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Abstract. 

Modern complex mechanical systems have evolved to a point of incredible 

complexity.  Many now operate with significant assistance from automated 

response functions, and some operate without human operators at all.  These 

increasingly complex systems have also become more expensive and more 

ambitions in mission, bringing about higher risk to both money and life.  In 

response to these risks, Prognostics and Health Management (PHM) systems 

are developed to detect, manage, notify, mitigate, and respond to the potential 

failures in these high risk complex systems.  The responsibilities carried by 

PHM systems make them as integral to the successful operation of a complex 

machine as any other major system.  While methods have been developed and 

are in use to consider risk and reliability in the early stage of complex system 

design, explicit consideration of PHM capability and architecture are often left 

for later stages in the design process.  In this work, several risk and reliability 

based design techniques are discussed with consideration of PHM 

development.  In particular, the Function Failure Identification Propagation 



(FFIP) framework provides a systematic process to identify potential failure 

points and the resulting functional losses from a model based architecture.   

Research into PHM and embedded system co-design indicates that FFIP is a 

good starting point for early stage PHM architecture development.  In this 

body, FFIP is first augmented to more completely capture the data needed for 

preliminary PHM architecture and to begin to address PHM capability in early 

stage complex system design.  Second, an embedded systems design process 

centered around StateCharts is developed for specific application to the FFIP 

process in order to facilitate PHM system design during early stage complex 

system design.   
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GENERAL INTRODUCTION 
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The work contained herein this thesis is completed with the support of AFSOR grant 

BAA 2007-1 titled A Framework for Designing Reliable Software-Intensive Systems.  

Quoting directly from the proposal “the overall goal of this research is do develop a 

formal framework to be used during conceptual design for identifying potential 

functional failures of complex software-intensive systems, their propagation through the 

many subsystems that make up such systems, and the resulting system-level impact.” 

The challenges of this goal are broken down into five specific elements.  Once again, 

quoting the proposal directly, the objectives are: 

(1) to enable the modeling of these interactions qualitatively, consistent with the 

limited, incomplete knowledge available during the conceptual phase of design. 

(2) to enable the identification of potential failures and their propagation paths that 

are computable directly from the system’s functional and structural topology, 

their mapping, component interactions, and the resulting dynamics. 

(3) to develop a proper mapping between the behavior of the system, its state, and 

the system functions to enable the identification of non-trivial, non-linear fault 

propagation paths. 

(4) to identify such functional failures that are not directly related to component 

failures, but still result in a potential loss of functionality. 

(5) to enable system designers to include software functionality, failures, and 

requirements in the initial system design trades for physical systems. 

The attached conference papers address the main objectives and the specific challenges 

listed here through progressing the existing Function Failure Identification and 

Propagation (FFIP) analysis framework from a tool that reasons failure propagations 

through analysis of the functional relationships between the mechanical components of 

a complex system to an early stage software model that captures the system hierarchy in 

a logically clear computational model.    As FFIP is a failure analysis method, the 

extension here is directed toward making it a Prognostics and Health Management 

(PHM) design tool.  PHM refers to be the embedded automatic response system that 

includes the sensors, processors, computational hardware, and code to detect, notify, 

and often automatically respond to failures within a complex system.  Because PHM 
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carries the responsibilities of detecting, notifying of, and responding to complex system 

failures, it is appropriate to consider PHM design around a failure analysis 

methodology.  This work provides a novel process to begin the critical step of PHM 

architecture design during the conceptual stage of complex system design in a manner a 

that allows engineers to consider PHM capability early on based on preliminary system 

simulations.  With PHM development started in a meaningful way early in the design 

process, PHM architecture can grow with overall system refinement allowing for more 

opportunity for concurrent consideration, design option exploration, and system testing 

during the PHM design process.   

The first paper, titled “A Framework for Early Assessment of Functional Failures to Aid 

in PHM Design”   

 lays out the PHM development problem through research into what is needed in order 

to develop a preliminary PHM model during early stage complex system design.   It is 

determined that intelligent PHM design requires a qualitative understanding of 

component interactions and understanding of failure propagation paths throughout the 

system.  A qualitative understanding of the system allows PHM designers to recognize 

functional failures, and an understanding of failure propagation paths allows PHM 

designers to address automatic failure response programming.  Several failure analysis 

methodologies are researched and FFIP is determined to be well suited as a starting 

point for early system design PHM architecture development, although other failure 

analysis methods are still considered of significant value for informed design.  FFIP, 

even without modification, addressed grant objectives 1 and 2 well, but in order to 

consider important, but still very general principles that hereto have been omitted, it is 

modified in the first paper in three significant ways.  First, non-linear failure 

propagation is added to existing configurational diagrams.  This captures the reality that 

some component failures are catastrophic enough to damage other components in 

physical proximity, yet outside the functional flow of the failed component.  Second, a 

time to failure propagation estimate is added to the graphical framework of FFIP.  

Although the finite details of failure propagation are not known at early stage system 
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design, order of magnitude estimates are still critical for PHM architecture.  In short, 

failures that propagate slowly may be addressed through PHM response, while failures 

that propagate very quickly through the system must be addressed in some other way.  

From an early stage, system engineers can begin to understand and incorporate 

fundamental PHM capabilities in the system architecture.  Finally, question of how 

PHM response affects the overall system architecture is addressed.  The Function 

Failure Logic (FFL) reasoner is modified to explicitly embrace how an embedded PHM 

system would respond to modeled failures.  This becomes important when a PHM 

response changes a component state to respond to a failure, that component state change 

may have consequences that need to be considered.   

All of these modifications are applied to a liquid fuel rocket engine model of moderate 

complexity.  This model was chosen to exercise the modified FFIP architecture beyond 

the conceptual examples already in the literature, and to adhere to the theme of the 

proposal as applied to general liquid rocket architectures.  

The second paper titled “Application of the StateCharts and FFIP Methodologies to 

PHM Architecture Co-Design” addresses the remaining objectives through synthesizing 

FFIP with embedded system design principles.  In this paper, a brief review of the most 

common embedded system design languages is discussed along with strengths and 

weaknesses as far as application to early stage PHM design is concerned.  As this is to 

be an early stage conceptual design tool, early design stage embedded system design 

processes were researched including Petri nets, Specification and Description Language 

(SDL), and StateCharts.  Each process has strengths and weaknesses.  Petri nets 

contains explicit logic capabilities that aren’t easily represented through SDL or 

StateCharts, but quickly looses modular clarity with increasing complexity.   SDL 

retains the modular nature of the finite state reasoning used in FFIP, but focuses on 

capabilities more appropriate for refined system design.  The StateCharts language is 

selected and applied as appropriate to the FFIP nomenclature.  The StateCharts 

representation of the system fulfills objective 3 in that the system is decomposed into 

hierarchies ranging from the high level system down through functions and sub 

functions eventually to components.  Components map to the StateCharts hierarchy in a 
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modular nature, just as they map from configuration flow graphs to functional flow 

graphs.  In StateCharts, however, functions are explicitly stated as opposed to hidden 

along functional flows in a configuration diagram.  Finite state logic is applied to these 

StateChart hierarchies that develops the process to build a more robust FFL reasoner.  

This FFL reasoner is essentially a very early stage computational model of the complex 

system.  Each system function is listed in a StateChart that is linked to levels of the 

system above and below that function.  The StateChart contains the programming logic 

for the state of that function that will be determined by command inputs, component 

states, and sensor readings.  This logical capability, that includes inputs beyond 

component states, satisfies objective 4 in making functions dependent on the more 

complex realities that can be recognized by designers as the system is broken down into 

this hierarchical StateCharts model.    

Once the complex system is translated into this StateCharts language and a FFL 

reasoner is constructed with the StateCharts finite state logic, the process of PHM 

development is discussed in detail.  The culmination of improving FFIP and then 

applying state charts to it, is where objective 5 is addressed.  Whereas the StateCharts 

constructed thus far represent the system and are used to simulate system behavior, the 

PHM StateCharts constructed next represent the programming of the embedded PHM 

system itself.  Through the use of the FFL reasoner and additional considerations from 

other risk and reliability analysis tools, engineers design PHM responses to specific 

failures.  The StateCharts model of the system is used to develop the sensor fingerprint 

for specific failures that feed an adjacent logic structure that contains the appropriate 

responses to failures that require an automated response.  Those responses then feed 

back into the StateCharts model of the system in the form of command signals at the 

appropriate points in the hierarchy, effectively simulating the system performance with 

an active PHM.  Further, the PHM StateCharts check for response effectiveness, the 

first step in addressing software failure scenarios through recognition of ineffective 

responses.  This, ultimately, is the consideration of a complex mechanical system that is 

governed by automated software response through various operational and failed states  

during early stage system design.  As in the first paper, the methodology is applied to 

the same liquid fueled rocket engine architecture. 
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 Future work is also discussed in both papers, but the future work in the second paper 

addresses the need to explore deeper into software reliability analysis application.  

Although FFIP is improved and the state charts process already begins to address 

software reliability, there is significant room for improvement.  As is the case with risk 

and reliability analysis tools for mechanical systems, the tools for software systems can 

only find failure modes, not confirm the absence of them.   As this is the case, future 

work should concentrate on finding or creating the best software risk and failure 

analysis that can be applied to state charts in early stage system design, and using them 

to further the usefulness of this methodology. 

 



CHAPTER 2 

 

A FRAMEWORK FOR EARLY ASSESSMENT OF FUNCTIONAL 

FAILURES TO AID IN PHM DESIGN   

 
Scott Kramer 

 
Irem Tumer 
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ABSTRACT 

Human artifacts have evolved into incredibly complex systems that rely on both 

hardware and software to function dependably with limited or no human operator 

control.  As the monetary and human consequences for failure climb with 

technological progress, Prognostic and Health Management (PHM) systems are 

developed to help manage, mitigate, detect, and respond to failures.  These PHM 

systems have become as integral and as important as any other subsystem in a 

complex machine.  Methods have been developed to analyze and incorporate risk and 

reliability in the early stage decision making processes of complex system design.  

