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The forest alpine tundra ecotone (FTE, also known as alpine treeline or subalpine 

parkland), is a conspicuous feature of mountain landscapes throughout the world.  Climate 

change-driven increases in temperature are believed to result in FTE movement and tree 

invasion of subalpine meadows, which have been documented throughout the Northern 

Hemisphere across a wide range of geographic locations, climatic regimes, forest types, land 

use histories, and disturbance regimes.  Climate-driven FTE movement may have numerous 

ecological effects such as: positive temperature feedbacks, increased net primary productivity 

and carbon storage, and declines of plant populations and species.  The magnitude of these 

ecological effects is highly uncertain, but will be largely determined by the rates and spatial 

extent of FTE movement and meadow invasion.  FTE movement and meadow invasion are 

often considered at global or regional spatial scales in relation to climate, yet they are 

fundamentally driven by tree regeneration processes that are influenced by a variety of 

climatic and biophysical factors at micro site, landscape, and regional scales.  Much of the 

research on the FTE has not taken a landscape approach incorporating multi-scale processes.  

For example, species distribution models used to project climate change effects on future 

species distributions and plant biodiversity in mountainous landscapes rely on species 

distribution data that is often sparse and incomplete across FTE landscapes. 

This dissertation attempts to overcome many of the limitations in FTE research by 

taking a landscape approach to develop a greater understanding of past spatiotemporal patterns 

of tree invasion, current spatial patterns of vegetation composition and structure, and potential 

future patterns of climate-driven tree invasion in the FTE.  The setting for this research is 

Jefferson Park, a 260 ha subalpine parkland landscape in the Oregon High Cascades, USA.  



This study uses field plots, remotely sensed imagery, airborne Light Detection and Ranging 

(LiDAR), and simulation modeling to: 1) predictively map current fine-scale species 

distributions, vegetation structure, and tree ages; 2) reconstruct patterns of tree invasion over 

the last fifty years in subalpine meadows in relation to climatic conditions, landforms, 

microtopography, and seed dispersal limitations; and 3) develop a statistical model that 

projects future patterns of tree invasion into subalpine meadows under different climate 

scenarios in Jefferson Park. 

In chapter two, I generated fine-scale spatially-explicit predictions of current 

vegetation composition, structure, and tree ages in the Jefferson Park study area.  Objectives 

of this chapter were threefold: 1) to characterize spatial patterns of tree ages, vegetation 

composition, and vegetation structure in a FTE landscape in the Oregon Cascades using 

predictive mapping; 2) determine how vegetation composition and structure were associated 

with gradients of environmental factors derived from multispectral satellite imagery and Light 

Detection and Ranging (LiDAR) data; and 3) determine if predictive mapping 

characterizations of tree age, vegetation composition, and vegetation structure were improved 

by the inclusion of LiDAR data.  Predictive mapping of vegetation attributes was 

accomplished using gradient analysis with nearest neighbor imputation; integrating field plots, 

multispectral SPOT 5 satellite imagery, and LiDAR data.  Vegetation composition was best 

described by SPOT 5 imagery and LiDAR-derived topography, while vegetation structure was 

best described by LiDAR-derived vegetation heights.  Predictions of species occurrence were 

most accurate for tree species, moderate for shrub species and vegetation groups, and highly 

variable for graminoid species.  Tree age, which was the most accurately predicted vegetation 

structure variable, indicates the study area was largely un-forested in 1600, gradually invaded 

by trees from 1600 to the 1920’s, and rapidly invaded from the 1920’s to 1980.  Predictive 

mapping of vegetation structure variables such as basal area and stand density were subject to 

large amounts of error, possibly resulting from scale incompatibilities between vegetation 

patterns and plot size, and/or heterogeneous FTE landscapes where forest structure does not 

develop along consistent trajectories with stand age.  This study suggests integrating 

multispectral satellite imagery, LiDAR data, and field plots can accurately predict fine-scale 

spatial characterizations of species distributions and tree invasion in the FTE.  This study also 

indicates that sample design can influence spatial patterns of model uncertainty, which needs 

to be considered if predictive mapping of vegetation and sensitive ecosystems is a component 

of inventory and monitoring programs. 



In chapter three, I focused on quantifying spatiotemporal patterns of subalpine 

parkland tree invasion in Jefferson Park over the past five decades in relation multi-scale 

climatic and biophysical controls.  LiDAR data provided previously unavailable fine-scale 

spatial characterizations of microtopography and vegetation structure.  I utilized LiDAR, geo-

referenced field plots, and tree establishment reconstructions to quantify spatiotemporal 

patterns of tree invasion in relation to late season snow persistence, landform types, fine-scale 

topographic variability, distances from potential seed sources, and climate variation within 

130 ha of the subalpine parkland landscape of Jefferson Park.  Tree occurrence (i.e. tree 

presence in 2 m plots and grid cells) occurred in 7.75% of study area meadows in 1950 and 

increased to 34.7% in 2007.  Landform types and finer-scale patterns of topography and 

vegetation structure influenced summer snow depth, which influenced temporal and spatial 

patterns of tree establishment.  Tree invasion rates were higher on debris flow landforms, 

which had lower summer snow depth than glacial landforms, suggesting potentially rapid 

treeline responses to disturbance events.  Tree invasion rates were strongly associated with 

reduced annual snow fall on glacial landforms, but not on debris flows.  Tree establishment 

was spatially constrained to micro sites with high topographic positions and close proximity to 

overstory canopy, site conditions associated with low summer snow depth.  Seed source 

limitations placed an additional species-specific spatial constraint on where trees invaded 

meadows.  Climate and topography had an interactive effect, with trees establishing on higher 

topographic positions during both high snow/low temperature and low snow/high temperature 

periods, but had greater than expected establishment on lower topographic positions during 

low snow/high temperature periods.  Within the context of larger landform types, topography 

and proximity to overstory trees constrained where trees established in the meadows, even 

during climate periods with higher temperatures and lower snowfall.  Results of this study 

suggest large scale climate-driven models of vegetation change may overestimate treeline 

movement and meadow invasion, because they do not account for biophysical controls 

limiting tree establishment at multiple spatial scales. 

In chapter four, I used field data and analyses from chapter 3 to parameterize a 

spatially and temporally explicit statistical model of fine-scale tree invasion within 130 ha of 

the Jefferson Park study area.  The model incorporated both the climatic and biophysical 

controls found in chapter 3 to influence tree invasion.  The model was used in two ways: (1) to 

spatially project patterns of tree invasion from 1950 to 2007 in response to historical climate; 

and (2) to project future tree invasion of the study area from 2007 to 2064 under six different 



annual snowfall scenarios.  Modeling addressed the following questions: (1) Can fine-scale (2 

m pixel size) patterns of historical tree invasion be accurately predicted? (2) How sensitive is 

future tree invasion (and therefore meadow persistence) to different future snowfall scenarios? 

(3) Are non-climatic factors such as landforms and biotic interactions associated with different 

spatial patterns of tree invasion?  From 1950 to 2007, simulated historical meadow area 

declined from 82% to 65% of the study area.  Model outputs of historical area, spatial 

distributions, and spatial clustering of tree invasion generally agreed with independent 

validation, and suggest biotic interactions due to young tree establishment facilitation are 

important on glacial landforms but not debris flows.  Simulations of future scenarios indicated 

meadow declined to 36 to 43% of the study area by 2064.  Projected meadow area declined 

with reduced annual snow fall, but not under prolonged high and low snow fall periods.  

Meadows persisted under all future scenarios in 2064.  This model suggests subalpine 

meadows may significantly decline under climate warming, but will still persist in 2064.  

Micro sites and recruitment limitation may be equally or more important factors than climate 

change in influencing subalpine landscape change, suggesting local high-elevation persistence 

of subalpine meadows under future climate warming. 
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Patterns of Tree Establishment and Vegetation Composition in Relation to 

Climate and Topography of a Subalpine Meadow Landscape, Jefferson Park, 

Oregon, USA 

CHAPTER 1: INTRODUCTION 

The boundary between forests and alpine/arctic vegetation (referred to as treeline, 

subalpine parklands, or the forest-tundra ecotone, FTE), is a conspicuous feature of mountain 

and high latitude landscapes throughout the world.  The FTEs and alpine areas above them are 

globally popular areas for outdoor recreation.  The boundary between forests and tundra is 

also of ecological significance; alpine areas are found at almost all latitudes and have high 

overall species diversity, yet alpine vegetation only comprises about three percent of global 

terrestrial surface area (Troll 1961, Körner 1995, Körner and Spehn 2002).  FTE positions are 

associated with thermal deficiencies limiting plant growth (Körner 1998, Jobbágy and Jackson 

2000), and FTE movement may be a sensitive ecosystem response to climate change (Neilson 

1993, Grace et al. 2002).  Varying degrees of climate-driven FTE movement have been 

documented across a wide range of climatic regimes, forest types, and land use histories 

(Harsch et al. 2009).  In the future, climate change is projected to be most pronounced in 

mountain and high latitude regions (Beniston et al. 1997, Liu and Chen 2000, Christensen, et 

al. 2007), suggesting increased FTE movement and invasion of alpine vegetation in the future.  

Climate-driven FTE movement may have numerous ecological effects including: temperature 

feedbacks resulting from altered surface energy balances (Bonan et al. 1992, Beringer et al. 

2005), changes in ecosystem carbon storage (Prichard et al. 2000, Wilmking et al. 2006), and 

the loss of alpine biodiversity (Dirnbock et al. 2003, Halloy and Mark 2003).  The magnitude 

of ecological effects resulting from FTE movement will largely be determined by the spatial 

extent and temporal rates of FTE movement. 

FTE research has a long history in North America, focusing on detecting evidence of 

FTE movement in response to climate, and describing plant communities in relation to 

environmental gradients (Griggs 1934, Brink 1959, Franklin et al. 1971, Douglas 1972, Lloyd 

and Graumlich 1997).  However, our understanding of climate-driven FTE movement across 

landscapes is surprisingly limited.  FTE research has focused on pattern detection, but has 

tended to not estimate populations (in this context I am loosely defining population estimation 

to include land cover extent and land cover change).  The choice of pattern detection versus 
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population estimates is important, because it strongly influences sampling design, statistical 

analysis, and scope of inference (Kenkel et al. 1989).  Because of well recognized global 

relationships between FTE position and climate (Hermes 1955, Körner 1998, Jobbágy and 

Jackson 2000, Harsch et al. 2009) pattern detection has been the norm in FTE research.  The 

lack of focus on population estimates in FTE research has resulted in a poor understanding of 

how FTE movement, and vegetation composition and structure are distributed across 

landscapes, both currently, and over time.  The question of pattern detection versus population 

or landscape level estimates is ubiquitous in ecology, but may be especially problematic in 

FTE research.  FTE positions may have global explanations, but FTE positions and sensitivity 

to climate can be dependent on numerous non-climatic biophysical factors (i.e. topography, 

seed sources, disturbance, etc.) important at multiple spatial scales, making it difficult to 

generalize and downscale FTE movement and associated ecological effects in response to 

climate change (Miller and Halpern 1998, Daniels and Veblen 2004, Holtmeier and Broll 

2005). 

Another significant limitation to understanding past, current, and potential future 

changes in FTE vegetation composition and structure is the lack of field data.  Vegetation data 

in the FTE is often sparse and incomplete due to: under sampling of the small FTE land area; 

sampling that does not address fine-scale patterns of FTE vegetation in relation to steep 

environment gradients; subjective sampling in relation to a limited number of environmental 

gradients perceived as most important; and the cost and logistic difficulties in sampling often 

remote FTE landscapes.  The scarcity and incompleteness of vegetation composition and 

structure data is important because historical changes in plant biodiversity and species 

distributions in the FTE and alpine tundra are typically quantified using long-term time series 

of field plots (Cannone et al. 2007, Pauli et al. 2007), while potential future changes are 

typically based on species distribution models that rely on bioclimatic envelope approaches 

(Thuiller et al. 2005).  Without a more complete picture of species composition and structure 

across landscapes, documented changes over time attributed to climate change may not be 

representative of larger areas and regions, baseline reference conditions for inventory and 

monitoring may not be representative landscapes, while potential future changes in species 

distributions may be based on inaccurate or oversimplified characterizations of current species 

habitat. 
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This dissertation attempts to overcome many of the above mentioned limitations in 

FTE research by taking a landscape approach to develop a greater understanding of past 

spatiotemporal patterns of tree invasion, current spatial patterns of vegetation composition and 

structure, and potential future patterns of climate-driven tree invasion.  The setting for this 

research is Jefferson Park, an approximately 260 ha subalpine parkland landscape in the 

Oregon High Cascades, USA.  This dissertation focuses on three different temporal 

components of FTE movement: (1) quantifying long-term (centuries) and short-term (decades) 

histories of tree establishment; (2) spatially characterizing current tree and non-tree species 

distributions; (3) and spatially projecting potential future tree invasion over the next five 

decades, which also serves as a proxy for potential future non-tree meadow habitat.  Within 

these three time periods of investigation, there are three general themes in this dissertation 

which emerge in different but interconnected ways in Chapters 2-4.  The first theme is to 

integrate pattern detection and landscape estimation approaches of ecological inquiry, to 

determine if tree invasion is occurring within the subalpine meadows of Jefferson Park, while 

also quantifying temporal rates and spatial extent of tree invasion across the Jefferson Park 

Landscape.  The second theme is how climatic and non-climatic factors have interacted to 

shape patterns of tree invasion over time (e.g. how have climate and biophysical features in 

the landscape influenced FTE movement, do these factors operate at different spatial scales 

and in are they a function of landscape context, and how they may interactively control tree 

invasion).  The third theme is the incorporation of advanced remote sensing tools to improve 

our understanding of past, current, and future FTE dynamics.  Historically, FTE research has 

been based exclusively on field data collection, or remote sensing data such as aerial 

photographs or satellite imagery.  New technologies such as Light Detection and Ranging 

(LiDAR) can generate synoptic characterizations of topography and vegetation structure at 

unprecedented data resolutions (Lefsky et al. 2002).  However, I do not just use a new 

technology such as LiDAR to view the FTE from above.  I also use LiDAR to formulate 

research questions and sampling methodologies to combine pattern detection and population 

estimate driven avenues of scientific inquiry, while also integrating LiDAR with field data 

collection and other remote sensing data types to generate more detail landscape based 

characterizations of past, current, and potential future FTE dynamics. 
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Chapter 2 had three objectives: (1) characterize spatial patterns of tree ages, 

vegetation composition, and vegetation structure in a FTE landscape in the Oregon Cascades; 

(2) determine how vegetation composition and structure were associated with gradients of 

environmental factors derived from multispectral satellite imagery and LiDAR data; and (3) 

determine if predictive mapping characterizations of tree age, vegetation composition, and 

vegetation structure were improved by the inclusion of LiDAR data.  If successful, this 

approach would make it possible to characterize vegetation composition and retrospective tree 

invasion at fine scales; create new monitoring protocols, and establish reference conditions 

distributions in patchy FTE landscapes.  Current vegetation composition, structure, and tree 

ages were spatially characterized (predictively mapped) by integrating vegetation 

composition, structure, and tree age data collected in 2006 and 2007 on 98 circular plots (7.32 

m radius) located in a randomized clustered design with topographic and vegetation indices 

derived from Light Detection and Ranging (LiDAR), and SPOT 5 HRG multispectral satellite 

imagery.  Predictive mapping of vegetation composition, structure, and tree ages was 

accomplished using the gradient nearest neighbor with imputation approach (Ohmann and 

Gregory 2002); field vegetation data was related to mapped explanatory variables using 

gradient analysis (i.e. canonical correspondence analysis); and field vegetation attributes were 

then projected onto the landscape by calculating gradient analysis axes scores for mapped 

explanatory variables, determining nearest neighbor plots in gradient space, and imputing 

nearest neighbor plot data into mapped space. 

In chapter 2 I used predictive mapping to estimate current area and spatial 

distributions of species composition, structure, and tree ages.  Chapter 2 does not directly 

address how tree invasion is related to climate conditions, or non-climate factors such as 

topography or seed sources.  In chapter 3, I determined how climate and biophysical 

(topography and vegetation structure) variables have interactively controlled temporal and 

spatial patterns of tree invasion in the meadows of Jefferson Park over the 1950 to 2007 time 

period.  In addition, I estimated landscape-level areal extent of tree establishment in subalpine 

meadows of the study area over time.  The specific objectives of chapter 3 were to: (1) 

determine how climate and biophysical variables interactively control the temporal and spatial 

patterns of tree establishment in the subalpine parkland landscape of Jefferson Park; and (2) 

estimate landscape-level areal extent of tree establishment in subalpine meadows of the study 



5 

 

 

area over time.  FTE research has traditionally been based on transect sampling methods. 

However, transect sampling in the FTE can result in spatial autocorrelation between 

explanatory variables, confounding attempts to untangle the relative influences of different 

controls on FTE dynamics.  Transects are also rarely representative or explicitly linked to 

landscape patterns as a whole, prohibiting accurate estimation of the extent and rates of FTE 

movement across landscapes.  To overcome these problems, I used LiDAR data collected in 

September of 2007 to map micro site (1 m pixel size) topography and vegetation structure 

(distance from overstory canopy) throughout the Jefferson Park basin.  Maps of LiDAR-

derived microtopography and distance to overstory canopy were entered into a Geographic 

Information System (GIS) to select plot locations in a spatially constrained stratified random 

sampling design.  By stratifying in relation to microtopography and distance from overstory 

canopy, the individual and interactive variable effects could be assessed, while also allowing 

for landscape-level estimates of tree establishment, since the proportional distribution of each 

strata within the study area was known.  Five hundred GIS-selected sites were located within 

132 ha of Jefferson Park with a sub-meter global positioning system (GPS).  One circular plot 

(1 m radius) was established at each site, and July snow depth, tree abundance and size, tree 

ages (via. increment coring), non-tree vegetation heights, and substrate cover were measured 

on each plot.  Chapter 3 reports on the rates and extent of tree invasion over time in relation to 

annual climate (particularly annual snowfall), how larger landform types alter variation in the 

biophysical controls nested within them, and how landform types and nested biophysical 

controls influence summer snow depth which spatially constrains where tree invade meadows.  

Chapter 3 also reports on how seed source limitations may place additional species-specific 

constraints of tree invasion of meadows, and how topographic conditions may interact with 

climate to produce complex spatiotemporal patterns of tree invasion over time. 

In chapter 4 I asked the how might tree invasion occur in the future in response to 

climate change? My primary objective was to spatially project historical and near-term future 

(1950 to 2064) tree invasion within 132 ha of meadows in Jefferson Park.  Specifically, this 

chapter addressed three questions: (1) can fine-scale patterns of historical tree invasion be 

accurately predicted? (2) how sensitive is future tree invasion (and therefore meadow 

persistence) to different future snowfall scenarios? and (3) how important are non-climatic 

factors such as landforms and biotic interactions in influencing the extent and spatial patterns 
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of tree invasion?  To answer these questions I developed an empirically-derived statistical 

model to quantify tree invasion in relation to deterministic spatial patterns of tree invasion 

controlled by biophysical factors (microtopography, seed sources, overstory and young tree 

interactions, larger-scale landform types), and probabilistic temporal patterns of tree 

establishment in relation to climate (specifically snowfall).  Spatial and temporal patterns of 

tree invasion were quantified based on the results from chapter 3.  Modeling focused on two 

time periods, historical (1950 to 2007) and near-term future (2007 to 2064). During the 

historical time period, the model drives tree invasion using regional climate data.  For the 

near-term future time period, six different climate scenarios were developed crossing three 

levels of change from historical mean annual snow fall (no change, 25%, and 50% reductions 

in snowfall) with two levels of persistent extreme snow fall (same as historical record, and 

extreme high or low snow fall persistently for three consecutive years). 

Chapter 5 synthesizes the results of chapters 2-4, relating results of each chapter to the 

three emergent themes of: pattern dectection versus population/landscape estimation, the 

importance of climatic and non-climate controls of FTE dynamics at multiple spatial scales, 

and how integration of field data with remotely sensed data can greatly improve our 

understanding of FTE dynamics, current conditions, and potential future changes across 

landscapes. 
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CHAPTER 2: INTEGRATING LIDAR, SATELLITE IMAGERY, AND FOREST 
INVENTORY DATA TO SPATIALLY CHARACTERIZE TREE INVASION, 
VEGETATION COMPOSITION, AND VEGETATION STRUCTURE IN A 
SUBALPINE MEADOW LANDSCAPE, OREGON CASCADES, USA. 

ABSTRACT 

The forest tundra ecotone (FTE) is the transitional area between forest and tundra 

ecosystems.  FTE positions are sensitive to climate change, and FTE movement may have 

numerous ecological impacts at multiple spatial and temporal scales.  Spatial patterns of 

vegetation composition and structure can affect future ecosystem dynamics, and characterizing 

the spatial of vegetation composition, structure, and tree invasion are needed to assess 

landscape level change.  Study objectives were to: (1) characterize spatial patterns of tree 

invasion via tree ages, vegetation composition, and vegetation structure in a FTE landscape 

using predictive mapping, (2) determine how vegetation composition and structure were 

associated with gradients of environmental factors derived from multispectral satellite imagery 

and LiDAR, and (3) determine if predictive mapping characterizations of tree ages, vegetation 

composition, and vegetation structure were improved by the inclusion of LiDAR data.  A 

gradient analysis with nearest neighbor imputation was used to generate spatial predictions; 

integrating forest inventory field plots, SPOT 5 satellite imagery, and LiDAR data.  

Vegetation composition was best described by SPOT 5 imagery and LiDAR-derived 

topography, while vegetation structure was best described by LiDAR-derived vegetation 

heights.  Species occurrence predictions were most accurate for tree species, moderate for 

shrub species and vegetation groups, and highly variable for graminoid species.  Tree age was 

the most accurately predicted vegetation structure variable, and indicates the study area was 

largely un-forested in 1600, gradually invaded by trees from 1600 to the 1920’s, and then 

rapidly invaded until 1980.  Many vegetation structure variables (e.g. stand and regeneration 

density) had large prediction errors, possibly a function of scale incompatibilities between data 

sources, and heterogeneous FTE landscapes where forest structure does not develop along 

consistent trajectories as stands age.  Vegetation composition and structure predictions had 

greater uncertainty with increased geographic distance from field plots, suggesting spatial 

distribution of field plots needs to be considered if predictive mapping of vegetation is a goal 

of inventory and monitoring programs. 
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INTRODUCTION 

Subalpine parklands and alpine treeline communities (also referred to as the alpine 

forest-tundra ecotone, or FTE) are transitional areas between forested and alpine ecosystems.  

FTE positions are often associated with thermal deficiencies limiting plant growth, implying 

that increased temperatures will result in FTE movement (Grace 1989, Körner 1998, Jobbágy 

and Jackson 2000).  Contemporary movement of alpine treeline and declines in subalpine and 

alpine meadow extent vary, but have been documented across a diverse range of geographic 

locations, climatic zones, and tree species, suggesting a global ecological response to climate 

change (Harsch et al. 2009).  Besides being highly desirable areas for outdoor recreation 

(Dearden and Sewell 1983, Price 1985, Tolvanen 2005), FTE movement may have numerous 

ecological effects at multiple spatial scales, including: positive temperature feedbacks due to 

decreased surface albedo (Bonan et al. 1992, Foley et al. 2000), increased NPP and carbon 

storage (Solomon et al. 1997, Prichard et al. 2000, Lafleur et al. 2001), and declines of plant 

and animal populations and species (Halloy and Mark 2003, Dirnböck et al. 2003, Cannone et 

al. 2007, Roland and Matter 2007). 

The magnitude of these ecological effects will be largely driven by the rates and 

spatial extent of FTE movement.  Current FTE vegetation composition and structure are 

important drivers of future FTE movement via modification of: snow persistence, available 

soil moisture, soil development, nutrient availability, inter-specific competition, and seed 

quantity (Tranquillini 1979, Holtmeier 2003, Didier 2001, Germino et al. 2002, Bekker 2005, 

Maher and Germino 2006).  Although the FTE is often referred to as a “line”, it is typically a 

transitional area of variable width whose spatial complexity increases from global to local 

scales, where it forms complex mosaics of forest and non-forest components (Holtmeier and 

Broll 2005).  In the FTE (and spatially heterogeneous ecosystems in general), spatial patterns 

of existing trees and vegetation may affect current and future dynamics of the entire landscape 

(Hardt and Foreman 1989, Turner et al. 1998, Bekker 2005, Malanson et al 2007).  

Consequently, understanding current FTE dynamics and how these systems may respond in 

the future to climate change requires an understanding of the current spatial patterns of FTE 

vegetation composition and structure.  This would suggest developing spatially explicit 

characterizations (i.e. maps) of vegetation composition and structure would be an important 

component in monitoring change in the FTE. 
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Spatially-explicit characterizations of current FTE vegetation composition and 

structure have rarely been generated, and have not included tree age structure (Brown 1994, 

Wallentin et al. 2008).  This is likely due to the objectives typical of FTE research.  Field-

based FTE research typically attempts to detect patterns of change, quantifying temporal 

changes in FTE position in relation to climate, or characterizing vegetation composition and 

structure in relation to a limited number of underlying environmental gradients (Kuramoto and 

Bliss 1970, Woodward et al. 1995, Rochefort and Peterson 1996, Lloyd and Graumlich 1997, 

Miller and Halpern 1998).  However, spatial patterns of vegetation composition and structure 

are often shaped by multiple drivers and their interactions at varying spatial and temporal 

scales (Turner et al 1998, Urban et al. 2002, Daniels and Veblen 2004).  FTE field research 

collected along a low number of environmental gradients is also unlikely to characterize the 

full range of environmental gradients that occur in complex landscapes, and consequently this 

research cannot be simply “scaled-up” to accurately characterize spatial patterns or make 

landscape-level estimates of vegetation composition, structure, and age distributions. 

Unlike field research, FTE research based on remotely sensed data is well suited to 

spatially characterizing and estimating FTE land cover and land cover change at multiple 

spatial scales (Masek 2001, Mihai et al. 2007, Zald 2008).  However, for numerous reasons, 

FTE research based on remote sensing alone has low ecological resolution.  Typical land 

cover derived from remote sensing data is large scale mapping projects with relatively large 

minimum mapped units of 30 to 100 m, and are not optimized to accurately characterize the 

proportionately small and heterogeneous FTE (CEC 1994, Vogelmann et al. 2001, Homer et 

al. 2004).  Pixels in remote sensing based land cover classifications can typically be occupied 

by only one land cover type (i.e. hard classification).  Mixed within-pixel land cover 

composition is common in ecotones, but hard classification approaches inadequately 

characterize ecotones as either pixel boundaries between vegetation classes or finely 

delineated vegetation types found only within the ecotone (Johnston and Bonde 1989, Allen 

and Walsh 1996, but see Hill et al. 2007).  Land cover classifications based solely on remotely 

sensed data do not contain vegetation composition and structure information, so they lack the 

ecological resolution to characterize important attributes of FTE vegetation conditions.  

Finally, changes in image quality, short time periods of existing imagery, and limited sample 
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dates (typically two dates) over time restrict the temporal extent, resolution, and quality of 

remote sensing based estimates of FTE conditions and change. 

Fine-scale maps of the FTE are needed to answer questions of ecological effects of 

climate change on ecosystems and feedbacks between ecosystem patterns, processes, and 

climate change.  Characterizing spatial patterns of FTE age structure would provide accurate 

estimates of landscape-level tree invasion.  Additionally, quantifying species occurrences and 

distributions across landscapes could improve species distribution models used to project plant 

migration and biodiversity in response to climate change, since performance of these models 

is often influenced by incomplete biological data (Kadmon et al. 2003, Martínez-Meyer 2005, 

Araújo and Guisan 2006).  One approach to generating such information (referred to as 

predictive mapping), combines field data, remotely sensed imagery, and additional spatially 

explicit datasets (i.e. digital elevation models, topographic moisture indices, solar radiation 

indices, etc.), utilizing the strengths of both field and remotely sensed data types to generate 

spatially explicit predictions of vegetation composition and structure across landscapes 

(Gottfried et al. 1998, Ohmann and Gregory 2002, Hudak et al. 2008, Tomppo et al 2008).  

Predictive mapping can represent the full range of variability in field data, mapping multiple 

attributes that vary continuously.  This is especially attractive for the FTE, since it could 

provide landscape-level estimates of tree age structure not possible with field data alone, while 

reducing problems associated with mixed composition pixels that can confound traditional 

“hard” classification in remote sensing of ecotones.  Published attempts to predictively map 

vegetation composition and structure in the FTE do not currently exist, but it has the potential 

to dramatically improve spatial characterization of FTE vegetation composition and structure. 

Predictive mapping generally utilizes multi-spectral satellite imagery and digital 

elevation models, but relatively few studies have utilized airborne Light Detection and 

Ranging (LiDAR) (although see Hudak et al 2008).  LiDAR generates high resolution three 

dimensional characterizations of terrain and vegetation structure, enabling examination of 

landscape patterns not previously possible (Lefsky et al. 2002, Vierling et al. 2008).  LiDAR 

data can improve vegetation classification accuracy, and both characterize and predict forest 

vegetation structural attributes (Lefsky et al. 1999, Zimble et al. 2003, Chust et al. 2008).  

