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MULTIPARAMETER MAXIMAL OPERATORS AND
SQUARE FUNCTIONS ON PRODUCT SPACES

1. INTRODUCTION

The present paper is devoted to establishing results of L? boundedness for the
maximal operator arising in connection with singular integrals on product spaces.
From the motivational point of view, it will perhaps be best to start by describing
certain classical situations as to the theory of multipliers which lead naturally to our
topic in question. Consider a bounded function m in R™ and let T be the opefator
defined by (Tf)" = mf The function m is said to be a multiplier for the linear
space £ of functions f,if f € £ implies Tf € L. It follows via the Fourier transform
that a large class of singular integrals including the Calderén-Zygmund operators
and those which commute with translations can be equivalently viewed as multiplier
operators. The primary benefit of this approach lies in the fact that we can make use
of explicit analysis on multipliers (decay, smoothness, etc.) to study the continuity
of singular integral operators with the aid of suitable interpolations. Although we
have precedents, let us mention the classical theorem of L. Hormander [39] which
in a simplified version states that if |Dem(z)| < C |z]71*, o] < (—g] +1, then m
1s a multiplier for L?, 1 < p < oc.

On the other hand, the existence question for the pointwise limit of certain
sequence of singular integrals turns out to be directly related to the continuity

problem for the maximal multiplier operator

T*f(z) = sup|(Tif) &), (Tef)Ta) = mte)f(e).



In this connection, a typical illustrating example is that of the maximal spherical

average, studied by E.M. Stein [49] and by J. Bourgain [2],

M f(z) = sup

t>0

f(z —ty)do(y)

ly|=1

They substantiated its L? boundedness forp > and in particular, the method

n —
of E.M. Stein’s proof exploited the Littlewood-Paley theory, the known decay esti-
mates for m = &, and the complex analytic interpolation theorem in the passage of
p # 2, which has prevailed in many problems, often accompanied by techniques of
decay mesurements such as Van der Corput’s lemma and oscillatory integrals (see
(14], [15], [22], [28], [48], [52], etc.). A significant generalization of the preceding
results was implemented in the work of Rubio de Francia which gives us a direct
motivation and which contains the seeds of some of the methods we shall employ

later. His results can be summarized as follows: Let k = [-723] +1.If m € C¥{(R")

and |D*m(z)| < Clz|~* for some a > %, la| < k+ 1, then T™ is bounded in

2 2n — 2
LP for —— <p< i . Moreover, if m is the Fourier transform of a
n+2a—1 n—2a
compactly supported Borel measure and |m(z)| < C |z|™%, then T™ is bounded in
2a
P f . (S i
L? for p > a1 (See [46] for the details)

Let us turn now to the discussion of singular integrals on product spaces. It
results mainly from the difficult natures in attempting to extend results of classical
theory by iteration that to some extent the Harmonic Analysis on product spaces
has been developed along very different lines. In analogy with the Euclidean case,
for example, let T be the operator given by (Tf)(&,n) = m(&,1)f(€,7). In the
light of the Hormander multiplier theorem, only under the strong entailing decay

assumption

[6’?5’5m(§,n)| < Ca,ﬁlfl_!allnl_'ﬂl for sufficiently large |a|, |3|,



R. Gundy and E.M. Stein [38] were able to show that m is a multiplier for LP(R™ x
R"™), 1 < p < co. Since their proof was based on the idea of pointwise majorization
of T by the Littlewood-Paley product g and g functions, one can not obtain the
(H?, L')-inequality without imposing a considerable amount of smoothness hypoth-
esis on m.

The complicated structures of Hardy spaces and BMO in the product space can
be seen by the counterexample of L. Carleson [9] against the rectangle atomic de-
composition conjectures about those spaces. Nevertheless, due to the boundedness
criterion set up by R. Fefferman [29] and by J.L. Journé [41], it suffices to work on
the rectangle atoms so as to establish the (H', L') estimates for L2-bounded linear
operators (we will explain the details in the section 3). By the use of this criterion,
in a recent paper [17], L.K. Chen proved several results on multiplier operators one

of which asserts that if
(64 —jo — n n
0g a8 m(&,m)| < ClelTln[ 7! for ol < [BH] + 1,181 <[] +1,

then m is a multiplier for LP(R™ x R"2), 1 < p < o0, while R. Fefferman and K.C.
Lin [33] acquired the same result with weaker conditions on m.

It is clear by now that there arises naturally the question of continuity properties
for multiparameter maximal functions in the product space setting. To be more
specific, for a given bounded fuction m on R™ xR"™2, we define a family of operators
{To1}ew>0 by (Tuif)(6,m) = m(s&,tn)f(&,m) (€ € R™,n € R™) and we shall

deal in detail with the maximal operator T™ given by
T" f(z,y) = sup | (To.f) (,9)] (z € R™,y e R™).

We are to use notations k; = [&] +1, 7 = 1,2. In consideration of the continuity

2
of T™*, we establish the following theorem:



Theorem A. Suppose that m € C*ithrz+1(R™ x R"2)  and
|08 8y m(&,m)| < CA+ e+ D",

1
with some a,b > 5 and all multi-indices o, 3, |a| <ki+1,|68| <ks+ 1. Then

we have
|T* fllr (1 xmm2) < ApllfllLr o1 xR72)s  Qap <P < Tap,
where
2(n1 +2)  2(n2+2)
a,b = s d
dab max<n1—|—2a—|—1’n2—|—2b—|—1 an
Te, = min , )
’ ni—2a+2 ny —2b4+2
2 2
It is to be interpreted that if a > n12—|— , 02> n22—l— , then we take rq 3 = 0o
and in case when a > n12+3,b > n22—|—3, we take ¢, = 1. Applying this

theorem, we immediately obtain the following subsequent result:

Theorem B. Assume that m is the Fourier transform of a compactly supported

Borel measure and

1
m(é,m| < CQL+ €)1+ o)™, for some a,b> .

Then

|T* fll L (Rn1 xrm2) < Cpllflle ®r1 xR72)s  Gap < p < 00.

As an illustration, taking into account the maximal elliptical average

S*f(x>y) = sup

8,t>0

/m f(z = sb,y — t62)do(6)|, 6= (61,6,),
=1




where do denotes the unit surface area measure, we get

IS* fll e (71 xmP2) < C|f|lLe (R xR72)

for

max ,
3ni+ne+1" 3ny+ny+1

) <p<oo, if ny+ny>3.

The main flow of the proof for the Theorem A will be essentially along the same
charts as that of Rubio de Francia’s. The proof will consist of a chain of lemmas
and throughout this paper, C will denote a constant which might be different in
each occurences. For an appropriate function f(z,y) in R™ xR"2, we shall denote

by f1(¢,y), f2(z,n) the Fourier transform of f(z,y) acting only on z-variables,

y-variables, respectively.



2. SQUARE FUNCTIONS AND L? ESTIMATES

We shall exploit the decay hypothesis as well as the smootheness of m(¢,n), by
the use of certain square functions, in order to study the L?-behavior of our maximal
operator T*. We set about making an appropriate decomposition. In the standard
manner, we shall consider the partition of unity on R™ x R"? subordinate to the

dyadic rectangles {R;;}, iz
Rij={(&n) |27 < Jg] < 271,271 < Jn| < 27+,

which will enable us to write m(€,n) as the sum of smooth dyadic building blocks.

