratory direct shear tests Waldron (1977), Waldron and Dakessian (1981;

1982), and Waldron et. al. (1983). The soil samples tested were either 10 cm x 61

cm (Waldron and Dakessian, 1982), 25 cm x 61 cm (Waldron, 1977; Waldron and

Dakessian, 1981), or 1.22 m x 1.22 m (Waldron et. al., 1983) cylindrical samples.

For the cylinders that were 61 cm long, failure planes were induced at depths of

15 cm, 30 cm, and 45 cm (Waidron, 1977; Waldron and Dakessian, 1981; 1982)

and a failure plane was induced at 60 cm for the 1.22 m long soil samples

(Waldron et. al., 1983). No additional normal loads were added to the samples so

they were tested at a laboratory modeled in situ normal stress.

Additionally, the reinforcing elements that were tested were the roots of

various plants which were grown in the soil samples. The plants included barley,

grown anywhere from 90 days to 10 months, alfalfa grown for 12 to 14 months,
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various grasses grown over a winter period, oak seedlings grown 35 months, and

pine seedlings grown 14 and 52 months. Thus, the modulus of the reinforcing

elements should be, at least, within the correct order of magnitude for the size of

roots present.

Several soil types and soil profiles were also tested. There were two soil

profiles common to all the research. One soil profile was composed entirely of a

homogeneous clay loam taken from a local slide-susceptible soil. The second

common soil profile was the same clay loam placed on top of a dense gravel with

the interface at the failure plane of 45 cm for the 61 cm long samples and at 60 cm

for the 1.22 m long samples. Two additional soil profiles were used for only a

small part of the experimental program and they were associated with only the

61 cm long samples (Waidron, 1977). One soil profile was a homogeneous clay

loam placed on top of the dense gravel with the interface at 30 cm and the other

soil profile was a sandy loam, composed of 5 parts sand to 1 part of the clay

loam, with a dense clay layer at 30 cm.

For this research, a subset of the samples were permeated with roots and

then sheared and another subset of identical samples were treated in exactly the

same manner except they remained fallow. Both of these sets of samples were

sheared in direct shear leaving results in the form of a graph of shear stress

versus horizontal displacement. For the purposes of this research, the increase in

strength attributed to root reinforcement was calculated as the difference in shear

stress between a rooted and fallow sample at a given horizontal displacement.
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The results can be generally characterized by the statement that reinforced

soil samples had higher peak shear stresses and higher shear stresses, in general,

throughout the range of horizontal displacements. In fact, for most of the

research results, the difference in shear stress increased throughout the range of

displacements. In the early research (Waldron, 1977), 12 month alfalfa in the

homogeneous clay loam profile gave a 290 per cent increase in strength at a

displacement of 25 mm. Other profiles with other rooted mediums gave similar

results with the clay loam on gravel profile yielding an average increase in

strength of 170 gm/cm2 or a 420 per cent increase at 25 mm horizontal

displacement. For a variety of grasses grown over a winter, there was a threefold

increase in strength at a 30 mm displacement and 14 month alfalfa yielded a

fourfold increase in strength at the same displacement (Waldron and Dakessian,

1982). The results for the large, 1.22 m x 1.22 m, samples were consistent with the

rest of the research. For the samples with 52 month old pines the differences in

shear stress between the rooted and fallow samples increased throughout the

range of displacements and at a horizontal displacement of 75 mm, the strength

was almost doubled.

While this sequence of research solves some of the problems encountered

in the more geotechnical engineering directed research, high modulus

reinforcements and high confining pressures, some problems are still

encountered which limit the utility of the research results to the problem of root

reinforcement in shallow, landslide-prone, forest soils. In the initial set of
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experiments (Waidron, 1977), no significant increase in soil strength was

observed with the sandy loam samples where the failure surfaces were at depths

of 15 and 45 cm and the samples were reinforced with four month old barley.

Because this result was non-significant, the results were not included in the shear

resistance increase versus root cross sectional area curve showing the effects of

roots on strength increase. Also, that particular profile was not included in any of

the subsequent research. This is important because this is the soil type of most

interest when dealing with steeply sloping, shallow forest soils. It is not known if

this is an experimental artifact or if this is a real result and the same mechanisms

of root reinforcement that work for cohesive soils simply do not work for

cohesionless sands. The latter hypothesis is not beyond consideration given that

a cohesive and cohesionless soil would have markedly different shear-stress

transfer characteristics and perhaps a 25 cm x 60 cm sample is not large enough,

at these low confining pressures, to allow adequate frictional shear-stress transfer

to develop. Whatever the reason, this tiny piece of research result and the fact

that it wasn't explored more fully advises caution when extrapolating these

research results to shallow forest soils.

This research points out a further experimental problem, strain

compatibility. The authors point out repeatedly that peak soil strength occurs at

a horizontal displacement of approximately 5 mm. Yet they report strength

increase values at displacements of 25, 30, and even 75 mm in the case of the 52

month old pine seedlings in the large samples. Soil strength tests like the direct
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shear test are strain-controlled tests where a soil sample is confined then a

displacement rate is applied to the sample and the ensuing stresses are

measured. This is not how the real world works. The real world is stress-

controlled which means that in the real world a stress state is imposed on soil

and the ensuing strains are observed. A landslide is a form of infinite strain at a

fixed and critical stress state. The authors obviously believe that in a stress-

controlled environment, the soil/root system can withstand a 75 mm horizontal

displacement and stay intact and competent enough to allow shear-stress

transfer with plant roots to occur and reinforce the soil up to double the

unreinforced strength. Given that the peak strength for an unreinforced soil

occurred at a horizontal displacement of only 5 mm and that there was no

observable increase in strength observed for tests with the sandy loam soil, there

would seem to be more than ample reason to be cautious when applying these

research results to the case of shallow, cohesionless soils on steeply sloping

forested terrain.

A final point of discussion deals more with the interpretation of the results

than the results themselves. The authors of the results, while not stating their

case emphatically, certainly imply that their research results support the root

reinforcement hypothesis linking timber harvesting and landslides on landslide-

prone forested terrain. In the manner and places that this work has been cited

and reviewed (Sidle et. al., 1985) the case is stated much more emphatically that

this research definitely supports the root reinforcement hypothesis linking
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timber harvesting and landslides. This contention can not be supported. The

inability to support the contention has nothing to do with the research or its

quality, which is very good, but rather has to do with the almost universally

accepted assumption that, in fact, the soil strength of a clear cut harvested

hillslope can be modeled by a fallow soil sample. This is obviously untrue as

evidenced by Ziemer (1981a) who estimated that at its lowest strength a

harvested hifislope still had roughly 40 percent of its maximum root

reinforcement. In fact, what Waldron (1977), Waldron and Dakessian (1981;

1982), and Waldron et. al (1983) show more than anything else is the magnitude

of strength increase that can be gained on clearcut harvested slopes as a result of

primary invasion species and seedlings planted after harvest.

In Situ Direct Shear Tests

In addition to laboratory direct shear, an additional method used to

investigate the effect of roots on soil shear strength was in situ or field direct

shear tests. There are two general kinds of research outputs. The most popular

form of the research output was a linear regression approach in which the

biomass of roots in a soil sample was regressed against the shear strength of the

soil sample and the relationship was shown to have a positive and highly

significant correlation (Endo and Tsuruta, 1969; O'Loughlin, 1972; Endo, 1980;

Ziemer, 1981a). A second approach was to develop Mohr-Coulomb strength
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envelopes for soils which were in native forest versus soils where the forest had

been harvested and/or for various states of rooted versus unrooted soils and

compare the strength envelopes (O'Loughlin, et. al., 1982; Abe and Iwamoto,

1985).

In general, in situ direct shear tests involve a larger soil sample than

laboratory direct shear tests. The shear frame used to carry out the in situ direct

shear tests ranged from 30 cm in length and width and 15 cm deep (O'Loughlin,

1972; O'Loughlin, et. al., 1982) up to 1 m in length and width and 50 cm deep

(Abe and Iwamoto, 1985). The shear frames were open just on the bottom (Endo

and Tsuruta, 1969; O'Loughlin, 1972; Endo, 1980; Abe and Iwamoto, 1985), on

two sides and the bottom (O'Loughlin, et. al., 1982) and on just two sides

(Ziemer, 1981a). Obviously, an advantage of in situ direct shear tests is that they

can test the soils as they occur naturally at in situ normal stresses (O'Loughlin,

1972; O'Loughlin, et. al., 1982; Ziemer, 1981a). However, in situ direct shear tests

are also carried out for prepared soils and the testing apparatus allows for

normal stresses to be applied that are greater than the in situ normal stresses

(Endo and Tsuruta, 1969; Endo, 1980; Abe and Iwamoto, 1985). The shear frames

were all installed by evacuating a rough soil column, block, or pedestal and then

the shear frame was "trimmed onto" the soil pedestal.

Endo and Tsuruta (1969) and Endo (1980) sheared prepared nursery soils

in plots which were unrooted or had different numbers of various tree species

growing on them. For both studies, two shear frames were used with inner
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measurements of 50 cm x 50 cm and heights of 30 and 60 cm. The shear frames

were open only on the bottom. Additional weight was added to the soil surface

within the shear frame making the equivalent depth of the failure plane 0.6 to 1.2

m (2 to 4 ft). Endo and Tsuruta (1969) regressed total fresh weight of roots

against soil strength while Endo (1980) used cross sectional area of roots per unit

area. Both regressions were higMy significant with r2 values that ranged from

0.73 to 0.93.

O'Loughlin (1972) sheared in situ soils at ambient normal loads on two

fresMy clear cut slopes. He used a 30.5 x 30.5 x 15.5 cm (1 x 1 x 0.5 ft) shear frame

that was open only on the bottom. The strength was the maximum shear force on

soil pedestals that remained intact while soil pedestals that crumbled or

collapsed were deemed unsatisfactory and not considered. There were 24

successful tests out of 40 total tests. Maximum shear strength was correlated with

a number of variables believed to influence shear strength and the weight of

fresh roots was the most significant variable tested. The fresh root weight alone

accounted for 56 percent of the variability in soil strength.

Likewise, Ziemer (1981a) tested in situ sand soils in a pine forest at

ambient stresses. He also tested a number of variables expected to influence

shear strength and found the oven dried biomass of live roots less than 17 mm in

diameter was the most significant variable and accounted for 70 percent of the

variability in soil strength alone. Ziemer (1981a) used a 30 x 15 x 15 cm shear

frame that was open on just the 15 x 15 cm sides and closed on the bottom. He
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felt that the shear frame caused the soil strength to be underestimated by as

much as 50 percent because the soil strength on the bottom of the pedestal was

not included in the test.

O'Loughlin, et. al. (1982) carried out in situ direct shear tests for soils that

were in native beech podocarp forests and soils which had been clearfelled,

broadcast burned, and converted to rediata pine 36 months prior to strength

testing. A 30 x 30 x 15 cm shear frame was used which was open on two sides

and the bottom. The in situ soils were tested at a range of normal loads greater

than the in situ overburden pressure to allow a range of normal stresses so a

strength envelope could be constructed. The effective normal stress values

ranged from those expected for a failure plane at approximately 0.3 m (1 ft) deep

to a failure plane at 1.5 m (5 ft) deep with the average normal stress equivalent to

a failure plane at approximately 0.76 m (2.5 ft). Table 3-3 shows the results of the

tests. The friction angles were the same for both vegetation types, however the

cohesion intercept for the harvested site was 3.3 kPa less than for the native

forest site. The numbers for root content are also shown. None of the numbers

presented were tested for statistical significance.

Abe and Iwamoto (1985) tested a prepared nursery soil that had plots

which were both urirooted and had a single Cruptomeria Japonica growing on

them. A shear frame that was 1 m in length and width and either 50 or 30 cm in

depth was used. The shear frame was open only on the bottom. The tests were

run at in situ normal stresses and additional weight was added to give normal
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Table 3-3. The internal angle of friction, 0, apparent cohesion, c, arid mean and
standard deviation of soil block root content for soils of an intact Beech-Podocarp
forest and a 36 month old radiata pine plantation in North Westland, New
Zealand (O'Loughlin, et. al., 1982).

0 c Soil Block Root Content

(o) kPa kg/rn3 soil

mean std. dev.

stresses equivalent to soil depths of between 0.6 to 1.2 m (2 to 4 ft). A Mohr-

Coulomb strength envelope was developed for both unrooted and rooted soils

for failure surfaces at 30 cm and 50 cm. A comparison of the strength envelopes

showed that they were not parallel but had different slopes and thus different

friction angles, however this aspect was not discussed. For the 30 cm failure

surface at the in situ normal stress, the strength of the rooted soils was 11 percent

greater than for the fallow soils and at the highest normal stress the strength

increase was 32 percent. For the 50 cm failure surface, the rooted soils had 13 and

42 percent greater strength than for the unrooted soils for the in situ and highest

normal stress, respectively. The authors also investigated the change in peak

shear stress for individual shear stress versus horizontal displacement tests and

found that peak shear stress increased for rooted versus unrooted tests and the

Beech-Podocarp Forest 36 6.6 19.8 28.7

Radiata Pine Plantation 36 3.3 7.0 10.5
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rooted samples could withstand greater horizontal displacement before failing.

The difference in strength between the rooted and unrooted samples was

correlated with the per unit area cross sectional area in roots (root area ratio) and

a positive linear trend was observed. The significance and r2 of the relationship

were not reported.

In situ direct shear tests show the same general results as the laboratory

direct shear tests. Soils with roots have higher shear strength than soils without

roots and root biomass, or some measure of it, can be used as a predictor of soil

strength. Care needs to be taken when applying these data to shallow forest soils

for the same reasons as discussed for the laboratory direct shear tests. Strain

compatibility at excessive displacements between soil and roots in a stress-

controlled environment is still a matter of concern not addressed by this

research. As evidence of this concern are the 16 out 40 in situ soil tests that

O'Loughlin (1972) performed that crumbled and were not considered. The

majority of the in situ direct shear test research results reviewed were generated

by soil tests in which the normal stress was larger then ambient, in situ normal

stresses which makes direct transfer of the data to shallow, forest soil conditions

problematic. Most importantly, as Ziemer (1981a), O'Loughlin (1972), and

O'Loughlin, et. al. (1982) illustrate with their results, the discussion regarding

timber harvesting, landslides, and shallow forest soils isn't about the comparison

between rooted and unrooted soils. All harvested sites have roots of some



species, size, and decay class in them. The discussion should center around the

effect of the change in species, size distribution, and decay class on soil strength.

Landslide Backanalysis

A research technique that has been used to investigate both the existence

and magnitude of root reinforcement in shallow forest soils is the backanalysis of

existing landslides. Landslide backanalysis is routinely used in slope stability

investigations to determine or deduce soil strength or other parameters related to

slope stability (van Asch, 1984; Duncan and Wright, 1980). Furthermore, it is the

only way to validate the estimates of parameters like soil strength used in slope

stability analysis.

Landslide backanalysis is the process of doing slope stability analysis only

with a slightly different objective. Slope stability analysis involves detailed

knowledge of the soil mechanics of a site which results in quantifying the forces,

or moments, on a failure surface or potential failure surface that are both driving

and resisting the failure. The ratio of the forces, or moments resisting failure over

those driving failure is the factor of safety. A factor of safety greater than one

indicates a stable slope, less than one indicates an unstable slope, and a factor of

safety of one indicates incipient failure. In a traditional slope stability analysis

problem, the objective is to determine the factor of safety for a slope and

compare that number with design objectives, thus, values are determined for all
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the parameters in the slope stability analysis equation(s) and the factor of safety

is the unknown. In backanalysis, the slope has already failed, and the objective is

to determine the value of some parameter in the analysis. In this case, all but one

of the parameters in the slope stability analysis equation(s) that describe the

failed slope are determined, the factor of safety is set equal to one, and the value

of the unknown is solved for. The value of a backanalysis on a landslide is that

the assumption that the factor of safety was one at incipient failure can safely be

made. A backanalysis can be carried out for an unfailed slope but that requires a

method for assigning a factor of safety to an unfailed slope.

For the case at hand, the magnitude of the soil strength increase that can

be attributed to root reinforcement in shallow forest soils is to be determined. As

discussed previously, the increased strength attributed to root reinforcement is

generally accepted to be and is treated as soil cohesion, c, thus it is assumed that

root reinforcement does not affect the internal angle of friction, , of the soil.

This cohesion term is called "apparent cohesion" and is given the symbol Ca or

root cohesion and is given the symbol Cr To determine the value of apparent

cohesion contributed to a landslide, the slope stability analysis method must be

chosen, the values for all the parameters in the slope stability analysis method

must be determined, the factor of safety is set equal to one, and then the

additional strength required for equilibrium is solved for. The strength solved

for by the backanalysis is called apparent cohesion and attributed to the

influence of roots in reinforcing shallow forest soils.



Geographic Location Apparent Cohesion, Ca

Swanston, 1970 Southeast Alaska 4.3 - 3.3 kPa

Gonsior & Gardner, 1971 Idaho Batholith 6.2 kPa

O'Loughlin, 1972; 1974 Coastal British Columbia 1.6 - 2.1 kPa

Wu, et. al., 1979 Southeast Alaska 5.9 kPa'

Sidle & Swanston, 1982 Southeast Alaska 2.0 kPa

Buchanan & Savigny, 1990 N. Cascades, WA 1.6 - 3.0 kPa

derived by equation and verified by backanalysis.

Performing a landslide backanalysis requires doing slope stability

analysis. Slope stability analysis requires a thorough knowledge of soil

mechanics and a thorough knowledge of the site being analyzed. The first step is

to locate a landslide from which the location of the critical failure surface can be
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This process has been carried out by a number of researchers and their

results are summarized in Table 3-4. Landslide backanalysis have taken place in

landslide-prone terrain in southeast Alaska, coastal British Columbia, the North

Cascades in Washington, and the Idaho batholith. The values of apparent

cohesion or root cohesion range from a low of approximately 1.6 kPa (33 lbs/ft2)

to a high of 6.2 kPa (130 lbs/ft2).

Table 3-4. A list of the principle investigators, geographic location, and apparent
cohesion value for backanalysis research carried out to determine the existence
and magnitude of the soil strength increase attributed to root reinforcement.
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located. For an existing landslide this is pretty straightforward. To carry out

backanalysis on a stable site requires a knowledge of what characteristics a

landslide-prone site exhibits, the knowledge to locate the potential critical failure

surface within the soil mass, and the factor of safety.

Once a landslide or potential landslide has been selected for analysis,

there are a number of analysis components that have to be determined to carry

out the analysis. The choices made with these components and the accuracy with

which parameters are calculated will determine the accuracy and utility of the

subsequent analysis. These components are:

The location of the critical failure surface,

The choice of the slope stability analysis method,

The loading on the critical failure surface,

The strength characteristics of the soil,

The location of the water table or piezometric surface at failure.

Each of these components will be discussed briefly. An idea will be givenas to

how decisions made with each component can affect the accuracy and utility of

the final answer. Then the pertinent case studies cited in Table 3-4 will be

critiqued in light of these discussions.



Critical Failure Suiface Location

The ability to locate a critical failure surface can be either very good or

very poor depending on whether a failed or stable site is being analyzed.

Obviously, if an existing landslide is being analyzed, the ability to locate the

critical failure surface should be very good and generally is. There is some

potential error involved because the failure surface observed in the field is

probably not the same failure surface that existed at failure. It is undoubtedly a

surface which has formed as a result of subsequent sloughing and erosion of the

slope. With landslides in shallow forest soils this is rarely a big concern because

the important dimension, the depth of the failure surface generally coincides

with the soil/bedrock interface and this value is fixed and its measurement

reproducible. The length and width of the landslide are secondary in importance.

Buchanan and Savigny (1990) located the critical failure surface at failure by

using a slope stability analysis method to locate the critical failure surface within

the void left by the landslide. Most researchers simply fit a rounded failure

surface by eye or graphically into the void left by the landslide (Swanston, 1970)

or simply use average or likely dimensions based on the site.

Finding critical failure surfaces on stable slopes without existing

landslides is more problematic. Again, the problem is eased somewhat by the

physical situation in which the most important dimension, depth of the critical

surface, can be assumed to be fixed by the soil depth. In the articles reviewed, a
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slope stability analysis method was rarely used to locate a critical surface for an

unfailed site before analyzing the potential slide. The location and dimensions of

a potential slide are fixed by the geometry of the problem, i.e. soil depth, and the

potential slide is also assumed to have roughly the same location and dimensions

as landslides at failed sites. Again, this is a reasonable assumption and shouldn't

result in large errors. However, the ability to locate critical failure surfaces for

unfailed sites is poorer than for failed sites and this affects the utility of the

conclusions which come from a comparison of analysis results.

Choice of Slope Stability Analysis Method

The type, shape, and dimensions of the failure surface selected should

drive the choice of a slope stability analysis method. There are many slope

stability analysis methods available and each one treats the mechanics of the

landslide differently and has different underlying assumptions. Because of the

different assumptions and mechanics, the different slope stability analysis

methods will yield different factors of safety, all other factors being equal. If

different slope stability analysis methods can give different factors of safety, then

when used to backcalculate apparent cohesion attributed to roots, they can give

different estimates of that also, all other factors being equal. So the choice of a

slope stability analysis method can be important.
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In a slope stability analysis, the forces on the failure mass are analyzed.

The forces can be analyzed for the entire soil mass, a representative section of the

soil mass, or, more commonly, the failure mass can be divided up into a number

of discrete slices and the forces can be analyzed on the soil slices. The rigorous

slope stability analysis methods, such as Janbu's rigorous method, Spencer's

method, and Moegenstern and Price's method, divide the soil mass into slices

and incorporate both force and moment equilibrium in the analysis. These

methods are more difficult to solve and involve the solution of multiple

equations either simultaneously or iteratively. Multiple equations are used

because for each individual soil slice both horizontal and vertical force

equilibrium is calculated and for the overall slide mass, moment equilibrium is

calculated. The slope stability analysis methods which satisfy all equilibrium

conditions, horizontal and vertical force equilibrium and overall moment

equilibrium, are generally considered to yield acceptable and accurate results.

There are other slope stability methods which were developed to satisfy

either force equilibrium or moment equilibrium but not both. These methods are

easier to solve because they involve only one equation and the factor of safety

can be computed in closed form. The infinite slope and wedge methods satisfy

conditions of force equilibrium while the ordinary method of slices and Bishop's

method were developed around moment equilibrium only. In general, these

methods which don't satisfy all conditions of equilibrium can give inaccurate
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resullts and are often overlly conservative, especially for the kind of failures

expected on steeply slloping, shallow forest soils.

An example of how slope stability anallysis methods, and implicit

assumptions, can be conservative can be shown by conceptually comparing the

infinite slope method with a slice method of sllope stability analysis. The infinite

slope method represents the slide mass with a two dimensional representative

section of the slide mass that has a unit width. The slice method represents the

slide mass with a two dimensional cross section of the slide mass which also has

a unit width. Diagrams of these two concepts are shown in Figure 3-7. In general,

the driving force of a landslide is a function of the mass of the soil in the

llandslide and is a direct function of the volume of the slide mass. The resisting

force of a landslide is a function of the soil strength which is the product of the

appropriate shear stress and the surface area of the slide mass. Thus the ratio of

the volume of the slide mass and the area of the failure surface, as represented by

the slope stability anallysis method, could be a useful index for comparing these

two methods.

The depth of the representative section for the infinite slope method

almost always comes from the deepest part of the slide mass while the area of the

failure surface of the same section is the length of the section corrected for slope

angle. Thus, in the infinite slope method the volume is maximized while the

failure surface area is minimized. For the slices method, the volume is calculated

from both the deep slices in the middle of the slide as well as the shallower slices
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Figure 3-7. (a) Typical soil section free-body diagram for an infinite slope
analysis method; (b) Typical slide cross-section for a "slices" method of analysis.
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at each end of the failure while the area of the failure surface comes from, not

only, the deeper slices, where the failure surface area is minimized, but also, the

shallower slices where, because of the geometry of the slide, surface areas get

larger. Obviously, the ratio of the slide volume to failure surface area for the

slices method is more representative of the actual slide than is the infinite slope

method.

This is one way in which conservatism is built into slope stability analysis

methods. The infinite slope method maximizes the driving force and minimizes

the strength of the actual slide. Thus if the slope is stable, by the infinite slope

method, the actual factor of safety will be much larger due to assumptions

regarding the ratio of slide volume to failure surface area. In landslide

backanalysis to determine the apparent cohesion attributed to roots, this

conservatism translates into an overestimate of the contribution of roots to the

stability of the site. Thus, it can be expected that the infinite slope method will

generate higher values for apparent cohesion than the ordinary method of slices.

An example of this effect is provided by Swanston (1970) who calcukted

apparent cohesion due to root reinforcement for three landslides in southeast

Alaska using backanalysis. The slope stability analysis method used for the

backanalysis was the ordinary method of slices however, the author did perform

a backanalysis using the infinite slope method on a generic slope to ascertain the

magnitude of his calculations. The infinite slope method was used for a generic

slope with a slope angle of 370 The apparent cohesion generated by this method
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was 5.4 kPa (112.6 lbs/ft2). The backanalysis performed using the ordinary

method of slices used the exact same parameters except for slope angles where

36° and 38° were used. For these two cases the apparent cohesion calculated was

3.3 kPa (69 lbs/ft2) and 4.0 kPa (83.9 lbs/ft2), respectively. Therefore, the infinite

slope method overestimated apparent cohesion, relative to the method of slices,

by between 25 to 36 percent (1.4 to 1.9 kPa). This difference is solely a function of

the choice of slope stability analysis method.

Recall that the ordinary method of slices is not a rigorous slope stability

analysis method and does not satisfy all conditions of equilibrium. The ordinary

method of slices can underestimate factor of safety by as much as 60 percent

(Tumbull and Hvorslev, 1967; Whitman and Bailey, 1967; as quoted in Nash,

1987). Thus the errors incurred in overestimating apparent cohesion could be

even greater if they were compared with a rigorous slope stability analysis

method which satisfies all conditions of equilibrium.

All of the slope stability methods used in the reviewed papers were the

less rigorous methods. Gonsior and Gardner (1971), O'Loughlin (1972, 1973), Wu,

et. al. (1979) and Sidle and Swanston (1982) all used the infinite slope method,

Swanston (1970) used the ordinary method of slices, and Buchanan and Savigny

(1990) used Bishop's modified method. This is important because, as evidenced

by the case study provided by Swanson (1970), the magnitude of the potential

overestimates of apparent cohesion caused by using a non-rigorous slope

stability analysis method may not be as large as the magnitude of the calculated
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values of apparent cohesion, but they are most certainly within the same order of

magnitude.

Critical Failure Surface Loading

The most important part of the loading on the critical failure surface is the

weight of the soil. Once the geometry of the critical failure surface is determined,

then only the soil density is needed. This information comes from laboratory

analysis of field samples, is routinely carried out, and, all other details

considered, is easy and straightforward to get.

It is possible to consider the weight of the trees on the failure surface,

however, this routinely is not done. The primary reason it is not done is because

the weight of the trees is minor compared with the total weight of the slide mass.

Wu, et. al. (1979) considered the weight of the trees and found they resulted in a

pressure of 5.2 kPa (-11O lbs/ft2) on the failure surface. That value is in both the

numerator and denominator of the equation so the net effect is much less than

5.2 kPa and the actual value depends on the slope angle and angle of internal

friction of the soil. Bishop and Stevens (1964) also estimated the average pressure

of the trees on the failure surface and came up with 2.5 kPa (--52 lbs/ft2). Both of

these examples are from old-growth forests in southeast Alaska.

A final consideration in critical failure surface loading is whether the cases

studies were simply generic slopes using average values for the slope stability



analysis parameters or whether they were actual landslides for which the value

of the slope stability analysis parameters were determined and substituted into

the analysis. All of the cited authors except O'Loughlin (1972; 1974) analyzed

existing landslides and slide-prone slopes. O'Loughlin (1972; 1974) analyzed a

generic slope using average values for the analysis parameters, but even that

case initiated with an actual midslope landslide. When comparing failed and

urifailed landslide sites it is best to use dimensions and parameters from actual

sites and not assign average values to generic slopes. A landslide, at any given

site, is due to actual site conditions and not some assumed state of conditions

and this will not be known unless the sites are analyzed on an individual basis

with site specific parameters.

Soil Strength

Soil strength has been discussed previously. Soil strength is an empirical

quantity which can only be determined through soil strength testing. Soil

strength is not a constant but a function of the effective normal stress on the

failure plane at failure. The relationship that relates soil strength to effective

normal stress for a given soil and soil strength test is the Mohr-Coulomb strength

envelope. This relationship is most often expressed as the equation of a straight

line of the form,
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S=c'+cTtanqY 3-1

where S is the soil strength, c' is the soil cohesion or cohesion intercept, o is the

effective normal stress on the failure plane, and ' is the internal angle of friction

of the soil. Using this relationship, if the effective normal stress on a failure

surface is known then the strength on that failure surface can be calculated.

The combined results from several strength tests are used to establish a

Mohr-Coulomb strength envelope. The type of soil strength test used is

important because, as discussed previously, these tests have their inherent

strength and weaknesses which affects the accuracy and utility of any resulting

strength envelope. For the results of soil strength tests to be as accurate and

useful as possible, it is important that the conditions mder which the test is

carried out replicate the conditions that are expected to occur in the field at

failure as closely as possible. This means that the soil physical properties, such as

soil density, void ratio, and particle size distribution, should closely approximate

those in the field. Thus the emphasis on collecting and testing "undisturbed" soil

samples. The confining stress in the sample at the start of the strength test and

the stress path to failure both should, as closely as possible, represent in situ field

conditions. In the six articles reviewed, where apparent cohesion was

determined by backanalysis of existing landslides, there are recurring problems

with soil strength testing methods or the use of the soil strength data that could



affect the backanalysis sufficiently to result in incorrect values of apparent

cohesion.