Applications of LiDAR to mapping the FTE are current lacking, but LiDAR may be especially 

useful in providing fine scale topographic data; whose patterns can influence microclimate, 
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vegetation composition, and tree establishment at the FTE (Barry 1981, Körner 2003, 

Holtmeier 2003).  Vegetation structure derived from LiDAR may also provide landscape-level 

estimates and spatial characterization of tree establishment patterns (via tree height age 

relationships), over long time periods not possible using field data or time series remote 

sensing imagery.  LiDAR has only recently become available for ecological and FTE research, 

so it is unclear to what degree LiDAR data may improve predictions of vegetation 

composition and  structure, and what explanatory variables derived from LiDAR will be most 

important. 

The study has three objectives: (1) characterize spatial patterns of tree invasion via 

tree ages, vegetation composition, and vegetation structure in a FTE landscape in the Oregon 

Cascades using predictive mapping, (2) determine how vegetation composition and structure 

were associated with gradients of environmental factors derived from multispectral satellite 

imagery and LiDAR, and (3) determine if predictive mapping characterizations of tree ages, 

vegetation composition, and vegetation structure were improved by the inclusion of LiDAR 

data. 

 

METHODS 

Study Area Description 

The study was conducted in Jefferson Park (44°42’ N 121°48’ W, 1693 – 1814 m asl), 

an approximately 260 ha subalpine basin in the Mount Jefferson Wilderness, Willamette 

National Forest, within the Oregon High Cascades ecoregion (Figure 2.1).  The climate is 

intermediate between Mediterranean and maritime temperate with dry warm summers and 

significant winter precipitation (Csb/Cfb) under the Köppen Climate Classification System 

(Peel et al. 2007).  The nearest weather station within the region at an elevation similar to 

Jefferson Park (Government Camp Station, National Weather Service Cooperative Network 

#353402, 45°18’ N 121°145’ W, 1213 m asl), reported annual average maximum and 

minimum temperatures of 10.2° C and 1.1° C.  Annual precipitation averaged 217 cm, snow 

fall occurred predominantly between December and April, and annual snow fall averaged 682 

cm during the 1951 to 2008 time period. 
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Jefferson Park geomorphology has been strongly shaped by volcanism and glaciation.  

Mount Jefferson is a Pleistocene stratovolcano of rhyolitic/basaltic origin above a broad 

plateau of older shield volcanoes (Walder et al. 1999).  During the most recent glacial maxima 

of the Holocene Epoch, the Jefferson Park glacial advance and retreat deposited outwash, 

basal till and ablation till within the study area (Scott 1977).  Since the mid-19th century, 

Cascade Range alpine glacier extent has substantially decreased (O’Connor and Costa 1993, 

McDonald 1995, Dyurgerov and Meier 2000).  Glacial retreat, combined with steep slopes and 

loose parent materials, result in the Cascade Range having the highest concentration of 

neoglacial lakes in the conterminous United States (O’Connor et al. 2001).  On August 21st, 

1934, a small (~4,000 m2) moraine dammed neoglacial lake breached on Mount Jefferson, 

covering 320,000 m2 of eastern Jefferson Park with debris 0.3 to 2.4 m deep (The Oregonian 

Daily Journal, October 19th, 1934).  Field reconnaissance during 2006 discovered a smaller 

undocumented debris flow in north Jefferson Park of older but indeterminate age.  Soils of the 

study area are poorly documented, consisting of either rubble derived from ice, colluvium and 

residuum weathered from sedimentary rock with influences of volcanic ash; or Typic 

Vitricryands formed in residuum and colluvium from pyroclastic ash flows, andesite, and 

volcanic ash (MacDonald 1998).  

Jefferson Park is within the lower FTE, the transition zone between the upper limit of 

closed montane forest (i.e. timberline) and the beginning of the alpine zone (sensu Körner 

2003).  Jefferson Park is within the mountain hemlock (Tsuga mertensiana) vegetation zone 

(Franklin and Dyrness 1988).  Mountain hemlock and Pacific silver fir (Abies amabilis) are 

the dominant tree species, found in both single species and mixed-species stands.  Most of 

these stands are “islands” of variable size and shape surrounded by meadow vegetation.  The 

oldest trees in these forest islands are at least 200 years old, and can exceed 400 years of age.  

Subalpine fir (Abies lasiocarpa), whitebark pine (Pinus albicaulis), lodgepole pine (Pinus 

contorta), and Alaska yellow-cedar (Callitropsis nootkatensis) are also present, but in greatly 

reduced amounts and more restricted spatial distributions.  Six vegetation groups were 

identified within the study area (see Appendix A for details regarding development of 

vegetation groups).  Vegetation groups are generally consistent with prior studies of subalpine 

parklands in the Oregon Cascades (Campbell 1973, Halpern et al. 1984).  A dry forb group on 

well-drained sites (Group 1) was characterized by Arenaria capillaris, Lupinus arcticus, 
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Eriogonum umbellatum, and Polygonum newberyi.  Important species in the pink mountain-

heather type (Group 2) included Phyllodoce empetriformis, Luetkia pectinata, and 

Lycopodium sitchensis.  The wet sedge meadow type (Group 3) was characterized by Carex 

nigricans and Juncus drummondi.  The wet low forb type (Group 4) included Aster alpiginus, 

Castelija parviflora, Festuca sp., Gentian calycosa, and Kalmia microphylla.  The white 

mountain-heather type (Group 5) was characterized by Cassiope mertensiana and Microseris 

alpestris.  The mountain-ash tall shrub type (Group 6) included Sorbus sitchensis, Rubus 

lasiococcus, Vaccinium deliciosum, Ligustrum gracilis, Epibolium alpinum, Dodecatheon 

jeffreyi, and Veratrum viride. 

In addition to debris flows, Jefferson Park may have experienced other disturbance 

events such as livestock grazing.  Sheep grazing occurred in what became the Willamette 

National Forest beginning in the 1890’s, and largely ceased by the 1940’s (Coville 1898, 

Kuhns 1917, Rakestraw & Rakestraw 1991).  Historical records are scarce, so it is unclear if 

sustained heavy grazing occurred in meadows of Jefferson Park, although overgrazing at 

similar elevations and meadow vegetation types resulted in soil erosion and reduced plant 

cover (Kuhns 1917).  Grazing was often more sustained and intense in close proximity to 

driveways (areas designated for sheep movement), and one of these driveways (the Skyline 

Trail) provided direct access to Jefferson Park (Oregon Tourist and Information Bureau 1921, 

Rakestraw & Rakestraw 1991).  The long travel distances associated with its remote location 

and conflicts with recreational use discouraged livestock grazing in the study area, and 

livestock access to Jefferson Park via the Skyline Trail was closed in 1937 (Rakestraw & 

Rakestraw 1991).  Low intensity pack animal grazing has continued within the study area to 

the present.  Heavy livestock grazing of subalpine vegetation may either facilitate tree 

establishment via reduced vegetation competition and exposure of mineral soil, or inhibit tree 

establishment via direct browsing and trampling of seedlings.  Direct experiments are lacking, 

but prior research has inferred grazing suppresses tree establishment at treeline and subalpine 

meadows, and a pulse of increased tree establishment often follows grazing cessation (Miller 

and Halpern 1998, Didier 2001, Gehring-Fasel et al. 2007).  Fires are infrequent in the 

subalpine ecosystems of the region, with fire return intervals in the mountain hemlock zone 

ranging from centuries to several millennia (Lertzman and Krebs 1991, Hallett et al 2003).  

Intensive surveys of the study area for past fires were not conducted, but qualitative 
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observations during field plot establishment found no evidence of charred tree boles or 

biological legacies indicative of past wildfires.  Some whitebark pines displayed needle spots 

and cankers indicative of white pine blister rust (Cronartium ribicola), but observations 

suggest there has not been recent significant tree mortality due to blister rust or other pests and 

pathogens within the study area. 

Overall Sampling Design 

The study area was delineated by topography and vegetation, bounded on the east and 

west by steep declines in elevation coinciding with increased closed canopy forest and plant 

species typical of lower elevation montane forests, and bounded on the north and south by the 

steep slopes of Mount Jefferson, Park Butte, and Park Ridge (Figure 2.1).  Vegetation 

composition and structure data was collected on 98 geo-referenced forest inventory subplots 

located in a randomized clustered design.  Summary measures of vegetation species 

occurrence, tree age, basal area, diameter, stand density, and regeneration density were 

calculated for each plot.  Values for landform type (glacial or debris flow), SPOT5 multi-

spectral satellite imagery, LIDAR-derived topography, and LIDAR-derived vegetation 

structure explanatory variables were assigned to each geo-referenced plot in a Geographic 

Information System (GIS). 

Field Plot Data 

In the summers of 2007 and 2008, vegetation composition and structure data were 

collected on 98 circular plots (7.32 m radius) located in a randomized clustered design within 

Jefferson Park.  Plot footprints were similar to those used by the U.S. Forest Service Forest 

Inventory and Analysis Program (FIA), consisting of a central 7.32 m radius subplot, and 

three equally sized subplots 36.6 m distance from the central subplot at 120°, 240°, and 360° 

degrees (Bechtold and Patterson 2005).  Each of the four subplots within a cluster is a sample 

unit, and is referred to as a plot hereafter.  Unlike Locations for 30 central plots were 

determined using the random point generator in Hawth’s Tools version 3.24 (Beyer 2004).  

From each central plot, the centers of three additional plots in each cluster were calculated, 

resulting in a total of 120 plot coordinates in a random clustered design.  This was believed to 

be the maximum number of plots which could be located and measured in the time permitted, 

while providing adequate sample numbers for analysis (later confirmed by species 
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accumulation curves).  Plots were located using GIS determined coordinates with a sub-meter 

accuracy GPS unit (Leica GS20 with an external pole antenna, Leica Geosystems AG, St. 

Gallen, Switzerland).  At least ten GPS coordinates with positional errors less than 2 m were 

averaged for each plot center to improve positional accuracy (Wing and Karsky 2006).  GPS 

subplot coordinates were post-processed using GIS DataPro software (Leica Geosystems AG, 

St. Gallen, Switzerland) and plot horizontal positional accuracy averaged 0.71 m (0.27 – 1.17 

m 95% CI).  Plots in lakes or high-use recreation areas (such as campsites or trails) were 

excluded, as was a single plot located within a fragile spring/seepage vegetation community 

that would have been excessively damaged by sampling activity.  The early onset of winter 

snow storms in 2008 resulted in measurement of only 98 plots, with reduced plot density on 

the east and west sides of the study area (Figure 2.1). 

Within each plot, all trees taller than breast height (1.3 m) were identified by species, 

and measured for diameter at breast height (DBH) and tree height.  Stand density, basal area, 

and quadratic mean diameter were summarized by plot and species.  On each plot, a 

subsample of trees was cored proportional to plot-level species and height distributions.  Trees 

were cored at the root collar, or at the minimum height at which the increment borer could be 

used (5 – 40 cm depending on increment borer length).  Tree cores were aged to generate 

maximum (stand initiation) and mean plot ages. Height age regressions were used to estimate 

the number of missing rings on cores collected above the root collar.  Tree regeneration (i.e. 

trees shorter than breast height) was tallied by species and size class (5 - 50 cm, 50 - 130 cm 

tall) on two 2.07 m radius micro plots established 3.66 m from plot center at 90° and 270°.  

Regeneration density by plot, species, and size class calculated.  The percent cover of 

overstory, understory, and ground cover vascular plants was recorded by species (Table 2.1).  

One of six vegetation groups was assigned to each plot as shown by the dendrogram in 

Appendix A. 

SPOT 5 Imagery 

Eight data layers were developed from bands 1-4 of SPOT 5 HRG imagery (Table 

2.2).  The study area fell within a single SPOT 5 scene taken on July 20, 2005 (ID 

55262600507201912152J).  Data layers were pan-sharpened to a 5 m pixel resolution.  Plot 

sizes in this study are small (four 10 m pixels of imagery overlay a plot), although the number 
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of pixels overlaying a plot can vary depending on plot to image alignment.  SPOT 5 imagery 

has a global horizontal standard deviation of 50 m with level 2a processing for geometric 

distortions (SPOT Image Corp 2008), inadequate for extracting subplot-level spectral 

attributes.  To address this, SPOT 5 imagery was co-registered to LiDAR data collected for the 

study area, which had extremely high positional accuracy.  The panchromatic band of SPOT 5 

imagery was co-registered to a LiDAR-derived vegetation height model using the program 

ITPFind, an automated, area-based technique for identifying image tie points used in image 

co-registration (Kennedy and Cohen 2003).  ITPFind was run using a 100 * 100 pixel window 

and a 0.35 threshold minimum steepness value.  Automatically designated tie points between 

SPOT 5 and LiDAR images were visually assessed, and 127 were retained to geo-rectify the 

SPOT 5 image using ERDAS Image version 9.2 (Leica Geosystems Geospatial Imaging, 

LLC).  Geo-rectification used a 1st order polynomial model, which resulted in a combined root 

mean squared error (RMSE) of 3.45 m.  SPOT 5 bands were resampled using nearest neighbor 

interpolation during geo-rectification. 

LiDAR Data 

Discrete return airborne LiDAR data was collected on September 3-4, 2007 by 

Watershed Sciences, Inc (Corvallis, Oregon USA) using a Leica ALS50 Phase II laser system 

flown on a fixed-wing aircraft approximately 2000 m above ground level.  LiDAR data was 

collected with a 59 kHz pulse rate, capturing scan angle of ±11°, and scan swath ≥ 50%.  Point 

density exceeded 10 points/m2 within the study area.  Based on known real-time kinematic 

ground survey points collected 8 km west of the study area, LiDAR data had a combined 

horizontal and vertical accuracy of 0.04 m.  The LiDAR point cloud was converted into three 

grids with 1m pixel resolution: a digital elevation model (DEM) of bare earth ground 

elevation, a vegetation elevation model (VEM), and a vegetation height model (VHM) 

calculated by subtracting the DEM from the VEM.  The three above mentioned grids were 

then resampled to 5 m pixel size.  VHM grid was used to co-register the SPOT 5 imagery, 

eight topographic variables were derived from the DEM (Table 2.2), and fourteen vegetation 

structure variables were derived from the raw LiDAR point cloud first returns using the Grid 

Metrics function in FUSION version 2.61 (McGaughey 2007). 
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Additional Mapped Data and Plot-Level Data Extraction 

Mapped data delineating landform types (glacial and debris flow landforms) was 

created by manually interpreting aerial photographs, LiDAR data, and field notes.  The debris 

flow from 1934 was easily discernable in historical aerial photographs from 1949, where the 

lack of vegetation made it stand out from the much older surrounding glacial landforms.  The 

older debris flow along the northern boundary of the study area was easily discernable using 

surface roughness maps derived from the LiDAR data.  Both debris flows were confirmed by 

qualitative field examination of deposited surface material.  Glacial landforms dominated the 

rest of the study area (Hodge 1925, Scott 1977).  Shapefiles of the two landform types were 

manually traced as polygons, and then converted to grids in ArcGIS.  To assign values from 

mapped environmental variable grids to plots, each plot was represented as a template of 0.5 

m pixels approximating the plot’s ground footprint, centered on its X and Y coordinates.  Plot 

templates were overlain on each environmental variable grid using a GIS macro, and mean 

values of explanatory variables associated with each plot were extracted. 

Predictive Mapping Method 

Predictive mapping closely followed the gradient nearest neighbor (GNN) method 

described by Ohmann and Gregory (2002), and was conducted in four steps: 

(1) A stepwise canonical correspondence analysis (CCA) was run to develop a model 

quantifying relationships between field (response) data and mapped (explanatory) data 

(ter Braak 1986, ter Braak and Prentice 1988). 

(2) For each mapped 5 m pixel, scores were predicted for the first eight CCA axes by 

applying model coefficients from step 1 to the mapped values for explanatory 

variables. 

(3) For each mapped pixel, the single and second nearest plots in eight-dimensional 

gradient space were identified.  The distance metric is Euclidean, and axis scores were 

weighed by their respective eigenvalues. 

4) The field attributes of the nearest plot were imputed into the mapped pixel.  Maps 

were then constructed for vegetation attributes measured in the plots. 
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CCA is an ordination technique where the ordination of composition or structural data 

is constrained by a multiple linear regression of explanatory data.  CCA can suffer from 

multicollinearity, poor retention of community structure in response to noisy environment 

data, and is best suited to data with unimodal responses to underlying environmental gradients 

(Neter et al. 1996, McCune 1997, McCune and Grace 2002).  CCA also relies on the chi-

square distance measure, which can give high weight to data with low total values or 

abundance, and deemphasize data with high total values or abundance (Minchin 1987).  

However there are few viable alternatives to CCA when associating community structure to 

environmental gradient data.  Generalized Linear Models (GLMs), General Additive Models 

(GAMs), and Non-parametric Multiplicative Regressions (NPMR) can model complex 

surfaces of single dependent variables in relation to explanatory variables (Wimberly and 

Spies 2001, Guisan et al. 2002, McCune 2006).  However, GAMs are constrained by the 

additive nature of model terms and limited functional forms, while requiring modeling of 

single response variables individually (McCune 2006).  Single species models ignore 

important information found in species co-occurrence, and compiling many single species 

models can result in unrealistic predicted combinations of species co-occurrence (Mouer and 

Stage 1995).  For these reasons, it was felt that despite its potential limitations, CCA was the 

best approach for realistic multi-species mapping. 

Species composition and vegetation structure (including tree ages) were modeled 

separately in relation to mapped explanatory variables.  Response variables in the species 

composition matrix included species presence/absence for all species listed in Table 2.1.  Tree 

species presence/absence was divided into overstory trees and understory trees (which were 

defined as either occurring directly underneath overstory trees, or being open grown and under 

8 m tall).  Vegetation groups were included in the species composition models, coded as 

mutually exclusive binary indicator variables.  Response variables in the vegetation structure 

matrix included: maximum and mean plot-level tree age, stand density (trees/ha), basal area 

(m2/ha), quadratic mean diameter (cm), and regeneration density (trees less 1.3 m tall/ha) both 

separately by species and summed across species.  To determine if LiDAR-derived data (both 

topographic and vegetation structure) improved GNN model predictions, nine different CCA 

models were developed with different subsets of mapped explanatory data (Table 2.3).  
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Composition and structure data were each modeled separately in relation to these nine 

combinations of mapped explanatory variables using CCA. 

CCA models were developed using the package vegan for R with a Euclidean distance 

metric (Oksanen et al. 2008, R Development Core Team 2008).  A forward stepwise 

procedure was used to retain variables describing the most variation in the vegetation data.  

Mapped explanatory variables were added in order of greatest additional variance described, 

and added only if they were significant (P < 0.05), as determined by Monte Carlo tests with 99 

permutations.  X and Y coordinates were excluded from stepwise CCA model development, 

but included in all final models to include geographic location in selection of nearest-neighbor 

plots.  After CCA model development, first and second nearest plot neighbors (k=2) were 

imputed using the program yaImput in R version 2.8.1 (Crookston et al. 2007, R Core 

Development Team 2009).  Following imputation (which assigns plot identifications to 

pixels), plot-level field attributes were joined to associated pixels, and maps constructed for 

vegetation attributes. 

Model Evaluation and Accuracy Assessment 

GNN predictions of vegetation composition and structure were evaluated at the study 

area and plot levels in a manner similar to that described by Ohmann and Gregory (2002).  At 

the study area level, relative proportions of vegetation composition predicted by GNN were 

compared to relative proportions from the field plots.  Means and variability of GNN 

vegetation structure predictions were compared to means and variability from field plots.  

Plot-level accuracy was assessed by comparing GNN predictions to observed (field plot) 

values for the 98 plot locations.  This was accomplished by a leave-one-plot-out cross-

validation approach.  A 10-fold cross-validation was also generated, which produced similar 

results (not presented).  Accuracy of vegetation composition predictions was assessed by 

calculating overall classification accuracy and kappa coefficients of agreement (Cohen 1960).  

Accuracy of vegetation structure predictions in relation to observed values were assessed with 

root mean square differences (RMSD).  RMSD is computationally similar to root mean 

squared error (RSME), but divided by the standard deviation of the observed data.  The spatial 

distribution of prediction accuracy was assessed by mapping nearest-neighbor distances.  

Nearest neighbor distances indicate potential spatial distribution of error in model predictions, 
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with shorter distances indicating greater confidence in results (Ohmann and Gregory 2002).  

This approach to spatial uncertainty of model predictions allows for visualization of 

uncertainty across the landscape, as opposed to mapping prediction residuals versus 

observations only at plot locations as done by Ohmann and Spies (1998). 

 

RESULTS 

Gradients in Species Composition and Vegetation Structure  

Species composition was most strongly associated with gradients of SPOT 5 and 

LiDAR-derived topography variables, with LiDAR-derived vegetation structure and landform 

variables describing much less variation in composition data (Table 2.4).  The highest 

proportion of variance described in the composition data occurred for the model containing all 

types of mapped variables (i.e. SPOT 5, landform, topography, and vegetation structure).  The 

primary gradient (diagonal across CCA axes 1 and 2) in vegetation composition was 

associated with reduced reflectance of the SPOT 5 mid IR and green bands, topographic 

position, slope, elevation, and vegetation height (Figure 2.2a-b).  Along this primary gradient, 

trees, tall shrubs, and species associated with forest understory were found on drier sites and 

higher elevations on the right, while shorter stature and wet site species were found on the left.  

A weaker perpendicular gradient with red and near IR bands of SPOT5 imagery and landform 

type had species on well-drained and rocky sites in the lower left portion of the ordination.  

Gradients of vegetation structure were strongly associated with LiDAR-derived vegetation 

structure variables (Table 2.4).  Adding topography, SPOT5, and landform variables during 

model development did little to improve the proportion of variance described in the vegetation 

structure data.  The primary gradient (CCA axis 1) of vegetation structure was associated with 

percentiles of vegetation height, although potential relative radiation (RAD) was also strongly 

associated with variance in the vegetation structure ordination (Figure 2.2c). 

Overall Prediction Accuracy 

Predicted proportions of the study area occupied by different tree species and 

vegetation types generally matched field plot observations (Figure 2.3).  The GNN model 

over-predicted overall overstory cover, as well as the overstory cover of Pacific silver fir and 

yellow-cedar, while closely matching overstory cover of mountain hemlock and subalpine fir.  
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GNN predictions for understory tree cover closely matched observations, over-predicted the 

proportion of the landscape in the tall shrub and dry forb vegetation groups, while 

underestimating the other four vegetation groups.  Predicted means and standard deviations of 

vegetation structural attributes closely matched observed values, although prediction means 

tended to be greater than observed values (Table 2.5).  Based on field observations, the overall 

geographic patterns of GNN predictions for individual species appear reasonable (Figure 2.4).  

Predictions appear excessive for the dry forb vegetation group (which should be more 

constrained to debris flows), and this over prediction appears to come largely at the expense of 

the mountain heather and tall shrub groups, especially along the heavily forested eastern edge 

of the study area (Figure 2.5).  Spatial patterns of stand age appear reasonable, predicting no 

trees in large meadows, young trees in the debris flows where extensive tree regeneration has 

occurred, and recent tree establishment on glacial landforms clustered around older trees 

(Figure 2.5).  Predicted initial tree establishment age over time was slightly higher overall than 

observed (Figure 2.6).  Tree establishment occurred at a fairly low and constant rate from 

1600 to 1925, increased beginning around 1925, and higher rates of establishment continued 

until around 1990.  Spatial patterns of nearest neighbor distances for composition and 

structure models (Figure 2.7) suggest greatest potential uncertainty on the eastern edge of the 

study area, which also has the lowest plot density.  Nearest neighbor distances in gradient 

space were positively correlated to geographic distances of pixels from field plots (Pearson 

product moment correlation coefficient = 0.282). 

Plot-Level Predictive Accuracy 

Classification accuracy was not calculated for all species at once at the plot level, 

since species occurrence was not mutually exclusive of another species.  Instead overall 

classification accuracy and improvement from chance agreement (Kappa statistic, κ, Cohen 

1960) were calculated for each species.  Overall accuracy of predicted species presences 

ranged from 53% – 99%, were -12 – 79% better than expected by chance for individual 

species, and 19 – 38% better than chance for vegetation types (Table 2.6).  Species with very 

low Kappa values either had low sample sizes, such as Callitropsis nootkatensis and Veratrum 

viride (both had n = 1), or were consistently present but had low or variable percent cover 

values within plots (e.g. Carex nigricans, and Luetkea pectinata).  Based on kappa statistics 
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and discounting extremely rare species, GNN predictions were highest for overstory trees, 

intermediate for tree regeneration, shrubs, and vegetation types, intermediate but variable for 

forbs, and lowest for graminoids.  Overall mean vegetation structure values tended to be over 

predicted by 13 to 42 percent, but variation around mean values was comparable between 

predictions and observed data (Table 2.5).  Plot-level GNN predictions were most accurate for 

mean and maximum stand age, but generally poor for basal area, stand density, regeneration 

density, and quadratic mean diameter (Figure 2.8). 

 

DISCUSSION 

The GNN model based on field plots, multi-spectral satellite imagery, and LIDAR, 

produced high-resolution maps rich in predicted ecological data such as tree invasion ages, 

vegetation composition, and vegetation structure.  GNN map accuracy was highest for tree 

ages and species composition, providing both a long-term retrospective record of tree invasion 

across the FTE, and fine-scale projections of species distributions.  Both vegetation 

composition and vegetation structure were strongly associated with gradients of topography 

and vegetation heights derived from LiDAR, but in different ways.  Vegetation composition 

was strongly associated with LiDAR-derived topography and multi-spectral imagery, while 

vegetation structure was most strongly associated with LiDAR-derived vegetation height 

metrics.  Inclusion of LIDAR data clearly improved predictions of vegetation composition and 

tree ages, but vegetation structural attributes (i.e. stand density, basal area, and quadratic mean 

diameter) had very low prediction accuracy.  Results of this study suggest potential limitations 

of LiDAR data and predictive mapping methods for characterizing vegetation structure and 

specific species and vegetation communities in the FTE and other heterogeneous landscapes.  

Model patterns, the value of LiDAR data in predictive mapping, and limitations of predictive 

mapping are discussed below with respect to predictions of tree invasion, vegetation 

composition, and vegetation structure.  In addition, spatial patterns of prediction uncertainty 

are discussed in relation to the spatial arrangement of field plots, which as implications for 

using existing and future plot networks to develop fine-scale predictive maps across 

landscapes for monitoring and inventory purposes. 

Retrospective Predictions and Prediction Limitations of Tree Invasion Over Time 
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An objective of this study was to determine if predictive mapping could quantify 

spatiotemporal patterns of tree invasion in the FTE.  Maximum and mean tree age were the 

only structural variables with high prediction accuracy, providing landscape-level estimates 

and spatial distributions of tree invasion in the FTE over time.  Models of maximum tree age 

are inferred to represent initial dates of establishment, which are consistent with plot-level tree 

invasion.  Jefferson Park basin was largely devoid of trees four hundred years ago, and tree 

establishment was gradual for approximately 300 years, with the landscape still dominated by 

non-tree vegetation until the early 1900’s.  The time period dominated by non-forest 

vegetation and low levels of tree invasion corresponds to cooler reconstructed temperatures in 

the Northern Hemisphere (Figure 2.6, Jansen et al. 2007), and regional glacial advances during 

the late Little Ice Age interval (Luckman 2000, Larocque and Smith 2003, Lewis and Smith 

2004).  Predicted and observed tree ages indicate increased tree establishment beginning in the 

1920’s, roughly corresponding to Northern Hemisphere warming.  Increased tree 

establishment at the FTE in Jefferson Park was earlier than previous observations of subalpine 

meadow invasion in the Oregon Cascades, but similar to that found in the Olympic Mountains 

and Mount Rainer in Washington (Franklin et al. 1971, Woodward et al. 1995, Rochefort and 

Peterson 1996, Miller and Halpern 1998).  High rates of tree establishment continued until 

approximately 1990 (17 years ago).  Model predictions provide a landscape area estimate of 

current meadow extent, suggesting trees are absent from only 20 percent of the pixels in the 

study area, down from over 60 percent in 1900. 

The greatest limitation of GNN stand age predictions is the lack of tree establishment 

since 1990 (Figure 2.6).  Zald (2010) found high rates of tree invasion during the 1990’s, 

suggesting the seventeen year period without predicted tree establishment may be an artifact 

of sampling and GNN methodology.  Plot sampling used methods similar to the U.S. Forest 

Inventory and Analysis program, where trees below 1.3 m in height were counted but not aged 

on micro plots, eliminating young trees ages from the sample.  The GNN approach retains the 

range and variability of plot-level data, so predictions of stand age preserve this aspect of the 

plot-level data, highlighting the potential limitation of using traditional forest inventory data 

collection methods (specifically limited collection and aging of small trees and regeneration 

data) in the FTE. 
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Predictions of Vegetation Structure and its Limitations within a Predictive Mapping 
Framework 

GNN predictions of vegetation structure were strongly associated with LiDAR 

derived vegetation height variables, while SPOT5 spectral variables and LiDAR-derived 

topography variables added much less to the proportion of variance described in the vegetation 

structure matrix.  With the exception of maximum and mean tree age, the GNN model of 

vegetation structure attributes (tree density, basal area, quadratic mean diameter, etc.) had very 

low prediction accuracy.  Low prediction accuracy of these structural attributes may occur 

because of asynchronous patterns of vegetation structural development over time which 

manifest as high horizontal and vertical structural variability. 

