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PERIODIC SOLUTIONS OF PARABOLIC PARTIAL
DIFFERENTIAL EQUATIONS

I. INTRODUCTION

The determination of periodic solutions to a parabolic

partial differential equation began with Fourier's work on heat

flow [4] (see also Carslaw [ 2] ). Fourier treated the problem

of finding bounded solutions u(x,t) of

au 2 a2u

satisfying u(0,t) A cos ot, and applied his results to the study

of temperature variations in the earth's surface. Lord Kelvin

[10] took up the problem in 1861; he used periodic solutions of

the heat equation in order to estimate the thermal conductivity

of the soil. More specifically, taking the surface of the earth to be

the plane x 0 and assuming that the surface has the periodic

temperature

00

(*) u(0,t) L.0 +

the equation

=a -i, O<x<00,
ax

j= 1

cos (itE)

-00 <t <00,

the temperature at depth x was found theoretically by solving



U =kut xx

subject to the boundary condition (*), to be

00

u(x,t) = + cos (jt_E + kx"[j)

3=

1/2
where k (--) and 11 is the thermal conductivity of soil.

Experimental results showed that the temperatures u1, u2

depths x1, x2 were represented as

and

u1(t) =

u2(t) =
0

3=.

Comparing the theoretical and observed results one has

-kx2'.13
po = P0 = P0

EHkXf3+E., E'kx'f3+E.
3 1

3 2 j

in i' - in p2' E - E
andhence 3 3 3 3

x2-x1 x2-x1

0 < x < 00, -00 < t < 00,

- . From this it is seen

that either the amplitude or the phase of any harmonic can be used
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3

to compute k and hence the thermal conductivity r

Another application is that of determining the conductivity

of a metal [1]. Suppose that the metal is in the form of a cylindri-

cal rod. One end of the rod is kept at constant temperature while

the other end is subjected to periodic variations in temperature.

By comparing the theoretical and the observed temperatures at

various points on the rod, one can obtain estimates of the metal's

conductivity. This procedure, which is originally due to

Xngstrm [1], is similar to that used by Lord Kelvin[ 4].

More recently [ii] periodic solutions of the heat equation

have been used to study thermal stresses in cylindrical walls of

steam and combustion engines. Further applications of periodic

solutions of the heat equation, as well as an extensive bibliography,

can be found in Carslaw's book [ 2].

In the above examples it is necessary that there exist

periodic, or nearly periodic, solutions to some parabolic equation.

The general problem of obtaining existence theorems for periodic

solutions of parabolic boundary value problems seems to have

started in 1939 with a paper by Karimov[ 6]. In a series of

articles from 1939-1946 (see [6, 7, 8, 9]) Karimov solved the

boundary value problem



4(x,t) + tf(u) O<x< 1

0<t <1

u(O,t) = u(1,t) = 0 0 < t < 1,

u(x, 0) = u(x, 1) 0 < x < 1

Karimovassumedthat (i) (x,t) (x,t+1), (ii) (O,t)(1,t)0,
exists and is bounded, (iv) f satisfies a Lipschitz

condition, (v) f(0) = 0, and (vi) p(x) is continuously differ-

entiableand satisfies p(x) > 0 on O<x< 1. p is a real

parameter. (The fact that u(x, 0) = u(x, 1) insures that u(x,t)

can be extended periodically into 0 < x < 1, -cc <t < cc.)

Karimov was able to demonstrate existence of a solution to this gen-

erally nonfinear problem, but was able to ensure uniqueness only

by imposing the additional restriction that the parameter p. be

"sufficiently small"

The next significant existence theorem for parabolic equa-

tions appeared in 1952 in a paper by G. Prodi [15 J. Here Prodi

showed that, under suitable conditions, the nonlinear boundary

value problem

u=u +f(x,t,u,u), O<x<., -oc<t<oc,t xx x

u(O,t) = u(i,t) = 0 -cc < t < cc

4



has at least one solution u = u(x,t) whuich is periodic in t. In

addition to being assumed periodic in t, the function f must

also satisfy the growth condition:

u u +f(,t,u,u )t xx x

u(O,t) = 1(t,u(O,t))

U(i,t) = 42(t,u(i,t))

2f(x,t,z,)/ - 0,

for Izi < M, where M > 0 is an arbitrary, finite constant.

Prodi obtains this result by using the method of Leray and Schauder

(see[ 14] or also the textbook of A. Friedman [5]). Although

Prodi's paper is a significant extension of Karimov's existence

theory, he does not examine uniqueness.

Two years later {i6] in 1954 Prodi showed that the more

general problem

0 < x < -00 <t < 00

-00 <t <00

I (A)I

has at least one periodic solution. Prodi again used the Leray-

Schauder method to get this result and again did not obtain unique-

ness.

In 1961 Smulev [181 extended Prodi's [16] existence theory

to the problem

5



u = a(x,t,u)u + f(x,t,u,u ), 0< x < i, -00 <t< 00t xx x

u (0, t) (t, u(0, t), u (0, t)), -oc < t < oo,t 1 x

u (L,t) = (t,u(t,t), u (.,t)), -00 < t <00,t 2 x

where f, p, and 4 satisfy certain smoothness, growth and

periodicity conditions. This was the first paper that allowed the

principal part of the equation to be nonlinear. Smulev did not,

however, take up the question of uniqueness.

In this same paper mu1ev considered, for the first time,

periodic parabolic problems in several space variables. He

treated the parabolic boundary value problem

n n

ut =
i,j=l

a..(x,t,u)u u +
13 . x.13

(x,t)E D X (_oo,00),

u(x, t) = 0 (x, t) e D x '--F

where D is a suitably smooth, bounded domain in n dimen-

sional Euclidean space, 8D is its boundary, and x (x1, x x)
is a point in n dimensional Euclidean space. In this problem

Smulev needs to assume a.., b., a are all periodic functions in
13 1

6

b.(x,t,u)u + a(x,t,u)
i=l 1



t with the same period T, and that the functions a.. satisfy

the usual parabolicity condition.