Undisturbed vs. Disturbed Soil Samples

Most of the authors conducted soil strength tests on "undisturbed"

samples, however Gonsior and Gardner (1971) and Buchanan and Savigny (1990)

performed soil strength tests on samples that were collected, air-dried, sieved

and then reformed for soil testing. This process removes any large rock

fragments or corestones which would add to friction but, more importantly, it

removes any "relic" strength in the soil. "Relic" strength may result from

strength associated with the incomplete or nonuniform weathering of bedrock

that could leave residual chemical bonds or "relic" strength may also be

associated with chemical bonds formed as a part of weathering which adds soil

structure or aggregate stability to soil (Yee and Han, 197Th). In either case,

sample disturbance removes this "relic" strength, thus strength tests on

disturbed soil samples will yield results which are not representative of true soil

strength.

Soil Strength Test Method

Triaxial tests were used to determine soil strength by Swanston (1970),

Gonsior and Gardner (1971), and Sidle and Swanston (1982). The triaxial test is
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the preferred soil strength test because a shear plane is not forced but is allowed

to develop along a zone of weakness and the triaxial test provides flexibility in

modeling stress states and stress paths during the test. Swanston (1970) and Sidle

and Swanston (1982) performed triaxial tests on "undisturbed" samples while

Gonsior and Gardner (1971) ran their tests on disturbed, remolded samples.

O'Loughlin (1972; 1974), Wu, et. al. (1979), and Buchanan and Savigny

(1990) all used direct shear tests to determine soil strength parameters. Buchanan

and Savigny (1990) ran laboratory direct shear tests on disturbed, remolded

samples. They did not use the strength data directly from the direct shear tests

but used a weighting scheme to determine integrated peak friction angle which

apparently correlates in situ void ratio with friction angles from the direct shear

data. O'Loughlin (1972; 1974) ran in situ direct shear tests and, using the analogy

of a sliding block, determined only friction angle, no cohesion intercept was

determined, from the data. Wu, et. al. (1979) ran both laboratory direct shear

tests on "undisturbed" samples and in situ direct shear tests. The in situ data

resulted in strength values which were substantially higher than the laboratory

direct shear data. The friction angles were comparable but the cohesion intercept

for the in situ data was approximately three times greater, approximately 15 kPa

(313 lbs/fr2) compared to 5 kPa (104 lbs/ft2) for the laboratory data. Because the

data were dissimilar and the in situ data so much higher, only the laboratory data

was used for the backanalysis.
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It is unclear how the choice of soil test itself affected soil strength, and

ultimately apparent cohesion, for the articles reviewed. In the long run, the type

of soil strength test isn't as important as other related factors such as test

confining pressure, piezometric surface location, and how the data was used.

Soil Sample Confining Pressure

The authors who used in situ direct shear tests (Wu, et. al., 1979;

O'LougMiri, 1972; 1974) used in situ confining pressures to anchor one end of the

range of normal stresses used during soil testing. These normal stresses

represented a soil depth of about 0.25 m (-0.8 ft). They used different values to

anchor the top end of the range of normal stresses. O'Loughlin (1972) used an

upper limit value corresponding to a soil depth of approximately 0.83 m (2.7 ft)

while Wu, et. al. (1979) went up to a normal stress corresponding to a soil depth

of approximately 2.25 m (7.4 ft). Buchanan and Savigny (1990) did not report the

normal stress range of their laboratory direct shear tests.

For the authors who used triaxial tests, only Sidle and Swanston (1982)

presented sufficient information to ascertain the range of confining stresses used

during their soil tests which ranged from 34.3 to 103 kPa and can be expresses in

terms of an equivalent soil depth ranging from 1.8 to 5.3 m (6.0 to 17.4 ft).

Gonsior and Gardner (1971) present there test results in terms of effective stress

Mohr's circles and sufficient information is not presented to convert this to
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equivalent soil depths, but it appears the normal stress range is very close to the

range used in Sidle and Swanston (1982). Swanston (1970) presents no

information at all on their soil testing except it was triaxial shear tests. However,

given the time frame of the research and the fact that it was landmark research

adapting geotechnical engineering to the forest environment, it is fairly safe to

assume that high confining pressures were used.

In the reviewed articles where sufficient information was given to review

the soil strength testing, all the soil tests were carried out using confining

pressures in excess of in situ confining pressures. It is probably safe to assume

that all the strength tests by all the authors in all the cited articles used confining

pressures in excess of in situ levels. This is important because the Mohr-Coulomb

strength envelopes are not a straight line throughout the range of stresses

considered (Lambe and Whitman, 1969; Commandeur, 1989). For shallow,

cohesioriless soils, the strength envelope is curved which means that 0' gets

larger and c' gets smaller as confining stresses become smaller The most

important consequence of testing shallow, cohesioriless soils at confining

pressures higher than in situ conditions is that the friction angle of the soil could

be underestimated (see Figure 3-8). If the frictional component of strength is

considered to be the dominant component of the strength for these soils, which it

is, then underestimating the friction angle results in underestimating soil

strength. In the backanalysis, the strength not accounted for by the Mohr-

Coulomb strength envelope shows up as apparent cohesion. So confining
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pressures in excess of in situ confining pressures could result in an overestimate

of apparent cohesion attributed to roots.

Soil Strength Parameter Use

The single largest potential source of error is the use of the strength

parameters derived from soil testing. A basic problem is that the concept of

frictional and cohesive c,mponents of strength gets confused with the cohesion

intercept and internal friction angle as the intercept and slope of a straight line.

Only Wu, et. al. (1979) actually used cohesion intercept values derived from

strength testing in the backanalysis equations. All of the remaining authors either

assumed the soil was cohesionless and set the cohesion intercept to zero (Gonsior

and Gardner, 1971; O'LougMin, 1972; 1974; Buchanan and Savigny, 1990) or

measured a cohesion intercept value in the soil strength tests and discarded it

(Sidle and Swanston, 1982). Swanston (1979) used a cohesion value of zero but

whether it came out of the test or was assumed isn't known.

Most soil strength tests of shallow, cohesionless soils, even those run at

low or in situ confining pressures, result in Mohr-Coulomb strength envelopes

that have some cohesion intercept. What is important is that the Mohr-Coulomb

strength envelope is a unique collection of points in , a' space which give a

unique value of shear stress on the failure plane at failure for each value of

normal stress on the failure plane. If a straight line is used to describe that
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collection of points and that straight line has a y-intercept, then the y-intercept

must be used whether the soil actually has any inorganic cohesion or not. If a

cohesion intercept is determined but then ignored, as in the case of Sidle and

Swanston (1982), or if the cohesion intercept is just ignored and a straight line is

fit to the angle of internal friction without searching for a cohesion intercept, then

the actual strength of the soil may be underestimated. These situations are

illustrated with an idealized Mohr-Coulomb strength envelope for a shallow,

cohesionless soil in Figure 3-8. The net result is that the soil strength which exists,

but is not accounted for by the chosen strength envelope, becomes labeled

apparent cohesion.

This is probably the single biggest potential source of error in over-

estimating apparent cohesion. A triaxial test was performed on the soil that Sidle

and Swanston (1982) were working with and the resulting soil cohesion, c', was

4.9 kPa (102 lbs/ft2). They assumed this meant that the soil was cohesionless and

ignored that cohesion value and subsequently backcalculated a value of 2.02 kPa

(42 lbs/ft2) for apparent cohesion attributed to root reinforcement. The value of

the soil cohesion that was ignored is more than double the value of the apparent

cohesion that was solved for. This same situation is repeated in almost all the

cases where the magnitude of root reinforcement is being sought by

backanalysis. Soil strength testing wifi yield a very small cohesion intercept

value, usually in the range of 1.0 to 2.0 kPa (21 to 42 lbs/ft2) at the low end to as

much as 6.0 to 8.0 kPa (125 to 167 lbs/ft2) at the high end. These are very small
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values for soil cohesion when compared to soil cohesion values encountered

normally in geotechnical engineering. But, for shallow, cohesionless soils being

tested at in situ confining pressures, they do exist and this value can represent as

much as half of the total soil strength for that soil at that site. So, the

determination and use of the appropriate inorganic cohesion values for shallow,

cohesionless, forest soils is an important part of the problem. Straight line Mohr-

Coulomb strength envelopes derived from soil tests performed at the

appropriate confining pressures yields cohesion intercept values that are the

same order of magnitude as apparent cohesion values attributed to roots

backcalculated from existing landslides. Furthermore, these cohesion values can

be as much as half of the strength of these soil at these low confiningpressures. If

the cohesion intercepts are real and are ignored, then this component of soil

strength becomes apparent cohesion due to roots as the result of the backanalysis

Piezometric Surface Location

The single most important parameter to the slope stability process and

also the most difficult parameter to ascertain correctly is the location of the

piezometric surface at the landslide at the time of failure. This is an important

parameter because obviously precipitation and resulting subsurface flow is the

driving force triggering landslides. As the piezometric surfaces rises, in response

to rainfall, from the failure surface to the soil surface, the soil strength can be

reduced by as much as half, which makes the influence of water on soil strength
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easily the most important of all discussed so far. This point is made in the debris

avalanche inventories section where the fact is pointed out that debris avalanche

inventories are routinely initiated as a consequence of large, landslide-producing

storms. The location of the piezometric surface at failure is important because it

allows the calculation of effective stresses on the failure plane at failure which is

the parameter that really drives the process.

Measuring the location of a piezometric surface above a failure surface at

failure is very difficult, if not almost impossible, to do because of the tremendous

variability in both space and time of the occurrence of precipitation and

consequently landslides. Landslide-producing storms occur both infrequently in

time and irregularly on the landscape. So either the prediction of these stochastic

precipitation events must be very good or instrumentation must be installed on a

widespread basis and maintained until a landslide-producing event is sampled.

A more difficult, if not impossible, problem is choosing a site to instrument that

will fail during the next landslide-producing storm and produce the appropriate

information. There is only one incidence reported (Sidle and Swanston, 1982) in

which the researchers were fortunate enough to have a site instrumented at the

time it failed.

What is done more routinely is to instrument nearby or similar sites and

monitor groundwater response to large storms. Relationships are developed

between rainfall and piezometric response and these relationships are applied to

failed sites to help solve the backanalysis problem (Swanston, 1970; Wu, et. al.
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1979; O'Loughlin, 1972; 1974). Another method is to develop a groundwater

model or use an existing groundwater model. The available data on rainfall and

groundwater response is used to calibrate the model and then the model is used

to predict the location of the piezometric surface at failure (Buchanan and

Savigny, 1990).

All of these methods have been used to predict piezometric surface

location at failures. With the exception of Wu, et. al. (1979), who placed the

piezometric surface at different and various depths mid-profile in the soil, all the

other researchers, including Sidle and Swanston (1982), placed the ground water

table at or very near the soil surface. In all these cases, except Sidle and Swanston

(1982), nearby data or a groundwater model was used to place the ground water

table and in the process of placing the ground water table at or near the soil

surface it was necessary to extrapolate the local data or the calibration of the

model beyond the range of data available

It is unclear for this particular subject what impact the assumptions made

have had on the final backcalculated value of apparent cohesion. The assumption

of a saturated soil profile is conservative toward soil strength and non-

conservative toward apparent cohesion. If the groundwater table is not at the soil

surface at failure, then the soil strength is underestimated and attributed to

apparent cohesion. The magnitude of that error for an average density forest soil

is approximately 5 kPa (104 lbs/ft2) per meter (3.3 ft) of soil depth. The
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magnitude of this error is less than the magnitude of the other errors discussed,

like true inorganic cohesion, but it is still within the same order of magnitude.

The possibility that the assumption of full soil profile saturation might be

in error can be argued by examining available data. Finding literature which

supports the existence of the widespread occurrence, in space or time, of a

groundwater table is difficult. The subject of the existence of a groundwater table

which would represent positive pore pressure in steeply sloping, shallow forest

soils has been investigated (Harr, 1977; Yee, 1975) and their results show that

such a feature is highly transient and, within the available data, does not

approach the soil surface. Even the piezometric data from southeast Alaska

(Swanston, 1967) and British Columbia (O'Loughlin, 1972) in the glaciated till

shows water tables which, within the available data, do not approach the soil

surface. The assumption of a saturated profile requires extrapolates beyond the

available data.

Furthermore, for the backanalysis data on the magnitude of apparent

cohesion to support the results from debris avalanche inventories, there would

have to be a widespread occurrence of saturated soils. This widespread

occurrence of saturated soils doesn't fit the known database. While it is accepted

that there will be occasional landslide features that develop saturated profiles

during large storms (Sidle and Swanston, 1982), these may be spatially isolated.

The assumption of fully saturated soil profiles could be an error. If so, it

errs on the side of apparent cohesion. There is, however, no way to easily come
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up with better numbers or assumptions. There are no reliable groundwater

models available which can predict rainfall-piezometric relationships for steeply

sloping, shallow forest soils. So either piezometric surface location values within

the range of the data collected must be used, i.e. Wu, et. al. (1979), or the

assumption of a fully saturated profile can be used, However, the consequences

of such an assumption must be known and considered.

In conclusion, the backanalysis of existing landslides does not present

convincing evidence of the occurrence of or the magnitude of apparent soil

cohesion due to root reinforcement. Within the backanalysis process, there are

four major places to make errors that will effect the backcalculated value of

apparent cohesion. These different error locations are; 1) slope stability analysis

method, 2) determination of soil strength parameters, 3) correct use of soil

strength parameters, and 4) correct placement of the piezometric surface within

the soil profile.

The primary slope stability analysis methods used are non-rigorous

methods which tend to undervalue the amount of strength available and in a

backanalysis that strength is directed toward apparent cohesion. The magnitude

of the potential error is at a minimum in the single digits of kPa.

Likewise in soil strength testing. The largest potential error and the one

that occurs most often is performing the soil strength test at a confining pressure

that is too high. At confining pressures much greater than in situ for shallow

forest soils, the friction angle is underestimated which underestimates available
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strength when c' is ignored or set to zero. However, a confining pressure that is

too high also tends to overestimate soil cohesion during the soil test. This doesn't

seem to be a problem because more often than not, these soils are assumed to be

cohesioriless. Thus, either a soil cohesion value is not determined during the soil

strength test or a value that is determined is simply ignored and not used. The

errors made either during testing for soil strength or in the inappropriate or

incorrect use of soil strength numbers is also in the same order of magnitude as

the values of apparent cohesion that are back calculated. They are in the single

digits of kPa.

Finally, in general the assumption is made that the groundwater surface is

at the soil surface when landslides fail. If this assumption is incorrect, it errs by

underestimating soil strength which then overestimates apparent cohesion. The

order of magnitude of this error is less than the other two cases, however it is still

in the lower single digits of kPa.

All the error sources for backcalculating apparent cohesion are

conservative toward soil strength and non-conservative toward apparent

cohesion. The magnitude of the error for all the error sources is approximately

the same, in the single digits of kPa or from approximately 1 to 8 kPa (20 to 160

lbs/ft2). Thus, in the backanalysis of the apparent cohesion values reported in the

cited articles, if different, more realistic and/or non-conservative assumptions

had been made regarding the backanalysis, all of the apparent cohesion values

may have been reduced significantly or eliminated.
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Finally, even with the values used, assumptions made, and apparent

cohesion values calculated, it is impossible to make the forested system perform

like we know it must. Swanston (1970) and Sidle and Swariston (1982) in their

research only calculated the value of apparent cohesion for the failed landslides.

No other comparisons were made. However, Gonsior and Gardner (1971),

O'Loughlin (1972; 1974), Wu, et. al. (1979), and Buchanan and Savigny (1990) all

concluded their research by taking the apparent cohesion values calculated and

all the other stability parameters assumed, and carried out an analysis of an old-

growth forested site to show it was stable and that the concept worked. The slope

stability analysis carried out were for a failed site in a harvested area and a stable

site in a forest area. Only Gonsior and Gardner (1971) performed a stability

analysis on a stable structure that should have failed. In this case it was a road fill

and what they found was that with the assumptions they had made regarding

the backanalysis of the other failed structures, a similar unf ailed structure should

not be standing. They further admitted that in any of a number of places,

including soil strength determination and the placement of the groundwater

surface, assumptions could have been made differently that could account for the

stable structure.

The other three cited articles all have this same situation with regard to

inherent assumptions and values for slope stability analysis parameters,

including a value for apparent cohesion due to roots. With these assumptions, it

is not possible to have an unstable forested site or a stable harvested site.
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O'Loughlin (1972) states that 71 percent of the strength of forested sites is due to

roots. His apparent cohesion values don't support that statement. If that is true,

then other environmental factors can on'y reduce the remaining 29 percent by

half and without harvesting that site, it would be impossible to have it fail. Yet

we know failures exist in forested areas of British Columbia. Likewise, Buchanan

and Savigny (1990) put maximum root reinforcement together with worst case

water tables and calculated the factor of safety of landslide-prone hillslopes

supporting old-growth forests to be 2.5 to 3.0. If the water table is at worst case

values, there is no way to reduce the strength of these sites and therefore they

could not fail. Yet failures also occur in the forests of the Washington Cascades.

While the case was not explicitly made, similar calculations can be made using

the authors assumed and calculated values and it is impossible for a harvested

site not to fail. Which also doesn't occur because many high risk harvested sites

don't fail. Thus, landslide backanalysis as it is used in the reviewed articles does

not result in parameters that can be used to correctly and consistently describe

the real world. Therefore, in its present form it is not useful for helping to explain

root reinforcement.

Modeling Root Reinforcement

The previous discussions regarding debris avalanche inventories,

quantifying root tensile and shear strength, strength testing of soil/root
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composites, and landslide backanalysis have all been directed toward the

development of a root reinforcement hypothesis and then testing that

hypothesis. Outside of creating awareness for the concept of root reinforcement,

the developed database presents very little information that can be used as an

applied management tool. To put the information into an applied management

tool, the information and developed data need to be put into the form of a rough

conceptual model of how root reinforcement works. That model can then be

applied to forest management situations and the role of root reinforcement or the

effect of alternative management strategies on root reinforcement can be

evaluated.

In this section, a number of different models and modeling strategies will

be discussed. The original concept embracing root reinforcement is reinforced

earth theory as developed by Vidal (1969). The mechanics for designing

reinforced earth walls will be discussed as well as the first cousin of reinforced

earth, soil nailing. Some of the empirical models developed to explain specific

data sets will also be discussed such as the root biomass model by Ziemer (1981)

and the total work model by Shewbridge and Sitar (1985). Finally, the process

level model of root reinforcement developed by both Wu (1976) and Waldron

(1977) will be presented.



Reinforced Earth/Soil Nailing

The pioneering formal work related to imparting tensile strength to

materials which do not possess innate tensile strength is in reinforced earth. In

reinforced earth, reinforcing elements that are long, thin, and wide with high

tensile strength and high modulus are embedded in soil, a material with low

tensile strength. The composite material formed from the soil and the reinforcing

elements has strength attributes of both materials including tensile strength.

Reinforced earth in its contemporary form is used mainly for retaining wall

structures. Reinforced earth retaining walls are structures which are constructed

by alternating soil layers with layers of reinforcing elements which are usually

long, flat, wide strips of steel or geotextiles. The steel or geotextile in the soil

gives the composite material tensile strength thus allowing the reinforced earth

wall to stand much more steeply than soil alone would.

The basic mechanics of reinforced earth which were first presented by

Vidal (1969) included some basic requirements. Among these requirements are:

the transfer of frictional force between individual soil grains and the

reinforcement,

the transfer of the subsequent shearing stress between soil grains in contact

with the reinforcement element and those not in contact, and
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the reinforcement introduces a compressive force to the soil that acts parallel

to the reinforcing element and whose magnitude is equal to the tension in the

reinforcement.

Since the original presentation of the theory and mechanics of reinforced earth

(Vidal, 1969), subsequent work has been carried out with the intent to both

validate and refine the understanding of the mechanics of reinforced earth (Yang,

1972; Jewell, 1980). This research has been highly successful and with its

completion a better understanding of the changes in stress states that occur in

soil as a result of the inclusion of reinforcement is available. Despite this

research, understanding of the mechanics of reinforced earth and the design of

reinforced earth walls remains fairly straightforward. This is due to the fact that

the research that has guided current design of reinforced earth structures comes

primarily from observations of model reinforced earth walls, both standing and

at collapse, and the observation of standing, full-size walls (Mitchell and Villet,

1987).

In a reinforced earth structure the strength added to the soil is a function

of the number, size, and materials of the reinforcing elements. In the design

process the objective is to match the number and size of a given reinforcing

element of a known material with the strength increase needed to fulfill design

objectives. Therefore, the design process incorporates the model for predicting

strength increases as a result of reinforced earth.
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To illustrate how a strength increase is calculated in the design process of

a reinforced earth wall, a simple rectangular reinforced earth retaining wall with

no external loads is considered (Figure 3-9). Sufficient data has been collected on

full-size, standing, reinforced earth walls, such as the one illustrated, that the

location of the critical failure surface can be predicted. The failure surface

extends from the base of the wall upward at an angle of 45+ /2 until it

intersects a failure surface extending vertically downward from the soil surface

at a distance O.3H from the edge of the wall where H is the height of the retaining

wall (Figure 3-9). With the critical surface known, the maximum tensile force that

will have to be resisted by a reinforcing element can be determined. That tensile

force is calculated using the relationship,

T=KoXY 3-3

where, T maximum developed tensile force, K = a coefficient which converts

vertical to horizontal pressure, o = the vertical soil pressure, and X and Y are

the horizontal and vertical spacing of the reinforcements.

This maximum developed tensile force must be successfully resisted by

the reinforcing elements in two modes; ultimate strength and pull-out. To design

for the ultimate strength of the reinforcements, the following check must be

made;
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Figure 3-9. Diagram of a simple rectangular reinforced earth retaining wall with
no external loads showing the location of the potential slip surface.
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t b
FSR

3-4

where FSR = required factor of safety in rupture, R = a maximum allowable

tensile stress either an ultimate stress or yield stress, and t and b = the thickness

and width of the reinforcing elements, respectively. The maximum tensile force

developed must also be resisted in pull-out and the following relationship

should also be checked for all the reinforcements.

T O, 2bL 3-5

where, FS = required factor of safety in pull-out, t = apparent coefficient of

friction between the soil and the reinforcing element, and L = length of the

reinforcing element outside the critical failure surface. The other terms have been

previously described and the 2 simply accounts for both sides of the reinforcing

element.

There are many aspects of reinforced earth walls and the design

procedure which separate the subject markedly from root reinforcement in

shallow forest soils. Because a reinforced earth wall is constructed in place, it is

possible and required to know most of the design parameters like, 1) the location

of the perceived critical failure surface, 2) the mechanical properties of the stress
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backfill like the density and internal angle of friction, 3) the allowable tensile and

modulus of the reinforcements, 4) the apparent coefficient of friction, ji,

between the soil and the reinforcements, and 5) the length, width, thickness, and

spacing of the reinforcements (Mitchell and Villet, 1987). These same parameters

are not known in the case of root reinforcement and in most cases it would not be

possible to determine them easily. An example of this problem is the number,

length, diameter, allowable tensile stress, modulus, and apparent friction

coefficient of tree roots within a potential landslide mass.

An additional point that needs to be made is in regard to the strain

compatibility of reinforced earth structures. At no place in the reinforced earth

design process is the displacement of the soil and the corresponding strain of

reinforcements considered. The entire problem is evaluated at peak soil strength,

ultimate or rupture strength of the reinforcing elements, and ultimate pull out

resistance of the reinforcing elements. These values are all modified by the

appropriate safety factors. While soil strength is not explicitly dealt with in this

problem, like a traditional limit equilibrium problem, the assumption is made

that by using the appropriate lateral earth pressure coefficient the soil will

support itself to the maximum extent possible or, in other words, the peak

strength in the soil will be mobilized. A further assumption is that the soil

displacement that is required to mobilize peak soil strength will also be sufficient

to mobilize the required tension in the reinforcing element to result in a stable

structure. The design process is driven by ultimate stress values to insure failure
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of the structure will not occur and the strains needed to simply make the

structure function at working stresses are not designed for but deemed

acceptable to perform their task on the basis of a critical mass of data from

instrumented existing structures. Thus, the strain compatibility of the dissimilar

materials, which appears to be an issue with roots and shallow forest soils, is not

explicitly designed for in reinforced earth structures.

A companion type of reinforced earth structure that comes closer to

performing like, and is analyzed like, root reinforcement in shallow forest soils is

soil nailing. Soil nailing has two primary uses, excavations and potential failing

surfaces. It is an in situ reinforcement technique which consists of placing

passive, high modulus, high tensile strength inclusions into a soil mass to give it

increased shearing resistance along a potential failure surface. An example of a

typical use of soil nailing is to help stabilize an excavation as illustrated in Figure

3-10. As the excavation is lowered successively, soil nails, which are usually steel

bars, are driven into the soil. The objective is to drive the steel bars across any

potential failure surfaces thus adding the strength of the steel bars to the

shearing resistance of the soil.

The design process for soil nailed structures is different from reinforced

earth structures. For soil nailed structures the global stability of the entire

structure is the primary design goal and not the capacity of individual nails as in

reinforced earth. The first step in the design of a soil nailed structure, like all

slope stability projects, is to determine the location of a critical failure surface.



Excavation by Steps

Retaining Structures

Potential Sliding Mass

Slope Stabilization

Figure 3-10. Two examples of soil nailed reinforced earth structures; an
excavation and a stabilized potential slide mass.
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Soil nailing is unlike reinforced earth structures which are manufactured in

placeand come with empirical performance data which delineates the location of

the critical failure surface. Soil nailing requires a traditional approach to the

location of the critical failure surface which includes lateral earth pressure theory

and tradition slope stability analysis methods.

Once the critical failure surface is located, the design procedure consists

primarily of running a limit equilibrium slope stability analysis of the failure

surface with the soil nails included. A "slices" or "wedge" method of slope

stability analysis is recommended (Mitchell and Villet, 1987) and the increased

shearing resistance of the soil nails are included as vectors with a magnitude and

direction located along the failure surface. There are several analysis methods

which include different components in the increased shearing resistance. Some

methods include both the increased tension in the soil nail as well as its shear

capacity. Another method, the "Davis" method, deals only with the increased

tension in the soil nail and it is the only method which will be discussed in detail

because it is the closest analog to how root reinforcement is expected to occur.

The increased shearing resistance which is the increased tension in the

reinforcements, or the soil nails, is either the allowable tensile capacity or the

ultimate pull-out resistance of the portion of the nail that extends beyond the

critical failure surface. The values for these quantities are calculated in a maimer

similar to equations 3-4 and 3-5 for reinforced earth reinforcements except the

geometry is round, not thin and wide. The allowable maximum tensile capacity
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is either a rupture or yielding load modified by the nail dimensions and an

appropriate factor of safety. Ultimate pull-out capacity is a product of the

apparent friction coefficient, effective vertical stress, surface area of the nail

extending beyond the failure surface, and an appropriate factor of safety. The

smaller of these two values is entered into the limit equilibrium analysis of the

factor of safety.

This design method approaches more closely how root reinforcement

could be handled. In comparison with the reinforced earth design procedure, the

location of the critical failure surface isn't as well known but this shouldn't be an

analysis problem because it can still be placed well enough for design purposes.

Also, the soil is in situ and not manufactured so the soil properties will not be as

well known but that also should not be a problem because the properties of the

in situ soil can be determined. But, the reinforcement parameters should be much

better known than working with root reinforcement. The allowable tensile stress,

modulus, apparent friction coefficient with the soil, size and the number of

reinforcements should all be known as a part of the design process.

The design procedure for soil nailing also involves only ultimate stresses.

The assumption is made, once again, that the soil displacement will be such that

the full strength of the soil will be mobilized. A further assumption is that at

working stresses the displacements will develop sufficient tension to allow the

nailed structure to function. The design of the nails is to keep the structure from

failing and the assumption is, supported by empirical data, that if it doesn't fail
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there is sufficient increased shear stress at working displacements and stresses to

allow the structure to function as designed. So again, the strain compatibility

issue between dissimilar materials, which appears to be an issue with root

reinforcement and shallow forest soils, is not explicitly designed for.

While both limit equilibrium design methods and empirical relationships

derived from observations on full scale structures work, there is ongoing interest

in design methods which are "strain compatible" or "kinematically correct".

There have been a series of articles by Juran and his associates which present a

strain compatible design method for reinforce earth walls (Juran and Chen, 1989)

and geosynthetic reinforced soil walls (Juran, et. el., 1990b). They also present a

kinematical limit analysis method for soil nailed structures (Juran, et. al., 1990a).

In these articles the authors present assumptions which would seem to invalidate

their use in modeling root reinforcement, namely that shear zone width is

unaffected by the reinforcements and that the effect of local soil-reinforcement

friction on the state of stress in the soil can be neglected. The articles and the

ideas they have presented also have not received universal acceptance from the

geotechnical community (Leshchinsky, 1991; Leshchinsky and Boedeker, 1991;

Jewell and Pedley, 1991; Shewbridge and Sitar, 1992). For these reasons, no

attempt will be made to reconcile the strain compatible design for reinforced

earth walls with root reinforcement in shallow forest soils.



