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through the subgradient algorithm is provided.

The area-based harvest scheduling problem with adjacency
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Additional reductions are possible by eliminating the



harvest units whose adjacency relations are described by

surrounding areas.

By using surrogate relaxation the set of adjacency

constraints is reduced to one constraint. Combining

Lagrangean and surrogate relaxation the area-based harvest
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is used to solve the habitat dispersion problem. Simulated

examples show that simultaneously optimizing flow, wildlife
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PREFACE

This dissertation is composed of three manuscripts.

Chapter 2, "The use of Lagrangean relaxation to solve the

flow constrained harvest scheduling problem", has been

submitted to Forest Science. Chapter 3, " Adjacency

constraints in harvest scheduling: an aggregation

heuristic" is under review process in the Canadian Journal

of Forest Research. Chapter 4, "The use of relaxation to

solve the habitat dispersion problem" has been submitted to

Forest Science. All three manuscripts have been advised

and criticized by Dr. J. Douglas Brodie and Dr. J.

Sessions. Both have assisted since early stages of the

research with discussion of theory and programming, as well

as interpretation of results. The remaining errors in this

dissertation are my total responsibility.



The Use of Relaxation to Solve Harvest Scheduling

Problems with Flow, Wildlife Habitat, and

Adjacency Constraints

INTRODUCTION

During the last few decades forest planning has become a

complex decision process where silvicultural,

transportation, protection and financial activities must be

simultaneously considered within the harvest scheduling

decisions. In this way, the economically efficient

allocation of production factors and the correct

distribution of products derived from the forest is

ensured. The harvesting decisions have been constantly

improved because of technological changes that increase the

efficiency of forest activities or because of changes in

the preferences of society that change the valuation of

diverse goods

modern forest

the long run

and services derived from the forest. Hence

planning is directed toward multiple-use. In

not only the activities related to market

goods are considered, but also other goods and services

that are becoming increasingly more valuable to society.

Recent concerns have focused on the direct applicability of

forest plans for specific small harvest units on the ground

with efficient allocation to sustain timber, wildlife and
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scenic values over time and space.

These modern requirements in forest planning are leading

to replacement of traditional strata-based harvest

scheduling plans with modern area-based plans. Through this

strategy, forest plans have direct applicability in the

field, the control of each harvest unit is facilitated so

that production factors are more efficiently allocated and

outputs are better monitored. Additionally it provides a

richness of information to efficiently direct the

management of non-market goods and services derived from

the forest.

Several researchers have pointed out the potential of

area-based models in forest planning. Nevertheless, to

date little empirical work has been done to improve the

solution techniques or problem formulations of the area-

based harvest scheduling problems. One of the main

disadvantages of current formulations is their solution

difficulty given their discrete nature and dimensionality.

Although sophisticated software packages and the aid of

more computer power have helped to overcome some of these

difficulties current algorithms used to solve the area-

based harvest scheduling problem make huge computational

demands, that make even moderate scale applications

prohibitively expensive to implement at the field level.

This research is focused on the use of alternative

methods to solve the area-based harvest scheduling problem
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that offer "good" solutions without large computational

requirements. The basic assumption of this work is that

some manager imposed constraints can be slightly violated

in a harvest schedule. These violations do not harm the

"best" expected output since the discrete nature of the

problem requires slacks in some constraints in order to

reach integer solutions. Hence if those slacks are

associated with the "flexible" manger imposed constraints

an agreement between the smallest violation of a constraint

and the quality of the integer solution achieved can be

met.

The first manuscript, Chapter 2, describes the use of

Lagrangean relaxation to solve the flow constrained area-

based harvest scheduling problem. This solution strategy

was originally proposed by Hoganson and Rose. (1984) with

some problems to obtain good estimators for the Lagrange

multipliers. The manuscript emphasizes the use of the

subgradient method and proposes an additional heuristic to

further improve the estimations obtained from the

subgradient algorithm.

The major advantage of the area-based approach is its

facility to consider spatial requirements. These

requirements are modeled through adjacency constraints.

Conventionally these constraints are written as

relationships between pairs of adjacent harvest units.

However, this strategy vastly increases the number of rows

in any formulation. The second manuscript, Chapter 3,



4

addresses this problem by introducing a heuristic to reduce

the number of adjacency constraints required to specify the

adjacency requirements in any formulation.

The third manuscript, Chapter 4, addresses the problem

of solving harvest scheduling problems with adjacency

constraints and wildlife habitat requirements. Further

implementation of the relaxation method is used to solve

the habitat dispersion constraints. Introduction of

surrogate constraints ensures that the adjacency

constraints are met exactly. The methods developed handle

problem sizes that are unsolvable by integer programming.

Optimal or minimally infeasible "good" solutions are found,

even in cases where the specification is infeasible.
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SOLUTION TO THE AREA-BASED HARVEST SCHEDULING PROBLEM

THROUGH LAGRANGEAN RELAXATION

by

Juan M. Torres-Rojo

J. Douglas Brodie

and

John Sessions

ABSTRACT

The use of Lagrangean relaxation as a solution technique

for the flow constrained area-based harvest scheduling

problem is presented. The best set of multipliers in the

Lagrangean function is searched through the subgradient

algorithm. An analysis of the basic structure of this

algorithm is provided. The analysis is used to set

guidelines for some parameters of the subgradient algorithm

in the solution of the relaxed area-based harvest

scheduling problem. A procedure to further improve the

multipliers provided by the subgradient method is proposed.

Such a procedure is used when the solutions obtained from

the subgradient algorithm do not meet the desired harvest

levels or violate additional requirements. Results showed
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good convergence of the subgradient algorithm. Integer

solutions within 2% of the optimal integer solution can be

obtained in shorter time than a solution by linear

programming. The proposed improvement algorithm yields

better solutions only for large problems or when the

optimization includes more than 7 periods.
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INTRODUCTION

The area-based approach to the timber harvest scheduling

problem has become increasingly important in the last few

years. This is due to its capacity to allocate forest

lands to several uses subsuming the spatial distribution of

the management units. The approach assigns silvicultural

prescriptions to specific analysis areas or blocks, so that

the biological, legal or spatial management requirements

can be met to achieve multiple-use objectives during the

planning interval. Likewise, through this approach it is

possible to enhance both the efficient allocation of

production factors among the harvest units, and the

practical applicability of the management plans.

The area-based approach requires integer solutions

because the harvesting decisions are dichotomous decisions,

harvest or not to harvest a given unit. However, optimal

solution methods for Integer Programming (IP) or Mixed

Integer Programming (MIP) make enormous computational

demands to obtain an optimal solution, and in some cases it

is difficult to obtain even a feasible solution. Hence IP

and MIP solution techniques have rarely been implemented

for solving large harvest scheduling problems.

One of the most useful ideas in the solution of IP

problems is the observation that "many hard problems can be

viewed as easy problems complicated by a relatively small
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set of side constraints" (Fisher, 1981). This set of

"complicating" constraints can be dualized by using

Lagrange multipliers so that the resulting Lagrangean

problem is easier to solve than the original one.

Additionally, the solution to the Lagrangean problem might

(under certain circumstances) provide an Optimal solution

to the original problem or at least an upper bound (for

maximization problems) of that optimal solution. Such an

approach is called Lagrangean relaxation (Geoffrion, 1974).

The idea of "relaxing" the constraints of an IP problem

and incorporating them into the objective function was used

by Lorie and Savage (1955) in their solution procedure to

discrete capital budgeting problems and later by Dreyfus

(1957) to perform state variable reduction in Dynamic

Programming (DP). However, the first theoretical concepts

of the technique to solve discrete resource allocation

problems were established by Everett (1963). The

potential of Lagrangean relaxation in the solution of IP

and MIP was not fully realized until Held and Karp (1970)

used these principles to derive a powerful algorithm for

the solution of the traveling salesman problem. Ever since,

the theory of Lagrangean relaxation has been continuously

refined and successfully applied to areas of IP such as

scheduling, location, matching, the traveling salesman

problem and network problems. Excellent presentations of

the theoretical basis of the Lagrangean approach and

reviews on the topic for the solution of special problems
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can be found in Shapiro, (1971); Geoffrion, (1974); Fisher

et al., (1975); Shapiro, (1979); Bertsekas, (1982); Fisher,

(1985); Tseng and Bertsekas, (1987); and Ibaraki and Katoh,

(1988).

Lagrangean relaxation has been present in the forestry

literature although not precisely defined in such a way.

Paredes and Brodie (1986) used the principles of Lagrangean

relaxation developed by Dreyfus (1957) to develop an

efficient algorithm for the solution of the Dynamic

Programming (DP) formulation of the stand level

optimization problem. In forest level optimization, Berck

and Bible (1984) used Lagrangean relaxation to establish

optimality conditions for a Model II Linear Programming

(LP) formulation of the harvest scheduling problem (Johnson

and Scheurman, 1977). They found an optimal solution to

the original problem through complementary slackness

conditions by forcing some dual variables to take known

optimal values. Hoganson and Rose (1984) proposed a

simulation approach to the harvest scheduling problem.

Their approach was not defined as Lagrangean relaxation of

an integer problem because their construction was proposed

as a solution to the Model I LP harvest scheduling problem.

However, as will be shown, such a construction corresponds

to the Lagrangean relaxation of an integer version of the

Model I harvest scheduling problem (Johnson and Scheurman,

1977). In fact their construction indeed yields integer
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solutions. Hence, their approach can be considered as the

first attempt to solve the IP harvest scheduling problem

through Lagrangean relaxation.

Hoganson and Rose (1984), pointed out that the crucial

step in their simulation approach was the process of

guessing the multipliers. Eldred (1987), evaluated the

Lagrangean relaxation technique suggested by Hoganson and

Rose. He also found that the main problem of the technique

is the difficulty in finding a good set of multipliers. He

proposed another set of heuristics to search multipliers

besides the ones proposed by Hoganson and Rose. However

the search still had some problems.

The multiplier search is the most important and delicate

step in any Lagrangean relaxation approach and has become a

central topic of research in IP. According to Fisher

(1981) there exist three strategies for the multiplier

search, namely: a) the subgradient method, b) the column

generation method and c) heuristics. Among these

strategies the subgradient method has been preferred

because it is simple and yields good approximations.

However, some heuristics for specific problems have proved

to be very successful. Held et al., (1974); Fisher et al.,

(1975); Fisher, (1981); Bertsekas, (1982); Fisher, (1985);

and Ibaraki and Katoh, (1988); provide excellent summaries

of some successful approaches to the multiplier search for

specific problems.
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We will present the use of the subgradient method to

search the multipliers of the Lagrangean relaxation of the

flow constrained area-based harvest scheduling problem. We

will first show the IP harvest scheduling problem and a

proof that the construction by Hoganson and Rose (1984)

corresponds to the dual of the Lagrangean relaxation of the

integer programming (IP) harvest scheduling problem. Then

we describe briefly the theoretical basis of the Lagrangean

approach and the subgradient algorithm and provide some

guidelines to set the parameters of this algorithm for the

harvest scheduling problem. A procedure will be described

to further improve the solutions obtained through the

subgradient algorithm. Finally, we present some comparative

results and discuss briefly some extensions of the

procedure to the solution of area-based harvest scheduling

problems with additional constraints.



12

THE AREA-BASED HARVEST SCHEDULING PROBLEM

The flow constrained area-based harvest scheduling

problem is an Integer Programming problem that can be

stated as:

m n.

Z = max E E 13c..13 x..
x.j i=1 j=1

s. t.

(P)

m n.

(1) E E [Vijt - 17i
(t +1) 0 V t = 0, 1, T

i=1 j=1

(2)

(3)

where:

n.1
E x..13 = 1 V i = 1, 2, .., m

j=1

X..13 E (0, 1) V i = 1, 2, . , m

V j= 1, 2, .., ni

1 if the treatment "j" in analysis area "i" is

selected. The option of not to harvest in any period

is considered a possible treatment for each analysis
x13 .. =

area.

0 if the treatment "j" in analysis area "i" is not

selected.

cij : Total present net value derived from allocating

treatment "j" in analysis area "i" during "T" periods.

Period "T+1" is considered the first period. Observe that

each analysis area "i" has ni. treatments and the value of

cij accounts for the acreage variation in different

analysis areas.

Vijt: Volume harvested in analysis area "i" under treatment

"j" in period "t".
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The set of constraints (1) represents the strict even-flow

constraints. Constraint set (2) is the set of area

restrictions, and set (3) represents the integer

constraints of the problem. Observe that if we relax the

integer restrictions (3) (i. e. a linear programming

relaxation of P), each decision variable "xij" will

represent the fraction of the i-th analysis area managed

under treatment "j". In that case, such formulation can be

accommodated in the context of a Model I Linear Programming

(LP) formulation of the harvest scheduling problem (Johnson

and Scheurman, 1977). In addition, it can be easily

observed that the set of area constraints (2) in the LP

relaxation of (P) imposes natural bounds in the decision

variables, i.e. each non-negative x..ij can not be greater

than 1 (0 < xij < 1)..

Substituting "dijt" for the values "Vijt - V..ij(t+1) " in

constraint set (1) and relaxing the constraint set (3), the

dual of problem P (D1) can be stated as:

m
ZD1 = min E

ai i=1
s. t.

T

a. (Dl)

(1) E dlj.. t
t=1

ut + d i Cij V i = 1, 2, . , m

V j = 1, 2, .., ni

(2) ut unrestricted V t = 1, 2, .., T

(3) a i unrestricted V i = 1, 2, .., m

where ut (t = 1, 2, .., T) is the Lagrange multiplier

associated with the " t-th" even flow constraint in problem
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(P) and " ai " (i = 1, 2,.., m) is the multiplier

associated with the "i-th" area constraint. Hoganson and

Rose (1984) -- working with a Model I LP formulation --

obtained the same dual problem as (D1). This is a logical

result given that to obtain (D1) we relaxed the integer

constraints in problem (P), so (D1) is the dual of an LP

problem (Model I formulation). Hoganson and Rose (1984)

determined that by guessing a value for each one of the ut

(t=1, 2, ..., T), problem (D1) could be rewritten as:

ZD2 = min E a.1
i=1

s. t.

(D2)

T

1a.1 > c. - E d.1t. ut V i = 1, 2, .., m
t=1

V j = 1, 2, .., ni

ai unrestricted V i = 1, 2, .., m

As they suggested, such a problem can be easily solved

just by finding for each ai:

T
max { ci - E dijt ut } V i = 1, 2, .., m (1)

1<j<ni t=1

This reduced problem consists of finding for each

analysis area the treatment with the largest "weighted cost

coefficient", where the "weights" are represented by the

expression:

E .. ut tt1
d13

If this solution provides a feasible solution to problem

(P), then the primal problem is solved and additionally the
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"best" guess for ut has been found. Their procedure

consists of guessing different ut values, then checking the

feasibility of the primal solution associated with that

guess. If a permissible deviation of feasibility was not

reached then another set of multipliers is guessed to

reinitialize the iterative procedure. Otherwise the search

is terminated.

Assume that for a given guess of ut:

T T
max ( ci E dit ut ) = ci - E dit ut = ai

1<j<ni t=1 t=1
(2)

Substituting the right hand side of (2) in problem (D2)

yields a solution for problem (D2) (ZD2) given a guess for

ut; such solution is:

m T

ZD2 (c. E u )it t
i=1 t=1

(3)

which is the solution of the dual problem solved by

Hoganson and Rose (1984) at each iteration. We can verify

that this procedure yields only integer solutions since in

problem D2 for each ai only one constraint is active (if

there are no multiple optima), which implies that only one

primal variable (one treatment) for each analysis area will

be selected.

Now let us go back to problem (P). By dualizing the set of

constraints (1) in (P) the Lagrangean relaxation of this

problem yields:



m Tn.1 n.
ZD(u) = max E ( E c..13 - E E dij t ut) xij

13x.. i=1 j=1 j=1 t=1
s. t.

(1)

ni
E x..13 = 1

j=1
V i = 1, 2, . M

16

(LR)

(2) xij e (0, 1) V i = 1, 2, .., m

V j = 1, 2, .., ni

Such a problem can be divided into "m" subproblems in

which the k-th subproblem, LR-k, is:

T
Zp_k(u) = max ( ck - E dkjt ut) xkj (LR-k)

1<j<nk t=1

xkj e (0, 1) V j = 1, 2, .., nk

For a given guess of ut the solution to problem LR-k

will yield only one xkj optimum (4j) which obviously will

take its upper bound (recall that the non-harvesting option

is considered also a treatment). Let us assume that such a

solution is:
T

ZIJR-k(u) (ck dkt ut ) xkj
t=1

(4)

substituting (4) in problem LR and considering that xk'j!=1

(for all k = 1, 2, .., m) the solution to LR for a given

guess of ut yields :

m T
ZD(u) = E (ci - E dit ut )

i=1 t=1
(5)

which is exactly the same result as the one obtained in (3)

with the construction outlined by Hoganson and Rose (1984).

Therefore, their simulation approach to solve the Model I

LP harvest scheduling problem corresponds to the Lagrangean
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relaxation solution of the area-based harvest scheduling

problem when dualizing the even-flow constraints.

Let c be the N x 1 vector of cost coefficients "cij",

where N is the total number of variables in the problem.

Let D be the T x N matrix of coefficients "dijt" , let x be

the N x 1 vector of primal variables xij, and let A be the

m x N matrix of area constraints. The harvest scheduling

problem (P) can now be rewritten as problem P1 (figure 1).

Such a problem has three Lagrangean relaxations. The first

one is obtained by dualizing constraint set (1) in P1,

yielding problem LR (figure 1). As discussed above the

resulting Lagrangean problem is easy to solve and provides

integer solutions. Hence it is a good candidate to be used

in a Lagrangean relaxation approach. The second relaxataion

can be obtained by dualizing constraint set (2) in problem

P1. By defining g as the vector of dual variables

associated with the area constraints such a relaxation

yields:
ZD(g) = max c'x + W(Ax - 1)

x

subject to constraint sets (1) and (3). The resulting

Lagrangean problem can be seen as a 0-1 multi-constrained

knapsack problem, which is more difficult to solve than the

previous one. The structure of this relaxation requires

the computation of as many multipliers as there are harvest

units, in contrast with the previous relaxation which only

requires the estimation of one multiplier per period

considered in the optimization. In addition, it is very
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likely that the best solution we can get through Lagrangean

relaxation will violate the area constraints. Such

violations in harvest scheduling problems are more critical

than violations to manager-imposed strict flow constraints

which are usually infeasible in an integer problem.

Problem (P1)

Z = max c'x
x

s. t. integer

D x = b (1)

A x = 1 (2)

x c (0, 1) (3)

dualizing and
relaxing the

Relaxation
on u

constraint

Problem (LR) :

ZD(u) = max c'x + ul(b D x)
x

s. t.
A x = 1 (1)

x e (0, 1) (2)

\\
dualizing \\

and relaxing the
integer constraint

\\
.Problem D2 :

ZE12(u) = min 1' a
a, u

s. t.

a > c'x + uo(b - D x) (1)

a, u unrestricted (2)

Problem 1121 :

ZD = min b'u + 1oat
u, a

s.t.

Do u + AI a > c (1)

u unrestricted (2)

a unrestricted (3)

Relaxation
on x

V
Problem /Lk)._ :

Z (X) = min c'x + uo(b-D x)

s. t.
A z = 1 (1)

u unrestricted (2)

//
// equivalent

representation
//

Figure 1. Relations among the integer primal problem (P1),
the dual of the primal problem with the integer constraints
relaxed (D), the Lagrangean relaxation on u of the primal
problem (LR), the Lagrangean relaxation on x of the dual
problem (LRD), and the Hoganson and Rose (1984)
specification for the Model I formulation of the harvest
scheduling problem (LD2).
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The third relaxation is obtained by dualizing both the

flow and the area constraints. This relaxation yields:

ZD(u,g) = max c' x + u' (b - D x) + µ' (A x - 1)

subject to the integer restrictions. Although this

Lagrangean problem is simply stated, it is more difficult

to guess a set of multipliers that yields feasible primal

solutions. In this case the best solution for the

Lagrangean problem will be equivalent to the solution

obtained for the dual of the LP relaxation of problem (P1),

which is not necessarily primal feasible. Theoretically

such a solution provides bounds less tight (poor integer

solutions) for the true integer solution than a relaxation

without all the constraints dualized (Gavish and Pirkul,

1985) .