Later in the same year, Smulev [ 19] considered the

parabolic partial differential equation

n

(1)
au
at + b.(x) + c(x)u + f(x,t),

,jl 1 3 i1. 1

(x,t)eD X (-00, 00)

with the boundary condition

(2) u(x, t) = 4i(x, t) (x, t)eOD X (_oo, oo),

where the functions and qi are assumed to be periodic-'

functions in t with the period T. Assuming the functions

a.., b., c, f, iii, and the boundary, to be sufficiently

smooth, he shows the existence of a unique, periodic solution to the

problem (1), (2). In the same paper, mulev gives an existence

and uniqueness proof for solutions to the equation (1) subject to the

Neumann boundary condition

7

- There is. an oversight in gmuiev's p per. The assumption that ijj

be periodic in t is omitted, but is needed in theproof'ofthetheorem.



(3)

(4)

au(x,t
av + (x,t)u(x,t) g(x,t)

the components are v.(x) =

j= 1

the direction of the interior conormal. To obtain his existence and

uniqueness results for the problem (1), (3), mulev had to assume,

in addition to certain periodicity and smoothness requirements,

that 3 (x, t) < b0 < 0, b a constant. The existence proofs in

this paper make essential use of Fourier's method of separation of

variables.

In his most recent paper [20], mulev proves that if the

parabolic boundary value problem

n n

a..(x,t)u + b.(x,t)u + c(x,t)u_u = f(x,t)
13 .i=l

(x,t)EaDX (_oo,00),

where _.a is a directional derivative in the direction of the

interior conormal to D. More specifically, if

fi.(x) = (F11(x), , i(x)) is the unit interior normal'to D at

the point x, then the vector v(x) = (v1(x), , v(x)), where

n

a .(x)u.(x), i = 1, . , n, lies in
13 3

(x,t)ED X (_oo,00)

(5) u(x, t) = tJ(x, t) (x, t) E D X (_oo, 00)

8



has periodic data in t, in addition to other conditions, then the

problem has a unique solution, period in t. In the linear case

just described, Smulev was able to obtain both a uniqueness and an

existence theorem; however, when he took up the nonlinear prob-

lern

n
U

u [ a..(x,t,u)] + a(x,t,u,ut Ox. 13 Ox. X
1 1

(x,t)ED X (_oo,00)

u(x,t) (x,t)OD X (_oo,

he was able to extend only the existence theory for periodic solu-

tions, but not the uniqueness theory.

More recently [131 in 1966, Kusano showed existence of

periodic solutions for systems of quasilinear equations. He con-

sidered the following two boundary value problems (6), (7) and

(8), (9):

n

1,3=1

a..(x,t)u - u =a (x,t,u,Euk k k k k
13 x.x. t13

(x,t)ED X (-

u"(x,t) = (x,t)EOD X (_oo,00),

(k= l,2,...,n)

9



(9)

where

12 nu=(u ,u ,,u),

and

Lu

i, j=

n

(8)

i, j=1

k k ka..(x,t,u) u a (x,t,u,Eu)
13 x.x. t

1

(x,t)ED X (_oo, 00)

k ku (x,t)ji (x,t)

= (Lu', u2, Eun)

In problem (6), (7), Kusano made use of the Schauder fixed point

theorem and in problem (8), (9) he used the Leray-Schauder method

to obtain the existence of periodic solutions. In neither problem

does he discuss uniqueness questions.

It is the purpose of this thesis to extend the current litera-

ture by showing that, under suitable conditions, the four following

parabolic boundary value problems I-IV have periodic solutions.

In all these problems the operator L is defined by

n

a..(x,t)u + > b.(x,t)u +c(x,t)u - u
13 XX. 1 X. t

i=1

(x,t)eaD X (_Qo, 00),

k k k k
(u , u , , ux x x

1 2 n

10

( = 1,2, ,n)



and the functions a.. satisfy the usual parabolicity conditions,

namely see definition 2. 4 of the next section.

Problem I

Lu = f(x,t) (x,t)ED X (-00, oc)

au + 13(x,t)u(x,t) = g(x,t) (x,t)8D X (_oo, oo)

Problem II

f(x,t) (x,t)ED X (_oo, oo)

Problem III

Lu = f(x,t,u) (x,t)ED X

+ (x,t)u(x,t) g(x,t) (x,t)EOD X (_oo 00)

Problem IV

f(x,t,u) (x,t)eD X (_oo, 00)

(x,t)u(x,t) = g(x,t,u) (x,t)e&D X (_oc, 00

au+ (x,t)u(x,t) g(x,t,u)av (x,t) D x (_oo, oo)

11
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Problem I generalizes Smulev's{ 191 result for the Neumann

problem by allowing the coefficients of the operator to depend on t

We also obtain uniqueness for problem I. The proof of the existence

of a periodic solution to problem I follows along the same lines as

Smulev's ingenious proof for the corresponding Dirichiet problem

Problem II is an extension of problem I, since in problem II

the function depends on the dependent variable u, as well as

on x and t. In problem II uniqueness is obtained, but only

under stronger conditions on the function g. The proof of the

existence of a periodic solution to problem II depends on the con-

cept of a sequence of fan-iilies of functions converging in an equi-

convergent manner, which will be introduced below. Using this

concept, one can show that a certain class of functions is compact

and hence one is able to apply the Schauder fixed point theorem

[31 (seealso [171 )

Problem III is also an extension of problem I, since the

function f depends on x,t and u. For this problem we also

obtain a uniqueness theorem but again under fairly strong conditions:

on the function f. The existence proof for this problem also uses

the Schauder fixed point theorem, but inthiscase one must obtain

a priori bounds on the Halder constants of the solution.

