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MULTIPARAMETER MAXIMAL OPERATORS AND
SQUARE FUNCTIONS ON PRODUCT SPACES

1. INTRODUCTION

The present paper is devoted to establishing results of L boundedness for the

maximal operator arising in connection with singular integrals on product spaces.

From the motivational point of view, it will perhaps be best to start by describing

certain classical situations as to the theory of multipliers which lead naturally to our

topic in question. Consider a bounded function m in R and let T be the operator

defined by (Tf) mf. The function m is said to be a multiplier for the linear

space £ of functions f, if f E £ implies Tf £. It follows via the Fourier transform

that a large class of singular integrals including the Calderón-Zygmund operators

and those which commute with translations can be equivalently viewed as multiplier

operators. The primary benefit of this approach lies in the fact that we can make use

of explicit analysis on multipliers (decay, smoothness, etc.) to study the continuity

of singular integral operators with the aid of suitable interpolations. Although we

have precedents, let us mention the classical theorem of L. Hörmander [39] which

in a simplified version states that if IDm(x)t <C x(HI, tat [] +1, then m

is a multiplier for L, 1 <p < 00.

On the other hand, the existence question for the pointwise limit of certain

sequence of singular integrals turns out to be directly related to the continuity

problem for the maximal multiplier operator

T*f(x) = sup I(Ttf) (x)J, (Tjf)(x) = m(tx)J(x).
t>o
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In this connection, a typical illustrating example is that of the maximal spherical

average, studied by E.M. Stein [49] and by J. Bourgain [2],

M*f(x) = sup
t>o fyI=1

n
They substantiated its L boundedness forp> and in particular, the methodni
of E.M. Stein's proof exploited the Littlewood-Paley theory, the known decay esti-

mates for m = &, and the complex analytic interpolation theorem in the passage of

p 2, which has prevailed in many problems, often accompanied by techniques of

decay mesurements such as Van der Corput's lemma and oscillatory integrals (see

[14], [15], [22], [28], [48], [52], etc.). A significant generalization of the preceding

results was implemented in the work of Rubio de Francia which gives us a direct

motivation and which contains the seeds of some of the methods we shall employ

later. His results can be summarized as follows: Let k = [] + 1. If m C'1(R)

and Dam(x) C IxIa for some a > , cJ k + 1, then T* is bounded in

L for 2n
<

2n 2 Moreover, if m is the Fourier transform of an+2ai n-2a
compactly supported Borel measure and m(x)l C xl_a, then T* is bounded in

L for p>
2a+

(See [46] for the details)

Let us turn now to the discussion of singular integrals on product spaces. It

results mainly from the difficult natures in attempting to extend results of classical

theory by iteration that to some extent the Harmonic Analysis on product spaces

has been developed along very different lines. In analogy with the Euclidean case,

for example, let T be the operator given by (Tf)(, ) = m(, i)f(, ij). In the

light of the Hörmander multiplier theorem, only under the strong entailing decay

assumption

for sufficiently large kl I/3,
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R. Gundy and E.M. Stein [38] were able to show that m is a multiplier for LP(RTh' x

W2), 1 <p < oc. Since their proof was based on the idea of pointwise majorization

of T by the Littlewood-Paley product g and g,. functions, one can not obtain the

(H1, V )-inequality without imposing a considerable amount of smoothness hypoth-

esis on m.

The complicated structures of Hardy spaces and BMO in the product space can

be seen by the counterexample of L. Carleson [9] against the rectangle atomic de-

composition conjectures about those spaces. Nevertheless, due to the boundedness

criterion set up by R. Fefferman [29] and by J.L. Journé [41], it suffices to work on

the rectangle atoms so as to establish the (H1, L1) estimates for L2-bounded linear

operators (we will explain the details in the section 3). By the use of this criterion,

in a recent paper [17], L.K. Chen proved several results on multiplier operators one

of which asserts that if

then m is a multiplier for LP(RTh' x Rn2), 1 <p < oc, while R. Fefferman and K.C.

Lin [33] acquired the same result with weaker conditions on m.

It is clear by now that there arises naturally the question of continuity properties

for multiparameter maximal functions in the product space setting. To be more

specific, for a given bounded fuction m on R' x Rn2, we define a family of operators

{T3,}8,>0 by (Ts,tf),i) = rn(s,t f(,rj) ( E Rfh, E Rn2) and we shall

deal in detail with the maximal operator T* given by

T*f(x,y)= sup J(Ts,tf)(x,y)J (xERflh,yERfl2).
s,t>O

We are to use notations k = [] +1, i = 1,2. In consideration of the continuity

of T*, we establish the following theorem:

11111 naam(, )I faI11j for < I -L2i +1, l < [2i



Theorem A. Suppose that m e Ck1+k2+l(Rnh x Rn2) and

C(1 + l)-a(1 +

with some a, b> and all multi-indices a, , al ki + 1, k + 1. Then

we have

lT*fULp(Rnl xR2) APIIfIILP(Rn xR2), qa,b <P < Ta,b,

where

/ 2(ni +2) 2(n2 +2) \

/ 2(ni + 1) 2(n2 + 1) \ra,b = mink
- 2a+ 2' n2 - 2b+ 2)

It is to be interpreted that if a> n1 + 2 n2 + 2
then we take Ta,b =- 2' 2

ni +3 n2 +3 we take qa,b = 1. Applying thisand in case when a b - 2

theorem, we immediately obtain the following subsequent result:

Theorem B. Assume that in is the Fourier transform of a compactly supported

Borel measure and

1
lm(, i)l C(1 + ll)_a(1 + ll) for some a, b>

2

Then

IIT*fllLpRnl xRn2) CPIIfIILP(anl xR2), qa,b <P < oc.

and

4

As an illustration, taking into account the maximal elliptical average

S*f(x,y) = sup
s,t>O f191=1

0= (81, 02 ),



where da denotes the unit surface area measure, we get

xR2) CMfMLP(Rn1 xR2)

for
/ 4(ni + 2) 4(n2 + 2) \max( , <p<oc, if n1+n2>3.\3ni+n2+1 3n2+ni+1J

The main flow of the proof for the Theorem A will be essentially along the same

charts as that of Rubio de Francia's. The proof will consist of a chain of lemmas

and throughout this paper, C will denote a constant which might be different in

each occurences. For an appropriate function f(x, y) in Rfh x Rn2, we shall denote

by f1(,y), f2(xq) the Fourier transform of f(x,y) acting only on x-variables,

y-variables, respectively.

