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THE QUADRATIC FORMULA IN BANACH SPACE

CHAPTER 1
INTRODUCTION

The generalization of the simple linear equation
(1.01) ax + b = 0
to the more abstract setting of s Banach space in order
to obtain results concerning finite and infinite systems
of linear equations, as well as linear integral equations,
has resulted in rich mathematical theories and results of
practical importance. In an attempt to deal with the
nonlinear systems of equations and integral equations
which arise from mathematical physics, it seems natural
to consider such a generalization of the algebralc equa—
tion of degree n,

n n—1
(1.02) agx + ax + ... ta g x+a =0,

In particular, for n = 2, equation (1.02) reduces to

(1.03) ax® + bx + ¢ = 0,

the familliar quadratic equation. For the solution of this
equation in the case a # O, there 1s available the conven—
lent formula

(1.04) x = b & (b7 — sac) /2.

The purpose of the present study is to give a natural
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generalization of equation (1.03) to Banach space, to ex—
amine 1ts properties, and to determine the extent of the
valldity of the quadratic formula (1.04). As such equa—
tions may arise from the retention of second order terms
in the formulation of mathematical descriptions of physi—
cal systems, results concerning their solution could be
of conslderable praoctical importance.

The remainder of thls chapter is devoted to the con—
sideration of the basic definitions and results concerning
Banach spacee and linear operators on them. For the pur—
pose of illustration, a number of examples of such spaces
and operators of importance in applied mathematics are
readlly available (1, pp. 78-95, 7, pp. 5-15, and 10, pp.
100—-108). The following set of postulates (10, pp. 92—
93) serve to characterize a complex Banach space. If the
word "oomplex" is replaced everywhere by "real", they
also serve to define a real Banach space,

Definition (1.A). A set X is called a complex linear
space if for the elements of X there exlst two unlquely
defined operations, an addition and a multiplication by
complex numbers such that (x + y)eX for all x,yeX, and
{(Ax)eX for all xeX and all complex numbers A. There 1is
fér these operations the following rules:

1°. x + y =3 + x.

22, (x+y) 4z =x+ (y +2).



3% Ifx+y=x+ z, then y = 2.

B, Alx + y) = Ax + Ay.

590 (gn)x = g(nx).

6°. (L)x = x.

On the basis of Definition (1.4), it is possible to
derive the existence of an element OeX such that x + 0 =
O 4+ x=x for all xeX, and (O0)x = O for the multipllecation
of x by zero (10, p. 93).

Definition (1.B). 4 complex linear space X 1is called
a complex normed linear space if to every element xeX there
corresponds a nomnegative real number |/x|| (the norm of
x) such that:

1% diaxll= Ia) lix]l . |

2% llx + yliz lixil+ligll.

3%, x|l > 0 for x # O.

Definition (1.C). A conmplex normed linear space X
is sald to be complete 1f for every sequence {xn} of ele—
ments of X which satisfies the condlition

1im ﬂxn-w xm13= 0 as m,n => ®,
there exists an element xeX such that
1im |lx — xn!fn Oasn—> ®.
The sequence {xn} in this case is sald to converge to x.

Definition (1.D). A complex Banach space X 1s a

complete complex normed linear space.

A Banach space thus has properties in common with
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the real and complex number systems, which are the most
simple examples of Banach spaces. In what follows, the
symbol X and the word "space" wlll always denote a Banach
space,

Definition (1.E). An operation P from a space X to
a Bpace Y is a set of ordered pairs (x,y) of elements
xeX, yeY such that there exists an (x,y)eP for all xeX,
and if (x,y)eP for a given xeX, (x,§)¢P if ¥ # y. The
statement (x,y)eP 1s symbolized by
(1.05) y = Px,
where P will be called an operator for mapping X into Y,
or slmply an operator from X to Y. If Y = X, P is said
to be an operator in X.

Examples of operators in a space X are the identity
operator I defined by Ix = x for all xeX, and the null
operator O defined by Ox = 0 for all xeX.

Definition (1.F). If R and S are operators in X,
their sum (R + 8) is defined by
(1.06) (R + 8S)x = BRx + Sx
for all xeX, and thelr product (RS) by
(1.07) (BS)x = R(Sx)
for all xeX.