Considering the three Lagrangean relaxations of the

area-based harvest scheduling problem, we have shown that

only by relaxing the flow constraints (or any other set of

linking constraints) we will be able to obtain integer

solutions and additionally a Lagrangean problem that is

easy to solve. Such conditions can not be met by relaxing

the area constraints or all the constraints at the same

time.
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THE SUBGRADIENT METHOD

It is well known that the solution to the Lagrangean

problem provides an upper bound on the optimal primal value

(for maximization problems). For instance, if in problem

LR the vector u is nonnegative and the vector (b -Dx ) is

also nonnegative then the Lagrangean problem (LR) is an

upper bound of the primal solution Zp, since we are just

adding a nonnegative term into the objective function of

problem (P1) (figure 1). The same is true if the sign of

the scalar (b - Dx)i equals the sign of ui. In practice

given the way the multipliers are adjusted, ZD(u) > Z; for

most of the guesses. It is possible though to have a dual

solution whose associated primal solution has a larger

objective function value. Intuitively we can observe that

the best choice for the vector u in problem (LR) would be

the solution of its dual problem, i. e.

ZD(u*) = min ZD(u) (6)

u

Observe that such a solution is the Lagrangean

relaxation of the dual of problem (P1), letting x be the

vector of dual variables and constraining the dual problem

such that Ax = 1 (see figure 1). Thus, if we relax the

integer constraints (3) in problem (P1) we have the

following relationships for the Lagrangean relaxations of

primal and dual problems:

ZD(u*) = min ZD(u) = Zp(x*) = max Zp(x) (7)
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Most of the algorithms for determining u in the solution

of the Lagrangean problem ZD(u) have as their objective to

find an optimal or close to optimal solution to Zp(x).

Ideally when we have a solution that meets the

relationships in (7) as closely as possible we have the

best solution Zp for the original problem. In general,

because of the duality gap (a duality gap is the difference

between Zip and its associated dual solution in problem D),

caused by the integer constraint (3) in (P1), it is not

possible to find a vector u for which ZD(u) = Zp . If such

a vector existed (in fact it exists when there is no

duality gap), it would correspond to the optimal solution

of problem (P1) . Bertsekas (1982), has shown that the

"ratio of the duality gap over the optimal primal value

goes to zero as the number of variables goes to infinity".

Hence as the problem has more integer variables, the best

choice for ZD(u) becomes a better estimate for 4.

Assume a harvest scheduling problem with just one flow

constraint dualized. In terms of problem (P1) such a

problem would correspond to a problem with just two

periods. For any guess of the vector u a solution x for

ZD(u) is obtained. Hence the value of ZD(u) depends on the

guesses of u. The function ZD (u) is piecewise linear on u

(see figure 2). Each line segment of this function

corresponds to the primal solution associated with that

specific value of u. In addition, ZD(u) has a nice

behavior for linear problems. It is a convex function
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Figure 2. The Lagrangean function ZD(u)

differentiable everywhere except at points where one guess

of u yields multiple primal solutions. These points can be

observed in figure 2 and correspond to the intersection of

two or more line segments (e.g. points A, B, and C in

figure 2). The subgradient method exploits such behavior of

the Lagrangean function making an adaptation of the

gradient search method at points where the function ZD(u)

is nondifferentiable. For differentiable points the

subgradient method estimates the search direction as the

"gradient search" by taking the gradient of the Lagrangean

function. Such gradient is given by the derivative of

ZD(u) with respect to u:
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(8)

As the reader can verify this derivative corresponds to

the vector of infeasibilities in the harvest flow

constraints given the current guess of u. At

nondifferentiable points the subgradient method chooses

arbitrarily an alternative primal solution x, computes the

infeasibility vector (b - D x) and uses that vector as if

it were

sequence

the true

of values

gradient of ZD(u).

of the multipliers to

In this way the

search the minimum

of ZD(u) is given by the formula:

uk+1 uk (D xk - b) (9)

where "tk" is a positive step size and xk is the current

solution to associated to the guess uk. In the

subgradient method the fundamental relationship on which

computation of step size depends is:

ZD(u) ---> ZD if tk ---> 0 and E ti --->
i=1

In practical terms this result states that "t" has to

converge to zero but not necessarily quickly. Many step

sizes have been proposed (Shor, (1964); Polyak (1969); Held

and Karp (1971); Held et al., (1974); Allen et al.,

(1987)). However, the step size most commonly used is:

tk =
[ZD(uk) Z^]

Il b D x 112

(10)
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This step size was proposed initially by Polyak (1969) and

its convergence properties have been discussed by Polyak

(1969) and Held et al., (1974). In (10) Ak is a scalar

satisfying the constraints 0 < Ak < 2. The usual practice

is setting A0 = 2 and halving Ak whenever ZD(u) has failed

to decrease ZD(u k i) in a specific number of iterations

(number of cycles). Such number of iterations is often

halved as the value of A is halved (Held et al, 1974). The

value Z- is usually set to zero and it is updated every

time the Lagrangean problem yields a better feasible primal

solution. Sometimes when the structure of the problem does

not produce a primal feasible solution as a byproduct of

the search then Z" is set to an upper or lower bound of the

*expected Z. Figure 3 shows the flow chart with the basic

steps to perform a search for the best multipliers of a

Lagrangean relaxation using the subgradient algorithm.

In general the subgradient algorithm performs very well

for most of the problems, although good results from

special applications have required some modifications to

its basic structure. In the next section we describe some

modifications that proved to be effective to improve the

results obtained from the subgradient algorithm.



25

INITIALIZE
set u = 0

Is
primal
solution

better than
current bes
solutio

Is
the new

Z D (u) smaller

than the
old
7

Correct multi -

uA-'1.--uA+tA(Dx-b)

I

iYES NO

Update best
primal
solution

V

No. cycles is
augmented in one

Is
o. cycles

smaller than
permited

7

NO decrease
A

Update Z"
if necessary ftl Compute the gradient

b - D x

Is
smaller
than E

TERMINATE

Figure 3. A flow chart of the subgradient algorithm.
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IMPROVEMENTS ON THE SUBGRADIENT METHOD APPLIED TO THE

HARVEST SCHEDULING PROBLEM.

The problem structure of any harvest scheduling problem

is the same, however the size varies with each application.

We adopted as a measure of size of the problem the

expression:

size = . of periods * total number of integer variables

This expression is a linear measure of the size of the

harvest flow matrix that is searched for the dual solution.

Since the whole matrix is searched at each iteration the

expression reflects the number of repeated computations per

iteration. In the rest of the paper we will refer to

problems with size less than 40 as small problems, those

with size between 40-70 as medium, and those with size

larger than 70 as large.

When the subgradient algorithm is being implemented many

primal solutions are provided. In the case of problem (P1)

(figure 1) all of these solutions are primal infeasible.

If they were feasible solutions, then by duality theory

they would correspond to the optimal primal solution.

Given this inconvenience, we need a criterion to

distinguish one primal infeasible solution from another

primal infeasible solution considered better. One might be

tempted to say that a "better" primal infeasible solution

is that solution with the largest objective function value.
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However this is not true, otherwise we would always

select the solution corresponding to the problem restricted

only to the area constraints, i.e. the primal solution

associated with the Lagrangean problem with u = 0.

A better selection criterion consists of choosing the

primal solution with the smallest sum of absolute

infeasibilities i. e. the smallest DID D xli . This

criterion is based on the relationship between the primal

and Lagrangean problem and the definition of a primal

optimal solution. Recall that an optimal primal solution

for problem (P1) (figure 1) corresponds to the solution

with the largest objective function value and where all

constraints are satisfied. Likewise, recall that in the

last section we stated that the solution of the Lagrangean

problem is an upper bound of the primal optimal solution.

Using these statements we can say that the primal solution

associated with a Lagrangean problem with minimum value,

which in addition has the smallest infeasibilities, is a

better primal solution than a solution with larger

objective function value and larger sum of absolute

infeasibilities. Figure 4 shows the relationship among the

Lagrangean function ZD(u), its associated primal solution

and the sum of absolute infeasibilities in the primal

problem during the search for the minimum of the Lagrangean

function. The figure was constructed using just the points

of improvement in the search i.e., those points for which

the sum of absolute infeasibilities was smaller than the
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Figure 4. General trend of the search and its relation with
the sum of absolute infeasibilities.

previous smallest sum of absolute infeasibilities. Observe

that the smaller the value of ZD(u) in the final

convergence of the algorithm, the smaller the sum of

absolute infeasibilities. Also observe, that the primal

solutions associated with these Lagrangean problems tend to

converge to the value of the Lagrangean function as the

search continues but they do not have a homogeneous

pattern.

In general the solutions with smaller values for ZD(u)

are associated with primal solutions closer to the true

optimum, which sometimes are larger and sometimes smaller
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than the optimum. Figure 4 suggests that most of the

infeasible solutions obtained after early searching are

superoptimal. However this is not true, figure 5 shows the

same search after iteration 710 every 3 iterations with an

extended scale. Observe that most of the infeasible

solutions obtained during the search are suboptimal. Hence

the theoretical argument that the best primal solution is

increasing as the search of the minimum of the Lagrangean

function continues is met. These results suggest that the

value of the primal objective function is not a good

indicator of the goodness of an infeasible primal solution.

However, the sum of absolute infeasibilities behaves

consistently with the kind of solutions we want to achieve

throughout the search. Hence in the rest of this paper we

will consider as the "best" solution the primal solution

with the smallest sum of absolute infeasibilities.

Many authors have emphasized that the efficiency of the

subgradient method in finding the minimum of the Lagrangean

function ZD(u) is dependent on an adequate match between

the step size selection and the problem structure. The

structure of a problem can be such that the step size has a

minimum effect in the search. For instance, Held and Karp

(1971) used a constant step size t = 1 in the solution of

the traveling salesman problem. This step size apparently

performs better than the variable step size considered in

equation (10). Other problem structures require a more

precise computation of the step size. Such is the case for
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the non-integer traveling salesman problem, the maximum

flow problem and the multicommodity flow problem analyzed

by Held et al.,(1974). In an attempt to find an

appropriate step size for our specific problem or at least

to find any relationship among some parameters of the

subgradient algorithm and problem size we analyzed several

parameters of the subgradient algorithm. The parameters

involved in the analysis were: the reduction factor of A,

the choice of the subgradient at nondifferentiable points,

the selection of Z", and the number of iterations permitted

before reducing A.

objective tcn. value (Thousands)
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$30

$28
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Figure 5. Convergence in late stages of the search.
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The pattern of convergence is highly related to the

reduction factor in lambda. As we mentioned before,

conventionally lambda is halved after NI number of

iterations have failed to yield a lower ZD(u) (we used

NI = 20 in the comparisons). For almost all harvest

scheduling problems we tested (small problems are

excluded), if lambda is halved after NI iterations the

pattern of convergence is less smooth than if lambda is

reduced only 25 percent after NI iterations. If the

convergence pattern is not smooth, then it is very likely

that the search deviates and converges to a poor solution.

Such solutions are characterized by a large sum of absolute

infeasibilities, large values in the minimum Lagrangean

function ZD(u) and generally superoptimal primal solutions.

Figure 6 shows the effect of decreasing the reduction

factor of lambda by several percentages. As can be

observed the smaller the reduction of lambda after NI

iterations the better the final solution. This behavior

can be attributed to the fact that with smaller reductions

of lambda the spectrum of values that the multipliers can

take is larger and the search is more likely to hit the

correct ones. This feature might suggest that by reducing

lambda by small amounts the algorithm yields better

convergence. However this procedure has a negative side

effect. As we decrease the reduction factor of lambda the
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number of iterations required increases exponentially and

obviously such an increment is accompanied by a

proportional increment in solution time. For this reason

it is helpful to decrease the reduction factor of lambda

but such a reduction needs to be accompanied by another

feature that permits a smooth convergence with, lesser

number of iterations.
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Figure 6. Effect of the reduction factor on lambda in the
final solution.
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The choice of the subgradient at nondifferentiable points

For a wide range of problem sizes, the search presents a

trend similar to the one shown in figure 4. As can be

observed the largest improvements in the search occur

during the first iterations. So after a relatively good

solution of the Lagrangean function ZD(u) has been found,

the convergence becomes very slow. Consider figure 5.

Observe how as the search proceeds small changes in the

Lagrangean function (barely perceptible in the figure) are

associated with large changes in the primal objective

function. This observation suggests that as the algorithm

converges to the "best" solution and there are small

changes in the multipliers, the number of primal solutions

associated with a single dual solution increases.

Consider figure 2. Observe that at nondifferentiable

points there are more than one primal solution

(intersecting lines) associated with a value of uk and

ZD(u). Moreover, at points where ZD(u) reaches its minimum

the number of multiple primal solutions increases. This is

a hypothetical example, however, we counted the number of

multiple primal solutions for our example problems and the

trend is general. Figure 5 shows the trend of the number

of multiple primal solutions associated with the Lagrangean
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function given a multiplier guesses and its relation with

the convergence of the algorithm. Observe that as the

algorithm converges to the "best" solution the number of

associated primal solutions increases, as opposed to the

first stages of the search where there are no more than one

associated primal solution per dual guess. As we mentioned

in the last section, the subgradient algorithm selects any

of the alternative primal solutions, computes the

subgradient and takes it as the true gradient. However, if

we happen to select a very bad solution, the new direction

such a solution will provide could deviate the search.

For this reason we propose to select the primal solution

with the largest sum of absolute infeasibilities (i.e. the

"worst" primal solution) as the subgradient at

nondifferentiable points of ZD(u). One might be tempted to

1/ This number corresponds to the counting of primal

variables (treatments) whose associated dual constraints

were binding, given a bound defined by another primal

variable, i.e. if for 3 treatments of a given stand their

dual constraints were binding, only one defined the

solution and the other two entered in the counting. This

means that the number of primal solutions further increases

if we consider all the combinations among these counted

primal variables. Any dual constraint was considered

binding if its difference with the maximum was less than or

equal to 10-6.
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say that the "best" associated primal solutions (solutions

with the smallest sum of absolute infeasibilities) will

yield a better and faster convergence. However, for large

problems where there exist multiple primal solutions per

dual guess we want a slow convergence. Hence if at

nondifferentiable points of the Lagrangean function we take

the "best" primal solution as the subgradient, the search

might yield abrupt "improvements" (i.e. it reaches a local

minimum of ZD) at those stages and might lead to a poor

final convergence.

We tested three ways of selecting the subgradient at

nondifferentiable points for several problem sizes. To

homogenize the comparisons, the size of the problems

depended only on the number of periods selected in the

planning horizon, i.e. the harvest scheduling problems

were solved for the same forest with different periods.

Results are shown in figure 7. As can be observed for

small problems there is no difference in the strategy

selected. This is because there are not many multiple

primal solutions per dual guess. However when those

multiple solutions increase in large problems we always

obtained a better solutions by applying the strategy of

selecting the "worst" associated primal solution as the

solution to define the subgradient of the search. Likewise

as expected, the strategy of selecting any associated

primal solution as the subgradient of the search was always
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Figure 7. Effect of different strategies to select the
subgradient at nondifferentiable points.

at least as good as the strategy of selecting the "best"

solution as the subgradient, and for some problems was as

good as the strategy of selecting the "worst" solution. In

general, the strategy of selecting the "worst" primal

solution to define the subgradient of the search at

nondifferentiable points of ZD(u) yielded better solutions

for large problems than the other strategies tested. There

is a negative side to applying this strategy. The time

required to finish the search is longer than the time

required by the conventional strategy . Hence the

proposed strategy is valuable to obtain better solutions

under the knowledge that it slows down the search.

Likewise, we should use it for medium-to-large problems



37

since for small problems there are not many associated

primal solutions per multiplier guess.

Selection of Z"

For most of the applications of the subgradient

algorithm, the search provides a feasible solution as it

goes on. Such solutions are used to update Z^ in the

computation of the step size (equation 10). In other cases

such feasible solutions are not available and the guess of

Z" depends on previous knowledge of the problem i.e. the

optimal primal solution Z. For problem (P1) (figure 1)

an estimate of the value of Z; is not available. Moreover,

when the multiplier search is performed, no feasible primal

solutions are generated. Given these conditions we

analyzed the following strategies for the guess of Z"

necessary to compute the step size:

a) The "best" primal infeasible solution.

b) The current smallest value of ZD(u) reduced by a

percentage.

For almost all cases we tested, the first strategy had

convergence problems. Such problems were due to the fact

that the value of the step size "t" (equation 10) has to be

positive, and this choice of Z^ often produced negative

step sizes. These negative step sizes were computed at the

beginning of the search, when many superoptimal infeasible

solutions with small infeasibilities are generated. Such

values were ignored and the search seemed to deviate at
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those points since in all tests the number of iterations

was dramatically reduced and poor convergence was reached.

The second strategy is based on the theoretical result

stated in the last section which indicates that the

Lagrangean function ZD(u) is an upper bound of the true

value of Z P. Then reducing ZD(u) by a fraction should

provide a good estimate of Z. Following this strategy the

value of Z^ is forced to be always smaller than ZD(u), so

there is no possibility of computing a negative step size

in equation (10). The "current smallest value of ZD(u) can

be reduced by several percentages. We analyzed the effect

of changing this percentage for some example problems of

different size. Figure 8 shows these results. In

general, as we increased the percentage of reduction in the

minimum ZD(u) to estimate Z^ a better convergence was

obtained. For small size problems this difference was not

as evident as for large problems where the improvement in

the convergence was exceptional. The increment in the

percentage of reduction of ZD(u) was always accompanied by

an increment in the number of iterations required until the

end of the search. This feature indicates that as we

increased the percentage of reduction in the minimum ZD(u)

the number of times that an improved solution was found was

larger than with low percentages of reduction, i.e. the

convergence was smoother by using large percentages of

reduction.
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ZD(u) to estimate Z.

Larger percentages of reduction of ZD(u) to estimate Z"'

make larger step sizes, which as explained above, helps to

make smooth the convergence, so better solutions are

obtained.

From figure 8 we can observe that a 20% reduction in

ZD(u) to estimate Z- is the lowest percentage that yielded

the best convergence for large problems. Likewise, for

medium size problems 5 % of reduction always yielded good

convergence. Since the increment in the reduction

percentage of ZD(u) to estimate Z- increases the number of

iterations and given that once ZD(u) starts to converge we

need small step sizes, we tested the strategy of starting
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the search with an estimate of Z" given by 20% reduction in

ZD(u) and once ZD(u) started to converge, i.e. its value

did not change by more than 10-3 after 10 iterations, then

we gradually reduced this percentage until a minimum of 5%

was reached. Figure 8 shows these results under the

abscissa marked with an "S". As can be observed, in all

cases the proposed strategy yielded results at least as

good as the best found with the strategy of constant

percentage of reduction. Additionally this strategy

reduced by an average of 36% the number of iterations

required to end the search.

Number of iterations that the algorithm has failed in

reducing the Lagrangean function

A record on the times and parameters of the best

solution for some example problems showed that the

improvements to the best solution are associated with the

first 20 iterations every change in lambda and occasionally

for big problems the first 40 are important. As the search

continues, just the first five iterations after lambda has

been changed have some positive effect in the search. In

other words, the number of iterations that the algorithm

has failed to reduce ZD (u) (cycle length of lambda) is

usually less than 40 and variable throughout the search.

We performed a sensitivity analysis on the cycle length

of lambda in order to define its appropriate magnitude
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We tested 5, 10, 15, 20, 30 and

that even for small problems the

to be greater than 5. For small

the final solution was detected

by using cycle lengths between 10 and 50. However, the

number of iterations increased linearly as we increased the

cycle length and this increment was accompained by an

increment in solution time. For large problems the cycle

length seems to have some effect. The solutions were

better as we increased the cycle length. Beyond 30

iterations no difference in the final solutions was

detected other than the increment in the number of

iterations and the associated longer time to end the

search. Once we detected that the bounds of the cycle

length are around 10 and 30 we tested the strategy of

reducing the cycle length as the search continues starting

with a maximum of 30 until a minimum of 10 is reached. The

reduction strategies tested were:

a) Held and Karp (1971) strategy of reducing the cycle

length in the same proportion as lambda is decreased until

reaching a minimum of 5. By using X= 0.7 approximately in

5 iterations we reach that minimum of 5.

b) Reducing the cycle length every 5 reductions in

lambda by the same reduction factor in lambda until a cycle

length of 10 is reached.

c) Reducing the cycle length every 5 reductions in



42

lambda after ZD(u) stabilizes i.e. it does not change by

more than 0.001 of its absolute value.