Trends in stand density, diameter, and volume were variable in relation to stand age 

(Figure 2.9).  In the absence of secondary disturbance, field and remote sensed metrics of 

forest structure (such as basal area, stand density, tree diameters, canopy vertical distribution, 

spectral signatures, canopy volume, etc.) often display consistent trends associated with stand 

age (Bormann and Likens 1979, Spies and Franklin 1991, Jakubauskas 1996, Oliver and 

Larson 1996., Lesfky et al. 1999, Franklin et al. 2002).  Developmental trends of forest 

structure which are generally synchronous over time following stand replacing disturbance are 

largely inferred from lower elevation forests with high productivity, canopy closure, and 

species of varying levels of shade tolerance.  With the exception of stand height (which was 

strongly associated with age), stands in the study area do not display synchronous trends for 

many structural attributes over time.  This may result from low productivity, which may 

attenuate stand structural development (Larson et al. 2008).  Tree islands of variable size and 

shape are within a matrix of lower height vegetation which may result in increased penetration 

of photosynthetically active radiation (PAR) compared to forests with high canopy closure.  

Increased PAR in discontinuous and clustered forest canopy may promote higher densities of 

lower strata trees (North et al. 2004).  Mountain hemlock and Pacific silver fir (the dominant 

trees in the study area) are very shade tolerant and can persistent as suppressed individuals in 

stands for up to 100 years (Kranjina 1969, Minore 1979, Packee et al. 1981).  Higher PAR and 

species with high sub-canopy persistence may result in reduced aboveground competition over 

time compared to closed canopy forests of the region were light competition typically exerts 
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strong controls on tree mortality, growth, canopy stratification which often are strongly 

correlated to tree height and canopy position (Rudnicki and Chen 2000, Ishi et al. 2000, North 

et al. 2004).  Since GNN predictions are both constrained by and preserve the range of 

variability in field attributes using nearest-neighbor plots in multi-dimensional gradient space 

for imputation, prediction of vegetation structure attributes besides tree age may not be 

possible in ecotones or patchy landscapes where traditional trends of structural development 

over time are not apparent or obscured by high plot-level variability. 

Intra-pixel variability and scale incompatibility between vegetation patterns, plot size, 

and plot spatial locations may also contribute to poor predictions of vegetation structure.  

Forest islands vary in size and shape, but generally have high edge to area ratios.  Many of the 

community types and forest age cohorts in the study area can occur in patches and inter-patch 

lengths of less than 10 m (Figure 2.10), while plots were 7.32 m in radius.  Edgy forest stands, 

combined with random location of plots, can result in overlap of forest and non-forest 

vegetation types with plots that would increase structural variability regardless of stand age, 

confounding patterns of structural development over time.  This would suggest higher 

prediction accuracy could be achieved using either small plots, or recording intra-plot 

variability in vegetation composition and structure (i.e. stem and condition class mapping). 

Unlike other structural attributes, tree height was strongly related to tree age.  

Curiously, maximum and 95th percentile height were not selected as explanatory variables in 

CCA models of the vegetation structure matrix, even though they would likely improve 

prediction accuracy of plot-level maximum and mean age.  This may be a consequence of 

modeling multiple vegetation attributes at once using CCA (rather than modeling tree age in 

relation to height independently), since other attributes such as basal area or stand density may 

not be associated with maximum vegetation height and stand age.  Modeling stand age or 

other structural attributes as single variables could yield superior predictions, yet single 

variable models lose information about co-occurrence of multiple variables within samples 

(Mouer and Stage 1995, Gottfried et al. 1998).  While this loss of information is often in 

reference to single versus multiple species, it is likely that vegetation structural attributes also 

lose co-occurrence information when analyzed separately.  This study suggests it may not be 

possible to accurately map tree establishment history and other metrics of vegetation structure 

within the same modeling framework, and separate mapping approaches may be needed to 
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optimizing prediction accuracy for different variables, questions, and a given variable or 

question of interest. 

Gradients of Vegetation Composition and Prediction Accuracy 

GNN predictions of species composition varied by growth form, with high accuracy 

for tree species, moderate accuracy for shrubs, variable accuracy for forbs, and low accuracy 

for graminoids.  Species gradients were largely associated with spectral variables from SPOT5 

imagery and LiDAR-derived topographic variables, but LiDAR-derived variables of 

vegetation structure were important as well.  Previous research has demonstrated the value of 

LiDAR derived topographic variables in vegetation and habitat classification (Gottfried et al. 

1998, Chust et al. 2008).  This study shows vegetation height data can be important in 

mapping species occurrence in heterogeneous landscapes, but it is the combination of LiDAR-

derived topography variables describing species geographic niche, spectral data from satellite 

imagery differentiating species by their foliar absorption and reflectance, and LiDAR-derived 

vegetation height data differentiating species by growth form which provides the greatest 

predictive accuracy. 

GNN predictions of understory and non-forest vegetation groups were moderately 

successful, but over predicted dry forb communities in areas likely to be wet sedge, low forb, 

mountain-heather, and tall shrub groups.  Potential causes of poor classification include: scale 

incompatibilities between vegetation patterns and data sources like those mentioned for 

predicting vegetation structure, mapped variable co-registration problems, the use of 

presence/absence data, mixed pixel composition, and plot arrangement in the landscape.  

SPOT5 bands 1-3 were pan-sharpened from 10 m pixels and the mid IR band 4 was pan-

sharpened from 20 m, so much of the spectral information is in fact at 10 and 20 m 

resolutions.  Vegetation groups in the study area can occur in patches and inter-patch lengths 

of less than 10 m, resulting in pixels of mixed category identification, which can confound 

ecotone mapping (Hill et al 2007).  Predictions of species used presence-absence data in the 

CCA, rather than the percent cover of species in each plot.  Many species such as Vaccinium 

deliciosum, Carex nigricans, and Cassiope mertensiana were ubiquitous across the landscape, 

but varied greatly in their abundance.  Commonly present species with highly variable cover 

may drive vegetation type misclassification, because presence-absence data is less useful for 
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detecting more subtle differences between groups or sites (Lesica et al. 1991).  Vegetation 

type prediction could potentially be improved within a predictive mapping approach by fuzzy 

classification (Gopal et al. 1999), or post-hoc development of vegetation types from joint 

occurrences of predicted percent cover for individual species (Martin et al. 2003), since the 

GNN method conserves species data at the plot level.  Despite limitations of vegetation type 

classification, the species mapping presented in this study is a great improvement over 

traditional landcover classification which would classify the study area vegetation as forest, 

shrubs, grassland, and rock land cover.  Predictive mapping can therefore provide a more 

complete picture of species abundance and distributions across landscapes such as the FTE, 

yet because it relies on field plot data to input into maps, it still requires field sampling, which 

can be costly in remote and mountainous FTE landscapes. 

Implications for Monitoring and Inventory Methodology of the FTE 

Integrating field inventories with remotely sensed imagery is increasingly used to 

improve inventories and monitoring of natural resources at multiple spatial scales.  Predictive 

mapping of vegetation composition and structure has proven valuable for spatially 

extrapolating plot-based inventories across large regions (Ohmann and Gregory 2002, 

Tomppo 2006).  This study found predictive mapping methods utilizing LiDAR data can also 

be applied with mixed success at fine scales to inventory and quantify change in 

heterogeneous and potentially sensitive landscapes such as the FTE.  Spatial characterizations 

of tree establishment from predictive mapping can quantify the rates and extent of treeline 

movement and subalpine meadow invasion, potentially improving our understanding of 

meadow encroachment and treeline movement in response to climate change, disturbance 

history, and land use change.  Predictions of species distributions could improve biological 

data used to model how species distributions and biodiversity may change in the future due to 

climate change.  However, the use of predictive mapping at fine spatial scales is relatively 

unproven, so potential limitations of fine-scale predictive mapping products and the field data 

used in them need to be understood. 

Limitations of fine-scale FTE predictive mapping which relies on plot data included a 

lack of recent tree establishment, and low accuracy predictions of many metrics of vegetation 

structure such as stand density and basal area, which likely result from asynchronous 
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vegetation development over time and scale incompatibility between plot data and vegetation 

patterns.  Predictive mapping accuracy may also be uniquely influenced by sample design 

strategies of field data.  The GNN method preserves the range of variability in field data used 

in imputation, so missing or incomplete data (in this study tree regeneration was recorded but 

not aged) can be propagated as errors in predicted maps that may not be apparent to the end 

user without an understanding of the data these maps are derived from.  Predictive mapping 

generates landscape-level estimates and also can be used for pattern detection of FTE change 

over time, in contrast to most ecological research, natural resource inventories, and 

environmental monitoring which are often singularly interested in either pattern detection or 

reducing error variance in parameter estimates.  Predictive mapping may be especially 

attractive in the FTE and other habitat types traditional inventory programs may under sample 

due to their small and discontinuous land cover, yet are important biodiversity hotspots, 

potentially sensitive to the effects of climate change, or are high value recreation areas. 

Sample design strategy (location, sample size, and plot size) will influence pattern 

detection and parameter estimates, and an optimal design for pattern detection can be 

suboptimal for parameter estimation (Kenkel et al. 1989), while field sampling design can be 

additionally constrained by non-statistical considerations such as financial costs and other 

logistic and historic considerations (Frayer and Furnival 1999).  The value of mapping is to 

make inferences at scales where plot density is low, and characterize spatial patterns of 

ecological or resource attributes.  These issues may be compounded for fine-scale predictive 

mapping, which may have to rely on limited subsets of existing inventories or new inventories 

with limited sample size; in contrast to predictive mapping at large spatial scales which can 

rely on very large plot numbers (Tomppo 1991, Ohmann and Gregory 2002, Tomppo et al. 

2008). 

Effects of sample size were not specifically addressed in this study, but relatively 

small increases in species detected occurred with over 40 plots, suggesting the sample size of 

this study was adequate to capture species richness within the study area (Figure 2.11).  It is 

less certain if sample size was adequate to capture spatial patterns of all response variables, 

which may be especially important when response variables are spatially autocorrelated 

(Fortin et al. 1989).  Prediction uncertainty was associated with increased geographic distance 

to field plots, suggesting the GNN predictions may also be influenced by the spatial 
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arrangement of plots on the landscape.  Mapping accuracy in landscapes with spatially 

autocorrelated vegetation patterns can be sensitive to the spatial distribution of plots, with 

clustered and random plot distributions more capable of detecting spatial patterns then 

systematic samples (Fortin et al. 1989).  This suggests a potential conflict between improved 

detection of spatial structure provided by clustered and randomized sampling, versus 

improved geographic representation from systematic and stratified sampling approaches (Scott 

et al. 2005).  Stratification can be more cost effective means of estimating parameters 

compared to random or clustered sampling, but can propagate new spatial errors by incorrectly 

stratifying along a low number of explanatory gradients, result in unbiased parameter 

estimates, risk circular logic when using vegetation strata when predictions are also vegetation 

types, and serious hamper the ability to detect change in the attributes of interest (Orlóci 1978, 

Kenkel et al. 1989, Fortin and Legendre 1989).  Systematic sampling has traditionally been 

viewed as easier and most cost effective to establish than randomized plots, but recent 

widespread availability of inexpensive GIS and GPS systems can enable easy assignment and 

location of randomized plot coordinates.  A potential compromise between random clustered 

sampling and systematic and stratified sampling in data for predictive mapping would be to 

cluster plots in a geographically stratified randomized design (where clusters of plots are 

randomly places within systematic geographic subsets of the study area).  This approach may 

avoid bias and circularity problems associated with stratified and systematic sampling, 

improve geographic distribution of plots compared to random sampling, while still retain the 

clustered design for detection of auto correlated vegetation pattern and randomization for 

unbiased parameter estimation.  In national inventory programs such as the USDA Forest 

Service Forest Inventory and Analysis Program, this is a key component of plot location 

(Bechtold and Patterson 2005).  However local scale inventories rarely consider plot spatial 

distribution.  Further investigation of the roles sample design and sample density have on fine 

scale predictive mapping accuracy could optimize costly field data placement if inventory and 

monitoring programs intend to utilize predictive mapping approaches in the future. 
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Table 2.1.  Tree, shrub, forb, and graminoid species recorded on plots, their species codes, and 
frequency. 

 

 

 

 

 

 

 

 

 

 

 

Growth Frequency Growth Frequency
form Scientific Name Code (n=98) form Scientific Name Code (n=98)
Tree Abies amabilis ABAM 66 Forb Antennaria alpina ANAL 22

Abies concolor ABCO 8 Arenaria capillaris ARCA 16
Abies lasiocarpa ABLA 4 Aster alpigenus ASAL 85
Callitropsis nootkatensis CANO 4 Aster foliaceus ASFO 2
Pinus albicaulis PIAL 25 Caltha leptosepala CALE 6
Pinus contorta PICO 3 Castilleja parviflora orepola CAPA 64
Tsuga mertensiana TSME 86 Dodecatheon jefferyi DOJE 23

Epilobium alpinum EPAL 13
Shrub Cassiope mertensiana CAME 70 Epilobium angustifolium EPAN 2

Kalmia microphylla KAMI 32 Eriogonum umbellatum ERUM 5
Phyllodoce empetriformis PHEM 86 Gentiana calycosa GECA 34
Rhododendron albiflorum RHAL 3 Hieracium gracile HIGR 53
Rubus lasiococcus RULA 2 Hypericum anagalloides HYAN 2
Salix commutata SACO 2 Ligusticum grayi LIGR 55
Sorbus sitchensis SOSI 37 Lupinus arcticus LUAR 17
Vaccinium deliciosum VADE 81 Luetkea pectinata LUPE 84
Vaccinium membranaceum VAME 25 Lycopodium sitchense LYSI 33

Microseris alpestris MIAL 8
Graminoid Carex aquatilis CAAQ 10 Microseris borealis MIBO 7

Carex nigricans CANI 89 Pedicularis bracteosa PEBR 2
Carex spectabilis CASP 57 Plantanthera stricta PLST 2
Festuca sp. FESTU 10 Potentilla flabellifolia POFL 11
Juncus drummondii JUDR 55 Polygonum newberryi PONE 8
Juncus mertensianus JUME 9 Saxifraga ferruginea SAFE 9
Luzula sp. LUZUL 3 Saxifraga tolmiei SATO 6
Poa sp. POA 9 Senecio triangularis SETR 4

Tofieldia glutinosa TOGL 2
Veratrum vIride VEVI 6
Veronica wormskjoldii VEWO 2
Xerophyllum tenax XETE 3
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Table 2.2.  Mapped explanatory variables used in the gradient nearest neighbor method. 

 

 

 

 

 

Variable class 

and code Definition

Topography derived from LiDAR
ELEV Elevation (m), from 5 m digital elevation model (DEM)

SLOPE Slope (percent), from 5 m DEM

ASPECT Cosine transformation of aspect (degrees) (Beers et al. 1966)

0.0 (southwest) to 2.0 (northeast), from 5 m DEM

RAD Growing season Potential Relative Radiation (Pierce et al. 2005)

June - September, from 5 m DEM

TOPO300 Topographic position index, difference between sample elevation and mean elevation

150 - 300 m from the sample

TOPO100 Topographic position index, 50 - 100 m from sample

TOPO30 Topographic position index, 15 - 30 m from sample

TOPO10 Topographic position index, 5 - 10 m from sample

Vegetation Structure derived from LiDAR
VMAX Maximum vegetation height (m)

VMIN Minimum vegetation height (m)

VMEAN Mean vegetation height (m)

VSTDEV Standard deviation of vegetation height (m)

VCV Coefficient of variation of vegetation height (m)

VRNG Range of vegetation hieght (m)

VCOV Percent vegetation cover greater than 3 m tall

VP05 5th percentile of vegetation height (m)

VP10 10th percentile of vegetation height (m)

VP25 25th percentile of vegetation height (m)

VP50 50th percentile (median) of vegetation height (m)

VP75 75th percentile of vegetation height (m)

VP90 90th percentile of vegetation height (m)

VP95 95th percentile of vegetation height (m)

SPOT 5 HRG Satellite Imagery
PAN Panchromatic band (0.48 - 0.71 μm), 5 m spatial resolution

B1 Band 1 (green, 0.50 - 0.59 μm), 10 m spatial resoution (pan-sharpened to 5 m)

B2 Band 2 (red, 0.61 - 0.68 μm), 10 m spatial resoution (pan-sharpened to 5 m)

B3 Band 3 (near-infrared, 0.79 - 0.89 μm), 10 m spatial resoution (pan-sharpened to 5 m)

B4 Band 4 (mid-infrared, 1.58 - 1.75 μm), 20 m spatial resoution (pan-sharpened to 5 m)

R32 Ratio of B3 to B2, pan-sharpened to 5 m

VI Vegetation Index (B3 - B2), pan-sharpened to 5 m

NDVI Normalized Difference Vegetation Index (B3 - B2) / (B3 + B2), pan-sharpened to 5 m

Geomorphology
LANDFORM Binary, with debris flow (1) and glacial (0) landforms

Location
X Easting in UTM NAD83 Zone 10N (m)

Y Northing in UTM NAD83 Zone 10N (m)
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Table 2.3.  Explanatory variable subsets used in canonical correspondence analysis of species 
composition and vegetation structure. 

 

Note: Mapped explanatory variables described in Table 2.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Explanatory variable type

Subsets of LiDAR-derived

explanatory SPOT5 LiDAR-derived vegetation Landform

variables imagery topography structure type

1 X

2 X

3 X

4 X

5 X X

6 X X X

7 X X X

8 X X X

9 X X X X
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Table 2.4.  Amount of variation in response data described by the environmental variables 
(percent of total inertia), and number of explanatory variables selected, by subsets of 
explanatory variables in stepwise canonical correspondence analysis of species composition 
and vegetation structure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Proportion of total inertia

Subset of explantory variables compostion nvars structure nvars

SPOT5 20.1 4 13.6 2

LiDAR-derived topography 20.2 6 18.8 8

LiDAR-derived vegetation structure 9.9 2 37.5 6

landform 6.8 1 3.7 1

SPOT 5  + landform 21.8 5 13.6 2

SPOT 5  + landform + LiDAR-derived topography 34.4 11 22.2 4

SPOT 5  + landform + LiDAR-derived veg structure 32.2 9 37.5 6

landform + LiDAR-derived topography + LiDAR-derived veg structure 28.4 7 39.5 6

All explantory variable subsets combined 38.6 12 39.5 6
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Table 2.5.  Descriptive statistics comparing observed (n = 98 plots) and predicted vegetation 
structure attributes  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vegetation attribute Mean Range SD

Total basal area (m2/ha)
Observed 3.89 0 - 70.34 9.84
Predicted 4.56 0 - 70.34 9.11
Stand density (trees/ha)
Observed 147.58 0 - 1130.52 231.60
Predicted 167.13 0 - 1130.52 261.06
Quadratic mean diameter (cm)
Observed 8.63 0 - 110.48 15.19
Predicted 10.18 0 - 110.48 14.27
Regeneration density (trees/ha)
Observed 1818.89 0 - 16358.34 2664.92
Predicted 2193.07 0 - 16358.34 3297.47
Age of stand initiation (years)
Observed 99.92 0 - 411 100.41
Predicted 129.01 0 - 411 124.00
Stand mean age (years)
Observed 63.10 0 - 239.5 55.86
Predicted 75.41 0 - 239.5 62.90
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Table 2.6.  Plot-level overall classification accuracy, kappa statistic (K) and assympotic errors 
of kappa for GNN mapped species predictions. 

Vegetation Species Overall Vegetation Species Overall

Type Species Code accuracy K ASE Type Species Code accuracy KASE

Overstory All O_ALL 0.81 0.52 0.10 Forbs Antennaria alpina ANAL 0.77 0.36 0.12

trees Tsuga mertensiana O_TSME 0.84 0.57 0.10 Arenaria capillaris ARCA 0.78 0.22 0.15

Abies amabilis O_ABAM 0.88 0.53 0.13 Aster alpigenous ASAL 0.88 0.47 0.14

Abies lasiocarpa O_ABLA 0.97 -0.01 0.58 Aster foliaceus ASFO 0.98 0.00 0.70

Callitropsis nootkatensis O_CANO 0.99 0.00 0.99 Caltha leptosepala CALE 0.98 0.79 0.15

Castilleja parviflora CAPA 0.68 0.28 0.11

Tree All U_ALL 0.85 0.39 0.14 Dodecatheon jeffreyii DOJE 0.73 0.30 0.12

regeneration Tsuga mertensiana U_TSME 0.86 0.45 0.14 Epilobium alpinum EPAL 0.79 0.04 0.19

Abies amabilis U_ABAM 0.70 0.37 0.10 Epilobium angustifolium EPAN 0.96 -0.02 0.50

Abies lasiocarpa U_ABLA 0.81 -0.10 0.23 Eriogonum umbellatum ERUM 0.98 0.79 0.15

Callitropsis nootkatensis U_CANO 0.93 0.33 0.24 Gentian calycosa GECA 0.67 0.30 0.10

Pinus albicaulis U_PIAL 0.70 0.14 0.13 Hieracium gracile HIGR 0.57 0.15 0.10

Pinuc contorta U_PICO 0.95 -0.03 0.45 Hypericum anagalloides HYAN 0.99 0.79 0.20

Ligusticum grayii LIGR 0.62 0.22 0.10

Shrubs Cassiope mertensiana CAME 0.78 0.44 0.11 Lupinus arcticus LUAR 0.92 0.69 0.11

Kalmia microphylla KAMI 0.79 0.52 0.09 Luetkea pectinata LUPE 0.77 0.01 0.18

Phyllodoce empetriformis PHEM 0.87 0.31 0.18 Lycopodium sitchensis LYSI 0.56 0.05 0.11

Rhododendron albiflorum RHAL 0.94 -0.03 0.41 Microseris alpestris MIAL 0.89 0.21 0.23

Rubus lasiococcus RULA 0.98 0.49 0.36 Microseris borealis MIBO 0.92 0.29 0.24

Salix commutata SACO 0.97 -0.01 0.58 Pedicularis bracteosa PEBR 0.98 0.49 0.36

Sorbus sitchensis SOSI 0.70 0.37 0.10 Plantanthera stricta PLST 0.99 0.79 0.20

Vaccinium deliciosum VADE 0.82 0.29 0.15 Potentilla flabellifolia POFL 0.85 0.26 0.18

Vaccinium membranaceum VAME 0.86 0.61 0.10 Polygonum newberryi PONE 0.94 0.59 0.16

Saxifraga ferruginea SAFE 0.94 0.54 0.18

Graminoids Carex aquatilis CAAQ 0.81 0.07 0.19 Saxifraga tolmeii SATO 0.97 0.71 0.16

Carex nigricans CANI 0.86 0.05 0.24 Senecio triangularis SETR 0.97 0.56 0.25

Carex spectabilis CASP 0.53 0.07 0.10 Tofieldia glutinosa TOGL 0.99 0.79 0.20

Festuca sp. FESTU 0.79 -0.12 0.22 Veratrum viride VEVI 0.93 -0.04 0.38

Juncus drummondii JUDR 0.62 0.23 0.10 Veronica wormskjoldii VEWO 0.99 0.79 0.20

Juncus mertensianus JUME 0.93 0.55 0.16 Xerophyllum tenax XETE 0.98 0.66 0.24

Luzula sp. LUZUL 0.92 -0.04 0.35

Poa sp. POA 0.78 -0.12 0.21 Vegetation well drained sparse forbs GRP1 0.71 0.33 0.11

groups low wet forbs GRP2 0.84 0.24 0.17

pink mountain-heather shrub GRP3 0.78 0.38 0.12

white mountain-heather shrub GRP4 0.89 0.29 0.20

tall mountain-ash shrub GRP5 0.93 0.19 0.30

wet sedge meadow GRP6 0.78 0.31 0.13
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Figure 2.1.  The study area location within the State of Oregon (a), with the Oregon Cascades 
ecoregion shaded in gray.  The study area outlined in black in relation to Mount Jefferson (b).  
An enlarged image of the study area (c), with plot locations as yellow circles and debris flow 
landforms shaded red. 
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Figure 2.2.  Biplots and ordinations showing associations between vegetation and explanatory 
variables from canonical correspondence analysis (CCA).  (a) Species centroids in relation to 
the CCA axes and explanatory variables.  (b) Explanatory variable biplot for species 
composition ordination (see Table 2.2 for variable definitions).  (c) Explanatory biplot for 
vegetation structure ordination, centroids of vegetation structure variables were not plotted 
since structure variables were not categorical.  Vector length and position in biplots indicates 
the strength and direction of correlation between explanatory variables and CCA axes. 
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Figure 2.3.  Predicted versus observed proportions of the study by overstory species, 
understory species, and vegetation groups.  Overstory , understory, and vegetation group 
proportions are not mutually exclusive. See the study area description or Appendix A for 
descriptions of vegetation groups. 

 

 

 

 

 

 

 

 



 

Figure 2.4.  Predicted occurrence of selected species (shaded in green). Red circles are field 
plots where the species was observed. Lakes are light blue.

 

 

 

 

 

 

Predicted occurrence of selected species (shaded in green). Red circles are field 
plots where the species was observed. Lakes are light blue. 
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Predicted occurrence of selected species (shaded in green). Red circles are field 



 

Figure 2.5.  GNN predictions of vegetation groups (top) and stand initiation age (bottom).  
Lakes are light blue. 

 

 

 

 

 

 

 

 

GNN predictions of vegetation groups (top) and stand initiation age (bottom).  
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GNN predictions of vegetation groups (top) and stand initiation age (bottom).  
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Figure 2.6.  The predicted versus observed proportion of the study area occupied by (a) oldest 
tree age, and (b) mean tree age in relation to long term Northern Hemisphere temperature 
proxy reconstruction anomalies (c).  Temperature reconstructions modified from Jansen et al. 
(2007), Figure 6.10. 
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Figure 2.7.  Nearest-neighbor distances for the (a) composition model and (b) structure model.  
Distances are Euclidean in eight-dimensional gradient space based on the first eight axes in 
the canonical correspondence analyses.  Distance to each axis is weighted by its eigenvalue. 
Nearest neighbor distances are a proxy for prediction uncertainty, higher nearest neighbor 
distances indicating increased prediction uncertainty. 
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Figure 2.8.  Comparison of predictions to plot observations of vegetation structure variables 
on n = 98 field plots. (a -c) Total, hemlock, and fir tree basal area (m2/ha) .(d –f) Total, 
hemlock, and fir stand density (trees/ha). (g – i) Total, hemlock, and fir tree quadratic mean 
diameter (QMD, cm). (j – l) Total, hemlock, and fir regeneration density (trees/ha). (m – n) 
Maximum and mean stand age in years. 
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Figure 2.9.  Comparison of  (a) tree height, (b) stand density, (c) basal area, and (d) quadratic 
mean diameter (QMD) in relation to years since stand initiation.  Gray lines of structural 
attributes in relation to stand age are fitted values for a third order polynomial regression in 
(a), and fitted LOESS regression curves for (b-d). 

 

a) 

b) 

c) 

d) 
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Figure 2.10.  Photo within the Jefferson Park study area showing fine-scale patterns of 
vegetation groups.  From left to right, vegetation grades from wet sedge meadow to pink 
mountain-heather shrub, to a mountain hemlock (Tsuga mertensiana) dominated tree island. 
Foreground scale is approximately 10 m across the image. Photo facing southwest, Mount 
Jefferson is in the background. 
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Figure 2.11.  Species-area curve (solid black line) used to assess sample adequacy based of 
repeated subsampling of 98 plots and 57 species.  Dotted black lines represent ± 1 standard 
deviation.  The distance curve (solid gray line) describes the average Sorensen distance 
between subsamples and the whole sample, as a function of subsample size. 
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CHAPTER 3: SEEDLING ESTABLISHMENT IN A SUBALPINE PARKLAND 
LANDSCAPE CONTROLLED BY INTERACTIONS OF TOPOGRAPHY, SEED 
SOURCE, DISTURBANCE AND CLIMATE, OREGON CASCADES, USA. 

ABSTRACT 

Over the past five decades, FTE movement and tree invasion into alpine and subalpine 

meadows has been documented at many locations throughout the Northern Hemisphere.  

Relationships between temperature and FTE position suggest regional to global treeline shifts 

in response to climate change.  However, treeline movement and meadow invasion are driven 

by tree regeneration processes, which are influenced by climatic, physical and biological 

factors at multiple spatial scales.  This study utilized airborne Light Detection and Ranging 

(LiDAR), geo-referenced field plots, and tree establishment reconstructions to quantify 

spatiotemporal patterns of tree invasion in relation to landform types, fine-scale topographic 

variability, late season snow persistence, distances from potential seed sources, and climate 

variation in a subalpine parkland landscape in the Oregon Cascades, USA.  The number of 

sites occupied by trees increased from 7.75% of the study area in 1950 to 34.7% in 2007.  

Landform types and finer-scale patterns of topography and vegetation structure nested within 

landforms influenced summer snow depth, which influenced temporal and spatial patterns of 

tree establishment.  The rate of tree invasion was higher on the debris flow landform which 

has lower summer snow depth, suggesting potentially rapid treeline responses to disturbance 

events.  Tree invasion rates were strongly associated with reduced annual snow fall on glacial 

landforms, but not on debris flows.  Tree establishment was spatially constrained to micro 

sites with high topographic positions and close proximity to overstory canopy associated with 

low summer snow depth.  Seed source limitations placed an additional species-specific spatial 

constraint on where trees invaded meadows.  Climate and topography had an interactive 

effect, with trees establishing on higher topographic positions during both high snow/low 

temperature and low snow/high temperature periods, but had greater than expected 

establishment on lower topographic positions during low snow/high temperature periods.  