Problem IV extends problems I, II, III. The existence of a

periodic solution to this problem is proved along the same lines as



13

in problems II and III. Inproblem IV we can also obtaina unique-

ness theorem if we assume strong enough conditions on the func-

tions f and g.



and let !xI

n

II. PRELIMINARIES

We now introduce the notation and terminology to be used

throughout the rest of this dissertation. Further, for the con-

venience of the reader, we shall state several theorems which will

be of fundamental importance in obtaining our main results.

Let En denote real, Euclidean n-space and D a bounded

domain in E. Let points of E be denoted by x, etc.

with their respective coordinates (x1, x2,, x),
Denote by D the closure of D, by 8D the boundary of D,

2
1/2

xk) An open interval in
kl

denoted by (a,b), closed by [a,b1 , etc.

We begin with the following

Definition 2. 1. A real-valued function f, defined on a compact

subset, D, E is called Holder continuous (with exponent

a, 0 < a < 1) if thereexists a positive constant M such that

f(x) - f(y) <M x-y a

for all x,y in D. If a = 1, f is called Lipschitz continuous.

More generally, if X is any real metric space, we shall

denote by C(X) the normed, linear spaceof continuous real-valued

functions f, defined on X for which the norm

will be

14



SUP f(x),
XE X

is finite.

We denote by C (D X (oo, 00)) the normed, linear space

of all continuous real-valued functions f, defined for

(x,t)EDX (_oo, oo), that are periodic in t with period T. The

norm is the uniform norm

IPfII = SUP If(x,t)I.
DX(-oo,00)

(This will sometimes be abbreviated to when the context

makes the meaning clear.)

We denote by (D X (oo, oo)) the normed, linear space

of all functions which are also H3lder continuous in the x

variables (exponent a), uniformly over -00<t<Q0. (This

space will sometimes be referred to as C .)

Finally we denote by C1 (D) the class of real-valued

functions defined on D whose derivatives are H6lder continuous

with exponent X.

Definition 2. 2. The second order linear differential operator L

is defined by

15



n

Lu ) a..(x,t)u b.(x,t)u + c(x,t)u - u
i,j=1 1 3 i=l

Definition 2. 3. L is said to be parabolic on D X (-cc, cc) if the

matrix (a..(x,t)) is symmetric and positive definite for all

(x,t)ED X (_oo, cc).

Definition 2. 4. L is said to be uniformly parabolic on

D X (_oo, cc) if there exist positive constants a,b such that for

16

all EE
n

a

i, j= i=l

The boundary D is of class if locally 8D

can be represented by x. = h(x1,x2, ) for

some i where h belongs locally to

Definition 2. 5. We say that DD satisfies the strong inside

sphere property at the point x° 3D if there exists a closed ball

B with center x(1)ED satisfying

BD
(0)B r D = {x }

n n



Definition 2. 6. Let D have the strong inside sphere property

at the point E D and let t0) =

denote the unit interior normal to &D X (Woo, 00)

define the inward conormal direction to 3D X (_oo,

t0) by the vector v = , V, 0) where

n
(0) (0)a..(x ,t0).(x ,t0)

13

Having defined the conormal direction we now define the

conormal derivative.

Definition 2.7. Let 3D and denote v(x0,t) the inward

conormal direction at t). The conormal derivative,
&u(x,t) of u(x,t), XED, in the direction of the inward

t)

conormal at (x0,t) is defined by

n
Du(x,t) (0) (0) 3u(x,t)

3v(x0,t)
a.. (x ,t)p..(x ,t)

1, j=1

We shall now define the conormal derivative at a point on

the boundary 3D. Before doing this, however, we need to intro-

duce the idea of a finite closed cone.

v.=
1

(x0,t0),

at (x0,t0). We

at the point

17



Definition 2. 8. A finite closed cone K in E with vertex- n

at the origin is any set of points in E satisfying the implications

XEK aXEK for 0 < a < M < oc, M fixed

x,yEKx+yEK

XEK 4' -x4K

By a finite closed cone K in En with vertex is meant a

set in E which is congruent under translation with a finite closed
n

cone whose vertex is at the origin.

We can now define the conormal derivative at a point on the

boundary.

Definition 2.9. The conormal derivative of u(x,t) for XEDD

is defined by

where K is any finite closed cone with vertex x and satisfying

D.

au 8u(x, t) - urnav - av(x,t) yx
yEK

Definition 2. 10. We say that u = u(x,t) is a solution to the

initial-boundary value problem

18

au(y,t)
Ov(x,t)



if:

Lu = f(x, t) (x, t) eD X (0, T

u(x,0) =4i(x) xeD

au
+ (x, t)u(x, t) = g(x, t) (x, t) E D (0, T I

u is continuous on D X [0, TJ

u , u , i, j = 1,. , n, are continuous on D X (0, T},c. x.x.
1 13

u is continuous on D X (0, TI

u satisfies the above conditions (i), (ii), (ii

For the convenience of the reader we shall state two theo-

rems, the proofs of which may be found on pages 144, 147 of

Friedmants text [5], and whichwe shall make use of in the sequel.

Theorem 2. 1

The boundary value problem

= f(x,t) (x,t)eD X (0,T]

u(x, 0) = 4t(x) xED

(x,t)u(x,t)=g(x,t) (xt)eaD X (0,TJ

19

has a unique solution u = u(x, t) provided the following conditions



are satisfied:

L is uniformly parabolic on X [0, T I

the coefficients of L are continuous and satisfy the

following Hilder conditions on X [0, T]

Ia(xt) a..(x°,t)l <Mlx-x°l

b. (x,t) - b.(x°,t)I <Mlxx°l

lc(x,t) - t)
I <Mx-x°I

D is of class

f is Hilder continuous in x (exponent a) and is

uniformly continuous on D X (0, T]

(v) g, 1 are continuous on D X [0, T]

i is continuous in D and vanishes in some

neighborhood of 8D.