Specifically, we fix a radial Schwartz function ¢ on R so that

supp(¢) C {% < |t] < 2}, 0<4(t) <1 for all ¢,

and
Z $(27%) =1 for t=#0.
keZ
Clearly,
Y 62727 ) =1,
i,JEZ
where

¢(&) = ¢(I€l), ¢(m) =4(In])  for £eR™,neR™.

With this decomposition, however, because of the restricted decay assumptions
we imposed, we encounter some obstacles in analyzing the multiplier operators

supported on the strip regions

{ll<tmeR™), {eeR™ <1},

Ideally, we would like to utilize the classical results together with the smoothness of
m near the origin to investigate the actions of our operators on the aforementioned

regions. To implement this aim, we proceed as follows.



Pick another auxiliary radial Schwartz function p on R such that

1
supp(p) C (<3}, p=1 i <z,
and consider the smooth Taylor polynomials associat‘ed with m
p
B1(6m) = (1~ p(©)p(n) Y (88m) (£,0)2,
|p| <k P
(&) = (L—p(m)p(&) > (8m) (0>77)i_!>
lo|<k1
men =pOpn] 3 @m0l + ¥ @mony
|p|<ks - loI<ks
L
- Y (agogm) (0,0)%},
ol <kr ol ks L

®(&,m) = @1(&,m) + P2(&n) + 23(&,m),

where p(&) = p(I€]), p(n) = p(In)). Setting  w(&,n) = m(&n) — 2(&,n), we

have

w(Em) =Y 27 )27 n)u(é,n)

i,j€Z

= > wii(€n),  with
i,j€EZ
pii(€,m) = 6(27°€)$(2 7 n)u(é,n)  for integers 1, j.
Note that
supp(pij) C { (&) [ 277 < Jg] < 20,2770 < < 2771},
Let us define the Fourier multipliers on L2(R™ x R"2) by

(T55°) (6:m) = wis(s&, ) f(€m)  for 58> 0

and let T}; denote its maximal operator

7 f(z,y) = sup [T f(z,y)|-
$,t>0



With the kernel
Kyulz,y) = s K (o/s,yft), K =4,

we have

T*f(w,y) _<_ sup |Ts,tf($>y) - (I\’s,t * f)($>y)|

8,t>0
+ sup I(Ks,t * f)($>y)'
£>0

3,

< Y THf(z,y) + SSItlfol(Ks,t « f)(z,y))-
1,}€EZ ’

Based on the results of one-parameter case, we observe the following simple facts

regarding the latter term:
Lemma 2.1.

Hssyltlfol(Ks,t * f)(z, y)l “LP(R"l KR72) = Apl[fllLr 1 xr72),

provided

m 27’&1 27’&2 < < . 2(7’&1 - 1) 2(7’&2 - 1)
ax min , .
mit2a—1"ng+26—1) PSP\ 220 Thy — 20

Proof. First we write *!, *? for the convolution operational symbols in each vari-
ables z,y and M, M, for the Hardy-Littlewood maximal functions acting only on

x,y variables, respectively. Writing Ki= ®;, 1=1,2/3, we notice that
3 .
sup | (Ko % f) (z,9)] < Y sup | (Ki . f) (z,9)]-
$,t>0 i—1 8,t>0
For each multi-index p, |p| < k2, if we put

(L8)7(&) = (1 - p(s£)) (95m) (s£,0),

then for any Schwartz function f,

[(EZox £) (@)l < Y G| [(959), #* (L2 +' f) (2,)] (v)]-

|6 <k



By taking supremum, we see by the well-known property related to the Hardy-

Littlewood maximal functions that

sup | (K} +xf) (z,y)] < Z Csup M, (L2 +' f) (=,)) .

$,t>0 s>0
lp|<k2

Since
sy = 15 Mg i

it follows readily that
H::Lpo | (I{:,t * f) (ZL’, y)l ||LP(R_"1 XR"2)

< Y Cllsup My (L5 £) ()| pooms oy
lel<kz °

< Z C||”M2 <sup| Lp *1 f) (:L' )|> ”LP “st

[p|<k>

< 22 Cllisupl (22" £) (o, )z, g,

lp|<k2

= 3 Cflisupl (£ ) Gl -

|P| <k2
As the function

(1= p(&)) (0ym) (&,0) = v*(£)
satisfies all of the hypotheses in the theorem of Rubio de Francia (see Theorem B,
[46]), we have

Isup] (s« 1) ool ez, < BollFC5w)lls,

for
2n4 <p< 2np — 2
ni+2a—1 P ny — 2a’

and in this range of p’s,
|| Sup | I‘s bt ¥ f) (w y)'”LP(R"l xRn2) = C“”f( y)“L ||Lsy
= C||fllr (71 xR72)-

Similar treatments for other cases should complete the proof. O
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We shall now define

mii(&n) = Y (88 us;) (€,m)€, (@2 F)(€,m) = muj(s€, tn) f(&,m),

|a]=1

mij(€m) = Y (87 mi;) (&mn”, (Q?tf)A(&,n) = ma;(s€, tn) f(€,m),
=

fii(6m) = Y (9708 wiz) (€,mE™n®, (Tf}’tf)A(ﬁ,n)=ﬁij(8§,tn)f(§,n),
|e]=1
|8l=1

for all integers ¢,5 and s, > 0.

Let us introduce the square functions in question

Gt = ([ [ iz ,y>|2d3dt)/,
sufe = ([ [ Qg e duat) ™,

and analogous G’ij, Sij corresponding to the operators T:]t, Q

s,t

i respectively.

Now that

3,0 — O,t _ 0’0 J—
T°f = Ty'f = T°f = 0

for any Schwartz function f and s,t > 0, we have the following pointwise majoriza-

tion for T:;

2 * s,t s,t S
§2AA T3 £110,0T5 £ dsdt
ST 11O, T f| dsd
+2/(; / 10,T5" £1 10T | dsdt
<2AGu NG )+ 2855551,

a simple consequence of the Cauchy-Schwartz inequality. Here comes our key L?

estimates for 7.
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Lemma 2.2. For integers ¢, j,

HT;}f“LZ(RM xR"2) < CAij||f“L2(R"1 xR™2)

where
2i(3=a)+i(3-8  for j >0
A 2i(3—a)+j, fori>0,j <0
N 2i+i(3-b) fori < 0,j >0
2iti fori,7 <O.

Proof. Upon invoking Plancherel’s theorem,

Gl = [ [T [ 1m e deay S
= [T e mienP dean
- /Rnlxm f(f’") // |wij(s€,tn)]? dz:lt de dn

2i_1<'8£'<2i+1
< CllwisllZN A3, ey |1Gijfllz < Cllpijllooll fll2-

2j_1<lt77‘<2j+1

Similar observations for other square functions lead us to

IT5A1E < 210G fllIGiiflla + 20Si Fll211Si5f 2

< Cllmislloolliilioo + lImijlloollmijlloo) 1£113 (2-1)

and we need to estimate the appropriate L°°-norms in order to prove the Lemma.