These methods, however, treat the development and capabilities of PHM in the 

conceptual stage of system design in a peripheral manner at best. The importance of 

PHM consideration early in system design is significant.  The structure of PHM, one 

of the most complex of the subsystems, can begin to take shape.  Design modifications 

that must be made in light of PHM limitations should be pushed to the earliest stage of 

design possible, where costs of changes are minimized. In this paper, several risk and 

reliability based design techniques are discussed in this context.  In particular Function 

Failure Identification Propagation framework (FFIP) provides a systematic process to 

identify potential failure points and their resulting functional losses. FFIP is selected in 

this paper as fitting early stage PHM development very well.  However, improvements 

are proposed to the existing FFIP process to better address PHM design needs during 

the conceptual design stage of a complex system.  This paper presents an improved 

method, which is then applied to a liquid fueled rocket engine architecture.  Future 

work, including using the information gathered here to start the conceptual design of 

the PHM system, is also discussed. 
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INTRODUCTION 
Prognostics and health management (PHM) systems are integrated and embedded 

hardware-software systems that address the management of the ‘health’ of highly 

complex engineered systems. PHM systems are charged with determining the 

condition of each element of a complex system and providing data, information, and 

knowledge (DIaK) to control systems and operators.  These systems must evaluate the 

condition of system elements, detect anomalies, diagnose causes, determine overall 

system state, predict system impacts, communicate DIaK in a timely and contextually 

accurate manner, and initiate automatic responses in the control programming.  This is 

a tall order, and in order to develop this system architecture, PHM engineers 

sometimes must wait until significant detail is known about the complete system 

design.  Even then, PHM is usually a conglomerate of fault detection and isolation of 

variant subsystems instead of an integrated system-wide health monitoring 

application.  Some of this can be blamed on the evolution of human artifacts, as the 

first PHM came into being with the first sensors that provided information to 

operators.  As systems became more complex, some of these sensors were integrated 

into command and control systems and would initiate automatic responses to 

prescribed sensor readings [1].  Today, PHM is required to be an integral part of 

controlling and operating complex systems that are too complicated to rely on human 

operators to be responsible for all system functions, or operate without human 

operators at all [2].  Fundamentally, PHM must be able to answer key questions about 

the state of a system that were the responsibility of human operators for as long as 

complex systems have been around including: “What are the current system 

capabilities? How safe is the current state condition? How can the current degraded 

elements and failures be remedied or contained?”  As PHM has become absolutely 

critical to complex system operation, it is vital to treat PHM design as an integral part 

of the complex system from the earliest possible stages of design [3].    

PHM development must rely heavily upon system modeling, about which much has 

been developed for the advanced stages of the design of complex systems. Although 

still a field of very active research, serious PHM development is often not addressed 
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until very detailed physics based modeling is developed [2].  There is significant work 

done on developing algorithms, programs, and sensor technologies leveraged toward 

PHM development, but nearly all of these require a refined design state and focus on a 

small subsystem of the larger machine.  While these are all valuable for the later 

stages of design, the methodologies developed for PHM architecture development 

early in the design stage are limited.  It is often the case that modern PHM systems are 

conglomerates of subsystem PHM development that fail to consider interactions 

between subsystems while capturing interactions within subsystems [4].  Pushing the 

start of PHM development to the conceptual stages of complex system design also 

addresses the critical issues of exploring how PHM itself changes the states of 

complex systems.  An early start on PHM also begins to explore the limits of PHM in 

terms of what problems PHM can fix while in operation, and what problems propagate 

with too much severity at too fast of a pace for PHM to effectively address. 

A critical component of modern complex system design are the application of risk and 

reliability analysis techniques.  Some of these methods have been used in practice and 

are commercially used as starting points for PHM design.  Some methodologies can be 

used in the conceptual design stages, and many of them ask the same questions of 

engineers that must be answered by the eventual PHM system.   

In the following we first summarize  the most common risk and reliability tools used 

in complex system design and a brief analysis of their application to PHM design 

during conceptual system design. We then focus on the Function Failure Identification 

and Propagation (FFIP) method developed by Tumer and Kurtoglu [5] which provides 

a very solid foundation for the development of PHM systems during early stage 

design.  The FFIP process depends on three major modules: 1) a configurational 

model that contains the components of the system;  2) a functional model that contains 

the functions of the components of the system, and; 3) a function failure reasoner that 

facilitates a high level behavioral simulation of nominal and failed states for a system 

in the early stages of conceptual design.  This process begins to address the 

fundamental questions that PHM must address from an early stage, but as this process 



11 

 

has not explicitly been used for PHM development, modifications and improvements 

to the FFIP process are then  proposed to better enable PHM development.  In this 

paper, FFIP is briefly described using an application to a moderately complex liquid 

fuel rocket engine as an example.  The liquid fuel rocket engine is chosen as it is a 

good example of a complex system that operates with minimal or no direct human 

control and has significant failure consequences. Then, three augmentations to FFIP 

are introduced to better suit it for PHM development.  Finally, future work is 

discussed including a further PHM development process that builds this work into a 

state charts based PHM architecture. 
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BACKGROUND 

Risk & Reliability Analysis: Assessing risk and reliability during design can be done 

using tools such as FMECA, FFA, FFIP, PRA, and many others, which utilize 

modeling techniques as a critical element of capturing and quantifying system risk.  

Failure modes effects analysis (FMEA) or Failure modes effects and criticality 

analysis (FMECA) is a process which examines each component for their failure 

modes, the risk that those modes can have, and the criticality that can result from those 

failures.  FMECA is currently used in industry to gather information for the 

development of PHM systems, and can augment the methodology proposed here [6].  

Fault tree analysis (FTA) aims to capture paths of failure events from root causes up to 

ultimate consequences [7].  Although both FMECA and FTA can be invaluable in the 

understanding of the risk in a system design, neither of them are model based, and as 

such, they cannot form a solid foundation for the development of a PHM architecture.   

 

Finally, Probabilistic Risk Assessment (PRA) combines the use of several techniques 

involving fault/event modeling techniques and uses a probabilistic framework to guide 

decision making [8,9].  The problems with using PRA in early PHM design are 1) the 

probabilistic nature of components is not qualitatively known during early design 

stages; and, 2) the process is not model based, an important characteristic for the 

development of PHM architecture.   

 

Model Based Diagnosis 

Diagnostic reasoning approaches rely on a process where a system is monitored by a 

group of sensors and the readings of those sensors are compared to the expected 

behavior of the system to detect unusual conditions.  Specifically Model Based 

Diagnostics (MBD) and other related techniques are important to both PHM and 

system design [10,11,12,13,14,15,16].  MBD, however, relies on a system design that 
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has advanced beyond the early stage and does not allow PHM architecture design to 

begin in the early stage of system design.   

The FFIP process, developed by Tumer and Kurtoglu [5] combines early-design 

modeling with model based diagnostic reasoning.  Specifically, FFIP is a model based 

risk analysis tool which was developed to be applied to the early conceptual stage of a 

complex system design.  In this process, failure modes of components are identified 

and simple finite state models are developed to predict the system impact of a failure 

and the overall system state.  Because FFIP uses the actual conceptual architecture of 

the complex system and starts to document the simulation process, FFIP is potentially 

a good starting point for the development of PHM architecture.  However, since FFIP 

does not quite satisfy the needs of PHM development, FFIP is modified in this paper 

to address the fundamental needs of PHM design. 

 

FFIP 

The FFIP framework combines the modeling of function, structure, and behavior to 

simulate failure propagation paths and the ultimate functional failures.  This 

information can be used to determine mitigation options in the design stages of 

complex systems.  Currently, the three major modules in FFIP analysis are the 

graphical system model, the behavioral simulation, and the function-failure logic 

(FFL) reasoner [17].  The system is modeled using graphical representations. Function 

models are used to represent system function in FFIP [18], which are representations 

of a system that shows the overall system functions decomposed into smaller, more 

fundamental sub functions.  The subfunctional relations are shown through the flows 

of energy, material, and signal (EMS).  The Functional Basis taxonomy is the 

standardization used for the construction of these models. The structure of the design 

is captured in a configuration flow graph (CFG) [19].  Linked to the functional model 

above, CFGs strictly comply to the functional topology of the system [20].  Each node 
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of the CFG corresponds to a system component, and arcs represent energy, material, 

or signal flows using the same terminology as the Functional basis.   

 

Finally, the behavior of the system is modeled with a component oriented approach.  

High-level, qualitative behavioral models of components are developed in various 

nominal as well as faulty modes.  The behavior of each component is derived from 

input-output relations and underlying fundamental principles.  The finite states of each 

component are defined while the physical laws and mathematical details are defined 

separately.  These physics based modeling details are left for later in the design 

process. There are many processes for modeling system behavior early in system 

design, but most model only nominal behavior.  FFIP focuses on modeling failed 

states of components and monitoring the relationship between behavioral dynamics 

and component function. 

 

The simulation process is set to determine the system behavior under certain 

conditions.  Conditions here represent event occurrences that cause component mode 

transitions.  Throughout the simulation, both the component modes and the set of 

system state variables are tracked.  As such, the overall system state at any given time 

is a function of the component modes and the system state variables: 

 

X(t)=F(c(t),v(t))                                 (1) 

 

where c(t)=[c1, c2, c3…,cN] is a vector of discrete component modes and 

v(t)=[v1,v2,v3,…,vk] is a vector of system state variables. 