Definition (1.G). An operator P in X is continuous
Af 1im |lix ~>xn3§= 0 as n —> @ implies lim ||Px -~ Pxn}}m )

as n —> @ ; it is additive if P(x + y) = Px + Py for all
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x,y € X} and it is homogeneous (of flrst degree) if for
all numbers A, P{Ax) = A(Px).

An additive and continuous operator is homogeneous
(1, p. 36).

Definition (1.H). An operator P in X is bounded 1f
there exists a non—negative real number M such that
(1.08) lpx — Pyll < o {|x = y i
for all x,y e X. The greatest lower bound of the numbers
M satisfying equation (1.08) is called the bound of P,
and is denoted by ||PI|.

It follows that if R and 8 are bounded operators in

X,

(1.09) e + sil< lirll + [Isll
and

(1.10) lirsil < HIrll Iist]

(8, p. 194). An additive operator is bounded if and only
if it is continuous (1, p. 54).
Definition {(1.I). An additive and continuous (or

bounded) operator L in X is sald to be linear. If for

a given linear operator L, a linear operator L”l exists
such that

(1.11) =t -1,

E'l is called the inverse of L.

A necessary and sufficilent condition for the exist—

ence of the inverse of a linear operator 1s given in the



following theorem (9, p. 979).
Theorem (1.4). If L is a linear operator in X, L +
exists if and only if there exists a linear operator P

1

such that P ~ exists and {|I — PLi|< 1. If these condi-

tions are satisfled,

(% 5]
(1.12) 1z E ' (1 - PL)"P.
=0

Here the notation R© for an operstor R in X 1s de—
fined by B® = REH”I for all positive integers n, with
R = I by definition. On the basis of Theorem (1.4), it
is possible to derive another necessary and sufficient
condition for the existence of the inverse of a linear
operator L.

Theorem (1.B). If L ig a linear operator in X, L =
exists if and only if there exists a linear operator B

1 exists and IR — LIl < 1//|E 3.

Proof: If R exists, take P = K 1. Then

such that R

(1.13) I—-PL=KZ%Xgr-1),
and from equation (1.10),
(1.14) T - pLli< I iR = Lil < 1,

80 ﬂhl exlsts by Theorem (1.A). If ﬁml exists, take R=1L
go that B * exists, and
(1.15) IR = Lil =z~ Ll = 0 < 1/[IT7H].

There is no significant alteration in the above
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congiderations if the operations and operstors are defined
from a space X to a space Y.

Definition (1.J). If L 1& a linear operator from a
space X to s space ¥, the set
(1.16) 0{L} = {x: Lx = 0}
is called the null space of L.

Due to the linearity of L, 0{L} is a linear subspace

1

of X. From Theorem (1.A), L — cannot exist if O{L} cor—

tains any element of X different from O.

Definition (1.X). If L and R are linear operators

in X suech that Rz

is denoted by Li/2.

= L, B 18 called a square root of L, and

Bquare roots of linear operators wlill arise in the
generalization of the quadratic formula (1.04) to a Banach
space X,

Theorem (1.C). If L is @& linear operator in X and
Lllz exists,

(1.17) /2 o /7)1
exists If and only if L © exists.

Proof: If 1 1/2 exists, L L = (E~1/2)(ﬁ~1/2) exists
as L = (Ll/le/z). If now L T exists,

(1.18) ("1 /2y /2 /2 /2y oo
and it follows that
(1.19) 2 o /2y o (12

exists.



CHAPTER II
BILINEAR OPERATORS

The concept of a bilinear operator 1ls fundamental to
the generalization of the guadratic equation (1.03) to
Banach space. The following theorem (6, pp. 32-33) plays
a key réle in the notion of a bllinear operator,

Theorem (2.A). Let (X) denote the set of all linear
operators in a Banach space X. With addition and scalar
multiplication of elements of (X) as given in Definltions
(1.F) and (1.G), and ||L|| defined for all Le(X) by Defi-
nition (1.H), (X) is a Banach space.

Definition (2.A). A bllinear operator B in a space
X i8 & linear operator from X to (X).

If B i# a bilinear operator in X, for all xeX, Bx
is a8 uniquely defined linear operator in X. Thus for all
yeX,

(2.01) Bxy = (Bx)y = z

is a uniquely defined element of X. Thus to every ordered
prair of elements of X a2 bllinear operator B corresponds a
unique element of X. The rules for this correspondence
are asg follows: As Bx is linear,

(2.02) Bx(y + z) = Bxy + Bxz,

and since B is also linear,



(2.03) B(x + y)z = Bxz + Byz.