The second theorem taken from Friedman's book contains

an a priori estimate on the solution of the above boundary value

problem. We shall state a slightly modified version, which will be

sufficient for our purposes.

a

20



Theorem 2. 2

Let u = u(x, t) be a solution of the boundary value problem

stated in the previous theorem, and assume that L is uniformly

parabolic in x [0, TI with continuous coefficients. Assume

also that &D is of class C and that
1 +X

c(x,t)<O on x{o,TJ

13(x, t) < b < 0 on D X [0, TI.

Then the following estimate holds on D X { 0, T

x,t)I <K (SUP ft +SUP Ig! +SUP kI)

where the supremums are taken over their respective domains and

K is a constant depending on L, 3 and D.

We now state two more well-known theorems which will be

needed later.

Schauder Fixed Point Theorem (see e.g. [3] or [17])

If X is a normed linear space and S is a continuous

mapping of K, where K is a closedconvex subset of X,

into a compact subset of K, then S has a fixed point in K.

Before stating the final theorem we now recall the concept

21



of equic ontinuity.

Definition 2. 11. A family of real-valued functions {f }' a

belonging to some index set A, defined on a domain D in E,
is called equicontinuous if for every E > 0 there is a 6 > 0

such that If(x) - f(y) < E for all x,y such that Ix-yl < 6

and for all a in the index set A.

We can now state the final theorem.

Theorem (Arzela-Ascoli)

22

A necessary and sufficient condition that a family of real-

valued continuous functions defined on a compact metric space X

be compact in C(X) is that the family be uniformly bounded and

equic ontinuous.

For a proof of this theorem see e.g. [12].



III. PERIODIC SOLUTIONS OF THE SECOND BOUNDARY
VALUE PROBLEM

It is the purpose of this section to extend Smulev's [19]

theorem by proving, under suitable conditions on L, the exist-

ence and uniqueness of a periodic solution u = u(x, t) to the

second boundary value problem

(3.1) Lu = f(x,t) (x,t)ED X (-co, oc)

au(3.2) + 13(x,t)u(x,t) = g(x,t)

Uniqueness and periodicity theorems can be proved a priori

without using all the conditions needed for existence. We shall

accordingly state and prove these two results first.

Theorem 3. 1 (Uniqueness)

Let u = u(x,t) be a bounded solution of (3. 1), (3.2) and

assume that

L is uniformly parabolic on D X (-oo, oo)

c(x, t) < 0 (x, t) D X (_oo, 00)

t) < b0 < 0, b0 a constant, (x, t) E &D X (_oo,

(iv) D belongs to

(x,t)EaD X (-00, oc)

23
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Then there exists at most one solution, U = u(x,t), to the problem

(3. 1), (3. 2).

Proof: Let u1, u2 be two solutions of (3. 1), (3. 2). The differ-

ence u u1 - u2 satisfies

Lu = 0 (x,t)ED X (oo, Go)

(x,t)u(x,t) = 0 (X,t)EOD X (_oo, Go)

Let (x,t) be an arbitrary point in D X (-co, oo). If we can show

that u(x, t) = 0, the theorem will be proved. For this purpose we

let v(x, t) = etu(x, t), and let t* < t be arbitrary. Then the

function v(x,t) satisfies

Lv-v = 0 (x,t)ED X (t*, 00)

av + 13(x,t)v(x,t) = 0

tv(x,t*) e u(x,t*)

From Theorem 3. 2 follows the estimate

Iv(x,t)J <K et*StJP Iu(x,t*)
XE D

(X,t)EaD x (t*, 00

XED.

The functions u1 and u2 are bounded by assumption, so u is

bounded. Denote the bound on u by B. Then



t* -Iv(x,t)I <K Be , (x,t)EDX [t*,00),

and in particular, at (x,t

tv(x,t)l <KBet.

But t* < t was arbitrary and hence, letting t* tend to -00,

we find that v(x, t) = 0, and consequently, by the definition of

u(x, t) = 0, which completes the proof.

Theorem 3. 2 (Periodicity)

If the problem (3. 1), (3. 2) possesses a unique solution,

u = u(x,t), and if the functions a., b, c, f, 1 and g are

periodic in t with period T, then the solution u is periodic

in t with period T.

Proof: Let v(x,t) u(x,t+T) and observe that

L(x, t)v(x, t) = L(x, t+T)u(x, t+T) = f(x, t+T)

= f(x,t) (x,t)ED X

8v(x, t)
+ (x, t)v(x, t) au(x, t+T)

+ (x, t+T)u(x, t+T)- av

= g(x,t±T)

= g(x,t) (x,t)EOD X (_00,

25
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Thus, both u and v are solutions to (3. 1), (3. 2). By the

uniqueness assumption, v(x,t) u(x,t). That is, u(x,t)u(x,t--T).

We now state and prove the main result of this section.

Theorem 3. 3 (Existence)

The boundary value problem (3. 1), (3. 2), that is,

Lu = f(x, t) (x, t) eD X (-co, 00)

(x,t)u(x,t) = g(x,t) (x,t)EaD X (-oo,00)

has a unique, bounded solution u = u(x,t), which is periodic in

with period T, provided the following conditions are satisfied:

L is uniformly parabolic in D X (cc, oc)

the coefficients of L are continuous and satisfy the

following Halder conditions on D X (_oo, oo)

- a..(x°,t)I <MIx-x°I
a

() a
I b.(x,t) -b.(x ,t)J <MIx-x

11 1 -
a(0)Ic (x,t) - c(x , t) I <MIx-x°I

D belongs to class C
1 +X



satisfies the following Hlder condition on DX (-00,00):

f(x,t) -f
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and is uniformly continuous in both variables x and t

on DX(-oo,00)

(v) (3 and g are continuous on 8D X (o0, 00)

c(x,t)<O (x,t)EX (_oo, 00)

(3(x,t) < b < 0, b a constant, (x,t)EaD X (-00, oo)

the functions aS., b., c, f, (3 and g are periodic

in t with period T.