As the quantitative details of the system cannot yet be determined at this early stage, 

finite states of each element are assigned instead.  For example, liquid flow rates for 
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valves can be assigned a set of {zero, low, nominal, high} and a sensor signal may 

have values of {no signal, high, nominal, low, zero}.  With each component simplified 

to a finite state element, laws can be built governing these components, treating them 

as portable modules that can then be fit together to build a functional model of the 

system [5].   This is exemplified in Figure 2.1, borrowed from [5]. 

 

The ‘functional’ nature of FFIP satisfies most of the needs of a PHM specification.  

This process defines system states and conditions, predicts system impacts of failures, 

provides some of the information needed to design the detection apparatus and write 

the diagnostics logic.  Missing from FFIP are temporal data and a complete failure 

mitigation and response reasoning.  FMECA can address the response reasoning, but 

temporal data regarding time to failure and time to propagate from any initial failure 

must be added to the FFIP analysis, if only on an ‘order of magnitude’ basis.  It is 

worth noting that such temporal information may be little more than ‘best guesses’ for 

much of the design process.  Regardless, ‘order of magnitude’ data can be quite useful 

in the arrangement of the embedded system architecture. 
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APPLICATION: PHM Design for Liquid Fueled Rocket Engine 

The existing FFIP framework is briefly explained using a moderately complex Liquid 

Fuel Rocket Engine (LFRE) architecture as a working example. The model presented 

here is a basic staged combustion model similar to those used in the Space Shuttle 

operated by NASA.  In this model, liquid hydrogen is used as both the fuel as well as 

the coolant.  The first pressure boost the hydrogen flow receives comes in the low 

pressure fuel booster, which is driven by hot gasified hydrogen carrying heat energy 

from the regeneratively cooled tubular nozzle.  A coolant control valve regulates the 

amount of hydrogen that flows through the regeneratively cooled nozzle sending the 

hydrogen that is not used for cooling directly to the preburners.  The hydrogen is 

combusted in preburners with some of the oxygen that drives turbopumps on both the 

fuel and oxidizer flows.  The low pressure oxygen turbopump is driven by liquid 

oxygen pressurized by the high pressure oxygen turbopump that is connected to the 

oxygen side preburner.  Some of the oxygen is burned in the preburners and the 

remainder is injected into the main combustion chamber where it burns with the hot 

gasses generated in the preburners [21]. 

 

Applying FFIP to this LFRE architecture:  The configurational flow graph (fig. 2) lists 

the components and the flows between them.  The configurational flow graph maps 

directly to the functional flow graph (fig. 3) where the functions of the system are 

clearly laid out.  The flows delineate the transfer of signal, energy, and material 

between the different functions and components.  In prior FFIP applications in the 

literature, the flows of signal, energy, and material are considered separately, but in 

this example, some of the hydrogen flow and some of the oxygen flow is represented 

as both energy and material in the same flow as energy is carried back to the low 

pressure turbopumps by these material flows.   
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Using the finite state logic developed earlier (Fig. 1), a Function Failure Logic (FFL) 

reasoner is developed that reflects this LFRE system.  Although the finite details about 

the operating parameters of this system have not been developed, a simplified early 

stage simulation tool is developed that will show how the failures of components 

within the system will propagate through the system and potentially result in a change 

in the overall system state. 

 

As it stands, FFIP provides much in the way of information needed to develop the 

PHM architecture.  A finite state model of the system is developed early on, and 

important relationships regarding potential responses to component failures are 

developed.  The use of FMECA and other risk analysis techniques add to the 

knowledge base needed for PHM development.  Regardless, certain critical needs of 

PHM development are not currently addressed with FFIP. 
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AUGMENTATIONS TO THE FFIP METHODOLOGY 

To improve the early design stage collection of data, information, and knowledge 

needed for developing PHM systems, some critically important additions to FFIP are 

proposed in this paper. First is a time to failure reasoning, and second is a proximity 

propagation logic, and third is an operational response mitigation paradigm.  These 

steps are critical to complete the data, information, and knowledge set needed for the 

PHM architecture.    

 

Augmentation 1: Time of propagation analysis. 

Critical to the effective response of a PHM architecture is timeliness. This is 

fundamentally important for not only the early development of PHM architectures, but 

also to serve as an early design stage indicator to the rest of the engineering team as to 

just what the limits of PHM are with regard to component failure response.  We are 

concerned about three catastrophic system failures that originate somewhere in the 

system and propagate through: “1) failures that propagate in a manner that a PHM 

architecture does not have the opportunity to provide adequate response for; 2) 

catastrophic system failures that propagate quickly and hence provide very little (but 

some) opportunity for response and mitigation, and 3) failures that propagate slowly 

and provide ample opportunity for response and mitigation. These are represented on 

the diagrams with a “TTFP” label indicating the estimated time to failure propagation.   

Currently FFIP considers a ‘time step’ architecture that tracks how variables change 

throughout system operation.  From this, a nomenclature describing the temporal 

consequences of a degraded or failed state can be inserted into the architecture 

clarifying the speed at which consequences ‘propagate’ through a failure path.   

 

Although the overall system architecture may not provide ample data for high level 

timing detail, the process of grouping failures into these categories is an important step 
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for the design of the embedded reactive PHM system. Once again, a simple finite state 

logic can be used to indicate how quickly the change of states flows through the 

system architecture.  

 

Table 1 illustrates the first scenario in which the failed component is the coolant 

regulator valve.  In this LFRE architecture, the fuel, hydrogen, also acts as a coolant 

for the main nozzle.  The heat that the hydrogen absorbs as a coolant is used to power 

the low pressure fuel booster that draws the hydrogen from upstream in the system.  

At time step one, the coolant control valve fails in the closed state (due to clogging, or 

malfunction).  This results in no hydrogen bypassing the nozzle heat exchanger and all 

the hydrogen coming from the fuel turbopump going through the nozzle heat 

exchanger.  As a result, more thermal energy is delivered to the low pressure 

turbopump thus increasing the overall flow of hydrogen to the system over soe period 

of time. This is modeled through the function-failure reasoner in Table 1.   Although 

impossible to model with finite accuracy at an early design stage, indications are that 

the system would stabilize at this slightly higher flow of hydrogen, and, assuming 

nominal flow rates, would not result in catastrophic component failure immediately.  

Given enough time, however, the system will expend fuel at a rate faster than 

nominally, and changes in vibrations could eventually result in catastrophic failure.  

Although specific timing details are not known, it can be shown that a failure of the 

coolant control valve would have a moderate propagation time with potentially 

extreme consequences.  Here we can indicate that a failed coolant control valve is a 

‘time type 3’ failure where a PHM reaction that does not result in entire system loss 

may be a reasonable mitigation strategy.  This nomenclature is added to the FFG in 

Figure 2.4 by the “TTFP:3” nomenclature as well as to the CFG.  For clarification, a 

“TTFP: 1” failure would be a loss of oxidizer containment that may result in an 

explosion, where a “TTFP:2” failure would be a loss of preburner function where 

PHM could be used to respond to the casualty by shutting the system down, hereby 

preventing the worst case scenario (possible explosion) at the sacrifice of system 
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function (loss of propulsion).  Note that these groupings only speak to PHM ability to 

respond with regard to how fast a failure moves through a system and not the ability of 

PHM to respond to a particular type of failure.          

           

Examples of a failure that PHM cannot reasonably expect to be able to respond to is a 

leak of oxidizer.  In the event of massive oxidizer leak, a violent explosion becomes 

possible and a large fire is likely in a very short time.  PHM may be an important part 

of responding to such a failure, but it is not reasonably expected that PHM can handle 

this alone.  As such, engineers should look elsewhere to prevent this failure mode.  

 

As an early analysis of the speed at which these failures propagate can start to clarify 

the limitations of PHM early in the design, changes to the overall system design that 

can avoid these limitations can be made much earlier and at significant cost reductions 

using this augmentation. 

 

Augmentation 2: Proximity propagation between flows. 

Another practical realworld consideration not clearly addressed in FFIP is how failures 

may propagate laterally through a complex system [22].  For example, a pipe failure 

can lead to fuel or oxidizer entering a compartment that requires a coolant pump for 

the central computer cooling system to be shut down.  FFIP addresses the 

configuration of a complex system and looking at this lateral failure propagation is a 

logical addition to the functional failure analysis of the overall system.  From a PHM 

system design perspective, these lateral failures may require reactions in other 

subsystems and may reveal additional sensor resources needed for the failure 

verification process, an issue of critical concern for PHM reliability, if  specifically 

addressed in this work.     

 



21 

 

The configurational flow graph (CFG) model can be used to capture some of these 

relationships.  Because the model takes into account a relative proximity, designers 

can take note of potentially important proximity relationships from an early stage.  As 

it stands, the functional model and configurational flow graph track the flow of signal, 

electrical, and physical flows through the system along the functionally designed 

paths.  Failures or changes of state that occur are modeled within these paths and 

propagated down stream.  In reality, certain failures can propagate across these 

streams.  An example of this is a component explosion that can send debris, hot 

plasma, electrical discharge, flammable liquid spray, or other hazards across the 

physical space of a complex system and interact with a completely different flow.  In a 

scenario this extreme, it seems unlikely to avoid a catastrophic failure of a system 

were this to occur, making the analysis of such failures critical to the early design 

process and the principles of damage control in complex systems.  PHM can play a 

significant role in damage control.  If PHM can recognize such a component explosion 

and the proximity of other vital subsystems are considered in the automated response, 

PHM can automatically shut down other systems, re-route critical flows, or even shed 

components from the system.  The LFRE model used up to this point is not the most 

optimal opportunity to exemplify this process, but it can be shown by moving ‘up 

stream’ from the engine module along the liquid oxygen supply.  At some point, it is 

likely in any design involving the transport of potentially volatile liquids that there 

will be proximity to other vital flows.  In the example here, the liquid oxidizer flows 

near a control signal bundle.  In the event of a catastrophic isolation valve failure and 

the transfer of energy laterally across flows, the control signal bundle could be cut, 

depriving the system of vital sensor data and component control.   