Within the context of lerger landform types, topography, and proximity to overstory trees 

placed constraints on where trees established in the meadows, even during favorable climate 

periods.  Results of this study suggest large scale climate-driven models of vegetation change 
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may overestimate treeline movement and meadow invasion because they do not account for 

biophysical controls limiting tree establishment at multiple spatial scales. 

INTRODUCTION 

Subalpine parklands and treelines (also referred to as the forest-tundra ecotone, or 

FTE) are transitional areas between forested and alpine ecosystems.  FTE positions are 

globally associated with thermal deficiencies limiting plant growth, implying that increased 

temperatures will result in FTE movement (Grace 1989, Körner 1998, Jobbágy and Jackson 

2000).  Contemporary FTE movement has been variable, but has occurred across a diverse 

range of geographic locations, climatic zones, and taxonomic groups, suggesting a global 

ecological phenomenon in response to climate change (Harsch et al. 2009).  Changes in FTE 

positions and reductions of alpine and arctic vegetation may impacts surface radiation balance, 

ecosystem productivity and carbon sequestration, species distributions, and biodiversity 

(Bonan et al. 1992, Solomon et al. 1997, Foley et al. 2000, Körner 2000, Prichard et al. 2000, 

Halloy and Mark 2003, Dirnböck et al. 2003, Cannone et al. 2007).  The magnitude of these 

varied ecological effects will be heavily influenced by temporal rates and spatial extent of 

FTE movement, which is fundamentally determined by seed-based regeneration processes 

(Lescop-Sinclair and Payette 1995, Smith et al. 2003). 

Although often referred to as a “line”, the FTE is often a transitional area whose 

complexity increases from global to local spatial scales, resulting in landscape mosaics 

containing elements of both forest and tundra ecosystems (Holtmeier and Broll 2005).  FTE 

positions may be thermally limited globally, but a variety of biophysical factors become 

important at finer scales (Körner 1998), emphasizing the importance of spatial scale in 

detecting patterns and determining driving factors in ecosystems (Wiens 1989, Levin 1992).  

FTE position and movement have largely been studied in relation to global and regional 

factors such as climate and land use change (Körner 1998, Gehring-Fasel et al. 2007, Batllori 

and Gutiérrez 2008); or local biophysical factors such as topography, regeneration ecology, 

seed source dispersal, competition, autogenic site modification, and disturbance (Germino et 

al. 2002, Bekker 2005, Dovčiak et al. 2008, Stueve et al. 2009).  However the interactive 

effects of large-scale climate and local-scale biophysical factors on tree establishment in the 

FTE have received much less attention and are poorly understood (although see Kupfer and 

Cairns 1996, Daniels and Veblen 2004). 
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It is important to understand FTE dynamics in terms of both large-scale climate and 

local-scale biophysical factors, because vegetation change often results from interactions 

among climate, topography, biotic interactions, and disturbance (Turner et al. 1989, Urban et 

al. 2002, Holtmeier and Broll 2005).  For example, snow pack depth and late season snow 

persistence have been observed to control FTE tree establishment in the Pacific Northwest 

region of North America (Fonda and Bliss 1969, Franklin et al. 1974).  Snow pack in the 

Pacific Northwest is driven by large-scale temperature and circulation patterns (Mote 2003, 

Mote et al. 2005), but regional topography and climate interact, modifying snow pack depth 

and persistence, resulting in different patterns an temporal patterns of FTE tree establishment 

during different climatic regimes (Woodward et al. 1995, Rochefort and Peterson 1996, Miller 

and Halpern 1998).  In addition to climate and topographic factors, seed source, vegetation 

structure (as modifier of snow depth) and disturbance can strongly influence patterns of FTE 

tree establishment (Arseneault and Payette 1992, Holtmeier and Broll 1992, Daniels and 

Veblen 2003, Dovčiak et al. 2008).  However, the relative influences and interactions of 

climate, topography, disturbance, seed sources, and other biophysical controls on FTE 

dynamics is not well understood. 

Heterogeneous FTE landscapes can confound attempts to untangle the multiple 

climatic and biophysical controls of FTE dynamics, while also making it difficult to estimate 

the landscape-level extent of FTE movement over time.  Ecological research generally focuses 

on either pattern detection or estimating population parameters, and both sampling decisions 

and scope of inference often differ between these two objectives (Kenkel et al. 1989).  Our 

understanding of how climate and biophysical drivers influence FTE dynamics has largely 

been inferred from observational research with pattern detection objectives, with 

quantification of FTE movement inferred from observations on transects or plots subjectively 

positioned in relation to a limited number of explanatory variable gradients such as elevation 

or aspect (Rochefort and Peterson 1996, Lloyd and Graumlich 1997).  Since spatial patterns of 

vegetation are often shaped by multiple drivers and their interactions at varying spatial and 

temporal scales, observational data collected along a low number of environmental gradients 

may miss factors important to tree establishment at the FTE, which could result in incorrect 

inferences of processes from observed patterns .  This suggests observations from subjective 
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placement of transects or plots typically cannot be “scaled-up” to make landscape-level 

estimates of FTE movement or meadow invasion. 

The study had two objectives: (1) to characterize changes in landscape pattern of tree 

establishment in a subalpine meadow complex over time, and (2) to determine how climate 

and biophysical characteristics interactively control the temporal and spatial patterns of tree 

establishment in a subalpine parkland landscape at multiple spatial scales.  Five major 

hypotheses were developed: 

[1] The areal extent of tree establishment has increased over the past fifty years. 

[2] Variation in late season (summer) snow depth is associated with abiotic variables 

(microtopography and larger-scale landforms), biotic variables (distance to overstory 

tree canopy), and their interactions. 

[3] Spatial patterns of tree establishment, like snow depth, are associated with 

microtopography, larger-scale landforms, and distance to overstory canopy, as well as 

distance from potential parent trees (i.e. seed source). 

[4] Tree establishment is positively associated with years of low snowfall and increased 

temperature. 

[5] Tree establishment is a function of interactions between regional climate factors and 

biophysical factors that operate at landscape and local spatial scales. For example, tree 

establishment will occur during cool and snowy regional climate periods on ridgetops 

and upper slopes, and on sites with greater potential snow depth (valleys and 

depressions) during warm and less snowy regional climate periods. 

 

METHODS 

Study Area Description 

The study was conducted in 260 ha of Jefferson Park (44°42’ N 121°48’ W, 1693 – 

1814 m), a subalpine parkland in the Mount Jefferson Wilderness, Willamette National Forest, 

Oregon, USA (Figure 3.1).  The climate is intermediate between Mediterranean and maritime 

temperate, with dry warm summers and significant winter precipitation (Csb/Cfb) under the 

Köppen Climate Classification System (Peel et al. 2007).  The nearest weather station above 

1000 m (Government Camp Station, National Weather Service Cooperative Network 

#353402, 45°18’ N 121°145’ W, 1213 m, 1951 to 2008 time period), reported annual average 
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maximum and minimum temperatures of 10.2° C and 1.1° C. Annual precipitation averaged 

217 cm, the major of which fell as snow between December and April.  Comparisons to 

climate data from three nearby weather stations (Marion Forks, 44°36’N 121°57’W 813 m; 

Santiam Junction 44°26’N 121°158’W, 1230 m; and Belknap Spring, 44°18’N 122°02’W, 705 

m) suggests similar annual variation of temperature and precipitation across the region (Figure 

3.2), but Jefferson Park is likely to be colder and have higher snowfall because of its higher 

elevation. 

Jefferson Park contains landforms derived from glacial activity, as well as debris 

flows originating on the flanks of Mount Jefferson (3,199 m) and Park Butte (2,139 m).  

During the most recent glacial maxima of the Holocene Epoch, glacial advance and retreat 

deposited outwash, basal till and ablation till in the study area (Scott 1977).  Since the mid-

19th century, Cascade Range alpine glacier extent has substantially decreased (O’Connor and 

Costa 1993, Dyurgerov and Meier 2000).  Glacial retreat, combined with steep slopes and 

loose parent materials, result in the Cascade Range having the highest concentration of 

neoglacial lakes in the conterminous United States (O’Connor et al. 2001).  On August 21st, 

1934, a small (~4,000 m2) moraine dammed lake breached on Mount Jefferson, covering 

roughly 320,000 m2 of Jefferson Park with debris 0.3 to 2.4 m deep (O’Connor et al. 2001).  

Field reconnaissance during 2006 discovered a smaller undocumented debris flow in north 

Jefferson Park of older but indeterminate age.  Soils of the study area are poorly documented, 

consisting of either rubble derived from ice, colluvium and residuum weathered from 

sedimentary rock with influences of volcanic ash; or Typic Vitricryands formed in residuum 

and colluvium from pyroclastic ash flows, andesite, and volcanic ash (MacDonald 1998). 

Jefferson Park is within the lower FTE, the transition zone between the upper limit of 

closed subalpine forest (i.e. timberline) and the beginning of the alpine zone (sensu Körner 

2003).  Jefferson Park is in the mountain hemlock (Tsuga mertensiana) vegetation zone 

(Franklin and Dyrness 1988).  Mountain hemlock and Pacific silver fir (Abies amabilis) are 

the dominant tree species, found in both single species and mixed-species stands.  Most of 

these stands are “islands” of variable size and shape surrounded by meadow vegetation.  The 

oldest trees in these islands date to the 1600’s, and the majority of mature trees are at least 150 

years old (Zald 2010a).  Subalpine fir (Abies lasiocarpa), whitebark pine (Pinus albicaulis), 

lodgepole pine (Pinus contorta), and Alaska yellow-cedar (Callitropsis nootkatensis) are also 
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present, but in greatly reduced amounts and more restricted spatial distributions.  Six 

vegetation groups were previously identified within the study area (Zald 2010a), and are 

generally consistent with prior studies of subalpine parklands in the Oregon Cascades 

(Campbell 1973, Halpern et al. 1984).  A dry forb group on well-drained sites (Group 1) was 

characterized by Arenaria capillaris, Lupinus arcticus, Eriogonum umbellatum, and 

Polygonum newberyi.  The pink mountain-heather type (Group 2) included Phyllodoce 

empetriformis, Luetkia pectinata, and Lycopodium sitchensis.  The wet sedge meadow type 

(Group 3) was characterized by Carex nigricans and Juncus drummondi.  The wet low forb 

type (Group 4) included Aster alpiginus, Castelija parviflora, Festuca sp., Gentian calycosa, 

and Kalmia microphylla.  The white mountain-heather type (Group 5) was characterized by 

Cassiope mertensiana and Microseris alpestris.  The mountain-ash tall shrub type (Group 6) 

included Sorbus sitchensis, Rubus lasiococcus, Vaccinium deliciosum, Ligustrum gracilis, 

Epibolium alpinum, Dodecatheon jeffreyi, and Veratrum viride. 

In addition to debris flows livestock grazing may have occurred, although historical 

records are scarce so it is unclear if sustained heavy grazing occurred in Jefferson Park.  

Overgrazing in the region at similar elevations and vegetation types can result in soil erosion 

and reduced plant cover (Kuhns 1917).  Grazing was more sustained and of higher intensity in 

close proximity to driveways (areas designated for sheep movement), and the Skyline Trail 

driveway was near Jefferson Park (Rakestraw & Rakestraw 1991).  Long travel distances and 

conflicts with recreational users discouraged livestock grazing in Jefferson Park, and access to 

Jefferson Park via the Skyline Trail was closed to livestock in 1937 (Rakestraw & Rakestraw 

1991).  Low intensity grazing by recreational pack animals has continued at Jefferson Park to 

the present.  Heavy livestock grazing of FTE and meadow vegetation may either facilitate tree 

establishment via reduced vegetation competition and exposure of mineral soil, or inhibit tree 

establishment via direct browsing and trampling of seedlings.  Direct experiments are lacking, 

but prior research suggests grazing suppresses tree establishment at the FTE, and a pulse of 

increased tree establishment often follows grazing cessation (Miller and Halpern 1998, Didier 

2001, Gehring-Fasel et al. 2007).  Fire are another potential disturbance in high elevation 

ecosystems of the region, but are infrequent with fire return intervals in the mountain hemlock 

zone ranging from centuries to several millennia (Lertzman and Krebs 1991, Hallett et al 

2003).  Qualitative observations during field plot establishment found no evidence of charred 
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tree boles or biological legacies indicative of past wildfires.  Some whitebark pines showed 

symptoms of white pine blister rust (Cronartium ribicola), but otherwise qualitative 

observations did not find significant tree mortality due to pests or pathogens. 

Sampling Design Overview 

My previous observations of the study area in 2006 suggest distance to overstory 

canopy and microtopography influenced late summer snow persistence and tree establishment.  

However multiple topographic variables (elevation, topographic position, etc.) and overstory 

canopy trees were spatially autocorrelated, potentially complicating statistical analyses of 

individual and interactive effects of biophysical characteristics on tree establishment.  Spatial 

autocorrelation would be likely to persist in traditional transect sampling, while transect 

sampling would also prohibit accurate estimation of landscape-level tree establishment.  To 

overcome these problems, airborne discrete return Light Detection and Ranging (LiDAR) was 

used to map micro site scale (1 m) topography and vegetation structure on glacial and debris 

flow landforms throughout 260 ha of Jefferson Park defined in Zald (2010a).  Maps of 

LiDAR-derived microtopography and distance to overstory canopy were entered into a 

Geographic Information System (GIS) to select geo-referenced sites in a spatially constrained 

stratified random sampling design.  By stratifying in relation to microtopography and distance 

from overstory canopy, spatial correlation between variables could removed, individual and 

interactive variable effects could be quantified, and landscape-level estimates of tree 

establishment calculated, since the proportional distribution of each strata within the study 

area was known.  Five hundred sites in the spatially clustered stratified random sample were 

located in the field using a high precision global positioning system (GPS), and a 2 m 

diameter plot was established at each site.  Spatial constraints placed on sampling stratification 

allowed LiDAR data of overstory trees to be combined with field observations to calculate the 

distance of each plot to the nearest overstory canopy of each tree species present, providing a 

metric of potential seed source distances at each plot.  At each plot, snow depth, vegetation 

type and cover, and substrate cover were measured, the abundance and sizes of trees were 

recorded by species, and a sample of these trees was either cored or cross-sectioned to obtain 

tree ages. 
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LiDAR-derived Microtopography and Overstory Canopy Data 

Fine scale patterns of microtopography and vegetation structure were characterized 

using LiDAR data collected on September 3-4, 2007 by Watershed Sciences, Inc (Corvallis, 

Oregon USA).  LiDAR was collected from approximately 2000 m above ground level using a 

Leica ALS50 Phase II laser with a 59 kHz pulse rate, capturing scan angle of ±11°, and scan 

swath overlap of at least 50%.  LiDAR point density exceeded 10 points/m2 within the study 

area.  Because there was no road access to the study area, 523 real-time kinematic (RTK) 

ground survey points were collected eight kilometers west of the study area, and LiDAR data 

was collected over these survey points at the same time as the study area.  The root mean 

squared error between coordinates of LiDAR data and RTK survey points was 0.04 m.  

LiDAR point data was converted into three grids with 1m pixel resolution to characterize 

microtopography and vegetation structure: 1) a digital terrain model of bare earth ground 

elevation, 2) a top of vegetation canopy elevation model, and 3) a vegetation height model 

calculated by subtracting the digital terrain model from the vegetation canopy elevation 

model. 

Topographic position index (TOPO) and potential relative radiation (RAD) were 

calculated from the digital terrain model (Figure 3.3a-b).  These two microtopography 

variables were believed most likely to influence late season snow depth and persistence, since 

snow melts fastest at higher radiation, is often blown off ridge tops, and accumulates in 

depressions (Marks and Dozier 1992, Lapen and Martz 1996).  TOPO was calculated from the 

digital terrain model as the difference between a pixel’s elevation and mean elevation of an 

annulus spanning 5-10 m from that pixel.  TOPO was also evaluated using annuli ranging 

from 2 to 50 m, but the 5-10 m annulus most effectively delineated small ridges and 

depressions that characterize the study area.  RAD (Pierce et al. 2005) is an integrative 

potential relative radiation index which accounts for temporal variability in radiation by 

summing hourly estimates of clear-sky radiation for a given day, and then summing daily 

values over the growing season.  RAD accounts for topographic shading of surrounding 

landscape features by incorporating the digital terrain model in point radiation estimates.  

RAD was calculated for the growing season (June through September).  To reduced the 

number of sampling strata, RAD and TOPO were combined into a single ecological exposure 

index (EEI) representing the physical micro site gradient, calculated by relativizing RAD and 
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TOPO by their respective standard deviates and then averaging the relativized variables 

together (Figure 3.3c). 

The second sampling stratum was distance from overstory canopy (CANDIST), 

selected because overstory canopy can reduce snow depth and persistence via interception, 

sloughing, and enhanced incident thermal radiation (Faria et al., 2000, Sicart et al. 2004).  

Overstory canopy was defined as any vegetation equal or greater than 8 m in height.  

Assigning a single height value to define “overstoryness” may oversimplify the influence 

vegetation structure has on snow melt.  However, prior field reconnaissance found the 8 m 

threshold excluded all non-tree vegetation, while still included trees that influenced light and 

vegetation conditions underneath them.  Trees greater than 8 m tall were also observed to be 

producing the vast majority of cones, making them the most likely seed sources in the study 

area.  CANDIST was calculated as the nearest Euclidean distance of each 1 m grid pixel in the 

study area to the nearest pixel with vegetation over 8 m tall (Figure 3.3d).  CANDIST also 

defined the population of interest (i.e. meadows) by excluding areas occupied by mature trees. 

Stratification, Plot Selection, and Plot Location 

Grids of EEI and CANDIST with continuous values were converted into grids with 5 

classes each, and these two classified grids were the strata for sampling.  Continuous values of 

EEI ranged from -8.08 to 6.79 and were classified into five quantiles (-8.08 to -0.33, -0.33 to 

0.02, 0.02 to 0.26, 0.26 to 0.55, and 0.55 to 6.79).  Continuous values of CANDIST ranged 

from 0 to 91.9 m, and were classified based on observed and modeled seed dispersal rates for 

the two dominant tree genera Abies and Tsuga (Franklin and Smith 1974, Carklin et al. 1978, 

LePage et al. 2000).  The five distance classes (in meters) for CANDIST were 0 to 5, 5 to 10, 

10 to 20, 20 to 30, and 30 to 91.9.  Grids of classified EEI and CANDIST were then combined 

with a matrix function to produce a single grid of 25 strata representing all potential 

combination of the two 5 class grids (Figure 3.3e). 

Plots were spatially constrained in 100 x 100 m clusters to reduce time needed for 

mapping overstory vegetation by species, which was used as a proxy for distance to potential 

seed sources.  A moving window analysis found 23 non-overlapping 100 x 100 m clusters 

containing all 25 sampling strata.  One cluster was excluded due to its location in sensitive 

habitat, another was excluded because it was partially located in water, and a third was 
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randomly excluded resulting in twenty clusters selected for data collection (Figure 3.3f).  

Using Hawth’s tools version 3.24 (Beyer 2004), twenty five points were located in a stratified 

random design within each of the 20 cluster (500 total plots, Figures 3.3g-h).  Additionally, 

points had to be at least 4 m apart from each other and at least 2 m away from a stratum 

different from the one occupied.  These additional constraints reduced the likelihood that GPS 

positional errors could result in 2 m diameter plots centered on points overlapping each other 

or strata.  Spatial constraints had the additional benefit of removing potential short distance 

spatial autocorrelation for snow depth, RAD, TOPO, EEI, and CANIDST, the absence of 

which was confirmed by empirical semivariogram analyses (results not shown). 

Plots were located in July of 2008 using a sub-meter GPS receiver (Leica GS20 with 

an external pole antenna, Leica Geosystems AG, St. Gallen, Switzerland).  Plot coordinates 

from the GIS sample design were loaded into the GPS as waypoints, and field located.  At 

least 10 GPS coordinates with a positional error less than 1 m were averaged for each plot 

center to improve positional accuracy (Wing and Karsky 2006).  GPS coordinates were post-

processed using GIS DataPro software (Leica Geosystems AG, St. Gallen, Switzerland), and 

horizontal positional accuracy averaged 0.28 m (0.26 - 0.29 m 95% CI).  One hundred and 

nine plots (from six different clusters) were located in debris flow landforms, three hundred 

and ninety plots were located in older glacial landforms, and one plot was discarded because it 

lay at the intersection of debris and glacial landforms. 

Distance to Potential Seed Sources 

LiDAR-derived overstory canopy was combined with detailed field observations to 

spatially delineate overstory canopies by species, and the distance of each plot to the nearest 

overstory canopy of each species was calculated the distance to potential seed sources.  A grid 

of LiDAR-derived overstory canopy (> 8m tall) was overlaid on a geo-referenced high 

resolution (1 m pixel) color aerial photograph to produce digital overstory canopy maps of the 

100 x 100 m clusters, plus a 50 m horizontal buffer around each cluster.  Overstory canopy 

maps were printed and taken to the field, every overstory tree within each map was visited, 

identified to species, and its canopy outline drawn.  Canopy outlines drawn in the field on 

canopy maps were manually traced to GIS polygon shapefiles in ArcGIS (Environmental 

Systems Research Institute, Redlands, California).  Canopy polygons were compared against 
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the raw LiDAR point cloud to correct for any geographic offsets using the 3D visualization 

software FUSION version 2.61 (McGaughey 2007).  Canopy polygons were converted to a 1 

m pixel resolution grid of species-specific overstory canopy for each of the 20 clusters plus 

their 50 m buffers.  The Euclidean distance from each plot to the nearest overstory canopy of 

each species present within the cluster and its buffer was calculated (i.e. TSMEDIST for 

mountain hemlock, and ABAMDIST for Pacific silver fir).  Distances to overstory canopy 

exceeding 50 m were converted to 50 m (the maximum buffer distance).  The direction to the 

nearest overstory canopy of any species (CANDIRECT) was also calculated, since the 

position of trees in relation to prevailing winds may be importance for snow redistribution 

(Holtmeier and Broll 1992, Hiemstra et al. 2002).  

Plot-level Data Collection 

Minimum, maximum, and plot center snow depth was measured on all plots between 

July 29 and August 1, 2008.  Snow depth was measured to the nearest 0.05 m with a 2.5 m 

long metal probe.  The snow year preceding data collection (September 2007 to April 2008) 

was above the 90th percentile for the 1951-2008 time period for the Government Camp 

weather station, and snow covered approximately 75 percent of the study area on July 29, 

2008.  On each plot, all trees 5 cm to 8 m tall were tallied by species and height class (5-10 

cm, 10-50 cm, 50-130 cm, 130-800 cm).  The 5 cm minimum height cutoff eliminated the 

more temporally variable pool of first year germinants.  The tallest and shortest trees of each 

species on each plot had their diameters (either at breast height or basal if under 1.3 m tall) 

and height measured, and were classified as being initial or secondary establishment.  Initial 

establishment was defined as a tree which established without the canopy of another tree 

above it, and no evidence the site was previously occupied by a taller tree that died.  

Secondary establishment was defined as being underneath the canopy of another tree of any 

size.  The tallest and shortest tree of each species on each plot were cored or cross sectioned at 

the root/shoot boundary.  Cores and cross sections were sanded and rings counted using a 

microscope to determine tree ages.  Cross-dating methods as described by Yamaguchi (1991) 

and marker years were used to accurately assign calendar year of establishment for each 

sample.  One of the six vegetation types defined in the study area description was assigned to 
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each plot in the field, and the percent cover of vegetation, bare soil, rock, litter, coarse woody 

debris, moss, and lichen tallied by 5 percent cover classes. 

 

Statistical Analyses 

FTE movement and meadow invasion are often inferred by reconstructing tree 

demographics from tree rings of living and/or dead individuals (Arseneault and Payette 1992, 

Lloyd and Graumlich 1997, Didier 2001).  These reconstructions are often presented as tree 

counts which may describe increases in tree density or changes in growth form over time, 

rather than tree establishment on previously unoccupied sites (Lescop-Sinclair and Payette 

1995).  For this reason I graphically present the number of aged trees established, but only site 

occupancy (proportion of plots occupied by trees, weighted by the proportion of the study area 

in the sampling strata associated with each occupied plot) over time was analyzed in relation 

to climate variables.  Partial F tests were used to determine if rates of tree establishment (i.e. 

linear regression slopes of cumulative site occupancy over time) were different between 

landform (glacial versus debris flow) and establishment types (initial versus secondary 

establishment). 

Relationships between site occupancy rates and individual climate variables on 

different landforms were assessed using Pearson product moment correlations.  Rates of site 

occupancy were calculated as three-year bins rather than annual data, since: (1) many 

individual years lacked establishment on new sites, (2) mortality of conifer germinants in the 

FTE and subalpine forest environments is often high during the first year, but declines during 

the second or third years of growth (Rochefort and Peterson 1996, Brang 1998, Germino et al. 

2002), and (3) cross-dating techniques were applied to tree cores and cross sections, but 

extremely small and distorted rings, missing rings, or false rings could lead to incorrectly aged 

trees by ± 1 year.  Rates of site occupancy were correlated to mean, minimum, and maximum 

snowfall within three-year bins for two periods: annual (ANN_S, ANN_Smin, ANN_Smax), and 

“spring” (April through June: AJ_S, AJ_Smin, AJ_Smax) and mean, minimum, and maximum 

temperatures for three periods: annual (ANN_T, ANN_Tmin, and ANN_Tmax); spring (AJ_T, 

AJ_Tmin, AJ_Tmax); and “summer” (July through September: JS_T, JS_Tmin, JS_Tmax).  Spring 

snowfall, spring temperature, and summer temperature were included because climate 
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warming is generally expected to increase temperatures and reduce the overall and spring 

snow pack (Mote 2003), while subalpine tree growth in the region is sensitive to summer 

temperatures (Peterson and Peterson 1994).  Summer snowfall does not result in measureable 

accumulation and was not included in analyses. 

The relationships between biophysical variables and measured snow depth were 

assessed with nonparametric multiplicative regression (NPMR) using Hyperniche version 1.39 

(McCune and Medford 2004).  Snow depth was modeled in response to TOPO, RAD, 

CANDIST, Elevation, and CANDIRECT.  The EEI variable enabled sampling to occur in a 

relatively simple two-stratum design with CANDIST, but inhibited analysis of the relative 

importance of TOPO and RAD individually on snow depth.  TOPO and RAD could be 

individually assessed by decomposing the simple unweighted EEI into its two components 

(RAD and TOPO) for statistical analyses.  This was possible since RAD and TOPO were not 

correlated in 499 sampled plots (Pearson correlation coefficient = 0.099), and distributions of 

both variables in samples did not differ from their distributions in the overall study area 

(randomization chi-squared tests with 100,000 randomizations, p=0.238 for RAD, and p = 

0.063 for TOPO). 

Separate models were developed for the 109 debris flow and 390 glacial landform 

plots.  NPMR was run using a local mean, Gaussian weighting, and minimum average 

neighborhood size was set at five percent of sample units (4.45 and 19.5 for debris flow and 

glacial plots respectively).  Variables were retained in the final model if they improved model 

fit by at least five percent.  The best fit model was evaluated by a leave-one-out cross-

validated statistic (xR2).  The relative importance of each predictor variable within the final 

models was evaluated by sensitivity analysis, nudging each explanatory variable value one at a 

time by ±5% throughout its range.  Sensitivity was calculated as the average absolute value of 

the differences induced by nudging the predictor.  A sensitivity value of one indicates that 

nudging a predictor resulted in a change in response of equal magnitude, while a sensitivity of 

zero would occur if nudging a predictor has no detectable effect on the response.  Monte Carlo 

procedures were conducted for each model with 200 runs of randomized data to assess the null 

hypothesis that model fit was no better than obtained by chance alone.  Differences between 

plot observations of snow depth, vegetation, bare ground, and rock cover on glacial versus 

debris flow landforms were assessed using Satterthwaite t tests for samples with unequal 
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variances.  Differences of RAD, TOPO, CANDIST, elevation, and vegetation height between 

landforms were compared for all grid cells within the study (i.e. complete census rather than 

population samples), therefore no statistical tests for differences of means or variances were 

performed. 

Limited sample sizes restricted analyses of the relationships between tree abundance 

and biophysical variables to mountain hemlock and Pacific silver fir.  Tree abundance in 

relation to microtopographic variables (TOPO, RAD, and elevation) and biotic variables 

(CANDIST, TSMEDIST, ABAMDIST and CANDIRECT) were modeled using generalized 

linear mixed models (GLMMs).  GLMM was applied to tree count and biophysical data using 

the GLMMIX procedure in SAS version 9.2 (SAS Institute 2008).  Tree counts were assumed 

to have a Poisson probability distribution, and plot clusters were treated as a G-side random 

effect (an element of the random effects vector).  Laplace integral method was used to 

approximate marginal likelihood, allowing for information criteria model selection which 

would be otherwise biased when using default pseudo-likelihood estimates in GLMMIX 

(Schabenberger 2007).  Tree counts were modeled by species and landform as a function of all 

possible combinations of explanatory variables (RAD, TOPO, CANDIST, CANDIRECT, 

elevation, and TSMEDIST or ABAMDIST).  All 31 possible combinations of these variables 

(plus a null model) were compared using an information criterion approach to make inferences 

regarding the relative importance of biophysical variables on tree abundance.  Model selection 

used the small-sample Akaike’s Information Criterion (AICc), AICc differences (∆i) were 

calculated, a model was estimated to be best if ∆i = 0, considered to have substantial empirical 

support if ∆i was between 0-2, moderate empirical support if ∆i was between 2-4, and not 

empirically supported if ∆i was greater than 4 (Hurvuch and Tsai 1989, Burnham and 

Anderson 2002). 