00
Proof: Let {t } be a sequence of negative real numbers,n n=l
which decrease strictly to minus infinity. By Theorem 2. 1 this

determines a sequence of functions, denoted by {u }, defined by:

LUn = f(x,t) (x,t)ED X (t,t*J

au (3(x,t)u(x,t) = g(x,t) (x,t)EaD X (t,t*]

u''(x,t*) = 0 XED

where t* is an arbitrary, positive number. Since t* is

arbitrary, we conclude that the above problem has a unique solution,

un, defined on X {t,+oo).



=0

q

av + (x, = 0

)
=

) - u(x,t
p p p

= UCI(X,t) XED

Making the transformation v' q = etuP q, we find that v' q

(x, t) E D X t ,00)
p

(x,t)eaD X (t ,00)
p

satisfies

28

Nothing is known as to convergence of {u11} on DX (_oo,00).

However, given any a < 0 we shall produce a sub-sequence of

{Un} which converges uniformly on DX (a, 00), namely any sub-

fl 00
sequence {u } for which t < a (We shall henceforth calln0

sets of the form 15 x (a, 00) left bounded subsets of D X (_oO,. 00).)

To show that such a sub-sequence {u} - which we re-name
n0

{
ur } - converges uniformly in the sense of Cauchy on D X (a, 00),

we first ase Theorem 2. 2 to obtain the following estimate on DX[t, °°

u(x,t)I <K (SUP Ifi + SUP It) C0 <cc

the supremum of Jf
I

being taken over DX (00, cc) and that of

I gi over D X (oo, cc). The constant K depends only on L,

1
and D. Next we pick integers q> p> 0 and observe that the

difference - u1 satisfies



p, qa
+ = 0

t
= e PuP(

p
t=ePu(,

p

(x,t)E3D X (t ,00)
p

XED.
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= 0 (x,t)E D X (t , 00)

Again applying Theorem 2. 2, we estimate v' q on i< [t, 00)

by

tvP(x,t)J <KeStJPI uC1(x,t )J.
XED

But we have already seen that the elements of the sequence

are bounded by CO3 so that v' < K etP C0 on

DX [t,00), where K and C0 depend only on L, 3, f g and

D. Substituting u(x,t) we have

,t)I <KC0e

for (x, t) ED X { t, 00). From this it follows that on every left

bounded subset of DX (-oo, oo) the sequence {Un} is a uniformly

Cauchy sequence of continuous functions.

Defining u(x, t) to be the pointwise limit of {un }, we now

show that u(x,t) satisfies (3. 1), (3. 2). To this end suppose that

v(x,t) is a function that satisfies



Lv = f(x,t) (x,t)D X (t*,oO)

+ 3(x, t)v(x, t) = g(x, t) (x, t) E 3D X (t*, 00)

v(x,t*) = u(x,t*) XE D

where t* is an arbitrary negative number. Choose n sufficiently

n nlarge so that t < t*. Letting w = v - u , we find thatn

nLw =0
n

aw

(x,t)ED X (t*,00)

+ f3(x, t)w(x,t) = 0 (x, t) E 3D X (t*, 00)

w'(x,t*) = u.(x,t*) - u(x,t*) XED

Applying Theorem 2. 2 again, we have

Iv(x,t) - U(X,t)I < K SUP Iu(x,t*) - U(X,t*)I
XED

for (x,t)ED X {t*,00) and K = K(L,,D). From this estimate,

we see that the sequence {Un} converges to v uniformly on-
. nD X {t;c, 00) and since {u } also converges to u in the same

region, we conclude that u = v. That is, u satisfies

Lu = f(x,t) ( ,t)ED X (t*,00)

au + S(x,t)u(x,t) = g(x,t) (x,t)E3D x (t* , 00).

30
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Since t* was an arbitrary negative number, we conclude that u

satisfies (3. 1), (3. 2). Finally the uniqueness and periodic ity

assertions follow from Theorems 3. 1 and 3. 2, respectively.



IV. PERIODIC SOLUTIONS OF THE NONLINEAR SECOND
BOUNDARY VALUE PROBLEM

The purpose of this section is to extend the results in the

previous section to the case where the right hand side of the bound-

ary condition + 3u = g depends on x, t and u. We also

consider the case where the right hand side of the operator equation

Lu = f depends on x, t and u and finally, we take up the case

where both f and g depend on x, t and u.

Before stating and proving the major results, we first give

the following definition and prove a lemma.

Definition 4. 1. If the pair (X, d) is a metric space, where X

is a linear space and d is a metric defined on X, we say that

a sequence of families of real-valued functions F = {f'1 }, a

belonging to some index set A, each ffl defined on x, con-

verges to the family {f } in an equiconvergent manner as

n oc if, for each E > 0, there exists an integer N, inde-

pendent of a

for all xeX and all aEA.

such that n > N implies

Injf (x) - f (x)I < E
a a

32



Lemma 4. 1

If for each n = 1,2,. . . , F = {f'1 } is a family of equi-

continuous real-valued functions defined on a compact metric space

(X, d) and if {f converges to
a

in an equiconvergent

manner as n , then the family {f } is equicontinuous.