 

Here, we added a lateral propagation nomenclature to the configurational flow graph 

and functional flow graph nomenclature indicating that a lateral failure of the fuel 

valve is high (LP:3) while the lateral failure of the control conduit box is low (LP:1) 

shown in figure 2.5.  Because we have a lateral failure path leading from the fuel valve 
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to the conduit box, we have drawn an arrow indicating a new flow of energy from the 

fuel valve’s lateral propagation tab to the conduit box.  Since the failure propagation 

going the other direction is not deemed possible, no arrow is drawn.  From this, we 

have made an observation early in the design stage that allows engineers to consider 

the lateral failure and begin to consider mitigation very early on.  From a PHM 

perspective, a smart PHM system that is programmed to understand these lateral 

failures has another method to use in the identification and assessment of specific 

component failures.  Building on this, a separate Configurational Failure Logic (CFL) 

reasoner can be built that addresses these lateral proximity failures.  This is difficult to 

build into the existing FFL reasoner in FFIP, because the existing finite state machine 

works to simulate the model in failed states where failures will propagate along 

existing functional paths.  Here, the failure propagation analysis depends on more than 

the simplified finite state models used for analysis up to this point.  This analysis 

becomes somewhat more nuanced as the relationships are not definite, but are instead 

probable.  Shown in figure 2.6, The logic of the proximity based CFL is similar in 

scope and content to the FFL logic, but instead of a focus on function, the proximity 

based CFL focuses solely on the components themselves.  Inputs to the proximity 

based CFL come from the FFL reasoner as that, through the functions of each 

component, will determine the operational status of each component.  

  

This logic can be used to build a larger spreadsheet similar in format and content to 

the FFL that can demonstrate the potential lateral propagations of these failures. It is 

worth noting that this is somewhat of a departure from earlier noted advantages of 

FFIP in that there is more ‘judgment, experience, and subjectivity’ needed here.  Also 

worth noting is that other early stage failure analysis processes such as FMECA and 

PRA address this type of scenario.  The advantages presented by bringing this to FFIP 

are that this process is incorporated into the actual conceptual layout of the system, 

making proximity propagation easier to see, easier to communicate to the entire design 

team as they are visually represented as potential flows in a system. As a consequence, 
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this augmentation allows an early look at this vital issue before going so far down the 

design process that actual physics based simulation is being completed to capture 

these failure modes.  Another interesting example worth nothing where such a 

scenario could be encountered would be if the PHM subsystem of the challenger were 

able to detect a fatal seal leak and separate the orbiter from the booster stack before 

the infamous ignition. These non-linear yet interdependent relationships can be very 

complex and many may not be known until the design has reached a higher level of 

refinement.  An example of this would be a ‘heat sharing’ scenario where a small 

compartment on a spacecraft holds three elements of three separate function flows, yet 

each relies on the latent heat created by the other elements for optimal operation.  The 

configurational and functional architecture of FFIP can make such nuanced 

relationships apparent to attentive engineers earlier in the process, and this can become 

critical to the data development of the PHM system. 

 

Augmentation 3: Explicit statements of PHM response.  

The final enhancement to FFIP proposed here is the addition of response simulation.  

If any given failure falls into a category that can be addressed with a PHM response, 

the desired response needs to be identified early on.  Often, since the PHM response 

will require the modification of the state of another component or components, the 

process can look directly at the results of those modifications essentially considering 

them as new ‘mitigating’ failures that will have their own important repercussions 

worth considering.  This further builds the early stage finite state machine that is 

critical to the PHM software architecture.   

 

The proposed method for accomplishing this is an increase in the complexity of the 

FFL reasoner.  As it stands, the FFL models the system response to a discrete failure 

or change of state as it propagates through the preliminary system architecture.  

Adding a column to the right of the simulation tool that contains the logic for failure 
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response that a PHM would be programmed to take.  As FMECA is a brainstorming 

tool that uses experience of the design team to select appropriate responses a PHM 

may take to given failures, similar brainstorming and use of experience concepts can 

be used here.  In this new column, a finite state logic will institute appropriate 

modifications to the FFL automatically.  This more complex simulation will allow 

engineers to begin to vet out how the complex system will react with the inclusion of a 

PHM architecture.  Essentially, this is a form of building the software logic of the 

PHM subsystem in conjunction with the system architecture itself. 

Using the first failure example applied to our LFRE model, our current function-

failure reasoner shows that the failure of the coolant control valve to state {clogged} 

can result in an increased flow of fuel through the system as more energy is carried to 

the low pressure fuel booster turbo pump.  As this could result in increased fuel flow 

that will bring the fuel oxidizer ratios out of balance and increase the fuel usage rate, 

the PHM system can be programmed to verify this expected response using the 

appropriate sensors and then throttle down the fuel inlet valve from {nominal} to 

{low}, effectively bringing the overall fuel flow rate back down as demonstrated in 

the FFL reasoner in Table 2.   

Although it is probably very apparent to the reader that building more complexity into 

the FFIP process through the addition of responsive logic will make the finite state 

simulation more tenuous and more difficult to reason, there is still significant value in 

starting to build the fundamental architecture of the PHM system.  Using this to build 

the response programming of the PHM system during the conceptual design stage 

allows engineers to incorporate this response knowledge into the more detailed 

physics based models that will follow as more refined designs are approached.  
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CONCLUSIONS 
In this work, the Function Failure Identification and Propagation (FFIP) process is 

built upon in order to build it into better meeting the needs of the Prognostic Health 

Management (PHM) design process.  Driven by the ever more dangerous missions and 

systems that incur increasing costs, the design of complex systems has gotten to the 

point that recognizing system weaknesses, failure modes, and mitigation strategies 

early on is increasingly important.  Driven by the increasing complexity, human 

operators are quickly receding from the forefront of command and control.  As 

systems out pace human ability to respond to failures or changes of state, the 

integrated prognostics and health management systems become ever more important.  

PHM is now an integral part of any complex system design.  As a result, PHM is 

becoming the main manager of operational system risk.  This paper investigates how 

FFIP, a model based failure analysis technique based on the functional and 

configurational framework of early system design can be leveraged to impact the 

development of PHM.   

 

Building on existing novel advantages of FFIP, the framework presented in this paper 

increases the ability of engineers to garner the data, information, and knowledge 

resources of the design team and leverage them toward the design of PHM architecture 

from the very start of the conceptual design process.  The existing FFIP architecture is 

augmented through the addition of a time to failure propagation nomenclature, a 

consideration of lateral propagation across subsystems that may not have shared 

functional flow paths, and through an explicit consideration of PHM response in early 

stage system simulation. 

This process not only shows how failures propagate through a system along 

established flow paths, but also starts to investigate how quickly these failures 

propagate and analyze the ability of a PHM system to address any given failure from 

the very early design stages.  Failures that can propagate across flows through energy 

or material transfers that violate the established flow routes are also explored and a 

formal framework for their early stage analysis is proposed.  Finally, this process 
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explicitly looks at how PHM simulation can be used in FFIP to begin to see how a 

PHM system may act upon a conceptual design of a complex system.  



27 

 

FUTURE WORK 
The work described in this paper represents critical additions to the FFIP architecture 

in its application to PHM development.  Some of the limitations of PHM’s scope of 

responsibility have been explored.  To further this work, the processes of embedded 

system design must be applied to the FFIP architecture.  Based on this augmented 

FFIP, a process will be developed that creates the conceptual outline of the PHM 

architecture itself.  Based on a state charts type methodology, a common framework 

for early stage hardware/software architecture development [23], the continuing work 

will create a process that allows hardware and software engineers to develop the 

programming that makes PHM possible.  This state charts type architecture will allow 

more explicit consideration of sensor selection, placement, reliability, and heuristic 

capability and limitations of the automated nature of a PHM subsystem from much 

earlier in the design process, better allowing the inclusion of PHM development into 

the fundamental system design from the conceptual design stage [24].  Also, a more 

explicit consideration of the software side of the PHM system will allow application of 

software specific reliability considerations from the earliest stages of overall system 

design [25,26,27,28,29,30]. The augmented FFIP framework discussed in this paper 

can be further improved through implementing and including standardized software 

development architectures, further exploring the limitations of practical PHM 

application and beginning the incredibly complex process of developing the coded 

software package ever earlier in the design process. 
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TABLES & FIGURES 
 

 

Figure 2.1: Function-Failure logic for generic pipe and valve components [5]. 
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Figure 2.2: Configurational Flow Graph (CFG) 
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Figure 2.3: Functional Flow Model 
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Figure 2.4: Time to Failure Propagation consideration added to FFIP graphical 
representations. 
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Table 2.1: FFL logic applied to the Liquid Fuel Rocket Engine coolant valve failure. 