Interactions between climate, micro site conditions, and tree establishment were 

analyzed by splitting the climate record into two regimes (cool and snowy years versus warm 

and low snow years), and testing for differences in the micro site conditions trees established 

on during the two climate regimes.  Climate in a given year was considered cool and snowy if 

annual snowfall was greater than the mean for the 56 year climate record and either annual or 

summer mean temperature was below the mean.  Twenty one years were considered cool and 

snowy (1953-1956, 1960-1975, and 2007).  Thirty five years with conditions opposite from 
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those described above were considered warm with low snowfall (1952, 1957-1959, and 1976-

2006).  Aged trees were assigned to climate regimes based on year of establishment, and the 

microsites occupied by trees in these two climate regimes were tested for differences with 

Wilcoxon-Mann-Whitney tests using the NPAR1WAY procedure in  SAS version 9.2 (SAS 

Institute 2008).  In addition, contingency tables were developed to test if tree establishment 

was more or less abundant than expected on microsites with high and low topographic 

position during high and low snow fall periods.  Because of low sample sizes in contingency 

tables, Fisher’s exact test was used to test if the relative proportions of observed tree 

establishment were independent of the expected number of trees established in each climate 

category.  Expected numbers assumed equal proportions of trees established when accounting 

for different number of years (21 and 35 years) in each climate category. 

 

RESULTS 

Temporal Patterns of Tree Establishment and Correlates with Climate 

Four hundred and ninety cores and cross sections (out of 505 collected) were 

successfully aged, 374 on glacial landforms, and 116 on debris flows.  On glacial landforms, 

tree establishment in meadows began in the 1920’s, was variable but generally increased until 

1984, then increased dramatically until declining in 2005 (Figure 3.4a).  Temporal patterns of 

tree establishment on debris flows were similar to those on glacial landforms, except tree 

establishment on debris flows was greatest during the 1963 to 1968 and 1988 to 1992 time 

periods, and invasion was low since 1998 (Figure 3.4b).  Five trees established on the northern 

debris flow prior to the 1934, suggesting it predates the documented 1934 debris flow but is 

still young compared to glacial landforms.  Sixty three percent of aged trees on glacial 

landforms were initial establishment, of which eighty two percent were mountain hemlock.  

Seventy six percent of Pacific silver fir established underneath existing trees.  Sixty five 

percent of aged trees on debris flows were initial establishment, and the majority of these 

(sixty six percent) were mountain hemlock.  Overall initial site occupancy across all landforms 

was 7.75% in 1950, and increased at an average rate of 0.49% yr-1, with 34.71% site 

occupancy by 2008.  In 1950, site occupancy was greater on glacial versus debris flow 

landforms (9.06% versus 2.55%), but occupancy rates (i.e. mean annual rate over time) were 

greater on debris flows from 1950 to 2008 (0.76% yr-1. ±0.02 SE versus 0.42% yr-1 ±0.01 SE, 
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a difference of 0.34% yr-1, F value = 248.49, p < 0.0001).  This resulted in greater site 

occupancy on debris flow landforms by 1974, and by 2008 site occupancy was 33.68% and 

38.82% on glacial and debris flow landforms respectively. 

Correlations between three-year occupancy rates and climate variables varied by 

landform, and somewhat establishment type (Figure 3.5a-b).  Correlations between occupancy 

rates and climate variables were generally stronger on glacial landforms than debris flows.  On 

glacial landforms, occupancy rates for both initial and secondary establishment were 

negatively correlated with annual maximum snow fall, and had non- significant negative 

correlations with mean and minimum annual snowfall.  Initial occupancy rates were not 

correlated to temperate variables on glacial landforms, but secondary establishment rates were 

positively correlated to annual minimum and summer minimum temperatures.  In contrast, 

occupancy rates on debris flow landforms were not correlated to annual snow variables, but 

had positive correlations with spring minimum snowfall, and no significant correlations for 

either establishment type with any temperature variables. 

Snow Depth and Correlates with Landforms and Biophysical Variables 

Snow depth was deeper on glacial (0.67 m, 0.59-0.75 m 95% CI) versus debris flow 

(0.21 m, 0.14-0.28 95%CI) landforms (t value = 8.87, df=387, p < 0.0001).  Glacial landforms 

had closer proximity to overstory trees and rougher bare earth and vegetation surfaces 

compared to debris flow landforms (Table 3.1).  Glacial landforms also had greater vegetation 

cover, less surface occupied by bare soil, and more rock cover than debris flow landforms.  

NPMR models of snow depth in relation to explanatory variables differed between 

glacial and debris flow landforms (Figure 3.6).  The snow model for glacial landforms had a 

final xR2 = 0.274, and was a better fit than 200 runs of randomized data (p = 0.0049).  

Sensitivity analysis (SA) found snow depth on glacial landforms was most sensitive to 

elevation (SA = 0.596), followed by TOPO (0.425) and CANDIST (0.332), and was 

insensitive to RAD (0.020) and CANDIRECT (0.021).  Snow depth declined with increased 

elevation, was lower on ridges (high TOPO values), and was lower in close proximity to 

overstory canopy (low CANDIST).  Elevation, TOPO, and CANDIST had nonlinear 

interactive associations with snow depth.  At high elevation, snow depth declined with 

increased TOPO in a linear manner.  However at lower elevations, snow depth increased 
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slowly from ridges to midslopes (TOPO from 1 to 0), but increased rapidly from mid slopes to 

depressions (TOPO from 0 to -1).  At high elevations, snow depth initially increased and then 

declined with distance from overstory canopy, but at lower elevations displayed a more linear 

increase in snow depth with increased distance from overstory canopy.  The snow model for 

debris flow landforms had a lower model fit (xR2 = 0.116) compared to glacial landforms, 

although still better than expected by chance (p = 0.0099).  Snow depth on debris flow 

landforms was most sensitive to RAD (SA = 2.235), followed by much lower sensitivity for 

CANDIST (0.162), and insensitive to elevation (0.060) and TOPO (0.047).  CDIRECT was 

not included in the model for debris flows because it did not meet the 5% improvement 

criterion in model development.  In addition to lower overall snow depth, lower variance 

described by biophysical variables, and different sensitivity to those variables, debris flow 

landforms had reduced interaction between explanatory variables and snow depth as inferred 

from the more linear response surfaces (Figure 3.6). 

Tree Establishment and Correlates with Landforms and Biophysical Variables 

In total, 1620 trees less than 8 m tall (835 mountain hemlock, 758 Pacific silver fir, 12 

whitebark pine, 8 Alaska yellow-cedar , and 7 lodgepole pine) were observed in the plots.  

Only mountain hemlock and Pacific silver fir were analyzed.  Tree abundance was highly 

variable, but did not differ between landform types for mountain hemlock (Satterthwaite T test 

with unequal variances: df=170, t=-0.46, p=0.6445) or Pacific silver fir (df=288, t=0.89, 

p=0.3722). 

The relationships between tree abundance and biophysical variables in empirically 

supported GLMMs varied by species and landform type (Tables 3.2-3.3).  The best model 

describing mountain hemlock abundance on glacial landforms included: RAD, TOPO, 

elevation, CANDIST, and TSMEDIST.  One other model for mountain hemlock on glacial 

landforms had substantial empirical support; no models had moderate empirical support, there 

was a large ∆i for the null model.  On glacial landforms, mountain hemlock abundance 

increased with higher topographic position, decreased radiation, decreased distance to 

overstory canopy, and increased distance to hemlock overstory canopy.  The same explanatory 

variables (except elevation) describing mountain hemlock abundance on the glacial landforms 

were present in the best debris flow model.  In contrast to models of mountain hemlock 
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abundance on glacial landforms, there were more alternative models, and a much smaller ∆i 

for the null model of mountain hemlock on debris flow landforms.  This was interpreted as 

evidence of strong associations between mountain hemlock abundance and explanatory 

variables on glacial landforms, but much weaker associations on debris flows.  In the best 

model for mountain hemlock model on debris flow landforms, hemlock was more abundant 

with increased TOPO, decreased RAD and CANDIST, and increased TSMEDIST.  For 

mountain hemlock on both landforms, TOPO had the strongest fixed effects. 

For Pacific silver fir on glacial landforms, the best model of abundance included: 

RAD, TOPO, CANDIST, and ABAMDIST.  Two other models had substantial empirical 

support, two had moderate support, and there was a large ∆i for the null model.  Pacific silver 

fir abundance on glacial landforms increased with reduced ABAMDIST and RAD, and high 

TOPO.  There were multiple models of Pacific silver fir on debris flow landforms with 

substantial and moderate empirical support, along with a small ∆i for the null model.  This is 

interpreted as the presence of strong associations between Pacific silver fir abundance and 

explanatory variables on glacial landforms, and much weaker associations on debris flows.  

On debris flow landforms, Pacific silver fir abundance increased with higher TOPO and 

decreased ABAMDIST.  ABAMDIST had the strongest fixed effects on glacial landforms, 

while TOPO had the largest fixed effects on debris flow landforms. 

Interactive Effects of Climate and Microtopography on Tree Establishment 

Sufficient sample numbers were only available to test interactive effects of climate 

and microtopography on mountain hemlock initial establishment on both landforms, and 

mountain hemlock secondary establishment on glacial landforms.  From the 56 years of 

climate data, 21 were categorized as high snowfall and low temperatures, and 35 years as low 

snowfall and high temperatures.  Initial establishment of mountain hemlock on glacial 

landforms occurred on high topographic positions during years of high snowfall and low 

temperatures, and on lower topographic positions during years with reduced snowfall and 

increased temperatures (Table 3.4).  Establishment during low snow periods occurred on 

topographic positions with values around zero (approximately mid slope).    Secondary 

establishment on glacial landforms did not occur on micro sites with different TOPO or 

elevation values during different climate periods.  On debris flow landforms, initial 
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establishment of mountain hemlock occurred at higher elevations during years of increased 

snowfall and reduced temperatures.  On glacial landforms, observed abundance of initial 

establishment on high topographic positions or elevation was not different than expected 

during high or low snow periods (Table 3.5).  However at low topographic positions, observed 

abundance of initial establishment was greater than expected during low snow periods.  This 

suggests micro sites likely to have greater snow persistence require low snow periods for tree 

establishment, and tree establishment continues during these low snow periods on sites likely 

to have reduced snow persistence.  On debris flow landforms, both initial and secondary 

establishment was not different than expected on high or low topographic and elevations 

positions during low or high snow periods. 

 

DISCUSSION 

This study provided a unique opportunity to examine the spatial and temporal patterns 

of tree establishment within the FTE at landscape to micro site scales.  Previous studies have 

documented FTE movement and increased tree establishment in subalpine meadows (Lloyd 

and Graumlich 1997, Miller and Halpern 1998, Didier 2001), but methodological constraints 

prevented them from explicitly separating increases in tree density from landscape-level FTE 

movement and meadow invasion.  In contrast, this study found large increases in the 

proportion of the Jefferson Park landscape occupied by trees over the past 50 years.  The 

results of this study suggest tree invasion has been temporally and spatially constrained over 

time by a multi-scale hierarchy of climatic, landform, microtopographic, and biotic controls 

(Figure 3.7).  I propose that the effects of regional drivers (e.g. snow fall) are modified by 

landscape-level patterns of microtopography and vegetation structure.  These interactions are 

the primary controls of tree establishment, while differences in species seed sources and 

regeneration ecology additionally constrain micro site favorability.  Finally, interactions 

between climate, landform, and microtopography not only influenced spatial patterns of tree 

establishment, but also influenced establishment rates, and resulted in complex establishment 

responses to climate conditions over time.  Patterns and controls of tree establishment are 

discussed below within a framework of increasing complexity with decreasing spatial scale; 

focusing on regional patterns of snow persistence and tree establishment, how landforms and 

microtopography influenced snow and tree establishment, the role of biotic factors such as 
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vegetation structure and regeneration ecology, and how climate and physical factors 

interactively generate complex tree establishment responses across the studied landscape. 

Snow Persistence and Tree Establishment 

Previous studies have hypothesized snow depth and seasonal persistence are the 

primary spatial and temporal controls of FTE movement and invasion of meadows in the 

Pacific Northwest region (Franklin et al. 1971 Woodward et al. 1995, Miller and Halpern 

1998).  These studies correlated temporal patterns of tree establishment with regional climate 

data, but did not co-measure tree establishment and snow depth on the same sites across 

topographic or other environmental gradients.  Consequently, these previous studies provided 

relatively weak inference regarding the role of snow as the primary driver of temporal and 

spatial patterns of FTE tree establishment.  Consistent with these past studies, I found 

correlations between tree establishment and regional annual snowfall.  I also found early 

summer snow depth and tree abundance were associated with both landform and 

microtopographic variables, supporting the hypothesis that snow depth and persistence exert 

temporal and spatial controls on tree establishment in the FTE.  It should be noted that 

associations between snow depth and tree establishment in the Pacific Northwest region 

contrasts with patterns documented in other climate regimes.  For example, in the more arid 

and windy continental climate of the Rocky Mountains, increased snow depth facilitates tree 

establishment by increasing soil moisture; reducing wind desiccation, and moderating 

temperature extremes (Holtmeier 2003, Geddes et al. 2005, Hiemstra et al. 2006) , although 

very deep snow can still inhibit establishment (Hättenschwiler and Smith 1999, Maher et al. 

2005).  This highlights how tree establishment in the FTE can have contrasting responses to 

regional climate. 

Landform and Microtopographic Controls of Snow Persistence and Tree Establishment 

Landforms, and microtopographic gradients nested within them serve as the physical 

template which modifies spatial patterns of late season snow persistence, and therefore tree 

establishment.  Snow depth was greatly reduced on debris flows versus glacial landforms, 

despite plot data with similar distributions of microtopography and distance to overstory 

canopy.  LiDAR provides a synoptic view of larger landscape patterns that influence snow 

depth.  Debris flows had more uniform ground elevations, lower and less variable vegetation 



79 

 

 

heights, and increased distances to overstory canopy, resulting in a smoother surface 

compared to glacial landforms.  Smoother surfaces have fewer depressions for snow 

deposition and higher surface wind speeds, which can increase wind redistribution of snow 

(Marks et al. 2002, Litaor et al. 2008).  I propose that wind redistribution on debris flows 

partially results from a lack of control by surface structure, which is more strongly developed 

on glacial landforms, resulting in different scales controlling of snow distribution (sensu 

Trujillo et al 2007).  Differences in surface radiation balance between the two landform types 

may result in different snow melt rates, since the cover of soil and different vegetation types 

which vary by landform have different albedos (Eugster et al. 2000).  However, albedo 

differences between landforms is unlikely to cause landform-level differences in snow depth 

observed.  Different land cover types have overlapping albedo values, and sparsely vegetated 

mineral soil can have a higher albedo than alpine vegetation and conifers, not less as would be 

needed to increase melting on the more sparsely vegetated debris flows (Goodin and Isard 

1989). 

Temporal and spatial patterns of tree establishment appear to have been driven by 

differences in snow persistence associated with landforms and microtopography within 

landforms.  Rates of establishment have been greater on debris flows, where reduced snow 

depth and persistence increase growing season length by altering surface radiation balance 

(Ling and Zhand 2005).  Relationships between tree abundance and microtopography are 

much weaker on debris flows versus glacial landforms, consistent with landform-scale wind 

redistribution of snow.  Debris flows have been more favorable for tree establishment than 

glacial landforms, although substrate factors unrelated to snow persistence may contribute to 

this.  Although glacial landforms had a high percentage of rock cover, debris flow substrate 

has a large component of exposed coarse gravel and cobble, fine scale heterogeneity which 

may facilitate seed trapping and provide safe sites for plant establishment (Jompponen et al 

1999).  Compared to glacial landforms, debris flows had three times greater mineral soil and 

reduced vegetation cover, which are generally thought to promote germination and 

establishment of many conifer species (Smith et al. 1997).  This would suggest reduced snow 

cover at the landform-scale resulted in higher rates of tree establishment on debris flows, 

although additional factors such as substrate and vegetation competition may also facilitate 

increased tree establishment. 



80 

 

 

In addition to fundamentally altering the biophysical controls of snow persistence, 

debris flows are also high-severity disturbance events, burying almost all organic matter and 

vegetation, after which primary succession was initiated.  Studies of FTE tree establishment in 

response to disturbances have primarily focused on lower-severity disturbances such as 

wildfire and/or grazing (Debenedetti & Parson 1979, Vale 1981, Butler 1986, Stueve et al. 

2009).  Prior research suggests deterministic successional pathways (Henderson 1973, Chapin 

et al. 1995) and long time periods for trees to establish at high elevations and latitudes post-

disturbance (Agee and Smith 1984, Arseneault and Payette 1992, Coop and Schoettle 2009).  

In this study debris flow landforms were rapidly colonized by trees and rates of tree 

establishment were greater than on glacial landforms, suggesting more rapid post-disturbance 

tree establishment is possible at high elevations if the disturbance results in favorable site 

conditions and seed sources are available.  Counter to more deterministic concepts of 

succession, rapid development of a young mountain hemlock forest on debris flows suggests 

there are multiple successional pathways, which can be a function of landscape context, seed 

availability, and stochastic events (Fastie et al. 1995, del Moral et al. 1995). 

Biotic Controls of Snow Persistence and Tree Establishment 

Vegetation structure was another important influence on both snow persistence and 

tree establishment.  Proximity to overstory canopy was associated with reduced snow depth, 

consistent with the “tree well” pattern of reduced snow accumulation and increased snowmelt 

under canopy, resulting from interception, sloughing, and enhanced incident thermal radiation 

(Faria et al., 2000, Sicart et al. 2004).  This is in contrast to studies in more arid and windy 

regions, were extensive wind redistribution causes snow to accumulate within and to the lee 

side of trees and taller vegetation (Holtmeier 2003, Geddes et al. 2005, Hiemstra et al. 2006).  

Compared these drier and windier regions, wind redistribution in the Pacific Northwest is 

likely to be less significant as a result of lower wind speeds and greater snow densities (Elliot 

et al. 1987, Mizukami and Perica 2008).  The absence of flagged and krummholz trees also 

indicates relatively lower wind speeds within the study area.  Tree wells form on glacial 

landforms where fine scale structures exert strong controls on snow distribution.  However, on 

debris flows, they are less likely to form given the greater importance of wind and reduced 

influence of fine scale topography and vegetation structure. 
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Spatial and temporal patterns of tree invasion were also strongly influenced by the 

autoecology of the tree species present.  Distance from con-specific overstory (potential seed 

sources) was the most important biophysical variable associated with Pacific silver fir 

abundance, with increased establishment associated with closer proximity to potential seed 

sources, but this relationship was much weaker and less consistent for mountain hemlock.  

The seeds of both species are wind dispersed, but the seeds of Pacific silver fir are 9 to 22 

times heavier, resulting in shorter dispersal distances (Bonner and Karrfalt 2008).  Pacific 

silver fir is also a poor seed producer and its cones can suffer high predation from insects and 

rodents (Owens and Molder 1997, Bonner and Karrfalt 2008).  Short dispersal distances, poor 

seed production, and high potential seed predation suggest tree invasion into meadows may be 

more spatially restricted for Pacific silver fir than mountain hemlock due to recruitment 

limitations, even when suitable micro sites exist.  It should be noted that separating the 

influences of all overstory on snow depth versus potential seed source limitation for mountain 

hemlock was complicated by the species dominance in the overstory (63% of overstory 

canopy area), possibly resulting in multi-collinearity confounding statistical models of 

mountain hemlock abundance.  Despite these confounding factors evidence supports seed 

limitation for Pacific silver fir, with inconclusive evidence of seed limitation for mountain 

hemlock. 

Trees may also facilitate secondary tree establishment underneath them via species 

differences in shade tolerance and other autogenic modifications of site conditions.  Mountain 

hemlock was the dominant tree species initially establishing on both glacial and debris flow 

landforms, while Pacific silver fir was more restricted to establishing underneath hemlocks.  

Mountain hemlock and Pacific silver fir are very shade tolerant and can persistent as 

suppressed individuals in stands for up to 100 years (Kranjina 1969, Minore 1979, Packee et 

al. 1981).  However Pacific silver fir is believed to be slightly more shade tolerant and slower 

growing when young (Kranjina 1969, Crawford and Oliver 1990), and mountain hemlock 

hemlocks grow best in partial shade (Means 1990).  Correlations between site occupancy and 

annual climate variables were not weaker for secondary versus initial establishment, 

suggesting initially establishing trees do not weaken climatic controls of tree establishment 

over time via autogenic site modification as suggested by Miller and Halpern (1998).  

However, initial establishment of mountain hemlock on glacial landforms occurred on 
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different topographic conditions during high and low snow climate periods, but secondary 

establishment did not.  This would suggest some weakening of climate and topographic 

controls on secondary establishment, which may result from autogenic modification of site 

conditions.  In combination, biotic factors may place spatial constraints on tree establishment 

because of species-specific recruitment limitation, and may facilitate tree establishment in the 

future via both overstory effects on snow depth and autogenic weakening of scale-dependent 

climate-site-establishment interactions. 

Interactive Responses of Tree Establishment to Climate, Landform Type, and 
Microtopography 

Multi-scale interactions of snow depth, landform type, microtopography, and 

vegetation structure not only influenced the spatial patterns of tree establishment, but also 

resulted in complex establishment responses to climate.  Glacial landforms had slower rates of 

tree establishment which were positively associated with reduced annual snow fall.  On debris 

flow landforms, tree establishment was more rapid, decoupled from annual snowfall, and was 

even associated with increased spring snow fall.  Given the low snow depths and coarse well-

drained substrate, tree establishment on debris flow landforms may be somewhat moisture, 

rather than thermally limited.  This is counter to the belief that tree establishment in subalpine 

forests and the alpine FTE is thermally limited.  However, moisture limitation of tree growth 

has been documented in the boreal forests and arctic FTE (Barber et al. 2000, Wilmking et al. 

2002).  This study suggests that both thermal limitation (via snow persistence) and moisture 

limitation may occur for tree establishment, depending on the landforms and substrate within 

the study area. 

Regional snow fall was associated with rates of mountain tree establishment on glacial 

landforms over time, while micro site biophysical conditions (i.e. microtopography, elevation, 

overstory modified snow depth, and distance to potential seed sources) appear to control the 

spatial pattern of tree establishment.  This study found evidence of climate and micro site 

variables interactively controlling both the spatial distribution and temporal rates of tree 

establishment in the FTE, which has implications for FTE sensitivity to future climate change.  

During years with high snow fall, initial hemlock establishment was restricted to ridge tops 

and upper elevations.  During years with low snow fall, initial hemlock establishment 

continued on high topographic positions, but also occurred at lower topographic positions and 
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lower elevations.  Increased establishment occurred on lower positions on glacial landforms, 

but not on debris flows.  Similar climate-site-establishment interactions have been observed 

within the Pacific Northwest region at much larger spatial scales of entire mountain ranges 

and across much larger gradients in topographic and edaphic factors (Woodward et al. 1995, 

Rochefort and Peterson 1996, Miller and Halpern 1998).  However, in these regional-scale 

studies, tree establishment declined on sites with lower average snow depth during low snow 

periods.  This study suggests climate-site-tree establishment interactions may be both scale 

dependent (varying in strength when going from regional to individual meadow/micro site 

spatial scales), and also landscape context dependent (in this case the influence of landforms 

on microtopographic features nested within them). 

Study Limitations and Uncertainty 

Inferences made in this study about the spatial and temporal patterns of tree 

establishment, and the underlying controls of these patterns are drawn from retrospective and 

observational data from one landscape.  As such, interpretations and inferences drawn from 

this study have various limitations and uncertainty associated with them.  Inference regarding 

spatial patterns of snow in relation to biophysical factors was based on snow depth 

measurements taken at a single point in time (late July of 2008).  Biophysical variables did not 

explain a large amount of the spatial variation in snow depth. Similar studies within the region 

are lacking, but in an agricultural setting Lapen and Martz (1996) found similar variance of 

snow depth explained by topographic variables at comparable spatial scales (10 m pixel versus 

2 m in this study).  This suggests a high degree of stochastic variability in fine-scale spatial 

patterns of snow depth, but still demonstrates general patterns in relative snow depth are 

related to microtopography, and vegetation structure.  Inter-annual spatial variation of snow 

depth likely occurs, and might be reflected in relatively low variance in snow depth described 

by biophysical controls.  Despite the likely temporal variation in spatial patterns of snow 

depth, general patterns of relative snow depth likely persist at both intra- and inter-annual time 

scales (Heegaard 2002, Williams et al. 2009), suggesting general patterns of snow are 

generally valid beyond the single year of data collection. 

This study was unable to determine the role of livestock grazing and its cessation on 

tree invasion in the meadows.  It is unlikely grazing or its cessation have played a role in rapid 
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tree invasion of the 1934 debris flow, since there would not have been significant forage for 

livestock due to the burial of almost all vegetation.  On glacial landforms increased rates of 

tree establishment do appear to coincide with possible cessation of sheep grazing.  However 

grazing history for the study area is qualitative and regional in nature, and cannot be used to 

quantify the timing or intensity of grazing within the Jefferson Park study area. 

One objective of this study was to quantify tree establishment in relation to regional 

climate records.  Consequently, sampling focused on younger trees, preventing detailed 

examination of trees established prior to the 1920’s.  Retrospective studies such as this one 

cannot detect tree establishment which may have since disappeared due mortality events.  This 

has been the case on the debris flows, where trees that previously occupied those sites were 

either buried or transported off site in 1934.  This limitation was addressed by restricting the 

temporal scope of inference for this study to not predate 1934.  There are no documented 

wildfires within the study area, nor are there any biological legacies such as large woody 

debris, stumps, snags, or remnant trees indicative of past disturbances (sensu Franklin et al. 

2002).  However, mortality events in prior decades caused by multiple extreme snow years or 

avalanches could have resulted in mortality of young seedlings which would not be detectable 

during field sampling.  The lack of such extreme events within the historical or proxy climate 

records suggests such mortality events are unlikely within this studies temporal scope of 

inference, but would become more problematic if extended before 1940 when extreme mutli-

year droughts may have been more common regionally (Gedalof et al. 2004). 

Implications for Future FTE Movement and Subalpine Meadow Invasion 

Tree establishment in this study was temporally associated with low snowfall and 

higher annual and spring temperatures.  The strong control snowpack has had on tree 

establishment across the region over the past five decades is likely to continue in the future.  

Snowpack in large areas of the FTE in Oregon and Washington many be sensitive to increased 

temperatures, and regional snowpack may be declining (Mote 2003, Mote et al. 2005, Nolan 

and Daly 2006).  Regional models suggest declines in snow water equivalency by 11 to 70 

percent in the Pacific Northwest by 2050 (Salathé et al. 2008, Casola et al. 2009, Salathé et al. 

2009).  However, regional precipitation and snow scenarios are major shortcomings of climate 

models (Randal et al. 2007).  Until regional snow models are improved to provide transient, 
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spatially-explicit, and annual predictions of snow pack, scenarios of FTE change will be 

dependent on highly uncertain snowpack scenarios whose spatial and temporal scales are not 

compatible with the ecological patterns and processes of tree establishment observed in this 

study. 

Even if future climate conditions are favorable for tree establishment, this research 

suggests FTE movement and meadow invasion will be highly variable, driven by multi-scale 

interactions of climate, landform type, microtopography, existing vegetation structure, seed 

source limitations for some species, and disturbance regimes.  Tree establishment has largely 

occurred on high topographic positions, with much of the meadow landscape in low 

topographic positions displaying micro sites consistently unfavorable for tree establishment 

over the past fifty years.  If these low topographic position microsites maintain late season 

snow persistence even during reduced regional snowfall, they will likely persist as unfavorable 

sites for tree establishment in the future.  Additionally, seed dispersal limitations for some 

species (such as Pacific silver fir and the similar subalpine fir) may also constrain tree 

establishment and FTE movement where these species dominate.  Counteracting micro site 

and seed dispersal constraints could be autogenic feedbacks of tree establishment, where trees 

influence micro site conditions making adjacent establishment more likely even under 

unfavorable climate conditions.  The temporal and spatial extent of these feedbacks is largely 

unknown, but may play a large role in future tree invasion in meadows as favorable sites in the 

landscape are increasingly occupied and only low topographic meadows remain on the 

landscape.  The results of this study suggest considerable limitations for regional and global 

simulation models attempting to project future FTE movement or meadow loss; estimating 

since multi-scale and multi-species responses of the FTE to climate change may not be 

possible by downscaling larger models of climate or using simple single species responses to 

climate. 
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Table 3.1.  Biophysical characteristics of landforms based on field plots and LiDAR 
measurements. 