Empirical Models

There have been several models developed to predict either the strength

of soil/root composite materials or predict the strength added to soil resulting

from root reinforcement. The limitation of most of these models is that they are

either empirical models and thus appropriate for describing only the data set

they were developed from or are more basic process models which were

developed or calibrated using a limited empirical data set which limits the

usefulness of the model. For example, Ziemer (1981a) developed a linear

regression model predicting the strength of rooted soil columns as a function of

the oven dried weight of live roots less thar 17 mm in diameter. The data used to

develop the model was from Pinus contorta growing on a beach sard in

California. So while the developed model may be very good, if it is used outside

of beach sand and shore pine then the predicted strength is extrapolated far

beyond the data base. This fact explains why Ziemer (1981a) didn't predict

increased soil strength due to root biomass charges after harvesting from his

root biomass data. The equation was inappropriate for that data and he could

only predict net root reinforcement.

Endo and Tsurutu (1969) also developed a regression model in which the

rooted strength of prepared nursery soil was predicted as a function of the

normal stress on the failure surface in the soil and the total weight of live alnus

glutinosa roots. O'Loughlin (1972) developed a linear regression model predicting

rooted soil strength as a function of fresh root weight for steeply sloping,
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shallow, forest soil in coastal British Columbia. For both of these studies the

value in the regression model is simply hypothesis testing because its usefulness

becomes very limited when applied outside of the range of the data used to

develop it.

Wu, et. al. (1988a) developed a process level model describing the

interactions between soil and roots and predicts increased soil strength for the

soil/root complex. The model is based on the solution for a laterally loaded pile

in a flexible foundation (Scott, 1981). The authors start with the fourth order

differential equation describing the behavior of a laterally loaded pile and

integrate it four times to solve for four constants of integration. There are three

forms to the solution. One form involves the traditional laterally loaded pile

problem with small displacements at the top of the pile. A second form is the

laterally load pile equation solved for the case where there are large

displacements at the top of the pile. In this form, a term for the axial load in the

pile is included. The final form is of the laterally loaded pile for the case when

the pile can act only in tension and this form is the solution for a cable. The

equations are all solved in closed form using the boundary conditions of the

problem to solve for the constants of integration.

The analytical model developed by Wu, et. al. (1988a) was evaluated by

the use of both laboratory model tests and in situ soil strength testing of a rooted

forest soil (Wu, et. al., 1988b). A 30 x 15 x 15 cm shear frame was used that was

only open on two sides, the bottom and the other two sides were closed off. The
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same shear frame design was used by Ziemer (1981a). During the in situ soil tests

the displacement of the ground adjacent to the shear frame was monitored and

after the shear test was complete the soil in the shear box was removed and the

roots in the shear box were exposed. Roots that were displaced, roots that had

failed in tension, and roots that had been cut off by shear box were all

considered. The size, geometry, and failure mode of the roots were used to

model the contribution of the roots to the shear resistance of the soil. The authors

found general agreement between the model and measured shear resistance of

the soil/root complex and this research confirms, to a degree, the use of a

laterally loaded pile solution method for the problem of soil-root interactions.

The model is constrained from further use by the amount and quality of the

input data needed from the in situ soil strength tests that were used to calculate

the modeled shear resistance. To use the developed model without having in situ

soil strength test results would require that that a similar quality and quantity of

information regarding the number, size, geometry, and failure status of the roots

in the soil would have to be known to predict soil strength a prior. Even though

Wu, et. al. (1988a) present an analytical model to predict the strength of soil-root

complexes, the model still requires the prediction of a number of characteristics

of the soil sample at failure before the strength can be predicted. As a

management tool then, this model is of little more value than the empirical

models requiring live root weight of the soil sample.
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Shewbridge and Sitar (1990) developed a deformation-based, rigid-plastic

model to describe the effect of different types and numbers of reinforcements on

the strength of sand in direct shear. Once again, this model was developed

specifically to evaluate experimental results obtained from large-scale, direct

shear tests (Shewbridge and Sitar, 1989). In fact the input for the model is in the

form of output from the direct shear tests. The model is useful as a research tool

to help analyze and provide insight into the direct shear results, but it should not

be considered a viable management tool.

Similar comments must be made concerning the model developed by Abe

and Ziemer (1991) which was developed, once again, specifically to help explain

results from direct shear tests. Large-scale direct shear tests were carried out

investigating the effect of different numbers and diameters of pine roots on the

strength of sand in direct shear. In fact, once again, model inputs were in the

form of outputs from the direct shear tests, so the model, while it may be useful

as a research tool, certainly was not developed as a management tool.

Wu-Waldron Model

There is one model available which describes a mechanism of root

reinforcement and was not developed around empirical data. The model was

developed independently by both T. H. Wu and L. J. Waldron and is the most

widely cited root reinforcement model available. The description of the model
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presented here is referenced from Waidron (1977) and Wu, et. al. (1979) and has

generally come to be referred to as the Wu-Waidron model.

A definition sketch for the development of the Wu-Waldron model is

shown in Figure 3-11. The Wu-Waldron model assumes a shear zone of fixed

width, Z. Across this shear zone a fully elastic root or some other reinforcing

element is embedded with known modulus, E. At present, for the purposes of

discussion, the assumption is made that the reinforcing element is embedded

perpendicular to the shear zone. A lateral displacement or shear deformation of

distance Y is imposed on the shear zone. It will be further assumed that the

shear-stress transfer between the soil and the reinforcing element is fully

engaged, thus the reinforcing element is firmly pinned at each end and can not

slip. As shear deformation is imposed, the reinforcing element must stretch

across the shear zone. Knowing both the shear zone width, Z, and the magnitude

of the shear deformation, Y, the angle 6 that the reinforcing element makes with

the shear surface can be determined and the increase in length, 1, of the

reinforcing element can also be determined.

tanø=Y/Z 3-6

Ll Z=Z( 1
1)=Z(secø-1) 3-7



Shear
zone

Intact root

Deformed root

Figure 3-11. Definition sketch for the Wu-Waidron root reinforcement model
(Greenway, 1987).
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Thus, if the size of the reinforcing element is known, then that value along with

the modulus, E, arid the shear zone width, Z, allows the increased tension in the

reinforcing element to be calculated using the relationship,

T
A1EA

z

where T,. is the increased tensile force in the reinforcing element due to the

change in length Al, and A is the cross sectional area of the reinforcing element.

The tensile stress, tr is simply the tensile force, Tr divided by the cross sectional

area, A, of the reinforcing element.

The key to root reinforcement is the increase in tension or tensile force in

the roots or reinforcing elements. If this is true, then equation 3-8 implies that to

quantify or predict the increase in tension in reinforcing elements, a knowledge

of the cross sectional area of the reinforcing elements, the modulus of the

reinforcing elements, the width of the shear zone, and the shear deformation all

at failure is required. This is a considerable amount of information to discern a

priori about a particular site.

This problem can be greatly simplified by the assumption that peak soil

strength and maximum reinforcement will occur when the reinforcing elements

are at ultimate strength. To get the total tensile strength available to reinforce soil

strength expressed on a per unit area of soil basis, the root area ratio, or the

fraction of the soil cross section occupied by roots or reinforcing elements, is

3-8



needed along with the average ultimate tensile strength of the roots or

reinforcing elements expressed as a stress.

=-R tr
A

where, R is the total tensile strength available to reinforce soil expressed on a per

unit area of soil, t is the average ultimate stress of the reinforcing elements, and

A/A is the root area ratio.

In Figure 3-11, the definition sketch for the Wu-Waidron model, the

increase in tension in the single root can be resolved into components which

directly oppose shear and which augment the normal stress. In this manner the

increase in soil strength attributed to root reinforcement can be calculated by

resolving the increase in tension in a single reinforcing element into its

components as follows,

Sr =tr(cosOtanø+sinO) 3-10

where Sr is the shear strength increase in the soil due to roots and tr is the

increase in tensile stress in a single root. The other terms have been described

except for 0 which is the internal angle of friction of the soil.

This same relationship can be used to calculate the increase in soil strength

due to roots on a per unit area of soil basis by using the term R which has been
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defined as the average ultimate increase in stress due to reinforcing elements

expressed on a unit soil area basis. Notice that the shear deformation angle, 0, is

still in the relationship requiring knowledge of the extent of shear deformation to

predict the increase in soil strength due to reinforcement. Wu (1976) and

Waidron and Dakessian (1981) report, based on comparisons of output from the

model to results of laboratory direct shear tests, that for both rooted and

unrooted soil samples the collection of terms (cos 0 tan 0 + sin 0) is relatively

insensitive to both changes in 0 and 0 within the modeled range of these values.

For a range of values of Øbetween 20 and 40 degrees and 0 between 40 and 70

degrees, the value of (cos 6 tan 0 + sin 6) varied from 0.92 to 1.31 (Wu, 1976 as

reported in Gray and Megahan, 1981). Wu, et. al. (1979) chose a value of 1.2 as a

mid-range value to model root reinforcement for his backanalysis. Gray and

Megahan (1981) chose a midpoint value of 1.12 with which to model root

reinforcement. The value 1.2 is found most often quoted and used in the

technical literature which makes the form of the equation for calculating the

increase in soil strength due to root reinforcement of the form,

S=1.2R 3-11

where, Sr is the increase in soil strength due to root reinforcement and R is the

total tensile strength available to reinforce soil expressed on a per unit area of
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soil. R is the sum of the tensile strength of all the individual roots expressed as a

stress multiplied by the root area ratio.

Equation 3-11 is the root reinforcement equivalent to ultimate stress

design for both reinforced earth and soil nailed structures. There are several

assumptions that have to be made in order for equation 3-11 to work. First of all,

there is the assumption that peak root reinforcement will occur at ultimate stress

for the reinforcing elements and secondly, there is the assumption that all

reinforcing elements will reach this stress simultaneously at the same shear

deformation. There is no consideration given of the strain compatibility problem

between different sized roots or reinforcing elements. Furthermore, the ultimate

stress in the reinforcing elements will be reached at a deformation in which the

peak strength of the soil can be realized. In other words, there is no consideration

of strain compatibility problems between dissimilar materials such as a loose,

cohesionless forest soil and small and large roots. Some researchers have

modified their estimates of root reinforcement obtained from this equation

because they realize the problems inherent in assuming that all roots reach

ultimate tension simultaneously. Burroughs and Thomas (1977) reduced their

estimate of root reinforcement by 25 percent based on this reasoning, but the

basis for that particular value was not substantiated.

Subsequent research has shown that the ultimate tension in a root is not

the limiting value in root reinforcement of shallow forest soils. Waldron and

Dakessian (1981) state that the shear-stress transfer at the soil-root interface is the
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quantity most limiting successful modeling of root reinforcement. This finding is

supported by research from the reinforced earth and soil nailing field which

shows mobilization of tension in the reinforcements to be much more important

in reinforcement than bending stresses (Shewbridge and Sitar, 1990; Jewell and

Pedley, 1992). Despite these research advances and admonitions to the contrary,

the Wu-Waldron model with the recommended factor of 1.2 can be found in

numerous reports and handbooks summarizing the state-of-the-knowledge and

yielding design methods (Sidle, et. al. 1985; Greenway, 1987).

An assumption of the Wu-Waldron model that was presented but not

discussed is the assumption that reinforcing elements are arranged

perpendicular to the shear zone. This assumption greatly simplifies the real

world. The effect on soil strength increase of changing orientation of the

reinforcements has been considered analytically (Wu, et. al., 1988a) and in direct

shear tests (Gray and Ohashi, 1983; Jewell, 1980). Orienting the reinforcing

elements normal to the shear zone is not the most optimum alignment. But,

assuming that all reinforcements are aligned normal to the shear surface does not

give an unreasonable average response. Gray and Ohashi (1983) in laboratory

direct shear tests showed that a random orientation of fibers and a normal

orientation of fibers gave comparable results.



MODEL DEVELOPMENT

Conceptual Model Development

The root reinforcement model developed as a part of this research project

and described in this dissertation was developed to help quantify the effect of

reinforcing elements, especially tree roots, on the strength of shallow, forest soils.

The effect being modeled is the addition of reinforcing elements with high tensile

strength and a high modulus, i.e. conifer roots, to a cohesion1ess soil which has

essentially no tensile strength. The development of the model is initiated,

conceptually, by embedding a reinforcing element into an isotropic block of soil

as in Figure 4-1(a). To make this conceptual situation as realistic as possible, the

block of soil is located within a landslide-prone goemorphic feature called a

headwall or a "colluvial hollow" which is steeply sloping, forested, and has a

shallow soil with a potential failure plane through it (Figure 4-2). The reinforcing

element is assumed to be a conifer root which is parallel to the soil surface and

perpendicular to the potential failure surface, therefore, the view of the soil block

in Figures 4-1, 4-2, and 4-3 is a view normal to the hillslope and looking down on

it. The soil texture is assumed to be sandy with few fines resulting in little, if any,

cohesion.

As a landslide initiates on the hillslope where the conceptualized soil

block is located, one half of the soil block will begin to move downslope relative

to the other half. The movement of the soil will occur along a failure surface
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within the soil block. As the deflection between the halves of the soil block

increases, the reinforcing element extending through the soil block crossing the

failure surface will deform. The deformation of the reinforcing element will

cause it to lengthen which will cause an increase in tension in the reinforcing

element. This increased tension may cause the reinforcing element to either break

in tension, pull-out, or simply continue to deform and lengthen with an

accompanying increase in tension. If the reinforcing element breaks or pulls-out,

the reinforcing effect will be reduced considerably, thus, a further assumption is

made that the reinforcing element is sufficiently long so that shear-stress transfer

between the soil and the reinforcing element will be fully engaged and allow the

ultimate tensile strength of the reinforcing element to be mobilized.

At any given deflection, dy, the soil block is symmetric about the failure

surface (Figure 4-1(b)). Thus, half of the soil block can be replaced by an

equivalent force system. Waldron (1977) and Wu, et. al. (1979) in their separate

developments of this concept have replaced the root at the failure surface with an

equivalent force system comprised of a single tension vector, T, inclined at an

angle, 0 ,from a perpendicular to the failure surface. The tension vector is

resolved into components parallel, T, and perpendicular, T, to the failure

surface (Figure 4-3(a)). The component parallel to the failure surface directly

opposes movement of the soil block and the component perpendicular to the

failure surface contributes to the normal force. If the assumption is made that the

deformation is sufficient to mobilize peak soil strength, then the components of



the tension vector can be included directly into the Mohr-Coulomb strength

equation. Thus, the strength of the conceptualized soil block resisting failure

becomes:

s = c+ -?i1 sine + (-?ii cos e + a ) tan '
A

In this equation, S is soil strength, c' is effective soil cohesion, T is the tensile

force in the reinforcing element, A is the cross-sectional area of the soil block the

reinforcing element is embedded in, e is angle the reinforcing element makes

with a perpendicular to the failure surface, and Ø'is the effective internal angle of

friction of the soil. Thus, the strength the reinforcing element adds to the strength

of the soil block can be given by the equation,

L1S = ii (sine + e tan
A

where, uS is the added strength of the soillreiriforcement composite due to

the presence of the reinforcing element.

If a free body diagram of the conceptualized soil block is drawn, it

becomes obvious that a shear force in the reinforcing element develops as

incipient shear along the failure surface occurs. The shear vector is perpendicular

to the tension vector (Figure 4-3(b)) and can also be resolved into components

4-2
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parallel and perpendicular to the failure surface. This concept was developed by

Jewell and Pedley (1992) and the relationship they present for the increase in

strength attributed to the reinforcing element if the shear force is considered is,

T. V (T V.\LS=sin6+cos6+I cosO--sinO ItanØ'
A A A )

In this expression, the terms are as previously defined and V is the shear force in

the reinforcing element. If equation 4-3 is added to the Mohr-Coulomb strength

equation, equation 3-1, the strength of the soil/reinforcing element matrix can be

described using the resulting equation,

4-3

[c,

T V 1 1T V
= +sinO+--cosOl+IcosO--sznO+a ]tanø'

A A JLA A
4-4

Jewell (1980) has demonstrated that the relationship described by

equations 4-1 and 4-2 predict the strength increase of sand in direct shear with

different types of reinforcing elements installed at several orientations.

Therefore, the model developed as a part of this project uses the relationships

presented in equations 4-1 through 4-4 to predict the increased soil strength

attributed to reinforcement by conifer roots. To predict these soil strength

increases, it is necessary to develop analytical methods to predict the magnitude

s0
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of the tensile and shear forces developed in tree roots as they deform and stretch

across failure surfaces when movement of the soil occurs.

Analytical Model Development

The purpose of the analytical model is to predict both the tensile and

shear forces in the reinforcing element at the failure surface as the reinforcing

element undergoes deformation due to the downslope movement of the soil

block as it begins to fail as shown in Figures 4-1 and 4-2. To calculate the shear

and tensile forces in the reinforcing element at the failure surface, two analytical

problems must be solved. The first problem is to determine the shape of the

reinforcing element that results from a given deformation of the soil block. As

the two halves of the soil block move relative to each other, the reinforcing

element extending across the failure surface will deform. The new shape will be a

function of the size and stiffness of the reinforcing element, the depth the

reinforcing element is embedded in the soil, the density and strength of the soil,

and the deformation of the block of soil. The lateral force applied to the

reinforcing element at the failure surface that caused the deformed shape, Vs,, will

also be determined as a part of the calculation of the shape of the element. The

applied force and the shape of the reinforcing element will be determined using a

solution technique for laterally loaded piles. The changing shape of the
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reinforcing element will cause it to stretch and thus cause the tension in the

reinforcing element to increase.

The second problem is to determine the applied tensile force needed to

stretch the reinforcing element the amount determined by the lateral solution.

The tensile force applied to the reinforcing element will be calculated using a

solution technique for axially loaded piles.

Thus, the root reinforcement model resolves the problem into a lateral

solution and an axial solution arid the principle of superposition is used for the

final solution. The applied lateral force arid shape of the reinforcing elementare

generated using a laterally loaded pile solution, then the resulting shape of the

reinforcing element is feed into an axially loaded pile solution and the tensile

force applied to the reinforcing element is generated. The shape of the

reinforcing element, shear force, and tensile force are then superimposed for the

final solution.

Lateral Solution

The problem of determining the shape of a reinforcing element as it

deforms across a failure surface in a soil is difficult arid its solution involves a

complex soil-structure interaction. Not only must the effects of externally applied

forces on the reinforcing element be accounted for, but also the subsequent

deflection of the reinforcing element into the soil arid the resulting pressure on
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the reinforcing element from the soil must also be accounted for. This problem is

part of a class of problems dealing with beam-columns on flexible foundations

and theoretical solutions to this class of problems are presented in Hetenyi

(1946). The derivation of the governing differential equation for a flexible beam

on an elastic foundation, which is the theoretical basis for this problem, is

reproduced in Appendix A. Furthermore, as discussed in the Literature Review

chapter, Wu, et. al. (1988a, 1988b) used a laterally loaded pile solution to evaluate

the contribution of the tensile force in roots to the shearing resistance of

reinforced soils both in laboratory tests and in-situ shear tests and the results

were reported to be generally satisfactory.

Therefore, the solution technique for laterally loaded piles was chosen for

use in the lateral portion of this analytical model. The governing differential

equation for the laterally loaded pile solution, which is derived in Appendix A,

is:

EI_L TdY+E(y)=O
dx4 2

In this equation, the parameters describing the reinforcing element are; E the

modulus of elasticity, I the moment of inertia, T the tensile force in the

reinforcing element, and y the lateral deflection of the reinforcing element at any

distance x along its length. The parameter describing the soil is E5, the secant

modulus of the soil's response to the lateral defection, y.

A-17
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In the analytical model that has been developed, the solution of equation

A-17, the governing differential equation for the behavior of laterally loaded

piles, is estimated using a finite-difference approximation method. The reasons

for choosing this solution method are twofold. First of all, the shape of the

deflected reinforcing element is needed to calculate the tension in and geometry

of the reinforcing element at the failure surface so that the forces in the

reinforcing element can be appropriately resolved. The second reason for

choosing the finite-difference approximation method is that it is an intuitive

method, computationally straightforward, has a solid base in the technical

literature.

The finite-difference approximation of the governing differential equation

yields the deformed shape of the reinforcing element. Wu, et. al. (1988a, 1988b)

solved the laterally loaded pile differential equation in closed form by

integrating the equation four times and using boundary conditions to solve for

the constants of integration. In this manner, tensile forces were calculated for

roots which were already deformed and the shape was known. The closed form

solution allows for the determination of the forces once the shape is known but

does not allow for determination of the shape given the forces.

Both Waldron (1977) and Wu, et. al. (1979) separately developed an

approach to the solution of the root reinforcement problem in which the tension

and geometry of the reinforcing element could be determined if the deformation

of the soil and the shear zone width were known. However, as Shewbridge and
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Sitar (1989; 1990) point out, a method to predict shear zone width doesn't exist

and, additionally, their research along with that of Abe and Ziemer (1991) points

out how difficult the development of such a method might be. Thus, the existing,

known technology to predict the shape of a laterally loaded pile is a finite-

difference approximation of the governing differential equation.

A finite-difference solution has been developed for the design of laterally

loaded piles (Gleser, 1953; Reese, et. al., 1974; Reese, 1977), and the method is

recommended by design manuals for laterally loaded piles (Reese, 1984; 1986).

The development of the technology and the method is well documented in the

literature and the method has a proven track record as a robust method for

solving the type of problem being considered.

To solve the governing differential equation for the shape of a particular

reinforcing element, it must first be discretized into n elements, each of a length

h, represented by nodes. Then a finite-difference equation must be written for

each node. A general finite-difference equation is written for the interior nodes,

and the finite-difference form of four boundary conditions is combined with the

general finite-difference equation to yield equations for the four boundary nodes,

two at each end of the reinforcing element. The nodes are numbered sequentially

from 1 at the failure surface to n at the end of the reinforcing element away from

the failure surface. The discrete element at the failure surface is the first element

and is represented by the first node. The lateral deformation of that node carries

the label and subscript, y7. The last discrete element at the end of the reinforcing
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element away from the failure surface is represented by the th node and the

lateral deformation of that node carries the label and subscript, y.

There are four boundary conditions for this problem. These boundary

conditions are:

The end of the reinforcing element away for the failure surface will

support no moment, therefore M=O.

Also, the end of the reinforcing element away from the failure surface will

support no shear, therefore V=O.

The reinforcing element at the failure surface is at an inflection point and,

by definition, there is no moment in the reinforcing element at that point,

M7=O.

The reinforcing element at the failure surface will support a shear force

and that force is a fixed and unknown quantity, V1.

Five finite-difference equations have been derived to describe the five

different kinds of nodes requiring equations. The derivation of these five

equations is presented in Appendix B. The five finite-difference equations are

reproduced below.

The finite-difference equation for the first node at the failure surface is,

2E1 '\ "-4E1 (2E1'\ 217
1

h + h2 h4 h2) Y3 B-17



And, the finite-difference equation for the node at the end of the

reinforcing element away from the failure surface is,

(2E1 2T (-4E1 2T (2Ei'\Yn++E)+y1
h4

Y2)= 0

These finite-difference equations which are written for the nodes in the

reinforcing element are a system of n simultaneous equations with n unknowns.

The solution of this system of equations is very straightforward with any of a

number of equation solvers available (Maron, 1987; Press, et. al., 1992). To solve

the system of linear equations requires that first the system of equations be

expressed in the appropriate matrix format,

[A] [x] = [b]

where [A] is the coefficients matrix, [b] is the matrix of constants, and [x] is the

matrix of unknowns. The coefficients matrix, [A], is an n x n matrix while both

the matrix of constants, [b], and the matrix of unknowns, [xl, are n x i matrices.

The deformed shape of the reinforcing element and the applied lateral

force at the failure surface are the desired products of the solution. However, the

equation for first node, equation B-i7, has both the applied lateral force and the

lateral deflection of the first node in it. One of these unknowns must be provided

to drive a solution. In the root reinforcement model, the added strength of the

system for a given deformation is the desired end result, so the deflection of the
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The finite-difference equation for the second node, one node from the

The finite-difference equation for the next-to-the-end node away from the

failure surface is,

(-2E1 2T,1 (5E1 2I_ EJ+
h4 h2 h2 +

(-4E1 T_1"1 (EI'\
h4 )+Yn3L7J=O
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B-T12

failure surface is,

y1.---(2E1 27
--)+Y2----+-----+Es)+Y3l

(5EI 27 (-4E1 27 (Efl
B-18

h4

The finite-difference equation for the interior nodes is,

(Efl (-4E1 T (6E1 2Tf-+E)+
h4 J+Ym1jTYm+2)+Ym+i

Ym-j
4EJ (El \

_9J+Ym2t_7)=O B-5
h4
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first node is provided as a known and the applied lateral force on the reinforcing

element at the failure surface for that deformation is one of the outputs. A system

of simultaneous equations in matrix form representing a reinforcing element is

shown in Figure 4-4.

The coefficients matrix is obviously a banded diagonal matrix (Figure 4-4).

There are values in the matrix along the diagonal and for two entries each side of

the diagonal. The remainder of the values in the matrix to the upper right and

lower left of the diagonal are zero's. To reduce both the memory requirements of

the matrix in a computer and the number of math operations, the coefficients

matrix is stored in compact manner as an nx5 matrix with the diagonal elements

in the third column and the off diagonal elements stored appropriately with

respect to the diagonal. A system of simultaneous equations with the coefficients

matrix in compact form is presented in Figure 4-5.

The coefficients matrix is made up of the flexural rigidity or stiffness term,

El, the tension in the reinforcing element, T, the secant modulus of the soil

response, E, and the length of the discrete elements, h. In the matrix of

constants, the top three nodes are represented by non-zero entries and these

values are made up of the same terms as the coefficients matrix except that they

are multiplied by the lateral deflection of the reinforcing element at the failure

surface, y1. The matrix of unknowns is made up of the lateral deflections of all the

nodes in the reinforcing element, y2 to y, except for the first entry which is the

horizontal force applied to the reinforcing element at the failure surface. The.
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horizontal force applied at the top of the reinforcing element in the solution

vector, V, is the force required to deflect the reinforcing element the amount

input in the constants matrix, y1.

All of the reinforcing elements modeled during this project were assigned

a round cross section (i.e. conifer roots or round wooden dowels, etc.). Thus, the

centroidal moment of inertia, I = ith4/64 was used in the coefficients and

constants matrix when the moment of inertia was needed. In that equation, b is

the diameter of the reinforcing element. The balance of the terms in the

coefficients and constants matrix will be discussed and defined in the subsequent

section.

Modulus of Elasticity, E,for Conifer Roots

One of the parameters included in both the coefficients and constants

matrix is the modulus of elasticity of the reinforcing element. This value must be

known if the reinforcing element is to be treated as a beam-column and its

behavior both in tension and bending predicted. Of primary interest is the

behavior of woody roots in shallow, loose, sandy soils, therefore, the modulus of

elasticity value of most interest is for woody roots. The root reinforcement model

is developed so any value of modulus of elasticity can be used, in fact,

reinforcing elements of several different materials were modeled, but the

primary focus remains on woody roots. The modulus of elasticity values used to
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model root reinforcement in shallow forest soils were obtained from the technical

literature, no tests were undertaken as a part of this project.

The literature available on modulus of elasticity values for woody roots

reports on conifer roots. Three sources are reviewed in which conifer roots were

tested in a standard manner in tension in a laboratory and modulus of elasticity

values were determined. The results of the tests are reported in three different

types of units, so all units were converted to English units for the purpose of

comparison.

Waldron and Dakessian (1981) determined the modulus of elasticity of the

roots of 52-month old ponderosa pine seedlings. Pine roots from 0.01 to 0.24

inches (0.25 to 6 mm) in diameter were tested and the results were presented in

the form of an exponential equation. The modulus of elasticity ranged from

35,600 psi (2.5 x 106 g/cm2) for the 0.01 inch roots to 10,200 psi (7.2 x io g/cm2)

for the 0.24 inch roots. No measures of variance were presented.

O'Loughlin (1972; 1974) tested both western red cedar and Douglas fir

roots. They ranged from 0.04 to 0.47 inches (1 to 12 mm) in diameter and were

taken from mature, living trees. For Douglas fir, the average modulus of

elasticity was 124,000 psi (8,740 kg/cm2) with a standard deviation of 85,300 psi

(6,020 kg/cm2). The western red cedar roots had an average modulus of elasticity

of 137,000 psi (9600 kg/cm2) with a standard deviation of 107,000 psi (7600

kg/cm2).
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Commandeur and Pyles (1991) also tested Douglas fir roots from young

growth, living trees. The roots ranged from 0.1 to 0.79 inches (0.25 to 2 cm) in

diameter. The authors reported both a form modulus, when the root was

straightening out, and a material modulus when the root was strained elastically.

For all roots tested, the average form modulus was 26,900 psi (185 MPa) with a

standard error of 6,800 psi (47 MPa) and the material modulus was 73,000 psi

(503 MPa) with a standard error of 16,000 psi (112 MPa).

The reported values of modulus of elasticity for conifer roots range from a

low of approximately 10,000 psi to a high of approximately 137,000 psi. These

reported values are all within an order of magnitude of each other, so for

modeling purposes in this project, the material modulus from the work of

Commandeur and Pyles (1991) of 73,000 psi was used as the modulus of

elasticity for conifer roots.