 

at t=0 at t=1 at t=3 at t=4 at t=5

Component Modes
Inlet Valve nominal nominal nominal nominal high
Low Pressure Fuel Booster nominal on nominal on nominal on high
Fuel turbopump nominal on nominal on nominal on nominal on high
Fuel valve nominal on nominal on nominal on nominal on nominal on
Fuel valve controller nominal on nominal on nominal on nominal on nominal on
Coolant control valve nominal failed off
Coolant valve controller nominal on nominal on nominal on nominal on nominal on
Regeneratively cooled tubular nozzle nominal nominal high
Preburner nominal on nominal on nominal on nominal on nominal on
Low pressure turbopump nominal on nominal on nominal on nominal on high
Preburner nominal on nominal on nominal on nominal on degraded
Main combustion Chamber nominal nominal nominal nominal degraded
sensor  nominal on nominal on nominal on nominal on nominal on

State Variables
Liquid Flow nominal nominal nominal nominal high
Pressure increase nominal nominal nominal high
Liquid Flow nominal nominal nominal high
Pressure increase nominal nominal nominal nominal nominal
Liquid Flow nominal nominal zero
Pressure control nominal zero
Liquid Flow nominal nominal high
Combustion nominal nominal nominal nominal degraded
Liquid Flow (Pipe 6) nominal nominal nominal high
Liquid Flow (Pipe 7) nominal nominal nominal high
Control Signal Flow nominal nominal nominal nominal nominal
Status Signal Flow nominal nominal nominal nominal nominal

System Functions
Import Liquid (inlet pipe) operating operating operating operating
Guide Liquid (LP) operating operating operating operating
Guide Liquid (Turbopump) operating operating operating operating
Guide Liquid (Fuel Valve) operating operating operating operating
Guide Liquid (Coolant control valve) lost
Process signal (Coolant valve controller) operating operating operating operating
Guide liquid, heat (regen nozzle) operating high
Guide liquid, heat (preburner) operating operating high
Guide liquid, heat (LP turbopump) operating operating operating operating
Guide liquid, (Preburner) operating operating operating operating
Guide liquid, thrust (Main Combustion Chamber) operating operating operating operating
Measure flow operating operating operating operating
Measure vibration operating operating operating operating

Table 1: FFL Logic applied to the Liquid Fuel Rocket Engine coolant valve failure
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Figure 2.5: Lateral Failure Propagation if FFIP. 

 

Figure 2.6: CFL Logic for Lateral Failure Propagation. 
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Table 2.2: FFL Logic with PHM response applied to the Liquid Fuel Rocket Engine 
coolant valve failure 

 

at t=0 at t=1 at t=3 at t=4 at t=5 Response

Component Modes
Inlet Valve nominal nominal Low Low Low
Low Pressure Fuel Booster Flow nominal on nominal on nominal on nominal on
Fuel turbopump nominal on nominal on nominal on nominal on high
Fuel valve nominal on nominal on nominal on nominal on nominal on
Fuel valve controller nominal on nominal on nominal on nominal on nominal on
Coolant control valve nominal failed Regulate inlet valve
Coolant valve controller nominal on nominal on nominal on nominal on nominal on
Regeneratively cooled tubular nozzle nominal nominal high
Preburner nominal on nominal on nominal on nominal on nominal on
Low pressure turbopump nominal on nominal on nominal on nominal on high
Preburner nominal on nominal on nominal on nominal on Nominal on
Main combustion Chamber nominal nominal nominal nominal nominal  
sensor  nominal on nominal on nominal on nominal on nominal on

State Variables
Liquid Flow nominal nominal nominal nominal high
Pressure increase nominal nominal nominal high
Liquid Flow nominal nominal nominal high
Pressure increase nominal nominal nominal nominal nominal
Liquid Flow nominal nominal zero
Pressure control nominal zero
Liquid Flow nominal nominal high
Combustion nominal nominal nominal nominal degraded
Liquid Flow (Pipe 6) nominal nominal nominal high
Liquid Flow (Pipe 7) nominal nominal nominal high
Control Signal Flow nominal nominal nominal nominal nominal
Status Signal Flow nominal nominal nominal nominal nominal

System Functions
Import Liquid (inlet pipe) operating operating operating operating
Guide Liquid (LP) operating operating operating operating
Guide Liquid (Turbopump) operating operating operating operating
Guide Liquid (Fuel Valve) operating operating operating operating
Guide Liquid (Coolant control valve) lost
Process signal (Coolant valve controller) operating operating operating operating
Guide liquid, heat (regen nozzle) operating high
Guide liquid, heat (preburner) operating operating high
Guide liquid, heat (LP turbopump) operating operating operating operating
Guide liquid, (Preburner) operating operating operating operating
Guide liquid, thrust (Main Combustion Chamber) operating operating operating operating
Measure flow operating operating operating operating
Measure vibration operating operating operating operating

Table 2: FFL Logic with looping response applied to the Liquid Fuel Rocket Engine coolant valve failure
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ABSTRACT  

Modern complex systems have evolved into artifacts that rely on both hardware and 

software to dependably function without human control.  Prognostics and Health 

Management (PHM) systems are developed to manage the risk in these complex 

systems.  As the monetary cost and the potential for loss of life climb as human 

artifacts strive to do things and go places that have not been done before, these 

complex systems become reliant on PHM systems to help detect, mitigate, and 

respond to potential failures.  Engineers now incorporate methods to analyze and 

consider risk and reliability of complex systems from the earliest stages of complex 

system development.  At present, PHM capabilities are only indirectly considered at 

early stages, if at all.  In order to incorporate this vital component of a complex system 

in its proper place, PHM development should be pushed to the earliest stage of 

complex system development possible with this change.  Engineers can consider PHM 

capabilities and limitations and make appropriate changes to the overall system earlier 

in the design stage, where changes are less costly.  In previous work, several risk and 

reliability techniques were discussed, and Function Failure Identification Propagation 

Framework (FFIP) was selected as best fitting PHM development.  In a prior paper, 

FFIP was augmented to better gather the data needed for PHM implementation.  In 

this paper, this work is extended by taking the data gathered from FFIP and applying a 

development language often used in the field of embedded systems design.  

Specifically, the concept of state charts is applied to the FFIP methodology to better 

and more completely program the Function Failure Logic Reasoner in FFIP by clearly 

laying out the hierarchical relationships between system health, function health, 

component status, command signal, and sensor signals.  State charts are then applied 

to the development of a preliminary PHM hardware and software architecture.  

Additional considerations, such as sensor and software reliability, as well as future 

considerations are discussed.   
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INTRODUCTION 
PHM systems are responsible for determining the condition of each element in a 

complex system, detecting anomalies, diagnosing causes, predicting system impact, 

and initiating appropriate system responses while communicating the appropriate data, 

information, and knowledge to control architectures and operators in a contextually 

appropriate manner 12.  Since PHM systems permeate throughout the entire complex 

system and are electro-mechanical in nature, they are essentially embedded hardware-

software systems integrated into the larger complex system [3].   The responsibilities 

of PHM are significant and the PHM architecture is complex.  This often results in the 

PHM development not being addressed much is known about the details of the 

complex system the PHM architecture will address.   As a result, PHM often is 

retrofitted as loose combination of fault detection and isolation of the various 

subsystems as opposed to an integrated system-wide application.  Historically, PHM 

has been simple, and limited to sensor technology and minimal computational ability.  

PHM is often now required to be an integral part of operating complex artifacts that 

are too complex for human operators to manage without assistance [4].   Many modern 

complex systems operate without human operators at all, underscoring a greater need 

for a well integrated PHM system.  As such, it is vital to treat PHM as an integral 

component considered within the design from the earliest possible stages. 

As it currently stands, PHM development requires an advanced stage of complex 

system modeling.  Many advanced modeling techniques exist for complex system 

design and significant and important research continues to produce accurate 

simulations of complex systems.  These simulation processes, however, require 

advanced stage designs with high levels of detail where many decisions have been 

made regarding the complex system architecture.   Although there is significant work 

developed for specific PHM applications that can be leveraged at these advanced 

design stages, any changes that might be made to the complex system as a result of 

PHM development are costly.  Developing a methodology to consider PHM 

development, PHM capabilities, and PHM limitations earlier in the design stage can 

highlight elements of the complex system that may require reconsideration or 
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modification earlier in the design process, where architecture changes have less impact 

on project cost and schedule.  Pushing PHM development to the earliest stages of 

complex system design also allows the process of testing, validating, and refining 

PHM architecture to start earlier, allowing a greater opportunity to create a higher 

quality design. 

In previous work, Function Failure Identification Propagation (FFIP) was introduced 

as a novel way to help with PHM design and was augmented to better capture the data, 

information, and knowledge needed to begin considering PHM development.  This 

will be reviewed in this work, followed by a methodology to build the PHM 

architecture through a state charts-based Function Failure Reasoner.  Finally, the 

proposed process will be applied to a Liquid Fueled Rocket Engine (LFRE) model to 

illustrate the potential benefits. 

 FFIP for PHM design 

The Function Failure Identification Propagation (FFIP) framework, developed by 

Kurtoglu and Tumer [5,6],  models the function, structure, and behavior of systems to 

simulate failure propagation paths and determine resulting functional failures.  

Information gleaned from this process can then be used to determine and analyze 

failure mitigation options in the early design stages of complex systems.  Originally, 

the three major modules used in FFIP analysis are the graphical system modeling, the 

behavioral simulation, and the function-failure logic (FFL) reasoner.  The graphical 

system modeling includes the functional flow graph (FFG) represents the overall 

system functions decomposed into smaller fundamental subfunctions.  The 

subfunctional relations are represented through flows of energy, material, and signal 

(EMS).  The structure of the design is represented in the configurational flow graph 

(CFG).  The CFG is linked directly to the FFG and thus strictly adheres to the 

functional topology of the complex system.  Each node of the CFG represents a 

system component, and the arcs are the same EMS flows as in the FFG.  These models 

are then used to build the Function Failure Logic (FFL) Reasoner, a finite state 

simulation model founded on basic principles of selected component behavior.  The 
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system is modeled in various operational and failed states in a component oriented 

approach.   