We shall deal only with ||pij||cc because other estimations are essentially simi-

lar.

(i) Case 1,7 > 0 : In this case, by the support condition of ®, we have

pi(6,m) = ¢(27°€)(27 m)m(€,n).

The hypothesis on m(€,n) implies instantly that  ||uijleo < C27%55
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(i1) Case ¢ > 0, j < 0: An inspection on the support of ® shows that

w(&n) = m(&n) — @1(¢,1)
= mie,) — ) 3 (&m) (€0,

lp|<k2
Note  u(¢,0) =0 and thus it follows from the Mean Value Theorem (MVT) that

for some |77 <1,

w&n) = > [(9m) (&) ~ ofp(i) Y. (95m) <f’°>i—'§
|r|=1 tol<k2

"

— p(1) Z ( m) (&, 0)( _T)l} ",

IP(Sk2aP2T

which immediately provides |pijllc < C27%%%. Similarly, ||pijlloo < Cc2i-4b
if 1<0,72>0.
(ii1) Case 7,j < 0: Here we have

u(&m) = m(&n) — (& n)
m(&,n) —p(n) > (94m) 60)-——p£) Y (%m) 077)

lp| <k lo|<ka
rpepn) Y (a0m) (0,0
Ui 5 ' 0"

lo|<ki,|p|<ks

As p(€,0) =0, MVT implicates

en) = 3 [@m) €n-0ppt) % (0m) €0

Irl=1 |p|<k2

—p() > (8m) (¢, o>( )—p<e> > (87agm) (o, n),

lp|<ka,p>T |a|<k1

+p(©0pm) Y, (950gm) (0,0>g;

|o1<ky,|p| <k

a P~ T
aopn) Y (@0m) 0,05 |
lo|<ks ' '
lp|<k2,p>T

= > (> HEmE )

[rl=1 |&|=1
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on account of MVT in £-variables for the inside expression, where H 1s certain con-
tinuous function of £, 7 in the compact domain {|£ | <1, < 1}. Consequently,
lpislleo < €249,

Putting all of the above estimates and other corresponding estimates into (2.1),

we finish the proof. O

We remark that Lemma 2.1 and Lemma 2.2 provide instantaneously the L2-
boundedness of T upon summing the suitable geometric series’s;

ZHTZ}sz=<Z P Y 1y +Z)11T5;-fnz

1,jEZ 1,720 1>0,7<0 1<0,52>0 1,7<0

<O Y 2 OREI |, + 0 3 2O,

1,70 t>0,5<0
+C > 2HGEDf|, + C 2 |fl2
i<0,j20 1,7<0

< Cllflle-
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3. THE (H', L')-THEORY

Let us focus now on the continuity question for 7 with respect to the norm of
LP (R™ x R"™2), p # 2. In the classical theory of singular integrals on R"”, by the
Marcinkiewicz interpolation theorem and the standard duality argument, it suffices

to establish the weak-type (1,1) estimate
n C
He € R™ : |Tf(2)] >a}|§;||f||1, for o >0,

where T is an L%-bounded sublinear singular integral operator. As far as the
method of the above estimate is concerned, it is the Calderén-Zygmund decom-
position lemma that provides the most fundamental ingredient (see (8] and [51]). A
great deal of extension and refinement of the Calderén-Zygmund lemma has been
afforded through the consolidation of the theory of Hardy spaces, certain characteri-
zations of which are shown to be intimately linked with maximal functions, singular
integrals, and Littlewood-Paley theory (refer E.M. Stein and G. Weiss [53], C. Fef-
ferman and E.M. Stein [25] for the definition and description of H?(R"™), p > 0).
We shall discuss briefly only those subjects involving H? spaces on product domains
that are most relevant to our purpose.

To begin with, let us define HP(R™ x R™) in the sprit of the real-variable
characterizations of C. Fefferman and E.M. Stein [25] for the space HP(R"). Fix

two arbitrary Schwartz functions ¢; on R™ with [ ¢; =1, ¢ = 1,2, and write

s,1(2,y) = 57721 (2/5)$2(y/t), 8,8 >0

We also choose any nonzero radial Schwartz function ¥ on R™ x R™2 satisfying
[¥(z,y)dz = 0 and [¢(z,y)dy = 0. Further, I'(z,y) will denote the product
cone in the bi-half space, I'(z,y) = ['(z) x I'(y), where I'(z), I'(y) are the cones

with vertices at (z,0), (y,0) in R}** R%**! separately. Given a function f on
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R™ x R"™ we define its Littlewood-Paley-Stein S function to be

dzidzodsdt
2 _ 2 GT14To
Sy((z,y) = /ﬁ(x’y) (s, * flen,22)l” Sy
(One should note that for 1 < p < co, |[Sy(f)|, ~ || f|lp as a direct consequence of
Littlewood-Paley theory). We use the bi-Poisson kernel P; i(z,y), the product of

one-parameter Poisson kernels, to define the biharmonic extension of f by

u(z,y,s,t) = (Ps,e * ) (z,9)

and form the Lusin area integral as

dzidxodsdt
A2(u)($>y) = /A‘( )IV1V2U’($17$2757 t)l2 Sni—-l-:nz“l .
z,y

For any tempered distribution f on R"* x R"2, p > 0, we say that

f € HP(R™ x R™)
< *(z,y) = sup |¢s,¢ * f(z,y)| € LP(R™ x R™)

s,t>0
the nontangential maximal function

T ON(f)(@,y) = sup |$er f(@r1,2)] € LP(R™ x R™)

I'(z,y)

> Sy(f) € LP(R™ x R™) <= A(u) € L (R™ x R™),
where one may define the ‘norm’ || f||g» to be any one of

[ [ze ~ IN(ONze ~ [Sp(Hllze ~ [|Aw)] 2o

(cf. R. Gundy and E.M. Stein [38], A. Chang and R. Fefferman [11], [12], [13]).

In other words, the space HP(R™ x R™) is an extremely nice subspace of
LP(R™ x R™) which is stable under the action of any reasonable singular inte-
gral or maximal operator, in which the Littlewood-Paley characterizations continue

to hold, and in which each element can be realized as the boundary distributional
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values of i1ts harmonic extension to Rf’l_l'l'l X RT’H (For the precise description,
consult the exciting article of R. Fefferman (31]). In particular, for 1 < p < oo,
HP(R™ x R™) is naturally isomorphic to L?(R"* x R"?) and when p = 1, we have

the characterization

HYR™ xR™)={f e I'(R™ xR™): R € L', R € L,

Rgl)Rch) € L1>j = 1727'-'>n17k = 1,2,...,712},

where R;l), Rgf) are the Riesz transforms associated to R™,R"2, respectively.

Let us turn now to a concise description of the atomic decomposition for the
space HP(R™ x R"?), which turned out not to be a routine iterative extension of
the classical results of R. Coifman [19] and R. Latter [42], due to a counterexample
of L. Carleson [9].