As we expected the first strategy always converged to

poor solutions when applied to big problems. When applied

to small problems the strategy did not yield better

solutions but reduced the time dramatically. For instance

by using a X= 0.7 a problem with 50 stands and 5 periods

(308 integer variables) was solved in less than 18 seconds

(using a Compaq 386/25) and the solution converged to the

"best" integer solution of the problem. The second

strategy was very variable. It was tested just with big

problems given that the results on the first strategy

proved that there is no effect with small problems other

than the increase in the number of iterations. This

strategy yielded better results for large problems than the

first strategy, although not all final solutions obtained

with this strategy reached the best known solution. The

last strategy performed better than the former strategies.

For all the test problems it yielded solutions similar to

the best known solutions. As expected, the number of

iterations was larger than the number of iterations

required by the former strategies, although it was smaller

than the strategy of having constant cycle length for

lambda. By applying the third strategy what we do is to

start reducing the cycle length when we require small

perturbations in the multipliers. Such small perturbations

are more related to the change in lambda and the value of
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Z^ than to the cycle length. Hence if we reduce the cycle

length at this stage of the search, it is less likely to

skip any solution that would improve the search. Thus with

this strategy we ensure enough iterations in the cycle of

lambda when needed and we reduce them when they are not

needed.

From this analysis we make the following recommendations

to implement the subgradient algorithm to the problem of

finding the minimum of the Lagrangean function of the area-

based harvest scheduling problem:

a) Use the sum of absolute infeasibilities as a

measure of the goodness of an infeasible primal solution.

b) Use a reduction factor of lambda preferably smaller

than the conventional 0.5. For big problems the reduction

factor should not be greater than 0.25. If a minimum value

of lambda is being used as stopping rule for the search,

small problems require a lambda around 10-5 to yield good

solutions, while large problems require approximations of

the order of 10 -7
.

c) For medium-to-large size problems use the primal

solution with the largest infeasibilities as the

subgradient of the search at nondifferentiable points of

ZD(u) . This strategy might be used for small problems

with more than 5 planning periods.

d) Use as an estimate of Z^ in the computation of the

step size a value computed by a 15-20% reduction of the
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current minimum value of ZD(u) in the search. Such

percentage can be reduced after ZD(u) has minimum changes.

We defined such minimum changes of ZD(u) as occurring when

its value does not change by more than 0.001.

e) Use a cycle length of lambda greater than or equal

to 30 for big problems and a minimum of 10 for small

problems. For big problems the cycle length can be reduced

slowly until reaching a minimum of 10 once ZD(u) has

minimum changes.

These recommendations consider the associated effects.

For instance, decreasing the reduction factor of lambda

beyond some percentages has the same effect as if we

increase the cycle length. Hence these recommendations

include those strategies that yield good solutions with few

iterations.
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IMPROVEMENTS ON THE SOLUTION YIELDED BY THE SUBGRADIENT

ALGORITHM

So far we have seen how by just varying some parameters

in the subgradient algorithm it is possible to improve the

estimation of the multipliers. However for some problems

the solution obtained through the subgradient method is not

within the permissible bounds of variations of harvest flow

(10%), and therefore such estimates must be improved.

Problems of this type are often characterized by a lack of

an integer solution within the specified bounds, or they

may be highly infeasible problems such as harvest

scheduling problems with a large number of periods and few

stands. Sometimes even for problems well formulated and

with feasible solutions within the required bounds, the

following procedure improves the solution obtained through

the subgradient algorithm. The procedure we propose is

based on the characteristics of the Lagrangean function

dependent only on one dual variable. Consider the

Lagrangean function:

ZD(uk) = max c, x + ul(b - D x) (11)

where only uk is variable and all other multipliers remain

constant. This function behaves as the function depicted

in figure 2, i.e. it is convex and defined by different

primal solutions associated with the specific value of uk.

By taking the first derivative of ZD(uk) with respect to uk

we obtain the direction of adjustment of uk to reach a
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better solution (smaller) for ZD(uk). Such derivative is

given by the scalar:

(b - D xr)k (12)

which corresponds to the infeasibility in the k-th

constraint given the "r-th" guess on uk. Assume we have

reached the best solution through the subgradient method at

the r-th iteration. Then we know the best vector ur (where

"r" represents the iteration for which the best solution

was obtained) and the minimum value of the Lagrangean

function ZD(uk). Given that the direction of improvement

of the function ZD(uk) is given by (b - D xr)k we could

change uk at the "r+1" iteration such that:

url = uk - (b - D x ) (13)

would yield a better solution. Unfortunately this is not

as straightforward as it looks, since although the

direction of adjustment is correct, generally the new value

of the multiplier "url" yields a solution ZE4-1(uk) larger

than the current value at iteration "r" and with the "k-th"

infeasibility (b -D xr+1) k of contrary sign. Consider

figure 2. Assume that the subgradient method yielded a

solution at point A. After applying the adjustment in (13)

the solution moves to point B. What the subgradient

algorithm does is to weight the subgradient such that the

big change caused by (b - Dx) is reduced by a step size.

In our procedure we will use the points A and B as an

interval of uncertainty to proceed with the search of lower
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values of ZD(uk) presumably to reach a hypothetical minimum

of ZD(uk). The search is performed by applying any search

algorithm such as dichotomous search, Golden search or

Fibonacci search (Bazaraa and Shetty, 1979). This search

often provides smaller values for ZD(uk) and sometimes

those smaller values are associated with "better" primal

solutions. The proposed procedure can be summarized in the

following steps:

STEP 1. Initialize variables with the best solution

obtained from the subgradient search.

STEP 2. Sort all infeasibilities in decreasing order by

their absolute value. Choose the infeasibility with the

largest value. The constraint associated with that

infeasibility becomes constraint "k".

STEP 3. Compute the interval of uncertainty given by ufc

and urk +1

STEP 4. Use bisection to determine lower values of ZD(uk).

For each guess of ukr check if the associated primal

solution is better. If so, update best u and GO TO STEP

2. Otherwise, continue the search until a permissible e

is reached.

STEP 5. Select the constraint with the next lowest

infeasibility from the sort list in STEP 1. If there

are no more constraints GO TO STEP 6. Otherwise, the

selected constraint becomes constraint "k", GO TO STEP

3.

STEP 6. Terminate.
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The idea of this procedure is to make small

perturbations in the neighborhood of the "best" multipliers

in order to find better solutions; which is especially

useful when the subgradient search yields solutions with

one or two large infeasibilities. It is important to

mention that big changes in the primal solution might occur

with changes of the order of 10-6 in one of the

multipliers. Hence the search requires a lot of precision.

The search of the primal solution is accompanied with the

search for all associated primal solutions given one dual

guess. For this algorithm we will always select the

primal solution with the smallest sum of absolute

infeasibilities.
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COMPUTATIONAL RESULTS

In order to compare the performance of Lagrangean

relaxation we simulated 5 forests. Example forest 1 is

composed by 20 stands. Half of the area of this forest is

within age class 40 and the other half is within age class

80. Example forest 2 is composed by 50 stands and its age

class distribution resembles a normal distribution with a

minimum age class of 10 years and a maximum of 100.

Example forest 3 is composed by 70 stands. It is an

overmature forest where all its age classes are above 80

years. The distribution is as follows: 50% of the area is

within the 80 year age class, 25% is within the 90 year age

class, 15% is within the 100 year age class and 10% is

within the 110 year age class. Example forest 4 is

composed of 100 stands and its age class distribution is

similar to example forest 5. Example forest 5 has 136

stands and its age class distribution looks like the one

depicted in figure 9. This distribution and the area of

each harvest unit correspond to the Green River subbasin in

the Siuslaw National Forest (Barker, 1989). The growth and

yield estimations for example forests 2 and 4 were made

through the growth model for loblolly pine developed by Cao

et al., (1982). The rest of the yield estimates were made

by using the equations of volume for Douglas fir defined in

Brodie et al., (1979). Price and cost information

corresponds to the reports in Fight et al., (1984) and
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80 years
41,8

Figure 9. Proportion of age classes in example forest 5.

local information. We used four different planning

horizons: 3, 5, 7, and 10 decades. The formulation

corresponds to the formulation of problem P1 (figure 1)

with strict even-flow constraints using all possible

combinations of harvest for each stand and considering a

minimum harvest age of 40 years.

The harvest scheduling problems were solved by three

solution techniques: linear programming (LP), integer

programming (IP) and Lagrangean relaxation (LAR). For the

integer formulation we defined a maximum fractional

reduction and a maximum fractional increase permitted in

the harvest flows (harvest flow fluctuations). These

harvest flow fluctuations were bounded as close as possible

in order to maintain a fair comparison between the LAR and
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IP solutions. Obviously LAR solutions provided a likely

bound for these permissible harvest flow fluctuations.

The variables we compared were: differences in maximum,

average, and minimum deviation in harvest flows within the

Lagrangean relaxation, solution time, and objective

function value. The maximum deviation is the difference

between the maximum and minimum harvest as percentage of

the minimum harvest. The average deviation corresponds to

the sum of absolute infeasibilities as percentage of the

total harvest volume. The minimum deviation is computed as

the minimum infeasibility as percentage of the minimum

harvest flow that yielded such infeasibility. Table 1

shows the comparative results. Linear and integer

programming solutions were obtained by using the computer

package MILP88. In this table the LAR solutions correspond

just to the results obtained from the subgradient search.

We divide our discussion of these results into three main

topics: the solution time, the quality of the solution and

the efficiency of our search algorithm to improve the

solution.

Solution time

Given the highly combinatorial nature of the area-based

harvest scheduling problem, solution time of IP increases

exponentially with the number of integer variables in the

problem. In our example problems, solution time from IP was

considerably larger than solution time from LAR. Just



Table 1. Comparative results from linear programming, integer
programming and Lagrangean relaxation for 20 example forests.

Pro
blem
No.

S
I

Z

E

No. of

periods

No. of

stands

No. of

vars.

INTEGER SOLUTION LP SOLUTION 1AGRANGEAN RELAXATION SOLUTION

Obj. fcn.
value 0)

Max dev.
flow (I)

Time
(hrs)

Obj. fen.
value ($)

Time
(hrs)

Obj. fen.
value($)

deviation
max.

of flows
avg.

(1)

min

r 3.47

- 1.52

Time
(hrs)

1 15 3 20 00 1951 3.60 0.013 1954 0.0008 1950 - 7.50

8.29

4.03

3.37

0.0019

0.0000

0.0126

0.0128

2 23 3 50 173 3569 4.50 2.812 3567 0.0014 3547

3 29 3 70 280 40842 4.92 5.175 40951 0.0098 40842 + 4.92 3.31 - 0.57

- 0.07
4 32 3 100 328 5269 1.14 29.846 5277 0.0172 5269 + 1.14 0.89

5 36 3 136 436 33338 3.72 34.386 33480 0.0272 33389 - 8.93 5.21 + 2.34 0.0238

26 5 20 140 1172 5.02 6.483 1771 0.0016 1758 + 13.92 7.99 r 2.61

7 39

49

5 50 308 3704 6.82 7.944 3698 0.0166 3696 6.32 4.03 - 0.01

8 5 70 475 a a a 36547 0.0312 36994 - 16.08 8.97 + 1.08

9 49 5 100 589 5787 5.37 34.256 5759 0.0341 5758 + 2.32 1.54 0.46

10 63 5 136 787 at* 34363 0.1091 34491 - 10.01 5.22 + 0.12

11 44 7 20 280 1728 14.83

8.74

10.145 1787 0.0055 1708 + 14.62 9.59 + 2.29

12 65 7 50 607 3846 50.368 3836 0.0328 3830 + 7.9 3.43 - 0.24

13 78 7 70 960 b b b 34701 0.0592 34231 - 43.63 9.47 + 0.38

14 90 7 100 1157 ** * * * * 6135 0.1219 6165 + 10.62 4.42 - 0.19

15 104 7 136 1539 *At * * * * * 34726 0.2342 34659 + 4.17 1.74 - 0.08

16 63 10 20 480 1794 19.8 39.274 1702 0.0122 1909 + 16.29 8.23 + 4.19

17 101 10 50 1122 *** *** *** 3833 0.0777 3851 + 9.20 2.76 i 0.03

18 94 10 70 1680 *** *** *** 31372 0.1425 32956 + 25.20 9.56 - 0.18

19 148 10 100 2181 *** *** *** 6164 0.5608 6277 + 12.13 3.23 - 0.14

20 157 10 136 2638 *** *.* *** 34619 1.0374 34557 - 6.47 3.06 + 0.55

*** No attempt to solve was made.

a) Infeasible with maximum deviation of flows of 15%

b) Infeasible with maximum deviation of flows of 451

0.0066

0.0133

0.0219

0.0194

0.0371

0.0124

0.0255

0.0397

0.0561

0.1011

0.0318

0.0825

0.0369

0.1957

()Ana
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to give a rough idea about the difference in solution time

between the LAR and IP solutions, an average of the time

differences for all the IP problems for which we obtained a

solution (see table 1) showed that IP solutions took about

1000 times longer than the time required to obtain a LAR

solution. Obviously if we had considered the large

problems we did not solve through IP this average would

increase. LP solution time is very variable as opposed to

LAR solution time which is related to our size measure. In

general, solution time was shorter for LAR solutions than

for LP solutions except for problems with few stands. For

those problems LP solutions were always obtained faster

than LAR

lack of

algorithm.

solutions. The

a convergence

reason for

criterion

For small problems the

this exception

in the

is the

subgradient

subgradient algorithm

finds the best solution faster than LP. However, the

termination criterion of the subgradient algorithm is set

by a minimum value that lambda can take. Hence although

the subgradient algorithm converges rapidly for these

problems it takes additional time to perform the rest of

the iterations until it reaches the minimum lambda that

will stop the search.

The selection of an adequate "convergence criterion" is

an important factor that determines the efficiency of the

subgradient algorithm. Such criterion can be a minimum

value of lambda or a minimum step size. However, any of

these criteria is highly problem dependent. The



54

determination of a stopping criterion for the subgradient

algorithm is beyond the scope of this study. However we

believe that the answer is probably in the pattern that the

primal solutions take after the "best" solution has been

reached. Such a pattern looks cyclic for small problems

and like a pattern in "chaos" for big problems (see figure

5) .

Quality of solutions

LAR solutions were always very close to the optimal

integer solution. As table 1 shows, for two problems the

LAR solutions were exactly the same as the "optimal integer

solution". What is noteworthy is that for problems with

three periods, the maximum difference in the objective

function value obtained by LAR and IP solutions was smaller

than 0.15% and the maximum flow fluctuation was always

less than 10%.

Because of the way some IP problems were formulated

(wide bounds in the harvest flow fluctuations) the LAR

solutions yielded tighter bounds for the harvest flows

than the IP solutions. Problems 7, 9 ,and 12 are examples

of this kind of solution. For these problems the IP

solutions exploited the larger flexibility in the flows and

yielded a larger objective function value. Obviously those

solutions are superoptimal and more infeasible than LAR

solutions. On the contrary observe the IP solutions for

problems 1 and 2. These solutions yielded tighter bounds
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for the harvest flows and larger objective function value

than the LAR solutions, which simply supports our strategy

of choosing the LAR solution with smallest infeasibilities

as the best solution. Obviously for these problems the LAR

approach was not able to find the optimal integer

solution. All the problems solved for an optimal IP

solution had a difference in the objective function value

between LAR solutions and the IP solutions no greater than

2% and on average the harvest flow deviation never was

greater than 8%. Following duality theory we would expect

that LAR solutions would yield an objective function value

between the one yielded by IP and the one yielded by LP,

which obviously would be more infeasible than the IP

solution. However, solutions were variable but always

close to the optimal integer solution. An example of this

expected result is the solution obtained for problem 5.

Table 1 shows clearly the close relationship between the

objective function value obtained with LP and IP. The

solutions are so close that for all 3-period problems the

LP solution yielded only 2 stands with fractional values

for the treatments. Obviously this is a product of the way

the LP is formulated since each problem has NP + NS binding

constraints (NP represents the number of periods and NS the

number of stands). Hence each LP can have a maximum of NP

stands with fractional values (with two treatments per

stand). In most of our example problems this maximum
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number of stands with fractional values for the treatments

was always NP - 1, except for those IP infeasible problems

(e.g. problems 8, 13, and 18) where the number decreased

but the number of fractional treatments per stand

increased.

Theoretically as we increase the number of integer

variables the IP solution gets closer to the LP solution

(Bertsekas 1982). Observe the results for example forest

1. Considering just a 3 period problem the difference

between the LP and IP objective function values is just

0.15% while for the five period problem such difference is

reduced to 0.05%. However when considering the 7 period

problem the difference is greater and even the fluctuations

in the harvest flows increase. This behavior is a result

of the "natural integer infeasibility" of the problem, i.e.

we are considering too many periods for a few stands.

Consider problems 7 and 8. They have the same number of

periods and problem 8 has more stands and a larger number

of treatments per stand than problem 7. However, the IP

solution for problem 8 is more infeasible than problem 7.

This difference might indicate that the latter statement

about the relationship between number of periods and number

of stands is wrong. But this difference is a product of a

second source of "natural integer infeasibility" of the

problem, namely the original age class distribution of

stands in the forest. The distribution is so diverse in

example forest 2 that there is no problem in meeting the
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flow constraints. However, it is so restricted for example

forest 3 that a larger deviation in the flows is required

in an integer solution to meet those constraints. The

natural integer infeasibility of a problem is not important

in LP since it can take fractions of treatments per stand.

But this is not possible if integer solutions are required.

As can be observed in table 1 this natural integer

infeasibility of the problem causes the objective function

from integer solutions to deviate more from the LP

objective function (larger duality gap). The LAR approach

always offers a solution for such integer infeasible

problems, which is generally superoptimal (considering the

LP solution) and infeasible. For instance in problem 8 the

integer solution reached by LAR probably corresponds to the

optimal solution, since the maximum infeasibility is 16%,

and we did not obtain a feasible solution by IP within a

15% deviation. In addition as can be observed there is not

much difference between the LAR and LP objective function

values for this problem; which suggests that the integer

solution obtained by LAR might be close to the best integer

solution. Integer infeasible problems cause the

subgradient algorithm to converge rapidly, which as we saw

is not good for the search. Sometimes the convergence

yields the best attainable integer solution, but sometimes

the search is deviated. For this kind of problem we can

apply the proposed search algorithm to improve the

solutions.
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Search procedure

Our search procedure was applied to problems 8, 11, 13,

14, 16, 18, and 19 (see table 1). Results on these

searches are shown on table 2.

Table 2. Solutions of the search algorithm for selected
problems.

Pro
blem

No.

Solution after search algorithm

Obj. fcn.
value ($)

deviation
max.

of flows
avg.

(%)

min
Time
(hrs)

8 36994 - 16.08 8.97 + 1.08 0.011

11 1708 + 14.62 9.59 + 2.29 0.013

13 34531 - 43.63 6.47 + 0.38 0.029

14 6124 - 5.74 2.98 - 0.19 0.083

16 1769 + 13.42 7.74 + 1.34 0.047

18 32456 + 25.20 9.56 - 0.18 0.026

19 6214 + 4.72 2.37 - 0.14 0.109

As can be observed the procedure does not always find a

better solution. For the mentioned set of problems only

the solutions to problems 8, 11, and 18 were not improved.

The solution of problem 19 was dramatically improved by

reducing the maximum deviation of harvest flows up to 4.7%.

In this case the diversity of age classes and the large

number of treatments available in example forest 4 helped
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in reaching a better solution. Presumably such a better

integer solution does not exist for problems 8, 11, and

18, or if it exists it can not be found in the dual space.

The time of our search algorithm depends on the problem

size and as can be observed the procedure is very slow. To

obtain an improved solution of problem 19 it took the

equivalent of 0.6 times the time taken by the subgradient

search to find a "good" solution. The time could be

reduced if we avoid the first guesses in the search

procedure, since we expect that only small changes in the

multipliers will have an effect in finding a better

solution.

CONCLUSIONS

Lagrangean relaxation can be applied to other sets of

constraints in an area-based harvest scheduling problem.