Both B and Bx are homogeneous of first degree, so for all

numbers § and 7,

(2.04) B(gx) (ny) = (gn)Bxy.

The operators B and Bx are also bounded, and hence from

equation (1.10),

(2.05) iBxy il < Wl i<l iyl ,

where equations (2.02—-05) hold for all x,y,z eX.
Definition (2.B). Corresponding to every bilinear

operator B in X are the bilinear operators B¥, called the

permutation of B, and B, called the mean of B, which are

defined respectively by

(2.06) B¥xy = Byx
and
(2.07) Bxy = %{Bxy + Byx} = %{B + B#lxy

for all x,y eX. A bilinear operator B such that B =B* =B
is sald to be symmetric.

An Aimportant class of linear and bllinear operators
in a space X are the first and second Frechet derivatives
of operators P in X (4, pp. 293-323). In what follows,
the word "derivative" will always mean "Frechet deriva—
tive®.

Definition (2.C). By o(e) is meant any resl function
of the real variable & such that

(2.08) 1im %o(a) =0 as ¢ —> 0.
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Definition (2.D). If P is an operator in X, and for
some point xeX there existe a linear operator (dP|x) such
that
(2,09) HP(x + Ax) — Px — (aP|x)ax{l = o(l{axll),

P 18 sald to be once differentisble at x, and (dP|x) is
called the first derivative of P at x.

Definition (2.E). If for some A > O, P is once d4dif-
ferentiable at all % such that |lx — %|| < A, and a bilin—
ear operator (dZP!x) in X exists such that
(2.10)  |I(a@P|x+Ax) — (aP|x) — (a@°P|x)ax|l = o(llax|}),

P is sald to be twice differentiable at x, and (dzP)x} is
called the second derivative of P at x.

If (aPlx) ana (dszx) exist, they are unique, and
(dzPlx) is symmetric (6, pp. 81-82). Differentiation in
the sense of Fréchet obeys the following rules (7, pp.
159~166):

(2.11) (a{r + 8} |x) = (aRix) + (4s|x),
(2.12) (a{rsS}|x) = (arlsx)(as|x),
and

(2.13)  ||P(x+ax) —Px— (aP|x)ax(| < %‘?;‘f Il (a®P1%) || llax(?,
X=x+ AMx, 0<A <1,
Given a bilinear operator B, a linear operator L,
and an element y in a space X, conslder the operator Q
defined by
(2.14) OGx = Bxx + Lx + y
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for all xeX. From Definitions (2.D) and (2.E) it follows

at once that

(2.15) (dQix) = Bx + B*x + L = 2Bx + L,
and

(2.16) (a%Glx) = B + B* = 2B

for all xeX, If, corresponding to equation (2.14), the

operators Q* and G in X are defined by

(2.17) Q¥x = B#xx + Lx + ¥

and

(2.18) Qx = Bxx + Lx + ¥y

for all xeX, it is evident that

(2.19) Ox = Q¥x = Ox,

(2.20) (aaix) = (ao®[x) = (auix),
and

(2.21) (a%alx) = (a%a#ix) = (a%Qix)

for all xeX. There is thus no loss of generality in the

assumption, which will be made throughout, that the bilin—

éar operator B in equation (2.14) 1s symmetric, for a non—

symmetric B may be replaced by lts mean without altering

the value of the operator § or its derivatives.
Consideration will now be given to the solution of

the linear equation

(2.22) Bx + L = 0,

where B 18 a bilinear, and L a linear operator in X. If

equation (2.22) has a solution x, it can have another
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solution ¥ if and only if (x — %X)eO{B}. The null space
0{B} of B is determined from the null spaces of the lin—
ear operators Bx iIn X by means of the following theorem.

Theorem (2.B). If B is a symmetric bilinear oper—
ator in X,

(2.23) 0{B} = Wo{gx} ,

xeX
the product denoting the intersection of the sets O{Bx}.
Proof: If yeO{B}, then Byx = (Bx)y = O for all xeX,

and y'zl !Q{Bx}. Ifr nOW'y'ei }O{Bx}, Bxy = (By)x = O for
xeX xeX

all xeX, 8o By = O and yeO{B}.