The simulation process is performed to determine system behavior under various 

failed component conditions.  At any given instant, the overall system state is a 

function of the component modes and system state variables:   

 

X(t)=F(c(t),v(t)),                                                      (Equation 1) 

 

where c(t)=[c1, c2, c3,…,cN] is a vector of discrete component modes and 

v(t)=[v1,v2,v3,…,vk] is a vector of system state variables.  The system is modeled as 

a finite state computational model because quantitative details of the system cannot 

yet be determined.  The quantitative modeling is left for the physics based modeling 

schemes.   

For example, valves can have liquid flow levels of {zero, low, nominal, high} and a 

sensor may have values of {no signal, high, nominal, low, zero} as the finite state 

possibilities for these components.  These components, and their attached finite state 

possibilities, are then treated as portable modules that can be fit together into 

functional models of complex systems.  Failed states are entered into the model, and 

the finite state computations propagate the failures along the functional flows to their 

ultimate ends, which may or may not result in changes in overall system functionality. 

In Kramer and Tumer (2009), FFIP was augmented in three important ways to enable 

PHM development.  The first augmentation, which does not directly concern PHM 

development in the early stage of design, considers catastrophic failures such as 

violent explosions.  These types of catastrophic failures can propagate across 

functional flows.  A nomenclature was added to the FFG and CFG to identify and 

track the possibility of these lateral flows across functions.  Although there is too 

much uncertainty to include finite state logic in the FFL reasoner, this provides a 

means within the visual representations to consider important but not always readily 
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apparent or computable propagation paths.  Eventually, this logic becomes important 

for the refined PHM architecture in that the PHM system will have to investigate 

lateral propagation if a catastrophic failure is detected.  

The remaining two augmentations are critical for early stage PHM development.  The 

first augmentation is an estimation of time to propagation.  Just as components are 

given finite functioning and failed states in the FFL reasoner, an estimate of how long 

it takes each failed state to propagate along the functional flow is critical to assessing 

the ability of PHM to respond to a given failure.  Failures that propagate slowly are 

failures that PHM can be used to help mitigate or correct.  Failures that propagate 

instantly may not give the responses time a PHM system might require to correct or 

mitigate the problem, and thus engineers should address failures that propagate very 

quickly with another method.  Nomenclatures were added to the FFGs and CFGs 

capturing these estimations so they can be incorporated in the finite state machine 

simulation.  The second augmentation important for early stage PHM system design 

addresses explicit PHM response simulation.  Although sensors were included in the 

original FFIP architecture and were part of the initial FFL reasoner, this augmentation 

addresses the PHM system elements as separate system functions with their own place 

in the FFL reasoner, instead of being buried in the existing system logic.  Addressing 

the PHM system explicitly in the FFL reasoner allows engineers to gain a better 

understanding of how PHM is acting on the complex system, and to begin understand 

the PHM architecture details needed for that particular complex system application. 

 Contributions 

In the previous work, the Function-Failure Logic (FFL) reasoner was coded using 

finite state logic in a process that ‘hid’ the logic in cell programming in EXCEL.  As 

the FFL reasoner can be extended into a preliminary PHM program specification, this 

paper focuses on applying embedded system development methodologies to the 

construction of the FFL reasoner in a manner that graphically exposes the FFL 

reasoner and PHM response logic.   
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Also in the previous work, FFIP’s CFGs and FFGs only addressed preliminary sensor 

placement.  The FFL reasoner relates sensor signals to PHM response logic through 

the same ‘hidden’ finite state machine simulation as above.  Application of embedded 

system design methodologies aims to more clearly and visually demonstrate the 

hierarchy between sensor signals, component states, failure states, failure 

propagations, and PHM response.    
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RELATED RESEARCH 

Embedded System Design Specification Development 

In this paper, we focus on the software development needs of a PHM architecture.  

The field of Embedded Systems Design is looked to for guidance.  Embedded system 

design is a sub field of co-design and looks at designing complex hardware and 

software intensive systems.  Co-design is a field that develops compact complex 

systems such a computers and consumer electronics, the software code is developed in 

sync with the physical circuitry that runs the code.  Often, because of space 

constraints, the physical size of the circuits, the processing and response speed of the 

system, and the cost of mass production must be all be optimized at the same time.  

This can lead to the development of certain application specific circuits in some 

instances, while off-the-shelf processors may be used elsewhere in the system.  The 

embedded systems sub field addresses the above concerns, but must also address a 

larger more complex artifact that the embedded system must interact with.  This 

interaction could mean control, response, data collection, or a combination of all three 

[7, 8,9].   

PHM, by definition, is an embedded system.  In many modern human artifacts, PHM 

is a system that controls, responds to, collects data from a larger more complex 

system.  As such, several early stage embedded system design languages are 

investigated, and the process best fitting the FFIP approach to PHM development is 

selected and applied to the LFRE. 

 

In embedded system design, as with the design of any complex system, an important 

starting point is a detailed specification.  Although there are a great many languages 

used in practice, the large majority of them are based on StateCharts, Specification and 

Description Language (SDL) or Petri nets.  StateCharts provide an effective way to 

demonstrate hierarchy and process oriented computations in a visual manner and will 

be discussed in further detail.  SDL, a finite state machine based process actually 

designed for distributed system applications, is similar to StateCharts in layout and 
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logical capabilities, but includes a ‘message passing’ aspect that accounts for many 

embedded systems not having universal broadcast capabilities and must rely on 

message queues [10].  Based on the preliminary level data presented in FFIP, SDL 

may even be too far advanced as system portioning is not yet considered.  Also, SDL 

demonstrates the most usefulness when addressing system efficiency through 

application specific circuits applications where the embedded system is a large portion 

of the overall system architecture.  For our LFRE application, we are assuming that 

the finite states are capable of broadcast communications through a central processor 

for the entire system  As PHM for modern complex system applications will be a 

miniscule fraction of the mass of the system but a significant contribution to system 

capability, it will probably not fall victim to optimization (at least in terms of central 

processing capability).  If it is deemed necessary at a later stage in the design process, 

the finite state logic of state charts can be increased in complexity to account for SDL 

message passing capabilities. 

Petri nets provide another specification language developed originally for software but 

has seen use in embedded systems.  Petri nets has the advantage of demonstrating 

logic unequivocally and completely, but does so at the cost of simplicity[11].  Because 

Petri nets ‘blow up’ as soon as the system increases in complexity, and because Petri 

nets do not represent system hierarchy in a clear fashion, they are not considered for 

use here.  

 

StateCharts 

StateCharts is another common early stage language used in embedded systems 

design.  StateCharts is also used as the foundation for other system development 

methodologies.  SpecC and SystemC are both rapidly evolving StateCharts based 

embedded system and software development processes [12, 13].  Although an industry 

standard has not emerged from the current fray, most of these methodologies utilize 

the fundamental strengths of state charts and are running into similar difficulties in 

their development.   
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The main strength of StateCharts is the clear hierarchical organization of the 

computational processes (in the form of finite state machines) required by the larger 

complex system.  Although code cannot be written in a complete form until further 

along in the design process, an early StateCharts diagram of the program can show 

developers where the components of the code will fit within the system much in the 

same way that a configurational diagram shows where the physical components will 

fit within a larger complex system [14]. Figure 3.1 is a simple visual of the 

hierarchical arrangement of the functions down to components and the components 

down to base sensors.  Although the finite state logic is not stated here, the 

relationships between functions, components, and sensor signals are made clear.  This 

logic is extended up through the overall system function capturing the entire 

operational logic of the complex system. Given enough complexity, this framework 

can eventually turn directly into code as enough information is added to the 

architecture.  

In a PHM system, the sensors are the ‘tip of the spear’ for the subsystem.  As such, the 

sensors are the lowest level state charts would reach in this architecture.  Each 

component state will be a function of signals gathered in the system.  It is not critical 

that sensors be directly related to this component, but as the sensors are the ‘eyes, ears, 

nose, and taste buds’ of the PHM system, it is critical that all the information in the 

PHM system be built on a foundation of sensors and their related signals.   
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METHODOLOGY 

StateCharts applied to the construction of the FFL reasoner. 

Demonstrated in figure 3.2 is the modular nature of FFL reasoner logic formation.  

The top three layers, Functional Model, Configurational Flow Graph, and Function 

Failure Logic are taken from previous work by Kurtoglu and Tumer (2008).  For two 

types of components, a pipe and a valve, the configuration and function are shown.  

Below these graphical representations, the FFL logic that corresponds to those 

components is written in common if-then finite state logic.  Each possible finite state 

combination is listed with a designated output for each combination set.  From this, 

each component in a function stream has a finite impact on the larger function that a 

particular component serves.   

The third layer in the diagram, the StateCharts model, represents the function failure 

logic in a graphical sense.  Each component is given an individual state chart.  In that 

state chart, there is a control signal input, a sensor input, and a finite state output.  The 

single control signal has arrows emanating from it corresponding to the possible signal 

inputs.  The arrows are labeled with ‘edge labels’ that indicate the finite state 

corresponding to that logical flow.  Each signal input possibility points to either the 

next piece of information the reasoner needs or to a finite state conclusion.  When the 

arrows lead to the next needed information source, the process repeats until a finite 

state, on the far right of the state chart, is reached.  From that finite state the arrows 

then lead up the hierarchy to the function above that particular state chart.  That 

function (not shown for space considerations) will have a separate state chart that will 

have command inputs as well as finite state conditions reported from all subordinate 

components or functions.  

Because the FFIP architecture aims to model the propagation of component failures, 

the ‘input’ to the FFL reasoner simulation occurs at the component level.  Essentially, 

all logic arrows will point away from this level of the state charts hierarchy.  This 

results in information being passed up to functional levels resulting in outputs with 

regard to overall system function, and information being passed down to the sensor 
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level resulting in outputs that demonstrate the ‘sensor signature’ of that failure.  As 

failures propagate down a functional path, the state of other components are changed 

through the functional level reasoner, which results in another component change of 

state input and thus additional expected sensor reading output from the reasoner.  