However, the nature of the approach and the solutions

obtained limit its use to constraints that meet the

following conditions:

a) It is not required that the constraints are

satisfied strictly. For instance, when we include adjacency

restrictions we require that those constraints are

satisfied strictly and it is very likely that LAR will not

yield a solution that guarantees that all adjacency

constraints are met. Hence LAR should be applied when
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small deviations from the requirement vector are not

harmful in the solution. Such constraints might be

wildlife habitat constraints, sediment production

constraints or any other harvest constraint.

b) Constraints should be dualized so the resulting

Lagrangean problem is easier to solve.

c) The number of constraints dualized affects the rate

of convergence. Many authors have emphasized that the

success of algorithms to solve the Lagrangean problem

depends on the set of constraints we dualize. We believe

that this depends not only on how wisely we dualize the

constraints but also on the number of constraints dualized.

When we dualize many constraints the convergence is better.

This is simply because there are more dual variables that

define one single primal solution. Hence there are fewer

nondifferentiable points in the Lagrangean function and it

is less likely that the search is deviated. However, by

dualizing too many constraints the convergence is faster

which might be harmful. Additionally the search for

several dual variables complicates the computation of the

Lagrangean function. Hence good results from Lagrangean

relaxation will depend on the type and quantity of

constraints dualized.

d) Constraints with large technical coefficients

should be scaled. Better solutions are obtained if there

are no large disproportions among the infeasibilities of
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the relaxed constaints.

Lagrangean relaxation is a very useful technique to

obtain "good" solutions of area-based harvest scheduling

problems. As we have seen even optimal solutions can be

obtained through the this procedure without devoting much

time and resources in obtaining integer solutions.

Additionally the technique is comparatively more efficient

as the size of the problem increases and always provides a

"good" infeasible solution when there is no feasible

integer solution within the specified bounds. The main

problem in the technique is the multiplier guess. However,

by using all the recommendations stated in the fourth

section, the subgradient algorithm always yields very good

solutions whether a feasible integer solution exists within

the bounds of the harvest flow deviations or not. For some

problems there might be poor convergence. For such

problems our improvement procedure indeed yields better

solutions only when the problem is large. Since the search

is slow our procedure should be used only in cases were a

poor convergence is reached through the subgradient search.
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ADJACENCY CONSTRAINTS IN HARVEST SCHEDULING:

AN AGGREGATION HEURISTIC

by
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ABSTRACT

A heuristic for adjacency constraint aggregation is

proposed.

Procedure

which it

Procedure

for each

procedure

adjacency

The heuristic is composed of two procedures.

one consists of identifying harvesting areas for

is not necessary to write adjacency constraints.

two consists of writing one adjacency constraint

one of the harvesting areas not identified in

one. Such adjacency constraints consider all the

relations between the harvesting area and its

surrounding areas. The heuristic is based on the concept

of penalties and the "Four color conjecture". The

aggregated constraints present fewer variables per

constraint than the aggregator described by Meneghin et

al., (1988) and can easily be generated mechanically from

the adjacency matrix. In addition, the proposed heuristic

does not require the tedious task of identifying type 1 and

type 2 constraints as with Meneghin's algorithm. Hence the
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combinatorial work to compute the aggregated constraints is

reduced significantly. Comparisons showed that the proposed

heuristic requires about a third of the constraints

required by the conventional adjacency constraint

formulation and about the same number of constraints as the

procedure suggested by Meneghin et al., (1988).
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INTRODUCTION

Tactical planning requires consideration of spatial

relationships among harvesting areas. Such spatial

considerations often reflect legal or, biological

requirements for the management of forests or in other

instances, they simply are logistic requirements for the

practical implementation of forest plans. Sometimes, these

spatial considerations are requirements for multiple

objective forest planning, such as wildlife habitat

management or necessary restrictions on sediment production

for the protection of fisheries. These types of spatial

requirements are often modeled through adjacency

constraints. Such constraints restrict the selection of

the harvesting areas so that adjacent harvesting areas

sharing a common border (or a common corner) can not be

harvested in the same period.

Adjacency constraints add a large number of rows to any

integer programming (IP) or mixed integer programming (MIP)

formulation of an area-based harvest scheduling problem. So

these formulations are often limited by the number of

constraints rather than the number of variables. Hence

constraint aggregation of adjacency restrictions can help

to fit those large complex formulations into standard

linear programming (LP) or IP solution packages. More

important potential applications of the aggregated

constraints consist of improving the efficiency of
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heuristics to solve special IP problems such as the

multiconstrained knapsack problem, or when the solution to

the IP problem is obtained through relaxation, where a

small number of constraints is desired.

Aggregation of equations with integer coefficients (such

as adjacency constraints) has been intensively studied

because of its simplicity and the aim of deriving

aggregators with manageable coefficients able to improve

the computational efficiency of current solution algorithms

(Fishburn and Kochenberg, 1985). There exists some

reasonable concerns about the improvement in computational

efficiency by using aggregated constraints (Onyekwelu,

1983). However, there is no doubt about its usefulness in

the solution of highly structured IP problems (Kannan,

1983).

Techniques of constraint aggregation often have the

associated problem of increasing the number of variables.

Such is the case of the aggregators derived by Bradley

(1971) or Padberg (1972), which require an additional

variable for each inequality constraint that is aggregated.

Other aggregators not only increase the number of

variables but also the value of the coefficients in the

aggregated constraint. Such is the case of Padberg's

aggregator or the aggregator derived by Fishburn and

Kochenberg (1985). In some cases these values grow very

rapidly with the number of aggregated constraints, which

might represent a problem in practical applications. For
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instance, the Padberg's aggregator requires coefficients of

the order of 6 digits to aggregate only 15 constraints.

Meneghin et al., (1988) considered the specific problem

of aggregation of adjacency constraints. They developed a

procedure to reduce the number of adjacency constraints in

an LP or IP formulation. Their approach combines simple

adjacency restrictions (type 1 constraints) into multiple

adjacency restrictions (type 2 constraints) to form

aggregated adjacency constraints. The procedure requires

less than half the constraints required by the conventional

adjacency constraint formulation.

We present a procedure to reduce the number of adjacency

constraints in a formulation of the harvest scheduling

problem which can be easily implemented in a computer code.

Our procedure is based on the concept of penalties and a

principle used in map coloring and graph theory called the

"Four Color Conjecture" (Ringel, 1959; Saaty and Kainen,

1977). The procedure is simple and yields aggregated

constraints with fewer variables per constraint than the

ones reported by Meneghin et al., (1988). In addition, our

approach also requires less than half the constraints

required by the conventional adjacency constraint

formulation and in contrast with Meneghin's algorithm, it

does not need the tedious two step procedure of identifying

type 1 and type 2 constraints before constructing the

aggregated constraint.
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In the next section we present our heuristic for

adjacency constraints aggregation and the rules to compute

the aggregators. Then in the third section some aggregators

are derived for an example problem. Section four describes

the basis of the aggregator. Finally the last section

shows some comparisons among our aggregator, the

conventional procedure and the algorithm proposed by

Meneghin et al., (1988).

A HEURISTIC FOR CONSTRAINT AGGREGATION

Our heuristic is based on recognizing the following

characteristics of the adjacency constraints.

1) If we were able to write an adjacency constraint per

harvesting area (i.e. one constraint that describes all the

adjacency relations of the reference harvesting area and

all its adjacent areas) we would have at most the number of

adjacency constraints equal to the number of harvesting

areas.

2) When we have an adjacency constraint per harvesting

area some constraints are redundant. Consider that the i-

th area (ai) is surrounded by areas already described with

adjacency constraints, then area ai does not need to be

described by an additional adjacency constraint, since its

adjacency relationships with its adjacent areas have

already been described with the corresponding surrounding

areas.
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The first observation suggests that if we are able to

write one adjacency constraint for each one of the "N"

harvesting areas, the number of adjacency constraints is

"N". The second observation indicates that the number "N"

of aggregated constraints can be further reduced.

Based on these observations, our heuristic consists of

two steps. The first step, called procedure 1 consists of

identifying areas for which it is not necessary to write

adjacency constraints given that their surrounding areas

describe their adjacency relationships. Once we identify

these areas the second step, called procedure 2, consists

of applying a set of rules to write one adjacency

constraint for each one of the areas not identified in

procedure 1.

Procedure 1 is simple and will be illustrated through an

example. Consider the pattern of harvesting areas depicted

in figure 10. Following this pattern we can form the

adjacency matrix (i.e. the matrix that shows us the

adjacency relationships among all harvesting areas) shown

in figure 2. Recalling that each X in figure 11 represents

an adjacency relation, let us call NRi the number of X's in

row i, and NCi the number of X's in column i. Thus for

row 1, figure 11, NR1=3 and NC1=3. If for the i-th row

NR.=NCi it implies that area i can be identified i.e. its

adjacency relations can also be described by other areas.

Hence it is redundant to write an adjacency constraint for

that area. If area i can be identified in this way, then
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row i is deleted.

Figure 10. Example forest with 9 harvesting areas.

Figure 11. Adjacency matrix for pattern in figure 10.

AREA 1 2 3 4 5 6 7 8 9

1 X X X

2 X X X X

3 X X X X

4 X X X X

5 X X X X X

6 X X

7 X X X

8 X X X

9 X X
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Procedure 1 consists of performing this identification

of areas. Every time an area is identified its

corresponding row in the adjacency matrix is deleted and

the procedure continues until we check all the areas. For

instance, for the adjacency matrix depicted in figure 11,

NR1 = NC' = 3, so row 1 might be eliminated and the rows 2,

3, and 4 will still keep the adjacency relations of area 1

and these areas (namely 2, 3, and 4). If row 1 is

eliminated (i.e. area 1 has been identified), NR2=4 and

NC2=3, so row 2 can not be eliminated and since NR3=NR4=4

and NC
3
=NC 4

=3 neither row 3 nor row 4 can be eliminated.

However NR5=NC5=5. Therefore, row 5 can be eliminated.

Following the same pattern row 6 can not be eliminated but

row 7 can. Thus, rows 8 and 9 can not be eliminated.

Note that in order to obtain the relationships

NC
2
=NC

3
=NC4=3 we considered row 5, but this was before

deleting it. The basic idea of this procedure is to

identify areas that can be described by surrounding areas

that have not been identified.

At the end of procedure 1 and considering the adjacency

matrix depicted in figure 11 we identified areas 1, 5, and

7 as areas for which we do not need to write adjacency

constraints.

Procedure 2 consists of writing one adjacency constraint

for each one of the harvesting areas not identified in

procedure 1. Each one of these constraints should include
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all the adjacency relations between the harvesting area and

its surrounding areas. To write such a constraint can be

an easy task if for the i-th area, all its adjacent areas

are also adjacent to each other. For instance, consider

figure 10. An adjacency constraint for area 9 that

describes all the adjacency relationships between area 9

and its surrounding areas is

X7 + X8 +

X. e (0,

where

:

X9 < 1

1)

(1)

if area "i" is harvested.
X. =

0
otherwise.

which is called a triplet. Figure 12 shows 3 spatial

patterns for which writing one adjacency constraint per

harvesting area is simple. These patterns were defined by

Meneghin et al., (1988) as type 1 inequalities. Consider

figure 12 pattern (a).

(a) (b) (c)

Figure 12. Three different patterns where is possible to
write "type 1 constraints"
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To write an adjacency constraint for area 1 under

pattern (a) we have a pair:

X' + X2 < 1

To write a constraint for the same area 1 under pattern

(b) we have a triplet:

X' + X2 + X3 < 1

and for writing a constraint for area 1 under pattern (c)

we have a quadruplet:

X1 + X2 + X3 + X4
5-

1

It turns out that all the "type 1 inequalities"

described by Meneghin et al., (1988) represent an adjacency

constraint for a given area with all its adjacency

relationships considered if and only if all the areas in

the constraint are the total number of areas adjacent to

the area for which we are writing the constraint. However,

in most of the cases not all the areas adjacent to a given

harvesting area are adjacent to each other. Moreover, it

is very unlikely that a type 1 inequality considers all the

adjacent areas to a reference area unless it is a

quadruplet such as area 1 in pattern (c) (figure 12). For

cases where type 1 inequalities do not work, our procedure

consists of penalizing the coefficients of the areas

adjacent to the area for which we are writing the

constraint. Consider again the pattern depicted in figure

10. If we want to write an adjacency constraint for area 1,

the constraint:
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78

(2)

is not valid given that areas 2 and 4 are not adjacent to

each other, and this constraint (2), does not allow the

feasible combination of harvesting areas 2 and 4 in the

same period. However, the constraint:

5 X 1 + 3 X2 + 4 X3 + 2 X4 5- 5 (3)

keeps the desired adjacency relations and considers all the

areas adjacent to area 1. Constraint 3 was partially

constructed following the idea of penalizing each one of

the harvesting areas that violate other constraints. The

penalization procedure is simple and better understood

through an example. Hence next we will define some

notation and the rules of the procedure, then we will use

those rules in an example problem.

We define "reference area" as the area for which we are

writing the adjacency constraint. If only one additional

adjacent area to the reference area is considered in the

aggregated constraint we say we have a "first level

aggregation". If two adjacent areas are considered in the

aggregated constraint we have a second level aggregation,

and so on. So, the number of adjacent areas (NA) to the

reference area equals the level of aggregation. If in any

level of aggregation an area is adjacent only to the

reference area and it is not adjacent to any of the areas

included in the aggregated constraint such an area is

called "colorable", otherwise it is called non-colorable.
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The rules of procedure 2 for penalizing variables in the

aggregated adjacency constraint are:

1. The right hand sid6 value (RHS) for any aggregated

constraint equals the coefficient of the reference area in

the constraint.

2. Each penalty has a value of 1, i.e. the value of the

penalized coefficient increases by 1.

3. Each variable (harvesting area) that enters in the

aggregated constraint adds a penalty to the reference area

if:

a) It is the last variable to enter (i.e. the fourth

or less if the reference area has less than four adjacent

areas). Areas that are colorable are not considered in the

counting.

b) It is not the last one and, before it enters, NA >

RHS (i.e. the number of adjacent areas to the reference

area is greater than or equal to the current value of the

RHS).

4. If the entering variable has an adjacency relation with

any of the areas already considered in the aggregated

constraint (i.e. it is a non-colorable area) a penalty is

added to the entering variable for each one of its adjacent

areas (variables) already in the aggregated constraint, but

only one penalty is added to the reference area. In

addition, one penalty is added to each one of the areas

adjacent to the area just entered. For instance, according
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to this rule if the entering variable is adjacent to two

areas already in the constraint the entering variable is

penalized twice, its adjacent areas (2) are penalized once

and the reference area is penalized once.

5. If the areas adjacent to the area just entered have an

adjacency relation with any other area already in the

constraint we have a "transitivity effect". Then such area

is penalized again and a penalty is added to its adjacent

area(s). This procedure is repeated for all adjacent areas.

Each time a "transitivity effect" occurs a penalty is added

to the reference area. For instance, if the entering

variable say A has two adjacent areas already in the

constraint, say areas B and C; and in addition area C is

adjacent to area D which is also already in the constraint,

then we have the transitivity effect:

A > C > D

Then area C is penalized again and its adjacent area D and

the reference area are also penalized.

6. If the constraint already has five areas (variables)

including the reference area and there exists an area(s)

adjacent only to the reference area (colorable area), such

area(s) enters the constraint without penalty and the

reference area is penalized just once.

7. The set of harvesting areas (variables) in each

constraint has to be different in each aggregated

constraint. Otherwise the constraint is considered

redundant and is dropped. Likewise, the set of harvesting



81

areas in a given constraint can not be a subset of another

set of harvesting areas in any other constraint.

EXAMPLE

Consider that we want to write aggregated adjacency

constraints for the pattern depicted in figure 10. The

first step is to find the areas whose adjacency relations

can be expressed by surrounding areas. Hence we apply

procedure 1 to identify such areas. From last section we

know that we do not need to write adjacency constraints for

areas 1, 5, and 7. Then we apply the rules of procedure 2

to write aggregated adjacency constraints for areas 2, 3,

4, 6, 8, and 9. Assume we want to compute an aggregated

constraint for area 9 in figure 10. This area is adjacent

to areas 7 and 8, but the two adjacent areas are adjacent

to each other. Starting with the first level of

aggregation we have:

X7 + X9 5- 1 (4)

For the second level of aggregation we have to penalize

both areas and the penalty is as follows. When X8 enters

it is immediately penalized because it has an adjacent area

in constraint (4) (rule 4) namely area 7 (X7). Likewise,

following rule 4, X7 is penalized because of its adjacency

relation with area 8 and following the same rule a penalty

is added to the reference area X9. In addition, following



82

rule 3a, X9 is penalized again because X8 is the last

variable to enter the aggregated constraint. Thus X9 is

penalized twice, once because X8 enters (rule 3a) and the

second time because of the adjacency relations between

areas 7 and 8. Figure 13 shows this penalization procedure

which yields the following aggregated constraint:

2 X7 + 2 X8 + 3 X9 < 3 (5)

Observe that in this case the constraint

X7 + X8 + X9 < 1

has the same effect and has smaller coefficients than

ours. It turns out that if all the adjacent areas to a

reference area form a type 1 constraint, i.e. doubles,

triplets and quadruplets (Meneghin et al., 1988), these

constraints always have smaller coefficients than our

aggregators.

+ 1 BY RULE 4

X7

r'
1

'1
+ X9 = 2 X7 + 2 X8 + 3 X9

1
cn

ENTERS im.4

X8 +

Figure 13. Transitivity effect to compute the penalties.

Suppose that we want to write an adjacency constraint

f6r area 1 (from procedure 1 we know that we do not need to

write an adjacency constraint for this area, however we
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will use it to illustrate the penalization procedure). We

start with the first aggregation level:

X 1 + X2 I 1

By adding X3 and the same steps we followed above, the

second aggregation level yields:

3 X1 + 2 X2 + 2 X3 < 3 (6).

Note that in this case the second penalty to the

reference area X 1
followed rule 3b not rule 3a as the last

example. The third aggregation level has a transitivity

effect which will be described in two steps. First

following rule 4 we enter X4 with a penalty because of its

adjacency relation with X3 and under the same rule, X3 and

the reference area are also penalized. In addition,

following rule 3a the reference area is penalized again

because X4 is the last entering variable. So, at the end

of the first step we have:

5 X1 + 2 X2 + 3 X3 + 2 X4 i 5

For the second step we observe that area 3 is adjacent

to area 2 (the transitivity effect) and area 2 is already

in the constraint. Hence we penalize area 3 again and the

adjacent area 2, adding the corresponding penalty to the

reference area (rule 5). Thus the final aggregator for area

1 is:

6 X 1 + 3 X
2
+ 4 X

3
+ 2X4 I 6 (7)

Notice that this aggregator violates the infeasibility

combination of harvesting areas 3 and 4 in the same period.
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However this deficiency is corrected by other constraints.

To prove it let us compute the aggregator for area 4.

Following the procedure for area 1, the second level of

aggregation for the aggregator of area 4 yields:

2 X 1
+ 2 X

3
+ 3 X4 3 (8)

For the third aggregation level we have the transitive

effect which is described in two steps. In the first step

X 5
enters in constraint (8). It is penalized immediately

because it has an adjacent area (X3). Hence X3 and the

reference area are penalized (rule 4) yielding:

2 X1 + 3 X3 + 4 X4 + 2 X5 < 4 (9)

Note that at this step, X4 (reference area) is penalized

just once (rule 4) since X5 is not the last area adjacent

to enter in the constraint. In addition, before X5 enters

RHS > NA. Hence no one of the requirements of rule 3 is

met to penalize the reference area again. In the second

step we observe that there is an adjacency relation between

X1 and X3 (the transitive effect). Hence X3 has to be

penalized again and as a consequence the reference area and

X1 have to be penalized too, yielding the final aggregator

for the third level of aggregation:

3 X1 + 4 X3 + 5 X4 + 2 X5 < 5 (10)

Finally we enter area 7 (X7) in constraint (10). It is

the last entering variable (area), so the reference area is

penalized once, and because X7 has no adjacency relation

with other areas in constraint (10) but the reference area
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(i.e. it is a colorable area) it enters without penalty,

yielding the final aggregator:

3 X1 + 4 X3 + 6 X4 + 2 X5 + X7 < 6 (11)

Note that this aggregated constraint violates the

requirement that X3 and X 5
can not be harvested in the same

period. However it avoids the violation incurred in the

aggregated constraint (7) where X
3

and X4
were allowed to

be harvested in the same period.

The aggregator for area 8 can be obtained as follows.