5



and

2. SQUARE FUNCTIONS AND L2 ESTIMATES

We shall exploit the decay hypothesis as well as the smootheness of m(, ij), by

the use of certain square functions, in order to study the L2-behavior of our maximal

operator T*. We set about making an appropriate decomposition. In the standard

manner, we shall consider the partition of unity on R' x Itfl2 subordinate to the

dyadic rectangles

{ () 2i-1 <2i+1,2j_1 <hi! <2i+1},

which will enable us to write m(, ij) as the sum of smooth dyadic building blocks.

Specifically, we fix a radial Schwartz function q on R so that

supp() c { <jt <2}, 0 (t) 1 for all t,

> q(2't) = 1 for t
/CEZ

Clearly,

i,jEZ

where

çb() = (JeJ) çb(ij) = (JiJ) for ER?1,qER?2.

With this decomposition, however, because of the restricted decay assumptions

we imposed, we encounter some obstacles in analyzing the multiplier operators

supported on the strip regions

{lei 1,R2 }, {eeRfh,jh i}.

Ideally, we would like to utilize the classical results together with the smoothness of

m near the origin to investigate the actions of our operators on the aforementioned

regions. To implement this aim, we proceed as follows.

= 1,

6



and consider the smooth Taylor polynomials associated with m

where p() = p(I), p(7]) = p(). Setting ji(,q) = m(,q) - we

have

Pick another auxiliary radial Schwartz function p on R such that

supp(p) c { It I < },

=

3() =()(){ (Um)(,0)
p!

IpI<k2 Ioiki

-
a.p.

o<ki,IpI<k2

= 1(,i) + 2(,11) + 3(,17),

i ,j E

[Ljj(,11), with
i,jEZ

= for integers i, j.

Note that

supp(jj) c { () 2i-1 <II <2i+1,2j1 <II <2'}.

Let us define the Fourier multipliers on L2 (Rz1 x Rn2) by

p(t) = 1
1if JtJ,

7

(r't) ) = jj(s, tj)f(, i) for s,t>0

and let T denote its maximal operator

Tf(x,y) = sup (T'tf(x,y)I.

= (1 (Dm)(,O)ç,
IpIk2

= (1 (Dim) (0,,



With the kernel

= fliffl2K(x/s,y/t), Ic =

we have

T*f(x,y) sup Ts,tf(x,y) - (K8, *
s,t>O

+ sup I(Ks,t *f)(x,y)I
s,t>O

Tf(x,y)+ sup(K8,*f)(x,y)I.
i,jEZ

Based on the results of one-parameter case, we observe the following simple facts

regarding the latter term:

Lemma 2.1.

sup (K *f)(x,y)f IILP(R1xR2) Ap(IfLP(Rn1xRn2),
s,t>O

provided

/ 2n1 2n2
\ (2(ni - 1) 2(n2 -

max I nl+2a_ln2+2b_l)<P<m1 ni-2a'n2-2b[

Proof. First we write *1, *2 for the convolution operational symbols in each vari-

ables x, y and M1, M2 for the Hardy-Littlewood maximal functions acting only on

x, y variables, respectively. Writing Kz = j, i = 1,2,3, we notice that

3

I (iç,sup (K,t*f)(x,y)j < sup 2 *f)(x,y)f.
jl s,t>O

For each multi-index p, JI k2, if we put

(L)() = (1 - p(s)) (9m) (se, 0),

then for any Schwartz function f,

(K * f) (x, )I < Cj 515*2 (L *1f) (x, .)] ()I.
IpIk2

8



for

Msup
s,t>O

I
(K*f) (x,y)IILp(Rfl1XRfl2)

CsupM ((L *1 f) (x, .)) lLP(Ri xR2)
s>Op <k2

CjM (supI(L*1f)(x,.)I) IIL

IpIk2

> cli supI(L*1f)(x,.)IIIL ILPY dxs>O
IpIk2

= Csup (L*1 f) (,yN IIL IILP.dx dy
pj<k2

As the function

(1 - p()) (ôm) (, 0) =

satisfies all of the hypotheses in the theorem of Rubio de Francia (see Theorem B,

[46]), we have

sup (L*1 f) (,Y)I MLP <BpIIf(Y)IILxdx8>0

2n1 2n1-2<p<ni+2a-1 n1-2a
and in this range of p's,

sup (K * f) (x, )I Ii LP(R1 xR2) <Gil IlL y)IIL iiLdx dy

= CIII IILP(R1 xR2).

Similar treatments for other cases should complete the proof. LI

iiL

9

By taking supremum, we see by the well-known property related to the Hardy-

Littlewood maximal functions that

sup I(K*f)(x,y)I < CsupM2((L*'f)(x,)).
s,t>O s>O

IpIk2

Since

IIfMLPRn1xR2 = ilIIf(x,)MLP lL'dy dx

it follows readily that



We shall now define

mjj(,i) >2 (aji) ()a
kI=1

m(,ij)= > (o)(7)ij,
/31=1

= II (i) (,ii)rii'3,
IcI=1
1/31=1

for all integers i,j and s,t > 0.

Let us introduce the square functions in question

00 00 dsdt'2Gf(x,y)
= ( L lTf(x,yN2 st J

00 00 dsdt)hh'2Sf(x,y) (j f Qtf(x,y)J2

and analogous ä, Sjj corresponding to the operators respectively.
ZJ

Now that

Tj° f = Tjt f = T'° f = 0

for any Schwartz function f and s,t > 0, we have the following pointwise majoriza-

tion for T

<2 f
j00

asotTtf dsdt

+2 f
f

I5T'tf atT'tf dsdt

2(Gf)(Gf) + 2(Sf)(Sf),

(Q7tf),i) = mjj(s,ti)f(,ij),

(stf)
, ) = t)f(, ),

(1'tf) (,ij) =

10

a simple consequence of the Cauchy-Schwartz inequality. Here comes our key L2

estimates for T.



Lemma 2.2. For integers i, j,

jjTjfJJL2(Rfll xR2) Cij fIL2(Rn1 xR2)

where

llGfll

fori,j
Ion O,j <0
for i <0,j
foni,j <0.