According to A. Chang and R. Fefferman [11], [12], for 0 < p < 1, an H? function
fon R™ xR"2 can be decomposed into atoms ag supported on open sets 2 of finite
measure such that  ag = } 5. vq(0) @5, where M(2) denotes the maximal class of
dyadic rectangles (product of cubes) S C 2. The rectangle atoms a g are supported
in a 2-fold enlargement of S and have a certain number of vanishing moments in

each variables separately. Moreover,

lagllz < 12177 and Y7 sl < Q175
SeM(R)

The relevance of the preceding decomposition stems from the fact that it yields a
number of important results through its simple applications. As a useful example,
an elaboration of the technique for the proof of the atomic decomposition leads to

the analogous result of the Calderén-Zygmund lemma in the product space setting.
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Theorem 3.1 (A. Chang and R. Fefferman(12)]).
Fora >0, f € LP(R™ x R™), 1 < p < 2, there exist g € L*(R™ x R"?) and
b€ HY(R™ x R"2) satisfying

f=g+b, gl <™ Plfl5, and [Bllzr < Ca’P|If]].

On account of the Marcinkiewicz interpolation theorem, we immediately attain

Theorem 3.2.

Let T be a sublinear operator with the property that

ITfllzr@®rs xrr2) < Bi ||flla(ret xR72)s

”Tf||L2(R"1 xR"2) < B, ”f”Lz(R"l xR"2)-
Then we have
1—6 o 1 0
T fllr (R xrn2) < C By™° By || fl|Le (o1 xmrz)  for b= 1-5,0<0<1.

For the classical interpolation results on H?(R"), refer R. Coifman and G. Weiss

[20], p.596.

These results are significant from the point of view of the Calderén-Zygmund
machinery in attempting to establish the LP-continuity of a singular integral oper-
ator. We are able to shift the focus of our attention from the ‘weak’ L! theory to
the ‘strong’ (H!, L!)-theory where we are endowed with extremely nice functions
and above all with atoms.

However, a major drawback of this atomic decomposition is the fact that atoms
are supported on arbitrary open sets, or putting in another way, rectangle atoms
do not span H? spaces. With a view to circumventing this deficiency, R. Fefferman

exploited his own version of Journé’s geometric lemma [40] to set up a particularly
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valuable result which can be regarded as a far-reaching extension of the Calderdn-
Zygmund theory to the two parameter product case. To describe in detail, we first
clarify the meaning of a rectangle atom. If a function a(z,y) supported on the

rectangle R = I x J satisfies that

HaHL2(R"1 xR72) S lRll/2—l/p7

and for certain integer-valued N(p),

/a(w,y)w" dz = 0, /a(w,y)wﬁ dy =0, |af, |8 < N(p),
I J

then a is called a rectangle atom on H? (R™ x R"2) (for p = 1, N(p) = 0). For
~ > 0, we shall denote the concentric y-fold dilation of R by R, and its complement

by °R,.

Theorem 3.3 (R. Fefferman [29]). Let T be a bounded sublinear operator on
L? (R™ x R"™). Suppose that for any rectangle atom a(z,y) supported on the

rectangle R and « > 2, we have

/~ |Ta(z,y)[Pdedy < C~y~° with some &> 0.

CR'Y

Then T is bounded from H? (R™ x R"2) to LP(R"™ x R"?).

For the purpose of studying the behaviors of our square functions, we shall ex-
amine the above criterion in detail. From now on, we assume that a(z,y) is an
H'(R™ x R™)-atom supported in R = I x J and write I(I), [(J) for the side
lengths of I,J, respectively. Since our square functions have similar structures,
we shall mainly concentrate on the function G;; and keep track of any necessary
adjustment for other square functions later. Following R. Fefferman and K.C. Lin

[33], we split °R. into three subsets

‘Ry=(Ix°J)u(°,xJ)U(°Ry — Ix°J, — I, xJ)

= CRi U CR,?Y U CR?’Y, whenever v > 2,
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and note

/~ |Gija(z,y)|dedy = </~ + /~ —}-/~ ) |Gija(z,y)| de dy.
‘R, 3! cR2 <R3

To begin with, we work on the first integral.

Lemma 3.1. For an arbitrarily small € > 0, we have

/Rl |Gija(z,y)|dedy < CTy; 7"6

for some 6 > 0, where

2i(—a)+i(1=b+e+2)  for i § >0

] 2i(_a)+j(1+e—k2+ﬂzz)’ fori > 0,5 <0

2,-+j(1—b+e+%1)’ for1 < 0,7 20
2,~+j(1+e—kz+221)’ fori,j < 0.

Proof. We first write

/R |Gija(z,y)| dedy = / ly|=*2F¢y|*27¢|Gija(z, y)| da dy.
¢ -ly cR_ly

Apply the Cauchy-Schwartz inequality to see that it is bounded by

1/2 1/2
(/R |y|—2k2+2e dz dy) </~ lyl2k2_2elGija($7y)l2 dz dy)
c }( CR}(

S C7—1/2+e|1|1/2|Ji1/2—k2/n2+e/ng

I{J) poo oo poo + 1/2
LT+ wereimytate e aeay 25
0 o JerRy JiunJo JeRL st

= Oy EBHEI|R g |k marke ma (112 4 (1) 2, (3-1)

Let us look at the first expression. If we set

A

K;; = pij and K:j’t(:z,y) = ™Mt K (2/s,y/t),
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then as

s,t _ s,t
T a(z,y) = /,(/ K2 (x — ,y—y’)a(w’,y’)dw’> dy',

Minkowski’s integral inequality coupled with Plancherel’s theorem on the « variables

sdt in (I) is dominated by

2 1/2 2
dw} dy') dy

. y—y 2\
tT K (86 )”1(611) df} dy’) dy

shows that the integrand expression with respect to

L= ()

< [, e (/{/R
<C|J|/CJ //R ylFe R <3

|
|
|
|
where the last inequality followed after applying Holder’s inequality. Using the

/K”<w—w,y y)alz'y') da

2
dédy'dy, (3-2)

y,> &1(£’yl)

y.—
t

fact that |y| ~ |y — ¢/| for y € °J,,y' € J, integrating and changing variables

?

accordingly, we notice that (I) is controlled by

Oo . —e P 2 ds
/ / / Gl / Iyl R (6 )| dydédy'=,  (3-9)
0 J JR™1 R”2 S

—2¢e/n,

except the multiplicative constant C|J|*2/> . Now use a Fourier transform

formula related to the Riesz potentials to get

Jé;"2

i~ (vl & s.)) | d

2

R 2
B ,-j(&f,y)‘ dy:/
R"2

=C (™" %e s« > (88 wi;) (sé,m)| dn
R"> —
|Bl=k>
—nate 2
<C ) / |77+ (07 is) (s&m)|” dn
? 1Bl=ks
| » 2/p
<C ). (/ (05 mis) (s&,m))] dn) , (3-4)
Iﬁ|=k2 R"2
1 1 e L _ _
where 3=~ —, by an application of the Hardy-Littlewood-Sobolev fractional
p N2

integration theorem (see [51]).
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We now estimate the right side term of (3-4). In the case 7,7 > 0, compute