The Secant Modulus of the Soil Reaction, Es

A parameter needed for both the coefficients and constants matrix is the

soil reaction to the lateral deflection of the reinforcing element. In the derivation

of the governing differential equation for this problem, the soil reaction, p, is

represented in the balance of forces as a distributed force and expressed as a

force per unit length of the reinforcing element. The form of the governing



differential equation using p for the soil reaction is reproduced below and

derived as equation A-16 of Appendix A.

E1.- T4+p=O
dx dx2

Traditionally, the convention used to determine the soil reaction in this

type of problem has been based on the Winkler spring concept. In this situation,

the spring constant is called the coefficient of horizontal subgrade reaction, kh,

and it is a proportionality constant between the soil reaction, p, and the lateral

deflection, y, of the reinforcing element for a given soil and reinforcing element.

p=khy 4-6

The soil reaction is not a linear function of lateral deflection and it is not possible

to represent the coefficient of horizontal sub grade reaction as a constantover the

range of deflections considered within the scope of this project. Instead, the

relationship between the lateral deflection of a reinforcing element into a soil and

the soil reaction is characterized by a p-y curve. An example of a typical p-y curve

for a shallow, cohesionless sand is shown in Figure 4-6. In this figure, the lateral

deflection of the reinforcing element is y and the soil reaction is p. The secant

modulus of the soil reaction, E, is the ratio of the soil reaction to the lateral

deflection.
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EI T4-i+E(y)=O
dx4 2 A-17

If a lateral deflection, y, is known, E5 can be determined and used to

generate matrix entries for the coefficients and constants matrices, if the p-y curve

for the given soil type is known. The balance of this section describes methods to

develop appropriate p-y curves.
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E=R 4-7
y

Figure 4-6 illustrates the concept of the secant modulus and shows that the secant

modulus of the soil reaction, E5, is larger at small deflections with the initial

tangent modulus, Es., being an upper limit. The secant modulus gets

progressively smaller as the lateral deflection of the reinforcing element

increases.

The final form of the governing differential equation as derived in

Appendix A, can be determined by solving equation 4-7 for p and substituting

that expression back into equation A-16.

p=E(y) 4-8



p-y Curves

A wide range of soil types and conditions have had p-y curves developed

for them (Reese, 1984; 1986). The soil types include soft clays, stiff clays, sands,

and rock and the conditions include cyclic and static loading, above and below a

water table, and shallow and deep soils. In selecting p-y curves to use in the root

reinforcement model, the conceptual overview of the problem for which the

model is being developed must be kept in mind. Specifically, the root

reinforcement model was developed to predict the magnitude of root

reinforcement in shallow, slide-prone, forest soils. The p-y curves used in the

model should approximate those conditions, namely, shallow, cohesionless

sands under static loading. These conditions represent a very narrow spectrum

of the total body of work on p-y curves.

The process to generate p-y curves for shallow, cohesionless sands is fairly

simple and straight forward especially when compared with theprocess

required to generate p-y curves for other soil types and conditions. There are

essentially three components to p-y curves for shallow, cohesionless sands; an

initial tangent modulus, E an ultimate resistance, and a transition curve

between these two limiting values (Figure 4-6) (Parker and Reese, 1970). The

initial tangent modulus, Es., is the slope of the initial straight portion of the p-y

curve at the origin when the response of the soil is considered linearly elastic.
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The ultimate resistance, p, is the limiting value of resistance for that soil type,

soil depth, and reinforcing element width.

Initial Tangent Modulus, E

The procedure for determining an initial tangent modulus, E, for the p-y

curve is really very simple (Parker and Reese, 1970). First, determine the density

of the sand. The density can be determined subjectively (loose, moderate, or

dense) or relative density can be used with loose being less than 35 percent

relative density, moderate being 35 to 70 percent relative density, and dense

being greater than 70 percent relative density. Next, determine whether the sand

will be above or below a water table. With these two conditions known, the

appropriate value of the constant of subgrade reaction, k, can be determined

from Table 4-1. The initial tangent modulus of the p-y curve is simply the product

of the constant of subgrade reaction and the depth of the soil where the p-y curve

is desired.

E=kd 4-9

In the equation above, E. is the initial tangent modulus in lbs/in2, k is the

constant of subgrade reaction in lbs/in3, and d is the soil depth in inches.
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Table 4-1. Recommended values of the coefficient of subgrade reaction, k
(lb's/in3), for three relative densities of cohesionless sands located either above or
below a water table (Reese, 1986).

Relative Densities Loose Medium Dense

A theoretical development for the basis of the of the initial tangent

modulus values will not be presented here. Terzaghi (1955) first presented values

for the constant of subgrade reaction, k, and suggested that the initial tangent

modulus, or the coefficient of horizontal subgrade reaction, of sand should be a

linear function of depth. Additional work by Reese and Matlock (1956)

supported the contention that the initial tangent modulus of a p-y curve

increased linearly with soil depth.

The values for the constant of subgrade reaction, k, presented by Terzaghi

(1955) were used in a full scale load test of two laterally loaded piles in sand

(Reese, et. al. 1974). When these values were used, the deflections were always

over-estimated and the values of k obtained from the load tests were several

times the values reported by Terzaghi. The authors subsequently recommended

different values for k based on their research results. These values are listed in

Recommended k (lbs/in3) for above water table 25 90 225

Recommended k (lbs/in3) for below water table 20 60 125
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Table 4-1 (Reese, 1984; 1986) and they are the values that were used in the root

reinforcement model for developing p-y curves.

Ultimate Resistance, p

In addition to the initial tangent modulus, E5, the ultimate soil resistance,

p, is the second defining parameter needed to develop p-y curves for shallow,

cohesionless sands (Figure 4-6). The ultimate soil resistance is the maximum

resistance the reinforcing element will experience as it deflects laterally through

the soil.

While the mechanics of laterally loaded piles is being used to describe the

behavior of root reinforcement in shallow forest soils, there are fundamental

differences in the way these two problems are approached. A pile extends into

the soil perpendicular to the soil surface, thus the soil resistance for a laterally

loaded pile must be represented by a family of p-y curves covering the depth of

embedment of the pile. The shape of the p-y curves will change with depth and

the magnitude of the soil resistance for a given deflection, including the ultimate

resistance, will increase with depth. Unlike a pile, the hypothetical root being

stretched across a failure surface is aligned parallel to the soil surface, at a

constant depth, therefore the soil resistance to the lateral deflection of the root

can be represented by a single p-y curve. In this case, a reinforcing element acts

more like a horizontal, flexible conduit than a laterally loaded pile.
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Values for the ultimate soil resistance were developed in the same manner

as the initial tangent modulus. Expressions describing the different failure modes

were derived and then theoretical values of the ultimate resistance were

calculated using the derived expressions. The theoretical values were verified

and adjusted based on results from both laboratory and full scale load tests.

Two failure modes, shallow and deep failures, need to be considered

when expressions are derived for the ultimate resistance of laterally loaded piles.

A shallow failure is characterized by a passive wedge developing in front of the

pile and an active wedge developing in the back of the pile. A deep failure

mechanism is characterized by soil flow around the pile. In laterally loaded pile

analysis, the ultimate resistance of the soil is calculated using both failure

mechanisms and the minimum value controls design. A transition depth, which

is the depth at which the minimum value of ultimate resistance changes from a

shallow to a deep failure mechanism, can be determined by equating the

expressions for a shallow and deep failure mechanism. The cover ratio, the depth

of cover divided by the pile diameter, for the transition depth is a function of the

internal angle of friction of the soil and the calculated theoretical values range

from approximately 11 to 25 for a range of friction angles between 25 and 40

degrees (Reese, 1984).

Using transition cover depths from laterally loaded pile design might not

be appropriate for a root reinforcement problem because, as stated previously,

the hypothetical situation presented for root reinforcement more closely
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resembles a buried flexible conduit than a laterally loaded pile. Audibert and

Nyman (1977) investigated horizontal soil restraint against buried pipes by

conducting several laboratory trials using a physical model. The trials consisted

of moving three different diameter model pipes through both a loose and dense,

cohesionless sand at cover ratios ranging from 1 to 24. They found that at cover

ratios less than three, the ultimate resistance of the horizontal soil reaction

resulted from a failure mechanism which consisted of a passive wedge bounded

by a logarithmic spiral in the direction of pipe movement and a narrow, vertical

active wedged above and behind the pipe. As the cover ratio increased, the

failure mechanism changed to soil flow around the pipe and at cover ratios of 12

to 24 only the soil flow failure mechanism was observed. For the hypothetical

situation being modeled, root reinforcement in shallow forest soils, no situations

with a cover ratio less than 12 were investigated. The lowest value of cover ratio

modeled, 12, was a 0.5 inch diameter root at a soil depth of six inches. All other

values of cover ratio modeled included either smaller diameter roots or deeper

soil depths. Therefore, only the deep failure mechanism or the soil flow

mechanism was used to calculate the ultimate resistance of p-y curves in shallow,

cohesionless sand for this project.

There are two methods available for calculating the ultimate resistance of

a deep, bearing capacity failure in shallow, cohesionless sands. Hansen (1961)

derived an expression based on the balance of forces for a long, rigid pile

rotating about a single point. The resulting expression treats the pile like a
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horizontal footing and uses a bearing capacity factor, Nq to calculate the ultimate

load. The bearing capacity factor is a combination of earth pressure coefficients

and is a function of the soil's internal angle of friction and the cover ratio of the

pile. The ultimate soil resistance can be calculated using the relationship,

Puit=YtdNq 4-10

where y is the soil density in lbs/in3, b is the reinforcing element diameter in

inches, d is the depth in the soil of the reinforcing element in inches, and N is the

bearing capacity factor. An expression for the bearing capacity factor has been

derived (Hansen, 1961) and values of Nq can be determined using published

tables (Hansen, 1961; Audibert and Nyman, 1977). Tn the tables, values of Nq are

presented for values of cover ratio only up to 20. Because an expression for the

bearing capacity factor has been developed and due to the fact that the bearing

capacity factors become asymptotic to a constant value at cover ratios greater

than 20, values of the bearing capacity factor can be estimated for cover ratios

greater than 20.

Audibert and Nyman (1977) verified the use of Brinch Hansen's bearing

capacity factor, Nq to predict ultimate soil resistance in their work with a

physical model on the horizontal soil restraint on buried conduits. They found

that Hansen's bearing capacity factor, Nq predicted the ultimate soil resistance

very well, however they only tested it for cover ratios up to 24.
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A second method for calculating the ultimate resistance of a shallow,

cohesionless sand was developed by Parker and Reese (1970). They used the

balance of forces on a single differential element of a pile moving through the

soil as the soil flowed around it to derive an expression for the ultimate

resistance. The resulting expression is quite similar to the one used by Audibert

and Nyman (1977) to predict ultimate horizontal soil resistance in their

laboratory trials of horizontal conduits. However, in the expression derived by

Parker and Reese (1970), Hansen's bearing capacity factor, Nq is replaced by a

different expression which is also a combination of earthpressure coefficients.

The expression for ultimate soil resistance derived by Parker and Reese (1970) is,

ybd (Ka(tan8 /3 - i)+ K0 tan Øtan4 /3) 4-11

where y is the soil density in lbs/in3, b is the reinforcing element diameter in

inches, d is the depth in the soil of the reinforcing element in inches, Ka is the

active earth pressure coefficient, K0 is the at-rest earth pressure coefficient, 0 is

the internal angle of friction for the soil, and /3=45+ 0/2. By comparing

equations 4-10 and 4-li, it can ascertained quite easily that the bearing capacity

factor, Nq was replaced by the expression which is a function solely of the soil's

friction angle.

Values of ultimate soil resistance predicted by the Parker and Reese (1970)

equation were verified and adjusted using data from both laboratory trials using
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small physical models (Parker and Reese, 1970) and full scale load tests (Cox,

et.al., 1974; Reese, et.al., 1974) of laterally loaded piles. In the load tests, the piles

were discretized and verification was carried out on an increment by increment

or node by node basis. This verification process was different than the process

carried out by Hansen (1961) and Audibert and Nyman (1977) for their derived

expression for ultimate resistance which verified a single value for the whole pile

or conduit structure. The results from the load tests showed that the theoretical

values overestimated the actual ultimate soil resistance. For the case of static

loading in deep (cover ratio > 5), cohesionless sand, Reese (1984; 1986) suggests

that theoretical ultimate soil resistance values be multiplied by a coefficient of

0.88.

Both of the methods derived for predicting ultimate soil resistance ofa

deep, cohesionless sand give reasonable estimates and both have been verified in

scale model laboratory load tests and the expression by Parker and Reese (1970)

has been verified in a full scale load test. So both the methods work and

estimates provided by both methods have been adjusted to be reasonably

accurate. At cover ratios greater than 20, the expression derived by Parker and

Reese (1970) yields an estimate of the ultimate soil resistance that is roughly

twice the value predicted using Hansen's bearing capacity factor.

The method developed by Parker and Reese (1970)(Reese, 1984; 1986) was

used to calculate ultimate soil resistance for this project, a model of root

reinforcement in shallow forest soils. The reasons for this are several. The
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validation of the Parker and Reese (1970) method was carried out for cover ratios

greater than 24. The method was derived to solve for ultimate resistance on a

node by node basis and not for the ultimate resistance of the whole structure. An

increment by increment solution pathway fit well with the way the root

reinforcement problem was being approached and solved. Finally, for cover

ratios approaching the hundreds in magnitude, using the larger value of ultimate

resistance was more proper than using the lower values.

Transition Curve

In the publications that describe how to develop p-y curves (Reese, 1984;

1986), the p-y curves for shallow, cohesionless sands do not include a transition

curve. These curves are modeled as a perfectly elastic/perfectly plastic material

with the elastic portion represented by the initial tangent modulus which extends

from the origin until it intersects with the plastic portion of the curve which is

the ultimate resistance. This type of p-y curve is shown in Figure 4-7 as a dotted

line. In the laboratory trials where the theoretical p-y curves were compared with

the actual measured curves (Parker and Reese, 1970) the authors felt that this

type of curve adequately described the actual p-y curves.

However, Parker and Reese (1970) also suggest that the two straight line

portions of the curve be fitted with a transition curve. They suggest a hyperbolic

form to the transition curve because that fits the shape of the stress-strain
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relationship for sands. The transition curve does not affect the final values of the

p-y curve to any great degree, thus it is recommended for purely pragmatic and

cosmetic purposes. It provides a more realistic transition to the two straight line

portions of the curve and, more importantly, it allows the p-y curve to be

represented as a single continuous function in the modeL

The final suggested form of the equation uses the hyperbolic tangent

function and takes the form,

(E5 v"
P = Pf tanhl

Puj

where p is soil resistance in lbs/in, p1 is the adjusted ultimate soil resistance and

is equal to O.88(p,), E5. is the initial tangent modulus in lbs/in2, and y is the

lateral deflection of the reinforcing element in inches. This form of the equation

yields a relationship that has a slope of E5. at y = 0 and becomes asymptotic to p1

at large values of y. This form of the p-y curve was used in the analytical model

for this project.

Developing p-y Curves

The following procedure was used to develop p-y curves for shallow,

cohesionless sands. The p-y curves were used to calculate the resistance of the

4-12
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shallow, cohesionless sands to the lateral deflection of reinforcing elements

through the sand.

Determine the density, 'y, and internal angle of friction, , of the soil being

modeled and the depth, d, and diameter, b, of the reinforcing element.

Calculate the initial tangent modulus, E. , by multiplying the depth of the

reinforcing element, d, times the coefficient of subgrade reaction, k.

E =kd 4-9

The values of constant of subgrade reaction can be obtained from Table 4-1.

3 Calculate the active earth pressure coefficient, Ka = tan2 (45 /2), the at-rest

earth pressure coefficient, K0 = (1 sin 0) (Holtz and Kovacs, 1981),

and J3 = 45+ 0/2.

Calculate the theoretical value of ultimate soil resistance, p, using the

equation,

= d(Ko(tan8 J3 - i)+ K0 tan çltan4
) 4-11

Calculate the final adjusted value of the ultimate soil resistance, p
uf

Pu1 =O.88(p) 4-13
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6. The soil resistance, p, for any lateral deflection, y, of the reinforcing element

can be predicted using the relationship,

p = Pu! tanh
Puj j

4-12

Figure 4-8 shows three p-y curves calculated using soil and reinforcing

element parameters consistent with the concept of shallow soils on steep,

landslide-prone hillslopes. These same soil and reinforcing element parameters

were used to model some of the soils during the parameter study part of this

project. For these three p-y curves the soil parameters were y =90 lbs/ft3 and

44°. The width of the reinforcing element was, b = 0.5 inches. The p-y curves

were calculated and graphed for three different soil depths, d 6, 12, and 18

inches.

Once the shape, or the equation, for the p-y curves is known, the

appropriate value of secant modulus of the soil resistance can be calculated

simply by using the definition,

y(n)
4-14
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By substituting the expression for p in equation 4-13 into equation 4-14, the value

of the secant modulus of the soil resistance is calculated using the following

expression,

(Ey JPf
tanhl

E(y)=
Pu

In this method, the secant modulus of the soil resistance, E5(y1), is a unique value

which corresponds with the lateral deflection of the reinforcing element, y.. In

this manner, a secant modulus of the soil resistance can be calculated for every

discrete node in the reinforcing element for which a lateral deflection has been

calculated.

Axial Solution

In modeling the magnitude of root reinforcement in shallow forest soils,

one of the outputs from the model that is needed is the tensile force applied by

the root, perpendicular to the failure surface, as a result of the lateral deflection.

In addition to being an output of the model, the applied axial force in the

reinforcing element at each node is also needed as an input to both the

coefficients and constants matrices during successive iterations of the model

(Figures 4-4 and 4-5).
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The tension in the reinforcing element is a logical consequence of its

deflected shape. The tension results from the deformation of the reinforcing

element arid the assumption that the end of the reinforcing element away from

the failure surface does not move. If the end of the reinforcing element away

from the failure surface does not move arid its shape changes, then the

reinforcing element must get longer. This increase in length must be

accompanied by an increase in the tensile force applied to the reinforcing

element at the failure surface.

The deflected reinforcing element is also in static equilibrium, thus the

tensile force applied at the failure surface by the reinforcing element must be

offset by an equal arid opposite force. In this case, that equal arid opposite

applied force is the shear-stress transfer at the interface of the reinforcing

element and the soil. Given the assumption that there is no movement of, and

thus no applied force at, the end of the reinforcing element away from the failure

surface, then the shear-stress transfer must diminish completely before the end of

the reinforcing element. By reducing the shear-stress transfer along the length of

the reinforcing element, the tension in the reinforcing element must diminish

throughout the length of the reinforcing element. The reduction in tension along

the length of the reinforcing element needs to be calculated and accounted for

because it affects the lateral solution, especially at large lateral deflections.

To determine the tension in the deflected reinforcing element, the first

step is to determine its length. The length of the deflected reinforcing element is



z=l-10=l--nh 4-17

157

simply the sum of the lengths between successive nodes. The length between

nodes is approximated as the Pythagorean distance between successive sets of

node coordinates.

Each node in the reinforcing element has a unique location identified by x,

y-coordinates. The x-coordinate is the node number, i, times the node length, h.

This value is set at the start of the model and is maintained as a constant

throughout the model. The y-coordinate is the lateral deflection of the th node.

This value is set at zero when the model is initiated and is updated after every

iteration of the model when a new lateral deflection is calculated. The length, 1, of

the deflected reinforcing element, which is the sum of the Pythagorean distances

between successive nodes, is calculated using the following formula,

n

1 = - x + - 4-16
i=1

where, n is the number of nodes, and ; and y are the x-, and y-coordinates of the

th node.

The change in length, z, of the deflected reinforcing element is the

difference in the length of the deflected shape, 1, and the original length, 10. The

original length of the reinforcing element is simply the number of nodes, n, times

the node length, h.



158

Once the change in length, z, of the reinforcing element has been

calculated, the tensile force necessary to cause this change in length must be

calculated. This is accomplished using a technique based on a method by Coyle

and Reese (1966) used to determine the load transferred from an axially loaded

pile to the surrounding soil.

Two relationships are used to calculate the tensile force in the reinforcing

element which occurs as a result of the deflected shape. The first relationship

calculates the change in length of a discrete element of the reinforcing element

given the applied tensile force in the reinforcing element. It is a basic relationship

from the mechanics of materials arid for use in this problem takes the form,

EA
4-18

where, h. is the change in length of the th node, T is the tensile force in the

reinforcing element at the node, h is the node length, and E and A are the

modulus of elasticity arid cross-sectional area of the reinforcing element,

respectively. Note that h, E, and A are constants throughout the length of the

reinforcing element.

For the second relationship, recall from the derivation of the laterally

loaded pile problem in Appendix A, that the change in tension across a discrete

element is equal to the shear-stress transfer associated with the amount of

movement of the reinforcing element at that node through the soil. A governing



assumption at this point is that the amount of movement of the reinforcing

element through the soil at that node is equal to the change in length of the

reinforcing element at that node. The shear-stress transfer associated with the

movement of the reinforcing element through the soil at a given node is

calculated using the relationship,

F5=z1T1=,.,rbh 4-19

where, F. and T are the shear force generated by the movement of the i node

of the reinforcing element through the soil, ii is a shear-stress transfer function,

b is the reinforcing element diameter, and h the node length. Again, note that b

and h are constants throughout the length of the reinforcing element. The shear-

stress transfer functions calculate shear-stress as a function of axial displacement

of the reinforcing element at a given node, soil density, and confining stress. The

shear-stress transfer functions take the form,

zi
r1 =

a0 +a1(z)+a2(z.

where, r, is the shear-stress at node i, z is the axial deformation of the i node,

and a0, a7, and a3 are empirically derived coefficients. The shear-stress transfer

)2
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functions were derived by Commandeur (1989) and will be presented in greater

detail in a subsequent section.

The solution of the axial problem requires that both the increased length

of the reinforcing element and an estimate of the applied tensile force required to

cause that increased length be known. The solution technique proceeds by taking

an estimate of the applied tensile force, calculate an increased length associated

with the estimated applied tensile force, and then compare that value with the

increased length calculated from the lateral solution. If the two values do not

agree, then a new value of the applied tensile force is estimated and an increased

length is calculated and this process continues until the two values of increased

length match.

The solution technique proceeds by first taking the calculated increase in

length of the reinforcing element, z, and assume that it represents the distance

the first node moves through the sand. This value, z, is used in equation 4-20 to

calculate the shear force which is due to the shear-stress transfer associated with

the movement of the first node through the soil. This calculated shear force is

equal to the change in tensile force across the element.

4T1=I
ZI

a0 +a1z1 +a2(z1)
4-21
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The tensile force in the first node is used to calculate the elongation of the

first node by substituting the appropriate values into equation 4-18.

z%Th

EA
4-22

The change in tensile force across the first element is subtracted from the

estimate of axial force applied at the first element and the difference is the

estimated axial force applied at the second element. Similarly, the change in

length associated with the first element is subtracted from the change in length of

the reinforcing element and the difference becomes the change in length of the

reinforcing element at the second node. This, in turn, becomes the axial

deformation of the reinforcing element at the second node.

4-23

4-24

These values are then used to calculate the shear-stress and, thus, the

change in tension across the second element and the corresponding change in

length of the second element. These values, in turn, are subtracted from the

applied axial force at the second element and the change in length of the
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reinforcing element at the second element to get the applied force at the third

element and the change in length and, thus, the axial deformation of the

reinforcing element at the third node. This process continues down the

reinforcing element until either the applied tensile force or the increase in length

of the reinforcing element equals zero.

The solution to the axial portion of the problem is achieved when both the

increased length of the reinforcing element and the estimated applied tensile

force reach zero simultaneously. This never occurs on the initial estimate,

therefore the process is iterative with successive estimates of the applied tensile

force until the solution is achieved. If the estimate of the applied axial force

causes the increased length of the reinforcing element to reach zero before the

axial force, the estimate of axial force was too large and a smaller estimate is

needed. Conversely, if the estimate of the applied axial force reaches zero before

the increase in reinforcement element length, then the estimate was too small and

a larger estimate of applied axial force is needed.

The estimate of the increased length of the reinforcing element comes

from the lateral solution. The initial estimate of the applied tensile force was

always one pound. Given the size roots being modeled, this initial estimate

worked very well. The estimate of applied force was always low so it adjusted

upward in increments of one pound until the transition between too little and

too much applied tensile force was achieved. At this point, the applied tensile

force was incremented by 0.5 pounds and once this addition had been made,
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increments of 0.1 pounds were subsequently added or subtracted until the

transition between too much and too little applied tensile force was reached. This

process continued with each iteration adding a significant digit of precision.

Given the precision of contemporary personal computers, the estimated

applied axial force and the increased length of the reinforcing element will never

equal zero at the same time. The process simply continues with the estimate of

the applied tensile force becoming more and more precise until the computer

runs out of significant digits. For this reason, an arbitrary closure had to be

defined. That arbitrary point was when the applied tensile force and the

increased length of reinforcing element equaled zero at the same time and the

precision of the estimate of applied tensile force was seven significant digits. The

other portions of the solution which depended on the estimate of applied tensile

force, namely the calculated lateral deflection, were not affected within single

precision accuracy by an estimate of applied tensile force with a precision of

seven significant digits.

In addition to the final estimate of the applied tensile force, which is a

solution of the model and an output, the applied tensile force at each node is

calculated and stored. These values are inputs to both the coefficients and

constants matrices in subsequent iterations of the lateral solution.



Shear-Stress Transfer Functions

In the previous section, the process to calculate the applied tensile force in

the reinforcing element at the failure surface was described. A crucial step in the

process, the shear-stress transfer functions, was mentioned but was not discussed

in detail. Shear-stress transfer is the process of transmitting tensile force in the

reinforcing element to the surrounding soil through friction between the soil and

the reinforcing element. In the conceptual model, as one soil block attempts to

pull the reinforcing element from the soil through increased applied force at the

failure surface, the attempt is resisted by the shear-stress transfer between the

reinforcing element arid the soil. To determine a solution to the model arid

estimate the applied tensile force at the failure surface, shear-stress transfer

functions must be known.

The concept and quantification of shear-stress transfer is encountered

regularly in civil engineering practice with reinforced earth and soil nailed

structures. However, shear-stress transfer in these applications is quantified only

at ultimate strength levels. This ultimate strength can be either the ultimate

rupture strength of the reinforcing element or the ultimate pullout resistance.

The ultimate pullout resistance is designed to be greater than a design load on

the reinforcing element or the ultimate tensile strength of the reinforcing

element. The calculation of ultimate pullout resistance is similar for both soil

164
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nails and for metal reinforcing strips. To calculate the frictional component of the

pullout resistance, the following equation is used,

4-25

where Pf is the ultimate pullout capacity due to friction, /1 * is an apparent

friction coefficient between the soil and reinforcing element, a,! is a normal

stress which can be the vertical overburden pressure or can include an at-rest

horizontal earth pressure component, and A5 is the surface area of the reinforcing

element which includes its length. In this process, the critical piece of information

is the apparent coefficient of friction, p *. The value of this parameter is

determined during pullout tests in which a reinforcing element of known

characteristics is embedded in a soil of known characteristics and a tensile load is

applied to the end of the reinforcing element until it pulls out. All the known

parameters are entered in the above equation and an apparent friction coefficient

is solved for. The technical literature is replete with the results of pullout tests for

reinforcing materials used in reinforced earth structures (Schiosser and Elias,

1978)

It is important to remember that this is an ultimate strength value. The

assumption is made that something approaching ultimate axial deformation has

been reached in the reinforcing element which has resulted in the ultimate shear-

stress transfer being mobilized between the reinforcing element and the soil
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throughout most of the length of the reinforcing element. These assumptions

may be valid in manufactured, high density, high strength soils reinforced with

high modulus, steel reinforcing elements. The assumptions have less validity

when dealing with loose, shallow, cohesionless soils reinforced with low

modulus conifer roots.

Due to the concern that ultimate displacements in shallow forest soils may

not be sufficient to mobilize ultimate shear-stress transfers in conifer roots, there

is interest in shear-stress transfer at smaller displacements than ultimate. Shear-

stress transfer functions which relate shear-stress transfer throughout a range of

displacements not just at the ultimate displacement are of interest. What is of

most interest is information on shear-stress transfer functions for shallow,

cohesionless sands reinforced with low modulus reinforcing elements (i.e. conifer

roots). For this information, the work of Commandeur (1989) was used.

Commandeur (1989) conducted pullout tests using Douglas-fir roots

buried in a clean, uniform, cohesionless silica sand. He conducted 58 pullout tests

on 24 Douglas-fir roots with diameters ranging from 0.18 to 0.50 inches. The soil

used during the pullout tests had an average density of 90.3 lbs/ft3 (14.22

kN/m3) and a relative density of 63.3 percent which corresponded to a void ratio

of 0.83. The pullout tests were conducted at confining stresses of 0.31, 0.45, and

0.63 lbs/in2 (2.1, 3.1, and 4.3 kPa) corresponding to soil depths of 6, 9, and 12

inches.
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For each of the 54 pullout tests, load and displacement data were collected

and a graph of shear-stress transfer versus displacement was prepared. The data

was fitted to a three parameter, hyperbolic, shear-stress transfer versus

displacement function of the form,

z

a0 +a1z+a2z2

where, v is the shear-stress transfer between the reinforcing element and the soil

in lbs/in2, z is the axial displacement of the reinforcing element, and a0, a1, and a2

are empirical coefficients.

The results from the pullout tests by Commandeur (1989) were stratified

by soil density and depth. The empirical coefficients were determined by

multiple linear regression of z/v on z and z2 for a transformed equation,

z=a +a1z+a2z2 4-270

for each group of data.