Applying the same steps as in the last aggregator, the

second aggregation level yields:

2 X 7
+ 3 X 8 + 2 X 9 5- 3

For the third aggregation level we enter X5 without a

penalty (it is colorable) and given that it is the last

entering variable, the reference area is also penalized

(rule 3a) yielding the final aggregator for area 8:

X5 + 2 X7 + 4 X8 + 2 X9 < 4 (12)

Finally we will describe how to compute the aggregator

for area 3. For this area the second level of aggregation

yields:

2 X 1
+ 2 X2 + 3 X3 < 3 (13)

For the third aggregation level we enter X4. Variable

X4 enters in constraint (13) with a penalty because of its

adjacency relation with X1. Hence following rule 4, X1 and

the reference area are penalized. However, X1 is adjacent

to X
2

(which is already in constraint 13). Hence by the

transitivity effect Xi has to be penalized again and by
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rule 5, X
2

and the reference area are also penalized

yielding:

4 Xi + 3 X2 + 5 X3 + 2 X4 < 5 (14)

The fourth level of aggregation has a transitivity

effect which will be described in two steps. In the first

step X5 enters with a double penalty because of its

adjacency relations with areas 2 and 4 which are already in

constraint (14). At this step the reference area is

penalized twice, one penalty because X5 enters and it is

the last entering variable (rule 3a) and the second penalty

because X5 has adjacent areas in constraint (14) (rule 4).

Likewise, following rule 4, the areas adjacent to X5 namely

2 and 4 are also penalized. Thus at this step the

aggregated constraint is:

4 Xi + 4 X2 + 7 X3 + 3 X4 + 3 X5 < 7 (15)

In the second step we consider the transitivity effect.

Since X4 was penalized and it is adjacent to X1 there is a

transitivity effect. Thus following rule 5, X1, X4 and the

reference area are penalized. Likewise, since X2 was

penalized and it is adjacent to Xi there is another

transitivity effect and by rule 5, X2, X1, and the

reference area are penalized again, yielding the final

aggregator:

6 X 1 + 5 X2 + 9 X3 + 4 X4 + 3 X5 < 9 (16)

As the reader can verify, the violation incurred in
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constraint (11) permits the harvest of areas 3 and 5 in the

same period has been corrected by constraint (16).

Although constraint (16) permits the harvest of areas 2 and

5, the reader can verify that the constraint for area 2

corrects this infeasible combination. Table 3 shows the

aggregated constraints for each one of the areas in figure

10. The constraints marked with an asterisk correspond to

required constraints and the ones without an asterisk

correspond to the redundant constraints identified in

procedure 1.

Table 3. Aggregated constraints for each area in figure 10
considering 4 non-colorable areas per constraint.

reference area aggregated constraint

1 6 X 1 + 3 X
2

+ 4 X
3

+ 2 X4 < 6

* 2 4 Xi + 9 X2 + 6 X3 + 4 X5 + 2 X6 < 9

* 3 6 X1 + 5 X2 + 9 X3 + 4 X4 + 3 X5 < 9

* 4 3 X1 + 4 X3 + 6 X4 + 2 X5 + X7 I 6

5 5 X
2

+ 6 X
3

+ 3 X 4
+ 10 X 5 + 2 X 6 + X 85- 10

* 6 2 X2 + 2 X5 + 3 X6 < 3

7 X4 + 4 X7 + 2 X8 + 2 X9
5-

4

* 8 X5 + 2 X7 + 4 X8 + 2 X9
5-

4

* 9 2 X7+2 X8+3 X9 53

* Constraints needed to explain all the adjacency

relations.



88

Thus for describing the adjacency relations of the

pattern depicted in figure 10 we just need the six

constraints marked with an asterisk in table 3, instead of

the 15 constraints required with the conventional

procedure. Something important to notice in procedure 2

is that the order in which the adjacent areas are picked to

enter the constraint, or which adjacent areas are picked

(if there are more than 4 adjacent areas to the reference

area) does not affect the final adjacency relations

obtained with the procedure. However, for some situations,

constructed patterns following our rules could lead to a

set of constraints that violate some of the adjacency

relations. To avoid this possibility we include as another

requirement for the computation of aggregated constraints,

maintenance of the order in the selection of the variables

each time they enter the aggregated constraint; i.e. if six

possible variables can enter the constraint, first enter

area 1, then area 2, and so on.
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BASIS OF THE HEURISTIC TO WRITE AGGREGATED ADJACENCY

CONSTRAINTS

Procedure 1 is a systematic mechanism that identifies

harvesting areas whose adjacency relationships can be

defined by their surrounding areas. Following the pattern

in figure 10 the reader can verify that areas 1, 5, and 7

are completely surrounded by areas for which we have to

write adjacency constraints. For instance, if the

aggregated constraints for areas 2, 3, and 4 consider area

1, then the constraint for area 1 is not necessary since

its adjacency relations with its surrounding areas is

implicit in the constraints for areas 2, 3, and 4. In

other words, the number of areas adjacent to area 1 equals

the number of areas adjacent to area 1 left (non-

identified) to describe the adjacency relationships of that

area.

Procedure 1 can be interpreted in the following way.

For any adjacency matrix let the number of X's in row i

(NRi) represent the areas adjacent to the reference area i

and let the number of X's in column i (NCi) represent the

number of areas adjacent to area i left to describe the

adjacency relations between area i and its surrounding

areas. Then we can avoid writing the constraint for area i

if NRi = NCi i.e, the number of areas adjacent to area i

equals the number of areas left to describe the adjacency

relations of area i. As can be observed, procedure 1 is
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just a mechanized way to identify areas surrounded by areas

non-identified.

In section 2 we described the rules of procedure 2 to

compute aggregated adjacency constraints when the reference

area has up to 4 adjacent areas (recall that colorable

areas are not considered in the counting). However, it is

very likely that the reference area has more than 4 (non-

colorable) adjacent areas. We can apply the same rules

when the reference area has more than 4 (non-colorable)

adjacent areas. The problem with this approach is that the

procedure becomes more complex if those additional areas

are adjacent to areas already considered in the aggregated

constraint. In this case the coefficients start to increase

rapidly, basically because of the transitivity effect of

the areas already in the constraint.

If we consider that all the areas adjacent to a given

reference area might not be adjacent to each other, then

some areas in the aggregated constraint do not appear in

the aggregated constraint of other areas. For instance,

following the pattern in figure 10, the aggregated

constraint for area 1 includes area 4 (inequality 7).

However, any adjacency constraint for area 2 (which is

included in inequality 7) does not include area 4, i.e. we

can harvest areas 2 and 4 in the same period or, seen as a

chromatic scheduling problem we say that we can color areas

2 and 4 with the same color in the "map" represented by

figure 10. Thus the problem of deciding how many areas we
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should include in the aggregated adjacency constraint is

related to a chromatic scheduling problem. Chromatic

scheduling is the area of graph theory related to the

scheduling of discrete events which span the same period of

time, where some events can occur simultaneously but others

can not (Wood, 1969). Gross and Dykstra (1988) used the

principles of chromatic scheduling to investigate the

minimum number of evenly spaced harvest entries needed to

bring a forest into area regulation. We will use these

principles to determine the minimum number of areas (non-

colorable) adjacent to a reference area that we should

include in writing an adjacency constraint for a reference

area.

In graph theory the map coloring problem consists of

finding the minimum number of colors sufficient for

coloring a planar map such that two contiguous areas do not

have the same color. This number of colors is called the

"chromatic number". The chromatic number can be minimum

two for special map patterns or one if the map consists

only of one area. The chromatic number is related to our

problem since if we know the chromatic number of the map

that represents the areas of our harvest scheduling

problem, such a number, reduced by one, should be the

minimum number of adjacent areas (non-colorables) that we

should include (whenever it is possible) in each one of the

adjacency constraints. It is important to note that this
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minimum number of adjacent areas considers only the non-

colorable areas, i.e. those areas adjacent not only to the

reference area but also adjacent to at least one more area

already included in the constraint. Colorable areas are

always included in writing the aggregated adjacency

constraint for a given reference area.

To clarify the statement that the chromatic number of

the pattern reduced by one determines the minimum number of

non-colorable areas we should include in the aggregated

constraint, we will use two examples. First, consider a

pattern of harvesting areas similar to a checkerboard

(figure 14). This pattern has a chromatic number of twos,

1 2 3

4 5 6

7 8 9

Figure 14. Checkerboard pattern of an example forest.

which means that only two colors are sufficient to color

each area and no two adjacent areas are the same color.

1/ Only the infinite checkerboard has a chromatic number

of 2 since technically the area around the checkerboard has

to have another color.
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Applied to our problem, we should be able to write

adjacency constraints for each area such that in every

aggregated constraint all the areas adjacent to the

reference area are not adjacent to each other, i.e. all of

them are colorable areas. Translating this idea into

colors means that each one of the areas adjacent to the

reference area in each constraint can have the same color.

Following the rules of procedure 2, we can construct the

aggregated adjacency constraints for each one of the areas

in this example. These aggregated adjacency constraints

are shown in table 4. In all cases we did not stop

adding areas to the aggregated constraint once 2 areas were

already in the aggregated constraint (recall that the

chromatic number of this example is two) since the

additional areas are adjacent only to the reference area

(colorable) and not to the other areas already in the

aggregated constraint (recall rule 6). In the hypothetical

case that one candidate area to enter the aggregated

constraint was adjacent to the reference area and any area

already in the constraint (considering a map with chromatic

number of 2) we could ignore that candidate area because if

we include it we would have two non-colorable areas in the

constraint (i.e. two areas not only adjacent to the

reference area but also adjacent to each other) and two

non-colorable areas are more than the minimum required for

a pattern with chromatic number of two.
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A second example might help to clarify this idea. For

our example problem in figure 10 the reader can easily

verify that the chromatic number of the pattern is 3 (i.e.

only three colors are needed to color the map and no two

adjacent areas will have the same color). Thus, given the

chromatic number of 3 we should be able to construct

adjacency constraints for this example such that once an

entering area is adjacent not only to the reference area

Table 4. Aggregated constraints for each area in figure 14
considering 1 noncolorable area per constraint.

reference area aggregated constraint

1

2

3

4

5

6

7

8

9

2

Xi

X2

Xi

X2

X3

X4

X5

X6

Xi +

+ 3

+ 2

+ 3

+ X4

+ X5

+ 2

+ X7

+ X8

X2 +

X2 + X3

X3 + X6

X4 + X5

+ 4 X5

+ 3 X6

X7 + X8

+ 3 X8

+ 2 X9

X4 <

+ X5

< 2

+ X7

+ X6

+ X9

< 2

+ X9

< 2

2

<

<

+

<

<

3

3

X8

3

3

< 4

but also adjacent to any other area already in the

constraint (i.e. a non-colorable area) we stop entering

non-colorable areas and we just enter areas adjacent
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exclusively to the reference area (colorables). When we

enter the first non-colorable area in the constraint we

automatically have two non-colorable areas in the

aggregated constraint and for the pattern with chromatic

number of three this is the minimum required.

Following the rules of procedure 2 we computed the

adjacency constraints for each area in figure 10 stopping

the addition of non-colorable areas once the first non-

colorable area is added to the constraint. Table 5 shows

these constraints. Observe that there are no constraints

for areas 6 and 9 since its adjacency relations are

described by other constraints and the inclusion of these

constraints would imply a redundancy and a violation of

rule 7 (be redundant).

Table 5. Aggregated constraints for each area in figure 10
considering 2 non-colorable areas per constraint.

reference area aggregated constraint

1 3 X
1

+ 2 X
2

+ 2 X
3 5-

3

2 3 X
2

+ 2 X
3
+ 2 X 5 3

3 2 X
1

+ 3 X3 + 2 X4 I 3

4 2 X3 + 3 X4 + 2 X5 I 3

5 2 X2 + 3 X 5 + 2 X6 3

7 X4 + 4 X7 + 2 X8 + 2 X9 < 4

8 X5 + 2 X7 + 4 X8 + 2 X9 < 4
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Likewise, observe that for area 2 we could write a

constraint similar to area 1. However, this constraint

would violate rule 7. Also observe that for area 1 we did

not include the adjacent area 4; for area 2, we did not

include the adjacent areas 1 and 6; for area 3, we did not

include the adjacent areas 2 and 5 and in this way many

other adjacent areas were not included in other

constraints. The reason to avoid these areas in the

pattern with chromatic number of three is because we just

need two non-colorable areas in each aggregated constraint,

regardless if the reference area has more than two non-

colorable adjacent areas. In the constraint for area 7 we

included a fourth area, namely area 4, given that this area

is adjacent only to the reference area 7 but is not to

areas 8 and 9 (rule 6). In other words, area 4 can have the

same color as areas 8 or 9. The same idea is used to

include area 5 in the constraint for area 8.

Gross and Dykstra (1988), showed the exaggerated

computing time required to find chromatic numbers under

different constraints. In general the chromatic number is

difficult to find for fiany patterns, and it would not be

practical to compute it every time we want to write

aggregated constraints for a specific problem. Hence we

will rely on the principles of graph theory to generalize

our heuristic without having to compute the chromatic

number of each pattern. The principles of graph theory
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assert the simplicity of proving the sufficiency of five

colors for coloring any map (Saaty and Kainen, 1977).

However there is no analytical proofV of the so called

"Four color conjecture". This conjecture states that "

four colors are sufficient to color any map drawn in a

plane or a sphere so that no two regions with a common

boundary line are colored with the same color" (Ringel,

1959). Based on the "Four color conjecture" we can state

that at least 3 areas adjacent (recall that only non-

colorable areas are considered in the counting) to the

reference area would be necessary to identify the adjacency

relations (aggregated constraints) of each reference area.

The four color conjecture provides an upper bound for

the minimum number of colors sufficient to color a map, and

when the pattern is complicated it is likely that such an

upper bound actually corresponds to the chromatic number.

Observe what could happen if we use the chromatic number to

define the minimum number of non-colorable areas in an

aggregated constraint. In the case of a chromatic number

of two (figure 14) if we do not include any of the

constraints (see table 4) all the adjacency relations are

kept. Thus, using procedure 1 we can eliminate constraints

21 Appel and Haken (1976) used simulation to test 1936

special cases to prove the four color conjecture. However,

this proof has not been completely accepted.
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1, 3, 5, 7 and, 9 and the adjacency relations are kept.

However, consider table 5. In this case the aggregated

adjacency constraints were computed considering just two

non-colorable areas in each constraint, i.e. the number of

colors (coloring number) corresponded to the chromatic

number. If we do not include constraint 1 we violate the

restriction that areas 1 and 2 are adjacent to each other.

Hence we can not eliminate arbitrarily any constraint in

this case. Consider again the pattern in figure 10. If

instead of using the chromatic number 3 we assume the

pattern is five-colorable i.e. we will stop entering

variables in the constraint once there are four non-

colorable areas in the constraint, then we end up with the

constraints shown in table 5. Note that the rules of

procedure 2 assume the pattern is five colorable. In this

case, as the reader can verify in table 3, we can

eliminate arbitrarily any constraint and the adjacency

relations are kept.

By increasing the number of non-colorable areas in the

aggregated constraint beyond the chromatic number we have a

better "identification" of the adjacency relations that

makes it feasible to apply procedure 1 and eliminate some

constraints without incurring any violations of adjacency

relationships. Therefore, assuming the validity of the

four color conjecture we would have a better identification

of the adjacency relations for each reference area if we
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assume the patterns are five-colorable. In this way when

we apply procedure 1 in complicated patterns that require 4

colors, we reduce the possibility of deleting constraints

needed to represent the required adjacency restrictions.

Notice that if we do not apply procedure 1 three non-

colorable areas per constraint are sufficient in each

aggregated constraint (when the reference area has more

than 3 non-colorable areas). However, if we apply

procedure 1 there is a possibility of violating some

adjacency relationships. Hence we recommend to use four

non-colorable areas when possible to write the aggregated

adjacency constraints.

In order to identify any difference in the number of

aggregated constraints computed using different numbers of

non-colorable areas considered in each aggregated adjacency

constraint, we simulated 10 forests varying from 15 to 60

units. The examples were completely different and we tried

to simulate arrangements of up to twelve adjacent areas to

only one area. We used 4, 5, and 6 as coloring numbers,

i.e. 3, 4, and 5 as number of non-colorable areas included

in each aggregated constraint. In all the examples

procedure 1 was performed to eliminate redundant

constraints. Hence the initial number of constraints was

the same for each example regardless the coloring number.

In all cases the derived adjacency constraints were able to

identify the optimal solution without violating any

adjacency relation. So it was not necessary to increase



100

the number of constraints (i.e. avoid eliminating some

constraints eliminated in procedure 1) when small coloring

numbers were used.

From these results and acting conservatively we

recommend using a coloring number of 5 to compute the

aggregated constraints (the rules described for procedure 2

correspond to a coloring number of 5) since our objective

is to reduce the number of constraints to a number less

than the number of harvesting areas. By using a coloring

number of four there is a possibility of violating

adjacency relations for complicated patterns, while by

using larger coloring numbers we reduce that possibility,

although we increase the number of variables per constraint

and the size of the coefficients.

Another questionable statement about the rules of

procedure 2 is the existence of a rationale for the penalty

system. To give an idea of this rationale assume a system

of equations of the form:

m
E Xij = 1 (i=1, 2, . , n) m, n > 2

j=1
Xij E (0, 1)

The common aggregator for this system of equations is given

by:

n m
E E ai Xij = E ai
i=1 j=1 i=1

(17)

where the a 1, , a n is a superincreasing sequence of

"positive integers" that satisfy:
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ai > (m-1)(al + + ai_1) for i > 2

However this aggregator yields values for ai that increase

rapidly (Fishburn and Kochenberg, 1985). Our aggregator is

based on the idea that we can form aggregators less

restrictive than aggregator (17), since the adjacency

constraints are inequalities.

Consider the pattern depicted in figure 10. All the

conventional adjacency constraints that include area 1 are:

X 1 + X2 < 1 (18)

X 1 + X
3

< 1 (19)

X 1
+ X4 < 1 (20)

Assuming ai = 1 and applying the aggregator in (17), a

possible aggregator for constraints (18) and (20) is given

by:

2 X1 + X2 + X
4

< 2 (21)

which works because areas 2 and 4 are not adjacent to each

other. Now consider if we attempt to aggregate constraints

(19) and (20). Since area 3 is adjacent to areas 2 and 4,

we need to consider the set of constraints:

X
2

+ X
3

< 1

X
3
+ X

4
< 1

Then, our penalty procedure tries to consider the set of

constraints (22), keeping the increasing sequence of

coefficients whenever areas adjacent to areas already

considered in the aggregated constraint are added. Hence

the penalties keep the increasing sequence of coefficients

for the non-colorable areas.

(22)
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COMPARISONS

In order to compare the performance of our algorithm we

formulated adjacency constraints for 5 examples by using

two other algorithms. The first algorithm was the

conventional formulation which consists of writing pair-

wise adjacent relationships in each constraint such that

only two areas are involved in every adjacency constraint.

For instance, following this formulation and the pattern

depicted in figure 14 the constraints that involve area 1

are:

X 1 + X
2

1

X 1 + X4 < 1

Thus for the pattern in figure 14 and following the

conventional formulation we need 12 constraints to express

all the adjacency relationships.

The second algorithm was the one described by Meneghin

et al., (1988). This algorithm consists of 3 basic steps.

1) Identify all type 1 constraints. This step is basically

to identify all the doubles, triplets or quadruplets. 2)

Identify all type 2 constraints. This step consists of

applying some rules to identify groups of pairs (triplets

or quadruplets) of type 1 constraints for each type 1

constraint identified in the first step. 3) According to

another set of rules select the best set of type 2

constraints and following an additional set of rules write
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the adjacency constraints for the selected combinations of

type 2 constraints. The procedure is sort of tedious since

the process of identifying type 1 constraints and all

possible combinations of these constraints to form a type 2

constraint requires some combinatorial work. For the

pattern depicted in figure 14 and following this procedure

to formulate adjacency constraints we need just 4

constraints to describe all the adjacency relations. Those

constraints correspond to inequalities 2, 4, 6, and 8 in

table 4.

In our example forests, each forest varied in complexity

not only in the number of stands but also in the adjacency

relations. For each example forest we formulated adjacency

constraints using the two algorithms above described and

our heuristic. Then, the number of constraints used in

each case was counted. Table 6 shows these results.

Table 6. Number of adjacency constraints required for 3

different algorithms in some example problems.