 

Note:  CANDIST is the distance to overstory canopy, RAD is potential relative radiation, and 
TOPO is the topographic position index.  Differences between variables collected on field 
plots were assessed using Satterthwaite t tests assuming unequal variances.  LiDAR-derived 
variables are a complete census of entire study area, so no statistical tests for differences 
between landform types were conducted. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Glacial landforms Debris flow landforms
Plot variables (percent cover) mean sd mean sd df t value p
Vegetation 53.31 25.38 47.04 25.24 283.45 2.54 0.0116
Bare Soil 5.20 13.03 18.21 24.22 187.05 -6.21 0.0000
Rock 10.78 16.92 7.31 12.89 365.09 2.50 0.0128
Litter 14.53 18.98 16.57 18.09 294.65 -1.14 0.2570
Coarse Wood Debris 0.70 3.67 1.21 3.98 262.68 -1.33 0.1859
Moss 12.73 15.09 8.07 12.60 334.59 3.57 0.0004
Lichen 1.09 2.29 0.31 1.30 461.23 4.82 0.0000
LiDAR-derived variables mean sd mean sd
Elevation (m) 1790.49 6.47 1783.51 5.38
CANDIST (m) 12.26 11.28 25.22 18.95
RAD 3820.02 178.46 3836.05 85.32
TOPO -0.01 0.30 -0.02 0.19
Vegetation Height 2.24 4.52 1.12 2.27
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Table 3.2.  Selected, supported, and null models of tree abundance by species and landform 
type in relationship to biophysical explanatory variables.  

 

Note:  Akiake Information Criterion for small sample sizes (AICc), and delta AICc (∆i) values.  
Determination of empirically supported model in AIC model selection follows 
recommendation of Burnham and Anderson (2002).  Explanatory variable are: potential 
relative radiation (RAD), topographic position index (TOPO), elevation (ELEV), distance to 
overstory canopy (CANDIST), distance to mountain hemlock overstory (TSMEDIST), and 
distance to Pacific silver fir overstory (ABAMDIST) in meters. 

 

 

Species Landform Explanatory variables in model AICC ∆i

mountain glacial  RAD TOPO ELEV CANDIST TSMEDIST 1865.56 0.00
hemlock RAD TOPO CANDIST TSMEDIST 1866.67 1.11

NULL 2106.47 240.91

mountain debris RAD TOPO CANDIST TSMEDIST 603.16 0.00
hemlock flow RAD TOPO TSMEDIST 604.55 1.40

TOPO CANDIST TSMEDIST 605.00 1.84
RAD TOPO ELEV CANDIST TSMEDIST 605.71 2.55

RAD TOPO 605.82 2.67
RAD TOPO CANDIST 606.28 3.12

TOPO TSMEDIST 606.80 3.64
RAD TOPO ELEV CANDIST TSMEDIST 606.88 3.73

TOPO ELEV CANDIST TSMEDIST 607.04 3.89
NULL 612.14 8.99

Pacific glacial RAD TOPO CANDIST ABAMDIST 1868.33 0.00
silver fir RAD TOPO ABAMDIST 1868.95 0.62

RAD TOPO ELEV CANDIST ABAMDIST 1870.39 2.06
RAD TOPO ELEV ABAMDIST 1870.99 2.66

NULL 2245.46 377.13

Pacific debris TOPO ABAMDIST 438.44 0.00
silver fir flow TOPO ELEV ABAMDIST 439.08 0.64

TOPO CANDIST ABAMDIST 439.17 0.73
TOPO ELEV CANDIST ABAMDIST 439.93 1.48

RAD TOPO ABAMDIST 440.60 2.15
RAD TOPO ELEV ABAMDIST 441.20 2.76

RAD TOPO CANDIST ABAMDIST 441.38 2.94
RAD TOPO ELEV CANDIST ABAMDIST 442.12 3.68

NULL 483.18 44.74
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Table 3.3.  Fixed effects of explanatory variables in the best empirically supported models (∆i 
= 0) of tree abundance by species and landform type. 

 

Note:  Explanatory variable codes as defined in the methods section and Table 2.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Explanatory Fixed effects solutions Type III fixed effects
Species Landform variable estimate se lclm uclm df f value p
mountain glacial RAD -0.0023 0.0003 -0.0030 -0.0016 1, 368 46.5574 0.0000
hemlock TOPO 1.5975 0.1224 1.3568 1.8382 1, 368 170.3093 0.0000

ELEV 0.0232 0.0132 -0.0027 0.0491 1, 368 3.0953 0.0794
CANDIST 0.1318 0.0249 0.0828 0.1808 1, 368 27.9603 0.0000

TSMEDIST -0.1229 0.0250 -0.1721 -0.0736 1, 368 24.0736 0.0000

mountain debris RAD -0.0022 0.0010 -0.0042 -0.0003 1, 99 5.4005 0.0222
hemlock flow TOPO 0.8314 0.2564 0.3226 1.3403 1, 99 10.5122 0.0016

CANDIST -0.0386 0.0194 -0.0771 0.0000 1, 99 3.9436 0.0498
TSMEDIST 0.0468 0.0191 0.0089 0.0846 1, 99 6.0144 0.0159

Pacific glacial RAD -0.0017 0.0003 -0.0023 -0.0010 1, 369 25.4059 0.0000
silver fir TOPO 0.5289 0.1312 0.2709 0.7869 1, 369 16.2488 0.0001

CANDIST 0.0133 0.0082 -0.0029 0.0295 1, 369 2.5898 0.1084
ABAMDIST -0.0636 0.0073 -0.0778 -0.0493 1, 369 76.8308 0.0000

Pacific debris TOPO 1.5349 0.2817 0.9762 2.0937 1, 101 29.6962 0.0000
silver fir flow ABAMDIST -0.0289 0.0068 -0.0424 -0.0155 1, 101 18.1728 0.0000
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Table 3.4.  Mean (with 95% confidence intervals) of topographic position (TOPO) and 
elevation (ELEV) on micro sites where mountain hemlock trees established during periods of 
high snowfall with low temperature (HSLT), and low snowfall with high temperatures 
(LSHT) regimes. 

 

Note:  Differences between HSLT and LSHT periods were assessed using Wilcoxon-Mann-
Whitney tests.  Climate variable codes as described in the methods section.  Micro site 
variable codes as described in the methods section and Table 2.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Establishment Landform Topographic Climate Regime Z value p
Type Type Variable HSLT LSHT
initial glacial 41 trees 99 trees

ELEV 1791.68 (1790.01, 1793.35) 1791.07 (1790.04, 1792.1) 0.7419 0.4594
TOPO 0.24 (0.16, 0.33) 0.09 (0.02, 0.16) 2.5941 0.0105

initial debris flow 23 trees 28 trees
ELEV 1782.61 (1781.92, 1783.3) 1781.06 (1780.05, 1782.07) 2.1209 0.0389
TOPO 0.05 (-0.05, 0.15) -0.04 (-0.14, 0.07) 1.0036 0.3204

secondary glacial 11 trees 14 trees
ELEV 1790.01 (1786.09, 1793.92) 1793.25 (1790.1, 1796.41) -1.5066 0.1450
TOPO 0.26 (0.05, 0.48) 0.05 (-0.1, 0.21) 1.5066 0.1450
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Table 3.5.  Observed versus expected tree establish for mountain hemlock by landform and 
establishment type, on micro sites with high and low topographic positions and elevations 
during high snow low temperature (HSLT) and low snow high temperature (LSHT) climate 
periods. 

 

Note:  p values are from Fisher’s exact test.  Expected values are the observed row totals 
multiplied by the percent of years in the climate record within HSLT and LSHT climate 
periods. 

 

 

 

 

Landform Topographic Topographic Climate Regime
Type Variable position HSLT LSHT p
glacial TOPO high observed 28 41

expected 26 43 0.8616
glacial TOPO low observed 13 61

expected 28 46 0.0009
debris TOPO high observed 9 8

expected 6 11 0.4905
debris TOPO low observed 15 21

expected 13.5 22.5 1.0000
glacial ELEV high observed 22 47

expected 26 43 0.5921
glacial ELEV low observed 18 56

expected 28 46 0.1094
debris ELEV high observed 15 11

expected 10 16 0.2668
debris ELEV low observed 7 17

expected 9 15 0.7601
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Figure 3.1.  Study area location. (a) State of Oregon with the Cascades ecoregion in gray, the 
Cascades crest and montane zone in black, and subalpine and alpine areas in dark gray.  The 
Jefferson Park study area (red star).  (b) shows the study area (black outline) in relation to 
Mountain Jefferson.  (c) close up image of the study area, plots (light yellow circles) , and 
debris flows (shaded red).  Light grey lines are 25 m contour intervals.   
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Figure 3.2.  Regional snow fall and temperature from selected climate stations during the 1951 
to 2008 time period. Annual minimum, maximum, and mean temperature, annual snowfall, 
and spring (April thru June) snowfall for the Government Camp (▬), Santiam Junction (▬), 
Marion Forks (―), and Belknap Springs (―) stations. 
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Figure 3.3.  Constrained stratified random sampling design steps: a) TOPO explanatory 
variable grid, b) RAD explanatory variable grid, c)  TOPO and RAD are relativized by their 
respective standard deviates and averaged to generate the EEI grid, d) distance to overstory 
canopy (vegetation greater than 8 m tall), e) 25 class matrix of all combinations of EEI and 
CANDIST, f) moving window analysis to find 100 * 100 m areas with all 25 class 
combinations of EEI and CD_ALL.  Areas with all 25 strata are shown as red squares, g) final 
locations of 500 field plots shown as yellow dots, h) example 25 plot cluster stratified random 
sampling in relation to 25 strata. Plots are yellow dots, pixels are colored by the 25 sampling 
strata, i) example of overstory canopy maps by species in relation to a 100 * 100 m cluster 
showing mountain hemlock (dark green), Pacific silver fir (light green), and Alaska yellow-
cedar (yellow) overstory canopy. 
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Figure 3.4.  Count of trees less than 8 m tall on glacial (a) and debris flow (b) landforms, 
cumulative proportion of sites occupied by trees by landform and establishment type (c), and 
annual rates of site occupancy (d) in relation to selected regional snow fall (e) and temperature 
variables (f). 
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Figure 3.5.  Pearson correlation coefficients between rates of site occupancy and climate 
variables for: a) snowfall, and b) temperature. Occupancy rates and climate variable data are 
for 3 year periods. Solid circle are for initial establishment, hollow circles are for secondary 
establishment, glacial landforms are shown in black, and debris flows are shown in gray. Error 
bars are the upper and lower 95% confidence limits of correlation coefficients. Correlations 
are significant at the 0.05 level if error bars do not intersect zero (highlighted with an asterisk 
above the bar).  



 

Figure 3.6.  Modeled relationships between snow depth, microtopographic variables, and
distance to overstory canopy by landform type (glacial landforms on the left three panels). 
Note the scale differences in modeled snow depth between landform types.

relationships between snow depth, microtopographic variables, and
distance to overstory canopy by landform type (glacial landforms on the left three panels). 
Note the scale differences in modeled snow depth between landform types. 
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relationships between snow depth, microtopographic variables, and 
distance to overstory canopy by landform type (glacial landforms on the left three panels). 
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Figure 3.7.  Conceptual model of interactions between climate and biophysical controls of 
recent tree establishment in the meadows at Jefferson Park. 
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CHAPTER 4: MODELING TREE INVASION OF A SUBALPINE MEADOW 
LANDSCAPE, OREGON CASCADES, USA. 

ABSTACT 

Climate-driven treeline movement and invasion of subalpine meadows have been 

documented across wide ranges of geographic locations and controlling factors.  Treeline 

movement can in turn influence temperature feedbacks, carbon sequestration, and biodiversity 

at multiple spatial scales.  Large-scale species distribution models (SDMs) suggest climate 

change will shifts species distributions and biomes and reduce biodiversity.  Local scale 

SDMs incorporating downscaled climate models suggest local high-elevation persistence of 

species habitat, but do not specifically model plant regeneration in relation to the many non-

climatic biophysical parameters important for treeline establishment (i.e. dispersal limitations, 

micro sites, biotic interactions, and disturbances).  This study developed a fine-scale (2 m 

pixel size) spatially explicit statistical model of tree invasion into a subalpine meadow 

landscape in the Oregon Cascades, simulating historical tree invasion from 1950 to 2007, and 

potential future invasion from 2007 to 2064.  The model incorporated temporal data from 

regional climate and tree-ring establishment reconstructions, and used Light Detection and 

Ranging (LiDAR) data to characterize micro sites, biotic interactions based on vegetation 

structure, and a historical debris flow disturbance event.  From 2007 to 2064 tree invasion was 

modeled under six different annual snowfall scenarios with three levels of snowfall declines 

from historical means (0, 25, and 50 percent declines), crossed with two levels of forcing 

persistent three year periods of extreme high or low snowfall (forcing and no forcing).  From 

1950 to 2007, simulated historical meadow area declined from 82% to 65% of the study area.  

Model outputs of historical area, spatial distributions, and spatial clustering of tree invasion 

generally agreed with independent validation, and suggest biotic interactions due to young tree 

establishment facilitation are only important on glacial landforms.  Simulations indicate 

meadows may decline by 36-43% from 2007 to 2064.  Meadows area declined with reduced 

annual snow fall.  Under all scenarios there were persistent areas of meadow without tree 

invasion in 2064.  This model suggests subalpine meadows may significantly decline in 

relation to climate, but unfavorable micro sites and recruitment limitations may be equally or 

more important factors in meadow decline and persistence, while also suggesting local high-

elevation persistence of subalpine meadows under future climate warming. 
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INTRODUCTION 

The boundary between forests and alpine/arctic vegetation (referred to as treeline, 

subalpine parklands, or the forest-tundra ecotone, FTE), is a conspicuous feature of mountain 

and high latitude landscapes throughout the world.  FTE positions are globally associated with 

thermal deficiencies limiting plant growth (Körner 1998, Jobbágy and Jackson 2000).  Arctic 

and mountain ecosystems are believed to be sensitive to climate change (Christensen et al. 

2007, Fischlin et al. 2007), while varying degrees of climate-driven FTE movement have been 

documented across a wide range of climatic regimes, forest types, and land use histories 

(Harsch et al. 2009).  Climate-driven FTE movement may have numerous ecological effects 

including: temperature feedbacks resulting from altered surface energy balances (Bonan et al. 

1992, Beringer et al. 2005), changes in ecosystem carbon storage (Prichard et al. 2000, 

Wilmking et al. 2006), and the loss of alpine biodiversity (Dirnbock et al. 2003, Halloy and 

Mark 2003, Thuiller et al. 2005).  The magnitude of these ecological effects will in part be 

determined by the extent and rates of FTE movement.  However the sensitivity of FTE 

movement and alpine/subalpine meadow invasion to climate can be dependent on numerous 

non-climatic biophysical factors (Miller and Halpern 1998, Daniels and Veblen 2004, 

Holtmeier and Broll 2005, Zald 2010b), making it difficult to quantify FTE movement and 

associated ecological effects in response to climate change.  Simulation models have the 

potential to improve our understanding of FTE movement under future climate scenarios.  At 

global to regional scales, simulation models have been used to project large geographic shifts 

in biomes, species distributions, and biodiversity in response to future climate scenarios 

(Bachelet et al 2001, Thuiller et al 2005, Rehfeldt et al. 2009).  However, global and regional 

models of species and vegetation distributions are unlikely to generate realistic scenarios of 

future FTE movement, because they do not model at the spatial resolution at which FTE 

movement often occurs, and they tend to exclude many non-climatic factors which influence 

tree regeneration at the FTE. 

Species distributions models (SDMs) are the most commonly used approach for 

simulating future species distributions and diversity in response to potential climate change 

(Guisan and Zimmerman 2000, Guisan and Thuiller 2005, ).  SDMs relate multiple abiotic 

habitat characteristics with observed occurrences of a species, fitting a bioclimatic envelope or 

realized niche.  Climate change scenarios can then be applied to a species fitted bioclimatic 
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envelope to simulate how the potential spatial distribution of a species (or biodiversity in the 

case of many species envelopes) may change in the future.  However, global climate models 

(and regional models generated by statistical downscaling) used in SDMs may not realistically 

simulate the effects of meso-scale topography and landscape context on temperature and 

precipitation in mountainous landscapes (Salathé et al. 2008).  This suggests scale 

incompatibilities between existing climate models and species observations (Guisan and 

Thuiller 2005, Randin et al. 2009).  Scale incompatibilities may be especially problematic at 

the FTE, because climatic and non-climatic biophysical factors can control patterns of tree 

establishment at regional to micro site spatial scales (Rochefort and Peterson 1996, Holtmeier 

and Broll 2005, Zald 2010b).  Coarse-resolution climate data also obscures fine-scale climate 

variability in mountain landscapes, and localized persistence of favorable thermal habitat 

conditions may allow species to persist in spite of climate change (Randin et al. 2009).   

Another limitation of SDMs is their reliance on bioclimatic envelopes correlated to 

species occurrences, but tree migration and FTE movement are fundamentally determined by 

seed-based regeneration (Lescop-Sinclair and Payette 1995, Smith et al. 2003).  SDMs are 

criticized for not incorporating many non-climatic factors (such as dispersal limitations, biotic 

interactions, and disturbance) important in determining species distributions (Woodward and 

Beerling 1997, Davis et al. 1998).  Regeneration dynamics are not only problematic for 

SDMs, but also difficult to accurately simulate in a variety of forest dynamics, succession, and 

growth models (Price et al. 2001, Larocque et al. 2006, Pabst et al. 2008), suggesting many 

existing modeling frameworks are poorly suited to simulating regeneration dynamics 

fundamental to the rates and extent of FTE movement.  Process-oriented forest regeneration 

models explicitly parameterize resources levels, recruitment, growth, and mortality (Pacala et 

al. 1996, Wallentin et al. 2008), but these parameters are largely unknown for forests with 

marginal or non-existent wood products value.  Realistic scenarios of future FTE movement 

and tree invasion of alpine/subalpine meadows will require: modeling at spatial resolutions 

comparable to the patterns and processes of tree establishment, and incorporation of tree 

regeneration dynamics which are often influenced by many non-climatic parameters (i.e. seed 

dispersal, disturbance, biotic interactions, etc.). 
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The primary objective of this study was to spatially project historical and near-term 

future (1950 to 2064) tree invasion of a subalpine meadow landscape in the Pacific Northwest 

region of North America.  In contrast to SDMs which utilize bioclimatic envelopes and forest 

dynamics, succession, and growth models which parameterize processes such as fecundity, 

dispersal, and growth; I developed an empirically-derived statistical model to quantify tree 

invasion in relation to deterministic spatial patterns of tree invasion controlled by biophysical 

factors (microtopography, seed sources, overstory and young tree interactions, larger-scale 

landform types), and probabilistic temporal patterns of tree establishment in relation to climate 

(specifically snowfall).  Spatial and temporal patterns of tree invasion were quantified from 

results of Zald (2010b), which combined spatially explicit tree establishment reconstructions 

from tree-ring dating, regional historical climate data, and spatial characterizations of 

microtopography and vegetation structure derived from Light Detection and Ranging 

(LiDAR) data.  Specifically, this model was developed to address the following three 

questions: (1) can fine-scale (2m pixel size) patterns of historical tree invasion be accurately 

predicted? (2) how sensitive is future tree invasion (and therefore meadow persistence) to 

different future snowfall scenarios? and (3) are non-climatic factors such as landforms and 

biotic interactions associated with different spatial patterns of tree invasion? 

 

METHODS 

Study Area Description 

The study was conducted in 132 hectares of Jefferson Park (44°42’ N 121°48’ W, 

1693-1814 m asl), a subalpine parkland immediately north of Mount Jefferson in the Mount 

Jefferson Wilderness Area, Willamette National Forest, Oregon, USA.  Jefferson Park is 

within the High Cascades physiographic province of the Pacific Northwest region (Franklin 

and Dyrness 1989). The climate is intermediate between Mediterranean and maritime 

temperate, with dry warm summers and significant winter precipitation largely falling as 

snow.  The physiography of Jefferson Park is dominated by glacial and debris flow landforms.  

Glacial landforms consist of outwash and till deposited during the most recent glacial maxima 

of the Holocene Epoch (Scott 1977).  One debris flow occurred in 1934, depositing debris 

0.36-2.4 m deep across 320,000 m2 of eastern Jefferson Park (O’Connor et al. 2001).  A 

smaller undocumented debris flow in north Jefferson Park occurred at an indeterminate age 
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prior to 1934.  Soils of the study area are poorly documented, and consist of either rubble or 

soils derived from glacial material, sedimentary rock, pyroclastic ash flows, and volcanic ash 

(MacDonald 1998).  Additional details regarding the climate, geology, and soils of the study 

area can be found in Zald (2010a). 

Mountain hemlock (Tsuga mertensiana) is the dominant tree species, followed by 

Pacific silver fir (Abies amabilis), found in single species and mixed-species stands.  Most of 

these stands are “islands” of variable size and shape surrounded by meadow vegetation.  

Mature trees in these islands are generally 150 to 250 years old, but can exceed 400 years of 

age (Zald 2010a).  Results from Zald (2010a) indicate mountain hemlock has been the 

dominant species invading meadows for the past 150 to 250 years.  Subalpine fir (Abies 

lasiocarpa), whitebark pine (Pinus albicaulis), lodgepole pine (Pinus contorta), and Alaska 

yellow-cedar (Callitropsis nootkatensis) are also present, but in greatly reduced amounts (less 

than two percent of recent tree establishment).  Due to its dominance in both older and 

recently initiated stands, the models in this study focus exclusively on mountain hemlock 

establishment. 

Modeling Overview 

Mountain hemlock establishment was simulated using a spatially and temporally 

explicit empirically-derived statistical model, with both deterministic and probabilistic spatial 

and temporal components.  The study area was simulated as a 595 x 737 grid of 2 m pixels 

encompassing 132 ha.  Tree establishment was simulated across the study area during the 

1950 to 2064 time period in 3-year time steps.  Tree invasion of meadows was modeled as the 

presence- absence of trees represented as 2 m pixels, which was considered reasonable 

because the slow growth and narrowly conical crowns of mountain hemlock will be largely 

confined to the pixel size over the time period of simulation.  The model is based on the 

spatial and temporal patterns of tree invasion in relation to landform type, microtopography, 

vegetation structure, and climate from field data and analyses in Zald (2010b).  The starting 

spatial distribution of trees in 1950 was determined by combining LiDAR data of tree heights 

with age-height regressions of dated trees sampled in Zald (2010a and 2010b).  The base 

model iterates each three-year time step from 1950 starting conditions to 2064 as follows 

(Figure. 4.1): 
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1. Pixels are selected as having the potential to be invaded by a tree if their spatial 

probability of occupancy (Probspat) is greater than a randomly generated value. 

2. The temporal probability of occupancy (Probtemp) determines what proportion of 

pixels in the landscape invaded at each time step, where selected pixels from step 1 

having higher Probspat values are more likely to be invaded. 

 

For each time step from 1950 to 2007, Probtemp was calculated as the proportion of 

meadow area invaded by landform type (glacial versus debris flows), as reconstructed via tree-

ring dating in Zald (2010b).  For projecting into the future (2007 to 2064), Probtemp was 

calculated from the relationship between the proportion meadow area invaded by landforms 

type and maximum annual snowfall as determined in Zald (2010b).  This relationship between 

tree invasion and snowfall was applied to six different future snowfall scenarios representing 

potential changes in the mean and temporal variability of annual snowfall.  In addition to the 

base model described above, a second model (referred to as the facilitation model) was 

developed where the probability of any given pixel being invaded can increase because of a 

facilitation effect of young tree presence in adjacent cells (Probfacil).  Details of Probspat, 

Probtemp, Probfacil, starting configurations, and future snowfall scenarios are described below. 

Spatial Probability of Mountain Hemlock Occupancy (Probspat) 

The spatial probability of occupancy (Probspat) was calculated from field data on the 

biophysical controls of tree establishment in the study area (Zald 2010b).  Tree establishment 

was recorded on 499 2 m plots (390 on glacial landforms and 109 of debris flow landforms), 

located in a stratified random design in relation to microtopography and distance to overstory 

canopy, both derived from airborne discrete return Light Detection and Ranging (LiDAR).  

Zald (2010b) found mountain hemlock establishment was spatially controlled by a multi-scale 

hierarchy of landform type, microtopographic variables, and distance to overstory.  

Biophysical variables were associated with variation of late summer snow depth, thought to 

influence spatiotemporal patterns of FTE tree establishment in the Pacific Northwest region of 

North America via control of growing season length (Fonda and Bliss 1969, Franklin et al. 

1971, Zald 2010b).  Since 1950, mountain hemlock invasion of meadows in the study area 

was greater on debris flows versus glacial landforms, and was greatest on micro sites with 
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higher topographic position, potential relation radiation, and elevation, and in closer proximity 

to overstory canopy.  For details regarding field sampling design, data collection, and 

statistical analyses of tree invasion in relation to biophysical controls within the study area, 

please refers to Zald (2010b). 

Based on these previous findings of mountain hemlock invasion in relation to 

biophysical controls, an empirically-derived grid of the spatial probability of tree occupancy 

(Probspat) was developed for the study area.  The probability of mountain hemlock presence 

was modeled in relation to seven biophysical variables (Table 4.1).  Zald (2010b) analyzed 

tree establishment in relation to only one fine-scale topographic position index variable 

(TOPO1).  However TOPO1 failed to account for larger-scale depressions and drainages 

where increased snow depth reduced the presence of mountain hemlock.  To characterize 

larger-scale topographic features, four additional topographic position indices (TOPO2-5) 

were developed with annuli ranging from 10 to 300 m in size, but only TOPO2 and TOPO4 

were selected in model below. 

The probability of mountain hemlock presence was modeled in relation to biophysical 

variables with nonparametric multiplicative regression (NPMR) using Hyperniche version 

1.39 (McCune and Medford 2004).  Like linear regressions, NPMR quantifies the 

relationships between a response and explanatory variables.  However, NPMR represents 

dependent variable responses to multiple explanatory variables based on kernel functions to 

weight observations, rather than generating regression coefficients for a model of fixed global 

form.  NPMR can be applied to data with many explanatory dimensions, and 

multidimensionality is provided automatically and multiplicatively (rather than additively as 

in linear regressions), parsimoniously modeling the complex interactions among predictors 

(McCune 2006).  Separate models were developed for plots on debris flow and glacial 

landforms.  NPMR was run using a local mean with a Gaussian weighting function, binary 

response, and the minimum average neighborhood size was set at 5 percent of sample units.  

Variables were retained in the final model if they improved model fit by at least five percent.  

The best fit model was evaluated by the log 10 of the likelihood ratio (11.8 and 3.55 for 

glacial and debris landforms).  The selected model of mountain hemlock presence on glacial 

landforms had five explanatory variables (CANDIST, TOPO1, TOPO2, RAD, and slope), 

while four variables were selected on debris flow landforms (CANDIST, elevation, TOPO1, 
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and TOPO4).  The sensitivity of tree presence to each predictor variable was evaluated by 

nudging each explanatory variable value one at a time by ±5% of its range throughout its 

range.  Sensitivity was calculated as the average absolute value of the differences induced by 

nudging the predictor (Table 4.2).  Mountain hemlock presence was most sensitive to 

CANDIST and TOPO2 on glacial landforms, and ELEV and SLOPE on debris flow 

landforms.  Monte Carlo permutation procedures were conducted for each model with 200 

runs (p = 0.0040 and p = 0.0396 for glacial and debris flow landforms), suggesting that model 

fit was better than could obtained by chance alone.  Similar to Yost (2008), a grid of the 

probability of occupancy of each pixel (Probspat) in the study area was generated by applying 

the model response surfaces to a set of grids representing each explanatory variable in the 

model (Figure 4.2).  Probspat values ranged from 0.01 to 0.94, or a 1 to 94 percent chance of 

being occupied. 

Temporal Probability of Mountain Hemlock Occupancy (Probtemp) 

In the FTE of the Pacific Northwest region of North America, temporal patterns of 

tree establishment are strongly associated with annual variation of snow fall (Franklin et al. 

1971, Woodward et al. 1995, Rochefort and Peterson 1995, Zald 2010b).  Temporal 

probability of tree occupancy (Probtemp) was calculated in 3 year time steps as the non-treed 

proportion of the study area by landform type occupied by trees in a given time step, as 

determined from tree establishment reconstruction using tree-ring dating in Zald (2010b).  For 

the 1950 to 2007 time period, Probtemp is simply the reconstructed proportion of the study area 

invaded (without replacement of the area invaded in the previous time step) in three year time 

steps.  Probtemp was calculated using three year bins rather than annually because: (1) a large 

number of individual years lacked new site invasion, (2) three year bins implicitly incorporate 

FTE germinant mortality which is often high during the first year, but declines during the 

second and third years of growth (Rochefort and Peterson 1996, Brang 1998, Germino et al. 

2002), and (3) distorted and extremely small rings near the pith of dated trees could have led 

to incorrectly aged trees by ± 1 year in the tree invasion reconstruction in Zald (2010b).  The 

rate of meadow invasion by trees (without area replacement) in the study area was negatively 

associated with annual maximum snowfall on glacial landforms (adjusted R2 = 0.2887, F1,17 = 
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8.308, p ≤ 0.01034), but this relationship was not significant on debris flows (adjusted R2 = -

0.0356, F1,17 = 0.382, p = 0.545) (Figure 4.3). 