(07 uiz) (s€,m) = $(27's€) Z i (076(277m) (97 m(s6,m)

aty=p

_ _’85) Z 2 jle aa¢) (2~ Jn) (87m) (s&,m),

aty=p

to observe that

l(ag“ij) (35>77)| < O|sé|*|n|™° X{2i~1<|sg|<2it1,2i~1<|p|<2i+1}
and subsequently the summand in (3-4) is at most

2/p
C|sE| 72X (2i-1 <|sg|<2i+1} </ | Inl”’”dn)
21-1<!7’!<2J+1

—2a (—b+ 12
< O3] xqaies cpaggany 2705,

It follows that (3-3) is bounded above by

Olpatmzeimagmressaitre ) [ [ Jad(e )| deay
JJR"1

< C|I|7Y)|J| 2k /na=2¢/ms 9=20i+2j(~b+72)

by using the atomic properties of a(z,y). As to the case ¢ > 0,7 < 0, we notice

that

(01s) (stm) = 6(2758) 30 2 27 (350) (270) (931) (.,

a+y=p

and Leibniz’s formula shows

(871) (s&,m) = (87m) (s€,m)

|
|
\
|
|
|
= 2 G@rm| 3 @O0 72),-
\
\
\
\

Nnt7r2=y [p1<k2,p>72
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Since (8,7117) (0) = 0 except when v; = 0, we have (8,7/1) (s£,0) = 0,and MVT

implies the existence of some 7 such that

(@) (s&,m) = Y [(8717m) (s&,7) — F(s&, )] n™,

I7|=1

where F' is the appropriate partial derivative of the latter term satisfying
|F(s&77) < Cls€|™  for [ <1
Thus ](8,7/1) (s.f,n)lz < C|s€|7%|n| and
l(ag"“j) (3§>77)‘ < G277k |70 ) X{2i-1<|s€|<2i+1,2i ~1<|p|<2i+1}-
Consequently,
p 2r 25(1+ 22 —k») 2
</an l(@’,’un) (Sf>77)l d’?) < 0220+ k) |5g |~ “X (2i-1<|st|<2i+1}>

whence (3-3) is less than or equal to

CIII—1|J|—1+2k2/n2—2€/n2 2—-2ai+2j(1+2p")‘_k2)‘

We continue this procedure for other cases to conclude that since =2 = —2—2 + ¢,
gil=a)til=btet+5) - for§ i >0

2i(—a)+j(1+e=k47F)  for § > 0,5 <0
(/2 < CAij, where Ay = ThoeRr=

2iti(=btet ), for i < 0,5 >0
2i+j(1+e—-kz+%z), fori,7 < 0.

Toward the estimates involving the second part (II), we make use of the vanishing

properties of the atom a to write down

l - P
Tyaew) = 2 /1 J/o (—y YO K (z — o',y — 6y')a(e',y') dé da' dy'
|Bl=1"""
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and follow the same lines up to (3-2) in the above process to find that the inside

expression of the parenthesis in (II) is dominated by

2 o0 e} 1
= ok Lk L
1(J) Jo cJ, Jo JJJRmM

. d dt
el (L :

d€ dy'dé dy

)“(s,

Once again |y| & |y — §y'| so it follows from the change of variables that the above

expression 1s majorized by

s [ [[insee ] . e
1(J) Jo

dsdt
| et ai Ry s | dvdsay S
R"™2

(3-5)

Now we observe that

/ (ol &} (S&y))'
R"2
<cy /

| "2t % 85 (nﬁun(sf;“, n)) ‘2 dn

[Bl=k "R
2/p
<o X ([ ]os (Pustsen)["an) (36)
|Bl=k2 IR
where |B| = 1, % 1_ i—, by the Hardy-Littlewood-Sobolev theorem of frac-
p 7N

tional integration. Easy adjustments of the preceding estimations will lead us to

2i(—a)+j(1—b+e+122), for 7,7 >0

. i Qi(—a)+i(2He—katB)  for i > 0.4 < 0
(II)1/2 S CAZ]) where A” = ) or 1 =~ 07.] <

2,‘+j(1—b+€+%z), for 2 < 07.] 2 0
2,‘+j(2+e—k2+"72), for i,j <0.

Now we put our estimates into (3-1) to complete the proof of the Lemma. O

Due to the symmetric nature of our hypothesis and the domains CR%, CR%, we

easily attain the estimates for [, z, |Gija(z,y)|dz dy
Y
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Lemma 3.2.

For an arbitrarily small € > 0, we have
/~ |Gija(z,y)|dedy < C’f‘i]‘ 7~'§
CR?/

for some & > 0, where

2i(l—ate+5) b for; i >0

gill—atet )i for i > 0,5 <0

ij 2i(1+e+%L—k1)-J'b, for: < 0,7 20
2i(1+e+%’~—k1)+j, for i,j <0.

'jz
Il

Next we shall prove

Lemma 3.3.

For an arbitrarily small € > 0, we have

/Ra |Gija(z,y)|dzdy < CAjjy™°

for some o > 0, where

2i(1_a+e+%)+j(1_b+e+%)> forz,7 >0
Ril—atket S HterF k) fori > 0,5 <0
RIFeHF —R)HIA-bret ) fori < 0,5 >0
i(ltet Bk +i(lket B -ka) - for i, j < 0.

Aij =

Proof. For sufficiently small ¢ > 0, the Cauchy-Schwartz inequality furnishes us

/Ra |Gija(z,y)| dzdy

c

< 07—1+e'1(1/2—k1 /nite/ny 'J'1/2—k2/n2+e/n2

(J puI o) I(I) I(J) poo 0 o0
SO AT Y G S ST Y Y
0 0 1(J) Jo 0 wn  Juan Jun

s 2 dsdt \M*
/Ra I$l2k‘1 —251y'2k‘2~—2e ‘Tij,ta(w,y)l d:l:dy }

st
< 07_1+€‘I‘1/2_k1 /nite/ny lJ|1/2—k2/n2+e/n2

(D2 + ()2 4 (D2 + (V)2 (3-7)
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In considering (I), we use the following majorization

le;’ta(w,y)l =

/ K”(w——w,y y)a(z',y') da' dy'
IxJ

1/2
< ([ g - - adar)
I

where we used the Cauchy-Schwartz inequality effectively. It now follows that (I)

is bounded above by

—1 -1 l(J) l(I) 2k1—2 2ko —2¢
1747) / / / ey
0 0 cRa

s dsdt
/ |K (z— ',y —y ) de' dyf dz dy ——
IxJ

S ClI(—1+2k‘1 /n1 —25/7),1 ,J'-—1+2k‘2/n2—2€/n2

/ [l ¥~y |F = Kij (2, 9)|” da dy. (3-8)
R"1 xR"2

For the integral portion of (3-8)

— 2
A = / “wlh—elylkz eKij(w,y)l dwdy,
R"1 xR"2

observe that
2

Ao e [ lgrmtea S opRy6w)| dedy
R™2 R™1

la|=k1
by the well known Fourier transform formula, where C = C(ng,¢). Use the linearity

of convolution to write

a<e 3 [ e [ flee ek asdy
o=k, TR
~ 2
¢ aLT_J‘k‘ »/I;."1 an lé.l—nl-l-e *1 (Iy,—e ' ly|kza?K11](£7y)>( dy df