Proof. Upon invoking Plancherel's theorem,

It00 00

L fRlxR2 st
lt00 00 dsc

L fR1 xRTh2 st

= fRi xR2
f(,J1)

2

If d:dt dd
2 '< sel <2
2j1 <Itl<2J+l

i.e., IIGfII2 CitlI00IIflI2.

Similar observations for other square functions lead us to

ll1fll 2llGfI12lläfIl2 + 2lISfIl2lISfIl2

<C (j 1100 IlILii 100 + lIm 1100 llrnZ3 Il) lfII (2-1)

and we need to estimate the appropriate L°°-norms in order to prove the Lemma.

We shall deal only with
1I

because other estimations are essentially simi-

lar.

(i) Case i,j 0: In this case, by the support condition of , we have

=

The hypothesis on m(,i) implies instantly that llpll00 C2_2ib.

11



Case i 0, j <0: An inspection on the support of shows that

= m(,ri) -
m() - p() (arn)(,O)ç.

IpIk2

Note p(, 0) = 0 and thus it follows from the Mean Value Theorem (MVT) that

for some Ii

= - (ôm)(e,0)
rj=1 IpIk2

pr
- (ôm) (,0) (p - T).p<k2,pr

which immediately provides IIitijII < Similarly, IIiti}I00 C2i_jb

if i<0,I0.
Case i,j <0: Here we have

= m(,ij) -
= m() p() > (8gm) p() > (ôm) (0,)-

pj<k2 IoIki

(OOm)(0,0)7---.
p! a!

As p,0) = 0, MVT implicates

= )ôp() (ôm)(,0)
Irl=1 IpIk2

p() (8gm) (0)( _r)t (ôm) (0,-
pjk2,pr p

cT p
+p()ôp() i (ôôm)(0,0)--

a! p!
1o1<ki ,IpIk2

e°
pr

9em)(0,0)U! (p_r)!jlIkipIk2,pr

= >1 (I
Ii-l=1 IiI=1

12

Ioiki ,IpIk2



II f JJ2

i ,j E Z = ( + +
+

i,j>O iO,j<O i<O,j>O i,j<O

C 2i(-a)+j(-b) IfH2 + c
i,jo

+ c 2i+j(-b) fM2 + C

i>O,j(O

MfM2

IIfM

13

on account of MVT in -variab1es for the inside expression, where H is certain con-

tinuous function of , in the compact domain {
<1, <1 }. Consequently,

C2.
Putting all of the above estimates and other corresponding estimates into (2.1),

we finish the proof.

We remark that Lemma 2.1 and Lemma 2.2 provide instantaneously the L2-

boundedness of T* upon summing the suitable geometric series's;

i<O,j> i,j<O



3. THE (H1, L1)-THEORY

Let us focus now on the continuity question for T* with respect to the norm of

L (R'' x Rn2), p 2. In the classical theory of singular integrals on R, by the

Marcinkiewicz interpolation theorem and the standard duality argument, it suffices

to establish the weak-type (1,1) estimate

{x RTh : lTf(x) > < for >0,

where T is an L2-bounded sublinear singular integral operator. As far as the

method of the above estimate is concerned, it is the Calder6n-Zygmund decom-

position lemma that provides the most fundamental ingredient (see [8] and [51]). A

great deal of extension and refinement of the Calder6n-Zygmund lemma has been

afforded through the consolidation of the theory of Hardy spaces, certain characteri-

zations of which are shown to be intimately linked with maximal functions, singular

integrals, and Littlewood-Paley theory (refer E.M. Stein and G. Weiss [53], C. Fef-

ferman and E.M. Stein [25] for the definition and description of H(R'), p > 0).

We shall discuss briefly only those subjects involving H spaces on product domains

that are most relevant to our purpose.

To begin with, let us define HP(R' x Rn2) in the sprit of the real-variable

characterizations of C. Fefferman and E.M. Stein [25] for the space H(R7'). Fix

two arbitrary Schwartz functions qfj on R' with f qj = 1, i = 1,2, and write

qs,t(x,y) = sflhtfl2q1(x/s)q(y/t), .s,t > 0.

We also choose any nonzero radial Schwartz function /' on R' x Rn2 satisfying

f J(x, y) dx = 0 and f (x, y) dy = 0. Further, F(x, y) will denote the product

cone in the hi-half space, F(x, y) = F(x) >< F(y), where F(x), F(y) are the cones

with vertices at (x, 0), (y, 0) in R1+l, R2+l, separately. Given a function f on

14



Rh1 x RTh2, we define its Littlewood-Paley-Stein S function to be

2 [1 2 dx1dx2dsdt
S(f)(x, y) jj kbs,t * f(xi, x2)l s1t1r(x , y)

(One should note that for 1 <p < oc, IIS(f)II as a direct consequence of

Littlewood-Paley theory). We use the hi-Poisson kernel P3,(x, y), the product of

one-parameter Poisson kernels, to define the biharmonic extension of f by

u(x, y, s,t) = (P8, * f) (x, y)

and form the Lusin area integral as

2
dx1dx2dsdt

A2(u)(x, )
=

Vi V2n(xi, X2, , t), snlitn2-1

For any tempered distribution f on R' x Rn2, p> 0, we say that

f e H(R1 x RTh2)

f*(XY) = sup jqS,j * f(x,y)I E L(R1 x Rn2)

the nontangential maximal function

< > N(f)(x,y) = sup * f(xi,x2) E L(R x R2)
F(x,y)

S(f) E L)(Rfh >< R72) < > A(u) E LP(Rn1 x

where one may define the 'norm' IfMHP to be any one of

lIf*IILP IIN(f)IILP (S(f)((Lr IIA(u)IILP

(cf. Ft. Gundy and E.M. Stein [38], A. Chang and R. Fefferman [11], [12], [13]).

In other words, the space HP(Rfh >< Rn2) is an extremely nice subspace of

LP(R' x Rn2) which is stable under the action of any reasonable singular inte-

gral or maximal operator, in which the Littlewood-Paley characterizations continue

to hold, and in which each element can be realized as the boundary distributional

15



values of its harmonic extension to R1+E x R2 (For the precise description,

consult the exciting article of R. Fefferman [31]). In particular, for 1 < p < 00,

HP(Rfh x Rn2) is naturally isomorphic to LP(Rnh x Rn2) and when p = 1, we have

the characterization

Hi(Rfh x Rn2) ={f E V(R' x R2) : R1 E L1,R2) Ti

RR2EL',j=l,2,...,ni,k=l,2,...,n2},

where R1 R2 are the Riesz transforms associated to Rn', Rn2, respectively.j' k
Let us turn now to a concise description of the atomic decomposition for the

space HP(Rfh x Rn2), which turned out not to be a routine iterative extension of

the classical results of R. Coifman [19] and R. Latter [42], due to a counterexample

of L. Carleson [9].