Table 4-2 shows the regression coefficients generated by Commandeur

(1989) for 6 and 12 inch soil depth classes and for three soil density classes. The

shear-stress transfer curves for the three soil depth classes for the 89 to 91 lbs/ft3

soil density class are shown in Figure 4-9. These shear-stress transfer functions

4-26



Table 4-2. Empirical regression coefficients for quadratic shear-stress transfer
functions for three soil density classes for two confining stress conditions
represented by soil depth from Commandeur (1989).
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were used in the root reinforcement model to calculate the applied tensile force

in the reinforcing element for a given lateral deflection, arid thus axial

deformation, of the reinforcing element.

Commarideur (1989) experienced a similar problem that other researchers

have experienced during pullout tests. The apparent friction angle between the

reinforcing element arid the soil at the ultimate shear-stress transfer was larger

than the internal angle of friction for the soil. For Commarideur (1989), the

internal angle of friction of the soil at the confining stresses tested was 450 The

apparent friction angle that was experimentally derived between the Douglas-fir

roots and the sand ranged from a low of 50° to as high as 85°. This friction angle

Soil Depth Soil Density ao ai a2

Class (lbs/ft3)

6 inches 88 to 89 0.0505 1.10 0.363

89 to 91 0.0562 0.770 0.667

91to92 0.1420 0.818 0.511

12 inches 88 to 89 0.0428 0.761 0.277

89 to 91 0.0300 0.596 0.325

91 to 92 0.0667 0.223 0.421
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is called an apparent friction angle and is given the symbol S. The apparent

friction coefficient, given the symbol u is the tangent of the apparent friction

angle and is defined by the following relationship,

u*= tan6 =--- 4-28

Uing this relationship, the apparent friction angles from Commandeur's (1989)

study translated to apparent friction coefficients of approximately 1.2 to greater

than 11.0.

This effect has been observed and reported in other studies (Schlosser and

Elias, 1978; Mitchell and Villet, 1987). The apparent friction angle between soils

and different reinforcing element materials in shear box tests is 0.5 to 0.8 times

the internal angle of friction of the soil (Mitchell and Villet, 1987). In pullout tests,

apparent friction coefficients have been reported ranging from 0.5 to

considerably greater than 1.0. Apparent friction coefficient values that

correspond to apparent friction angles which are larger than 80 percent of a soil's

internal angle of friction are reported to occur with rough or ribbed reinforcing

elements and at small confining pressures (Schiosser and Elias, 1978; Mitchell

and Villet, 1987). Commandeur!s (1989) work supports these findings. He was

working with very low confining pressures and in addition to the roughness of

the surface of a root, which was considered micro-roughness, the tortuous shape
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of the root also caused macro-roughness. The tortuous shape of the roots were

believed to cause zones of passive earth pressure during pullout tests and make

the roots appear very rough.

In the case of ribbed reinforcing elements tested in dense soils with small

confining pressures, the large apparent friction coefficients have been blamed on

soil dilatency (Mitchell and Villet, 1987). Commandeur (1989) hypothesized that

the large apparent friction coefficients could arise from two mechanisms. First of

all, they could be the effect of the development of a shear zone about a soil/root

cylinder which had an effective diameter equal to the tortuosity of the root. By

including only the root surface area instead of the surface area of the soil/root

cylinder in apparent friction angle calculations, the apparent friction angle might

appear to be larger than it really was. A second mechanism was a hypothesized

interaction with the testing equipment which would cause an increased pressure

distribution about the root. Attempts were made to account for these

mechanisms. After accounting for these mechanisms, Commandeur (1989) still

had apparent friction coefficients ranging from 0.79 to 1.32 which corresponds to

friction angles between the soil and reinforcing elements ranging from 38° to 53°.

While these values are more reasonable than the initial values, they, at

times, still exceed the internal angle of friction of the soil and therefore the

validity of the findings in the real world is questioned. To account for this

uncertainty, the shear-stress transfer functions were incorporated into the axial

solution of the root reinforcement model in two ways. One way was to leave the
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shear-stress functions exactly as they appeared in Commandeur (1989). These

equations consist of the coefficients which were experimentally determined and

appear in Table 4-2. A second way was to incorporate a scaling coefficient.

To use a scaling coefficient, the first step was to assume the friction angle

between the root and the soil was (2/3)0 which results in an apparent friction

coefficient of 0.58. Using this friction angle, the ultimate shear-stress transfer

between the reinforcing element and the soil was calculated using the

relationship,

'u1t = O tan ö 4-29

where, ö = (2/3)0 and o is an average of the vertical overburden pressure and

the horizontal at-rest earth pressure. This term becomes,

a,, =--(1+(1-sinO))yd
4-30

where y is the soil density and d is the soil depth.

For each stratification of soil density and depth for which coefficients for

shear-stress transfer functions were determined, an ultimate shear-stress transfer

value was experimentally determined. The scaling coefficient was calculated by

expressing the ultimate shear-stress transfer determined using ö (2/3)0 as a
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decimal fraction of the ultimate shear-stress transfer determined experimentally

by Commandeur (1989) for each soil density/depth stratification. For example,

for the group with a soil density of 90 lbs/ft3 and a soil depth of 12 inches the

ultimate shear-stress determined experimentally 1.26 lbs/in2. The calculated

ultimate shear-stress using the assumed apparent friction angle of (2/3)ci) is 0.404

lbs/in2. Thus, the scaling coefficient is,

0.404
= 0.32

1.26

In the axial solution of the root reinforcement model when a scaling

coefficient is used, the entire shear-stress transfer function is adjusted by the

scaling coefficient. Thus, the shear-stress transfer function becomes,

r=(SC) z

a0

For the particular case of the example discussed above which consists ofa 12 inch

deep soil with a density of 90 lbs/ft3, the shear-stress transfer function with the

appropriate scaling coefficient is,

r=(0.32) z
4-33

0.03 + O.596(z) + 0.325(z)2

4-31

4-32
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Commandeur's (1989) original shear-stress transfer function and the function

shown above using the scaling coefficient are graphed together in Figure 4-10.

Using the scaling coefficient with the shear-stress transfer functions allows

the magnitude of the ultimate shear-stress to be scaled within values that are

more intuitively correct. At the same time it allows for the full range of

experimental data and the full shape of the shear-stress transfer curve to be used.

There is no reason to believe that the scaled version of the shear-stress transfer

function is not a good approximation of the process going on in the field.

When root reinforcement was modeled for a soil deeper than 12 inches,

the same adjustments were applied. The coefficients for the shear-stress function

were for a soil 12 inches deep and from the appropriate density group. The

ultimate shear-stress transfer for the deeper soil was calculated using (2/3)0 as

described above. Then the shear-stress transfer function for a 12 inch deep soil

was used except that the scaling coefficient incorporated the calculated ultimate

shear-stress transfer for the deeper soil.

Analytical Model Flowpath

The root reinforcement analytical model has three parts. First the model

prompts the user for .the needed inputs and calculates the balance of the needed

parameters from these inputs. A final input implicit to the solution is the request

for the lateral deformation of the reinforcing element at the failure surface.
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After the inputs are completed, the model solves the lateral problem. This

solution yields a deflected shape of the reinforcing element and the applied

horizontal force at the failure surface to cause the deflected shape. Finally, the

model solves the axial problem and calculates the applied tensile force needed to

lengthen the reinforcing element the amount required for the lateral deflection.

Because the tensile force determined in the axial solution affects the shape of the

reinforcing element in the lateral solution, subsequent solutions from each part of

the problem are input back into the model and the solution is iterated until it

does not change. In this case, that means that the largest change in the calculated

deflection at any node is less than 1O inches between successive iterations.

The final output of the model is the applied horizontal force at the failure

surface, V, the applied tensile force at the failure surface, T, and the deflected

shape of the reinforcing element. The flow path for the model is shown in Figure

4-11 and the following sections describe the model algorithm in more detail

Data Input Subroutine

The model is initiated with a subroutine that prompts for and allows the

input of the appropriate soil and reinforcing element parameters and then

calculates other needed parameters from this input. The inputs are prompted

and required in English units and in pounds and inches except where the normal

convention is different.
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Figure 4-11. The structure of the root reinforcement model showing the flowpath
of the algorithm.

Calculate tensions
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The soil parameters are input first. The following soil parameters are

requested;

soil density, y, in lbs/ft3 (converted to lbs/in3 in the subroutine),

internal angle of friction, , in degrees,

soil cohesion, c, is assumed to be zero,

coefficient of subgrade reaction, k, in lbs/in3 is either input or assigned

(Table 4-1).

Next the reinforcing element parameters are input. These parameters are;

modulus of elasticity, E, in lbs/in2,

the diameter of the reinforcing element, b, in inches,

the depth in the soil the reinforcing element is embedded, d, in inches.

From these input parameters, a number of parameters needed for the

model are calculated. These include both soil and reinforcing element

parameters. The parameters are:

moment of inertia, I = ith /64,

active earth pressure coefficient, Ka =2(45_ 0/2),

at-rest earth pressure coefficient, K0 = (1 sin ),

the argument of the passive earth pressure coefficient, f3 = 45+ 0/2.

Three other parameters have to be calculated. They are the length of the discrete

element length, h, reinforcement element length, 1, and the number of nodes, n.

The number of nodes is quite easy to determine, it is simply the length of the
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reinforcing element divided by the node length, n = i/h. However, determining

the length of the reinforcing element to model and the length of the discrete

element were not as straight forward.

Reinforcing Element Length

Determining the length of the reinforcing element to be modeled was far

from a straight forward exercise. Initially, during development of the model, a

method was sought that would allow the length of the reinforcing element to be

modeled to be calculated a priori. The reasons for this were that a calculated

length was sought, instead of just assigning a conservative fixed length which

would always work, due to concerns about computer memory and performance.

An initial length was sought that would be long enough such that subsequent

calculations of the length of the reinforcing element in tension would not exceed

the initial estimated length. An attempt was made to balance computer memory

and performance with the performance of the root reinforcement model.

Originally, the calculation of an optimum length revolved around the

concept of the ultimate tensile strength of the reinforcing element. Using an

ultimate shear-stress transfer concept, the length of the reinforcing element to be

modeled should, at a minimum, be long enough to develop enough tensile force

from shear-stress transfer to allow the reinforcing element to fail in tension. This

would certainly be an upper limit value of needed reinforcing element length.
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However, the criteria of reinforcing element ultimate tensile strength as a

limiting value became moot as modeling proceeded because even at the

maximum lateral deformation of 2 inches, the ultimate tensile strength of the

roots was seldom reached. Due to the realities of the diameter distribution of

roots in a soil for a landslide-prone forested slope, only a limited number of root

diameters were modeled. These diameters are reported in Burroughs and

Thomas (1977) and this subject is discussed in the parameter study section of the

results chapter. The root diameters modeled extensively were 0.1, 0.25, and 0.5

inches. The only instances when the modeled tensile stress of a root exceeded its

ultimate strength was for a 0.1 inch diameter root with a scaling coefficient at

lateral deflections of 1.75 and 2.0 inches and for the same root without using a

scaling coefficient at all defections greater than 1.0 inch. For the rest of the

situations in which roots were modeled, the ultimate tensile strength of the root

was not exceeded.

The problem with the modeled length of the root was not in the axial

solution but in the lateral solution. In the lateral solution of this model, the

modeled deflections oscillate about the original shape of the root. The lateral.

deformation is initially positive, then it passes through a zero deflection point

and becomes negative, and then continues to oscillate between positive and

negative deflections along the root. The maximum calculated deflection between

each zero deflection point is reduced by approximately an order of magnitude

for each oscillation as the process proceeds along the reinforcing element away
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from the failure surface. The accuracy of the solution to the lateral problem

doesntt improve if the length of the modeled pile extends beyond the second

zero deflection point (Reese, 1984). Therefore, a suggested procedure was to set

the length of the reinforcing element to be long enough to include two zero

deflection points in the lateral solution.

A problem occurs because the lateral and axial solution techniques require

different lengths for the reinforcing element. The two length requirements are

different by approximately an order of magnitude. The axial solution can have

several tens of inches and, at times, several hundred inches of root in tension

which translates into several thousand to, at times, over ten thousand nodes for

the axial solution. Conversely, the lateral solution requires only several inches of

root length and generally not more than one hundred nodes. There is no

downfall, in terms of accuracy of the solution, from including hundreds of inches

of root and thousands of nodes in the lateral solution, but there is considerable

downfall in computing time and power. Using thousands of nodes in the matrix

conversion subroutine, even with the efficient banded storage of the matrices,

often overran memory capability and required long calculation times. Obviously,

the entire length of the root in tension did not need to be carried through the

entire lateral solution.

Ultimately, the model was written so that the length of the reinforcing

element modeled as a laterally loaded pile was set at approximately seven

inches. This number is not arbitrary but comes from experience running the
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model. This length allows the large diameter roots at the maximum lateral

deformation to have two zero deflection nodes in the solution and, at the same

time, doesn't overrun memory capacity and make computation time exceedingly

long for the smaller roots at small lateral deformations. For the bulk of the

modeling the seven inch length resulted in less than 100 nodes in the lateral

solution calculations. For the axial solution, the total length of the root in tension

stifi involved thousands of nodes and these calculations were carried out and a

final tensile load was calculated and recorded. However, the tension at each

node was stored only for the nodes used in the lateral solution.

Thus, the length of the reinforcing element that was to be modeled was set

at seven inches. This value is based simply on experience running the model in

the range of values associated with landslides in shallow forest soils. The length

is long enough to allow large roots at large deflections to have two zero

deflection points modeled but short enough not to exceed computer memory or

make computation time exceedingly long.

Discrete Element Length

A second problem dealt with the length of the discrete elements that the

reinforcing element would be divided into. This, again, is a compromise between

model accuracy and computing time and power. In general, as the length of each

discrete element becomes smaller, the solution will become more accurate. As the
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length of the discrete elements becomes smaller, there are more of them resulting

in increased computing time arid memory requirements. The objective was to

find a length for the discrete elements that gives the required accuracy but also

allows for expedient computations.

The literature on modeling laterally loaded piles suggests that a discrete

element length equal to one half the diameter of the reinforcing element be used

(Reese, 1984). This suggestion is for large diameter, high modulus piles in which

an axial force is either ignored or treated as a constant. Furthermore, not only is

the modulus high but the stiffness, El, which is a product of the modulus and the

moment of inertia of the pile is also high. In the root reinforcement model a low

modulus, small diameter root is modeled which will have a small stiffness value

and wifi not perform like a steel pile.

To investigate this problem, the model was run with a range of discrete

element lengths while all other variables were held constant. The modeled soil

was a clean, loose, cohesionless soil with an internal angle of friction of 440 The

reinforcing elements were conifer roots, 0.5 inches in diameter, embedded 12

inches in the soil, and possessing a modulus of elasticity of 73,000 lbs/in2. The

shear-stress transfer function was used without a scaling coefficient and that

function with the appropriate coefficients is,

z
4-34

0.03 + O.S96(z) + 0.325(z)2
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where, r is the shear-stress transfer in lbs/in2 and z is the axial deformation of

the reinforcing element in inches. This equation is for a confining stress equal to

12 inches of sand with a density of 90 lbs/ft3 (Commandeur, 1989). The model

was run for a full range of lateral deformations from 0.01 inches to 2.0 inches (see

Table 5-2).

At each deformation that the model was run, the length of the discrete

element was varied as a function of the diameter of the reinforcing element. The

lengths of the discrete element modeled were 3b, 2b, b, b/2, b/5, and b/10 where

b is the reinforcing element diameter. The results of the modeling are illustrated

in Figures 4-12 and 4-13. The figures show a graph of force versus length of the

discrete elements. The forces graphed are the model output forces the horizontal

force applied parallel to the failure surface, V?, and the applied tensile force

perpendicular to the failure surface, T. Figures 4-12 and 4-13 show results for

only the element lengths b, b/2, b/5, and b/10 and the lateral deflections

illustrated only go through 0.5 inches. The purpose is to show that the modeled

output forces do not change with a decrease in element length. A discrete

element length of b/2 was used for the root reinforcement model.

Displacement Matrix Subroutine

After the needed parameters to run the model have been either input or

calculated, a displacement matrix is created to store the current shape of the

reinforcing element being modeled. The matrix is an nx2 matrix where n is the
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number of nodes being modeled in the calculations and the 2 indicates that the

displacement matrix is a two-dimensionaiarray where the two dimensions are

the x- and y-coordinates, [x,, y.J of the centroids of the discrete elements or the

nodes of the modeled root.

When the displacement matrix is created, the x-value of the array for each

node is the node number, n1, times the node length, h.

n1 (h) 4-35

This value doesn't change arid is carried throughout the model. The y-value is the

lateral deflection of that node. When the displacement matrix is created, the y-

values are all set to zero except for the first node. The lateral deflection of the first

node, y, the node right at the failure surface, is an input to initiate the model.

The model prompts for the lateral deflection of the reinforcing element at the

failure surface to be input when this subroutine is encountered.

The x-values of the displacement matrix remain constant throughout

subsequent iterations of the model. The y-values are updated during each

iteration of the model and the latest values are always placed in the displacement

matrix. The final form of the displacement matrix, which is the final shape of the

reinforcing element, is an output of the root reinforcement model.



Calculating the Secant Modulus of the Soil Response

After the displacement matrix has been created, the program enters the

iteration loop (Figure 4-11). The first step after entering the loop is the calculation

of the secant modulus of the soil response. The theory behind the calculation has

been presented in a previous section. The equations are complete in that section

and won't be restated here. This subroutine is a simple one which takes the

lateral deflection of the reinforcing element at each node from the displacement

matrix, y, and calculates the value of the secant modulus of the soil response,

Es., for that node given that displacement. The secant modulus values are then

stored in a one-dimensional array. The values of the secant modulus of the soil

response are recalculated for every iteration of the root reinforcement model.

The Coefficients Matrix

At this point in the program, the coefficients matrix for the solution of the

lateral problem is constructed. Recall that the lateral solution follows a

traditional form for solving systems of simultaneous equations. This discussion is

presented previously in this document and will be recounted briefly here. The

system of simultaneous equations is represented in matrix notation by the

identity [Al [xl = [bI where [Al is the coefficients matrix, [bI is the constants

matrix, and [xl is the matrix of unknowns. The content of all of these matrices are

shown in Figures 4-4 and 4-5.
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All of the terms needed to construct [A] are known. The components of

the stiffness term, El, are constants as is the element length, h. The values for

secant modulus of the soil response, Es., were calculated previously and stored

in a one-dimensional array. The array for the tensile force at each node, T1, was

declared initially in the program and stores zeros until other values are assigned.

Therefore, during the first iteration, zeros are used for tensile forcein the

coefficients matrix. As deflected shapes and the subsequent values of tensile

force for each node are calculated and stored in the appropriate array during

subsequent iterations, these values will be used to construct the coefficients

matrix. The values in the coefficients matrix are updated during each iteration of

the root reinforcement mOdel.

The coefficients matrix is an nxn square matrix. As illustrated previously,

it is a banded diagonal matrix with the only nonzero values being two places to

the left and right of the main diagonal. The storage and computation of a banded

diagonal matrix can be made very efficient by just storing and using the numeric

values and eliminating the zeros. This is done routinely and there are numerous

coded algorithms available in the technical literature to help develop this part of

the solution. The coefficients matrix becomes an nx5 matrix where n is the

number of nodes being modeled. The main diagonal values become the third

column and the two values on each side of the diagonal become the other four

columns.



Decomposing the Coefficients Matrix

The equation solver used to solve the system of linear equations for the

lateral solution of the problem performs an LU-Decomposition. LU-

Decomposition is a variant of basic Gaussian elimination (Press, et.al., 1992). The

initial step in LU-Decomposition is to decompose the coefficients matrix [A] into

two triangular matrices. One is a lower triangular matrix with values on and

below the diagonal and nothing above the diagonal arid this matrix is labeled [LI.

For this method, ones are substituted into the diagonal values of the lower

matrix. The other matrix is an upper triangular matrix with values on and above

the diagonal and nothing below it and this matrix is labeled [U]. A requirement

of the method is that [L][U] = [A]. Decomposing the coefficients matrix into

upper and lower triangular matrices whose product is the coefficient matrix is

carried out using a procedure called Crout's Method. The specific procedure used

in the root reinforcement model is Crout's Method with partial pivoting. The

coded algorithm for the subroutine, called bandec, which was used in the model

was taken from Press, et.al. (1992).

The algorithm, bandec, takes an nxn banded diagonal matrix stored in

compact form and performs an LU-Decomposition. The upper triangular matrix,

[UI, is replaced back in [A] and the lower triangular matrix is returned to an nx2

matrix [al].

190



Constructing the Constants Matrix

To solve the lateral portion of the problem, a constants matrix is needed to

multiply the coefficients matrix, or the two decomposed triangular matrices, by

to solve for the solution matrix. The composition of the constants matrix is

shown in Figures 4-4 and 4-5. It is an nxl matrix with values for only the top

three entries of the matrix, the balance of the entries are zero. The components of

the entries, the stiffness, El, the element length, h, the tension for that node, T1,

the secant modulus of the soil response for that node, E, and the lateral

deflection of the first node, y1 are all known. The values in the constants matrix

are updated for each iteration.

Backsubstitutjon Routine

The next subroutine performs the backsubstitutj.on on [L] and [U], the

lower and upper triangular matrices decomposed from [A], the coefficients

matrix, with [b], the constants matrix. The subroutine solves the linear set

[A][x] = ([L][.U])[x] = [L]([U][x]) = [b]

by solving for a vector which can be called [y] such that

[L1[yl = [bi

and then solving

[U][x] = [yl.
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The advantage of the LU-Decomposition is that both the solution vector Ex] and

the vector [y] cal-i be solved for by forward- and back-substitution without row

or column operations. This significantly reduces the number of operations that

needs to be carried out and reduces the opportunity for roundoff error (Press,

et.al., 1992).

Once again, a coded algorithm from Press, et.al. (1992) was used. The

subroutine is called banbks and is used in combination with bandec as an

equation solver. The subroutine writes the solution vector into the constants

vector [b}. The [LI and [UI matrices are left intact should another solution be

sought with the same coefficients matrix.

At this point in the model, the shape of the reinforcing element generated

by the most recent solution of the lateral portion of the problem is compared

with the previous shape of the reinforcing element. The difference in the

deflections from the two solutions is calculated for each node and the largest

difference among all the nodes is stored.

Then there is a subroutine to transfer the lateral deflections from the

solution vector, which is the most recent solution to the lateral problem, to the

displacement vector. Recall that the solution vector, [x], is written into the

constants vector array, [bI. By transferring the latest lateral deflections to the

displacement vector, the constants vector space is freed up for the next

construction of the constants vector and for the next iteration. Also, the latest

deflected shape of the reinforcing element is stored in the displacement vector to



allow calculation of the quantities that come from that shape in subsequent

iterations. This includes both the tension in the reinforcing element and the

secant modulus of the soil response.

Tension Subroutine

The final subroutine is the one that calculates the axial solution to the

problem. The output of the tension subroutine is the applied tensile force

perpendicular to the failure surface and the tension in the reinforcing element at

each node. The subroutine calculates the output quantities by first calculating the

increased length of the deflected shape of the subroutine. Then the force required

to cause the increased length is calculated by summing the shear-stress transfer

values associated with each node given its movement through the soil.

Iteration Criteria

At the end of the tension subroutine, the decision is made whether to

accept the current solution or calculate one more iteration of the solution. The

decision is made based on the difference in the deflected shape of the reinforcing

element from successive iterations of the model. If the maximum difference

between any two successive deflections for any node is greater than 1O inches,

then another iteration is calculated. In each subsequent iteration the shape of the

reinforcing element and the tension values at each node are updated. Then the
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entire procedure from the beginning of the ioop, which starts at the calculation of

the secant modulus of the soil response, is carried out again (see Figure 4-11). If

the maximum difference in deflections between successive iterations is smaller

then iO inches, then the ioop is exited. The header information, including the

soil and reinforcing element parameters of the test, is written to a disk file along

with the final displacement vector, or the final shape of the deflected reinforcing

element, and the forces parallel to and perpendicular to the failure surface that

caused the deflection.

The root reinforcement model has proven to be quite robust. The solution

technique is initiated by simply offsetting the top node by the amount of lateral

deformation desired in the final solution. The iteration technique is simply to

take the answer from the previous iteration and use it as input for the current

iteration. For the smaller lateral deflectioris the model closed within three or four

iterations. For the larger reinforcing elements and large deflectioris the model

took seven or eight iterations to close. Thus the criteria for a robust model, one

that takes a very crude shape and minimal input and moves very quickly to a

solution.

Initially, based on suggestions and examples from numerical methods

texts and other numerical methods programs, a value of 1O inches was used as

the closure criteria. This often lead to several iterations where the model output

was not changing within five or six significant digits. A closure criteria of iO

inches was reached by trial and error. A range of values for closure criteria were
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tested and the solutions for each were compared. A closure criteria of 1O inches

speeded up calculation time, especially for problems with large lateral

deflections, but didntt affect the value of the answer to within five significant

digits. This was deemed acceptable for the problem being tested.



RESULTS

Model Verification

Verification is a critical part of the development of any model. It is

important that the output of the model be considered correct, or in other words,

the model must be able to correctly predict the behavior of the modeled

phenomena in the real world. Model output does not have to exactly mimic real

world behavior of the modeled phenomena to be useful, but it must come close

enough to satisfy the objectives driving the development of the model in the first

place.

The charge for the development of the root reinforcement model was to

develop a model which was based primarily on physical principles, not

empiricism. The requirements on the accuracy of the root reinforcement model

are that the output forces be within the correct order of magnitude, model output

should respond properly and intuitively to changes in input, and the model be

responsive enough to allow "what if' scenarios to be run with differing input

parameters.

To verify the accuracy of the model, results generated by the model have

to be compared with real world results generated by a process similar to the one

being modeled. Independent field or laboratory trials for the expressed purpose

of verifying this model were not conducted. Therefore the real world results with
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which to compare the model output have to come from research results in the

technical literature. The applied tensile force, applied shear force, and shape of

the reinforcing element as it is stretched across a failure surface are output from

the root reinforcement model. The model was constructed to generate this output

for reinforcing elements, including conifer roots, in shallow, cohesionless, sandy

soils. There are no research results available in the technical literature which give

these outputs for the environmental conditions described. Thus, technical

literature was examined which reported results on either field or laboratory trials

where reinforced earth structures or theory were tested. Reinforced earth is used

in its broadest sense to describe any situation where high tensile strength

inclusions, including steel rods and tree roots among other materials, are

embedded in soil with the reported result that the strength of the

soil/reinforcement was increased relative to the strength of the soil alone.

The most applicable type of information from the technical literature

comes from case studies of reinforced earth walls. In these case studies, the

reinforced earth wall is instrumented to measure the movement of the wall and

the reinforcing elements are instrumented to measure the extension, and thus the

tensile stress, in the reinforcing elements. With this type of data, the actual

increase in stresses in the reinforcing elements in response to a movement of soil

are known, which is the information being sought. The type of reinforced earth

structures most applicable to the situation being modeled are reinforced earth

walls and soil nailed walls. Soil nailed walls are the type of reinforced earth
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structure that most closely resembles the situation being modeled by root

reinforcement. An example of the type of information and literature available for

case studies of reinforced earth wl1s is Shen et. al. (1981a & 1981b). Shen et. al.

report on the performance of two soil-nailed walls, a prototype model wall and a

full-scale wall. The reported results include both the observed movement of the

wall and the increase in the tensile forces in the soil nails. There are a great

number of reinforced earth wall case studies available in the literature. Many of

the case studies are reviewed in Mitchell and Villet (1987).

Case studies of reinforced earth walls should be a valuable source of data

to validate the root reinforcement model, however, the data are not useful for

several reasons. First of all, even short reinforced earth walls are several meters

tall and the first row of reinforcing elements are installed at a depth of 1 to 2

meters which makes the confining stress on these reinforcing elements

considerably greater than the confining stress associated with shallow landslides.

Secondly, the reinforcing elements are high modulus. They are, at minimum,

steel reinforcing bars and, more often, are steel bars encased in grout which

makes their modulus of elasticity much different than that of conifer roots.

Finally, the soil in most reinforced earth walls is either a manufactured soil

which would be a high density, compacted, granular fill or an in situ soil which

may have considerable cohesion. These conditions do not adequately replicate

the environmental conditions modeled, so reinforced earth case studies are not

used to validate the root reinforcement model.
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Waldron arid his associates published a series of articles describing a

research program studying the strength of soils reinforcedwith plant roots

(Waldron, 1977; Waldron and Dakessian, 1981; 1982; Waldron et. al., 1983). Tn

this research, direct shear strength tests were used to measure the strength of a

soil/root matrix. Failure surfaces imposed on the tested soil columns were all

less than 1 meter deep, thus confining stress on the failure surface was consistent

with a shallow soil. Only plant roots were used for the reinforcing elements so

the modulus of elasticity of the reinforcing elements was consistent with the root

reinforcement model. Some of the soils that the plants were grown in, and later

tested, were the same textures as a shallow forest soil. However, a lot of the

'published testing was carried out on a clay loam which had more cohesion than

was considered in the root reinforcement model. During strength testing, only

external displacements and forces were measured and recorded, so the numbers

and orientation of the plant roots, both before and after testing, and stresses in

the roots were not studied and can not be deduced from the article. Therefore,

this information was also not used to validate the root reinforcement model.