Apply the Plancherel theorem in y-variables to see that

ASC ), / / [J€|7m+e s« {2 2 880g i (€, )} | dnde

lal=Fk1,|8|=k

2/q
<c [ (/ (=" #2880 s (6,m)|" de) dn,

la=F1 lﬂl k2



1 1 2 .
where ~ = 3 + S oAs = 1, we invoke the Minkowski integral inequality to
q ni q
obtain
, ) q/2 2/q
A<c ) / (/ |In| =™t «* 8P O pij (€, m)| dn) dé
‘alzkl,‘ﬂ‘=k2 R™ R"™2
a/p 2/
<c ) {/ (/ lafaé’uij(ﬁ,n)lpdn) d&} :
la|=k1,|8]=k, LR AR
with 1 = 1 + L.
P 2 ng

As in the case of Lemma 3.1, simple computations yield

(I)l/2 S ClIl—1/2+k1/n1—e/n1|J|—1/2+k2/n2—e/n2 E

YK
where

gi(—atetBL)+j(—btet+E) for,5 >0
gil—ate+ ) +ill+etF—ka)  for ;> 0,5 < 0
2i(l+e+3h—k)+j(=b+e+3)  for5 < 0,7 >0
2iltet G-k +i(tet k) - for i j < 0.

E;; =

For the part (II), using the Taylor polynomial as before, we notice

1 .
| T35 alz,v)| = Z/, J/ (—y' VOPK (2 — o',y — 8y )a(a',y') d6 da' dy
|Bl=17%" 70

1
S ClIl—1/2|J|1/n2—1/2 ( i J/
X 0

so that (II) is majorized by

iy

i ) 1/2
851{8’t(w —z' y— 5y')| dé dz' dy')

C|I|~—1+2k1/n1 ~2e/nq IJ'—1+2k2/n2—2e/n2

A"l XR™2

~ 2
lz[*1 =2yl ~* 00 Kij(2,y)| dzdy,

26
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by using the fact that |z| & |t —2'|,|y| & |y—y’| with pertinent change of variables.

As in the case (I), the fractional integration provides that

<o > {[(L.

lalzkl ,lﬂl:k‘g

1 1 1
with - = - + —6—, - = ! + L. Being our decay hypothesis independent of
q 2 ny p 2 9

the orders of derivatives involved, it is not hard to see that we should be led to

= 2
Jal =< |07 Kij(e,y)| dedy

2/
0, ¢ (Wﬁﬂij(f,ﬂ)) ‘p dn) " d&} q

(II)1/2 < ClIl——l/2+k1/n1—e/n1IJI—1/2+kz/n2—e/n2 D

i
where . o .
Ri-atetBHHi-bhet ) for g, > 0
2i(~a+5+%1-)+j(2+e+3.;"~—k2), for i > 0,7 < 0
D.. — . ) . n Z
Y i(1+e+ T —k)+i(A-b+e+R)  for 5 < 0,5 > 0
itet B —k)+il+et k) for 4,5 < 0.

In view of akin formulations, we have analogous estimates for the third part

(III)1/2 < ClII—1/2+k1/n1——e/n1 lJl-—l/2+k2/n2—e/n2 D

ijs
with . ) .

i —etet TIHi(—btet ), forz,7 >0
Qi(l—a+€+%l)+j(1+e+%1—k2), for i > 0,7 < 0
D.: = . ] . . e

7 2il2HetF—k)bi(=b+e5) - for i < 0,5 >0
2ite+ k) Fill+et k) for 4,7 < 0.

Finally, we use the Taylor polynomial in both variables to obtain

(IV)1/2 S CII!—1/2+k1/n1-—e/n1 !J!—1/2+k2/n2—-e/n2 Eij,

where . L .
9ill—atet BN HiA-btet ) - for i, j >0

2il~ate+ 3 )+j(2+e+F ~k2)  for ;> 0,7 <0
By = B

2i(2+e+_7121___k1)+j(1—b+6+252“), for Z < 07] Z 0
2i(2+e+ 5t —k)+j(2 e+ 5 —ka)  for ;5 < (.

We now combine all of our estimates and put into (3-7) to finish the proof of the

Lemma. O
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Based on Lemma 3.1, Lemma 3.2, and Lemma 3.3, we now state
Corollary 3.1. For all ¥ > 2 and sufficiently small € > 0,

/l |Gija(z,y)|dedy < CAijjy™° for some o > 0.

-~

Furthermore in reference to other square functions, we are able to state the

following results without any difficulty:

Corollary 3.2. Let v > 2 and ¢ > 0 be sufficiently small. Then there exists
o, 6,0 >0 such that

(1)
/\~ |Gija(z,y)|dzdy < CAijy~7,

CR’Y
where
2i(2-a+e+%l)+j(2—b+e+%1), fori,j >0
Ko = 2i(2—a+e+%l)+j(2+e+%2—kz), fori > 0,7 <0
iy = 2i(2+e+%1-—k1)+j(2——b+e+%2), fori <0,7>0
2i(2+e+ 5t ~k)+j(24e+FE~k2)  for; 5 < 0;
(2)
/: 1Si;a(z, )| de dy < C O~ 8,
CR’Y
where
2i(2—ate+ ) +i(1-bte+3H)  fori >0
0. — 2i(2—a+e+%l)+j(1+e+1;l—k2), fori > 0,7 <0
4 2i(2+e+%l—k1)+j(1—b+e+%2), fori < 0,7 >0
2i(2+e+ 3 —k)+i(l+e+F k) for i 5 < ()
(3)
| 18uate,)ldedy < 00y~
CR’Y
where
2i(1~ate+FH)+i(2=bte+32)  fori 5> ()
& 2i(l—ate+3H)+i24+e+F~k2)  fori> 0,7 <0

h 2i(tet Bk +Hi@-bret ) fori < 0,5 >0
gillbet S —k)HibetE—k) - for i j < 0.
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Next observe that for each integer 1, 5,

x . 1/2
751 < {2Gijf Gy f + 2551 Sz‘jf}
< (2Gijf : éijf>1/2 + (2Sijf . 5’,‘jf>1/2
< { 2N G f 4 2 éz‘jf}

+ { o-itN2 g f 4 oli~D/2 G, ¢ } .

In view of Theorem 3.1, we are finally led to the (H?!, L!)-inequality for the max-

imal operators T7;: We are finally led to the (H 1 L')-inequality for the maximal

2

operators T7};:

2] + 1, j5=1,2, we have

Lemma 3.4. For any [; > 5

T35 fll Lt e xmmz) < C Qi || Fll 1 (Rt xR72),s

where 9i(3—a+l)+ik—b+)  fori 5 >0

: ,j >
2i(z—atl)+iGG+h=k2)  fori>0,7 <0
2i(zHh~k)+i(G=b+0)  for i< 0,57 >0
2i(5+h~k)+iGG+e=k2)  for i j < 0.

