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THE fUADRATIC FORMULA IN BANACH SPACE

CHAPTER I

INTRODUCTION

The generalization of the simple linear equation

(1.01) ax + b = 0

to the more abstract setting of a Banach space In order

to obtain results concerning finite and infinite systems

of linear equations, as well as linear Integral equations,

has resulted in rich mathematical theories and results of

practical i portance. In an attempt to deal with the

nonlinear systems of equations and integral equations

which arise from mathematical physics, it seems natural

to consider such a generalization of the algebraic equa-

tion of degree ns

(1.02) a xn + a xn-10 1
+ + an_ix + an

In particular, for n = 2, equation (1.02) reduces to

(1.03) ax2 + bx + c = 0,

the familiar quadratic equation. For the solution of this

equation in the case a yi 0, there is available the conven-

ient formula

(1.04)(b2 4ac 1
+F-b

The purpose of the present study is to give a natural
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generalization of equation (1.03) to Banach space, to ex-

amine its properties, and to determine the extent of the

validity of the quadratic formula (1.04). As such equa-

tions may arise from the retention of second order terms

in the formulation of mathematical descriptions of physi-

cal systems results concerning their solution could be

of considerable practical importance.

The remainder of this chapter is devoted to the con-

sideration of the basic definitions and results concerning

Banach spaces and linear operators on them. For the pur-

pose of illustration, a number of examples of such spaces

and operators of importance in applied mathematics are

readily available (1, pp. 78-95, 7, pp. 5-15, and 10, pp.

100-108). The following set of postulates (10, pp. 92-

93) serve to characterize a complex Banach space. If the

word complex" is replaced everywhere by "real", they

also serve to define a real Banach space.

Definition (1.A). A set X is called a complex linear

space if for the elements of X there exist two uniquely

defined operations, an addition and a multiplication by

complex numbers such that (x + y)EX for all xly e X, and

(Nx)tX for all xeX and all complex numbers X. There is

for these operations the following rules:

10. x + y = y + x.

y) + z (y + z).



30. If x + Y = x z' then y = z.

4°. A(x + y) = Ax + Ny.

50. ("(1)x = Onx).
60. (1)x = x.
On the basis of Definition (1.A), it is possible to

derive the existence of an element OsX such that x + 0 =

0 + x = x for all xeX, and (0)x = 0 for the multiplication

of x by zero (10, p. 93).

Definition (1.B). A, complex linear space X is called

a complex normed linear space if to every element xsX there

corresponds a nonnegative real number 11xH (the norm of

x) such that:
1°. MAx11= 1

2°. fix + 11x11+

30. 11,01 > 0 for x O.

Definition (1.0. A complex normed linear space X

is said to be complete if for every sequence fxril of ele-

ments of X which satisfies the condition

lim 11xt xmll= 0 as m,n OD

there exists an element xsX such that

lim xnH . 0 as n

The sequence 1xn1
in this case is said to converge to x.

Definition (1.D). A complex Banach space X is a

complete complex normed linear space.

A Banach space thus has properties In co on with
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the real and complex number systems, which are the most

simple examples of Banach spaces. In what follows, the
symbol X and the word spaoe will always denote a Banaoh

space.

Definition ( .E). An operation P from a space X to

a space Y is a set of ordered pairs (x,y) of elements
xaX, yeY such that there exists an (x,y)eP for all xeX,
and if (x y)eP for a given xeX, (x,7)0 if y y. The

statement (x,y)eP is symbolized by

(1.05) y = Px,

where P will be called an operator for mapping X into Y,
or simply an operator from X to Y. If Y = X, P is said
to be an operator in X.

Examples of operators in a space X are the identity
operator I defined by Ix = x for all xeX, and the null
operator 0 defined by Ox = 0 for all xeX.

Definition (1.F). If R and S are operators in X,
their sum (R + S) is defined by
(1.06) (R + S)x = Rx + Sx

for all xeX, and their product (RS) by
(1.07) (RS)x = R(Sx)

for all xsX.
Definition (1.G). An operator P in X is continuous

if urn Ux = 0 as n co implies lim tPx Pxrin = 0

as n OD it is additive if P(x + y) = Px + Py for all
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xly s X; and it is homogeneous (of first degree) if for

all numbers X, P(1x) = N(Px).

An additive and continuous operator is homogeneous

(1, p. 36).
Definition (1.H). An operator P in X is bounded if

there exists a nonnegative real number M such that

(1.08) Py H <M H

for all xty sX. The greatest lower bound of the numbers

satisfying equation (1.08) is called the bound of P,
and is denoted by OPH .