Gray and Ohashi (1983) ran a series of laboratory direct shear tests using

various materials as reinforcing elements in a cohesionless sand. Both the texture

of the sand and the modulus of elasticity of most of the reinforcing elements

were within the modeled range of these parameters. However, the confining

stresses used during the direct shear tests, which corresponded to soil depths

greater than 2 m, could not be considered shallow. Additionally, only external

..?
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displacements and forces were measured and recorded and, while the initial

geometry of the reinforcing elements were known, the final geometry was not.

For all of these reasons, but primarily because the confining stresses were too

high, this data was also not used for validation of the root reinforcement model

Wu, et. al. (1988b) conducted in situ direct shear tests on small blocks of

forest soil with conifer roots embedded. Obviously, the soil type, modulus of

elasticity of the reinforcing elements, and the confining stress were all acceptable

and their values were in the range being modeled. Once again, the direct shear

tests give only the external displacements and forces except the tension in some

of the roots was monitored during the test. The final geometry of the roots after

the test were completed was known, but root geometry was not known before

the test was initiated, so the change in geometry of the root is not known. This

particular test would seem to be ideal for testing the root reinforcement model,

but insufficient information was given in the article to allow validation of the

root reinforcement model to be carried out.

Jewell (1980) performed laborator direct shear tests on sand reinforced

with either steel or brass bars or grids. A cohesionless sand was used for the

tests, but is was a dense sand and the applied normal force made the confining

stress on the reinforcing elements too large for the modeled soil depth to be

considered shallow. The geometry of the reinforcing elements, both before and

during the tests, was known, however only external displacements and forces
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were measured and recorded. Primarily due to the large confining stresses, data

from this source was also not used to validate the root reinforcement model.

Shewbridge and Sitar (1985; 1989) and Abe and Ziemer (1991) also used

laboratory direct shear tests to determine the strength of sand reinforced with

different types of reinforcing elements. A clean, cohesionless sand was used for

the direct shear tests at a confining stress on the reinforcing elements that was

equivalent to a soil depth of less than two feet which is a shallow soil. The

reinforcing elements included parachute cord, aluminum and steel bars, wooden

dowels, and conifer roots, so the direct shear tests were conducted with

reinforcing elements which had an appropriate modulus of elasticity. The

geometry of the reinforcing elements before the test were known and great care

was taken to determine the final geometry of the reinforcing elements at the

completion of the tests. Only external displacements and forces were measured

during the direct shear tests. The displacements and forces in the reinforcing

elements during the direct shear tests were not measured. Despite the fact that

the internal forces in the reinforcing elements during the strength tests are not

known, which are outputs of the root reinforcement model, everything else

about the tests matched quite well. The direct shear tests used a shallow,

cohesionless sand, the modulus of elasticity of the reinforcing elements was

appropriate, and the geometry of the reinforcing elements both at the beginning

and the completion of the tests were measured and recorded. Research results
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from these articles and this series of direct shear tests were used to validate the

root reinforcement model.

As a first step in validating the root reinforcement model, the conditions

in which the direct shear tests were conducted were converted into input

parameters for the root reinforcement model. Both Shewbridge and Sitar (1985)

and Abe and Ziemer (1991) used the same direct shear device but they used

slightly different test conditions and different reinforcing elements. Shewbridge

and Sitar (1985) used burigy cords, parachute cord, wooden dowels, steel rods,

and aluminum rods as reinforcing elements while Abe and Ziemer (1991) tested

actual conifer roots (Pinus contorta) as reinforcing elements.

Shewbridge and Sitar (1985) used a clean, dry cohesionless sand with an

internal angle of friction of 40° in their direct shear tests. The relative density of

the sand was 71 percent and the dry unit weight was 104 lbs/ft3. Based on the

relative density, the sand was medium density so a coefficient of subgrade

reaction of 90 lbs/in3 was assigned. Based on the reported confining stress on the

reinforcing elements and the density of the sand, the reinforcing elements were

embedded at an equivalent soil depth of 24.7 inches. The extent of the lateral

deformation of the reinforcing element at the completion of the direct shear test

was 85 mm. Recall that the root reinforcement model is symmetric about the

failure surface so only half the problem is modeled. Thus, the lateral deformation

used in the model was 42.5 mm or 1.67 inches. The diameters and modulus of
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elasticity of the reinforcing elements used in the root reinforcement model were

taken from Shewbridge and Sitar (1985) and are listed in Table 5-1.

Abe and Ziemer (1991) also used a cohesionless sand in their direct shear

tests. It had a dry unit weight of approximately 92 lbs/ft3 and a moisture content

of 19.5 percent making the moist unit weightapproximately 110 lbs/ft3. No angle

of internal friction was given, so one of 400 was assumed. The sand was also

assumed to be medium density and based on the unit weight of the sand a

coefficient of subgrade reaction of 90 lbs/in3 was assigned. Based on the

confining stress on the reinforcing elements and the moist unit weight of the

sand, the reinforcing elements were embedded at an equivalent soil depth of

approximately 21.5 inches. The total lateral deformation of the reinforcing

elements in these direct shear tests was 88 mm, thus the displacement distance

used in the root reinforcement model was 44 mm or 1.73 inches.

The reinforcing elements used by Abe and Ziemer (1991) were pine roots.

Three root diameters and three modulus of elasticity values were used in the root

reinforcement model during model validation. Three root diameters were used

because the roots tested by Abe and Ziemer (1991) fell into three convenient size

classes. A representative diameter from each of these size classes was included in

the root reinforcement model validation. The diameters that were used are listed

in Table 5-1. Abe & Ziemer (1991) did not determine a modulus of elasticity for

the pine roots they tested and used an assumed value instead. The value they

assumed was no better or worse than any of a number of other values that could
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have been used. Their assumed value was bracketed by both a larger and smaller

value of modulus of elasticity for conifer roots to allow a range of modulus

values to be tested. The largest value used in the root reinforcement model for a

conifer root was 1,730,000 psi. This was the modulus of elasticity value used by

Shewbridge arid Sitar (1985; 1989) for the wooden dowels in their direct shear

tests. The modulus of elasticity value assumed by Abe and Ziemer (1991) was

392,500 psi and was taken from modulus of elasticity tests performed on

Cryptomeria japonica by the senior author. The smallest value of modulus of

elasticity used in the root reinforcement model was 73,000 psi which came from

work done by Commandeur and Pyles (1991) on Douglas-fir roots and this value

of modulus of elasticity is the default value used for conifer roots throughout this

dissertation. These modulus values are also listed in Table 5-1.

In addition to setting the input parameters for the soil and reinforcing

elements, the shear-stress transfer functions were also set. During validation of

the root reinforcement model, as well as during all simulations using the root

reinforcement model, Commandeur's (1989) shear-stress transfer equations were

used. The equivalent soil depths for the two situations being modeled were 24.7

and 21.5 inches and the corresponding soil densities were 104 and 110 lbs/ft3 The

shear-stress transfer function developed by Commarideur (1989) with the most

extreme soil depth arid density was for a 12 inch soil depth and a 92 lbs/ft3 soil

density. This shear-stress transfer function was used because no better data



exists. Therefore, the shear-stress transfer coefficients in Table 4-2 of this

dissertation were used for the following shear-stress transfer function,

z
5-1

0.0667 O.223(z) + 0.421(z)2

where, r is the calculated shear-stress transfer in lbs/in2 and z is the

displacement of the root. The coefficients are empirical constants for the case of a

12 inches soil depth and a 92 lbs/ft3 soil density.

There is more to the process than just assigning a shear-stress transfer

function, the shear-stress transfer function must be scaled to account for

discrepancies between the empirically measured ultimate shear-stress, in

Commandeur (1989) and a reasonable estimate of the same value. The ultimate

shear-stress transfer measured during the laboratory trials to develop the above

shear-stress transfer function was 1.79 lbs/in2. During the verification of the root

reinforcement model, a scaling coefficient was used in the root reinforcement

model to reduce the value of shear-stress transfer predicted by the above

equation. The scaling coefficient was a ratio between the calculated reasonable

estimate of ultimate shear-stress and the value of ultimate shear-stress measured

by Commandeur (1989). To determine a reasonable estimate of the ultimate

shear-stress, the first step is to assume an apparent friction angle between the

reinforcing element and the sand. For the reinforcing elements tested by

206
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Shewbridge and Sitar (1985; 1989), the apparent friction angles were given and

are listed in Table 5-1. For the pine roots tested by Abe and Ziemer (1991), no

apparent friction angles was given so one was assumed. The assumed apparent

friction angle was 35° which is the same as the apparent friction angle for the

wooden dowels from Shewbridge and Sitar (1985). These values are also listed in

Table 5-1. Once the apparent friction angles had been assigned, the ultimate

shear-stress value was calculated by averaging the vertical overburden pressure

and the horizontal at-rest earth pressure and then multiplying that value by the

tangent of the apparent friction angle. The calculated ultimate shear-stress values

and the resulting scaling coefficients are also listed in Table 5-1 with all the other

input parameters.

Model validation was carried out by comparing the shape of the modeled

reinforcing element with the direct shear results reported in the literature

(Shewbridge and Sitar, 1985; 1989; Abe and Ziemer, 1991). This task was made

easier due to the way that the deformed shape of the reinforcing elements in

direct shear tests were reported. The procedure, initiated by Shewbridge and

Sitar (1985) and used by Abe and Ziemer (1991), was to make a map or drawing

of the shape of the deformed reinforcing elements at the completion of the direct

shear test. The shape of half of the reinforcing elements were fitted to an

exponential function of the form:

y = B - B 5-2
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where, y is the lateral deflection of the reinforcing element parallel to the failure

surface at a distance x from the failure surface and perpendicular to it. B is half of

the total lateral deformation of the reinforcing element during the test. So B is

1.67 inches for tests run by Shewbridge and Sitar (1985)and 1.73 inches for the

tests run by Abe and Ziemer (1991). The constant that describes the curve is b. To

recreate the shape of a deformed reinforcing element for the purpose of

comparing that shape with output from the root reinforcement model, the

constant, b, for the reinforcing element is determined and the shape of the curve

is calculated and graphed.

In the root reinforcement model, only one reinforcing element is modeled

at a time. In the direct shear tests run by both Shewbridge and Sitar (1985) and

Abe and Ziemer (1991), the reinforcement effect of multiple reinforcing elements

was tested during each direct shear test. In none of the direct shear tests used to

validate the root reinforcement model was a single reinforcing element tested.

The authors reported interference with multiple reinforcing elements especially

atthe high concentrations of reinforcing elements, thus b-values were not

constant for a given reinforcing element material over several direct shear tests.

It was important to choose the most appropriate b-value for comparisons with

the root reinforcement model. The direct shear tests that were chosen for the

most appropriate b-value for comparisons with the root reinforcement model, in

every case, were direct shear tests in which the minimum number of reinforcing

elements were used. In some cases, direct shear tests with the same material and
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number of reinforcing elements had differing b values. Although therewas not a

great difference in the b-values, they, nonetheless, were different. In these cases, a

representative value was chosen which was usually not an extreme value but

some intermediate value. The b-values used for model validation are listed in

Table 5-1.

The results of the model verification exercise are shown in Figures 5-1

through 5-8. The model was run to generate output for parachute cord, small

wooden dowels, large wooden dowels, steel rods, aluminum rods, and small-,

medium-, and large- pine roots. A problem was encountered regarding the

modeled tension in the reinforcing elements. The reinforcing elements used in

the direct shear tests were 750 mm long. Only one half of the reinforcing element

on one side of the failure plane could be modeled in the root reinforcement

model which made the length of the modeled reinforcing element 375 mm or

approximately 15 inches long. The maximum length of the reinforcing element

that could be in tension was 15 inches. Shewbridge and Sitar (1985) note that

shear-stress transfer between the soil and the reinforcements, with a

corresponding increase in tension in the reinforcing elements, must be mobilized

significantly beyond the zone of shear displacements. They also noted that the

complete length of the reinforcing elements in the direct shear tests were in

tension by the completion of the direct shear tests and often before completion of

them. The force-displacement curves show this to be the case (Shewbridge and

Sitar, 1989) and output from the root reinforcement model confirms this.
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The amount of tension in the reinforcing elements in the direct shear tests

could be drastically overestimated in the root reinforcement model if the model

is allowed to assume an infinitely long reinforcing element and account for all

the potential increase in tension by shear-stress transfer between the soil and

reinforcing element. The tension in the reinforcing element affects the lateral

deformation of the reinforcing element and over estimating the actual tension

available in the direct shear tests could affect how well direct shear test results

and root reinforcement model output compare. This problem was accounted for

by running the root reinforcement model using a range of values o tension.

Because it was not possible to know the actual values of tension in the

reinforcing elements during the direct shear tests, values of one half and/or one

quarter of the maximum calculated tension were used in the root reinforcement

model. All output from the root reinforcement model was graphed to allow

visual comparisons. The use of multiple tension values in the root reinforcement

model explains the multiple curves for each reinforcing element per graph.

During the direct shear tests for the pine roots, a modulus of elasticity

value was assumed, not measured (Abe and Ziemer, 1991). When the root

reinforcement model was run to generate output to compare with these direct

shear tests, a range of modulus values were used. The range of shapes associated

with multiple values of modulus for the pine roots offers more insight into the

function of the root reinforcement model than multiple values of reinforcing

element tension, therefore for the root reinforcement model comparisons with
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the direct shear tests involving pine roots, the multiple curves are associated

with various values of modulus.

An attempt was made to fit the output from the root reinforcement model

to exponential decay curves so b-values could be assigned to the shape of the

model output and numerical comparisons between the direct shear tests and

model output could be made. The deformed shape of the reinforcing elements

produced by the root reinforcement model did not easilyor nicely fit an

exponential decay function. Therefore, the primary mode of model verification

was visual comparison.

The worst fit between output from the root reinforcement model and the

direct shear test results was for the high modulus reinforcing elements, the steel

and aluminum rods. In both cases there was a poor fit between model output

and test results regardless of the value of tension used in the root reinforcement

model. The root reinforcement model over predicted the deflection of the

reinforcing element throughout its length compared with the direct shear test

results. Figures 5-1 and 5-2 show the envelope of shapes associated with the

range of tension values modeled for the reinforcing elements. The outcomes are

different enough that it seems reasonable to expect that the forces which would

be required to create the different shapes would probably not be in close

agreement either.

The success modeling the pine roots was mixed (Figures 5-3 to 5-5). The

smallest value of modulus, 73,000 psi, resulted in shapes that didn't match very
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Figure 5-1. A graph of distance from the failure surface versus lateral deflection
for a steel rod reinforcing element embedded in a cohesionless sand. The graph
shows the results from a laboratory direct shear test (Shewbridge and Sitar, 1985)
compared with output from the root reinforcement model run with no axial
tension and the maximum calculated axial tension shown in the legend.
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Figure 5-2. A graph of distance from the failure surface versus lateral deflection
for an aluminum rod reinforcing element embedded in a cohesionless sand. The
graph shows the results from a laboratory direct shear test (Shewbridge and
Sitar, 1985) compared with output from the root reinforcement model run with
no axial tension and the maximum calculated axial tension shown in the legend.
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well for the three diameters modeled. The root reinforcement model

underestimated the deflections when compared with dfrect shear test results

throughout the length of the reinforcing element. The agreement between shapes

was best for the largest value of modulus, 1,730,000 psi. Using this value of

modulus with all the root diameters tested, the deflections were overestimated

close to the failure surface and underestimated away from the failure surface. For

the intermediate modulus value, 392,500 psi, the comparisons were also

intermediate but, in general, were not good. The shape of the modeled root

matched the direct shear test results very closely right at the failure surface but

then very quickly the deflection was underestimated for the remainder of the

length of the tested root. It is unclear why the stiffer modulus associated with

wooden dowels would model the direct shear test results better than the other

two values which are derived from actua' tree roots and, in the case of the

smallest modulus value, green tree roots.

The comparisons between deformed shapes for direct shear test results

and root reinforcement model output for the wooden dowels are very good. The

graphs are shown in Figures 5-6 and 5-7. The figures show an envelope of curves

for a range of tensions for both of the diameters of wooden dowe]s tested. The

breadth of the envelope associated with the different values of tension is an

indicator of the relative importance of reinforcing element tension to the

deflected shape of the reinforcing element. A comparison of the range in

deflected shapes in the two graphs (Figures 5-3 and 5-4) indicate the importance
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Figure 5-3. A graph of distance from the failure surface versus lateral deflection
for a 0.32 inch diameter pine root reinforcing element embedded in a
cohesionless sand. The graph shows the results from a laboratory direct shear
test (Shewbridge and Sitar, 1985) compared with output from the root
reinforcement model run with the three modulus of elasticity values shownin
the legend.
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Figure 5-4. A graph of distance from the failure surface versus lateral deflection
for a 0.43 inch diameter pine root reinforcing element embedded in a
cohesionless sand. The graph shows the results from a laboratory direct shear
test (Shewbridge and Sitar, 1985) compared with output from the root
reinforcement model run with the three modulus of elasticity values shown in
the legend.
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Figure 5-5. A graph of distance from the failure surface versus lateral deflection
for a 0.54 inch diameter pine root reinforcing element embedded in a
cohesionless sand. The graph shows the results from a laboratory direct shear
test (Shewbridge and Sitar, 1985) compared with output from the root
reinforcement model run with the three modulus of elasticity values shown in
the legend.
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Figure 5-6. A graph of distance from the failure surface versus lateral deflection
fora small, 0.13 inch diameter, wooden dowel reinforcing element embedded in
a cohesionless sand. The graph shows the results from a laboratory direct shear
test (Shewbridge and Sitar, 1985) compared with output from the root
reinforcement model run with the three different axial tensions imposed on the
solution. These three values are listed in the legend.
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Figure 5-7. A graph of distance from the failure surface versus lateral deflection
for a large, 0.31 inch diameter, wooden dowel reinforcing element embedded in a
cohesionless sand. The graph shows the results from a laboratory direct shear
test (Shewbridge and Sitar, 1985) compared with output from the root
reinforcement model run with the three different axial tensions imposed on the
solution. These three values are listed in the legend.
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of the interaction between tension in the reinforcing element and its diameter.

With both the large and small diameter wooden dowels, the predicted shapes

straddle the results from the direct shear tests. Initially, the predicted deflections

are greater than the actual deflections directly adjacent to the failure surface, then

the trend reverses and the predicted defledions are less than the acffial

deflections. The trend is similar for all the predicted curves, the crossover just

occurs in different locations. When the vagaries associated with generating the

exponential decay curves from the deformed shape of reinforcing elements and

the root reinforcement modeling process are considered, the model verification

results for the wooden dowels is really quite good.

The model verification results for the parachute cord are also quite good

(Figure 5-8). This is an important result because in all the previous results the

only situation that gave acceptable results was wooden reinforcing elements with

a modulus of 1,730,000 psi and an apparent skin friction of 35°. This included the

results for both large and small wooden dowels arid all three diameters of pine

roots at the highest modulus value. The results from high modulus, low skin

friction metal reinforcing elements and for the low modulus pine roots did not

compare well with the direct shear results. However, the parachute cord has a

low modulus, 213,000 psi, and a high apparent skin friction and the model

output compared very well with the direct shear results. This increases the

comfort level that the root reinforcement model is a valid tool and can be used to

interrogate the root reinforcement process.
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Figure 5-8. A graph of distance from the failure surface versus lateral deflection
for a parachute chord reinforcing element embedded in a cohesionless sand. The
graph shows the results from a laboratory direct shear test (Shewbridge and
Sitar, 1985) compared with output from the root reinforcement model.
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The verification of the root reinforcement model has proceeded in a

manner that was not quantitatively rigorous, however there is no doubt that it

can perform adequately for the task required. The modeled output for the

wooden reinforcing elements compared very well with direct shear results from

both Shewbridge and Sitar (1985;1989) and Abe and Ziemer (1991). While the

model output did not overlap the direct shear resulis exactly, it was certainly

within order-of-magnitude accuracy. Furthermore, any existing mismatch could

just as easily be associated with the process that generated exponential curves

from direct shear test results (Shewbridge and Sitar, 1989; Abe and Ziemer, 1991)

as with the root reinforcement model. For those situations where the model

output and the direct shear results were a good match, it seems reasonable to

expect that the forces calculated by the root reinforcement model that would

cause the calcuhted deflections should match the forces required to generate the

deflected shape in the direct shear tests. It is comforting that the situations where

the model seems to have performed the best, namely, wooden reinforcing

elements with constant modulus properties and constant shear-stress transfer

values throughout their length, are those situations of most interest to this

project.

The goal of model verification was to determine if the model would

generate output which was within correct order-of-magnitude range, if model

output wouM respond intuitively to changes in input parameters, and if model

output would be responsive enough to allow "what-if scenarios. The output

222
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from the root reinforcement model has certainly shown order-of-magnitude

accuracy with the overlap of modeled and deflected shapes. It is hard to believe

that with the overlap of the deflected shapes, that the forces generated from the

shapes wouldn't have similar levels of accuracy. Furthermore, a range of

reinforcing element diameters, elastic modulus values, and reinforcing element

tensions have been modeled and the model has responded appropriately and

intuitively to these changes in input. The root reinforcement model has

performed well enough for this project to continue with the parameter study.

Parameter Study

The purpose of this part of the dissertation is to investigate how the

output of the model responds to changes in selected input parameters. Input

parameters that are expected to have a normal range of values, such as root

diameter and the root's depth in the soil, were varied, while parameters that are

expected to remain constant, like the modulus of elasticity of roots, soil density,

and internal angle of friction of the soil, were not varied. Those input parameters

that were varied, were tested over a range of values normally expected for a

shallow, cohesionless soil on a landslide-prone forested slope.

One of the parameters that was not varied was soil type. The soil was

assumed to be a clean, cohesiordess, loose sand with a dry density of 90 lbs/ft3.
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Soil strength was representative of how it would vary normally. There was no

cohesion so c was zero throughout this parameter study (as well as all other runs

of the model). The internal angle of friction was assumed to be 440 for soil depths

of 12 and 18 inches and was 470 for the 6 inch depth. The variation in internal

angle of friction is a consequence of lower confining stresses at shallow depths.

In cohesionless soils at low confining pressures, the internal angle of friction is a

function of the confining stress and increases with decreasing confining pressure

(Lambe and Whitman, 1969; Holtz and Kovacs, 1981). As reported by

Commandeur (1989), at a confining stress equivalent to a 6 inch depth of loose,

90 lbs/ft3 dry sand, the internal angle of friction is 47°.

The type of reinforcing elements and the modulus of elasticity of the

reinforcing elements were also held constant. The reinforcing elements were

assumed to be Douglas-fir roots with a modulus of elasticity of 73,000 lbs/in2.

The input values that were varied are the diameter of the reinforcing

elements, the soil depth the reinforcing elements were modeled at, and the shear-

stress transfer functions. Three root diameters were modeled; 0.1, 0.25, and 0.5

inches. These three diameters were chosen as representative of the distribution of

diameters available in shallow, landslide-prone, forest soils. Burroughs arid

Thomas (1977) studied the distribution of diameters for Douglas-fir roots in a

shallow, forest soil in the Oregon Coast Range. Their data is listed in Table 5-2

which shows the number of Douglas-fir roots per unit area of soil for six

diameter size classes. These data are the best available to indicate the number
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and diameter distribution of tree roots most likely be found in failure surfaces of

naturally occurring landslides. Table 5-2 shows that 90 percent of the roots are

Table 5-2. The number of roots per square meter and square foot of forest soil for
six diameter size classes for a Douglas-fir forest in the Oregon Coast Range
(Burroughs and Thomas, 1977).

0-4 mm in diameter, 8 percent are between 4 and 10 mm in diameter, and the

remaining 2 percent of the roots are 1 to 8 cm in diameter. The three root

diameters modeled were chosen to represent these three size classes. The 0.1 inch

(2.5 mm) diameter root represents the 0 to 4 mm size class, the 0.25 inch (6.4 mm)

diameter root represents the 4 to 10 mm size class, and the 0.5 inch (12.7 mm)

diameter root represents all roots greater than 1 cm in diameter. The choice of

just three root diameter dasses is, admittedly, a compromise between accuracy of

the output and workload. More root diameter size classes would model the

Diameter size class N/rn2 N/ft2

0-4 mm (0-0.16 in) 90.42 8.4 :

4- 10 mm (0.16 - 0.39 in) 7.90 0.75

1.1 -2 cm (0.39 - 0.78 in) 1.59 0.147

2.1 -4 cm (0.79 - 1.59 in) 0.409 0.038

4.1 -6 cm (1.6 - 2.38 in) 0.106 0.00987

6.1 -8 cm (2.39 - 3.17 in) 0.104 0.00971

Total 100.53 9.35
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actual situation more accurately but would also take more time to complete the

required runs of the root reinforcement model for each size class. The choice of

the three size classes, hopefully, optimizes the combination of woridoad and

accuracy.

The roots were modeled at three soil depths; 6, 12, and 18 inches. These

three depths represent the range of soil depths that conifer roots are found in

shallow, forest soils. Finally, the shear-stress transfer functions used in the root

reinforcement model were used both with and without scaling coefficients. One

run of the model was made with the shear-stress transfer functions as reported

by Commandeur (1989) and a second run of the model was made with the

appropriate scaling coefficient for the shear-stress transfer function with all other

parameters remaining fixed. The shear-stress transfer function that was used for

the 6-inch soil depth is:

z
5-3

.0562 + (O.770)z + (O.667)z2

and the shear-stress transfer function used for both the 12- and 18- inch soil

depths is:

z

0.03 + (O.S96)z + (0.325)z2
5-4
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The scaling coefficients for the three depths are 0.14085, 0.1819, and 0.26808 (all

the significant digits were used in the model) for the 6-, 12-, and 18-inch depths,

respectively.

In this parameter study, the roots were modeled through a series of lateral

deflections. Unlike the model verification, where information was known on'y at

the extreme deflections, the objective of this portion of the study was to model

how the roots will perform through a series of deflections fromvery slight to

extreme. The lateral deflections of the root at the failure surface used in the

parameter study are; 0.05,0.1,0.25,0.5,0.75, 1.0, 1.25, 1.5, 1.75, and 2.0 inches

(Figure 5-9). All the input values used in the parameter studyare listed in Table

5-3.

The information needed to calculate the increase in soil strength attributed

to the reinforcing elements is the tensile and shear force in the reinforcing

element and the angle of reinforcing element at the failure surface. This model

output is different than the information required to calculate the increase in soil

strength and must be converted. The lateral and tensile force applied to the

reinforcing element are applied perpendicular and parallel to the failure surface

and must be converted to the tensile and shear force in the reinforcing element

(Figure 4-3). The following section describes and illustrates the process of

converting the root reinforcement model output to a more usable form followed

by a description of how different model inputs affect model output.



Table 5-3. Input values used in the parameter study of the root reinforcement
model.

Input Parameter Parameter Value

Soil Type clean, loose, and cohesionless

Soil Strength c=0; 0=44°

Soil Density 90 lbs/ft3

Depth of Reinforcing Elements 6-, 12-, & 18-inches

Modulus of Reinforcing Elements 73,000 lbs/in2

Diameter of Reinforcing Elements 0.1-, 0.25, 0.5-inches

Scaling Coefficients for Shear-Stress 6" depth- 0.14085

Transfer Functions 12" depth- 0.1819

18" depth- 0.26808

Reinforcing Element Deflections .05, .1, .25, .5, .75, 1.0,

1.25, 1.5, 1.75, & 2.0 in.
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Output generated by the root reinforcement model, as discussed

previously, is the deformed shape of the reinforcing element and the forces

applied to the reinforcing element parallel and perpendicular to the failure

surface that produce the deformed shape. Model output for the force parallel to

the failure surface is labeled V, and the model output perpendicular to the failure

surface is labeled T. The angle the root makes with its original, undeflected
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shape is labeled 0 (Figure 4-3). All of these quantities were calculated for a 0.25

inch diameter root embedded one foot deep in a sandy soil with a scaling

coefficient of 0.1819. The modeled shape of the 0.25 inch diameter root deformed

through the complete sequence of lateral deflections is shown in Figure 5-9. A

graph of V, and T versus the lateral deflection of the reinforcing element at the

failure surface is shown in Figure 5-10. Both quantities show, in essence, a linear

increase in magnitude as a function of increasing deflection. The force parallel to

the failure surface, V, starts out greater than the axial force, T, and stays higher

throughout the range of deflections.

The shear and tensile force in the reinforcing element are calculated using

the following relationships,

V = V cos 0 T sinO 5-5

T = cos 0+ V sin 0 5-6

The applied force parallel to the failure surface is V, and the applied force

perpendicular to the failure surface is T and both are outputs from the root

reinforcement model. The values are converted to tension, T, and shear, V, in the

reinforcing element. From the deflected shape of the reinforcing element, 0, the

angle the root makes with its original, vertical position at the failure surface, is
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Figure 5-9. The deformed shapes of a 0.25 inch root deflected through the
complete sequence of lateral deformations. The input parameters for the root
reinforcement model resulting in this sequence of shapes is listed in Table 5-2.
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Figure 5-10. A graph of output from the root reinforcement model of applied
lateral force, V,, and tensile force, T, on a root versus lateral deformation at the
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calculated. This angle is used to convert the forces parallel and perpendicular to

the failure surface to forces parallel and perpendicular to the reinforcing element

cross-section. It is these forces that are used to calculate the increased strength of

the soil due to the reinforcing element.