This process differs from the Function Failure Logic previously used in that: 1) the 

logic is laid out in a visually clear manner, as opposed to hidden in code buried in 

cells, and 2) these individual components do not determine the state of the overall 

system functions, but input data to a higher level state chart that determines the state 

of the higher level functions.  
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APPLICATION TO PHM DEVELOPMENT  

he existing FFIP framework is briefly explained using a moderately complex Liquid 

Fuel Rocket Engine (LFRE) architecture as a working example. The model presented 

here is a basic staged combustion model similar to those used in the Space Shuttle 

operated by NASA.  This model is chosen to demonstrate FFIP application to a model 

that is more complex than what has been used in the existing literature but still very 

much a conceptual design.  In this model, liquid hydrogen is used as both the fuel as 

well as the coolant.  The first pressure boost the hydrogen flow receives comes in the 

low pressure fuel booster, which is driven by hot gasified hydrogen carrying heat 

energy from the regeneratively cooled tubular nozzle.  A coolant control valve 

regulates the amount of hydrogen that flows through the regeneratively cooled nozzle 

sending the hydrogen that is not used for cooling directly to the preburners.  The 

hydrogen is combusted in preburners with some of the oxygen that drive turbopumps 

on both the fuel and oxidizer flows.  The oxygen low pressure turbopump is driven by 

liquid oxygen pressurized by the high pressure oxygen turbopump that is connected to 

the oxygen side preburner.  Some of the oxygen is burned in the preburners and the 

remainder is injected into the main combustion chamber where it burns with the hot 

gasses generated in the preburners [15]. 

 

The configurational flow graph (Fig. 3) lists the components and the flows between 

them.  The configurational flow graph maps directly to the functional flow graph (Fig. 

4) where the functions of the system are clearly laid out.  The flows delineate the 

transfer of signal, energy, and material between the different functions and 

components.  In prior FFIP applications in the literature, the flows of signal, energy, 

and material are considered separately, but in this example, some of the hydrogen flow 

and some of the oxygen flow is represented as both energy and material in the same 

flow as energy is carried back to the low pressure turbopumps by these material flows.   
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Using the finite state logic developed earlier (Fig. 1), a Function Failure Logic (FFL) 

reasoner is developed that reflects this LFRE system.  Although the finite details about 

the operating parameters of this system have not been developed, a simplified early 

stage simulation tool is developed that will show how the failures of components 

within the system will propagate through the system and potentially affect a change in 

the overall system state. 

 

Figure 3.5 demonstrates that the Guide Liquid function for the fuel flow is a function 

of 8 different components.  One of those components is the inlet valve, which is a 

function of command signals, the fuel flow meter, and the heuristics of the remaining 

fuel flow sensors.  The solid black input ports indicate a base signal, and the hollow 

circles indicate an output from a sub function below the Inlet Valve component state.  

The coolant control valve is another component inputting into the Guide Fuel function 

with associated sensor signals.  The remaining components listed have similar state 

charts developed.  The Coolant Control Valve state chart lists the finite states that are 

input to the state chart and the finite state outputs, sent up the state charts hierarchy as 

well as the expected control signal and sensor states that are down a level in the 

hierarchy. 

 

A key set of information drawn from this state charts look is a early assessment of 

sensor placement effectiveness.  As each function of the system has a specific state 

charts hierarchy, we can see that determining the health of each function that is 

ultimately reliant on the system sensors and command inputs.  Although not explicitly 

listed here for space concerns, one can readily see that the ‘Guide Liquid’ function can 

be followed down the state charts hierarchy to a sensor ‘fingerprint’ for the various 

finite states of that particular function.  Already, PHM designers can see if each 

function state has a unique fingerprint for the PHM system to read and assess.  This 

may require more sensors in specific locations while other instances may reveal excess 

information and allow for the reduction of sensors. 
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In the edge labels of the Coolant Control Valve state chart, one can see that the failed 

states also have numbers next to them.  These demonstrate the Time to Failure 

Propagation discussed in earlier work.  Again, these are ‘order of magnitude’ 

estimates as to how quickly a failure propagates down stream.  A ‘1’ indicates slow 

propagation, ‘2’ is moderate, and ‘3’ is rapid.  These estimates are important for two 

reasons.  First, they help to differentiate between failures that PHM can be expected to 

respond to, and second, they add a small amount of additional detail about system 

behavior.  When StateCharts architectures are applied to embedded system designs, 

there are functions that imbed a delay into the process, such as the delay between 

receipt of phone call and when an answering machine picks up.  For FFL simulation, a 

slow propagating failure can have the propagation delayed by a few time steps giving 

designers a more accurate look at system behavior before delving into high detail 

physics based models.  

 

As this is a preliminary look at the PHM architecture from an early stage, the details 

such as timing, message passing, clock usage, and other more detailed tools of state 

charts applications are not yet applied in a final state.  Time is addressed, but only in 

an order of magnitude fashion as a tool for estimating PHM response abilities.   
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DESIGNING PHM SYSTEM RESPONSE 

With the system modeled as a finite state machine that builds the FFL, engineers than 

can address PHM response through building further on the StateCharts model.  So far, 

we have demonstrated that StateCharts can be used to translate the hierarchy of the 

complex system into an embedded systems specification language.  This 

representation clarifies the finite state cause and effect relationships between the 

system, the functions, sub functions, individual components, and the sensors with 

which the PHM ‘sees’ the system.  This is important to building the FFL reasoner that 

is an early state system simulation used to study failure propagation and impact on 

larger functional structures.   

 

PHM response, however, cannot fit within the direct hierarchy of the system 

simulation as it acts throughout the entire complex system through its embedded 

nature.  The responses initiated by PHM will come down the hierarchy in the form of 

command signals, and the input to the PHM response will come up through the 

hierarchy in the form of sensor signals.  As such, the PHM sub system state charts will 

exist ‘next to’ the system simulation hierarchy (Fig. 6).  

 

When a failure is noted in the existing state charts architecture and a PHM response is 

identified, the state chart for that component will also send a message over to the PHM 

response hierarchy (Fig 7).  These StateCharts, based on responses determined through 

the FFIP analysis process as well as other failure analysis techniques, will represent 

the automatic responses the PHM system will take within the overall system [16]. This 

logic should be separate from the finite state logic already built into the system so as 

to continue to analyze the system logic with and without PHM response. 

 

Before the FFIP process can be evolved into a StateCharts based preliminary 

embedded system design specification from the FFL reasoner, it is worth noting that 
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the relationship between expected state values and expected sensor outputs is made 

clear once again.  Although the engineers designing the system have intuition, 

experience, and imagination to rely on for identifying failures, the PHM system has 

only sensor signals. This once again underscores the idea of a failure having a ‘sensor 

fingerprint’ that is different from other failures, thus enabling a PHM program to 

identify the specific failure and enact the correct response. 

 

This is also a stage that can make extensive use of other established early design risk 

and reliability techniques.  Specifically, this is a stage where engineers must brain 

storm about potential failures and then ask ‘what do we want to do to respond to, 

mitigate, or even ignore this failure’.  Mitigation may require partial or complete 

system redesign, but if engineers determine that system response is the correct action, 

either the embedded PHM system or the operators will be responsible for initiating 

that response.  Currently, in industry, FMECA is used to build PHM logic through 

defining needs and coding to specific scenarios.  As PHM grows, it is likely that PHM 

will be responsible for detecting the failure and initiating response without operator 

command.  These responses have their programming start here, at the conceptual 

design stage in the PHM response state charts. 

 

In previous work to augment FFIP for implementation to LFRE design, PHM response 

was discussed for handling a slow propagating valve failure.  In the LFRE system 

described above, the coolant control valve was simulated ‘failed closed’ forcing all the 

fuel to flow through the regeneratively cooled tubular nozzle.  As the fuel then acts as 

a material and energy transport carrying thermal energy from the nozzle back up to the 

low pressure fuel booster turbopump, the more fluid going through the cooling 

apparatus on the nozzle carries more thermal energy to the fuel booster turbopump.  

The additional energy will drive the pump faster thus pushing more fuel into the 

system.  With more fuel pushed in, the fuel-oxygen ratios will be different than design 

parameters.  At this stage it is impossible to determine exactly how the system would 
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respond to the coolant control valve failure, but we can confidently predict that the 

change in fuel flow will cause a change in vibrations within the system, and that 

system failures due to vibration can be catastrophic, but usually require time to 

propagate.  As the failure has potentially significant consequences, and there is time 

enough for PHM to respond, engineers can employ mitigation expertise to program a 

PHM response (Fig 8).  In this case, we chose to regulate the fuel inlet valve.  

Although more energy is being carried to the fuel booster tubropump, the fuel flow is 

regulated to nominal levels with another valve.  This response is fed into the upper 

levels of the state charts hierarchy in the form of a command signal changing the state 

of a component.   If the state charts are programmed correctly, this change of state 

propagates through the state charts hierarchy resulting in nominal fuel mixtures and 

thus nominal vibrations.   
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RELIABILITY CONSIDERATIONS 

State charts applied to sensor reliability and effectiveness  

Knowing the fingerprint of each state chart can allow for assessment of components 

that may not have direct sensor data.  By using data from elsewhere in the system, 

understanding the hierarchal relationships between components and system functions, 

and understanding how failures will propagate through a system, an intelligent PHM  

can determine the state of a given component without a direct reading from that 

component through virtual sensors.   

 

As each failure mode will have a ‘fingerprint’ composed of sensor readings informing 

the PHM system as to the health of the components involved in each function, 

engineers can begin to address fingerprints that are over informed, where there may be 

excess sensor data, and to address fingerprints that are under informed, where there is 

not enough sensor data.  From an early stage, PHM hardware efficiency becomes a 

consideration at an early stage and can inform the efficiency of the overall system 

design. 