It follows immediately by interpolating Lemma 2.2 and Lemma 3.4 and by sum-
ming each corresponding geometric series that 7™ is bounded in L?(R™ x R"™?)
for gap < p < 2. In dealing with interpolation, we used the fact that the negative
integer cases do not give any effect on the range of p’s, which can be seen easily
from the note

1

5_—|—l]‘—kj>0 for 7 =12

Moreover,

m 2n1 27’&2 <
ax a,by
ni+2a—-1"ny+2b—1 Qab

in comparison with the range of p’s stated in Lemma 2.1.
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4. THE (L*°, BMO)-INEQUALITY

As was pointed out, the space H}(R™ x R"?) serves as a good substitute for
L'(R™ x R™?) for many purposes owing to the fact that a number of singular
integrals are invariant in it. There is also a class of functions near L*°(R"™ x R"?)
invariant under the Calderén-Zygmund operators, namely, the space of bounded
mean oscillation, BMO(R"™ xR"?). As a matter of fact, A. Chang and R. Fefferman
[11] characterized this space as the dual of H*(R™ x R"2) in the sense that every

continuous linear functional on H!(R™ x R"™2) arises as

f— f(z,y)e(z,y) dedy
R"1 xR"2

with a unique ¢ € BMO(R™ x R"2) (cf. see C. Fefferman and E.M. Stein [25]).
In accordance with the preceding observation, we immediately obtain the follow-

ing analogue of Theorem 3.2:

Theorem 4.1.

Suppose that T is a sublinear operator such that

HTfllL?(R"l xR"2) <M ”f”L2(R"1 xR"2)

”TfHBMO(R"l xR"2) < M, “f”L°°(R"1 xR™2)-

Then we have

_ 1 1-86
”Tf”LP(R_M xR"2) < CM]I o Mg I|f||Lp(Rn1 xR"2) for ; = —‘2—~, 0<6<l.
This duality kinship enables us to establish another seemingly powerful criterion
on the (L*°, BMO)-inequality, in the sprit of Theorem 3.1. For the precise state-

ment, we need to define a size measurement which plays an important role in the

product Fefferman-Stein sharp operator. Specifically, given a function f(z,y) on
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R™ x R™ and a rectangle R = I x J, we define the mean oscillation of f over R,

oscr(f), by

1/2
oscg(f) = inf (Hlﬂ/le(x,y) —fl(:v)—fz(y)lzdxdy>

where the infimum is taken over all pairs of functions f1, fz depending only on the
z,y variables, separately. It turns out that in order to check the boundedness of
an L%-bounded linear operator from L™ to BMO, it suffices to look into its mean

oscillation over rectangles.

Theorem 4.1 (R. Fefferman [30]).

If T is a bounded linear operator on LZ(R™ x R™?) such that for any rectangle
R and v > 2

oscr(Tf) < Cy~° for some 6 > 0,

whenever f is an L™-function supported in °R., with ||f|lcc < 1, then

(TfllBro@®r xrn2)y < Cllfllpee(mrrxrr2y forall f e L¥(R™ x R™).

Let us include a proof of this result for the sake of comprehending the duality
kinship. Let T be the adjoint operator of T. Taking the duality into consideration,
it is sufficient to prove that || T(f)|lzx < C||f||z: for which it is in turn enough to

establish

/ i 'Ta(x,y)‘ dedy < Cy~°
R,

for a rectangle atom a supported on R in view of Theorem 3.3. Note that for any

functions fi, fo, if we denote the unit ball in L>*°(R™ x R"?) by Bo, and the set
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of those elements supported outside C]~%7 by Boo, then

/‘~ lf’a(w,y)ldwdy: sup / Ta(z,9)X . f(:z,y)dwdy‘
R, R"1 xR"2 K

fe€Bo

= sup | [ ale ) (TH@) = () = foly) dedy
feB, |/RM1 xRn2
1/2
< sup Jlafze ( / Tf(2,y) - fulz) — Faly)] d dy)
| feBq R

‘ = sup (IR! | i) - A0 - )P dwdy)I/Z

so that

/ lTa T y)\ dzdy < sup oscr(Tf)
f€Bw

and we are done.

Going through similar reasonings as in the section 3, we shall derive the following

result:

Lemma 4.2. For every v > 2 and arbitrarily small € > 0,

OSCR(G,'jf) < C’y—a A,‘j,

for some o > 0 whenever ||f|lc < 1, supp(f) C CR#, where A;j Is the same

constant defined in Lemma 3.3.
Proof. Introducing

Ls t(f% y) = Kfjt(%y) X{s>0,l(J)<t<oo}>

h(z) = (/OOO/OOOIL,- « f(z,0)|" ds‘”) "




33

we observe that

oscr(Gi;f) <

1/2

o dsd 1/2
<|I|_7|J|_" </I><J/ / |K3 * f(z,y) — *fx0)|2 tdmdy)

1 L i pi) 1J) . dsdt
sm-am-a{</ [+ )/ K5 faw)| dody &
0 0 0 un) JixJg
dsdt \ ) /2
(/ / / K35+ f,y) — K" f(2,0)]” dedy ° )}
i(J) IxJ

<772 (I 72 {(DY? 4+ ()Y + (1)) (4-1)

For the part (I), an application of Minkowski’s integral inequality in interchanging

the order of integrations shows that it is dominated by

2

(7 i) 2 11/ dsdt
/ / / /_ /(/ ]Kfj’t(m',y')|dm') dz dy' } dy iy

0 0 g | Jed, |V \Je—wrer st
Let us put
2
/(/ Kz-sj’t(:c',y')|dm') dm}
I z—z'el

By the translation-invariant nature of our estimates, we may assume that the center

1/2
A=

of the cube I lies at the origin. Thusif € I, then [z] < —-——'2nl|I|1/"1. We notice

that
/ | K/ (2',y")| da’
z—z'c]
t ! ! !
< Heg—11 1/n -|-/ K> (:C y) dz
(/x ‘S2x—£m 1 |?C’|>2‘”\/771—|I|”"1)| N ’ |
(s +f e
k<10’ Ak(z)  Jlz[>2- 1t y/mrl|t ™M
where

={c'€eR™: o—d' €I, || <27 /mgll)/™,

2F|2'| < & — 2’| < 25 |2'| ).
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It follows readily that

9 1/2
A < /</ ’St(w,y)ldw) dz
k;() I \JAx(z)
9 1/2
+ /(/ !K (w,y)ldw) dz
1 \J|e'|>2-11 /m|I|t ™
= Ag + An.
In the first place, since
Ar(z) CBr={a' e R™: |2'| < 2_k\/n1|III/"1},
we have, for 0< A < nq,
/ !K”(w,y)!dw
Ar(z)
<2 [ A )
By,

= Cry 225N () (2, y")

where
gk($>y)—XBkl$’(nl )\'K ($>y)l

and I(gx)(z,y') denotes the Riesz potential of gx. We now appeal to the fractional

integration theorem and then the Holder inequality to observe that

As < Cnl,)\ Z 2k(n1_)‘)HI/\(gk)('>y,)”2
k<10

1/2
< Cm,/\lIl)\/m Z 2k(n1—2z\) <L le(nl—/\I{fjt(w/,y,)l2d$,>
n1

k<10

1/2
< oIt mere/m (/ lo' | <K (o )| dw) ’
R™1
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where we let A = n; — k; + ¢. On the other hand, it follows easily by the Cauchy-

Schwartz inequality that

KM (2',y")| da'
jx/|>2—1lﬁ|1|1/n1 l 4 (w Y )I ‘

1/2
< CIIII/2——k1/n1+s/n1 <L"1 |l$’|k1_stjt($’,y’)‘2d:L") '

Therefore,

1/2
Ay < C|I|}Ra/mte/m (/R “x’(kl_stj’t(w’,y’)lZdw’) :

and the same inequality holds for A. We now make use of the Cauchy-Schwartz
inequality in the integral over CJ~7 and then change variables z' — sz, y' — ty"

to arrive at

- 1—¢€ 2
(1) < Cy mm//R o'} Ko o)| de'dy’
71 xR"2

< Cy~|I|J|E?