As observed in Figure 5-11, initially the shear force, V. is greater than the

tensile force, T, however, these two forces crossover very quickly and after the

crossover the tensile force increases linearly with increasing deflection and the

shear force decreases slightly but, essentially, settles on a single value with

increasing deflection. This output clearly shows the importance of the tensile

force in adding strength to reinforced soil when low modulus reinforcing

elements are used. While there is a shear force component in the reinforcing

element which adds strength to the reinforced soil as the geometry of the

reinforcing element changes with increasing deflection, the shear force remains

essentially constant while the tensile force increases linearly. This leads to the

observation that increasing deflection will cause the reinforcing element to fail in

tension while failure of the reinforcing element in shear probably will not occur.

The effect of root diameter on increased soil strength by root

reinforcement was investigated by modeling tensile and shear forces in 0.1, 0.25,

and 0.5 inch diameter roots at a 12 inch soil depth using scaling coefficients with

shear-stress transfer functions. The effect of root diameter on the tensile and

shear forces in the root as a function of deflection are shown in Figures 5-12.
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Figure 5-11. A graph of output from the root reinforcement model of the tensile
force, T, and shear force, V. in a root at the failure surface versus lateral
deformation for a 0.25 inch diameter root in a one foot deep sandy soil.
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For the tensile force, the shape of the curves are the same with a linear increase in

tensile force throughout the range of modeled deflection. For a given deflection,

the tensile force increases with increasing diameter. Larger diameter roots

develop proportionately more tensile force than smaller diameter roots. For the

shear force, the curves for all three diameter roots are shaped similarly. The

maximum shear force occurs at larger deflections for larger diameter roots. The

maximum shear force or, for a given deflection, the increase in shear force also

increases with increasing root diameter. The larger diameter roots develop

proportionately more shear force than smaller diameter roots.

Figure 5-13 shows the effect of soil depth on the tensile and shear forces in

the modeled root. To show the effect of soil depth, a 0.25 inch diameter root was

modeled at 6, 12, and 18 inch soil depths and scaling coefficients were used with

the shear-stress transfer functions. Once again, for the tensile force the curves are

all similarly shaped. The effect of soil depth on tensile force is less than the effect

of root diameter and at any deflection the increase in tensile force appears to be a

linear function of soil depth which is an expected result. The effect of soil depth

on the shear force is similar to its effect on tensile force. The shape of the curves

are all similar and the maximum shear force appears to occur at a deflection of

approximately 0.5 inches. At deflections up to 1.0 to 1.2 inches, the shear force

appears to be a linear function of depth but beyond a deflection of about 1.2

inches, the curves do not maintain their relationship.



80

60 -

I:
5 30 -

20 -

10 -

0

80

70 -

10

0

0

- - - Soil depth = 6 inches

- Soil depth = 12 inches
Soil depth = 18 inches

- - - Soil depth = 6 inches

- Soil depth = 12 inches
Soil depth = 18 inches

- cc_ -- ___- ---

0.5 1 1.5 2

Lateral deformation, inches

(b)

Figure 5-13. The effect of three soil depths, 6, 12, and 18 inches, on the modeled
tensile (a) and shear (b) forces in a 0.25 inch root as a function of lateral
deformation.
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The effect of using a scaling coefficient with the shear-stress transfer

functions on the shear arid tensile forces in the reinforcing element is shown in

Figure 5-14. For most of the situations, root reinforcement was modeled both

with and without using scaling coefficients. The results all showed a consistent

pattern which is illustrated with the 0.25 inch root at a 12 inches soil depth. The

use of the scaling coefficient has an effect, although it is minor, on the geometry

of the deflected root. The use of a scaling coefficient means less tension is

developed in the reinforcing element at a given deflection. Less tension in the

reinforcing element translates into a more flexible root which will result in the

root making greater angle with vertical at the failure plane. This greater angle

translates accordingly during the force conversions to tension and shear in the

reinforcing element. However, the modeled increase in the angle of the

reinforcing element which is brought about by a more flexible root is insufficient

to offset the primary effect. The primary effect is that without a scaling coefficient

greater shear and tensile forces are generated at any deflection. This effect is

shown in Figure 5-14. Without a scaling coefficient the model output had

increased tension perpendicular to the failure surface which means a stiffer root

which requires greater force parallel to the failure surface to achieve a given

deflection. During the conversion of model output to tensile and shear force in

the reinforcing element, the increased applied forces translate into a much

greater tensile force in the reinforcing element root and a slightly increased shear
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Figure 5-14. The effect of using a scaling coefficient with the shear-stress transfer
functions in the root reinforcement model on the computed tensile and shear
forces in a 0.25 inch diameter root embedded one foot deep in a sandy soil.

238

- Tensile force, T, w/scaling coefficient

100 - - Tensile force, T, w/o scaling coefficient

- Shear force, V. wI scaling coefficient

80 - - - - Shear force, V. w/o scaling coefficient



239

force. The greatest effect is to the tensile force, however, which has the greatest

influence on the values of root reinforcement.

Once the tension and shear in the reinforcing element have been

calculated, then the increase in soil strength attributed to the reinforcing element

can be calculated. This is done using equation 4-3, which is shown below.

V T V4S sin6+cosø+ cos6
A A (A

__sine+aJtançt

This equation calculates the increase in soil strength 4S, given tension, T, and

shear, V, in the reinforcing element, the angle, 9, that the reinforcing element has

deformed from its original vertical position, and the cross sectional area of soil,

A, that the strength is spread over.

A composite soil strength can be calculated using equation 4-4. This

equation is,

4-3

[c' T V 1 T V+ sin6+cos6l+

which incorporates the soil cohesion, c', and the normal stress of the soil a,, into

equation 4-3.

This simple exercise was carried out for the test case being modeled. The

increase in strength was calculated for each of the three different diameter roots

Scomp S + LIS = LA A
cos6 - - sin 6+ a ]tan

A
0' 4-4
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embedded in a shallow cohesionless soil one foot deep. The calculation was

carried out for the range of lateral deflections listed in Table 5-1.

The increase in soil strength attributed to one root of each diameter

embedded in one square foot of sand is shown in Figure 5-15. For the model

output shown in Figure 5-15 (a), the soil strength increase due to root

reinforcement was calculated using a scaling coefficient with the shear stress

transfer functions and for Figure 5-15 (b), the soil strength increase was

calculated without using a scaling coefficient. As discussed, without a scaling

coefficient, the calculated increase in tension is greater and thus at any given

deflection the calculated increase in strength is greater.

The strength increases are minor at the small deflections. At the smallest

lateral deflection, the 0.1 inch diameter root caused a calculated increase in soil

strength of 1.8 lbs/ft2 (0.09 kPa). For the 0.25 inch root the calculated increase in

soil strength was 5.2 lbs/ft2 (0.25 kPa) and for the 0.5 inch root the calculated

increase in soil strength was 10.4 lbs/ft2 (0.5 kPa). As lateral deflection increases,

the magnitude of the increase in soil strength increases, in essence, linearly.

For the 0.1 inch diameter root, the graphs terminate at deflections of 1.5

and 0.75 inches for the cases of with and without a scaling coefficient,

respectively. The graphs terminate at these deflections because the root reached

its ultimate strength. The ultimate strength of a 0.1 inch diameter root was

calculated using Commandeur's (1989) relationship, TR=1750.9(DIB)2, where TR

the ultimate load at rupture and DIB is the diameter inside bark for the root.
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in (b). The roots were embedded in a sandy soil one foot deep.
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Assuming the 0.1 inch diameter is inside bark, the rupture load is 17.5 pounds.

At rupture, a single 0.1 inch diameter root per square foot of soil increased the

soil strength 21.6 and 20.9 lbs/ft2 (1.03 and 1.0 kPa) for the case of with and

without a scaling coefficient, respectively.

At a maximum lateral deflection of 2.0 inches, a single 0.25 inch diameter

root per square foot of soil increased soil strength by 85.6 lbs/ft2 (4.1 kPa) with a

scaling coefficient and by 142.6 lbs/ft2 (6.8 kPa) without a scaling coefficient. A

single 0.5 inch diameter root per square foot of soil increased soil strength by

209.0 and 340.1 lbs/ft2 (10.0 and 16.3 kPa) for with and without a scaling

coefficient, respectively. Recall that the lateral deflection of the root is only one

half the lateral deflection of the soil block. Rupture strength was not approached

by either the 0.25 or 0.5 inch diameter roots.

The increased soil strength values reported above are not really

representative of how forested soils will perform because the diameter

distribution of roots in a forest soil is not a single diameter root per square foot of

soil. Increased soil strength values were calculated that were more representative

of true field conditions. The model results for the single diameter roots were

weighted by the number of roots that diameter class represented. Table 5-2 lists

the diameter class and number of roots per unit area expected for a mature, late

seral stage, Douglas-fir forest in the Oregon Coast Range (Burroughs and

Thomas, 1977).
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To calculate the total increase in soil strength attributed to the number and

diameter distribution of roots in the representative forest soil, the model output

for each diameter root was multiplied by the number of roots that size

represented from Table 5-2. The output from the 0.1 inch diameter root was

multiplied by 8.4, the output for the 0.25 inch diameter root was multiplied by

0.7, and the output for the 0.5 inch diameter root was multiplied by 0.2.

The output from these calculations is shown in Figures 5-16. The results

from calculations using a scaling coefficient are shown in Figure 5-16 (a) and

Figure 4-16 (b) shows the results from calculations made without using a scaling

coefficient.

The graphs show clearly how dependent the increased strength is on the

smallest size fraction root. This, of course, is simply a matter of numbers.

Approximately 90 percent of the roots are in the smallest size class. The increased

soil strength is initially low at the smallest lateral deflection,an approximate

increase in soil strength of 21 lbs/ft2 (1.0 kPa) for both with and without a scaling

coefficient. The increase in soil strength does not increase linearly throughout the

range of lateral deflections, but peaks at the rupture strength of the smallest

sized roots. After the small roots rupture, the strength decreases and then

increase again but do not return to peak strength levels within the range of

lateral deflections tested. The peak increase in soil strength for both cases is

similar. For the case where a scaling coefficient was used the peak increase in

strength was 264 lbs/ft2 (12.6 kPa) and for the case where a scaling coefficient
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was not used the peak increase in soil strength was 250.5 lbs/ft2 (12.0 kPa). Even

though the lateral deflections at the peak increase in soil strength are different by

a factor of 2, the peak increase in soil strength is essentially the same due to the

fact that the peak soil strength is governed by the rupture strength of the small

roots.
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CONCLUSIONS & DISCUSSION

An analytical model that predicts the increase in the strength of shallow,

cohesionless forest soils due to the reinforcement of roots has been developed.

The model is physically based and predicts the deflected shape and the tensile

and shear forces in the deflected root as the soil deforms and these outputs are

predicted as a function of the physical properties of the soil and the root.

Output from the root reinforcement model was compared with direct

shear test results in which different materials were tested as reinforcing elements

in a shallow, moderately dense sand. The shapes of the deflected reinforcing

elements, as predicted by the root reinforcement model, were compared with the

shapes of the deflected reinforcing elements which resulted from direct shear

tests and the comparison was generally satisfactory. It was not possible to

compare the predicted forces in the reinforcing elements with experimental

results because such data do not exist.

The root reinforcement model has solved one of the problems with the

Wu-Waldron model which is the need to know a priori the width of the shear

zone before a soil strength increases associated with root reinforcement can be

predicted. The model can deflect roots and calculate tensile and shear load

increases without knowing a shear zone width.

Output from the model clearly shows that the increase in strength

associated with root reinforcement soil is not a fixed quantity but varies as a

246
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function of soil deformation. The strength of root reinforced soil is not a function

of the type .of reinforcement and the soil type alone, but a function of the

deformation of the soil block, also. The predicted strength of the reinforced soil

will increase as deformation increases as long as the soil/root composite

structure remains competent. If the competence of the composite structure is lost

at a small deflection then the predicted strength increase will be less than if

competence is lost at a larger deflection.

The output from the root reinforcement model clearly illustrates the

problem of strain incompatibility between the large and small roots. The model

output shows that it is not appropriate to simply sum the ultimate strength of all

the roots in a potential slide surface to calculate reinforced soil strength. Figures

5-15 and 5-16 show that small roots wifi reach ulthnate tensile strength while

large roots are still stretching elastically. The model output also illustrates the

importance of the smallest sized roots (0 to 4 mm) to the strength of the root

reinforced soil. Their importance is a consequence of their abundance.

Thus, models which predict the increase in strength of root-reinforced

soils by simply summing the ultimate tensile strength of the roots and use that

number as the increased strength due to root reinforcement are inappropriate.

Small diameter roots will fail in tension while large diameter roots are still well

below their tensile capacity. If this approach, the summation of the ultimate

strength of all roots in the soil, is to be used to predict the strength of root-

reinforced soils, it would be more appropriate to consider just the smallest
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diameter fraction of the roots. In this manner, the estimate of root reinforcement

would always be conservative and underestimate the true value.

Thus, the root reinforcement model has fulfilled one of the primary

expectation of it when the project was initiated. The root reinforcement model is

physically based and predicts the increased strength in soils associated with root

reinforcement through calculation of the shape of a deflected root and the

accompanying tensile and shear forces in the deformed root. These calculations

are based on the physical and mechanical properties of the soil and roots. Output

from the model clearly demonstrates that the increase in soil strength can not be

calculated by summing the ultimate tensile strength of the roots in a soil. This

conclusion comes from the clear illustration of strain incompatibility between the

large and small diameter roots which is illustrated by output from the model.

The output from the model also clearly, illustrates that root reinforced strength is

not a fixed quantity but deformation based.

While the root reinforcement model has fulfilled expectations, it is

important to understand its limitations. Because the predicted strength increase

is not empirical, it is important to use the value in an appropriate manner. Also,

the model contains conceptual flaws which need to be discussed. Finally, the

model can not predict the actual failure mechanism in shallow forest soils, so

depending on the what the true failure mechanism is, the predicted strength

values may or may not be appropriate.
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The root reinforcement model clearly predicts an increase in soil strength

as a consequence of root reinforcement in shallow forest soils. Recall from the

results section that the predicted increase in soil strength due to root

reinforcement for a clean, dry, cohesionless sand with Douglas-fir roots

embedded in it was approximately 250 lbs/ft2 (12.0 kPa). It is not appropriate to

use this value as the strength that would be lost if the trees were harvested from

the site. The lost strength would be less than 250 lbs/ft2 because the soil would

not become unrooted but have a shift in the species and size distribution of the

roots. What would be the true effect on a per unit area of soil basis? It is hard to

know and not possible to calculate because numbers for species and diameter

distribution shift are not readily available. Ziemer (1981a) predicts that at its

lowest point the soil wifi have 40 percent net root reinforcement. If Ziemer's

(1981a) value is used in this example, the loss in soil strength due to root

reinforcement of the hypothetical modeled slope is approximately 150 lbs/ft2

(7.2 kPa). However, for this value of increased soil strength to be meaningful, it

must be compared with the inherent soil strength of the site. This' can not be

done without considering the soil strength at a landslide site because tree roots

are not distributed evenly throughout a landslide mass.

To carry out this portion of the example, a relatively small, approximately

10 yd3, hypothetical landslide will be considered. The soil strength of the

landslide will be considered in three dimensions because two dimensional

landslide analysis doesn't allow for the root reinforcement effect to be correctly
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modeled. The main body of the landslide is rectangular, 3 feet deep by 6 feet

wide and 12 feet long, and the upslope end of the landslide is shaped like a

semicircle. Assume that roots exist down to two feet below the soil surface. The

rest of the surface of the landslide, the bottom and one foot along the edges, will

not be affected by roots. Total failure surface area is approximately 186 ft2 and

total volume is approximately 258 ft3. The area of the failure surface under the

influence of roots is approximately 67 ft2.

Assume that the area represented by the landslide is a shallow forest soil

on a landslide-prone slope and the trees from the slope were harvested at such a

time that this analysis is occurring when root biomass is at its lowest point.

Assume further that the soil characteristics are the same as those that were used

to model root reinforcement, namely the soil is a clean, cohesionless sand with a

dry density of 90 lbs/ft3 and an internal angle of friction of 440 The force

resisting failure for the surface area of the landslide without considering roots is

approximately 35,000 lbs. Approximately 67 ft2 of the landslide surface area will

have an increase in strength due to root reinforcement which wifi be 100 lbs/ft2,

about 40 percent of maximum root reinforcement, which is approximately 6,700

lbs of additional strength. The same 67 ft2 of landslide surface area will have a

reduction in soil strength due to loss of root reinforcement. The value of lost

strength mentioned above was 150 lbs/ft2 and when multiplied by the

appropriate surface area come to approximately 10,000 lbs of lost strength. In this

example the harvesting attributed loss in soil strength due to the decay of the



251

roots of harvested trees is approximately 19 percent of the inherent strength that

wou1d have existed had harvesting not occurred.

Instead of assuming only frictional strength, a nominal value for soil

cohesion can be considered to reflect more accurately the true results of soil

strength testing for shallow, cohesionless soils. Assume a value of 105 lbs/ft2 (5

kPa) for the cohesion value. This cohesion value wifi result in an additional

19,000 pounds of strength to be added to the failure surface area making the

reduction in strength due to root reinforcement 14 percent of the inherent

strength that would have existed had harvesting not occurred.

The 14 and 19 percent reduction in soil strength can not be interpreted to

equate to a 14 and 19 percent reduction in stability or factor-of-safety. To

determine the effect of the soil strength reduction on the stability of the

landslide, a slope stability analysis would have to be performed and this would

require knowledge of the other factors that affect slope stability like the steepness

of the hilislope and location of the piezometeric surface. This example was

presented to ifiustrate how values for soil strength increase due to root

reinforcement could and should be used. It was not intended to be a definitive

calculation of the effect of harvesting on slope stability. These values for soil

strength can be used in slope stability analysis equations for a particular site and

the effect of harvesting on slope stability can be modeled.

This example was carried out using dry unit weights and effective stresses

were equal to total stresses. Buoyant unit weights and resulting effective stresses
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were not used for two reasons. First of all, the root reinforcement model was run

using dry unit weight. This exercise could be carried out in a saturated soil but

all the root reinforcement values would have to be recalculated using buoyant

unit weights in the ultimate soil resistance of the p-y curves and a below the

water table condition for the coefficient of subgrade reaction. These changes

would cause the values of strength attributed to root reinforcement to change.

This exercise could be carried out, however. More importantly, dry densities

were used because no shear-stress transfer functions exist for saturated soils.

Rather than try to estimate the effect of saturation on shear-stress transfer, the

model was run with only dry unit weight values. The example does give an idea

of how to use the root reinforcement model and model output and this was the

intent.

It is possible that the root reinforcement model as used still overestimated

the contribution of root reinforcement to soil strength. The fault is not necessarily

in theroot reinforcement model but in the quality of the root biomass, and more

importantly, root size data. Recall from Burroughs and Thomas (1977), that 90

percent of all root biomass for a Oregon Coast Range Douglas-fir forest was in

the 0 to 4 mm diameter range. This was modeled using a 0.1 inch (2.5 mm)

diameter root which has a modeled ultimate strength of approximately 17.5

pounds.

Assume that the root biomass in the 0 to 4 mm range is evenly distributed,

then just under one haLf of the total root biomass is less than 2 mm in diameter.
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The ultimate strength of 1 mm and 2 mm diameter roots is approximately 2.7

and 10.8 pounds, respectively. The ultimate strength of this size root would be

reached sooner than was modeled in Figures 5-15 and 5-16. The net result would

be that the modeled peak strength would be brought down and the peak

strength illustrated in Figures 5-15 and 5-16 would be less and occur at a smaller

deformation. The magnitude of the reduction in strength isn't know and no

effort will be made to estimate it.

Finally, the distribution of root biomass in the 0 to 4 mm range is, most

likely, not linear but exponential. This means that probably more than half of the

total root biomass in a soil is less than 2 mm in diameter which would tend to

reduce the modeled peak strength value even more. So the values of the modeled

increase in soil strength attributed to root reinforcement shown in Figures 5-15

and 5-16 should be considered maximum values. The true values could be even

less.

As mentioned previously, there are flaws in the conceptual development

of the root reinforcement model. The root reinforcement model is simplified in

its formulation. The axial problem and the lateral problem are uncoupled and the

problem is solved by superimposing the solutions of the two problems as the last

step. A node in the model root is not allowed to move in x direction. The only

stretching is done as it changes shape due to lateral deflection. Furthermore, the

root element right at the failure surface can not, by definition, move axially

through the soil. Yet the assumption is made that it moves axially by the amount
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of elongation. So the assumptions and calculations for the model, especially in

the vicinity of the failure surface are simply not correct. Beyond the failure

surface at the point where there is no lateral deformation and only the axial

processes are going on, the formulation of the problem is probably more correct

but in the vicinity of the failure surface, the superimposed solution isn't correct.

A model which would be more correct would treat all the forces in a root

element at the same time and allow the element to deform in accordance with

both lateral and axial forces at the same time. This undoubtedly could become

very complex because in the direct vicinity of the failure surface, the forces being

put on the root are from the soil moving past the root (Jewell, 1980) and not the

root moving through the soil which means that a kinimatically correct solution

which can handle the stresses and strains in the soil, as well as the root, is

needed. This is a task which appears to have eluded even the geotechnical

community, so far.

The shear-stress transfer functions, as used in the model, are undoubtedly

underestimated. Commandeur (1989) ran shear stress transfer on roots with and

without rootlets attached. As expected, the roots with rootlets had increased

shear-stress transfer and even that modified system still undoubtedly

underestimated shear-stress transfer in the real world. Yet, shear stress transfer

functions without rootlets were used in the root reinforcement model because

they represented the highest quality data available. How the magnitude of the

shear-stress transfer functions might effect the magnitude of root reinforcement
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was inadvertently modeled by the use of scaling coefficients. The scaling

coefficients used in the root reinforcement model resulted in values of shear-

stress transfer that were approximately one fifth of the value of shear stress

transfer without scaling coefficients. The use of these two different values for

shear-stress transfer stifi doesn't tell us what the real world shear-stress transfer

is. The use of scaling coefficients, however, does give the root reinforcement

model the ability to change the shear-stress transfer function and allows different

scenarios to be evaluated.

The model can't predict the lateral deformation at which the soil/root

composite material will lose its competence. It can only strain the system until

the roots start to break in tension and that constitutes failure of the composite

material. This behavior has been observed in direct shear strength tests, most

notably Waidron, et. al.(1983) in which the strength of a soil/root composite

increased throughout the range of the experimental test. This behavior in a

strain-controlled strength test is unlikely to occur in a stress-controlled

environment like the real world. Obviously, in the real world soil/root

composite materials fail and they fail at relatively small lateral deflections

certainly at deflections less than those observed in experimental strength tests.

This can be stated with a fair amount of certainty because tension cracks of the

magnitude of 2 to 4 inches, such as those in strain-controlled strength tests and in

model results, are not observed in shallow forest soils where landslides are most

likely. There is some evidence that the traditional soil strength failure mechanism
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may not be appropriate for this problem. Kramer and Seed (1988) and Anderson

and Sitar (1994) have investigated the failure mechanism of static liquefaction.

They have found that the conditions that exist in shallow forest soils, i.e. loose

soils with a high void ratio, high in situ shear stresses due to steep slopes, and a

potential undrained failure mechanism make these sites prone to failure by static

liquefaction. Iverson and LaHusen (1989) observed shear induced pore pressures

in experimental landslides which would indicate static liquefaction is indeed a

viable failure mechanism for these sites. Learning the failure mechanism of these

soils and sites is critical to understanding root reinforcement.



FUTURE RESEARCH NEEDS

If modeling root reinforcement in shallow forest soils remains a high

priority area for research, there are a number of projects thatare needed to

advance the current state of knowledge.

The most important research priority is to determine the failure mechanism

of shallow forest soils. Current thinking regarding root reinforcement

including the model developed for this project, assumes sufficient lateral

deflection of roots to develop sufficient tensile force in the roots. Small

diameter roots must be allowed to develop their ultimate tensile capacity.

This may be giving the soil more strength than it is capable of. Shallow forest

soils and conifer roots have a tremendous strain compatibility problem. Roots

have a large strain capability and soil has none. If soil strain is very small and

then a failure occurs by static liquefaction, this needs to be known because it

changes the concept of root reinforcement, how to think about it, and model

it. The failure mechanisms of shallow forest soils and the strain compatibility

of shallow forest soils and tree roots needs to be known.

If current models calculating root reinforcement are to be used in a

meaningful and rigorous fashion, a much better database of root biomass and

diameter distributions needs to be obtained. There is currently very little data

at all on diameter and species distributions of roots in shallow forest soils.

This is true even of forested sites where the best information is known. For
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harvested and reforested sites, there is essentially no raw data available that

would work with slope stabffity or root reinforcement models. A very serious

data gap for root reinforcement modeling and understanding how root

reinforcement might occur is an understanding of both species, biomass, and

diameter distribution dynamics of harvested sites as a function of time. Even

an understanding of seasonal dynamics is critical. Model output from this

project points out the importance of the very smallest diameter roots. From

Burroughs and Thomas (1977), the fact that 90 percent of the root biomass is

smaller than approximately 4 mm is known but how diameters are

distributed within this range is not known. It is known that there is a

significant die-off and turnover of roots less than 1 mm in diameter during

the winter. Yet all in situ strength testing and biomass work has been carried

out during the summer when this diameter class is at a maximum. How

seasonal dynamics of root biomass affects root reinforced soil strength is a

subject which has never been addressed.

3. A much better process-based, analytical model of root reinforcement than

Wu-Waldron or the root reinforcement model created by this project is

needed. Most importantly, the axial and lateral components of the problem

must be coupled and the root must be allowed to respond correctly. This may

require a "kinimatically correct" model which also accounts for soil stresses

and strains. But an improved model is needed if modeling root reinforcement

is to be advanced.
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Appendix A

Derivation of the Governing Equation for Laterally Loaded Piles

The derivation of the governing equation for laterally loaded piles is

based on beam-column theory. Specifically, it is based on the theory for an elastic

beam on art flexible foundation. This derivation is essentially reproduced from

Hetenyi (1946). The differential element for the derivation is shown in Figure A-

1. The forces on and the dimensions of the differential element are:

T = tensile force,

V = shear force,

M = moment

P = the force of the soil on the element = p dx, where

p = distributed force, and

dx = length of the differential element

= soil shear force on the element, and

dy = differential lateral deflection of the differential element.

In Figure A-1(a), the forces at the ends of the differential element are

drawn parallel to the coordinate axis. However, the soil shear force, F, is drawn

parallel to the line of deflection. The components of the soil shear force in the x-

and y-direction would be,
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F=Fcos9,and A-i

FFsin9 A-2

Likewise, the shear and tensile force at the ends of the element could be

expressed as parallel or normal to the line of deflection. As illustrated in Figure

A-i(b), The expression for the shear would be

= 1/h cos 9 T,, sin 9 A-3

Likewise the tensile force parallel to the line of deflection would be expressed as,

T = 1 cos 9+1/h sin 9 A-4

For this derivation, the assumption will be made that the angle of deflection will

be sufficiently small such that the approximations cos 9=1 and sin 9=0 can be

used. However, F;, F, V, and T can be computed using expressions A-i

through A-4 should that assumption become inappropriate.

First, sum the forces in the x-direction.

FO=V+dVpdV A-5



Expression A-1O can be checked by summing the moments about B.
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This leads to the identity,

dV
P A-6

Then, sum the forces in the y-direction.

= o = {-(T + dT)] + F + T A-7

This leads to the identity,

dT=F A-8

Next, sum the moments about point A.

MAO={(M+dM)]pdx.4----Vdx+Tdy+M A-9

With elimination of the higher order terms, subsequent algebraic

manipulation leads to the expression,

dMVdx+Tdy=O A-1O



MB 0_[-(M+dM)]+pth-(V+dV)dx+(T+dT)dy+M A-li

Again, by eliminating the higher order terms and with the appropriate

algebraic manipulations, the expression in A-iO can be derived.

-dM- Vdx+Tdy=O

Differentiate both sides of the expression by x.

dM Vdx +T=O
dx dx dx

From beam-column theory the definition of moment is,

M= EII.-2L
dx2

Substituting, A-13 into A-i2 results in,

--4-IEI.-±) V+T('')=O
dx dx2) dx)
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A-lO

A-i2

A-13



_EI1.1) V+Ti.)=O
dx)

Once again, differentiate both sides with respect to x.

_EJI-Y-') X+TI.4_2")=Oi

Substitute the identity p = dV/dx (from equation A-6) into A-15.

A-164) 2)

The identity p = E(y) can be substituted into equation A-16 and when both

sides of the equation are multiplied by a (-1), the equation becomes,

EI'' T(--Y-')+E (y)=Odx) 2J

Equation A-17 is the governing differential equation for the behavior of laterally

loaded piles.

A-17
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Appendix B

Derivation of the Finite-Difference Form of the Governing

Differential Equation for Laterally Loaded Piles

This appendix presents the derivation of the finite-difference form of the

governing differential equation for laterally loaded piles. This derivation is

essentially reproduced from Reese (1977). The governing differential equation for

laterally loaded piles was derived in Appendix A and is reproduced below as

equation (A-i7).
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EI- T-+E (y)=O
dx d2 A-i7

In this equation, the parameters describing the reinforcing element are; E =

modulus of elasticity, I = moment of inertia, T = tensile force, and y = the lateral

deflection of the reinforcing element at some length x along it. The parameter

describing the soil is; E5 = secant modulus of the soil response to the lateral

deflection, y.