 

Future Snowfall Scenarios (2007 to 2064) 

For the 2007 to 2064 time period, Probtemp was calculated by applying future snowfall 

scenarios to the regression coefficients and confidence intervals from the historical 

relationship between snowfall and tree invasion rates.  There are currently no published 

scenarios of future snowfall in the region with an annual temporal resolution.  I developed six 

future scenarios bounded by the most recent regional climate simulations which suggest future 

April snow water equivalency (SWE) will decline in the Oregon Cascades roughly 20-40% by 

2050 (Salathe et al. 2008, Salathe et al. 2009).  Annual snowfall and April SWE at the Marion 

Forks, Oregon weather station (44°36’N 121°57’W 813 m) are strongly correlated for the 

1950 to 2007 time period (linear regression, F1,55 = 173.6, P < 0.0001, Adjusted R2 = 0.76), 

suggesting changes in April SWE translate well to the annual snow fall data used in this study.  

Salathe et al. (2008, 2009) also suggest there will be increased snowfall variability and 

extreme events, which have been largely absent in the region for the past five centuries 

(Gedalof et al. 2004).  Based on the information above, six scenarios of future annual snowfall 

were developed (Table 4.3) with three different annual snowfall means (historical base, twenty 

five percent reduction, and fifty percent reduction from historical base), and two different 

types of extreme event durations (same as the historical record, and extreme snowfall periods 

which persist for three consecutive years).  Although comparisons between annual snowfall 

and April SWE were made using data from Marion Forks, snowfall data used to generation 

future snowfall scenarios come from the Government Camp weather station (45°18’ N 

121°145’ W, 1213 m), believed to more closely reflect snowfall at Jefferson Park due to its 

higher elevation (Zald 2010b). 

For scenarios without prolonged extreme snowfall years, it was assumed semi-decadal 

variation of future snowfall would be similar to the past 57 years of snow fall data.  This was 

achieved by iteratively applying loess regressions with different span lengths to the historical 

snowfall data.  Wavelet analysis (morlet wavelet number six, numbers of power of 2 = 9, 

significance level = 0.99) were conducted on each loess iteration, and a loess span = 0.2 
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resulted in wavelet power spectra that retained only semi-decadal variance in the loess curve 

and 2-4 year variation in the loess regression residuals.  For each scenario a constant was 

subtracted from the loess regression residuals to achieve the appropriate mean for a given 

scenario (loess regression residuals have a mean approaching zero).  For each scenario, one 

hundred iterations of 57 years were created by randomly assigning snowfall values within a 

normal distribution based on the scenario mean and standard deviation of loess regression 

residuals using the function rnorm in R version 2.91 (R Development Core Team 2009).  The 

loess regression line was then added to the simulated residuals, resulting in 100 iterations for 

each of the six snow scenarios with the desired mean and variance, while retaining semi-

decadal variability similar to the historical climate record (Figure 4.4). 

Prolonged extreme snowfall periods were generated by first identifying all years 

within each snowfall iteration where snow fall was greater or less than one standard deviation 

from the mean.  The following two years were then recalculated as randomly generated values 

within a normal distribution of the snowfall data subset greater or less than one standard 

deviation from the mean, dependent on if the initial extreme year was a high or low snowfall 

year.  It is important to note these snowfall scenarios have not been developed as statistically-

downscaled regional climate models, nor do they represent climate projections under different 

emissions scenarios, although they are based on snowfall scenarios from downscaled climate 

models that do.  Instead they represent a range of potential scenarios bounded by reasonable 

estimates of future annual average snowfall and its temporal variability. 

Facilitation of Tree Establishment by Existing Adjacent Young Trees (Probfacil) 

In addition to seed source and micro site effects of mature trees, young trees may 

facilitate tree establishment in their immediate vicinity by alteration of micro site conditions 

(Miller and Halpern 1998, Smith et al. 2003, Zald 2010b).  To quantify facilitation effects 

from young trees (defined as trees less than eight meters tall), presence-absence data from 

field plots was analyzed to determine how probability of occupancy was associated with 

young tree presence in adjacent two meter pixels (eight-pixel neighborhood) when accounting 

for Probspat.  Young tree presence in neighboring pixels was determined from a grid of 

vegetation height derived from LiDAR data.  To avoid confusing young trees with non-tree 

vegetation, neighboring pixels were only considered to be occupied by young trees if LiDAR-



119 

 

 

derived vegetation height was greater than 0.4 m, the 95th percentile of non-tree vegetation 

height measured on all 499 plots.  To avoid confusing young tree facilitation with that from 

overstory trees, plots within four meters of overstory canopy were removed, leaving 243 plots 

for analysis.  Tree presence/absence on plots in response to the number of the eight 

neighboring pixels occupied by young trees was modeled using the logistic regression in SAS 

version 9.2 (SAS Institute 2008).  Logistic regressions were run separately for each landform 

type.  Maximum likelihood estimates were significant for the number of neighboring pixels 

occupied on both glacial and debris flow landforms (p < 0.0001 and p= 0.0025) when 

accounting for Probspat.  Using logistic regression coefficients, point estimates were generated 

of the probability of occupancy due to young tree facilitation (Probfacil) when accounting for 

Probspat: 

[1] For glacial landforms: 

Probfacil = 1-(1/(1+(exp(-2.0128 + 2.4383*Probspat + 0.4724*Count)))) 

[2] For debris flow landforms: 

Probfacil = 1-(1/(1+(exp(-4.265 + 5.5685*Probspat + 0.5007*Count)))) 

Where count is the number of eight neighboring pixels occupied by young trees.  

 

Starting Configuration and Model Runs (1950 to 2007) 

The starting configuration for the year 1950 was established in three steps.  First all 

cells containing vegetation greater than eight meters tall as defined by the LiDAR data were 

considered to be occupied by trees in 1950 (overstory trees in Figure 4.3).  This was 

determined by height-age relationships from 398 mountain hemlocks collected in the study 

area (Zald 2010a).  Tree height was related to age using a fourth order polynomial regression 

(F4,394 = 528.8, p = < 0.0001, Adjusted R2 = 0.84), which found trees equal or greater than 

eight meters tall to have established on or before 1950 (95th percentile).  Second, a conditional 

statement was applied where Probspat pixel values were retained if they were greater than pixel 

values of a randomly generated grid of equal dimensions and value ranges.  The purpose of 

this conditional statement was to generate stochastic variability in Probspat values.  This 

conditional statement was iterated 100 times, and the results of all 100 iterations averaged.  By 

averaging many stochastic iterations of this Probspat conditional statement, the number of 
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unique values was greatly increased without altering its distribution.  This was important for 

the third step, when the averaged pixels of the Probspat conditional statements were divided 

into 1000 quantiles, with pixels in the top 9.058 and 2.551 percent of values assigned as 

occupied in 1950 on glacial and debris flow landforms respectively.  These starting 

percentages are the proportions of the study area (excluding vegetation over 8 m tall) occupied 

by young trees in 1950 on both landform types (Zald 2010b).  The starting configuration of 

pixels occupied was merged with the Probspat grid to obtain the starting configuration grid for 

the model containing occupied cells (with cell values = 1) and values of Probspat ranging from 

0.01to 0.94. 

From the starting configuration in 1950, three iterations of the condition statement 

Probspat > random grid were run at each time step, where Probspat cell values were retained if 

greater than the random generated grid cell values, and set to zero it they did not.  The 

products of these three iterations were averaged, and then divided into 1000 quantiles.  Grid 

cells in the quantile equal or greater than Probtemp (by landform type) were occupied at each 

time step.  Note that from 1950 to 2007, Probtemp is deterministic (calculated from the 

proportion of meadows invaded by trees over time).  Pixels not occupied in current or 

preceding time steps retained their Probspat value.  In the model variant with young tree 

facilitation, Probfacil was calculated for each grid pixel at the end of each time step. 

Model Validation (1950 to 2007) 

Models were validated using two different datasets: tree presence/absence data from 

field plots, and LiDAR-derived estimates of tree invasion.  Plot-level accuracy assessment 

occurred for the 2007 model time by extracting model presence/absence data on pixels 

corresponding to field plots.  Using tree presence/absence data from models (observed) and 

field plots (expected); overall accuracy, errors of commission and commission, and kappa 

statistics (Cohen 1960) were calculated.  However, plot-based level accuracy assessments 

represent a small percentage of the landscape, and are not completely independent of data used 

to construct the Probspat model parameter.  To address these concerns, LiDAR data of 

vegetation height was used to independently validate model accuracy of tree presence across 

the entire study area.  However, LiDAR data also has limitations for accuracy assessments of 

tree invasion.  As noted in the description of Probfacil, LiDAR-derived vegetation height had to 



121 

 

 

be greater than 0.4 m to discriminate between tree and non-tree vegetation, which excludes the 

youngest trees.  To determine the age threshold at which young trees could be detected (i.e. 

age of trees ≥ 0.4 m tall), the age and height of 287 mountain hemlocks from Zald (2010b) 

were regressed (third order Polynomial regression: adjusted R2 = 0.6, p < 0.0001), in which 

trees less than 24 years old had a 95th percent chance of being less than 0.4 m tall.  Based on 

this regression, LiDAR-based accuracy assessments were only applied to models at the time 

step associated with 1983.  As with plot-based model validation, overall accuracy, errors of 

commission and commission, and kappa statistics were calculated.  Error maps of the study 

area were also generated, comparing models in 1983 to LiDAR-derived observations of tree 

presence to assess spatial patterns of model accuracy. 

In addition to traditional accuracy assessments, the spatial point patterns of the two 

models (with and without the facilitation effect of young trees) for the 1983 time step were 

compared against spatial point patterns of LiDAR-derived tree presence to determine if 

models accurately portrayed point patterns of tree establishment (i.e. clustered, random, or 

dispersed).  Grids of model predictions and LiDAR-derived observations were converted to 

point data.  L function second-moment point patterns for model predictions and LiDAR 

observations were calculated as described by Haase (1995).  Computational limitations 

prevented the L function from being calculated for the entire study area.  Instead, a randomly 

located four hectare square was selected from the model predictions and LiDAR observations 

in each landform type.  Random plots had 1614, 1618, and 1698 treed points in the glacial 

landforms for the two model predictions and LiDAR observations; and 4136, 4157, and 4177 

treed points in the debris flow landforms for model predictions and LiDAR observations 

respectively.  L functions and 95% confidence envelopes (based on 100 Monte Carlo 

simulations) were calculated using the package spatstats in R version 2.9 (Baddeley and 

Turner 2005). 

Model Runs 2007 to 2064 

Model runs from 2007 to 2064 were run in a similar manner as from 1950 to 2007, but 

the temporal rate (Probtemp) of invasion was probabilistic (rather than deterministic as during 

the 1950 to 2007 time period).  Probtemp for 2007 to 2064 was derived by applying simulated 

snowfall datasets to the linear regressions of tree invasion rates in relation to snowfall.  There 
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were 100 iterations for each snowfall scenario, with the same mean and variance but different 

values for each individual year.  Annual snowfall data in each iteration was converted to three 

year bins and the maximum snowfall in each bin determined.  Three year maximum snowfall 

values were applied to the empirical climate-tree establishment rate regression coefficients and 

confidence intervals with the rnorm function in R version 2.9.  This resulted in Probtemp values 

for each time step that reflected both the variation in snowfall scenarios, and the uncertainty in 

the relationships between snowfall and tree establishment.  One hundred iterations of the 

model were run for each of the six climate scenarios.  For each iteration, the total number of 

cells invaded was converted to the percentage of the total study area.  Differences in the 

percentage of meadow area remaining by landform type in 2016, 2037, and 2064 were 

assessed with the Tukey Honest Significant Difference (HSD) method in R version 2.9. 

 

RESULTS 

Meadow Invasion and Model Validation (1950 to 2007) 

Tree invasion of meadows in models with and without young tree facilitation closely 

matched plot-based invasion reconstructions, although invasion in the model with young tree 

facilitation was slightly higher (Table 4.4).  Compared to field plots, overall accuracy of 

modeled tree invasion from 1950 to 2007 varied from 0.65 to 0.74 (1.0 being 100% accurate), 

which was 26% to 47% greater than expected by chance alone.  Accuracy was higher on 

debris flow versus glacial landforms (Table 4.5).  Error for all models and landforms was 

slightly biased towards predicting tree invasion were plots had no trees (commission error).  

For plot-based accuracy assessments, inclusion of young tree facilitation slightly reduced 

model accuracy (both overall accuracy and kappa statistic) on glacial landforms, but improved 

model accuracy on debris flows. 

Compared to LiDAR-derived tree invasion, overall accuracy of modeled invasion 

from 1950 to 1983 varied from 0.61 to 0.74 (Table 4.5).  Modeled tree invasion was 14 to 

22% greater than expected by chance, lower than the plot-based accuracy assessment.  Across 

all models and landforms, error was biased towards predicting no tree invasion when LiDAR-

derived data indicated tree invasion (omission error).  Omission error biases resulted from 

LiDAR-derived estimates of tree invasion for the 1950 to 1983 time period, which were 

greater than the plot-based invasion estimates used to derive Probtemp.  For LiDAR-based 
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accuracy assessments, inclusion of young tree facilitation had little effect on model accuracy 

(both overall accuracy and kappa statistic) for either landform type.  Prediction errors for both 

models in 1983 were most extensive in debris flows, with pronounced areas of omission error 

in the eastern half of the larger debris flows. Commission errors in both landform types were 

greatest in close proximity to both overstory trees and areas of correctly modeled invasion 

(Figure 4.5). 

LiDAR-derived tree invasion displayed significant clustering on both landform types 

(Figure 4.6).  On glacial landforms, the strength of clustering declined slightly at distances 

greater than 20 m, while clustering was largely constant at distances greater than 20 m for 

debris flow landforms.  On glacial landforms, the model with young tree facilitation resulted 

in spatial patterns of tree invasion more comparable LiDAR-derived invasion across the range 

of distances.  On debris flows, models resulted in patterns of predicted invasion that were 

more clustered across the wide range of distances than LiDAR-derived invasion patterns, but 

over-clustering was more pronounced with young tree facilitation.  Although the accuracy 

assessments (plot and LiDAR-derived) showed little difference in modeling accuracy when 

including young tree facilitation, point pattern analyses suggested young tree facilitation better 

represented spatial patterns of tree invasion on glacial landforms.  For these reasons, 

facilitation effects were only included on glacial landforms modeling future (2007 to 2064) 

tree invasion under the six different climate scenarios. 

2007 to 2064 Tree Invasion 

Based on the LiDAR estimates of overstory canopy and the field data (Zald 2010b), 

82 percent of the study area (80 percent glacial and 94 percent debris flow) was subalpine 

meadow in 1950 (1950 baseline area).  By 2007, predicted tree invasion in both models 

resulted in meadow area of 65.3, 66.3, and 61.2 percent of 1950 baseline, on all landforms, 

glacial, and debris flow landforms respectively.  By 2016, median meadow area across all 

snow scenarios ranged from 61.3 to 62.5 percent of 1950 baseline across the study area, 61.8 

to 63.4 percent on glacial landforms, and 58.1 to 58.9 percent on debris flow landforms 

(Figure 4.7).  In 2016, meadow area (overall study area and meadows on glacial landforms) 

declined with reduced mean snowfall (scenarios A-C), declines in meadow area were not 

associated with increased persistence of extreme snowfall (scenarios D-F), but a 50 percent 
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decline in snowfall (scenario C) resulted in the most meadow area remaining on debris flow 

landforms. 

By 2037, median meadow area across all snow scenarios ranged from 52.4 to 56.1 

percent of 1950 baseline area across the study area, 52.4 to 57.1 percent on glacial landforms, 

and 51.1 to 53.4 percent on debris flow landforms.  For both the entire study area and glacial 

landforms, meadow area declined with reduced mean snowfall (scenarios A-C),  while 

increased persistent extreme events combined with a 25 percent reduction in snowfall 

(scenario E) retained greater meadow area than 25 percent snowfall reductions alone (scenario 

B).  On debris low landforms, meadow area generally declined with increased snowfall and 

increased persistence of extreme events, although there was considerable overlap between 

scenarios.  A 50 percent decline in snowfall (scenario C) resulted in higher meadow area 

remaining on debris flow landforms  

All scenarios resulted in a shift from a landscape dominated meadow matrix with 

patches of forests in 1950, to a roughly even split between meadows and trees in 2007, to a 

landscape dominated by forest with greatly reduced patches of meadow by 2064.  By 2064, 

median meadow area across all snow scenarios ranged from 41.4 to 47.4 percent of 1950 

baseline area across the study area, 40.3 to 47.9 percent on glacial landforms, and 43.9 to 47.6 

percent on debris flow landforms.  For both the entire study area and glacial landforms, 2064 

reductions from 1950 baseline meadow area were greatest with reduced mean snowfall 

(scenarios A-C), while increased persistent extreme events combined with a 25 percent 

reduction in snowfall (scenario E) resulted in greater meadow area than 25 percent snowfall 

reductions alone (scenario B).  On debris low landforms, meadow area declined with increased 

snowfall (scenarios A-C).  Increased persistence of extreme events did not result in different 

proportions of meadow area remaining for a given mean snowfall scenario (for example 

scenarios A versus D), but did reduce differences between difference mean snowfall scenarios 

(for example scenarios D versus E).  Spatial patterns of tree invasion were consistent across 

scenarios, but differed by landform type (Figure 4.8).  On glacial landforms, a general 

enlargement of forest islands has occurred since, shifting the landscape from meadows that 

were largely interconnected in 1950, to meadows of varying shapes and sizes increasingly 

separated by stands of mountain hemlock in 2064.  In contrast to island enlargement on glacial 
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landforms, modeled tree invasion on the southern debris flow was spatially continuous, 

resulting in an extensive area of mountain hemlock forest. 

 

DISCUSSION 

The primary objective of this study was to spatially characterize historical (1950 to 

2007) and project near-term future (2007 to 2064) tree invasion in the subalpine meadow 

landscape of Jefferson Park.  Results of model runs and accuracy assessments from 1950 to 

2007 suggest historical fine-scale patterns of tree invasion can be accurately predicted.  Model 

runs from 2007 to 2064 indicate continued declines in meadow area, shifting the study area 

from meadow dominated land cover in 1950, to a mountain hemlock forest dominated 

landscape in 2064.  Climate scenarios with different annual average snowfalls resulted in 

significant differences in the proportion of meadow land cover invaded by trees. However, 

differences in projected meadow area remaining were small (median values ranging from 41 

to 48% of the landscape without tree invasion in 2064), suggesting landscape-level tree 

invasion may be relatively insensitive to large reductions in annual average snowfall across 

the time period of study.  Insensitivity to reductions in snowfall, combined with spatially 

consistent areas lacking tree invasion across climate scenarios, suggests there will be 

persistent areas of meadow habitat in the future.  The spatial pattern of tree invasion (and 

therefore remaining meadows) appears largely dependent on fine-scale patterns of 

microtopography and overstory canopy nested within larger-scale landform features, resulting 

in a mosaic of meadow and forest land cover on glacial landforms, and largely contiguous 

areas of mountain hemlock forests on debris flows.  Young-tree facilitation appears to be an 

important landform-dependent factor in shaping spatial patterns of tree invasion, but the 

mechanism and extent of this control over space and time is unclear.  Model accuracy, tree 

invasion sensitivity to climate and meadow persistence, and non-climatic influences on tree 

invasion are discussed in detail below; as are limitations associated with the conceptual 

framework of the model, and uncertainty regarding the field and climate data which drive it. 

Accuracy of Modeled Historical Tree Invasion 

Overall extent of predicted tree invasion during the historical period (1950 to 2007) 

was moderately accurate, but spatial patterns of model error varied by landform type.  
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Predicted invasion on glacial landforms closely matched LiDAR-derived estimates, 

independently validating model rates of tree invasion for the 1950 to 1983 time period.  

Spatially, the greatest prediction errors on glacial landforms were on sites with the highest 

probability of tree invasion (i.e. higher topographic positions and close proximity to overstory 

trees) (Zald 2010b).  Stochastic variation in seed dispersal, germination, and mortality may 

result in favorable sites remaining unoccupied.  A high degree of stochastic variation in tree 

invasion would not be surprising given the spatial resolution of this study, since fine-grained 

spatial scales generally increase variance in the pattern or process of interest (Wiens 1989).  

Spatial heterogeneity of site conditions can also influence the regeneration niche, and the 2 m 

resolution of this study may miss even finer scale environmental controls of regeneration 

success (Grubb 1977, Gray and Spies 1997). 

Spatial patterns of prediction errors were very different on debris flows, occurring 

over larger contiguous areas compared to smaller clusters on glacial landforms.  Spatial 

patterns of debris flow prediction errors likely result from some combination of: (1) longer 

and weaker gradients of site favorability; (2) gradients of site favorability; which may not be 

associated with available explanatory variables; (3) increased stochastic variability in tree 

establishment compared to glacial landforms; and (4) debris flow specific problems using 

LiDAR-derived estimates of tree invasion as validation data.  The spatial probability of 

occupancy (Probspat) on debris flows occurs along a long declining gradient from west to east, 

resulting in extensive areas expected to be invaded.  This gradient is also much weaker 

compared to glacial landforms, with tree abundance partially decoupled from many 

microtopographic and seed source controls which influence site favorability on glacial 

landforms (Zald 2010b).  Microtopography and distance to potential seed sources may not 

characterize age, stability, and quality of substrate; which can be important determinants of 

tree establishment and vegetation composition on young depositional landforms (Yarie et al. 

1998, Pabst and Spies 2001, Garbarino et al 2010).  Debris flow landforms are also 

disturbance events, on which primary succession can be highly stochastic (del Moral et 

al.1995, del Moral et al. 2009).  Finally, the LiDAR-derived accuracy assessment may have 

greater bias on debris flow landforms because of extensive areas containing the tall 

herbaceous perennial Lupinus lepidus, which is rare on glacial landforms (Zald 2010a).  L. 

lepidus often grows taller than the 0.4 m, the height cutoff distinguishing small trees from 
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shrubs and herbaceous plants.  Field data used to establish this cutoff may have 

underrepresented L. lepidus on debris flows in Zald (2010b), resulting in an overestimation of 

LiDAR-derived tree invasion.  This would explain why models of tree invasion closely match 

plot based estimates of tree invasion on glacial landforms, but have greater errors of omission 

in comparison to LiDAR-derived invasion estimates on debris flows. 

Tree Invasion Sensitivity to Future Climate and Meadow Persistence 

Sensitivity of projected tree invasion to future climate scenarios can be viewed from 

different perspectives.  The projected amount of tree invasion from 2007 to 2064 is 

significantly different between scenarios with different mean annual snowfall, although 

differences are much weaker (and even reversed) on debris flow versus glacial landforms.  

Across all scenarios (including future projections of historical baseline) projected tree invasion 

results in a landscape matrix shift from a meadow to tree domination by 2064.  Sensitivity 

analysis was not performed on the tree invasion in relation snowfall and its variability, since 

snow scenarios were bounded by a wide range of reasonable potential snow fall given current 

information (Salathé et al. 2008, Salathé 2009).  Prolonged extreme snow fall scenarios were 

also realistic, given what is known about long-term snow pack variability in the region via 

tree-ring reconstructions (Gedalof et al. 2004).  The empirical relationship between snow fall 

and tree establishment (Probtemp) was also linear, suggesting sensitivity analysis would be 

unlikely to find a snowfall threshold important to invasion rates within the bounded snowfall 

scenarios employed. 

If viewed from the scale of the entire study area, projected climate scenarios do not 

greatly influence the proportion of the study area landscape invaded, with approximately 50 to 

36 percent of the study area remaining as meadow in 2064.  Additionally, the areas remaining 

as meadow are consistent across scenarios, suggesting large areas of meadow persistence by 

2064, even with large reductions in snowfall.  This is consistent with the ‘local high-elevation 

habitat persistence hypothesis’ (LHP), where fine-grained topographic modification of climate 

results in suitable thermal habitat conditions, which would otherwise be perceived as 

unsuitable when related to climate change at coarser spatial scales (Randin et al. 2009).  

Randin et al. (2009) support this hypothesis using the SDM’s (i.e. bioclimatic envelopes).  

Species occurrences used in SDMs can be from any life history stage from recent germinants 
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to mature individuals, although plant species identification is more definitive with mature 

specimens.  Mature individuals and populations in treeline and alpine environments can 

survive under adverse climatic conditions for centuries to millennia (Steinger et al. 1996, 

Bettin et al. 2007, Salzer et al. 2009).  In contrast, meadow persistence in this study is based 

on tree establishment which is spatially restricted in relation to landform, microtopography, 

and overstory canopy (biophysical modifiers of fine-scale snow depth and seasonal 

persistence), and temporally restricted by tree establishment rates in relation to regional 

climate records.  This study provides additional support for the ‘local high-elevation habitat 

persistence hypothesis’ in part because it is based on species regeneration, which is most 

sensitive life history stage for individuals and populations (Grubb 1977). 

 

It is important to recognize this study supports the LHP hypothesis by using tree 

invasion as a proxy for habitat loss of numerous alpine and subalpine species which occupy 

meadows, rather than aggregated persistence of thermal habitat for numerous individual 

species projected with SDMs.  Projected persistence of individual meadow species was 

outside the scope of this study, so it is unclear any plant communities would be lost from the 

study area, or if plant communities with decline in area differently.  However, species and 

community presence within the study area in relation to micro site conditions (Zald 2010a) 

suggests areas most likely to be invaded are currently dominated by Ericaceous shrubs on 

glacial landforms and well-drained forb communities on debris flows, while the hydrologic 

setting of wet sedge meadows (e.g. hydric soils, high water table) may be least likely to be 

invaded by trees.  However, habitat for each species and/or community type is unlikely to 

remain static, and migration potential will depend not only on future climate conditions, but 

also propagule availability, competition, facilitation, disturbance regimes, etc. 

Non-climatic Influences on Tree Invasion Spatial Patterns 

Landforms, and the micro site conditions nested within them, play a significant role in 

where tree invasion occurs on the landscape.  Landform type determined the degrees of 

variation in microtopography, as well has the distance to overstory canopy which modified 

snow depth and proximity to potential seed sources (Zald 2010b).  Landforms and micro site 

conditions within them influence the association between tree invasion and climate on debris 
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flows.  This resulted in spatially constrained and clustered projected tree invasion on glacial 

landforms, and wide spread invasion on debris flows.  Overstory trees play an important role 

in the spatial pattern of projected tree invasion by influencing snow depth and seed availability 

(Faria et al., 2000, Sicart et al. 2004, Dovčiak et al 2008). 

Less clear is the role of neighboring young trees in facilitating tree invasion.  Young 

tree facilitation effects were empirically derived by relating young tree presence in plots to 

LiDAR-derived young tree presence (0.4 m to 8 m vegetation height) in neighboring pixels.  

As previously discussed for model validation, LiDAR-derived estimates of neighboring young 

tree presence could have been overestimated by the abundance of tall Lupinus lepidus on 

debris flows.  In addition, facilitation was quantified by the number of neighboring pixels 

occupied young trees, but alteration of micro site climatic conditions is likely to be influenced 

by other variables (i.e. percent cover or density of vegetation in different strata) that are 

difficult for even small footprint LiDAR to accuracy quantify at the spatial resolution of this 

study.  

Model Limitations and Uncertainty 

In addition to specific limitations already discussed above (i.e. limitations of LiDAR 

in model validation, scale issues with regeneration, young tree facilitation, etc.), it is important 

to view projected tree invasion in this study in relation to the conceptual limitations and 

uncertainty in the model framework itself.  This model attempted to incorporate stochastic 

variability into empirically-parameterized tree invasion simulations.  Both climate data and the 

climate-establishment relationships driving the temporal patterns of tree invasion are 

probabilistic.  Snowfall scenarios each have a distribution with a mean and variance, as does 

the percentage of the landscape occupied in each time step as a function of climate.  Both the 

spatial (Probspat) and young tree facilitation (Probfacil) parameters were deterministic, although 

Probspat had a stochastic element due to conditional statements involving random data.  In 

reality Probspat and Probfacil have an unknown amount of variance associated, and this variance 

varies spatially across the study landscape.  If Probspat and Probfacil parameters were 

probabilistic, it would have likely increased the confidence envelopes (increased uncertainty) 

of all scenario outputs.   
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It is also important to note that interactions between landform type, micro site 

conditions, and climate can result in contrasting spatial and temporal patterns of tree invasion, 

which were not incorporated into the model.  Trees can invade lower topographic positions 

with low Probspat values during low snow years (Zald 2010b).  This would suggest Probspat is 

not static, but rather has dynamic interactions with micro site favorability, climate conditions, 

and tree invasion.  It was not possible to quantify this dynamic interaction, but the static nature 

of the Probspat grid may only be a minor limitation of this model.  Contrasting spatial patterns 

of tree invasion may result from interactions with microtopography and climate, but the 

dominant signal was for trees to invade higher topographic positions in meadows, and 

invasion of these micro sites was greater during low snowfall years (Zald 2010b).  Overstory 

trees also should in reality influence the probability of a micro site being invaded in a dynamic 

way over time, since young trees will eventually grow into overstory trees (defined as 8 m 

tall), influencing snow persistence and seed available.  This model only projected 57 years 

into the future, approximately the time for a seedling to grow to 8 m (based on historical 

growth rates).  Tree growth into the overstory was not incorporated into the model because it 

is unknown what size (and therefore age) trees begin to influence micro site probability of 

invasion, and what the strength and spatial extent of these effects may be in relation to tree 

size.  The absence of this factor may bias predictions towards underestimating the probability 

of invasion over time, 

Although using empirical relationships to parameterize these models had the benefit 

of incorporating realistic relationships and uncertainty in tree establishment-climate 

relationships, it also may have constrained the model conceptually.  Tree establishment-

climate relationships were restricted to the range of conditions observed in the historical 

period, and are essentially static relationships.  When climate conditions were outside this 

range, predictions of tree establishment follow the regressions, and can go outside the 

statistical scope of inference of available data.  These assumptions are major shortcomings of 

not only this model, but species distribution models as well (Zuller et al. 2009).  This could be 

especially problematic if there is potential for novel ecosystem responses to changing climate 

and/or disturbance regimes (Rupp et al. 2000, Edwards et al. 2005).  Limitations of static and 

equilibrium based models highlight the need for experiments which attempt to impose future 

climatic conditions on current ecosystems.  Experiments modifying snow and/or temperature 
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have occurred in a wide range of ecosystems, but not in the FTE (Beier et al. 2004, Hurteau 

and North 2008, Wipf et al. 2009).  Our understanding of future FTE responses to climate 

change could be greatly improved with long-term studies examining tree establishment in 

response to manipulated snow depth and snowmelt timing.  In addition to the impacts of 

manipulated snow and temperature on tree establishment, another dynamic response could be 

increased seed production by existing trees, since seed production is likely to vary in relation 

to temperature and drought stress (Mencuccini et al. 1995). 