It follows that if R and S are bounded operators in

PE + sd

(8, p. 194). An additive operator is bounded if and only

if it is continuous (1, p. 54).
Definition (LI). An additive and continuous (or

bounded) operator L in X is said to be linear. If for
a given linear operator L, a linear operator iT1 exists

such that

(1.11)

is called the inverse of L.
A necessary and sufficient condition for the exist-

ence of the inverse of a linear operator is given in the

+ 110



(1.12)

Here the notation Rn for an operator R in X is de-

fined by Rn = RR all positive integers n, with

0R =I by definition. On the basis of Theorem (1,A), it

is possible to derive another necessary and sufficient

condition for the existence of the inverse of a linear

operator L.

Theorem (1.B). If L is a linear operator in X, L

exists if and only if there exists a linear operator R

such that R 1 exists and HR 1,11 < 1/IIR

Proof: If R exists, take P 1. Then

(1.13) I PL=R

and from equation (1.10

(1.10 I PLfl fIBHRL1< 1,
so L exists by Theorem (1.A). If L exists, take R=L

so that R exists, and

(1.15) IIR L LH= 0 < 1/IIL 111.

There is no . ant alteration in the above

PL) ''P.

6

following theorem (9, P. 979).

Theorem (1.A). If L is a linear operator in X, L

exists if and only if there exists a linear operator P

such that P exists and II PLII< 1. If these oondi

time are satisfied,
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considerations if the operations and operators are defined
from a space X to a space Y.

Definition (1.J). If L is a linear operator from a
space X to a space Y, the set
(1.16) 0[14 = [x: Lx = 0}

is called the null space of L.
Due to the linearity of L, O{L} is a linear subspace

of X. From Theorem (1.A), L-1 cannot exist if 0{L} con-

tains any element of X different from 0.
Definition (1.K). If L and R are linear operators

in X such that R2 = L, R is called a square root of L, and
is denoted by L1/2.

Square roots of linear operators will arise in the
generalization of the quadratic formula (1.04) to a Banach
space X.

Theorem (1.0). If L is a linear operator in X and
1/2L exists

(1.17) L1/2 (L1/2

exists if and only if L-1 exists.
Proof: If L-1/2 exists, L2 exists1

as L = (L1/2L1/2). If now L-1 exists,
(1.18) (L 1 1/2)L1/2 L1/2( 1/2

and it follows that
(1.19) L1/'2 1L1/2

exists.



CHAPTER I

BILINEAR OPERATORS

The concept of a bilinear operator is fundamental to

the generalization of the quadratic equation (1.03) to

Banach space. The following theorem (6, pp. 32-33) plays

a key r8le in the notion of a bilinear operator.

Theorem (2.A). Let (X) denote the set of all linear

operators in a Banach space X. With addition and scalar

multiplication of elements of (X) as given in Definitions

(1.F) and (1.G), and !ILI' defined for all Le(X) by Defi

nition (1.H) (X) is a Banach space.

Definition (2.A). A bilinear operator B in a space

X i a linear operator from X to (X).

B is a bilinear operator in X, for all xeX, Bx

is a uniquely defined linear operator in X. Thus for all

yaX,

(2.01) Bxy = (Bx)y = z

is a uniquely defined element of X. Thus to every ordered

pair of elements of X a bilinear operator B corresponds a

unique element of X. The rules for this correspondence

are ar follows: As Bx is linear,

(2.02) Bx(y + z) = Bxy + Bxz

and since B is also linear.

8
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(2.03) B(x + y)z = Bxz + Byz.

Both B and Bx are homogeneous of first degree, so for all

numbers k and n,

(2.04) B( x)(1-13r) = (01)Bxy.

The operators B and Bx are also bounded, and hence from

equation (1.10

(2.05) IIBxyIJ<

where equations (2.02-05) hold for all xortz EX.

Definition (2.B). Corresponding to every bilinear

operator B in X are the bilinear operators B*, called the

permutation of B, and E, called the mean of B, which are

defined respectively by

(2.06) B*xy = Byx

and

(2.07) Ty = xy + Byxl {B + B41}xy

for all xvy e X. A bilinear operator B such that Bz=B* =1"ii

is said to be symmetric.