Proof: Since each family F
n

such that d(x, y) < 6 impliesn

by use of the definition. Also since

This proves the lemma.

is equicontinuous, we know that

{f
}a

in an equiconvergent manner we know that if > 0 then there

exists an integer N independent of a such that for all x X,

a E A,

n Ef (x)-f(x) <-
a a

for all n> N. Now pick E > 0. We conclude that there exists

a 6> 0, independent of aEA, such that if d(x,y) < 6, then

for all cZEA we have

If(x)_f(y)I lfa(x)_f(x)I + f'(x)_f(y)I + If(y)_f(y)l

E E E = E.

33

for every E > 0 there exists a 6 > 0, independent of a,

!f(x) - f(y)l <j for all aEA,

{f
'

} converges to



With the help of this lemma we can now state and prove the

major theorems of this section.

Theorem 4. 2 (Existence of a periodic solution to PROBLEM II)

The problem

(4.1) Lu = f(x,t) (X,t)ED X (_oo, co)

au(4. 2) - + (x, t)u(x, t) = g(x, t, u)av

has at least one solution u = u(x,t), periodic in t with period

T provided the following conditions are satisfied:

(i) L is uniformly parabolic in D X (..00, co)

( the coefficients of L are continuous and satisfy the

following Holder conditions on D X (oo, oo)

a
(0) (0)iIa (x,t)-a (x ,t)l <MIx-x Iij ij

Ib.(x,t) - b(x°, t)l MJx-x0
a

a
(0)Ic(x, t) - c(x , t) < MIx-x°

OD belongs to class C
1+x

satisfies the Hôlder condition on D X

a
(f(x,t) - f(x°,t)I < MIx-x°I

(x, t) E D X (_oo,00)

34



(S)

and is uniformly continuous in x and t on

DX(-oo, 00)

(v) f3 is continuous on D X

c(x,t)<O on DX (oo, 00)

(x,t) < b < 0, b a constant, on D X (oo, 00)

the functions a., b., c, f, 3 and g are periodic

in t with period T

g = g(x,t,v) is continuous in (x,t)EaD X (_oo, 00),

-00 <v < 00, and Lipschitz continuous in v with

Lipschitz constant "sufficiently small" , the Lipschitz

constant being independent of x and t.

Proof: If in our nonlinear problem (4. 1), (4. 2) we replace

g(x, t, u(x, t)) by g(x, t, v(x, t)) where v(x, t) is an arbitrary

function in C, we return to a linear problem

Lw f(x,t) (x,t)ED X (_00,

(x,t)u(x,t) = g(x,t,v(x,t)) (x,t)EaD X (_oo, 00)

35

of the type considered in Theorem 3. 3, which consequently possesses

a unique solution w(x,t) in C. We may accordingly consider
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(S) as defining a transformation S of into itself. Now if

w = Sv can be shown to have a "fixed point" u in C (th.t is,

Su = u), we shall have a periodic solution to (4. 1), (4. 2).

In order to apply Schauder's fixed point theorem, we next

show that:

S is a continuous mapping from the normed linear

space into itself.

S maps a closed convex subset of C into a compact

subset of itself.

Having shown these two properties of 5, we shall be in a position

to apply the Schauder fixed point theorem and conclude that S has

a fixed point in and hence the problem (4. 1), (4. 2) has a pen-

odic solution. To show S is continuous let IIvnvII - 0 as

Now, if we write w = v -v we haven n

Lw =0n

+ (x,t)w (x,t) = g(x,t,v (x,t))-g(x,t,v(x,t)).n n

By Theorem 2. 2, we obtain the following estimate

1w (x,t)I < K SUP Ig(x,t,v (x,t)) - g(x,t,v(x,t))ln - n

ow n



where the supremum is taken over D X (-oc, cc) and the positive

constant K depends on 3 and D. Using the fact that g is

Lipschitz continuous in the last argument, we can write

1w (x,t)i <KM SUP iv (x,t) - v(x,t)in -
= KM Iiv-vIl

where M is the Lipschitz constant. Taking the supremum of the

left hand sidewe have

ilu -uli < KM liv -viin - n

and hence S is a continuous mapping.

To show that S maps every closed convex subset of

into a compact subset of itself, let B(O, R) {vEC: II

a closed convex set. For vEB(O,R), we have that

lu(x,t)i <K (SUP lf(x,t)t + SUP lg(x,t,v(x,t))l).

To find a bound on the above expression one observes that

g(x,t,v(x,t))i g(x,t,0)l + g(x,t,v(x,t))_g(x,t,O)

<g(x,t,O)i + Miv(x,t)i

and by taking the supremum of each side of the inequality we con-

dude that
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SUP g(x,t,v(x,t)) < SUP g(x,t,O) + MSUP Iv(x,t)I

SUP II + MR

Usingthis estimate, we bound ,t) by

x,t)J <K(SUP JfJ +SUP lI +MR)

= K (MR + CONSTANT)

where CONSTANT = SUP If I + SUP II < oc . From this inequality

we finally arrive at

II <K (MR + CONSTANT).

This means that if KM < 1 then it is possible to pick R suf-

ficiently large so that

uI < K (MR + CONSTANT) <R

and hence uEB(O,R). That is, if the Lipschitz constant M is

sufficiently small, say M < , then for R sufficiently large,

S maps the closed convex set B(O,R) into itself.

We now show that S(B(O,R)) is a compact subset of

C (Dx (-00, oc)). It is sufficient to show that S(B(O,R)) is

compact in C(DX (_oo, oc)) since S(B(O,R)) wilithenbe

38

compact in the closed subset, C(D X (-.oc, oc)), of C (DX (Woo, 00)).

To show S(B(O,R)) is compact in C(D X (o0, 00)) let



F = u" } be a sequence of families of functions defined by
V

n=

nLu .f(x,t)
V

nau
V

+ (X,)Un(X,) = g(x,t,v) (x,t)EaD X (t ,t*]
V n

where

) {t} is a sequence of negativenumber decreasing

strictly to

(ii) t* is an arbitrary positive number.

ye B(0, R).