According to A. Chang and Ft. Fefferman [11], [12], for 0 <p 1, an H function

f on R' x Rn2 can be decomposed into atoms a supported on open sets of finite

measure such that aç = >IsEM() as, where M() denotes the maximal class of

dyadic rectangles (product of cubes) S C 1. The rectangle atoms as are supported

in a 2-fold enlargement of S and have a certain number of vanishing moments in

each variables separately. Moreover,

IIaIIL2 < ii p and IksII2 IcuIi_.
SE M ( )

The relevance of the preceding decomposition stems from the fact that it yields a

number of important results through its simple applications. As a useful example,

an elaboration of the technique for the proof of the atomic decomposition leads to

the analogous result of the Calderón-Zygmund lemma in the product space setting.

16
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Theorem 3.1 (A. Chang and R. Fefferman[12]).

For ci > 0, f E LP(RTh' x Rn2), 1 <p < 2, there exist g L2(R' x Rn2) and

b H'(R' x Rn2) satisfying

f = g + b, a2P1f11, and Ib!H1 CcI' fliPI.' iip

On account of the Marcinkiewicz interpolation theorem, we immediately attain

Theorem 3.2.

Let T be a sublinear operator with the property that

)TfIIL1(Rnl xR2) B, JJfJJHl(Rn1 xR2),

llTfIIL2(Rnl xR2) B2 If IL2(R1 xR2).

Then we have

IITf}ILP(Rn1 xR2) <C B° B IIfIILP(Rni xR2) for = 1 - , 0 <6 < 1.
p

For the classical interpolation results on HP(R), refer Ft. Coifman and C. Weiss

[20], p.596.

These results are significant from the point of view of the Calderón-Zygmund

machinery in attempting to establish the L-continuity of a singular integral oper-

ator. We are able to shift the focus of our attention from the 'weak' V theory to

the 'strong' (H', V )-theory where we are endowed with extremely nice functions

and above all with atoms.

However, a major drawback of this atomic decomposition is the fact that atoms

are supported on arbitrary open sets, or putting in another way, rectangle atoms

do not span H spaces. With a view to circumventing this deficiency, R. Fefferman

exploited his own version of Journé's geometric lemma [40] to set up a particularly



IaI

and for certain integer-valued N(p),

L2(R' xR'2)

then a is called a rectangle atom on H (Rfh x Rn2) (for p = 1, N(p) = 0). For

'y> 0, we shall denote the concentric -y-fold dilation of R by R and its complement

by

Theorem 3.3 (R. Fefferman [29]). Let T be a bounded sublinear operator on

L2 (Rn' >< Rn2). Suppose that for any rectangle atom a(x, y) supported on the

rectangle R and "i' 2, we have

fTa(x,y)(dxdy < Cy with some 8>0.

Then T is bounded from H (R" x R?'2) to LP(Rfh x Rn2).

For the purpose of studying the behaviors of our square functions, we shall ex-

amine the above criterion in detail. From now on, we assume that a(x, y) is an

H1 (Rfh x Rfl2)atom supported in R I x J and write 1(1), 1(J) for the side

lengths of I, J, respectively. Since our square functions have similar structures,

we shall mainly concentrate on the function G23 and keep track of any necessary

adjustment for other square functions later. Following Ft. Fefferman and K.C. Lin

[33], we split 1 into three subsets

= (I Cj) U (dI x J) U (C - Ix cf - x J)

c c u c3 whenever 2,
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valuable result which can be regarded as a far-reaching extension of the Calderón-

Zygmund theory to the two parameter product case. To describe in detail, we first

clarify the meaning of a rectangle atom. If a function a(x, y) supported on the

rectangle R = Ix J satisfies that

Ja(x,y)xdx = 0, I] a(x, y)x dy = 0, kI /I N(p),



and note

Gija(x,y)idxdy = (j +f +J
)CR \ Ci c2 CR3

To begin with, we work on the first integral.

Lemma 3.1. For an arbitrarily small E > 0, we have

fGjja(x,y)dxdyR

for some 8> 0, where

Proof We first write

IGjja(x, y)J dx dy
= f IyI_k2Iylk2_Gija(x, y)j dx dy.

CRI CR1

Apply the Cauchy-Schwartz inequality to see that it is bounded by

1/2
1_2k2+2 dx dy (j

J t\C

C_y_h/2+IIl/2IJIl/2_k2/n2/2
/ 1(J) 00 00 00 dsdtl

{ f f f + I I f) IyI2k2_2sITitax,y2 dxdy
Jl(J) Jo

= c 7_+jII1/2IJI1/2_k2/n2+e/n2{(J)1/2 + (ll)h/2}.

Let us look at the first expression. If we set

= [Li3 and Kj'(x,y) = s1t2K (x/.s,y/t),

(f

ru =

{ 2i(a)+j(1_b+E+Z),

2

22+3(112+ 2

fori,j
for i 0,j <0
for i <0,j
for i,j <0.

y12k2_2elGija(x, y)12 dx dy

Gia(x, )I dx dy.

1/2
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(3-1)



then as

T'ta(x,y)
= f

(f;x - x',y - Y1)a(x',y1)dxl) dy',

Minkowski's integral inequality coupled with Plancherel's theorem on the x variables

shows that the integrand expression with respect to
d:dt

in (I) is dominated by

[ J12k2_2E

(IA!
f Kjt(x - x',y - y')a(x'

Jc

J- ii22e (f{fcJ_y J Ri

ciiJIfCj J RThi

tTh2k3 (8
yy'\

- - fl2 A'1 Y ')

2

= cf (iI_Th2 * (D) (s) di7
R2

1131=k2

fR2
(Il_n2 * (5) (s,i) 2d7

/3

2/p

j3=k2

IJIRflI
ja1(,yf)(2 IyIk2k (se, y)

JR2

where = - -f-, by an application of the Hardy-Littlewood-Sobolev fractional
2 p n2

integration theorem (see [51]).