To solve the above equation in finite-difference form, the length of the

reinforcing element must first be divided into a finite number of discrete

elements each with a fixed length, h, (Figure B-i). The centroid of the discrete
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elements are labeled with the x-, y-coordinates which identify each discrete

element and they are called nodes. The following finite-difference definitions can

then be applied to the differential equation (Bowles, 1968).

dy (Ym_i Ym+i)

dx 2h

d2y (Ym+i 2Ym +Ym-i)

dx2

d3y (Ym+2 + 2Ym+i - 2Ym-i + Ym2)
dx3 2h3

d4y (Ym+2 - 4Ym+i + 6Ym 4Ym-j + Ym-2)
dx4

The meaning of the subscripts are illustrated in Figure B-1(a). If equations B-2

and B-4 are substituted into A-17, the general equation becomes,

(El)

h4 [ym+2 - + 6Ym 4Ym-i + Ym-2 I - [ym+i - 2Ym + Ym-i ]+ E3 (y) =0

B-i

B-2

B-3

B-4

B-4
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If the reinforcing element is composed of a material with constant

properties and a non-changing cross section, then the flexural rigidity term, El,

becomes a constant. The tension in the reinforcing element and the secant

modulus of the soil response vary throughout the length of the reinforcing

element and maintain the subscript of the node they are associated with.

Multiply through equation B-4 then collect and gather terms and the finite-

difference form of the governing differential equation becomes,

(El" (-4El T \ (6EI 2T
Ym+2J+Ym+J

h4
fJ+Ym _+Es)+

(-4E1 T (El'\
Ym-j

h4

The finite-difference equations for the end nodes of the reinforcing

element are derived using the boundary conditions at each end of the reinforcing

element. Two phantom nodes are created at each end of the reinforcing element

to aid in deriving the finite-difference equations. The use of the phantom nodes is

illustrated in Figure B-1(b). The nodes are number sequentially starting with the

node at the failure surface and extending to the end of the reinforcing element

away from the failure surface. The node right at the failure surface is called the

first node and is given the subscript 1 with the second node being 2 and so on

B-5
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until the end of the reinforcing element away from the failure surface is reached.

The last node at the end of the reinforcing element away from the failure surface

is given the subscript n and the next to the last node is given the subscript n-i

and so on.

The assumption is made that there is no movement at the end of the

reinforcing element away from the failure surface and that it will not support a

moment. Thus, the reinforcing element will support neither moment nor shear at

the end away from the failure surface. Using the definition of moment from

beam-column theory, the finite difference form of the boundary condition for the

moment at the end of the reinforcing element away from the failure surface is,

M EIdY El
- 2 =-;;-(-i -2y +y1 B-6

Multiply through equation B-6 and then collect and gather terms and solve for

the phantom node, y.

yn+1 = - Yn-1 B-7

Using the definition of shear from beam-column theory, the differential equation

for shear at the end of the reinforcing element away from the failure surface is,



V =EI4J+T.=O

In finite difference form equation B-8 becomes,

v=_EI(y2 2yn_1 +2yn1 y+2)
2h3 (y-i -y,1)=o B-9

Again, multiply through equation (B-9), then collect and gather terms and solve

for the phantom node, y,+2.

Yfl+2 -- -___)
- fl-1 - El)+ Yn-2

Substitute the equations for the phantom nodes, B-7 and B-lU, into the

finite-difference form of the governing differential equation, B-5, with the

subscript n replacing m. The result is the following finite difference equation for

the node at the end of the reinforcing element away from the failure surface.

(2E1 2T (-4E1 2T' (2E1'\
yn + + E

J + h J + Yn-2J0

B-lU

B-il
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Likewise, the finite difference equation for the next-to-the-end of the reinforcing

element can derived by substituting equation B-7 into the general equation, B-5.

The m subscripts are again replaced by n and the equation becomes,

(_2E1

2T1 (5E1 2T1 +E
h h2 ) h2

s;)

(-4E1 (EI
Yn-2

h4 h2 )
=0

This process can be repeated for the boundary conditions at the end of the

reinforcing element at the failure surface. The forces in the reinforcing element

are considered at the failure surface which is a point of inflection in the deformed

shape of the reinforcing element. Therefore, by definition, there is no moment

and the shear is a fixed quantity which will be denoted by V. Again, using the

definition of moment from beam-colunm theory, the finite difference form of the

boundary condition for the moment at the end of the reinforcing element at the

failure surface can be derived exactly like the moment at the end of the

reinforcing element away from the failure surface. The subscript, 1, is used to

denote the node at the failure surface. The finite difference equation for the

phantom node y2 is identical to B-7 except the subscript n is replaced with 1.

B-12



y-1 =2y1 -y2

Again, using the definition of shear from beam-column theory, the differential

equation for the shear in the reinforcing element at the failure surface is,

V=EI-1 T
dx3 dx

The finite difference form of equation B-14 is,

El 7;
V =5-(3 -22 +2y-1 - - y_I)

An equation for the phantom node y,12 is derived by multiplying through

equation B-15 then collecting and gathering terms. That expression is,

( Th ( Th" 2Wz3
Y-2 = + y4\-2

-
+ Y42 +-ki:-J El

Substitute the equations for the two phantom nodes at the end of the

reinforcing element at the failure surface, B-14 and B-i 6, into the finite-difference

form of the governing differential equation, B-5, except substitute the subscript 1

for m. The resulting equation is the finite difference equation for the first node of

the reinforcing element at the failure surface. That equation is,
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(2E1 27 ' (-4E1 2T (2EI 2V

h4 h4
--)+Y4

h4

Once again, the finite difference equation for the second node of the reinforcing

element is derived by substituting equation B-l4 into the general equation, B-5.

The subscript m is replaced by 1. The equation becomes,

(-2E1 22'\ (5E1 2T2 (-4E1 7'\ (EI
h h4 h2)+)'4h4)°

The five equations B-5, B-il, B42, B-17, and B-18 can be used to describe

the lateral deflection of a laterally loaded pile or the deformation of half of a

reinforcing element stretched across a failure surface in a block of soil. The

equations take into account the boundary conditions of the reinforcing element

at the failure surface and away from the failure surface. Equations B-17 and B-18

account for the boundary conditions of the reinforcing element at the failure

surface and equations B-li and B-12 account for the boundary conditions at the

end of the reinforcing element away from the failure surface and the general

equation B-5 accounts for all of the interceding nodes unaffected by the

boundary conditions.
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REM DAMODEL
DEFINT I-N

DECLARE SUB amatrix (aO, modulus!, inertia!, h, Tx#O, EsO, n)
DECLARE SUB subgradereaction 0
DECLARE SUB datainput (D2R#, pi#)
DECLARE SUB dispmatrix (n, h, DO)
DECLARE SUB secantmodulus (k!, b, gamma, phi, depth, pi#, e#, Ka!, Ko!, beta, n, DO, EsO)
DECLARE SUB tension (DO, pi#, n, b, h, modulus!, Tx#O, k, bO, Zx#O)
DECLARE SUB bmatrix (modulus!, inertia!, h, EsO, Tx#O, n, DØ, bO)
DECLARE SUB bandec (aO, n, ml, m2, np, mp, alO, mpl, indxO, D)
DECLARE SUB banbks (aO, n, ml, m2, np, mp, alO, mpl, indxO, bO)
DECLARE SUB Increment (Zx#, b, h, modulus!, k, Tx#, mud)

CONST pi# = 3.1415926536#
CONST e# = 2.718281828459O45#
CONST tiny = .001
CONST D2R# = pi / 180

np = 200
mp =5
DIM indx(np), D(np, 2), Es(np), al(np, 2)
DIM b(np), a(np, mp), Tx#(np), Zx#(np), Txo(np)

CALL datainput(D2R#, pi#)
CALL dispmatrix(n, h, DO)

Set tension matrix to zero
FOR i = 1 TO n

Tx#(i) =0
NEXT i

iter= 1

DO
DO

CALL secantmodulus(k!, b, gamma, phi, depth, pi#, e#, Ka!, Ko!, beta, n, DO, EsO)
CALL amatrix(aO, modulus!, inertia!, h, Tx#O, EsO, n)
CALL bandec(aO, n, ml, m2, np, mp, al(), mpl, indxO, D)
CALL bmatrix(modulus!, inertia!, h, EsO, Tx#O, n, DO, bO)
CALL banbks(aØ, n, ml, m2, np, mp, alO, mpl, indxO, bO)

Calculate the difference in the last set of y-deflections and the current
'y-deflections.
maxdiff! =0
FOR i =2 TO n

duff = ABS(b(i) - D(i, 2))
IF diff> maxdiff! THEN maxdiff! = duff

NEXT i

'Print the solution vector
CLS
FOR 1=1 TO n

PRINT USING °kll 1111111111; b(i);

288



CLS

NEXT i
PRINT
PRINT
PRINT iter, maxdiff!
DO
LOOP WHILE INKEY$ =

Exchange the solution vector with the y displacements in the
displacement matrix.
FOR i =2 TO n

D(i, 2) = b(i)
NEXT i

LOOP UNTIL maxdiff! <tiny

Write the tension values into a different array
FOR i = I TO n

Txo(i) = Tx#(i)
NEXT i

CALL tension(DO, pi#, n, b, h, modulus!, Tx#O, k, bO, Zx#O)

Txmaxdiff= 0!
FOR i = I TO n

Txdiff = ABS(Tx#(i) - Txo(i))
IF Txdiff > Txmaxdiff THEN Txmaxdjff = Txdiff

NEXT i

iter = iter + I

LOOP UNTIL iter = 10 OR Txmaxdiff< .01

Print the solution vector
'CLS
'FORi=nTO 1 STEP-I

PRIN'T' USING "####.IIJIJ!llll IV'; b(i); CSNG(Tx#(i))
NEXT i
PRINT

'Print out the displacement matris
CLS
FORi=nTO 1 STEP-I

FORj= I T02
PRINT' USING "####.11lllllluhJ; D(i, j);

NEXTj
PRIIT

NEXT i
PRINT
PRINT CSNG(b( I)); CSNG(T#); iter; maxdiff!; Txmaxdiff
DO
LOOP WHILE INKEY$
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INPUT "What is the name of the output file; Include the full path"; file$
ext$ = ".dat$"
finalfile$ = file$ + ext$
INPUT "What is the title for the output file"; title$
OPEN finalfile$ FOR OUTPUT AS #1
PRINT #1, title$
PRINT #1, "Top deflection, yt ="; yt
PRINT #1, "Soil density, gamma =; gamma * 1728
PRINT #1, 'Angle of internal friction, phi ="; phi * (180 / pi)
PRINT #1, "Effective soil depth, depth ="; depth
PRINT #1, "Loose soil density"
PRINT #1, "Diameter =; b
PRINT #1,
PRINT #1, "Ft ="; b(1); "lbs'
PRINT #1, "Tx ="; T#; "ibs"
PRINT #1,
FOR i =1 TO n

FORj =1 TO 2
PRINT #1, D(i,j);

NEXTj
PRINT #1,

NEXT i
CLOSE #1

PRINT
PRINT "All Done Now'

DO
LOOP WHILE INKEY$ =""

SUB amatrix (aO, modulus!, inertia!, h, Tx#O, EsO, n)

'This is a subroutine to build the A-matrix for the reinforcing element
'system of equations. The A-matrix uses the convention A(x)=b. The
'A-matrix is the coefficient matrix. The x-matrix is the matrix of knowns.
'The answer is returned in the b-matrix. The A-matrix is a band diagonal
'matrix stored in compact form. It has n rows and 5 columns.

RI = (modulus! * inertia!)! (h * h * h * h)
R2 = (2 * modulus! * inertia!) / (h * h * h * h)
R3 = -R2
R4 = (-4 * modulus! * inertia!) / (h * h * h * h)

= (5 * modulus! * inertia!) / (h * h * h * h)
R6 (6 * modulus! * inertia!) / (h * h * h * h)

FOR i = I TO n
IFi= I THEN

FORj= I T05
IFj=3THEN

a(i,j)=-2/h
ELSEIF j =4 THEN

a(i, j) = R4 - ((2 * Tx#(i))/ (h * h))
ELSEIF j =5 THEN
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a(i,j)= R2
ELSE: a(i,j)=O
END IF

NEXTj
ELSEIF i =2 THEN

FOR j = 1 TO 5
IFj =3 ThEN

a(i, j) = P5 + ((2 * Tx#(i)) / (h * h)) + Es(i)
ELSEIFj =4 THEN

a(i, j) = R4 - (Tx#(i) / (h * h))
ELSEIFj = 5 THEN

a(i,j) = Ri
ELSE: a(i,j)=O
END IF

NEXTj
ELSEIFi =3 THEN

FORj= 1 T05
IF j =2 OR j =4 THEN

a(i, j) = R4 - (Tx#(i) / (h * h))
ELSEIFJ = 3 THEN

a(i, j) = R6 + ((2 * Tx#(i)) / (h * h)) + Es(i)
ELSEIFj = 5 THEN

a(i,j) = Ri
ELSE: a(i,j)=O
END IF

NEXTj
ELSEIF i = n - 1 THEN

FOR j = 1 TO 5
IFj=1THEN

a(i,j) =R1
ELSEIFj =2 THEN

a(i, j) = R4 - (Tx#(i) / (h * h))
ELSEIFJ = 3 THEN

a(i, j) = PS + ((2 * Tx#(i)) / (h * h)) + Es(i)
ELSEIF j =4 THEN

a(i, j) = R3 - (Tx#(i) / (h * h))
ELSE: a(i,j)=O
END IF

NEXT j
ELSEIFi = nTHEN

FORj =1 TO 5
IFj=1THEN

a(i,j) = R2
ELSEIFj = 2 THEN

a(i, j) = R4 ((2 * Tx#(i)) / (h * h))
ELSEIFJ =3 THEN

a(i, j) = R2 + ((2 * Tx#(i)) / (h * h)) + Es(i)
ELSE: a(i,j)=O
END IF

NEXT j
ELSE

FORj= 1T05
lFj= 1 ORj=5THEN

a(i,j) = Ri
ELSEIF j =2 OR j =4 THEN
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a(i,j)=R4- (Tx#(i)/(h * h))
ELSE

a(i, j) = R6 + ((2 * Tx#(i)) / (h * h)) + Es(i)
END IF

NEXTj
ENDIF

NEXT i

Print out the A-matrix
CLS

FORi=lTOn
FORj=1T05

PR.IrrT' TJSING "Ii II II ii II 111111 .11 111111 1! II 11" ; a(i, j);

NEXTJ
PRINF

'NEXT i
'DO
'LOOP WHILE INKEY$ =
END SUB

SUB banbks (aO, n, ml, m2, np, mp, alO, mpl, indxO, bO)

'Given the arrays a, al, and mdx as returned from bandec, and given a
'right-hand side vector b(n), solves the band diagonal linear equations
'A(x) = b. The solution vector x overwrites b(n). The other input arrays
are not modified, and can be left in place for successive calls with
'different right-hand sides.

mm = ml + m2 + 1
l=ml
FOR k = 1 TO n

= indx(k)
IF i <> k THEN

dum = b(k)
b(k) = b(i)
b(i) = dum

END IF
IF 1< n THEN I = I + 1
FOR i = k + 1 TO I

b(i) = b(i) - al(k, i - k) * b(k)
NEXT i

NEXT k
1=1
FORi=nTO 1 STEP -1

dum = b(i)
FOR k =2 TO 1

dum=duma(i,k)*b(k+i 1)
NEXT k
b(i) = dum / a(i, 1)
IF 1 <mm THEN I = 1+ 1

NEXT i

END SUB

SUB bandec (aO, n, ml, m2, np, mp, alO, mpl, indxO, D)
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'Given an n x n band diagonal matrix A with ml subdiagonal rows and
'm2 superdiagonal rows, compactly stored in the array a(n, ml+m2+l) as
'described in the conunent for routine banmul, this routine constructs an LU
decomposition of a rowwise permutation of A. The upper triangular matrix
replaces a, while the lower triangular matrix is returned in al(n, ml).
indx(n) is an output vector which records the row permutation effected by
the partial pivoting; d is output as +- 1 depending on whether the number

'of row interchanges was even or odd, respectively. This routine is used in
'combination with banbks to solve band-diagonal sets of equations.

CONST tiny = 1E-20
mm = ml + m2 + 1

l=ml
FOR i = 1 TO ml Rearrange the storage a bit

FORj = ml +2- i TO mm
a(i,j -1) = a(i,j)

NEXTj
1=1-1
FORj=mm-lTOmm

a(i,j)=O
NEXTj

NEXT i
D= 1
l=ml
FORk=lTOn 'Foreachrow

dum=a(k, 1)
i=k
IF 1< n THEN 1= 1 + 1
FORj = k + 1 TO 1 Find the pivot element

IF ABS(a(j, 1)) > ABS(dum) THEN
dum=a(j,1)
i =j

END IF
NEXTj
indx(k) =
IF dum = 0 THEN a(k, 1) = tiny

'Matrix is algorithmically singular, but proceed anyway with TINY
'pivot (desirable in some applications).

IF i <> k THEN 'Interchange rows
D=-D
FORj=l TOmm

dum = a(k, j)
a(k,j) = a(i,j)
a(i, j) = dum

NEXT j
END IF
FOR i = k + 1 TO 1

dum=a(i, l)/a(k, 1)
al(k,i-k)=dum
FOR j =2 mm

a(i, j - I) = a(i, j) - dum * a(k, j)
NEXTj
a(i, mm) =0
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NEXT i
NEXT k
END SUB

SUB bmatrix (modulus!, inertia!, h, EsO, Tx#O, n, DO, bO)

This subroutine builds the known value or constants vector. It follows
'the convention A(x)=b where A is the coefficient matrix and b is the
'solution vector. The x-matrix is call the b-matrix and is changed in
'the subroutine banbks. It has three nonzero values in the initial
'three rows. The balance of the entries are zero.

Ri = (modulus! * inertia!)/ (h * h * h * h)
R2 = (2 * modulus! * inertia!)/ (h * h * h * h)
P3= -R2

FOR i = 1 TO n
IFi=1THEN

b(i) = (-1 * D(1, 2)) * (R2 + ((2 * Tx#(i)) / (h * h)) + Es(i))
ELSEIF i =2 THEN

b(i) = (-1 * D(1, 2)) * (R3 - (Tx#(i) / (h * h)))
ELSEIFi=3 THEN

b(i) = (-1 * D(1, 2)) * Ri
ELSE

b(i)=O
END IF

NEXT i

Print out the b-matrix
CLS
'FOR i = 1 TO n

PRINTb(i),
'NEXT i

END SUB

SUB datainput (D2R#, pi#)

'This subroutine is used to input raw data and calculate other parameters
'needed by the model.

SHARED gamma, phi, k!, Ko!, Ka!, beta, modulus!, inertia!
SHARED b, depth, sigmault, h, n, ml, m2

CLS
lnput the soil variables first.

LOCATE 3,30: PRINT "INPUT SOIL VARIABLES."
LOCATE 6, 5: PRINT "CAUTION: At this time, this model can only work with cohesionless"
LOCATE 7, 15: PRINT "soils or sands."
VIEW PRINT 10 TO 25

'Input soil density
LOCATE 11, 5: PRINT 'For the soil that you are working with:
LOCATE 13, 10: INPUT "What is the density (lbs/ft"3Y, gamma

gamma=gamma/1728
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CLS

input soil strength parameters
LOCATE 11, 25: PRThT "Soil Strength Parameters"
LOCATE 14, 10: PRHT "Soil cohesion, c, equals 0 (c = 0)'

c=0
LOCATE 16, 10: INPUT 'What is the internal angle of friction (degrees)?, phi

phi = D2R * phi
CLS

'Either input or calculate a coefficient of subgrade reaction or k value
DO

LOCATE 11, 22:
PRThT "Coefficient of Subgrade Reaction"
LOCATE 13, 10:
PRHT "For the coefficient of subgrade reaction or k value, you may either:"
LOCATE 15, 10:
PRHT "(1) Input a k value now, or"
LOCATE 17, 10:
PRHT "(2) Have the program select an appropriate value for you."

LOCATE 19, 5: INPUT "Select either (1) or (2) now'; choice

IF choice = 1 THEN
LOCATE 21,2
INPUT "What is the coefficient of subgrade reaction or k value (lbs/in"3)"; k!
EXIT DO

ELSEIF choice =2 THEN
CALL subgradereaction
EXIT DO

ELSE
BEEP: PRINT "Please enter a 1 or 2"

END IF
LOOP

VIEW PRINT
CLS

'Now enter the input parameters of the reinforcing element(s)
LOCATES, 21
PRINT "INPUT REINFORCING ELEMENT VARIABLES'
LOCATE 10, 5: INPUT "What is the modulus of elasticity (lbslin"2)', modulus!
LOCATE 12, 5: INPUT "What is the width or diameter (inches)", b
LOCATE 14, 5: INPUT "What is their depth in the soil (inches)', depth

'Calculate the ultimate tensile stress of the reinforcing element
IFb> .19 THEN

sigmault = (4 * 1750.9) / pi
ELSE

sigmault = (25.4 - (20 * 2.54 * b)) * 1000/6.895
END IF

Calculate the length of the nodes
h=b/2
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'Calculate the polar moment of inertia for the reinforcing element
inertia! =(pi *bA4)/fj4

Calculate the at-rest earth pressure coefficient
Ko! = 1 - SJN(phi)

'Calculate the active earth pressure coefficient
Ka! = (TAN(45 * D2R - phi /2)) " 2

Calculate beta
beta =45 * D2R + phi /2

Calculate a first cut at the length of the reinforcing element. Take the
sigmault value multiply by area and divide by an average Tau (.864) and
the circumference. This value will be replaced by the length in tension
later in the program.
1! = sigmault * b I 3.456
I! = 10

Calculate the number of nodes
'n=CINT(I! /h)
ml=2
m2 =2
n = lI/h

Print out the input parameters
CLS
LOCATE 2,30: PRINT "SOIL PARAMETERS'
LOCATE 4, 5: PRINT "Soil density =; gamma * 1728; "lbs/ft'3'
LOCATE 5, 5: PRINT 'c ="; c; lbs/in'2"
LOCATE 6, 5: PRINT "phi =; phi * (180 / pi); "degrees'
LOCATE 7, 5: PRINT "k =; k!; "lbs/in'3"
LOCATE 8,5: PRINT "Ko ='; Ko!
LOCATE 9,5: PRINT 'Ka ='; Ka!
LOCATE 10, 5: PRINT 'Beta =; beta; "radians

LOCATE 13, 23: PRINT REINFORCEING ELEMENT PARAMETERS
LOCATE 15, 5: PRINT "modulus ="; modulus!; "lbs/inA2"
LOCATE 16, 5: PRINT "diameter =; b; "inches'
LOCATE 17, 5: PRINT "depth ='; depth; "inches"
LOCATE 18, 5: PRINT 'sigmault =; sigmault; 'lbs/inA2°
LOCATE 19, 5: PRINT "h =; h; "inches"
LOCATE 20, 5: PRINT "I ="; inertia!; finchesA4"
LOCATE 21, 5: PRINT "Length ='; 1!; "inches"
LOCATE 22, 5: PRINT "Number of nodes =; n
LOCATE 25, 2: PRINT "Press any key to continue'

END SUB

SUB dispmatrix (n, h, DO)

This subroutine builds an initial displacement matrix. The matrix
'notation is d(x, y). The x-value is the vertical or x distance of
'the node centroid from the axis. The y-value is the calculated displacement.
'x = n * h & y at the top is assumed (yt). Subsequent values of y will
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be calculated.

SHARED yt

Calculate the x-values of the displacement matrix
FOR = I TO n

IF i = I 1'HEN
D(i, 1)=O

ELSE
D(i, l)=(i- 1)*h

END IF
NEXT i

'Get displacement of y at the top
CLS
LOCATE 10,5
INPUT "What is the assumed or given displacement of the top node"; yt
D(1, 2) = yt

'Set the rest of the y-displacements to 0
FORi=2TOn

D(i, 2) =0
NEXT i

'Print out the displacement matrix
'CLS
'FOR i =1 TO n

FORj=1T02
PRINT USING d(i, j);

NEXTj
PRINT
EXT i

END SUB

SUB Increment (Zx#, b, h, modulus!, k, Tx#, mud)
SHARED length#, Told#
k=O
DO

dT# = (.14085 * (Zx# / (.0562 + (.77 * Zx#) + (.667 * Zx# A 2)))) * pi# * b * h
dz#=(Tx#* h)/(modulus! * pi#/4 * b A 2)
Tx# = Tx# - dT#
Zx# = Zx# - dz#
k=k+1

LOOP UNTIL Tx# <0 OR Zx# <0
IF Tx# <0 THEN

mud = 1
ELSEIF Zx# <0 THEN

mud =2
END IF
length#=(k- 1)*h

END SUB

SUB secantmodulus (k!, b, gamma, phi, depth, pi#, e#, Ka!, Ko!, beta, n, DO, EsO)
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Given a displacement, y, this function will calculate the secant modulus
from a know p-y curve presented in a hyperbolic-tangent form. Inputs
required are k, depth, gamma, phi, and d. Inputs calculated are Ko, Ka, and
'beta =45 + phil2.

Esi=k! *depth
Pult = gamma * b * depth * ((Ks! * ((TAN(beta)" 8) - 1)) + (Ko! * TAN(phi) * (TAN(beta) "4)))
Puf=.88

FOR i = 1 TO n
IF D(i, 2) =0 THEN

Es(i) =0
ELSE

x = (Esi * D(i, 2)) I Puf
P = Puf * (((e" x) - (e " -x)) I ((e " x) + (e" -x)))
Es(i) = P1 D(i, 2)

END IF
NEXT i

Print out the Es values
CLS

FORi=lTOn
PRINT Es(i)
EXT i

DO
LOOP WHILE INKEY$ =""
END SUB

SUB subgradereaction

SHARED k!

CLS
VIEW PRINT 10 TO 25
DO

LOCATE 11, 10
INPUT "Is the soil: (1) loose, (2) medium, or (3) dense'; density%
LOCATE 15, 10
INPUT "Is the soil: (1) submerged or (2) above a water table'; water%

IF density% = 1 AND water% = 1 THEN
k!=20
EXIT DO

ELSEIF density% = 1 AND water% =2 THEN
k!=25
EXIT DO

ELSEIF density =2 AND water% = 1 THEN
k!=60
EXIT DO

ELSEIF density% =2 AND water% =2 THEN
k!=90
EXIT DO

ELSEIF density% =3 AND water% = 1 THEN
k! = 125
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EXIT DO
ELSEIF density% =3 AND water% =2 THEN

k!=225
EXIT DO

ELSE
BEEP
PRINT "Please enter only a 1, 2, or 3 when requested."

ENDIF
LOOP
END SUB

SUB tension (DO, pi#, n, b, h, modulus!, Tx#O, k, bO, Zx#O)

DIM length(n) AS DOUBLE
SHARED T#

Print out the displacement matris
'CLS
FORi=nTO I STEP-i

FORj=1T02
PRINT d(i,j),

NEXTj
PRINT

NEXT i
DO
LOOP WHILE INKEY$ =

First calcuiate the increase in length of the reinforcing element due
to the change in shape.
l# =0
FOR i =2 TO n

length#(i - i) = SQR((D(i - 1, i) - D(i, 1)) A 2 + (D(i - i, 2)- D(i, 2)) A 2)
l#= 1#+ length#(i - I)

NEXT i
= l# + h

z# = - (n * h)

'LOCATE 22, 5: PRINT "z =; z#
'LOCATE 23, 5: PRINT 'l =; l#
LOCATE 24, 5: PRINT Ft =; b(i)

'DO
LOOP WHILE INKEY$ =

tenshun#= 1#
inc# tenshun#
Tx# = tenshun#
Zx# = z#
i=1

DO
CALL Increment(Zx#, b, h, modulus!, k, Tx#, mud)

SELECT CASE mud
CASE .1
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DO
Iengthold# = Iength#
ToId# = tenshun#
tenshun# = ToId# + inc#
Tx# = tenshun#
Zx# =
CALL Increment(Zx#, b, h, modulus!, k, Tx#, mud)

LOOP UNTIL mud =2
CASE 2

DO
lengthold# = Iength#
ToId# = tenshun#
tenshun# = ToId# - inc#
Tx# = tenshun#
Zx# =
CALL Increment(Zx#, b, h, modulus!, k, Tx#, mud)

LOOP UNTIL mud = 1
END SELECT

T# = (ToId# + tenshun#) / 2#
inc#=inc#/ 1O#
i=i+1
tenshun# = T#
Tx# = tenshun#
Zx# =

LOOP UNTIL i =7

i=0
Tx#(0) = tenshun#
Zx#(0) =
FOR i = 1 TO n

dT# = (.14085 * (Zx#(i) / (.0562 + (.77 * Zx#(i)) + (.667 * Zx#(i) ' 2)))) * pi# * b * h
dz# = (Tx#(i) * h) / (modulus! * pi# / 4 * b ' 2)
Tx#(i) = Tx#(i - 1) - dT#
Zx#(i) = Zx#(i - 1) - dz#

NEXT i

CLS
FOR 1=0 TO n

PRINT 1 * h, Tx#(1), Zx#(1)
NEXT I
'PRINT
FOR I = kold - 1 TO kold

PRINT I * h, Tx#(1), Zx#(1)
NEXT!
'PRINT
PRINT kold, kold * h, CSNG(T#), CSNG(z#)
DO
LOOP WHILE INKEY$ =""

END SUB
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