We observe that from [5, p. 210] it follows that for each

n = 1,2,.. Fn {u'1} is an equicontinuous family of real-valued

functions defined on DX [t,t*]. Also for q > p > 0 we have

by Theorem 2.2 the following estimate on i5X [t,t*]

t -t
- u(x,t)I < K e supi )Iv v - V D

t -t
e (StJPf+SUPIgI)

2
-t

<K e (MR + CONSTANT).

This estimate tells us thatfor a fixed veB(0,R) the sequence
00

(x,t)ED x (t,t*]
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n
v n1

converges uniformly in the Cauchy sense on every left



bounded subset of D X (-co, co) and hence converges pointwise

to some function U. We can show by an argument very similar

to the one given in the proof of Theorem 3. 3, that U satisfies

(4. 1), (4. 2). We also conclude from the above estimate that the

sequence of families {ui} converges to { in an equicon-

vergent manner, since the bound does not depend on v. Applying

Lemma 4. 1 we conclude that {u } is an equicontinuous family on

every left bounded subset of D X (_oo, Ca) and in particular on a

set of the form D X [t1,t2j where t1,t2 are numbers satisfying

-oo<t <t <Ca. Using the Arzela-Ascoli theorem, we conclude

that {Uv} is compact in C(D x [t1,t2}) and since t1,t2 were

arbitrary, {u} is compact in C(D X (-oo, 00)). From what we've

observed before {u} is compact in C(D X (-oo, 00)). The

Schauder fixed point theorem now tells us that the mapping S has

afixedpoint UEC(DX (-oo, That is, there is a function

u = u(x,t) periodic in t with period T satisfying (4. 1), (4.2)

This completes the proof.

We now state a slightly modified version of the above theorem.

We first note the idea of a uniformly concave function. A function

4(v) is uniformly concave if

40

for E an arbitrary positive number.

[v1+v2 c(v) + 4(vz)1 > 0,
2

>E2]



Theorem 4. 3 (Alternate existence theorem for PROBLEM LI)

Let condition (ix) in Theorem 4. 2 be replaced by:

g g(x,t,v) is continuous in (x,t)EaDX (-00,00),

-00 < v < oo, and Lipschitz continuous in v, the

Lipschitz constant being independent of x and t;

furthermore Ig(x,t,v)I <c4(x,t,v) where the func-

tion is uniformly concave in u and c is a

positive constant.

Then problem (4. 1), (4.2) has at least one solution u u(x,t),

periodic in t with period T.

Proof: The proof follows nearly the same lines as Theorem 4. 2.

The only difference between these two proofs occurs when showing

that the mapping S maps C into itself. One can easily observe

that the hypothesis
I
g(x, t, v)I<ccf(x,t,v) allows one to relax the

condition that the Lipschitz constant of g be sufficiently small.

Remark: The function (v) = I

0 0 < 0< 1, is uniformly

concave.

We now state and prove a uniqueness result for problem

(4. 1), (4. 2).
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(x,t) =

g(x,t,u1) - g(x,t,u2)
u1(x,t) - u2(x,t) u1(x,t) 4 u2(x,t)

1(x,t) = u2(x,t).

42
Theorem 4. 4 Uniqueness theorem for PROBLEM II)

If u u(x,t) is a bounded solution of (4 1), (4.2) and if

L is uniformly parabolic on D X (Woo, 00)

c(x, t) < 0 (x, t) eD X (_oo, 00)

(x,t)EaDX (_oo, oo)

D belongs to class

(v) g(x,t,v) is monotone increasing in v,

then the solution u = u(x, t) is unique.

Proof: Let u1, u2 be two different solutions of (4. 1), (4. 2) and

denote by w the difference w = u1-u2. This difference satisfies

=0 (x,t)eD X (_00, 00)

+ f3(x,t)w(x,t) = g(x,t,u1)- g(x,t,u

- iji(x,t)w(x,t), (x,t)DD X (_oo, oo)

where



Since g is monotone increasing, we conclude that 4i(x,t) > 0.

We now write the boundary condition as

+ [P(x,t) - (x,t)J(x,t)= 0.

By Theorem 3. 1 we can conclude that the unique solution to the

problem

Lw 0

+ [p(x,t) - qi(x,t)]w(x,t) = 0

is the solution 0. Hence u1 = u2.

We now state a second uniqueness theorem.

Theorem 4. 5 (Alternate uniqueness theorem for PROBLEM II)

Let condition (iv) in Theorem 4. 4 be replaced by:

( v') The function g(x,t,v) is differentiable with respect

to v and the derivative g satisfiesv

g(x, t, v)I < b0 (b0 defined in condition (iii) of

Theorem 4. 4).

Then the solution u = u(x,t) of (4. 1), (4.2) is unique.

Proof: The proàf follows the same lines as Theorem 4. 4. The
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major step is cartied out by a simple application of the mean value

theorem.

We now take up the case where the right hand side of Luf

depends on x,t and u.

Theorem 4. 6 (Existence theorem for PROBLEM III)

The problem

(4. 3) Lu = f(x, t, u(x, t)) (x, t) ED X (_oo, oo)

(4. 4) + f3(x,t)u(x,t) = g(x,t) (x,t)EOD X (_oo, 00)

has at least one solution u = u(x,t), periodic in t with period

T, provided the following conditions are satisfied:

L is uniformly parabolic on D X

the coefficients of L are continuous and satisfy the

H6lder conditions on D X (-oo, 00)

Ia..(x,t) - a..(x°,t)l <Mfx -

b. (x,t) - b1(x°,t)J <MJx -

I c (x,t) -

D belongs to class

(0) (0) a
(x ,t)1<MIx-x I
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f(x, t, v) is uniformly continuous in x and t, and

Lipschitz continuous in v with Lip6chitz constant

"sufficiently small" ; furthermore the Lipschitz con-

stant does not depend on x and t

3 , g are continuous on 3D X

c(x,t) < 0 (x,t)ED X

1 (x, t) < b0 < 0, b0 a constant, (x, t) E 3D X (-cc, cc)

the functions a.., b., c,f, f3 and g are periodic in

t with period T.