An Important class of linear and bilinear operators

in a space X are the first and second Fx4chet derivatives

of operators P in X (4, PP. 291-323) In what follows,

the word "derivative" will always mean "Fr4chet deriva

tive.
Definition (2.C). By E) is meant any real function

the real variable e such that

2.08) lim .o(e) = 0 as e 0.1
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Definition (2.D). If P is an operator in X, and for
some point xeX there exists a linear operator (dP1x) such
that
(2.09) 1P(x + Ax) (dP1x)Ax11=

P is said to be once differentiable at x and (dP1x) is

Galled the first derivative of P at x.
Definition (2.E). If for some A > 0, P is once dif-

ferentiable at all 2 such that I < A and a bilin
1ear operator (d2 Plx) in X exists such that

(2.10) 11(dPlx+Ax) (dP1x) (d2P1x)Ax11 = o

P is said to be twice differentiable at x, and d Plx is
oalled the second derivative of P at x.

If (dP1x) and (d2P1x) exist, they are unique, and
d P1x) is symmetric (6, pp. 81-82). Differentiation in

the sense of Frechet obeys the following rules (7, pp.
159-166):

(2.11) (d{R + }1x) (dR x) + (dSlx),

(2.12) (d RS lx) = (dRISx)(dSlx)

and

(R)Il
P2

I

I
1(2.13) HP(x+Ax)Px (dP1x)Ax maxi!

= x + ?Ax, 0 < 1.

Given a bilinear operator B, a linear operator Ls
and an element y in a space X, consider the operator Q
defined by

(2.14) Lx+y

Lix112,
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for all xgX. From Definitions (2.D) and (2.E) it follows
at once that
(2.15) (d0x) = Bx + B*x + L = 2Bx + L

and

(2.16) (d20x) = B + B* = 2B

for all xg . If, corresponding to equation .14), the
operators $40fr and Q, in X are defined by

(2.17) Q*x = B*xx + Lx + y

and

(2.18) = Bxx + Lx + y

for all xgX, it is evident that
(2.19) Qx = Q*x = (7_7(

(2.20) (d0x) = (dO*Ix)
and

(2.21) (d2Q*Ix) = (d2Q1x)

for all xeX. There is thus no loss of generality in the
assumption, which will be made throughout, that the bilin-
ear operator B in equation (2.14) is symmetric, for a non
symmetric B may be replaced by its mean without altering

the value of the operator Q or its derivatives.
Consideration will now be given to the solution of

the linear equation
(2.22) Bx + L = 0,

where B Is a bilinear, and L a linear operator in X. If
equation (2.22) has a solution x, it can have another
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solution If if and only if (x 70E0 B . The null space

0{B} of B is determined from the null spaces of the lin-

ear operators Bx in X by means of the following theorem.

Theorem 2.13). If B is a symmetric bilinear oper-

ator in X,

(2.23) 01B 1TOOxl,
xeX

the product denoting he intersection of the sets 0{13x

Proof: If ye0 then Byx = (Bx)y = 0 for all xeX,

and y eTTO{Bx} . If now yerTO Bxy = (By)x 0 for
xsX xeX

all xeX, so By = 0 and ye0[Bj.

From the way in which the symmetry of B was used in

the proof of Theorem (2.B), it follows that for a general

bilinear operator B in X,

(2.24) 01B1 170[B*xl.
xeX

Theorem em (2.0). Equa on (2.22) can have a solution

xeX only if

(2.25) 001

and it can have at most one solution if 0{B} {0} for

some /sX.

Proof: From Theorem (2.13), 0 ( 0 Bxj for all

/WC. The linear operator L thus cannot be represented

In the form Bx unless equation (2.25) is satisfied. If

NMI gm {0} for some ReX, 0{B} 101 as 001BI and also



13

0{B} ( {0), in which case equation (2.22) has at most
one solution.

A number of examples of bilinear operators are given

by Kantorovich (V, pp. 155-166); these examples also in-
clude first and second derivatives of nonlinear operators.
Certain classes of bilinear operators in vector and func-
tion spaces will be considered in Chapter V.



( .04)

Thus

(dQ

CHAPTER III

THE QUADRATIC EQUATION

The expression

(3.01) Qx = Bxx + Lx + y = 0,

where the symmetric bilinear operation B in X, the linear

operator L in X, and the element yeX are given, is called

a quadratic equation in X. Any point xeX such that gx =0

will be called a solution, or root, of equation (3.01).

Theorem (3.A). Equation (3.01) has a solution xsX

if and only if there exists a linear operator M in X such

that
(3.02) Bx+L =

and

(3.03) Mx + y .

Proof: This is a restatement of the definition of

a solution xsX of equation (3.01) as Qx (ft + L)x + y

for all xeX.

Theorem (3.8). If = 0, then

Proof: From equation (2.15

(3.05) (WI2x) = BR + Bi + L.