 

State Charts modular programming construct can address the development of such sub 

routines much earlier in the design stage.  As soon as a sensor type is selected for a 

specific application, software engineers can begin to consider the computational needs 

of that set of sensor arrangements.  Practically, there is extensive research done in the 

field of sensor signal interpretation for many complex systems, and the search for 

matching existing work can begin during the FFIP analysis stage if the software 

development of PHM development is also developed at this point.   Given that many 

systems will have specific complex heuristic needs that are not yet developed, 

applying a state charts paradigm to the FFIP process addresses these needs earlier in 

the design process. 
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Here, sensor reliability can also begin to be addressed.  Although this process will not 

inherently improve sensor reliability, it can be used to account for reliability issues 

early on.  Within the heuristics of each state chart, allowances can be made for the 

known reliability levels of sensors.  As sensors rely on a huge range of technologies, 

and there is data pertaining to sensor types and their associated reliability levels, 

engineers can begin to address the risk and reliability analysis of the PHM sub system 

hardware.  This knowledge can greatly reduce the amount of reactions based on faulty 

sensor readings, and increase the odds of correctly recognizing and diagnosing a 

failure that may not fit the entire state charts ‘fingerprint’ for that functional failure.  

In essence, as FFIP is used to address risk and reliability of a complex system, and 

FFIP is demonstrated as a tool to build a PHM system that addresses system reliability 

and response to failures, this process applies the same principles to the PHM 

subsystem itself. 

 

As stated above, sensors form the foundational level of the state charts hierarchy.  As 

it stands, FFIP considers the physical components and some of the signals required to 

control those physical components.  A PHM system requires more information, even 

at an early design stage.  As such, it is not difficult for experienced engineers to guess 

where sensors might be placed in a complex system, even at the earliest stages of 

design.  An experience based starting point is sufficient to begin the FFIP based PHM 

software design and analysis through a state charts based architecture.   

 

Addressing software reliability through State Charts methods. 

The process discussed thus far is based on FFIP, which addresses the potential 

hardware component failures early in a complex system design.  The rapidly evolving 

field of robust software design also employs methods that address potential software 

failures and the subsequent results of those failures while early in the design process.  

Methodologies are employed that address software failure from early specification 

development through testing with simulation platforms all the way through to final 
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product validation [17,18,19,20,21,22].  Some of these processes are modeled on and 

in many ways emulate processes applied to mechanical systems.  Regardless of which 

process is used, this state charts based PHM language development provides a starting 

point for addressing the reliability of the software side of any given PHM design.  In 

fact, many embedded systems development processes employ running the programs 

through specifically designed testing platforms.  As software reliability research has 

only found methods to find failures as opposed to confirm the absence of potential 

failures in software code, the earlier the validation process can begin, the better. 
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CONCLUSIONS AND FUTURE WORK 

In this work, Function Failure Identification Propagation has been taken a step beyond 

a failure propagation analysis tool and been transformed into a PHM design template.  

Through the addition of embedded systems design fundamentals, a process developed 

for complex system mechanical interactions can now consider directly the complex 

computational architectures required to monitor and respond to failures in complex 

systems.  The evolution of complex systems is quickly shaping most modern complex 

systems into electromechanical systems highly dependent on computerized operations.  

In this work, FFIP is transformed into a risk and reliability analysis tool capable of 

modeling and capturing the fundamental consequences of failures in these systems 

from an early design stage, where design corrections are cheapies and easiest. 

Although this research has focused on PHM design based upon failure analysis 

methodology, the rapidly evolving field of unified modeling languages, such as 

SYSML and SystemC and SpecC previously mentioned, should be the future tool used 

to design systems complex enough to require PHM architectures.  As complex 

mechanical systems become more reliant on programming for control and response, 

consideration of the programming architecture at a very early stage becomes 

inescapable.  This work, in many ways, is a step in that trend and it has transitioned 

from considering the physical architecture of a complex mechanical system to also 

considering the computational architecture in monitoring the health of that complex 

system.  Extrapolation to incorporating the entire command and control architecture 

into this process is well within the realm of possibility.  The process with which to do 

that resides in unified modeling methodologies.  As is the case with much in 

embedded system language development, the field is moving quickly and there are 

several processes that may eventually establish as industry or universal standards.  The 

work herein is generalized enough to fit into many of those processes as is.  

Challenges come as the design becomes more refined and application specific needs 

become clear, such as mixed signal allocations, message passing for distributed 

systems, application specific circuit needs.   
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Figure 3.1: StateCharts heirarchy. 
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Figure 3.2: StateCharts applied to component logic 
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Figure 3.3: Configurational Flow Graph for the Liquid Fuel Rocket Engine 
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Figure 3.4: Functional Flow Graph for the liquid Fuel Rocket Engine. 
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Table 3.1: FFL logic applied to the Liquid Fuel Rocket Engine coolant valve failure. 

 

 

 

at t=0 at t=1 at t=3 at t=4 at t=5

Component Modes
Inlet Valve nominal nominal nominal nominal high
Low Pressure Fuel Booster nominal on nominal on nominal on high
Fuel turbopump nominal on nominal on nominal on nominal on high
Fuel valve nominal on nominal on nominal on nominal on nominal on
Fuel valve controller nominal on nominal on nominal on nominal on nominal on
Coolant control valve nominal failed off
Coolant valve controller nominal on nominal on nominal on nominal on nominal on
Regeneratively cooled tubular nozzle nominal nominal high
Preburner nominal on nominal on nominal on nominal on nominal on
Low pressure turbopump nominal on nominal on nominal on nominal on high
Preburner nominal on nominal on nominal on nominal on degraded
Main combustion Chamber nominal nominal nominal nominal degraded
sensor  nominal on nominal on nominal on nominal on nominal on

State Variables
Liquid Flow nominal nominal nominal nominal high
Pressure increase nominal nominal nominal high
Liquid Flow nominal nominal nominal high
Pressure increase nominal nominal nominal nominal nominal
Liquid Flow nominal nominal zero
Pressure control nominal zero
Liquid Flow nominal nominal high
Combustion nominal nominal nominal nominal degraded
Liquid Flow (Pipe 6) nominal nominal nominal high
Liquid Flow (Pipe 7) nominal nominal nominal high
Control Signal Flow nominal nominal nominal nominal nominal
Status Signal Flow nominal nominal nominal nominal nominal

System Functions
Import Liquid (inlet pipe) operating operating operating operating
Guide Liquid (LP) operating operating operating operating
Guide Liquid (Turbopump) operating operating operating operating
Guide Liquid (Fuel Valve) operating operating operating operating
Guide Liquid (Coolant control valve) lost
Process signal (Coolant valve controller) operating operating operating operating
Guide liquid, heat (regen nozzle) operating high
Guide liquid, heat (preburner) operating operating high
Guide liquid, heat (LP turbopump) operating operating operating operating
Guide liquid, (Preburner) operating operating operating operating
Guide liquid, thrust (Main Combustion Chamber) operating operating operating operating
Measure flow operating operating operating operating
Measure vibration operating operating operating operating

Table 1: FFL Logic applied to the Liquid Fuel Rocket Engine coolant valve failure
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Figure 3.5: Partial StateCharts representation of Guide Liquid functional hierarchy. 
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Figure 3.6: A PHM system will interact with the overall complex system. 

 

 

 

 

 

 

 

 

Figure 3.7: StateCharts representation of PHM system computational architecture. 
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Figure 3.8: StateCharts applied to PHM response logic of coolant control valve failure 

example. 
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In the work discussed here, the objectives of AFSOR grant are addressed through the 

use of existing tools that have been modified and for new applications.  The processes 

take into account early stage complex system modeling, and emphasize analysis of 

failure identification and propagation.   Based on the functional and structural 

topology of the early system architecture, these models map between the system’s 

functional structure, the system’s physical component layout, the system’s behavioral 

reasoning, and the software-hardware architecture that monitors and responds to 

failures in the complex system. 

By applying a more nuanced and complex failure mode to the concepts developed 

here, a specification methodology for intelligent PHM system development during 

early stage complex system design is developed. 

Although all the requirements of the AFSOR grant are addressed, they are not yet 

completely satisfied.  The grant, as written, is to be addressed through two fields of 

engineering research.  One, mechanical engineering, is addressed well in these works.  

The failure analysis methods in common practice are discussed and Function Failure 

Identification Propagation is selected as best fitting the grant objectives, and then 

expanded to better fit the grant requirements.   

The second field of engineering research is computer science.  In this work, the 

extension of FFIP to consider StateCharts methodologies to address software 

functionality and requirements.  StateCharts representations clarify functional 

hierarchies, address the importance of sensor placement, and bring into view critical 

considerations regarding Prognostics Health Management system capability early in 

complex system design.  Software failure analysis, and complete PHM system 

simulation, however, has yet to be accomplished.   

As per the grant’s estimated timeline, the research conducted here fits well with what 

was expected during the first two years of active research, and was conducted from the 

mechanical engineering field of research.  Many of the concepts were implemented in 

the design modeling architectures of visual natures, and most of them were 
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implemented in computer programming architectures.  Continued work, either into the 

field of computer science, or with the help of a computer science expert, is needed to 

fully vet and implement these methodologies into a robust programming architecture.  

Although the concepts are here, the expertise level in computer science to take on 

these tasks has not yet been reached in the first two years of grant sponsored research.   

Continued work is recommended to carry these methodologies to a full 

implementation and robust simulation within the field of computer science.  Doing so 

will also elevate the work within from conference worthy research to full journal 

publication research. 
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