2 ds
dyddy'

S

2

dy
= j lyl (!y!k2k (se, ))

R 2

2

dy

20

2}1/2)2

2

de} d1) dy

ddy'dy, (3-2)

where the last inequality followed after applying Hôlder's inequality. Using the

fact that JI for y E cJ y' E J, integrating and changing variables

accordingly, we notice that (I) is controlled by

(3-3)

except the multiplicative constant CIJI2k2/n2_2E/n2. Now use a Fourier transform

formula related to the Riesz potentials to get

(3-4)

fRn2
y1k2_ekl (se, )

'yf) dx'



We now estimate the right side term of (3-4). In the case i,j compute

(a) (s,ii) =

= 2IaI (a) (2iij) (5gm) (se, ),cy!

to observe that

(se, ij) aH_b X{2i_1<Is<2i+1,2i_1<II<2i+1}

and subsequently the summand in (3-4) is at most

Ci3I_2aX{2_1<ISI<2+1} (I II_bPd)
21

X{21-1<IseI<2+'J

It follows that (3-3) is bounded above by

cfJI2k2/n2_2E/n22_2az+22(_b+) / JR1 a1( ')I2 ddy'JJ
cji' J1l+2k2/n2-2/n2 2-2ai+2j(b+-)

by using the atomic properties of a(x, y). As to the case i 0,j < 0, we notice

that

(oit) (s,) =
cH- -y=

a!')'!
(a) (2-in) (a) (s,q),

and Leibniz's formula shows

(O[t) (se, ) = (Om) (se, )

- C(a'p)() [ (ôm)(s,0),
LIPIk2,P2

! (a(2-i)) (5m(s, ))cy.

21
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Since (ô"p) (0) = 0 except when 'Xi = 0, we have (3t) (se, 0) = 0, and MVT

implies the existence of some such that

(ô) (sj) = > {(ô+Tm) () - F(s)]
1r11

where F is the appropriate partial derivative of the latter term satisfying

for 1.

Thus }(8)(se,ij)J <CIsjJ and

I
(Ui) (se, i)I C2_ik2 IsI_a Ii

Consequently,

2/p

(fRfl2 (o) (se, )jP dii) C22j(1+_k2) SI_2aX{2i_1<II<2+1},

whence (3-3) is less than or equal to

cJIJ-1 JJJ-1+2k2/n-2/n2 2-2ai+2j(i+--k2)

2We continue this procedure for other cases to conclude that since - = -- + e,

(1)1/2 where =
2j()+j(1+k2+ -)

2j+j(12+ )

for i,j
for i 0,j <0
for i <0,j
for i,j < 0.

Toward the estimates involving the second part (II), we make use of the vanishing

properties of the atom a to write down

Tta(x,y) = f f(_yI)KJt(x - x',y - Sy')a(x',g')dSdx'dy'
- IxJ 0

131=1



Now we observe that

fRn2 II (ly2&k1 (se, ))
2

dy

Iyyk2&I(3,y)R 2

y - 8yF \)à(,y')

2

dyddy'
dsdt

ddy'd8dy
d:dt

R 2I/=k2

II=k2 (fRfl2
)) dii)

2/p
(3-6)

- -f-, by the Hardy-Littlewood-Sobolev theorem of frac-
2 p n2

Easy adjustments of the preceding estimations will lead us to

{ 2i(a)+j(1b+e+)
22()+j(2+/2)

2

Th2)

st

23

and follow the same lines up to (3-2) in the above process to find that the inside

expression of the parenthesis in (II) is dominated by

p00 p00 p plcIJ+1J I i-I1(J) 0 0 J R'
k - - 9fl jl

Once again - so it follows from the change of variables that the above

expression is majorized by

'00 '00CJ+1 I I t2k2_2_n2_2
JJJRi

Ia1(,yl)I2
J1(J) Jo

(3-5)

easily attain the estimates for fc Ga(x, y)j dx dy:

Now we put our estimates into (3-1) to complete the proof of the Lemma. LI

Due to the symmetric nature of our hypothesis and the domains c712, we

* ô (iijj(s, )) 2

dr7

where = 1,

tional integration

for i,j
for i 0,j < 0

for i <0,j

for i,j <0.

(11)1/2 < CA, where =



Lemma 3.2.

For an arbitrarily small > 0, we have

JGjja(x,y)Idxdy

for some 5> 0, where

2z(1+e+- ki)+j,

Next we shall prove

Lemma 3.3.

For an arbitrarily small > 0, we have

fGjja(x,y)IdxdyR

for some a > 0, where

Ajj=
2z(1 a+E+-)+j(1+E+- k2)

2z(1+_1dI )+j(1+e+ k2)

for i,j
for i 0,j <0
for i <0,j
for i,j <0.

for i,j
for i 0,j <0
for i < 0,j
for i,j <0.

24

Proof. For sufficiently small > 0, the Cauchy-Schwartz inequality furnishes us

Gija(x,y) dxdy
Rj

< Cy1(II112'' /TZ1+/?21 J11/2k2/m2+E/n2

( 7 i.1(J) p.1(I) (00 rl(I) 11(J) ,00 faQ coo1+11+11+/I
I.. \Jo Jo Ji(J) Jo Jo Ji(I) Ji(J) Jl(I)

fX12k1_21yj2k2_2e
Tta(x,y)2 dxdy

d:dt}h/2

Cy1 j-jl/2/i/ni+E/ni J1/2k2/n2+in2

[(1)1/2 + (11)1/2 + (111)1/2 + (IV)h/2]. (3-7)



In considering (I), we use the following majorization

IT'ta(x,y)) =

Apply the Plancherel theorem in y-variables to see that

A<C

<C

A C
f1t2

JJ2k22

Ic

=
IRnI JR 2

aI=ki,flf=k2
JRTZI fR2

fftn2
clr=ki,8I=k2

fKJ(x - x',y - y')a(x',y')dx'
IxJ

1/2

JII_1/21J1_h/2 (f KJ(x - x',y - y
)I

dx' dy')

where we used the Cauchy-Schwartz inequality effectively. It now follows that (I)

is bounded above by
,1(J) p1(I) p

iI,-1JI-' j I I IXI2k12eIyI2k22
0 0 eRa

IIxJ
lKi8t(x - x', y - y')2 dx' dy' dx d

d:dt

:; CII(+2k1/t -2e/ni jJ-1+2k2/n2-2/n2

fIxIk1lylk2_Kjj(x,y)j2R1 xR2

For the integral portion of (3-8)

A = f)x)k1_y2_Kjj(x,y)I2 dxdy,R1 XRh12

observe that

A C fR2
y2k2_2e

fRi
*1 y)

2

d dy

by the well known Fourier transform formula, where C = C(n2, e). Use the linearity

of convolution to write

(fRfll

fRfl

1fli+ *1
2

dy d.