14,
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= BRR + BiR + LR B52 L2

= Q2

= 0,

which establishes equation (3.04).
Theorem (3.0. If QR. = 0 and (dQI exists, the

solution 2 of equation (3.01) is unique in the sphere
(3.00 flx < 1/1 lIBM II (d.Q.

-aProof: By Theorem (1.B) (dQlx) exists for

(3.47) 11(dQlx) (dc)H< 1/UMII)
or, from equation (2.15), for
(3.08) 2 HB(x 1)U < (d050

As IIBzIt,< 111311 Hz!! equation (3.08) will be satisfied if

(3.09) Mx xI < 2{ l(d(), 2 1

or, equivalently, (dQly) fails to exist only if
(3.10) II y > II II (dgIt)

If now I I is a solution of equation (3.01), by Theorems
(3.13) and (1.A), (dOT 1 fails to exist, so from equa-
tion (3.10),
(3.11) 32-- M BI (do,IR)

As the inequality (3.11) is valid for every solution
of equation (3.01), there are no solutions x 2 of Qx =0

in the sphere defined by equation (3.06).
It follows from Theorem (3.A) that a solution x of

= 0 is determined if (d0x) is known for by (3.02),

(3.12) N (dQlx /2.



The derivative of Q also enters into the con deration of
quadratic equations by means of the addition formulas:

(3.13) Q.(x+R) = Bxx+(d015)x+QX = B12+(dQjx)R+Qx

and

(3.14) (x 5E) = R + ;)(.

These formulas provide a scheme for the classifica-
tion of quadratic equations in X.

Definition (3.A). The equation Q.0 =Buu +Lu +v

is said to be of first kind, if there is a zeX such that
(3.15) (dQ,Iz) = 0.

If the equation Qu = 0 is of first kind, set u x + z

so that from equation (3.13),

(3.16) Q(x + z) = Bxx + Qz =0.

For

(3.17) Y = Bzz

the problem of the solution of - quadratic equation of
first kind is thus reduced. to the consideration of the
equation

(3.18) x = Bxx + y = 0,

which will be called the normal form of the quadratic

equation of first kind. A quadratic equation of first
kind thus has a solution u=x+z if and only if Qax =0,
and z satisfies (3.15). It is to be noted that all equa-
tions (1.03) Involving real or complex numbers are of
first kind for a 0.
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Theorem (3.D). If usX is a solution of a quadratic
equation 0,12=0 of first kind, then Q(u+w) =0 for all

ws0{151}.

Proof: For all wc01131, and any ueX,

(3.19) B(u + w)(u + w) = Buu,

and by Theorem (2.C) as equation (3.15) is satisfied by
some zeX, ws0{B} implies ws0{1}, and thus

(3.20) L(u + w) Lu

for all us . As thus

(3.21) Qu = Q(u + w)

for all usX and all ws0{13}, ci,(u+w) = 0 if and only if

Qu at 0.

Theorem (3.E). The roots of a quadratic equation of
first kind occur in pairs: Gu = (,(z + x) = 0 if and only

if Qu Q.(z x) 0.

Proof: From equation (3.18), Q1x = 0 if and only if

Q1(x) = Os and the theorem thus follows from the satis-
faction of equation (3.15) by some zsX in the case of the
quadratic equation of first kind.

Definition (3.B). A quadratic equation

(3.22) = B'uu + Lu + v = 0

which is not of first kind is said to be of second kind if
(3.23) (dW iz) 1 = S

exists for some zEX.
If equation (3.22) is of second kind, set u=x +z
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where z satisfies equation (3.23). From equation (3.13)

(3.24) W(x + z) = B'xx + S x + 0

iS satisfied by (x+z)6X if and only if
(3.25) x = Bxx + Ix + y = 0,

where

(3.26) B SB' y = Nz.
Equation (3.25) is called the normal form of a quadratic
equation of second kind.

Theorem (3.F). The normal form of a quadratic equa-

tion of second kind is a quadratic equation of second kind.
Proof: From equation (3.25),

(3.27) (dQ210) = (dQ2!0)

so the normal form of a quadratic equation of second kind
Is of second kind if it is not of first kind. From equa-

tions (3.22) and (3.23)

(3.28) 2Blz + L

If there exists a FsX such that
(3.29) (c1Q2IF) = 2S1317 + I = 0,

It follows from equation (3.28) that
(3.30) (dc'lz) = 2TP(zT) + L 0,

contrary to the assumption that the equation Q'u= 0 is
of second kind.