Ty

for some o > 0, where the constant E;; was defined in the proof of Lemma 3.3.

Next in dealing with part II, we observe the following simple dominations :

/1 ; IKfj’t * f(z,y)| dzdy
X

1/2 2
<ol [ / ] ( / lfff;t(w’,y')Ide’) dy'} dady
IxJ |JeJ, \JRm

< C,Y—UIIIZlJ|2——2k2/n2+25/n28—n1 t2k2——25—n2

X // ly'|F2=Kij(e', )| da'dyf
R"1 xXR"2

and in view of the first estimation process in the proof of Lemma 3.1, we end up

with (IT) < Cy~|T||J|EZ.
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To the end of estimating (III), we first note that

K3« f(z,y) — KJ'  f(=,0)

= / {I’s t :L' - $’>y - y’) - K:]’t(w - wla'—y’)} f(:l:’,y’)d:l:’dy’
Ich

= Z/ / 8’31{3 e — ', 8y — ') f(2',y') déda’ dy’
Bl=1" %"

by Taylor’s formula. First of all, we split the regions of integration with regards to
the measure Elsf into two intervals (0, (I)) and [/(I), 00) as usual, and then we apply
the same techniques as in the preceding case, while our estimates will be essentially
slight variants from those of the second case in the proof of Lemma 3.3, to finish

the proof. [

In case when supp(f) C CREY = °I, x J, we would get oscr(Gi;jf) < C~y™7 Ayj,

for some & > 0, upon considering the auxiliary function

=<AmAw *fOMIdMO/,

where

f’fft(:”’ y) = Kfjt(wa y)X{l(I)<s<oo,t>0}-

If supp(f) C CR?Y, then we subtract the function (z) + %(y) + C where
> [0 dsdt\'/*
:</ / Bt x £(0,0)° = ) :
o Jo
Py (z,y) = K;}X(=, y)X{l(1)<s<oo,z(J)<t<oo},

from the formula of o0scr(Gi;f) to end up with akin estimates.
On account of Theorem 4.1 and inspection on the method of our proof, we are

led to the following proposition :
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Lemma 4.2. For all integers ¢,j and for any [; > %J— +1, j5=1,2 we have
\T75 fllBMomn xrrey < CQij |[fll oo 1 xR72),
where );; is the constant defined in Lemma 3.4.

We should note again that the negative integer cases are irrelevant to our purposes

so far as interpolation and summation of geometric series’s are involved.
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5. THE LP-BOUNDEDNESS OF T™ FOR 2 < p < rqp

If we interpolate Lemma 2.2 with Lemma 4.2 and sum each suitable geometric

series, we would obtain the LP-boundedness of T* for p satisfying

' 1 1

< mi 1 1 1 (b 1
min a— — - = ,
p 2 ny + 2 2/ ny+2 2

which does’t provide the better range of p’s asserted in the main Theorem A. As in

the paper of Rubio de Francia [46], we shall acquire the improved range 2 < p < 745
in the following approach. Given m € L®(R™ x R"?), we let ||m|az» be the
norm of Ty, as an operator in L?, where (T f) = m f. Under the same setting

as in the section 2, we have the following proposition (compare Lemma 7 in [46]).
Lemma 5.1. For 2< p < oo, f € LP(R™ x R™),

1551, < Cp {ass 13 Nss 1375 -+ Nisss 0> im0 s 77 1151
for all integers ¢, j.

Proof. For p > 2 we notice that

T £ < /°° /°°

(17 f17) | dsat

<P/ / Tt F)P | Tt f| ds dt
+p(p—1)/ / Tt | ds dt
A )" (o)

+p(p—1)</ / pdsdt>(p 2)/p
([ [ e dift) T e

dsdt) 1/p
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i -2
a consequence of repeated Hélder’s inequality, where ;—}-17 = 1. Since (ip—)——}-

— = 1, integrating over R"! x R™ and applying Hélder’s inequality again, we see
p
that

“ f“LP(Rnl xRn2) = < C { l/p Il/p + Ip/(p -2) Jl/P Jl/P}

1/p
I;; = (/ / / lTSt P det dz dy)
R™1 xR"2

with analogous representations for I~,-j, Jij,and f“ For fixed integers 17, j, we select

where

Schwartz functions %, in R™ such that fz/)k dzr =0, k=1,2, and

1/;1(51) =1 if 2071 < g <27,

da(b2) =1 if 271 <|g| < 27

Setting 95 ¢(21,22) = sT™t™ 24Py (21 /3)P2(22/t), we have

hadll e s dsdt
:/ // (T2 (o £) (2,9)|" de dy
0 0 R"1 xR"2
o poe dsdt
- / / / e * f(z, )| do dy
R"1 xXR"2

S
dsdt \P/?
<|Iu”||MLp/ (/ / |ths.s  f(z,y)|? ) dz dy
R"”1 xR™2

< Cp”ﬂl’jllMLp Hf”Lp(Rnl xR"2) whenever p > 2,

where the last inequality is a direct consequence of the iterative Littlewood-Paley
theory in the product space formulation. We notice that in the same manner it
is possible to get similar estimates for f,-j,Jij,and jij without any difficulty and

therefore the proof is validated. O

We are now ready to finish the proof of Theorem A. For p = 2,

lisllarze = lluislles < C 27777
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and the (BMO, L*)-norm of Tj; is at most
C. ill=atet ) Hi(l-btet3E)  for sufficiently small ¢ > 0.

Interpolation yields

lptsil|srze < C 20aet(FADDHI(bret(F+1)8)

2 . . 1
with 8 = 1 — —. Carrying out the same procedures to the other multipliers, we
p

shall obtain

ii; || arze < C. 27A=a+er(FHDO+i(—btet(F4+1)6),

lmijllarre < Ce 2i(1—a+e+(%1+1)0)+j(—b+e+(-'iz2-+1)9),

[isllans < Co o+t (FHDOHAbret(F41)0),

when 7,7 > 0 and consequently,

”T;;f”p < @, 9i(-atet (FHDO+)+i(=btet(F+1)6+3) I£1,

the series of norms of which converges if and only if

a>11—)+(”2—1+1>9 and b>%—|—(r;—2—l—1>9,

that 1s,

=Ta,b:

o
P mln<n1—2a—|—2’n2—2b+2

The proof of our main theorem is now complete.
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