HI' *1 {_n2+ *2 8fr .( ij)}j2 dd

2/q

II2 *2 d) d,

25

(3-8)

II_n1+ *1okj(,y)
2

dt dy



where = + -f-. As > 1, we invoke the Minkowski integral inequality to
q 2 n1 q

obtain

AC
kJ=k1,I13tk2

R1

cII_l/2IJ(h/n2_l/2 (

(fRfl2

{2i(a+e+-)+j(b++

2

22(_a+e+)+j(1+e+? k2)
2(1++ k)+j(b++-)
22(1++ - ki)+j(l++ k2)

q/2 2/q

*2 DD(?7)I2dl) d}

q/p 2/q

$a()JPd) d}

1 1 ewith -=-+.
p 2 n2

As in the case of Lemma 3.1, simple computations yield

(1)1/2 < CIII/2+kh/fh_/fuIJI_h/221n2_1n2

where

For the part (II), using the Taylor polynomial as before, we notice

1f I (y')oK"(x - x', y - Sy')a(x', y') d dx'
IxJ 0

aIq;t(x - x', y -

for i,j
for i 0,j <0
for i <0,j
for i,j < 0.

2
\1/2

dS dx' dr')

2

dxdy,

26

so that (II) is majorized by

Cl2kh1fh 2/ni j1-1+2k2/n2-2/n2

JR1 xR2
jxlk1_jy2_aK(x, y)

<C
IaI=ki,IflHk2 (fRfl2

JIXJL

1



by using the fact that lxi lxx'i, ii y-y'I with pertinent change of variables.

As in the case (Ii), the fractional integration provides that

fRT1 xR2
xik1_Elyik2_saKj(x, y)

2

dx dy

{f(f- R1 R2a k1, /9k2
1 1 El 1 E

with - = - + -, - - + -. Being our decay hypothesis independent of
q 2 n1 p 2 2

the orders of derivatives involved, it is not hard to see that we should be led to

(11)1/2 < CIII /2+ki/n1 E/fll J1-1/2+k2/n2e/n2 D3,

where
for i,j
for i 0,j <0
for i <0,j
for i,j < 0.

In view of akin formulations, we have analogous estimates for the third part

(111)1/2 < CiIi1/2''/' e/nj J1-1/2+k2/n2/n2 D3,

with
for i,j
for i 0,j < 0

2j(2+ ki)+j(b++-) for i <0,j
2i(2+e+2- ki)+j(1+-I-k2) for i,j <0.

Finally, we use the Taylor polynomial in both variables to obtain

(TV)112 ClIi12"" e/nl J1-1/2+k2/n2---/n2 Kz3,

where
2z(1_a++)+3(1+E+), for i,j
2z(1a+j(2+ k2) for i > 0,j <0
2j(2+e+ _kj)+j(1_b++!2) for i <0,j
2z(2+ ki)+j(2+-+ 22 k2) for i,j <0.

We now combine all of our estimates and put into (3-7) to finish the proof of the

Lemma. El

<C ô5

(
2j(a++)+j(11++),

I 2i(a+e+-)+j(2+e+-1c2)

1

=

2z(1+ k1 )+j(2+e+- k2)

q/p
)2/q

di) dj

27



Based on Lemma 3.1, Lemma 3.2, and Lemma 3.3, we now state

Corollary 3.1. For all 'y and sufficiently small e> 0,

fGjja(x,y)IdxdyR

Furthermore in reference to other square functions, we are able to state the

following results without any difficulty:

Corollary 3.2. Let 'y and > 0 be sufficiently small. Then there exists

&, 8, & > 0 such that

(1)

fa(x,y)Jdxdy CAuy,

(2)

where

where

{

{

22(2_+)+j(2+ k2)

22(2+ kt)+j(2+e+-k2)

ISa(x,ydxdy
C

k2)

22(2++ ki)--j(1--H-- k2),

fuja(x,y)jdxdy

22(1 a+e+ '-)+j(2+e+- k2)
2z(l+ -ki)+j(2b++-)
22(1+ ki)+j(2++ k2)

for some a > 0.

for i,j
for i 0,j <0
for i <0,j
fori,j <0;

for i,j
fori 0,j <0
for i < 0,j
for i,j <0;

for i,j
for i > 0,j <0
for i <0,j
for i,j <0.

28

where

{
(3)



Next observe that for each integer i, j,

1/2

f + 2Sf S1f}

. Gf)1/2
1/2

+ (2sf. Sf)
{ 2'1 Gf + 2(i+j)/2

}

+ { Sf + 2(ij)/2
}

In view of Theorem 3.1, we are finally led to the (H1, V)-inequality for the max-

imal operators T: We are finally led to the (H', L1 )-inequality for the maximal

operators T:

Lemma 3.4. For any 13 > + 1, j = 1,2, we have

!ITfIIL1(Rn1 xR2) C fH'(Rni xR),

where
2j a+li)-Fj( b+12)
2j( a+li)+j(+l2k2)

= 2j(hiki)+j(b+12),
-+1i--ki)+j(+12k2)

for i,j
for i 0,j <0
for i <0,j
for i,j <0.

29

It follows immediately by interpolating Lemma 2.2 and Lemma 3.4 and by sum-

ming each corresponding geometric series that T* is bounded in LP(R' x Rn2)

for qa,b <p 2. In dealing with interpolation, we used the fact that the negative

integer cases do not give any effect on the range of p's, which can be seen easily

from the note

for j=1,2.

Moreover,

max
2n1 2n2 '\

fli+2a_l'fl2+2b_1)'
in comparison with the range of p's stated in Lemma 2.1.