Theorem (3.0). If Q. 'u =0 is a quadratic equation of
second kind, then for all x,it X,

(3.31) (Wlx) (dWIT).
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Proof: If equation (3.31) is satisfied by any x,REX, 

(3.32) ((IQ ix)= Os 

contrary to the assumption that C: '11=0 is of second kind. 

This is in contrast with the quadratic equation of 

first kind, where if Qu = Q.(z+x) = 0, by Theorem (3.E), 

= (z x) 0, and since (dt.dz) = 0, 

(3.33) (diz+x) =(&41r-x). 

Theorem (3.H). If u is a solution of the quadratic 

equation (3.22) of second kind, and w 0 is an element 

of 003'1, then k(u+w) 0. 

Proof: If u = z +x and u+w = x+z +w satisfy equa- 

tion (3.22), where 60{B1}, then x and x +w are solutions 

of equation (3.25). As 0f13} = O{SIP} = 0[13'1, 

(3.34) c42(x+w) = Hxx +x+w+y= Q2x + w 

and Q2(x+w) = Q2x + w = 0 if and only if w = 0. 

Theorem (3.1). If u and a are distinct solutions of 

a quadratic equation of second kind, then 

(3.35) (dQ'Iu) (W111). 

Proof: If (dWlu) = (Will), then 
(3.36) 2131u + L = 2B't + L, 

and so u However, by Theorem (3.H) 'u=0 

and Qta = 02 u then (u U)0[B1), which proves (3.35). 

These theorems for the quadratic equation of second 

kind show, by comparison with Theorem (3.D) for equations 

of first kind, that the properties of the equation of 



20

second kind are quite different from those of equation
(1.03) for real and complex numbers.

Theorem (3.J). If the quadratic equation (3.01)
has a solution xsX, it has a solution Rix in X if and
only if the quadratic equation

(3.37) Bii + (dlx)*
ha a solution * 0.

Proof: Set 2 = x+*. By equation (3.13), Q0 if
and only if * satisfies equation (3.3(), provided that
CAX = 0.

For the application of Newton's method to the solu-
tion of the quadratic equation (3.01), it is required that
(dqlz) exist for some zsX (2, pp. 827-831), so that
this procedure applies only to some equations of first
and second kinds.

Definition (3.C). A quadratic equation (3.01) for

which (d(41x)-1 fails to exist and (d0x) It 0 for all xeX
is said to be of third kind.

This definition is Included for the sake of logical
completeness; in what follows, only the quadratic equa-
tions of first and second kinds will be considered, and
these In their normal forms.



CHAPTER IV

THE QUADRATIC FORMULA

The quadratic formula (1.04) will now be extended to

quadratic equations (3.01) of first and Qecond kinds, and

it will be shown that the validity of this formula depends

on a certain property of the bilinear operator B.

Definition (4.A). If B is a symmetric bilinear op-

erator in X, the subset

(4.01) F{B} = {x: (Bx)2 B(Bxx) = 01

of X is called the factor set of B. If F(B) = X, B is

said to be totally factorable.

It follows that OeF{B} for all B, and that if xgF{B},

(Ax)610{B} for all numbers A, as B and Bx are homogeneous.

Theorem 4.A). If xeF{B1 and yeF{13}, (x+y)eF{B} if

and only if

(4.02) BxBy + ByBx = 2B(Bxr

Proof: For all xor e FIB} ,

(4.03) {B(x+y)12 BfB(x+y)(x+y)} = (Bx)2 + BxBy +

+ ByBx + (By)2 B(Bxx) 2B(Bxy) B(Byy

= BxBy + ByBx 2B(Bxy)

so that the satisfaction of equation (4.02) is a necessary

and sufficient condition that (x+y)eF{B} if x,yeF{B}.

For a given symmetric bilinear operator B in X, and

21



an element zsX, consider the three associated. bilinear

operators defined for all x,y E X by

(4.04) (Tz)xy = Bz(Bxy)

which is symmetri

(4 05) (luz)xy Bx(B y

and its permutation,

(4.06) ( *xy = By(Bzx).

Theorem (4.B). A symmetric bilinear operator B in

X is totally factorable if and only if

(4.07) Tz = Tiz

for all zX.

Proof: If equation (4.07) holds, then for all x,y,z

in X,

(4.08) 2B Bxy) = Bx(Bzy) By

d, in particular, for x = y,

(4.09) Bz(Bxx) = (Bx)2z,

or

(4.10) wix)2 Bxx) =0

and since equation (4.10) holds for each xsX and all zeX,

xeFfB1 for all xsX. If now B is totally factorable from

Theorem (4.A), equation (4.02) is satisfied for all x,yeX,

so equation (4.08) is satisfied for all x,y,z EX, which

implies that equation (4.07) holds for all zsX.