Proof: Consider the mapping S from C (DX (oo, cc)) into

C (DX (oc,00)), where S, Sv = u, is defined by

Lu = f(x,t,v(x,t)) (x,t)ED X

3u
+ (x,t)u(x,t) = g(x,t) (x,t)E3DX (_oc, cc)

To show SveC1(DX (oc, 00)), we first observe that since

f(x, t, v(x, t)) is Hôlder continuous in x, we can apply Theorem

2.1 to conclude that SVEC (DX (-cc, 00)). To show Sv is

Hilder continuous in x uniformly on - 00 < < 00, that is,

SvE C (D X (_oo, cc)), it is sufficient to show that U is uniformly



continuous in v, with Lipschitz constant independent
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bounded on D X (-oo, oo). From Friedman's text [5 1 we know

that u is uniformly continuous on D X [0, T] and hence by

the periodicity of u we conclude that u is uniformly

bounded on D X (oo, 00) and hence Sv is Hlder continuous

in x, uniformly on -00 < t < oo We now show that:

S is a continuous map from the normed linear

space C into itself.

S maps a closed convex subset of C into a

compact subset of itself.

To show that S satisfies these two conditions we proceed along

the same lines as the proof of Theorem 4. 2. We then apply the

Schauder fixed point theorem to obtain the existence of a periodic

solution.

We now state a slightly modified version of the above

the ore m.

Theorem 4. 7 (Alternate existence theorem for PROBLEM III)

Let condition (iv) in Theorem 4. 6 be replaced by:

f = f(x, t, v) is uniformly continuous in

(x,t)ED X(-oo, oo), -00< v <00, and Lipschitz
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of x and t; furthermore, f satisfies

f(x, t, v) < c 4(x, t, v) where the function is

uniformly concave in v and c is a positive

constant.

Then problem (4. 3), (4.4) has at least one solution u = u(x,t),

periodic in t with period T.

Proof: The proof follows nearly the same lines as Theorem 4. 6.

The only difference between these two proofs occurs when showing

that the mapping S maps C1D into itself. One can easily

observe that the hypothesis If(x,t,v)I <c(x,t,v) allows one to

relax the condition that the Lipschitz constant of f be sufficiently

small.

We now state and prove a uniqueness theorem for problem

(4. 3), (4. 4).

Theorem 4. 8 (Uniqueness theorem for PROBLEM III)

If u u(x,t) is a bounded solution of problem (4. 3), (4.4)

and if the following conditions hold:

(i) L is uniformly parabolic on ID X (oo, oo)

( c(x,t) < 0 (x,t)EDX (_oo, cc)



f(x,t, u1)-f(x,t, u2)
w(x,t), u1(x,t) u2(x,t)u1(x, t)-u2(x, t)

u1(x,t) = x,t)

Now since g is monotone increasing, we conclude that (x,t) 0.

We now write this operator equation as
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(x,t) < b0 < 0, b0 a constant, (x,t)EOD X (_oo, 00)

D belongs to class

f(x, t, v) is monotone increasing in v

then the solution u u(x,t) is unique.

Proof: Let u1, U2 be two solutions of (4. 5), (4. 6) and denote

w the difference w = u1-u2. The function w satisfies

Lw = f(x,t,u1) - f(x,t,u2) (x,t)ED X (_co, 00)

+ (x,t)w(x,t) = 0 (x,t)eaD X (-oo, 00)

We now write

Lw = f(x,t,u1) - f(x,t,u2) qi(x,t)w(x,t)

where

=

0



Lw - 4i(x,t)w = 0

and by applying Theorem 3. 1 we conclude that the problem

Lw -ii(x,t)w = 0 (x,t)ED X (_oo, oo)

+ f3(x,t)w = 0 (x,t)EaD X (_oo, cc)

has a unique solution. But the zero function is a solution and hence

w = 0, that is, u1 = u2.

We now extend Theorems 4. 2 and 4. 6 by allowing both f

and g to depend on x,t and u.

Theorem 4. 9 (Existence theorem for PROBLEM IV)

The problem

(4. 5) Lu = f(x, t, u(x, t)) (x, t)E D X

au(4. 6) + (x, t)u(x, t) = g(x, t, u(x, t))

has at least one solution u = u(x,t), periodic in t with period

T, provided the following conditions are satisfied:

L is uniformly parabolic in D X (o0, cc)

the coefficients of L are continuous and satisfy the

Holder conditions on D X

(x,t)E8D X (_oo,
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Fa..(x,t)-a..13 13

(0)
I

b.(x,t) - b.(x ,t)I

(0)
I

c (x,t) - c(x ,t)J

3D belongs to class Ci+

f is uniformly continuous in x and t, Lipschitz

continuous in v with Lipschitz constant "sufficiently

small" , the Lipschitz constant being independent of

x and t.

3 is continuous on 3D X (_oo, oo)

c(x,t) < 0 (x,t)ED X (-oc, 00)

I3(x,t) < b <0, b0 a constant, (x,t)EOD X (.00, 00)

the functions a.., b., c, f, f3 and g are periodic

in t with period T

g(x, t, v) is continuous in x and t and is Lipschitz

continuous in v, where the Lipschitz constant is

"sulficiently small" and independent of x and t.

Proof: Consider the mapping S from C(DX (-00, oc)) into

(D X (-oc, oc)) where S, Sv = u, is defined by

<Mix x°I
a

a
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<M x°I
a