4. THE (L°°, BMO)-INEQUALITY

As was pointed out, the space H1(R >< R) serves as a good substitute for

Ll(Rfh x Rn2) for many purposes owing to the fact that a number of singular

integrals are invariant in it. There is also a class of functions near L°°(R' x R)

invariant under the Calderón-Zygmund operators, namely, the space of bounded

mean oscillation, BMO(R' xR). As a matter of fact, A. Chang and R. Fefferman

[11] characterized this space as the dual of H'(R' >< R) in the sense that every

continuous linear functional on H1 (Rn' x Rn2) arises as

p

f -+ I f(x,y)(x,y)dxdy
JRi xR2

with a unique .p E BMO(R' >< R') (cf. see C. Fefferman and E.M. Stein [25]).

In accordance with the preceding observation, we immediately obtain the follow-

ing analogue of Theorem 3.2:

Theorem 4.1.

Suppose that T is a sublinear operator such that

ITfIIL2(Rnl xR2) < M1 If llL2(Rf1 xR2),

IITfIIBMO(RnI xR2) M2 IIfL°°(R' xR2).

Then we have

IITfIILPRn1 xR2) M M If IILP(R' xRz) for
1 1 - 9
p 2

This duality kinship enables us to establish another seemingly powerful criterion

on the (L°°, BMO)-inequality, in the sprit of Theorem 3.1. For the precise state-

ment, we need to define a size measurement which plays an important role in the

product Fefferman-Stein sharp operator. Specifically, given a function f(x, y) on

30
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R' x Rn2 and a rectangle R = I x J, we define the mean oscillation of f over II,

OSCR(f), by

OSCR(f) = inf (IR If(x,y) fi(x) - f2(Y)I2dxdY)

where the infimum is taken over all pairs of functions f , f depending only on the

x, y variables, separately. It turns out that in order to check the boundedness of

an L2-bounded linear operator from L°° to BMO, it suffices to look into its mean

oscillation over rectangles.

Theorem 4.1 (R. Fefferman [30]).

If T is a bounded linear operator on x Rn2) such that for any rectangle

R and y 2,

OSCR(Tf) < Cy for some 6> 0,

whenever f is an L°° -function supported in with f)) 1, then

((TfIIBM0(Rnl xRTh2) C ((f(IL,o(Rn1 xR22) for all f x Rn2).

Let us include a proof of this result for the sake of comprehending the duality

kinship. Let T be the adjoint operator of T. Taking the duality into consideration,

it is sufficient to prove that l(f)L C If [ui for which it is in turn enough to

establish

for a rectangle atom a supported on R in view of Theorem 3.3. Note that for any

functions fi , f2, if we denote the unit ball in L°° (Rn' x Rn2) by B and the set

Jc
i'a(x, y) dxdy C'y



of those elements supported outside C by 5, then

so that

and we are done.

Going through similar reasonings as in the section 3, we shall derive the following

result:

Lemma 4.2. For every -y > 2 and arbitrarily small > 0,

OSCR(Gjf) C'yA,

for some cr > 0 whenever If II < 1, supp(f) C where is the same

constant defined in Lemma 3.3.

Proof Introducing

L7.t(x,
)

It(x Y) X{s>O,l(J)<t<oo}
00 00 d.sdt\112

h(x)= ( f L *f(x,0)12 )

Ta(x, y) dxdy = sup
fEL

= sup
fEL3

Iftfll xR2
a(x,y)f(x,y)dxdy

a(x, y)

fRh1 xR2
a(x, y) (Tf(x, y) - fi(x) - f2(y)) dxdy

1/2

< sup OL2 (J Tf(x, y) - fi(x) - f2(y))2 dx d)
fEB R

1/2

( f Tf(x, y) - fi(x) - f2(y))2 dx d)= sup
fE&0

dxdy sup OSCR(Tf)
fEL3
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we observe that

/
fR

h(x)2 dxdY)OSCR(Gjf)

00 00 2 dsdt 1/2
1 1<ij (ff f K't*f(x,y)Lf*f(x,O) dxdY)st

{ (jl(J) 1(1) 1(J) 00
2 dsdt1 1 I f f)f st0

/00 00 dsdt"
+ (f f I jKjt*f(x,y)_K*f(x,O)2 dxdy

)}/
\ 1(J) 0

III_IJI_{(I)h/2 + (11)1/2 + (III)h/2}.

For the part (I), an application of Minkowski's integral inequality in interchanging

the order of integrations shows that it is dominated by

11(J)11(I)1

{i [f (L_11 II't(x' Y') dx') dx]
1/2

d1} dy

Let us put
2 1/2

A = 1

(L_11
Kjt(xl,yl) dx') dx]

By the translation-invariant nature of our estimates, we may assume that the center

of the cube I lies at the origin. Thus if x E I, then xI Ih/f1. We notice

that

Ix- x' El

(fX2_11III1fn1+ I) Kt(xl, y') dx'
x-x'EI

= (I + K1t(xt, ')I dx',
k<10 Ak(x)

where

33

(4-1)

dx'

Ak(x) = {x' E RTh' x - x' E I, x' <2_h1IIIhmfh,

2x' < x - x' <2'1jx'}.



It follows readily that

A
k<1O

2
1/2

[i (Lk(X) IK't(x',y')i dx') dx]

IKJt(x1,yl) dx') dx]

1/2

In the first place, since

Ak(x) C Bk = {x' E Rn': x' 2_kv/nlIjl/nh},

we have, for 0 < X

LkX IKt(xI,y1)Idxl

C1,A2' I Ix - xtIfh IhIfh_A KJt(x, y')
j
dx'

Bk

= C1,A2IA(gk)(x,y)

where

gk(x',y') XBkIXI' Kf(x',y')I,

and IA(gk)(x, y') denotes the Riesz potential of gj. We now appeal to the fractional

integration theorem and then the Holder inequality to observe that

As >
k<1O

34

Cnl,AIIIA/fl 2k(ni-2A) (f IxhIfh_AKt(x,y)I2
k<1O

1/2
, 2 .

Gil k1/ni+/n1
(IRfll

(Ixtlk1_EKJt(x,y )j dx)

+ [i (L1>2-1111111
As +AN.



where we let ,\ = - k1 + . On the other hand, it follows easily by the Cauchy-

Schwartz inequality that

JIxhI>2h1IIIh/fI
jKJt(xf, y') dx

Therefore,

1/2
s,i I i 2

AN CIIIl_kh1fh/ (fRnl IxF(k1Kjj (x ,y ) dx')

and the same inequality holds for A. We now make use of the Cauchy-Schwartz

inequality in the integral over J7 and then change variables x' sx", y' ty"

to arrive at

(I) C7-IIIIJI ffR' xR2
IIxhIk1_Kij(x ,y )I dx'dy'

C-(°lIjIJ(Ej,

for some a > 0, where the constant was defined in the proof of Lemma 3.3.