It will DOW be shown that the quadratic formula for

the solution of the quadratic equations (3.18) and (3.25)

22



is valid only on the subset FfB of X.

Theorem 4.0). The quadratic equation of first kind

01 x = Bxx + y = 0
°

has a solution xeF if and only if ( )1/2 exists and

(4. Bx =(_By)1/2,
and

(Li.. 12) 1/2 y = 0.

Proof: By Theorem ( .A), if (_By)1/2 exists and x

satisfies equations (4.11) and (4 2), then Q x = 0. It
thus follows that Bxx = yo so that

(4.13) B(Bxx) By 1(_By)1 2 (Bx 2

and x F If now xeF1B1 satisfies equation 3.18),

(4.14) (Bx)2 = B(Bxx) = By,

so that By 1/2 = Bx exis s and x satisfies equation

(4.11) the satisfaction of uation (4.12) by x follow-

lug at once from Theorem (3.A).

Theorem (4.D). The quadratic equation of second. kind

Q2x = Bxx + Ix + y = 0

has a solution xeF if and only if (I--4By)1/2 exists

(4.15) + (I 4By)1/21

and

(4.16) 2 (I 4By) 2 x + y = 0.
1/2Proof: 4By exists and x satisfies equa-

tions (4.15) and (4.16), then Q2 = 0 by Theorem ( .A).

It thus follows that



Bx By,

so vaip31. If now xeF[B1 is a solution of equation (3.25),

(4.19) I 4By = I + 4Bx + 43(Bxx)

= I + 4Bx + 4(Bx)2

= (I + 2Bx)2,

so that (I 4By)1/2 2Bx exists and x satisfies equa-
tion (4.15). By Theorem (3.A), x also satisfies equation

(4.16).
It may be noted that Theorems (4.C) and (4.D) hold

for equations involving additive and biadditive homogen-
eous operators in a linear space, as the metric properties
(boundedness and continuity) of linear and bilinear oper-
ators in a Banach space are not used in their proofs.
However, the analytic problems of the solution of linear
equations and the construction of square roots of linear
operators are considered more conveniently in a Banach

space. Unfortunately, the theory of the existence, mul-
tiplicity, and the construction of the square roots of
linear operators is not in a satisfactory state at this
time; in particular, the results obtained b Amax Hille
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(4.17) B(Bxx) By,

while from equation (4.15)

(4.18) (Bx) I-4By) By

{I 4By) By
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(6, pp. 124-126) hold provided that LM =ML for all L,M

(X), which is not the case for a number of vector and
function spaces X of interest in applied mathematics.

The multiplicity of solutions xeF{B} of quadratic
equations of first and second kinds is related in a sim-
ple manner to the multiplicity of square roots of the
linear operators By and I 4By, respectively.

Theore (4.E). If 01B1 = {0}, the quadratic equa-

tion (3.18) of first kind can have no more solutions x in
F{13} than there are distinct linear operators M such that

By.

Proof: If Bx = B2 = (-8 1/2 x )0[B}, and x=1
when 0{B} = {O). The Theorem now follows from equation

(4.11).

Theorem (4.F). The quadratic equation 3.25) of

second kind has at most one solution x018) corresponding

to each pair M of distinct linear operators M such

that M ) I 4By.

Proof: If for a given definition of (1

(4.20) Bx = BR + (1 4By)
2

then

(4.21) (dQ21x) ( #

and by Theorem (3.I), at most one of the elements x,K can

satisfy equation (3.25). If xaF{B} is a solution of equa
1/2tion (3.25), then for some definition of (1 4By) x
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satisfies equation (4.15). There is thus no REX such that(4.22)1/2BR =7{-I - (I - 4By) j

for the same definition of the square root of I 4,By, as

this would imply that

(4-.23) (d015E) -(dQ,

in contradiction to Theorem (3.0).
Theorem (4.0). If (-By) exists, all solutions

xEFIB1 of1= 0 are unique in the spheres
(L. - 301 < 2/{ HBII H 03x)

(I 413 exists, all solutions xEF{B} of Q2 X = 0 are

unique in the spheres
(4.25) xli< 1/{11B11 + nx) }.