Despite these limitations, this study suggests continued loss of meadow habitat over 

the next five decades.  Climate has a role in this process, but dominant controls of tree 

invasion appear to be topographic for the next few decades and constraints on establishment 

rates and the abundance of micro sites resistant to tree invasion will likely persist under a wide 

range of reduced snow scenarios. These remaining meadows will likely become smaller in 

size and less interconnected. 
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Table 4.1.  Codes and descriptions of biophysical variables selected in nonparametric 
multiplicative regression (NPMR) models used to generate probability of tree occupancy 
(Probspat) grids. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variable Code Description

ELEV Elevation (in meters), from 1 m digital elevation model (DEM)

SLOPE Slope (percent), from 1 m DEM

RAD Growing season Potential Relative Radiation (Pierce et al. 2005)

June - September, from 1 m DEM

TOPO1 Topographic position index, anulus  5 - 10 m from DEM

TOPO2 Topographic position index, anulus  10 - 15 m from DEM

TOPO4 Topographic position index, anulus  50 - 100 m from DEM

CANDIST Distance from overstory canopy, in meters
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Table 4.2.  Monte carlo test p value, Log likelihood ratio (LogB), and sensitivity analysis 
results for nonparametric multiplicative regressions (NPMR) of mountain hemlock presence in 
relation to mapping explanatory variables. 

 

Note:  See Table 4.1 for explanatory variable descriptions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Landform P value LogB Explanatory Varible Sensitivity

Glacial 0.0040 11.80 CANDIST 0.9640

TOPO2 0.6777

SLOPE 0.3537

TOPO1 0.2525

RAD 0.0863

Debris flow 0.0396 3.55 ELEV 1.1061

TOPO4 1.0120

TOPO1 0.2766

CANDIST 0.0455
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Table 4.3.  Snowfall scenarios used in models, and their respective annual means, percent 
differences from historical means, and standard deviations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Change from Prolonged extreme Annual snowfall

Scenario mean snow fall years mean (cm) stdev (cm)

A historical (1950-2007) historical 682 222

B -25% historical historical 511 213

C -50% historical historical 346 204

D historical three year 675 275

E -25% historical three year 509 280

F -50% historical three year 339 262



141 

 

 

Table 4.4.  Percentages of the study area occupied by trees (vegetation greater than 8 m tall 
excluded), by data type, and year. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Year

Data Type Landform 1950 1983 2007

Lidar All - 0.241 -

Model 1 All 0.078 0.231 0.336

Model 2 All 0.078 0.240 0.342

Reconstructed All 0.077 0.240 0.347

Lidar Glacial - 0.189 -

Model 1 Glacial 0.091 0.226 0.325

Model 2 Glacial 0.091 0.233 0.332

Reconstructed Glacial 0.091 0.231 0.337

Lidar Debris - 0.409 -

Model 1 Debris 0.026 0.260 0.372

Model 2 Debris 0.026 0.267 0.380

Reconstructed Debris 0.026 0.275 0.388
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Table 4.5.  Omission and commission error, overall accuracy and kappa statistics for model 1 
(without young tree facilitation) and model 2(with young tree facilitation) by landform.  
Model predictions were compared to field plots over the 1950 – 2007 time period.  
Comparisons to LiDAR data occurred over the 1950 – 1983 time period (see validation 
section for details) 

 

 

 

 

 

 

 

 

 

 

Ground Truth Overall Omission Comission Kappa

data type Model Landform accuracy error error statistic

Field plots 1 All 0.67 0.34 0.47 0.32

Field plots 2 All 0.67 0.38 0.46 0.30

Field plots 1 Glacial 0.66 0.33 0.49 0.30

Field plots 2 Glacial 0.65 0.41 0.50 0.26

Field plots 1 Debris flows 0.71 0.37 0.37 0.39

Field plots 2 Debris flows 0.74 0.30 0.33 0.47

LiDAR 1 All 0.71 0.63 0.61 0.19

LiDAR 2 All 0.70 0.63 0.62 0.18

LiDAR 1 Glacial 0.74 0.58 0.65 0.22

LiDAR 2 Glacial 0.72 0.61 0.67 0.18

LiDAR 1 Debris flows 0.61 0.66 0.46 0.15

LiDAR 2 Debris flows 0.61 0.65 0.47 0.14
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Figure 4.1.  Model conceptual diagram. The base model iterates each three year time step 
through spatial and temporal probabilities of establishment.  A tree establishes if the spatial 
probability of establishment (Probspat) is greater than both random (rand), and the temporal 
probability of establishment (Probtemp) derived from tree establishment-climate reconstruction.  
The second model (with biotic feedback) also iteratively assesses how many neighboring 
pixels are occupied by young trees, and applies a probability of establishment with feedback 
(Probfacil) which replaces Probspat. 
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Figure 4.2.  Spatial probability of tree invasion (Probspat) derived from nonparameteric 
multiplicative regression (NPMR).  Probspat values are proportional in relation to a potential 
maximum of 1. 
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Figure 4.3.  Linear regressions of the probability of establishment (Probtemp) in relation to 
maximum annual snowfall for glacial and debris flow landforms.  Fitted lines are in solid 
black, 95 percent confidence intervals are dotted gray. 
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Figure 4.4.  Median (solid lines) and 95 percent confidence envelopes (dotted lines) for the six 
snow scenarios.  Lines are color coded by scenario: scenario A (black), scenario B (gray), 
scenario C (blue), scenario D (yellow), scenario E (orange), and scenario F (red).  The 
historical snow record (thick black dashed line) is superimposed for reference. 
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Figure 4.5.  Error maps of study area predicted tree invasion from 1950 – 1983. Errors based 
on comparison of model predicted invasion to LiDAR observations. Areas outlined in red are 
debris flow landforms.  Pixels in black are overstory trees.  The two dashed black boxes are 
the locations of a subset of the model predictions and LiDAR observations used to assess 
spatial point patterns of tree invasion. 
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Figure 4.6.  Spatial point patterns of LiDAR observed, model1 (without young tree 
facilitation), and model2 (with young tree facilitation) tree invasion by landform.  The solid 
line denotes the spatial point patterns of tree invasion, and the two dashed lines denote the 
95% confidence envelope.  The spatial point pattern is considered clustered at distances (in 
meters) were the solid line is above the upper dashed line, randomly distributed if between the 
dashed lines, and dispersed if below both dashed lines. 
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Figure 4.7.  Notched box plots for the percent of the study area remaining as meadow 
separated by landform (panels left to right) at three times during the model (panels top to 
bottom) in relation to snowfall scenarios.  Following McGill(1978), Non-overlapping notches 
imply significant differences in meadow remaining between snow fall scenarios.  Different 
superscripts represent significantly different areas of meadow invaded from results of Tukey 
HSD tests.  See Table 3 for descriptions of snow fall scenarios. 
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Figure 4.8.  Maps of the 5th and 95th percentile iterations of simulated meadow invasion from 
1950 to 2064. Colors represent trees in 1950 (black), 2007 (green), and 2064 (yellow). Blue 
areas are lakes, and the outlines of debris flows are in red. 
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CHAPTER 5: CONCLUSION 

In this dissertation, I set out to understand past, present, and potential future FTE 

dynamics in Jefferson Park, Oregon from perceptive ranging from the entire study area 

landscape to individual micro sites.  Within this overall past, present, and future perceptive, I 

directed my studies in relation to three central themes: combining pattern detection and 

population/landscape estimation, understanding FTE sensitivity to climate in relation to non-

climatic biophysical controls, and integrating LiDAR and satellite imagery with field data in 

multiple ways to improve our understanding of FTE dynamics.  I quantified the 

spatiotemporal patterns of tree establishment and the factors driving these patterns, as well as 

the spatial patterns of vegetation composition and structure, in the subalpine parkland of 

Jefferson Park, Oregon, with three overall goals: (1) to characterize fine-scale spatial patterns 

of current vegetation structure, species distributions, and tree ages, (2) to determine how 

climate and non-climate biophysical factors have influences patterns of tree invasion in 

subalpine meadows of the study area over the past five decades, and (3) through simulation 

models which incorporated climatic and biophysical controls, project tree invasion patterns 

within the study area over the next five decades under different future climate scenarios. 

In chapter 2, I integrated field data on vegetation composition, vegetation structure, 

and tree ages with high-resolution multispectral satellite imagery, and discrete return Light 

Detection and Ranging (LiDAR) data to predictively map vegetation composition, structure 

and tree establishment within 260 ha of the subalpine parklands of Jefferson Park.  The 

objectives of this study were to: (1) characterize spatial patterns of tree invasion via tree ages, 

vegetation composition, and vegetation structure in a FTE landscape in the Oregon Cascades 

using predictive mapping, (2) determine how vegetation composition and structure were 

associated with gradients of environmental factors derived from multispectral satellite imagery 

and LiDAR, and (3) determine if predictive mapping characterizations of tree ages, vegetation 

composition, and vegetation structure were improved by the inclusion of LiDAR data.  Spatial 

predictions were accomplished using gradient analysis with nearest neighbor imputation; 

integrating field plots, multispectral SPOT 5 satellite imagery, and Light Detection and 

Ranging (LiDAR) data. 
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Vegetation composition was best described by SPOT 5 imagery and LiDAR-derived 

topography, while vegetation structure was best described by LiDAR-derived vegetation 

heights.  Tree invasion was the most accurately predicted vegetation structure variable, and 

indicates the study area was largely un-forested in 1600, gradually invaded from 1600 to the 

1920’s, and rapid invasion by trees occurred from the 1920’s to 1980.  Other vegetation 

structural attributes (e.g. stand density, basal area, quadratic mean diameter) had very low 

prediction accuracy, which likely results from a combination of asynchronous development of 

forest structure over time, and within pixel fine-scale spatial heterogeneity of vegetation 

patches.  Species occurrence predictions were most accurate for tree species, moderate for 

shrub species and vegetation groups, and highly variable for graminoid species. 

This study suggests multispectral satellite imagery, LiDAR data, and field plots can be 

integrated to accurately predict fine-scale spatial characterizations of species distributions and 

tree invasion in the FTE.  When integrated with tree age data, fine-scale predictive mapping 

can provide previously unavailable landscape estimates of FTE movement and invasion of 

alpine meadows.  However, characterization of tree invasion in predictive mapping is 

constrained by the range of tree age data collected on field plots, which in this study failed to 

quantify tree invasion which has occurred in the last 17 years.  Poor predictive mapping of 

vegetation structure suggests limitations to the applicability of LiDAR data for characterizing 

vegetation in landscapes where forest structure is highly variable, does not develop along 

consistent trajectories over time, and where spatial heterogeneity of structural attributes occurs 

at finer grains than field or remotely sensed data.  Predictions of species occurrence suggest 

predictive mapping may be an effective means of generating species information in the FTE.  

This approach may also be applicable to other habitat types that are important biodiversity 

hotspots, potentially sensitive to the effects of climate change, or are high value recreation 

areas, yet may be under sampled by traditional inventory program s because of their small size 

and discontinuous land cover.  This study also found the spatial arrange of field plots can 

strongly influence spatial variation in prediction accuracy, suggesting sample design could 

have implications for spatially extrapolating field data from natural resource inventory and 

monitoring programs.  Predictive mapping using inventory data is increasingly being used to 

generate spatial characterizations of vegetation composition and structure as a decision 

support tool for natural resource management (Tomppo et al. 2008, Nationwide Forest 
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Imputation Study 2010).  Despite increasing use of predictive mapping methods, the field 

inventory data which it is based on is not explicitly designed to address spatial patterns of 

predictive error, which will need to be further investigated in the future. 

In chapter 3, I continued to focus on tree establishment in Jefferson Park, but turned 

my attention to spatial and temporal patterns of tree establish over the past five decades.  This 

short time period of study enabled me to ask how tree invasion tree has occurred over time and 

space in relation to historical regional climate, in additional to non-climatic biophysical 

controls such as topography and seed sources at landscape to micro site spatial scales.  This 

chapter had two objectives: (1) to characterize landscape patterns of tree establishment over 

time, and (2) to determine how climate and biophysical characteristics interactively control the 

temporal and spatial patterns of tree establishment in the Jefferson Park landscape at multiple 

spatial scales.  This was accomplished utilized airborne Light Detection and Ranging (LiDAR) 

to establish geo-referenced field plots, and tree establishment reconstructions to quantify 

spatiotemporal patterns of tree invasion in relation to landform types, fine-scale topographic 

variability, late season snow persistence, distances from potential seed sources, and regional 

climate variation. 

The percentage meadow area (represented as 2m pixels) occupied by trees increased 

from 7.75% of the study area in 1950 to 34.7% in 2007.  Landform types and finer-scale 

patterns of topography and vegetation structure nested within landforms influenced summer 

snow depth, which in turn influenced temporal and spatial patterns of tree establishment.  

Rates of tree invasion were higher on debris flow landforms which have lower summer snow 

depth.  Tree invasion rates on glacial landforms were strongly associated with reduced annual 

snow fall, but not on debris flows.  High invasion rates not associated with snow fall on debris 

flows were surprising given conventional wisdom that vegetation recovery is slow and follows 

deterministic successional pathways at the FTE following disturbance (Agee and Smith 1984, 

Arsenault and Payette 1992, Coop and Schoettle 2009).  The study indicates rapid post-

disturbance tree establishment and alternative successional pathways are possible if the 

disturbance results in favorable micro sites conditions and seed sources are nearby.  Tree 

establishment was spatially constrained to micro sites with high topographic positions and 

close proximity to overstory canopy associated with low summer snow depth.  However seed 

source limitations placed additional species-specific spatial constraints on meadow invasion.  
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Climate and topography had an interactive effect, with trees establishing on higher 

topographic positions during both high snow/low temperature and low snow/high temperature 

periods, but had greater than expected establishment on lower topographic positions during 

low snow/high temperature periods.  Strong biophysical controls of tree establishment at 

multiple spatial scales restricted the sites within meadows that trees establish on, even during 

favorable climate periods.  Results of this study suggest large scale climate-driven models of 

vegetation change may overestimate treeline movement and meadow invasion because they do 

not account for biophysical controls limiting tree establishment at multiple spatial scales. 

In chapter 4, I built on the previous chapter’s retrospective characterization of spatial 

and temporal patterns of tree establishment to develop a simulation model characterizing 

historical (1950 to 2007) tree establishment and near-term future (2007 to 2064) tree invasion 

in relation to six future climate scenarios (no change, 25%, and 50% reductions from historical 

annual snow fall crossed with forcing or not forcing three year periods of extreme high and 

low snow fall).  I developed an empirically-derived statistical model to quantify tree invasion 

in relation to deterministic spatial patterns of tree invasion controlled by biophysical factors 

(microtopography, seed sources, overstory and young tree interactions, larger-scale landform 

types), and probabilistic temporal patterns of tree establishment in relation to climate 

(specifically snowfall).  This is in contrast to species distribution models which utilize 

bioclimatic envelopes, and forest dynamics, succession, and growth models which 

parameterize processes such as fecundity, dispersal, and growth.  Specifically, this model was 

developed to address the following three questions: (1) can fine-scale (2m pixel size) patterns 

of historical tree invasion be accurately predicted? (2) how sensitive is future tree invasion 

(and therefore meadow persistence) to different future snowfall scenarios? and (3) are non-

climatic factors such as landforms and biotic interactions associated with different spatial 

patterns of tree invasion?  From 1950 to 2007, simulated meadow area declined from 82% to 

65% of the study area.  Model outputs of historical area, spatial distributions, and spatial 

clustering of tree invasion generally agreed with independent validation. Model results 

indicate biotic interactions due to young tree establishment facilitation play an important role 

in the spatial pattern of tree establishment on glacial landforms but not debris flows.  

Simulations of future potential tree invasion resulted in declines of 36-43% of the study area 

remaining as meadows by 2064.  Meadows area declined with reduced annual snow fall, but 
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not under prolonged high and low snow fall periods.  Under all scenarios there were 

persistence areas of meadows in 2064.  Using species distribution modeling, Randin et al. 

(2009) suggest fine-scale climate variability in mountain landscapes may cause localized 

persistent favorable climatic conditions in spite of climate change, resulting in local high-

elevation habitat persistence.  Although my results suggest subalpine meadows may 

significantly decline in the future, also lend support to the hypothesis that high-elevation 

subalpine meadows will persist for the next several decades under climate warming. 

Tree establishment in Jefferson Park has not just increased tree density; but tree 

invasion has reduced meadow land cover, especially over the past 50 years.  Reductions in 

snow fall and increases in temperature promoting longer growing seasons for tree germination 

and establishment, which promote tree invasion.  Temporal patterns of tree invasion are 

consistent with Northern Hemisphere observations of FTE movement in response to climate 

change (Harsch et al. 2009).  However, biophysical factors such as topography, overstory 

vegetation, and potential seed sources exert strong controls (equal to and sometimes exceeding 

climatic controls) on the spatial and temporal patterns of tree establishment in the FTE, and 

these controls are nested within larger scale landforms, emphasizing the importance of 

landscape context in determining FTE sensitivity to climate change.  These biophysical 

controls not only have constrained patterns of FTE movement and meadow invasion in the 

past, but are likely to do so in the future as well. 

Despite their potential sensitivity to climate change, intrinsic values for biodiversity 

and recreation, and small proportions of the overall terrestrial landscape, species abundance 

and distributions are poorly quantified in the FTE.  There are many remaining uncertainties as 

to how FTEs will respond to a changing climate.  Attempts to understand biodiversity risks 

caused by climate-driven FTE movement are hampered by low resolution and incomplete 

species distribution information which the predictive mapping methods of chapter 2 may help 

alleviate.  Chapters 2-4 demonstrate on a limited scale the power of integrating field 

inventories with remotely sensed data sources to improve not only our ability to detect 

changes in FTE dynamics, but characterize how these changes may occur across complex 

mountain landscapes.  It is landscape characterization of species distributions and change that 

will allow us to move beyond highly speculative assessments of FTE movements ecological 

consequences, and begin to quantify what FTE movement will mean for biodiversity, 
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ecosystem productivity, mountain snowmelt hydrology, etc.  This dissertation also 

demonstrates the potential applications (and limitations) of using LiDAR data in FTE 

research.  Of particular value, chapters 3 and 4 demonstrated how LiDAR data can be used not 

just as another variable for statistical analysis, but how it can be used to formula new research 

questions and sampling strategies previously difficult or not possible in complex 

heterogeneous landscapes. 

However, more fundament questions and uncertainty remain to understand FTE 

movement and its potential impacts in a changing climate.  Many projections of future change 

(both in this dissertation and in numerous other studies), are based on historical responses to 

climate or notions of steady state conditions (Zuller et al. 2009).  These assumptions are 

unlikely to be correct, and may be especially problematic if there are novel ecosystem 

responses to climate and/or disturbance regimes in the future (Rupp et al. 2000, Edwards et al. 

2005).  Limitations of static and equilibrium based models highlight the need for experiments 

which attempt to impose future climatic conditions on current ecosystems.  For example, 

experiments modifying snow and/or temperature have occurred in a wide range of ecosystems, 

but not in the FTE (Beier et al. 2004, Hurteau and North 2008, Wipf et al. 2009).  Our 

understanding of future FTE responses to climate change could be greatly improved with 

long-term studies examining FTE dynamics in response to manipulated climate conditions. 
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APPENDIX A. VEGETATION GROUP CLASSIFICATION 

VEGETATION DATA AND STATISTICAL ANALYSES 

Vegetation data was collected on 98 plots as percent cover by species.  Species cover 

data was only collected on vascular plants.  Excluding tree species, 58 species were identified 

and assigned cover values.  11 species were found only in one plot each, and did not exceed 

one percent cover individually.  These 11 species were excluded from the dataset, leaving 47 

species for analysis.  The development of vegetation types was accomplished by: 1) 

conducting a cluster analysis of the 47 species in 98 plots which assigned plots to groups, 2) 

assessing species within group agreement to groups assigned by cluster analysis to determine 

the most parsimonious number of vegetation groups, and 3) quantifying and assessing 

significance of species associated with each vegetation type.  All analyses were conducted 

using PC-ORD version 5 (McCune and Mefford 1999). 

Agglomerative cluster analysis was conducted on species percent cover values in plots 

using Euclidean distance measures and Ward’s linkage method.  Chaining was minimal at 

3.6%, and the dendrogram of plots in species space shows a primary split of sedge meadow 

plots, followed by an additional split between forb and shrub dominated plots. 
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Dendrogram of plots in species space.  Plots are color coded by species groups as defined by 
multi-response permutation procedures (MRPP), and Indicator species Analysis (ISA). 

To determine the most parsimonious number of vegetation types, two to 97 groups 

were generated as identified by the cluster analysis, and species agreement within these groups 

assessed using Multi-response permutation procedures (MRPP).  MRPP was run using 

Euclidean distance and natural weighting.  The significance (p-value), chance-corrected within 

group agreement (A statistic), and improvement in A statistic with an additional group (Delta 

A) were calculated for clusters with two to 15 groups.  Results are presented for only 2 – 15 

groups since all numbers of groups were statistically significant (p ≤ 0.0001) and chance-

corrected within group agreement leveled out at approximately 10 groups (see figures below).  

The most parsimonious number of groups was defined as the fewest number of groups with 

the lowest improvement in agreement with the addition of that group.  Six groups were 

selected, with a chance-corrected within group agreement of 0.37 (p ≤ 0.0001). 

 

Chance corrected within group agreement (A statistic) and Delta A in relation to the number 
of groups generated in cluster analyses. 

Indicator Species Analysis (ISA) was used to quantify and assign significance to 

species in association with the six vegetation groups (Dufrene and Legendre 1997).  ISA uses 

species percent cover in each plot and the a priori groups of plots seen in the dendrogram as 

selected by the MRPP analysis.  ISA is implemented in five steps: 1) the proportional 

abundance of each species in each vegetation group is calculated relative to each species 

abundance in all groups, 2) the proportional frequency of each species is calculated for each 

group, 3) proportional abundance and proportional frequency are multiplied, resulting in an 

indicator value (IV), which can be high only if a species is both commonly present in a group 

and has high relative abundance within that group, 4) the highest indicator value (IVmax) from 

each species across groups is saved, and 5) the statistical significance of IVmax is evaluated by 

a Monte Carlo approach with 4999 randomizations. 
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Indicator and significance values are presented in the table below.  Gray shaded 

values in the table are the highest indictor value by group for species of at least suggestive 

importance (p ≤ 0.1).  Indicator values were considered significance if p ≤ 0.05. Important 

species on well drained sites (Group 1) included: Arenaria capillaris, Lupinus arcticus, 

Eriogonum umbellatum, and Polygonum newberyi.  Important species in the pink mountain-

heather type (Group 2) are Phyllodoce empetriformis, Luetkia pectinata, and Lycopodium 

sitchensis.  The wet sedge meadow type (Group 3) had high indicator values for Carex 

nigricans and Juncus drummondi.  Species with high indicator values in the low forb type 

(Group 4) included: Aster alpiginus, Castelija parviflora, Festuca sp., Gentian calycosa, and 

Kalmia microphylla.  In the white mountain-heather type (Group 5), Cassiope mertensiana 

and Microseris alpestris had high indicator values.  The mountain-ash tall shrub type (Group 

6) has high IVs for Sorbus sitchensis, Rubus lasiococcus, Vaccinium deliciosum, Ligustrum 

gracilis, Epibolium alpinum, Dodecatheon jeffreyi, and Veratrum viride. 
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Indicator values of species by vegetation groups, observed and randomized indicator values by 
species, and p values from randomization procedures.  Gray boxes associated with significant 
indicator species and the vegetation group in which they have the highest indicator value. 

 

*Indicator values considered significance if p ≤ 0.05. P values are the proportion of 
randomized trials with indicator value equal to or exceeding the observed indicator value. 

Indicator Value by Vegetation Group Observed IV from 
1 2 3 4 5 6 Indicator randomized groups

Species N Plots 31 23 19 9 10 5 Value (IV) Mean SD P*
ANAL 19 1 3 7 0 0 18.8 14.7 7.25 0.2024
ARCA 33 0 0 0 1 0 32.9 10.7 5.41 0.0058*
ASAL 4 8 19 59 2 5 58.5 25.4 5.35 0.0002*
ASFO 6 0 0 0 0 0 6.5 7 4.78 0.4293
CAAQ 2 1 3 0 0 1 3.4 12.7 7.13 0.9836
CALE 3 0 5 0 0 0 5.2 8.8 5.61 0.7532
CAME 1 27 3 6 56 1 55.8 21.8 5.04 0.0002*
CANI 3 5 59 16 2 14 58.6 24.7 4.43 0.0002*
CAPA 5 21 13 33 2 3 33.2 18.6 3.91 0.0036*
CASP 16 3 28 12 1 4 28.5 23.3 7.52 0.1998
DOJE 1 0 1 9 0 30 30.1 15.2 7.57 0.0598
EPAL 0 1 6 4 0 20 20.2 9.7 5.5 0.0514
EPAN 1 0 3 0 0 0 3.3 7 4.63 0.7483
ERUM 16 0 0 0 0 0 16.1 8.1 5.24 0.0528
FESTU 2 0 0 47 0 0 47 9.3 5.55 0.001*
GECA 0 4 5 54 2 2 53.6 14.9 5.6 0.0004*
HIGR 5 19 16 4 14 2 18.8 17.4 4.45 0.3015
HYAN 0 0 5 0 0 0 5.3 6.3 4.28 0.4459
JUDR 19 10 39 0 2 0 38.6 19.7 5.88 0.0146*
JUME 6 0 6 1 0 0 6.3 8.9 5.48 0.6989
KAMI 3 18 4 32 0 0 32.3 16.3 6.75 0.0316*
LIGR 3 9 2 5 6 60 59.5 21 6.92 0.0014*
LUAR 42 0 0 1 0 0 42.1 12.6 6.54 0.005*
LUPE 6 35 13 3 26 9 35.4 23 4.28 0.0158*
LUZUL 1 0 7 0 0 0 6.5 7.4 4.83 0.4629
LYSI 0 29 4 6 14 0 29.2 17.1 7.08 0.0668
MIAL 0 0 0 0 20 0 19.5 10.8 6.48 0.073
MIBO 3 0 2 0 5 0 5 8.4 5.34 0.7101
PEBR 1 0 0 6 0 0 6.4 6.8 4.68 0.4969
PHEM 7 47 15 20 4 4 46.9 22.1 3.43 0.0002*
PLST 0 0 5 0 0 0 5.3 6.3 4.28 0.4459
POA 5 0 4 2 0 0 4.9 8.8 5.22 0.7884
POFL 3 0 11 1 0 4 10.8 9.7 5.84 0.2805
PONE 26 0 0 0 0 0 25.8 9.2 5.73 0.026*
RHAL 0 0 0 0 7 6 7 7.6 4.98 0.4621
RULA 0 0 0 0 0 17 17.2 7 4.64 0.0542
SAFE 14 1 1 0 0 0 13.8 9.1 5.47 0.1466
SACO 6 0 0 0 0 0 6.5 6.9 4.52 0.6049
SATO 13 1 0 0 0 0 12.7 8.3 5.4 0.1462
SETR 1 0 2 0 0 7 7.4 7.5 4.93 0.3651
SOSI 5 2 0 0 14 61 60.7 17 6.29 0.0002*
TOGL 0 0 5 0 0 0 5.3 6.3 4.28 0.4459
VADE 4 12 5 3 21 52 52.1 22.4 4.12 0.0002*
VAME 13 3 0 0 14 7 14.3 15.4 7.12 0.4537
VEVI 1 0 0 0 0 18 18.1 7.4 4.72 0.0338*
VEWO 0 0 5 0 0 0 5.3 6.3 4.28 0.4459
XETE 6 0 0 2 0 0 5.6 7.6 4.86 0.6635