Next in dealing with part II, we observe the following simple dominations:

ciiff't *f(x,y)IdxdyIxJ

[J (J K(xl,yl)I2dxl)dy]dxdy
IxJ R1

x ffIIyhIk2_eK(Xl,yl)I2dXIdyI,R' xR2

C)IIh/2 /ni+/ni (fRn'

1/2

IxhIk1_K;Jt(x/, v')I2 dx/)
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and in view of the first estimation process in the proof of Lemma 3.1, we end up

with (II) <CyIIJE.



To the end of estimating (III), we first note that

K.,t * f(x,y) - i<j * f(x,O)

where

Lf(x,y) =

If supp(f) C CR3, then we subtract the function h(x) + (y) + C where

c= (f00

00

f p.t*f(OO)(2 dsdt)2

Pjjt(x, y) = K'(x, Y)X{l(I)<s<oo,l(J)<t<oo},

from the formula of oscR(G3f) to end up with akin estimates.

On account of Theorem 4.1 and inspection on the method of our proof, we are

led to the following proposition

s,tKt(x - x', y - y') - K. (x - x', y')} f(x', y') dx'dy'

= f y(DKj)(x - x', Sy - y')f(x', y')ddx'dy'
I=1

by Taylor's formula. First of all, we split the regions of integration with regards to

the measure into two intervals (0,1(1)) and [1(1), oo) as usual, and then we apply

the same techniques as in the preceding case, while our estimates will be essentially

slight variants from those of the second case in the proof of Lemma 3.3, to finish

the proof. 0

In case when supp(f) C cf2 Cj x J, we would get oscR(G3f)

for some & > 0, upon considering the auxiliary function

00 00

()=(J J *f(O,y)
2 dsd1'\1"2

st )
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Lemma 4.2. For all integers i, j and for any I > + 1, j 1,2, we have

IiTjfIlnMo(Rn1 xRTh2) Cz3 IIfiLRn1 xRTh2),

where , is the constant defined in Lemma 3.4.

We should note again that the negative integer cases are irrelevant to our purposes

so far as interpolation and summation of geometric series's are involved.



5. THE L-BOTJNDEDNESS OF T* FOR 2 <p < r,i

If we interpolate Lemma 2.2 with Lemma 4.2 and sum each suitable geometric

series, we would obtain the L-boundedness of T* for p satisfying

which does't provide the better range of p's asserted in the main Theorem A. As in

the paper of Rubio de Francia [46], we shall acquire the improved range 2 <p < ra,b

in the following approach. Given m E L°°(R' x Rn2), we let IImIIMLP be the

norm of Tm as an operator in L, where (Tmf) mf. Under the same setting

as in the section 2, we have the following proposition (compare Lemma 7 in [46]).

Lemma 5.1. For 2 <p < oc, f E LP(RTh' x

cp iij + hi mjjhI hIihI } IhfhI

for all integers i, j.

Proof. For p> 2 we notice that

00 100

Tfj
J Jo

(IZ'fI)
00 00

I L
Tjtf P_l

.10

ds cit

,.00 ,00

+ p(p 1) / J
(Tf(2 Q fi

JO 0

00 00 dsdt)'
(f00

00

of
00 00 dsdt" (p-2)/p

+(p_i)(j (T'tf(
)

00 00 dsdt \ 00 DC)

ii I ) (f f(f
S

Z3 f

P dsdt\
t )

P dsdt'\1
st )
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1

p

1

2

1 1 i
a

<minini+2 _),2+2(b_)},(

i8j,tf ds dt

Qtf ds dt



a consequence of repeated Hlder's inequality, where + = 1. Since
; 2)

+

2
- = 1, integrating over R' x Rn2 and applying Hlder's inequality again, we see
p
that

{ 11/p' p1/p + ,p/(p_2) j1/P j1/Pl
LP(Rfl xR2) zj zj zj zj ij J

where
/ 0000 dd

'ii = I I TiJtf1P S
dxdy

JR'i xRTh2 JO Jo S

with analogous representations for ijj, Jj, and J. For fixed integers i, j, we select

Schwartz functions bk in R' such that f çbj dXk 0, k = 1,2, and

jf leil
2j+1,

2(2) 1 if 2' 2l

'p
z3

T I
I

Setting b3,t(xi,x2) = S Itfl2/i(xi/s)2(x2/t), we have

00 00

L fR1xR2

IIjllMLP / I i * f(x, )1P dx dy
dsdt

Jo 0 R' xRTh2 st
00 00

2 dsdt\2
lIiiMLP /

XR ( L (s,t*f(x,y)I st )JR!1

CpIJ/1jjJJjp If IILP(R1 xR2) whenever p> 2,

1/p

ip dsdt
JT' * f) (x, y)I dx dy

st

dx dy
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where the last inequality is a direct consequence of the iterative Littlewood-Paley

theory in the product space formulation. We notice that in the same manner it

is possible to get similar estimates for ij, J3, and L3 without any difficulty and

therefore the proof is validated. E

We are now ready to finish the proof of Theorem A. For p = 2,

II[tij IIML = II['ij 1100
2jjb



and the (BMO, L°°)-norm of is at most

C 2i(1+e+)+j(1+e+) for sufficiently small e > 0.C

Interpolation yields

I1Lij lMLP C 2j(_a+e+(2+1)9)+j(+F(+1)G)

with 8 = 1 - Carrying out the same procedures to the other multipliers, we
p

shall obtain

MiLj MMLP C 2j(1(1)8j(11)0)
mij MMLP C

2i(1a+e+(!1+1)O)+j(_b+e+(+1)8)

Iñ:i MMLP : C 2i(a+e+(-+1)8)+j(1b+e+(-+1)9)

when i,j 0 and consequently,

C MfMII 23 lIp

the series of norms of which converges if and only if

1 In1
and

p

that is,
( 2(ni + 1) 2(n2 + 1) \

p < mm n1 - 2a+2' n2 - 2b+ 2) = Ta,b.

The proof of our main theorem is now complete.

40
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