Proof: By Theorem (1.C), (-By)1/2 and (I-4By) 2

exist provided that (.-By)--1, (-By)1/2, and (I-4By)-a

I--4By)2 exist, respectively. If now xEF{B} is a sol-

ution of Qix = 0, by Theorem (4.C),

(4.26) 2Bx = (dQ11x) = 2(-By)1/2,

and equation (4.24) follows from Theorem (3.0). Likewise,

if xEFIB1 is a solution of Q2x = 0, from Theorem (4.D),

(4.27) I 4. 2Bx = (dQ21x) = (I 4By)1/2

equation (4.25) thus following from Theorem (3.0).
As a consequence of the definition of the set FP}

it follows at once that 0{131 (-- FtB). For the roots of

Q lg. 0 and Q2x = 0 in OIBI, the following two theorems

are immediate consequences of previous definitions.
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Theorem (4.H). The quadratic equation Qlx = 0 has

a solution xe0[Bj if and only if y = 0, in which ease
Q x 0 for all xsO{B}.

Theorem (4.1). The quadratic equation = 0 has

a solution xsO{B/ if and only if yEO

x is the unique solution of 0 x = 0 in Offij.
in which case



(5.01)

(5.02)

(5.03)

(5.04)

CHAPTER V

QUADRATIC INTEGRAL

In order to illustrate the results of the previous
chapters, the Bch space X of real continuous functions
x x(s) 0 < s < 1, with the norm

max 1,(81
0<s<114"

will be considered. Linear operators in X are represented
by kernels L L(s,t), 0 < sot < 1, where the function
y(s) such that y = Lx is computed by

max
0<s<

0

is valid (5, pp. 155-15? and V, pp. 12-13).
The kernel of the identity operator I is defined

to be 8(s,t); that is,

,t

t)x(t)dt

x(t)dt,

8

and it is requ d that yeX for all xeX in order that L
be in (X). For the estimate
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for all xeX. Bilinear operators in X are likewise repre- 

sented by kernels B B(s,t,u) here the function z(s) 

such that z = Bxy is given by 

(5.05) 

It is ident that B is symmetric if and only if 

(5.06) B(s,t,u) = B(s,u,t) 

0 < sotpu < 
, 

except perhaps for a set of measure zero 

(10, pp. 64-69). For OH the estimate 

(5. (7) 

(5.08) 

available p. 158). The general quadratic equation 

n X thus has the form 

00 

a nonlinear integral equation. 

A characterization of totally factorable bilinear 

operators B in X will now be obtained from Theorem (4.B). 

From equation (4.04), 

(5.09) (Tz) 
00 

while from equation (4.05), 

,u)x(u)y dudt. 

,u)Idudt 

v)B(w,t,u)dvdw, 

dudt s,t)x(t)dt+y(s 



(5 .10)
11
pp

(Tiz) = 11B( u)B(w,t,v) v)dvdw,JJ
00

and from equation (4.06),

11
rY1

(T'z)* = OB(
00

t)B(w,u,v)z(v)dvdw.

Theorem (5.A). A bilinear operator B in X is tota
ly factorable if and only if

1

(5.12) 0/B(s,w,v)B(w,t,u)dw
0 0

1

wou)B( v)dw +

u,v)dw,
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toutv < 1, except for at most a set of measure zero.
Proof: This is a direct oonsequence of equations

(5.09-11) and Theorem (4.B), as the validity of equation
(4.07) for all zeX is equivalent to the totaly factor-
ability of B.

It follows from Theorem (5.A) that a bilinear oper-
ator B with a kernel B(s,t,u) which is a symmetrio func-
tion of sptsu is totally factorable. Simple examples of

quadratic equations of first and second kinds will now

be oonsidered.

Example (5.A). The equation



(5. 16

00

is a quadratic equation of first kind in normal form with
B(s,t,u) = 16stu and y(s) =--s. As B is totally factor-
able, the considerations of Theorem (4.C) apply. Here

1

(5.14) (By) 16/ s tU ciU 16

0

Two square roots of By) are 4st and--4st, as, for ex-
ample

ux(u)x(t)dudt

(5.15) 16

Corresponding to these definitions of By)1/2 are the
solutions x(s) = s2 and x(s) =--s2, as may be verified
from equations (4.11) and (4.12). As 0{B} consists of

all functions w(s) such that

(5.16 jrsw(s)ds = 0,
0

an example of which is

(5.17) w(s)

all functions
(5.18) x (s) = s X(3s

X

2

op < h < +CD, are solutions of equation (5.13) by Theorem

MD).
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xample (5.B). The equation

(5.19) 81J1 s ux(u)x( dudt + x(s) + ln s
00

of second kind, as if for some zeX,

(5.20 162 u u du
0

operation on x(s) = 1 yields

(5.21) 162z(u)du,

which oaimot be satisfied by any zsX as the function on
the right side of equation (5.21) is zero for s = 0. As

Theorem (4.D) applies to equation (5.19), and
(5.22) I 4By = 8(s,t) + 144st

/2consider ( 4By) = 8(s,t) + 18st and ( 4B )1/2 =

8(sot) t. By Theorem (4.F), one of these defi

nitions of 4By)1/2 must be rejected. From equation

(4.15) and the consideration of equations (5.20) and
(5.21), only (I 4By)1/2 =8(s,t) +18st is possible. Cor-

responding to this value of (I 4By)1/2 a solution of
equation (5.19) is
(5.23) x(s) s
as ay be verified from equations ()..15) and (4.16).