No. of
units

Conventional
formulation

Meneghin's
formulation

Heuristic

15 32
1

10 9

20 37 . 13 12

30 71 22 22

35 73 23 25

40 90 26 31
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As can be observed our procedure requires about a third

of the number of constraints required by the traditional

procedure and about the same number of constraints as

required by Meneghin's algorithm. A close look at table 4

could lead to the misinterpretation that Meneghin's

algorithm performs better as we increase the number of

units in the forest. However, this is not true, such

differences depend basically on the structure of the

forest. For structures similar or close to a checkerboard

(small chromatic number) where the number of adjacency

relations per area is small our algorithm performs better.

It requires fewer constraints and smaller coefficients for

the aggregated constraints. However, when the number of

adjacency relations increases and especially in those cases

where it is possible to form a large number of quadruplets

(not very common in real forest structures) Meneghin's

algorithm is better since it yields fewer constraints than

ours and smaller coefficients in each constraint. In these

cases the difference in the number of constraints was about

20% of the number of constraints required by our algorithm.

Observe that in such situations Meneghin's algorithm uses

its property of grouping many adjacency relations for

several units in one single constraint. However, in

patterns where there are few quadruplets this property is

not exploited. In most of the cases we obtained a lesser

number of variables per constraint than Meneghin's

constraints, although the coefficients obtained with our
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heuristic were often larger compared with Meneghin's

algorithm. We did not write any computer code to compute

the adjacency constraints from the adjacency matrix for any

of the algorithms. However, it is evident that the time

required to formulate adjacency constraints by our

procedure is not shorter than the conventional procedure

but it is if compared to Meneghin's, given that our

procedure does not involve any combinatorial selection.

Another important feature to note in our algorithm is

the ease with which it is mechanically generated from the

adjacency matrix. This characteristic is highly evident

for procedure 1 but not so much for procedure 2. However

if we consider that there exists a small number of

combinations of values of coefficients for the 4 non-

colorable areas in each constraint (when the reference area

has at least four non-colorable areas). Then we can store

those combinations and select one any time we enter a

variable in the aggregated constraint. Hence procedure 2

can also be mechanically generated.

Reduction of adjacency constraints in area-based forest

planning is important not only to fit large formulations

into standard LP or IP solution packages but also to fit

large problems to some heuristics developed to provide

"good" feasible solutions to the area based harvest

scheduling problem. For instance our procedure can be
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applied to the heuristic developed by Nelson et al., (1988)

or the one developed by Sessions (1988) to reduce the size

of the adjacency matrix that is stored, since this matrix

can be reduced if we use aggregated constraints. Another

important application of aggregated constraints is when we

attempt to obtain approximate optimal solutions to the area

based problem through relaxation, namely surrogate

relaxation and Lagrangean relaxation. In these cases the

smaller the number of constraints the faster the

computation of the multipliers.

In summary we have shown a way to reduce adjacency

constraints in area-based formulations of harvest

scheduling problems. It can be applied to heuristics or

optimal solution algorithms to reduce storage limitations

or to reduce solution time for highly structured IP

problems (Kannan, 1983), which are the main problems in

area-based formulations of the harvest scheduling problem.
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ABSTRACT

A composite relaxation approach is used to solve area-

based harvest scheduling problems with flow, wildlife

habitat and adjacency constraints (the habitat dispersion

problem). The solution strategy consists of dualizing the

harvest flow and wildlife constraints into the objective

function and forming a surrogate constraint with the

adjacency restrictions. The original problem is vastly

reduced and the resulting relaxed problem is easy to solve.

The approach was tested with several example problems. It

quickly yielded "very good" integer solutions for harvest

scheduling problems with any combination of flow, wildlife

habitat or adjacency constraints. Results showed that in

the long run wildlife habitat and adjacency constraints

individually combined with flow constraints have little
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effect in reducing the harvest levels lower than the long

term sustained yield. However all three constraint sets in

the same problem can reduce harvest levels from 25-35

percent below the long term sustained yield.
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INTRODUCTION

Wildlife habitat integration with timber management has

become one of the main concerns in modern multiple use

management. This concern has grown in importance not only

because of the ecological role of wildlife within the

forest but also to more accurately evaluate the potential

economic benefits and costs generated from multiple use

management. Traditionally wildlife habitat requirements

within a geographic area have been modeled by assigning

predeterminated percentages of cover to certain age classes

(Thompson et al., 1973; Mealey et al., 1982). Thus forage

requirements for big game animals are modeled by assigning

a percentage of the area covered by recently regenerated

areas. Additional requirements for hiding can be modeled

by assigning a minimum coverage of middle-aged timber and

thermal requirements by ensuring a coverage of mature

timber or old growth. Through this strategy conventional

strata-based harvest schedules provide adequate quantities

of any required age class or forest vegetation. However,

the distribution of harvest units in most cases does not

satisfy the wildlife spatial needs of cover and edges

(Mealey et al., 1982). In order to provide these needs the

harvest units have to follow special harvest patterns which

guarantee that the diversity of ages and species is

adequately scattered for wildlife use. The harvest

scheduling problem that considers spatial concerns for
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wildlife habitat managment is known as the "habitat

dispersion problem" (Mealey et al., 1982; Weintraub et al.,

1988).

Two approaches for considering spatial concerns in

wildlife habitat management have been proposed. The oldest

one permits the incorporation of spatially feasible harvest

alternatives in linear programming formulations, since it

recognizes spatial objectives for groups of harvest units

(Mealey et al., 1982). In this approach, the spatial

characteristics of each harvest choice are embedded in each

decision variable. Hence net returns for each harvest

choice are difficult to measure and solutions are limited

because of the high risk of underspecification of

formulations given the large number of variables included.

The second approach has been through the inclusion of

adjacency constraints (Weintraub et al., 1988). These

constraints impose a minimum age difference between

adjacent regenerated harvest units. The age difference has

been called the "exclusion period" and is often set to the

length of the planning period, although it can be variable

(Gross and Dykstra, 1988). Through this approach foraging

characteristics and cover and thermal requirements of

species can be modeled by defining target age class

distributions. Additional requirements can be included by

specifying size and shape of each harvest unit, driving

their spatial distribution by adjacency constraints.
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Spatial concerns modeled through adjacency restrictions

have been used not only for management of wildlife

resources but also to manage recreation areas, lakes,

riparian zones for the protection of fisheries, and to

regulate sediment production (Bare et al., 1984). Several

techniques to solve harvest scheduling problems with

adjacency restrictions have been proposed. Optimal

solutions to this problem can be obtained by integer or

mixed integer programming (Kirby et al., 1986). However,

given the large number of harvest units to be considered in

a forest plan and the exaggerated number of adjacency

constraints required to model spatial requirements, optimal

solutions have been obtained for very small problems only

(Bare et al., 1984; Nelson, 1988). Most of the proposed

approaches search for approximate solutions. Within this

category three strategies can be distinguished. The first

strategy considers the adjacency constraints implicitly.

The strategy consists of a sequential approach where for

each planning period adjacency feasible solutions that meet

harvest flow requirements are generated and the solution

that yields the highest objective function value is chosen

as the best solution. Non-adjacency feasible solutions are

created by random mechanisms (Sessions and Sessions, 1988;

Nelson et al., 1989; O'Hara et al., 1989) heuristics

(Hokans, 1983) or dynamic programming (Bare et al., 1984).

This approach provides "good" adjacency feasible solutions

although its ability to solve problems with additional
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constraints besides the flow and adjacency requirements is

limited.

The second strategy considers explicitly the adjacency

constraints. The constraints are included in a Model I

formulation of the harvest scheduling problem. Solutions to

this approach have been proposed through heuristics

attached to linear programming solutions (Weintraub et al.,

1982) or the use of duality accompanied by some heuristics

(Weintraub et al., 1988). This approach permits the

inclusion of additional constraints besides flow and

adjacency. Hence it is more suitable for the habitat

dispersion problem.

The third strategy defines the adjacency requirements as

the exact age differences between adjacent harvest units

(Roise, 1989). Thus, the exclusion period between adjacent

harvest units is strictly determined. Although additional

constraints can be included with this strategy the approach

is limited since it requires a nonlinear formulation of the

problem. Hence its use is restricted even for small size

problems.

We present a solution approach to the habitat dispersion

problem that can be generalized to include several

additional constraints. Our approach considers wildlife

habitat requirements as percentages of area covered by

specific age classes and the spatial requirements are

modeled through adjacency constraints. The solution
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procedure is based on composite relaxation where the

harvest flow and wildlife constraints are dualized in the

objective function and a surrogate constraint is computed

with the adjacency requirements. In this way the size of

the problem is reduced considerably and "good" solutions

are obtained within a short time. The presentation is

organized as follows. The next section describes briefly

composite relaxation and some theoretical principles used

in the solution approach. The mathematical model for the

habitat dispersion problem is introduced in the third

section and the solution technique is described in the

fourth section. The fifth section describes some

computational considerations of the model. Finally the

last section presents comparative results of the approach

and discusses some effects of considering wildlife habitat

constraints in the setting of long term harvest levels.

THEORETICAL BACKGROUND

Consider the following integer problem:

Z IP = max cx (IP)

s. t.

A x < b

x e (0, 1)

where x is the vector of decision variables, A is the

matrix of technical coefficients and b and c are vectors of
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suitable size. Such a problem can have several types of

relaxation. A common relaxation is the linear programming

(LP) relaxation, which consists of "relaxing" the integer

restrictions of the problem. Another common relaxation is

the Lagrangean relaxation, which is obtained by dualizing a

set of constraints considered active. By letting A be the

set of multipliers associated with the constraints in the

above problem IP, we can transform it to the Lagrangean

relaxation problem below:

ZLR(A) max cx + A' (b - Ax) (LR)

s. t.
x e (0, 1)

A > 0

Another type of relaxation is known as "surrogate

relaxation". This relaxation consists of finding a set of

multipliers "r" associated with a constraint set, such that

the product of the multiplier set times the constraint set

yields a "surrogate constraint". An example of surrogate

relaxation for problem IP is:

ZSR(7r) max cx (SR)

s. t.

r'A x < rib

x E (0, 1)

7 > 0

Finally, combining Lagrangean and surrogate relaxation

we obtain the "composite relaxation". An example of this

type of relaxation for problem IP is:
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ZCR(11,7) max cx + - Ax) (CR)

s. t.

v'A x < v'b

x E (0, 1)

> 0

The solution approach through relaxation consists of

finding sets of multipliers 7 and g that minimize the

"relaxed function". Thus for the Lagrangean relaxation we

search for a set of multipliers g* that minimizes the

Lagrangean function:

ZLR(A*) = min ( ZLR(A) )

for the surrogate relaxation we search for a set of

multipliers 7* that minimize the surrogate function:

ZSR(7*) min ( ZSR(7r)
)

and for the composite relaxation we search for a set of

multipliers that minimizes the composite Lagrangean-

surrogate function:

ZLR(A
*

, 7
*

)
= min ( ZcR(A, 7) )

The solution yielded by the "best" set of multipliers in

any relaxation approach will provide an upper bound of the

optimal solution of the original problem and in absence of

a duality gap (duality gap is the difference between the

optimal primal integer solution and the associated dual

solution) the solution indeed corresponds to the optimal

solution. The relationships between the bounds provided

by different relaxations are well known for general integer
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programming problems. They can be summarized as follows

(Gavish and Pirkul, 1985):

ZLP > ZLR(A*) ZSR(lr *) ZCR(A*, 7*) ZIP

where ZLP denotes the LP relaxation of problem IP. This

relationship indicates that increasingly better solutions

are obtained by using Lagrangean, surrogate and compositel/

relaxation.

The critical issue in the efficiency of Lagrangean,

surrogate or composite relaxation to solve integer problems

is the derivation of a good set of multipliers.

Subgradient optimization methods and various multiplier

adjustment procedures have been proved to be effective for

obtaining good multipliers for Lagrangean relaxation.

Torres et

subgradient

function of

al.,(1989) showed

method to find the

a simple area-based

some adaptations to the

minimum of the Lagrangean

harvest scheduling problem.

Surrogate relaxation was suggested by Greenberg and

Pierskalla (1970), and Glover (1975) as a means to close

the duality gap in a Lagrangean relaxation approach.

However, the difficulty in computing the multipliers

limited its use. Many procedures have been proposed to

search surrogate functions (Glover, 1975; Karwan and

1/ There exists a decomposition approach for relaxed

problems which theoretically yields the best bounds

(Guignard and Kim, 1987).



120

Rardin, 1981; Dyer, 1980; Gavish and Pirkul, 1985a; Sarin

et al., 1987). Most of these procedures are based on the

form of the surrogate function which is convex on the

multipliers (for maximization problems). The most

important applications of surrogate relaxation include

heuristics for the solution of multiconstrained knapsack

problems and some network applications.

Theoretically composite relaxation yields solutions

closer to the true integer optimum than the other

relaxations. However, although it has a great potential as

solution technique in integer programming it has not been

widely used for two main reasons: a) the difficulty of

computing surrogate constraints and, b) because the

relaxation approach has been mostly used as a basis for

refinement algorithms such as branch and bound and not as a

technique to obtain optimal solutions.

In the case of the habitat dispersion problem an

approximate and good solution may be acceptable since flow

requirements are hard to meet in any integer formulation

and in very few situations the initial age class

distribution of a forest yields feasible solutions for

target wildlife requirements. Since composite relaxation

yields solutions with minimum deviations from the flow and

wildlife requirements and closer to the true optimum, it

might be considered a potential tool for the solution of

area-based harvest scheduling problems.
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THE HARVEST SCHEDULING PROBLEM WITH HABITAT DISPERSION

REQUIREMENTS

One of the first attempts to model wildlife requirements

was made by Thompson et al., (1973). They formulated the

harvest scheduling problem such that the allowable cut for

certain age classes was restricted to maintain a desired

age distribution. Mealey et al., (1982) presented a more

complete example of how wildlife requirements can be

modeled in an LP formulation by assigning lower bounds to

the area covered by specified age classes.

al., (1988) presented the same formulation

requirements but they included the dispersion

problem in the form of adjacency constraints.

Many authors have calculated wildlife habitat

requirements as percentages of a geographic area cover by

specific age classes. These requirements are available for

several species considering their food, cover, water,

reproduction and space needs (Thomas, 1979; Mealey and

Horn, 1981). Such percentages are flexible and depend on

the site capabilities and the target species which are

being managed. Hence modeling these requirements just by

specifying lower bounds on the area covered by a given age

class would provide a biased model since the excess of

certain age classes might enrich the habitat of some

species but could harm the habitat of others. For this

reason we formulated the problem with upper and lower

Weintraub et

for habitat

part of the
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bounds on the permissible area covered by age classes that

define a wildlife habitat. Those bounds correspond to the

proportions of the geographic area studied, which can be a

whole forest, a basin or a subbasin. Additionally by

including upper and lower bounds the number of dual

variables increases. Hence the convergence of the solution

algorithm is faster. The dispersion part of the problem is

formulated through adjacency constraints. Since these

constraints are handled explicitly in the solution

procedure, the length of the exclusion period can be

variable. Likewise, given that the problem is formulated

as an integer programming problem the area of each harvest

unit might be specified within the limits of the wildlife

habitat requirements and even special forms of harvest

units or special harvest conditions (for indicator species

like the spotted owl) might be included in the model. The

integer programming formulation of the wildlife habitat

dispersion problem can be stated as:

m ni
Z = max E E c..

3
x3...

x..
a.D

i=1 j=1
s. t.

(P)

m n.
1

(1) E E [Viit Vij(t+1)] xij 0 V t = 1, 2, .., T
i=1 j=1 J

n.
1

(2) E x..13 = 1 V i = 1, 2, .., m
j=1

(3)

m n.

E E wiikt xij < uk V k = 1, 2, 3

i=1 j=1
V t = 1, 2, .., T



(4)

(5)

(6)

where:

X . .13 =
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m n.
1

E E kt 13w13.. x.. > 1k V k = 1, 2, 3

i=1 j=1
t = 1, 2, .., T

E E x..13 < 1 V r= 1, 2, .., m
lel) jErr

s = 1, 2, .., ni

x..13 e (0, 1) V i = 1, 2, .., m

1 if the treatment Ili it

j = 1, 2, .., ni

in harvest unit is

selected. The option of not to harvest in any

period is considered a treatment for all harvest

units.

0 if treatment "j" in harvest unit "i" is not

selected.

cij : Total present net value derived from allocating

treatment "j" in harvest unit "i" during "T" periods.

Period "T+1" is considered the first period. Each

harvest unit "i" has ni treatments and the value of cij

accounts for the acreage variation in different harvest

units.

Vijt: Volume harvested in harvest unit "i" under treatment.

"j" in period "t".

w..13 kt:Acres of the k-th wildlife habitat provided by

harvest unit "i" under treatment "j" in period "t". The

k-th wildlife habitat can be forage habitat, hiding

habitat or thermal habitat.
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uk : Maximum number of acres of the k-th wildlife habitat

required in the geographic area.

lk : Minimum number of acres of the k-th wildlife habitat

required in the geographic area.

: Set of harvest units adjacent to harvest unit "i".

rj : Set of treatments that permit final harvest in the

same period as treatment "j".

Constraint set (1) corresponds to the strict even-flow

constraints. Constraint set (2) corresponds to the area

constraints. Constraint set (3) represents the upper

bounds on the wildlife habitat requirements and constraint

set (4) corresponds to the lower bounds of these

requirements. Constraint set (5) represents the set of

adjacency constraints. This set of constraints can be

included under any of the procedures to write adjacency

constraints (Meneghin et al., 1988; Torres and Brodie,

1989; Yoshimoto and Brodie, 1989). The last set of

constraints represents the integer restrictions of the

problem. Observe that the objective function value in this

formulation corresponds to the maximization of the present

net value of treatments during the specified planning

horizon. Grouping the coefficients of problem P within

suitable size sets of matrices and vectors, such a problem

can be rewritten in matrix notation as:



s. t.
Z P1 = max c x

(1) D x = 0

(2) A x = 1

(3) W x < u

(4) W x > 1

(5) Y x < b

(6) x e (0, 1)
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(P1)

where each set of constraints corresponds to the set of

constraints with the same number as in problem P. Let the

vectors w, Al, A2 be the set of dual variables associated

with the set of constraints 1, 3 and 4 respectively. The

Lagrangean relaxation of problem P1 obtained by dualizing

constraint sets 1, 3, and 4 yields the following Lagrangean

problem:

ZD(7r,g1,42) = cx - w'Dx + Ai(u - Wx) - A2(1 - W) (P2)

s. t.
(1) A x = 1

(2) Y x < b

(3) x E (0, 1)

(4) 7T > 0

(5) Al, A2

Letting a be the vector of dual variables associated

with the adjacency constraints, problem P1 can be further

reduced by applying a surrogate relaxation to the adjacency

constraints. The resulting relaxed problem yields:
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ZD(7r,41,112,0) = cx - r'Dx + Ai(u - Wx) - A2(1 - Wx) (P3)

s. t.
(1) A x = 1

(2) a'Y x < a'b

(3) x e (0, 1)

(4) r <> 0

(5) Al, A2, a > 0

Problem P3 is a mixture between Lagrangean and surrogate

relaxation. Strictly speaking it does not correspond to a

composite relaxation of problem P1. However it will be

considered in this way since it groups Lagrangean and

surrogate relaxation. Additionally it presents the same

properties as composite relaxation (Karwan and Rardin,

1980). Note that the relaxed problem (P3) is not.as easy

to solve as if we had also applied a Lagrangean relaxation

to the adjacency constraints in problem P2 or if we had

computed a single surrogate constraint from all the

constraints in problem P1 (surrogate relaxation). However,

the resulting relaxed problem is small and relatively easy

to solve since it is only complicated by the "surrogate

constraint". Moreover, theoretically it will yield better

solutions than a simple Lagrangean relaxation or a single

surrogate relaxation applied to problem P1. Observe also

that if the optimal surrogate multipliers were known, the

surrogate constraint might be dualized in the objective

function. This process, similar to a Lagrangean

decomposition (Guignard and Kim, 1987) would yield a better
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solution than the composite relaxation and additionally a

smaller relaxed problem. Composite relaxation applied in

this way to the habitat dispersion problem offers the

following advantages:

i) The relaxed problem is small and relatively easy to

solve. Hence solutions can be obtained within a short

time.

ii) The solutions obtained through composite relaxation

will satisfy the adjacency requirements and area

constraints. This would be more difficult to obtain if we

had applied a Lagrangean relaxation to the adjacency

constraints.

iii) The solutions will meet harvest flow and wildlife

habitat requirements with minimum infeasibilities. Integer

formulations of these problems usually yield infeasible

solutions not only due to the integer restrictions but also

to the absence of an initial age class distribution that

provides feasible solutions for the wildlife requirements.