CHAPTER VI

AN EQUATION OF Cri.,,.DTASEICHAR

An important example of a quadratic integral equa-

tion is the one derived by Chandrasekhar in his study of

radiative transfer (3, pp. 87-126). Here it is required

to find x(s) such that

1

(6.01) x(s)
r s

---a x(s)/ x(t)dt,2 0 ',J s+t

0

where n is a constant called the albedo, and 0<ir
0

The attempt to solve this equation was one of the mo

vnting factors in the present study of the theory of the

quadratic equation in Banaoh space.

Equation (6.01) may be put into the form (5.08) with

B(s,t,u) satisfying equation (5.06) by setting A = no/4,

(6.02) B(s,t,u) {s+u(s't) 5(s,u)

(6.03) L(s,t) = 5(s ),

and

(6.) y(s)
As it stands, equation (6.01) is of second kind

if it is not of first kind. If for some zeX, I +2Bx=0,

then
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(6.11)

(6, pp. 85

(6.05) 2N
S Uz(u)dul8(s,t) = 2Nz(e

0

Operation on X(s)yields

u)du + sz( )(6.06) 2 f

0

which cannot be satisfied by any z6X, as the function
on the right side of equation (6.06) is zero for s O.

For E= 2N = Tro 2 and all xeX,

(6.07) +2Bx =

Also,

(6.08) I-4.By = 11

4By)1/2

0

By Theorem (4.D), equation (6.01) has

34

and for

(6.09) +1

(6.10) 413y 8(s,t) 2CK(s,t).

From equation (5.03), WI 2112, so that forE 4 1n2'
I--4By)1/2 may be expanded in terms of its Frechet de-

rivatives:



(6.12)

or

(6. 4) Kx = {K LK
2

a linear Integral equation. As the function on the right
of (6.14) is analytic in E, assume that

(6.15) x(s) = x0(s) + (s) + 2x2(s) + .

This gives for x0(s) x(s), ... a sequence of linear
Integral equations

0

(6.13) ln

in

s+

s,t) + x

et.

Hence, operating on R(s) = 1, x(s) satisfies 6.12) only

1
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a s on xFEi for this definition of ( 4By) 2 only



(6.16

(6.17)

Kx

xn+1

These equations have the obvious solutions

x (s)0

) K 1

= K(s,t)

(1)

(1

36

thus

(6.18) n+1 n2,

the uniform convergence of the series (6.15) is assured

for 4 1n 2, It is not difficult to show that x(s) as

given by (6.15) and (6.1V) satisfies equation (6.01).
Set



Then

(6.20) CJx = CK(1)

and.

(6.2

SO

(6.22) x(i7x) +1

1 s in

2 K(1)s in

2C K

2K(1) +-0(1) + ...I

1 2 2K (1) +

K(1) +-1('0 (1
2 2

x;
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that is, x(s) satisfies equation (6.01) formally for all
values of C = no/2. It follows that x(s) as defined by
(6.15) and (6.17) is a solution of equation (6.01) for

00 < 2 1n21 . On the basis of (6.21), it is to be ex
1pected that a continuation of this solution to 21212

no 1 is possible. (It is known that no = 1 is a limit-
ing case (3, p. 107).) Such an extension would go hand

in hand with a continuation of the expansion (6.11) of

(/-14a
1/2.

Numerical evaluation of the functions x ( ), 12(8),
... may be carried out readily with the aid of some type

of highspeed digital computer. In this connection it
should be observed that x2(s), x3(s), ... are all defined



in terms of integral transforms of

(6.23) x (s) = s

which has an infinite derivative at s = 0; a suitable
rule of numerical integration must take this into ac-
count. The numerical solution of equation (6.01) pre-

sented by Chandrasekhar (3, pp. 123-126) was obtained by

the use of a polynomial rule of integration. Although

the evaluation of x(s) was carried out by Chandrasekhar
along different lines than the method presented here,
the above considerations raise some doubt concerning the

38

accuracy of the tabulated v lues (3, p. 125).
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