The relaxation approach will yield a solution that

minimizes those infeasibilities.

Therefore, composite relaxation applied to the habitat

dispersion problem will yield feasible solutions for the

area and adjacency constraints. Additionally, this

relaxation will yield a solution very close to the true

optimum in a short time and with minimum infeasibilities in

the manager imposed harvest flow and wildlife habitat

constraints.
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SOLUTION PROCEDURE

The solution procedure through relaxation consists of

finding sets of multipliers r, Al, A2, and a that minimize

the relaxed problem P3. The search procedure we propose is

an iterative process. The first step consists of computing

the surrogate multipliers. Once the surrogate multipliers

are known, the sets of Lagrange multipliers in problem P3

are adjusted at successive iterations, such that at each

iteration lower valued solutions for this relaxed problem

are obtained. Note that once the surrogate multipliers are

computed only the Lagrange multipliers are adjusted at each

iteration. The iterative process ends when the permissible

maximum deviation in harvest flows or wildlife requirements

are met, or when the search procedure has reached ending

conditions. For explanatory purposes we will divide the

solution procedure in 3 parts: i) the computation of

surrogate multipliers for adjacency constraints. ii) The

solution of the relaxed problem and iii) the adjustment

procedure of Lagrange multipliers in the relaxed problem.

Computation of multipliers for the surrogate relaxation

The most simple and successful algorithm to compute

multipliers for a surrogate relaxation has been the one

proposed by Gavish and Pirkul (1985). This algorithm was

designed for the multiconstrained knapsack problem. It

requires all the technical coefficients in the constraints
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as well as the right-hand-side vector to be nonnegative.

These requirements are met by the adjacency constraints.

Hence it was the algorithm we selected. The algorithm is

based on searching the minimum of the surrogate function in

a two-constraint problem. Assume we perform a surrogate

relaxation to a two-constraint problem. The relaxed

problem becomes:

Z1(A,7) = max cx (1)

s. t.

(A, 7)A x < (A, ir)b

x e (0, 1)

As the reader can verify the surrogate function Z1(1,7)

is a convex function of r. Hence the minimum of such a

function can be easily found by any searching algorithm

(bisection, golden search or Fibonacci search). The search

procedure yields a pair of multipliers (1, 7+) close to the

optimal pair (1, 7*). If such a pair yields a surrogate

constraint that does not violate any of the original

constraints then an "e-neighborhood set of optimal

multipliers" has been found and the pair of multipliers (1,

+) is used to compute the surrogate constraint. The

procedure does not yield the optimal set of "surrogate

multipliers" However, good sets of multipliers can be

obtained. The algorithm can be extended to multiple

constraints by following Procedures 1 and 2 in Gavish and

Pirkul (1985). These procedures have been grouped in the
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following Procedure 1. Problem "SR" could be considered as

the example problem.

Procedure 1

Step 1 Determine the constraint "i*" which corresponds to

the one-constraint problem with lowest objective

function value. Let constraints "i*" be the current

surrogate constraint and assign a value of "1" to the

surrogate multiplier associated with it.

Step 2 Determine the amount by which each constraint is

violated. If no one is violated STOP, current surrogate

constraint is the final surrogate constraint. Otherwise

identify constraint "i'" as the most violated and let it

be the multiplier associated with that constraint.

Step 3 Form a two-constraint problem with constraints "i*"

and "i'". Let rij and ITU be two multipliers such that

the solution to the two-constraint problem ZsR(1, r)

satisfies constraint i* at it = 711 and does not

satisfy it at it = ire.

Step 4 If ru - ri, i e and if the surrogate objective

function has not declined or a maximum number of

iterations has been reached then STOP with the current

constraint i* as the surrogate constraint.

Step 5 Let it = 71L + (lrU - 71-1,)/2 . Solve ZsR(1,70. If in

the solution:

i) both constraints are satisfied GO TO STEP 6.
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ii) only the first constraint is satisfied. Let

vij=r. GO TO STEP 4.

iii) the first constraint is not satisfied. The let

vu = v. GO TO STEP 4.

Step 6. Replace current surrogate constraint i* with 7°A +

vai, where r° is the multiplier vector with the current

surrogate constraint. Update ZSR(7r). GO TO STEP 2.

The procedure is very effective especially in the case

of adjacency constraints where each constraint has very few

positive technical coefficients.

Solution of the relaxed problem

If a guess for the multipliers associated with the

harvest flow and wildlife constraints is available, and the

multipliers of the surrogate relaxation are known, the

relaxed problem is formed just by the area constraints and

the surrogate constraint (problem P3). Observe that the

dualized constraints could be interpreted as weights on the

original cost coefficients. So the "corrected cost

coefficients" of the form:

c= c - v'D - miW + Apf

constitute the objective function coefficients of the

relaxed problem (P3). Note that if problem (P3) did not

have area constraints and the surrogate multipliers were

known, problem P3 could be categorized as a "knapsack

problem". The knapsack problem is a single one-constraint



132

integer problem and several algorithms are available for

its solution. We will review a procedure to solve the

relaxed problem without area constraints (the knapsack

problem) and then adapt the solution procedure to consider

these constraints.

The algorithm we selected makes use of the "bang-for-

buck" ratios. These ratios are defined as the "ratios of

the objective function coefficients to the coefficients of

the resource constraint" (Nauss, 1976). Hence in a one-

constraint problem the greater the ratio, the higher the

chance that the corresponding variable will be equal to one

in the problem solution. This principle has been used in

many successful algorithms for solving the single-

constraint knapsack problem (Salkin and Kluyver, 1975;

Nauss, 1976; Balas and Zemel, 1980) and was first applied

to the multiconstraint knapsack problem by Gavish and

Pirkul (1985). They constructed a surrogate constraint

with the constraints of the multiconstraint knapsack

problem. We use a similar procedure for the adjacency

constraints. Once the surrogate constraint is formed the

resulting knapsack problem is solved following Procedure GP

in Gavish and Pirkul (1985). This algorithm is duplicated

in the following Procedure 2. The notation corresponds to

our relaxed problem without area constraints.
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Procedure 2

Step 1. Calculate the bang-for-buck ratios which in the

relaxed problem P3 correspond to dij/cr'Yij. Where eij

represents the corrected objective function coefficient

and Yij is the column in the adjacency constraints

corresponding to the variable xij.

Step 2. Sort the variables according to decreasing order

of bang-for buck ratios.

Step 3. Fix variables equal to one according to the order

determined in step 2. If fixing a variable equal to one

causes violation of one of the constraints fix that

variable equal to zero and continue. Denote the

feasible solution determined in this step as R.

Step 4. For each variable fixed to one in step 3 (R) fix

that variable equal to zero and GO TO STEP 3 to

determine additional feasible solutions. Stop when no

more additional solutions can be found and choose the

solution with highest objective function value.

The procedure is very effective for multiconstrained

knapsack problems. Pirkul (1987) reported solutions within

1 percent of the optimal solution for several problems.

Despite its efficiency this algorithm can not be fully

applied to our relaxed problem (P3), since we have to

consider the area constraints.

Given that the area constraints indicate that only one

treatment per stand can be included in the solution, then
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an intuitive modification to Procedure 2 would consist of

constraining the size of the ordering in step 2 (Procedure

2) to be equal to the number of harvest units. Obviously

the treatment of each harvest unit selected in the

ordering, would be the one with largest bang-for-buck

ratio. In most of the cases the ordering violates the

adjacency constraints. One way to deal with this problem

is to substitute the treatment that violates the adjacency

constraints with the treatment that considers no harvest at

all, which obviously is always feasible. However, this

procedure skips many options and in most cases poor

solutions are reached. We opted for selecting the treatment

with the next largest bang-for-buck ratio (i.e. the second

largest) and resort the ordering. If this treatments causes

any violation of adjacency constraints then we substitute

the treatment that includes no harvest at all.

Alternatively we could have repeated the latter process of

resorting the variables with largest bang-for-buck ratios

before resorting the non-harvest choice. But, this

procedure is very slow and does not improve substantially

the solutions obtained. The following Procedure 3

considers the adaptations to Procedure 2 to include the

area constraints.
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Procedure 3

Step 1. Calculate the bang-for-buck ratios aii/a1Yii.

Step 2. For each harvest unit choose the treatments with

the largest and the second largest bang-for-buck ratios.

Sort the treatments with largest ratios in decreasing

order. Store the the value of the second largest ratio.

for each harvest unit.

Step 3. Fix variables equal to one according to the order

determined in step 2. If fixing a variable equal to one

causes violation of one of the constraints fix that

variable equal to zero, recover the variable with the

second largest ratio for that harvest unit, resort its

ratio in the ordering defined in step 2 and continue.

If the variable with the second largest ratio for a

harvest unit violates any adjacency constraint then fix

that variable to zero and fix the variable associated

with the no harvest option for that harvest unit to one.

Denote the feasible solution determined in this step as

X.

Step 4. For each variable fixed to one in step 4 (5) fix

that variable equal to zero and GO TO STEP 3 to

determine additional feasible solutions. Just include

variables defined in the first 5( solution. Stop when no

more additional solutions can be found and choose the

solution with largest objective function value.

Procedure 3 provides "excellent" solutions to problems
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with adjacency constraints only. Test problems provided

optimal solutions in more than 65% of the cases and the

nonoptimal solutions were always within 1% of the optimal

objective function value.

Adjustment of Lagrange multipliers in the relaxed problem

So far we know how to solve the relaxed problem given a

guess of Lagrange multipliers r, Ai, A2 and the "best" set

of surrogate multipliers. However, we need a mechanism to

correct the multipliers r, Al, and A2 such that at

successive iterations, the new solutions will minimize the

relaxed problem (P3). The mechanism we adopted is the

subgradient method. Following the subgradient method, the

sequence of values for the multipliers is given by:

irk+1 7k /

`0
0 - Dx)

+1 =Al max (0, Ai - tk(u - Wx)) (2)

A2 +1 = max (0, A2 - tk(1 - Wx))

where k represents the iteration number and tk is the step

size. The step size is computed as:

k [ZD(7,A1,112,a) Z^]
tk (3)

x 02 Du-Dx112 + 01-Wx02

where ZD(v,A1,112,c) is the objective function value of the

relaxed problem (P3) and Z" and A are set as in Torres et

al., (1989). The following Procedure 4 summarizes the

updating procedure for the multipliers associated with

harvest flow and wildlife requirements.
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Procedure 4

Step 1. Compute the infeasibilities in harvest flow and

wildlife habitat constraints of the primal problem

associated with the solution from the relaxed problem.

Step 2. Compute the step size using (3) and recommendations

in Torres et al., (1989).

Step 3. Update multipliers using equations in (2).

The objective function coefficients of the relaxed

problem are corrected using the new multiplier set to

initiate another iteration of the search. The whole

searching procedure is simple and fast. The following

Procedure 5 integrates the latter Procedures 1, 3, and 4.

To summarize the searching algorithm we propose to find the

best multipliers for the relaxed problem. Procedure 5

considers adjacency, wildlife habitat and flow constraints

all together. But it can be adapted to consider any

combination of the three sets of constraints.

Procedure 5

Step 1. Use Procedure 1 to compute the surrogate

multipliers associated with the adjacency constraints of

the problem. Use Procedure 3 to solve the relaxed

problem. If the primal solution associated with the

relaxed problem satisfies the maximum deviation of

harvest flows and wildlife habitat constraints STOP.
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The best solution through composite relaxation has been

reached.

Step 2. Use subgradient optimization to solve the

scheduling problem without adjacency constraints. The

set of best multipliers w, Al, and A2 becomes the first

guess. Correct the objective function coefficients "8"

of the relaxed problem (P3).

Step 3. Use Procedure 3 to solve the relaxed problem (P3).

Step 4. Check the infeasibilities of the associated primal

solution. If they are within the permissible deviations

STOP. The best solution through relaxation has been

reached. Otherwise if the sum of absolute

infeasibilities is smaller than previous, store the

solution as the "best solution".

Step 5. Use procedure 4 to correct the multipliers IT, Ai,

and A2. If stopping rules on the step size have been

reached, then recover best solution, STOP. Otherwise

correct the objective function coefficients of the

relaxed problem (a). GO TO STEP 3.

The stopping rules on the step size are given by a

minimum value of or a minimum value of the step size. .A

maximum number of iterations could be used also as a

stopping rule, however this selection is problem dependent

so it is not recommended.
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IMPROVING COMPUTATIONAL EFFICIENCY

Computational efficiency might be increased by using the

following strategies in the searching procedure.

i) Procedure 1 step 1. The solution to the single-

constraint problems could be obtained as if they were

continuous "knapsack" problems. This can be accomplished

by filling the knapsack completely with the variables of

largest bang-for-buck ratios until no more room remains in

the knapsack. At this point the variable that could not

fit is placed in the knapsack at fractional level, such

that the knapsack is filled. This strategy reduces the

time taken by Procedure 1 and provides good results.

ii) Procedure 1 step 3. The interval of uncertainty for r

can be obtained through Swann's bounding search (Kowalik

and Osborne, 1968). To speed up the procedure we used a

value of zero for the lower bound, and the value of the

right hand side of each constraint as upper bound. If

adjacency constraints are written as in Torres and Brodie

(1989) or Yoshimoto and Brodie (1989) the latter strategy

yields good bounds.

iii) Procedure 1 step 4. The maximum number of iterations

is important to define a good set of surrogate multipliers,

especially for large problems with many periods, which

usually have hundreds of adjacency constraints. We ran

different problems testing several values for the maximum
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permissible number of iterations. The number depends

mainly on the size of the problem but in general results

indicated that after 2000 iterations there is no difference

in the quality of the surrogate constraint obtained.

Problems with many constraints generally reach the maximum

permissible number of iterations. For these cases a good

strategy to follow consists of dividing the adjacency

constraints in groups. These groups can be of any size.

Then we apply Procedure 1 to each group, such that we form

a subgroup of surrogate constraints. The last step consists

of applying Procedure 1 to the subgroup of surrogate

constraints to obtain just one final surrogate constraint.

Observe that if all harvest units have the same age or if

all of them are older than the minimum harvest age, the

adjacency constraints for successive periods are repeated

with different variables but for the same harvest units.

In this case the grouping can be performed by periods.

This way of grouping is very efficient and yields

"excellent" surrogate constraints since groups are

independent from each other.

iv) Procedure 3 step 4. This step is very important and

must be efficient since it represents the "bottle neck" of

this procedure. In this step a strategy similar to that of

Balas and Zemel (1980) defining "core problems!' could be

adopted. This procedure consists of setting equal to 1

those variables that are most likely to be in the optimal
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solution. Thus not many variables have to be fixed to zero

and fewer iterations within Procedure 3 are required. By

defining "core problems" we were able to reduce the

computation time taken per iteration in small test problems

to a level of 17% (3 periods and less than 60 harvest

.units). Note that this reduction in time will be greater

as the size of the problem increases.

v) Sign of the multipliers associated with wildlife

constraints. Preliminary results indicated that the lower

bounds of the thermal habitat constraints and the upper

bounds of the forage constraints were mostly violated.

This indicates that the multipliers associated with these

constraints could not drive the solution. Checks on final

dual variables revealed that the multipliers associated

with the upper bounds of the thermal habitat constraints

and the ones associated with the lower bounds of the forage

constraints had a value of zero. We might think that this

is obvious and not important since those constraints are

not binding and therefore its marginal value is zero.

However for our solution approach it is very important

since we want those constraints to push the wildlife

requirements so we can obtain solutions with such

requirements set between the specified lower and upper

bounds. Otherwise it would be easier just to specify a

lower bound for the wildlife requirements. We forced those

constraints to drive the solution to the desired wildlife
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requirements by allowing the multipliers associated with

them to take negative values. When we tested this

alternative the formulation was changed. The inequalities

in problem (P1) were changed to strict equalities. Hence

all the multipliers of the Lagrangean-surrogate function

ZD(r,111,112,a) in problem (P3) were permitted to take

negative values.

By using this strategy we obtained the expected results.

The solutions yielded wildlife requirements between the

specified lower and upper bounds when possible and they

maintained the harvest levels within the permissible

deviations.
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EXAMPLES

The algorithm described in Procedure 5 was coded in

FORTRAN 77. The computer code recognizes any combination

of wildlife habitat, adjacency or flow constraints to

perform the search. A surrogate relaxation is performed

only if there exists a set of adjacency constraints. Any

other set of constraints is solved through Lagrangean

relaxation. We tested the performance of the algorithm

with 3 combinations of sets of constraints i) flow and

wildlife habitat constraints, ii) flow and adjacency

constraints and iii) flow, wildlife habitat, and adjacency

constraints all together. We present some comparative

results for each of these cases to show the efficacy of

relaxation in solving this kind of problems.

Area-based scheduling problems with wildlife habitat

constraints

For this kind of problem the relaxed problem resembles

problem (P2) without constraint set (5). The search for

the minimum of the Lagrangean problem is performed through

the subgradient method following the recommendations in

Torres et al., (1989) and allowing negative values for all

the multipliers. We created three example problems with

50, 100 and 136 harvest units respectively. The age

distribution of the 50 unit forest varies from 10-100 years
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and resembles a normal distribution, while the last two

forests have an age distribution with five age classes

namely: 10 (8.8%), 20 (17.5%), 30 (20.4%), 40 (11.5%), and

80 (41.8%) years. The scheduling problems were formulated

for 3, 5, and 8 planning periods. To set the wildlife

habitat constraints we used the following habitat

requirements:

Forage habitat: Stands 20 years old or younger, covering

15-25 percent of the total area.

Hiding habitat: Stands with age between 21 and 40 years,

covering 30 - 50 pekcent of the total area.

Thermal habitat: Stands older than 70 years covering 20-50

percent of the total area.

Based on the theoretical result that integer solutions

for problems with a large number of variables approach

solutions obtained by linear programming (LP), and

considering that the LP solutions are an upper bound of the

true integer solutions, we compared the results from

relaxation with solutions obtained from LP. Table 7 shows

these comparisons for nine example problems. Note that

although relaxation yields integer solutions and LP yields

continuous solutions, the latter procedure yielded few

fractional values. Hence both procedures are more

comparable. Observe that the objective function value

obtained from both procedures is very close. In all cases

except problem 6, LP solutions yielded larger objective

function value, which is basically due to the continuous



Table 7. Comparative results of relaxation and linear programming
for area-based problems with wildlife habitat and harvest flow constraints.

Prn
Oleo
No.

No. of

periods

No. of

stands

No. of

wars.

L. P. SOLUTION LAGRANCFAN RELAXATION SOLUTION AVERAGE VIOLATIONS IN WILDLIFE HABITAT CONSTRAINTS
(Considering all periods in the optimization)

OW. fcn.
value (5)
thousands

Harvest
flow
(MCP)

Time
(hrs)

No.
NIN

Oby. fon.
value (9)
thousands

Time
(hr.)

deviation
from period

max.

of flows
to

avg.

(1)
period

min.

ge
harvest
(MCF)

UPPER
Forage

BOUND
Hiding

(1)
Thermal

LOWER
Forage

BOUND
Hiding

(1)
Thermal

3 50

100

173 2980 2979 0.054 3 2883 0.012 6.27

+ 8.04

1.30 + 0.14 3070 63 0

0

0

0

0 24 36

328 4020 5430 0.124 6 4000 0.039 5.13 - 3.60 5546 77 0 11 34

3 136 436 33096 17371 0.224 32976 0.057 5.91 3.80 + 1.41 17112 61 0 0 0 4.2 33

4

5

6

5

5

5

50 308 2803 2287 0.643

0.892

6 2767 0.032 - 9.95 4.53 - 0.49 2317 38 0 0 0 19.4 0

100

136

489 4672 4880 4154 0.096 - 10.91 7.00 - 1.05 4462 38 0 0 0 4.6 20

787 32932 12825 1.456 7 33135 0.175 - 7.73 3.24 + 0.18 13039 40.8 0 0 0 6.6 17.1

----8--- 50 830 2635 1731 1.372 12 2477 0.199 + 10.80 4.36 + 0.29 1778 13 0 0 0 19.1 0

N 100 1585 4124 3240 2.863 10 3922 0.458 + 9.91 4.72 + 0.73 3100 8.9 0 0 0 12.8 19.4_ -
8 136 2013 32890 10564 3.240 11 32669 0.907 - 10.21 6.98 + 0.27 10981 25 0 0 0 9.2 2.9

Times correspond to a Compaq (386/25)

No. of harvest units with non-integer values in the LP solution.
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nature of the LP approach. The average harvest flow is also

very close in both solution techniques and generally higher

in the relaxation approach. This is due to the fact that

flow constraints for integer solutions have to be met

within certain deviations from even-flow and for some

problems high positive infeasibilities overestimated the

average harvest flow. Note also that harvest flow

deviations in the relaxation approach are very small and in

average always less than 10%. LP solutions for problems 4

and 7 were obtained by allowing a deviation of 5% in

harvest flows, since even-flow formulation yielded

infeasible LP solutions. In all cases when we tried to

obtain LP solutions with the specified bounds for wildlife

requirements we obtained "infeasible" solutions. For

problems with five or eight periods, we tried to modify

just the first two periods to allow feasible solutions.

However, the procedure still yielded infeasible solutions.

The only way we obtained feasible solutions was by

rearranging the wildlife habitat requirements bounds to be

equal to the bounds determined by the relaxation solution.

Observe that in order to obtain a feasible linear solution

a forest would have to have an age distribution such that

after the first period harvest the residual distribution

would fit into the wildlife requirements bounds. This

requirement is obviously difficult to meet in real

problems. A likely approach to obtain feasible solutions

would consist of modifying the wildlife requirement bounds
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for the first periods, keeping the desired bounds in the

last periods of the optimization. However, this approach

raises the questions: How much the bounds should be

expanded ?, How many periods would be allowed with the

expanded bounds ?. These questions are difficult to answer

but focus attention on correct areas to investigate for

management of forests in transition.

Violations to wildlife constraints depend mostly on the

original structure of the forest, the minimum harvest age,

value of the upper and lower bounds of wildlife

requirements, planning horizon and so on. However, the

relaxation approach yields solutions that efficiently

convert the forest to the desired structure with minimum

infeasibilities in flows and wildlife requirements. Figure

15 shows the average percentage in which wildlife

requirements were violated for a 136 harvest unit example

forest under different planning horizons. Each period

length is a separate optimization problem. Observe that the

violations on upper bounds of forage constraints and lower

bounds of thermal constraints (the other bounds were not

violated) are smaller as we increase the number of periods.

For problems with small planning intervals these violations

occurred in the last periods of the optimization, driven to

meet the harvest flow constraints. When the number of

periods increases the harvest levels decrease. Hence in

order to maintain the harvest level in the last periods of
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the optimization it is not necessary to use larger amounts

of old growth, so the wildlife requirements for the last

periods can be satisfied. Thus for long planning horizons

the relaxation approach reduces smoothly the violations of

wildlife requirements in- each period. Note that hiding

constraints are constantly violated. This is because the

specified requirements were set beyond the attainable

proportions.

70

60

50

40

30

20

10

DEVIATION FROM REQUIRED BOUND (PERCENT)

Upper bnd. forage

Lower bnd. hiding

Lower bnd. thermal

3 4 5 6

NO. OF PERIODS
7 8 9

Figure 15. Violations in wildlife habitat constraints for
several periods.

Relaxation is a solution technique that has a great

potential application in solving this kind of highly

infeasible problem. It yields a tight upper bound (i.e. a
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solution very close to the true optimal solution) for the

optimal solution (when it exists) or solutions with minimum

violations of constraints for infeasible problems.

Although one distinct disadvantage of relaxation to obtain

bounds is that "only an optimal solution to the relaxed

problem guarantees an upper bound on the optimal solution

of the original problem" (Nemhauser and Wolsey, 1988),

procedures to select the "best" solution to the relaxed

problem such as the one proposed by Torres et al., (1989)

guarantee solutions very close to the true optimum or the

"best" solution for infeasible problems.

Another important feature to notice in the relaxation

approach is its short solution time. Problems with

wildlife constraints were solved in at most 30% of the time

taken by LP. It is expected that as the size of the

problem is increased the ratio of the solution time by

relaxation to the LP solution time will become smaller.

Area-based scheduling problems with adjacency constraints

In this case the relaxed problem resembles problem P3

without the dualized wildlife habitat requirements. So the

relaxed problem includes Lagrangean and surrogate

relaxations. The solution strategy follows Procedure 5,

without considering the corrections to multipliers

associated with wildlife habitat constraints. We created

three example forests with 15, 30 and 50 harvest units
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respectively. All of them were overmature forests with

ages older than 80 years. The harvest scheduling problems

were formulated for 3, 5, and 8 periods. No reharvest was

allowed in any harvest unit. The problems were solved by

relaxation and the optimal integer solution was obtained by

branch and bound using a commercial software package

(MILP88). In order to have a fair comparison between

relaxation and the branch and bound algorithm the

deviations on harvest flow for the integer programming

formulations were fixed according to the maximum

deviations obtained from relaxation, i.e. if the maximum

deviation in harvest flows from relaxation was 5%, the

integer programming problem was formulated allowing 5% of

deviations in the harvest flows from period to period.

Table 8 shows the comparative results.

Observe that the relaxation approach becomes very

efficient as the number of variables increases in the

problem. Although most of the examples show this trend it

is not as evident as examples 1, 2, and 3 (table 8). For

all examples it is quite clear how for the same problem

with a different number of periods the relaxation approach

is increasingly more efficient as we increase the number of

periods. Additionally these solutions are better as the

size of the problem increases. Observe that problems with a

larger number of harvest units have smaller deviations in

harvest flows and minimum deviations from the objective

function value. This is probably due to the fact that in
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Table 8. Comparative results of relaxation and branch and
bound for area-based problems with flow and adjacency
constraints.

Pro
blem
No.

No. of

periods

No. of

stands

No. of

vars.

COMPARISONS BETWEEN RELAXATION & B. B.*

Obj. fcn.
deviation %

Time
ratio

**

dev. harvest
from period
max.

flow
to

avg.

(%)

period
min.

1 3 15 60 + 2.22 0.050 - 8.2 3.3 0.02

2 3 30 113 - 0.08 0.041 - 2.9 0.7 0.01

3 3 50 135 + 3.28 0.018 0.9 0.2 0.03

4 5 15 90 + 1.34 0.014 -11.2 2.9 0.0

5 5 30 171 + 1.57 0.009 - 4.9 1.9 0.07

6 5 50 303 x x + 1.7 0.8 0.02

7 8 15 135 - 2.73 0.016 -10.2 5.3 0.05

8 8 30 259 x x + 1.2 0.1 0.05

9 8 50 574 x x + 3.4 1.2 0.36

* Branch and Bound.

** Ratio of the relaxation solution time to the branch and bound
solution time.

bigger problems (more units) there are more spatially

feasible solutions and the algorithm can find a good one

more easily. We might also attribute these results to the

properties of composite relaxation. Recall that theoretical

results stated earlier indicate that composite relaxation

yields better bounds than a single Lagrangean relaxation.

Results in table 8 follow these statements since they show

smaller deviation in harvest flows and additionally very

small deviations from the optimal objective function value

than results from a simple Lagrangean relaxation such as

those shown in table 7 or the ones shown in Torres et

al.,(1989).
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Given that solution time for branch and bound increases

exponentially with the number of variables in the problem,

it is expected that relaxation will be more efficient as

the number of harvest units is increased.

Although the sequential approaches might be slightly

faster in providing solutions to the harvest scheduling

problem with adjacency constraints, the composite

relaxation approach presents several advantages over the

former approaches, namely:

i) Composite relaxation performs a "suboptimization" of

the problem, hence it does not require as input data the

"target harvest levels" like the approaches by Sessions

(1988) or Nelson et al., (1989). Binary search combined

with a sequential approach could be used to compute the

periodic harvest levels. However, the sequential approach

only by chance could be as good as relaxation, given that

the latter considers a "suboptimization" of all periods at

the same time while the sequential approach optimizes

period by period. Thus although the harvest levels of both

approaches might be similar it is very likely that the

relaxation approach will yield larger objective function

values.

ii) The relaxation approach is able to easily handle

additional sets of constraints while the sequential

approaches are limited in ability to do so. This feature

of relaxation is evident in the following discussion.
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Area-based scheduling problems with flow, adjacency and

wildlife constraints

For this kind of problem the relaxed problem is similar

to problem (P3) and the solution method corresponds to the

one described as Procedure 5. Relaxation was tested with 2

example forests. The first one is the 50 harvest unit

forest described earlier. The scattering of the harvest

units is depicted in figure 16. The second example is the

136 harvest unit forest also described earlier. The

scattering of the harvest units is depicted in figure 17.

This forest is a real example and corresponds to the Green

River subbasin in the Siuslaw National Forest. Given the

difficulty in obtaining optimal integer solutions for large

problems we just tested the example forest with

formulations for 3 periods. In each case the "optimal"

integer solution was obtained by setting the harvest flow

and the wildlife habitat deviations to the bounds defined

by the relaxation solutions. Table 9 shows the comparative

results. Observe that in the first problem the solutions

are very close. In fact just one harvest unit yielded a

different treatment in the final solution. In this case

the integer solution was slightly lower but better met the

flow constraints than relaxation and decreased the

violation of one forage constraint. In the second example

we were not able to verify an optimal solution after 52

hours of search. The solution depicted in table 9

corresponds to the best solution obtained at that time.



Table 9. Comparative results of relaxation and branch and bound for
area-based problems with flow, wildlife habitat and adjacency constraints.

Pro
blew
No.

No. of

stands

INTEGER PROGRAMMING SOLUTION COMPOSITE RELAXATION SOLUTION

No. of
vars.

No. of
const.

Obj. fcn.
value($)
thousands

Time
(hrs)
*

Obj. fcn.
value ($)
thousands

Time
(hrs)

max. flow
deviation

(%)

max. wildlife
Forage
(%)

deviation
Hiding
(%)

Thermal
(%)

1 50 173 141 6766 50.500 6785 0.626 4.6 + 10 26.83 0

2 136 436 327 18432 52.354 19485 7.405 5.5 + 52 15.74 29

* Time correspods to a Compaq (386/25)
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Figure 16. Pattern of harvest units for a 50 unit example
forest.
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Figure 17. Pattern of harvest units for a 136 unit example
forest.
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Like the latter example, this solution has smaller

objective function value than that reported by relaxation.

Although in this case the harvest levels were lower, flow

constraints were met better, but this was not true for the

wildlife constraints which were met in the same proportion

as the relaxation solution. In both examples the maximum

deviation of harvest flow obtained by relaxation did not

reach more than 5.5 percent. Hence we might consider the

relaxation solution a better "practical solution".

Although it might be argued that two examples are not

enough to compare the relaxation procedure with the true

optimum, results obtained from previous combinations of

constraints indicate that the relaxation approach will

yield solutions with a trend similar to these examples. To

reinforce the statement additional example problems were

solved through relaxation. In all cases the

infeasibilities were very small. Based on these results

and the upper bound relationships stated in the second

section of this paper (Gavish and Pirkul, 1985) we can

assert that relaxation solutions are close to the optimal.

Moreover, considering that relaxation yields solutions

within the manager's permissible deviations in flows and

additionally converts efficiently (with minimum deviations)

the forest to the desired structure when wildlife habitat

constraints are incorporated into the problem, the approach

seems to be a useful tool to solve the habitat dispersion
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problem. Even when optimal solutions are required,

relaxation offers "good" bounds to adjust set the

constraints of highly infeasible problems.

In order to follow the effect of different sets of

constraints in the harvest levels we used the example

forests depicted in figures 16 and 17 to obtain relaxation

solutions for several planning horizons considering four

combinations of constraints. Figures 18 and 19 show these

results. In these figures each point represents a separate

optimization solution.
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Wildlife habitat requirements modified

Figure 18. Harvest levels for different planning horizons
in a 50 unit example forest under different sets of
constraints.
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Figure 19. Harvest levels for different planning horizons
in a 136 unit example forest under different sets of
constraints.

Note that wildlife constraints alone do not have a

strong effect in modifying the bounded harvest levels for

the 50 unit forest (figure 18), although they affected the

value of the objective function. For these examples the

objective function value dropped in average 3 percent when

wildlife constraints alone were considered. This behavior

is probably due to the original age class distribution of

the forest since its bell-shaped age class distribution

fits into the wildlife constraints and permits a moderate

harvest without altering the wildlife constraints. Hence

the harvest flows without wildlife constraints are
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maintained when these constraints are introduced. Observe

that each point in the graph represents the average harvest

for the specified number of periods. Hence such average

harvest flow just guarantees the maintenance of wildlife

habitat for that length of time. When the original age

class distribution departs from the target wildlife

distribution the wildlife constraints have a stronger

effect on the harvest levels. The 136 harvest unit forest

shows this behavior. Observe (figure 19) how wildlife

constraints reduce the harvest levels an average of 17

percent as opposed to the 1 percent reduction in the 50

unit forest (figure 18). Regardless of the original age

class distribution it is expected that in the long run

wildlife habitat constraints will maintain a harvest level

very close to the implied long term sustained yield (LTSY).

Departures from the maximum LTSY will depend on the

restrictions on the coverage of mature timber or forage

requirements.

Adjacency constraints have a stronger effect in reducing

the harvest

that after

performed,

levels. It is interesting to note in figure

the eighth period, when reharvests can

solutions with just

18

be

adjacency constraints

yielded a harvest flow very close to the LTSY (20 periods)

which might suggest that the pattern of harvests is

repeated in the long run. It is expected that after the

eighth period the fall down of the harvest level will be

very smooth "converging" to the LTSY. However, we might
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hypothetize that once all harvest units have been

reharvested it would be very unlikely that the pattern of

harvests repeats even with the harvest flow maintained in

steady state. This means that the LTSY of a forest managed

with spatial constraints will always be defined within

certain bounds-V. Note that the only way a pattern of

harvests is repeated in the long run is if the number of

periods within the rotation age equals the chromatic number

(the chromatic number is the minimum number of colors

sufficient to color a planar map such that two contiguous

areas do not have the same color) of the pattern of the

harvest units in the forest and additionally all units are

equally productive.

For problems with few planning periods the difference

between the harvest flow with adjacency constraints and

without them is highly related to the chromatic number of

the pattern of the harvest units in the forest. Patterns

with small chromatic numbers will have higher harvest flows

than patterns with large chromatic numbers. This is

basically due to the fact that small chromatic numbers

permit more combinations of adjacency-feasible solutions

J Observe that if the number of periods within the

rotation age is smaller than the chromatic number (irreal

case) the long run harvest level for adjacency-constrained

harvest problems will not converge to the LTSY.
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than large chromatic numbers. Hence the adjacency

constraints are less restrictive in the former case. The

sequential approaches to solve the adjacency problem are

less efficient for forests with patterns of harvest units

with small chromatic numbers, simply because with an

increased number of adjacency-feasible solutions the

probability of reaching the "optimal" solution per period

decreases since. The difference in harvest flows for

problems with and without adjacency constraints also

depends on the original scattering of the harvest units.

If the original forest has groups of units of the same age

(figure 17) instead of a random distribution (figure 16)

the effect of the adjacency constraints is larger. This is

due to the fact that small groups of same age harvest units

quickly reduce the number of adjacency-feasible solutions.

For instance, for a three period planning interval the

reduction in harvest flow was 28 percent for the 136 unit

forest while this reduction was just 9 percent for the 50

unit forest.

The combination of flow, wildlife, and adjacency

constraints yielded unexpected results. Observe in figure

18 that the likely long run harvest level for problems with

wildlife and adjacency constraints is reached at the 7th or

8th period with very low harvest levels. Note that only the

harvest levels for a three period problem are close to the

LTSY harvest level. The rest are very low and set about 33

percent lower than the LTSY for the 50 unit forest. A 5-
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period solution for the 136 unit forest yielded a harvest

flow 21 percent lower than the LTSY, although it is

expected that for longer planning periods this percentage

will increase.

These results indicate that "habitat dispersion"

constraints are very restrictive. Wildlife habitat

constraints per se just keep the minimum requirement of age

classes. Hence most units are harvested a bit after the

minimum harvest age. However, by introducing spatial

objectives relatively large areas of over-mature timber

are kept. This behavior could be attributed to the fact

that the target distribution to meet wildlife requirements

needs several age classes represented in the forest. By

introducing spatial constraints to such distributions we

decrease the number of regenerated harvest units, since the

pattern of regeneration is modified. Thus the periodic

harvest level is reduced and the harvest age is lengthened.

To give an example, the solution for an 8-period planning

interval with the 50 unit forest with just wildlife

constraints permitted to harvest of all the stands, while

the solution obtained by adding adjacency constraints left

many units without harvest.

The likely long run harvest level with all habitat

dispersion constraints will depend on the specified

percentages of wildlife requirements and the chromatic

number of the pattern of harvest units in the forest.
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Hence these constraints completely drive the harvest.

Given that "very low" harvest levels are obtained when

adjacency and wildlife constraints are introduced, more

efficient mechanisms to include habitat dispersion

objectives should be considered. Figure 18 shows how

harvest levels can be increased just by reducing the lower

bound of the thermal requirements by 5 percent. Similar

strategies or procedures such as shorten the rotation ages

to harvest middle aged timber, integration of LTSY target

harvest levels with spatial concerns such as the approach

by Nelson et al., 1989, or a more exact understanding of

true habitat coverage needs could help to set better

harvest levels and meet habitat dispersion objectives.

Judging form these examples, the combined effects of

flow, wildlife and adjacency constraints may reduce harvest

levels more than continuous models have led us to believe.
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CONCLUSIONS

This dissertation has presented the use of relaxation to

solve area-based harvest scheduling problems. The pioneer

work by Hoganson and Rose (1984) who addressed the non-

declining even-flow harvest scheduling problem, has been

redefined and expanded to include even-flow constriants and

the basis for incorporating additional restrictions. The

subgradient method has been introduced to compute the

multipliers of the Lagrangean relaxation approach. This

method with some modifications in the computation of the

step size has proved to be efficient and better than the

heuristics proposed by Hoganson and Rose (1984) or Elderd

(1987). The Lagrangean relaxation approach yields good and

quick solutions of harvest scheduling problems. Special

constraints that must be met exactly have been handled

through surrogate relaxation. This relaxation reduces

vastly the size of the problem and also yields good

solutions. Both relaxations were used to solve the habitat

dispersion problem. Results yielded solutions within 2%

of the optimal solution in a short time.

The solution procedure we presented for the habitat

dispersion problem is efficient. However, it can be

improved by developing a more effective procedure, perhaps

a heuristic to solve the relaxed problem. Another source

of future reasearch might be to improve the methodology to
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find the surrogate multipliers, since if those multipliers

are computed exactly the relaxed problems can be further

reduced and the solution derived from those problems

theoretically will be better (closer to the true optimum)

and additionally could be obtained faster.

The relaxation approach could be expanded to use any

other type of constraint that the common linear programming

formulations of harvest scheduling problems can handle.

Those constraints can be used to form a surrogate

constraint or can be dualized in the objective function

depending on whether or not small violations to those

constraints can be incorporated into the planning process.

An extension of the relaxation approach applied to

forest planning is the joint optimization of a road network

and harvest schedules. The approach might require some

sort of resource decomposition approach to reduce the size

of the problem before applying the relaxation. This

procedure might provide "good solutions" for those so far

unsolvable problems.

If the planning of thinning activities are important in

a forest level analysis, relaxation might be a good

solution tool. Thinning activities might be incorporated

in a Model I formulation of the harvest scheduling problem

and treated as other activities for the same harvest units.

Then the solution approach would follow the same strategy

we recommended in this dissertation. More sophisticated

approaches might include the use of dynamic programming in
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conjunction with relaxation to derive thinning schedules

for each harvest unit that satisfies forest wide

requirements. This procedure could be a good approach for

tactical planning (only a few periods in the optimization)

since dynamic programming and relaxation can be used not

only to solve the scheduling problem with additional side

constraints but also the road network might be optimized in

the sequential optimization performed by dynamic

programming.

Given the flexibility of relaxation to incorporate many

problem structures its use to solve harvest scheduling

problems offers much future potential. This work

represents a beginning effort in the use of these

techniques to provide integer area-based planning analogous

to current continuous models.
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