From the way in which the symmetry of B was used in
the broof‘of Theorem (2.B), it follows that for a general
bilinear operator B in X,

(2.24) 0{B} = Wo{wx}.
xeX
Theorem (2.C). Equation (2.22) can have a solution
xeX only 1if
(2.25) 0{B} (__ ofL},

and it can have at most one solution if O{BX} = {0} for
some FeX.

Proof: From Theorem (2.B), 0{B} (__ 0{Bx} for all
xeX. The linear operator —L thus cannot be represented
in the form Bx unless equation (2.25) is satisfled. If
0{BX} = {0} for some XeX, 0{B} = {0} as 0e0{B} and also



0{B} (C_ {0}, in which case equation (2.22) has
one solutlon.

A number of examples of bilinear operators
by Kantorovich (7, pp. 155—~166); these examples
clude first and second derivatives of nonllnear
Certaln classes of bilinear operators in vector

tion spaces will be consldered in Chapter V.

13

at most

are glven
also in—
operators.

and fune—
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CHAPTER I1II
THE QUADRBATIC EQUATION

The expression
(3.01) Qx = Bxx + Lx +y = O,
where the symmetric bilinear operation B in X, the linear
operator L in X, and the element yeX are given, 1s called
a quadratic equation in X. Any point xeX such that Qx=0
will be oalled a solution, or root, of equation (3.01).
Theorem (3.A). Equation (3.01) has a solution xe&X

if and only if there exists a linear operator M in X such

that
(3.02) Bx + L = M
and
(3.03) Mx +y = 0.

Proof: This is a restatement of the definitlon of
a solution xeX of equation (3.01), as Gx = (Bx + L)x + ¥
for all xeX.

Theorem (3.B). If Q¥ = Q% = 0, then

(3.04) (@ (z - %) = o.
Proof: From equation (2.15),

(3.05) (aq|X%) = p% + B% + L.

Thus
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(aa/Z8) (3-2) = Bx% + B&% + L% — BAR — BEX — L%
= Q% — 0%
= Q’ ’
which establishes equation (3.04).
Theorem (3.C). If Q% = O and (a4 |%)™" exists, the

solution ¥ of equation (3.01) is unigue in the sphere

(3.06) lx = %/l < 1/¢11BI f(aal ™I} .

~ Proof: By Theorem (1.B), (aqlx)"t exists for
(3.07) I (aalx) = (aal®) (1< 1/11(aeln ™,
or, from equation (2.15), for
(3.08) 2 |IB(x = ) 1| < 1/l (aa|D 1.
as ||Bz|l < IIBllliz]l, equation (3.08) will be satisfied if
(3.09) Ix = %l < (1Bl Nl (@ein ™3™,

or, equivalently, (éQiy)"l faile to exlst only if
(3.10) Iy = il 2 20118l Haaln i,
If now & # % is a sclution of equation (3.01), by Theorems
(3.B) and (1.A), (dQ§§%2Y~1 fails to exist, so from equa—
tion (3.10),
(3.0 £ 1% — =l > 318l ll@elm ™I
A8 the inequality (3.11) is valid for every solution % #%
of equation (3.01), there are no solutions x # ¥ of Qx=0
in the sphere defined by equation (3.06).

It follows from Theorem (3.A) that a solution x of
Qx = 0 1s determined if (dQ|x) is known, for by (3.02),

(3.12) Mm=[L+ (arlx)]/2.
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The derivative of @ also enters into the conslderation of
qnaﬁratie equations by means of the addition formulas:
(3.13) Q(x+%) = Bxx+(dQ!%)x+QX = BXX+(dQ|x)%+ax
and
(3.14) ol{x — %) = BXX — (dQ|x)% + Qx.

These formulas provide a scheme for the classifica—
tion of quadratic equations in X.

Definition (3.4). The equation Qu=Buu+Iu+v=0
is Baid to be of first kind if there 1s a zeX such that
(3.15) (aalz) = o.

If the equation Gu = O is of first kind, set u=x+2z,
8o that from equation (3.13),

(3.16) G(x + z) = Bxx + Qz = 0.
qu
(3.17) y = Qz = v — Bzz,

the problem of the solution of a guadratie equation of
firet kind is thus reduced to the consideration of the
equation

{3.18) Qx = Bxx +y = 0,

which will be called the normal form of the quadratic
equation of first kind. A4 quadratic equation of first
kind thus has a solution u=x+2z if and only if leao,
and z satisfies (3.15). It is to be noted that all equa—
tions (1.03) involving real or complex numbers are of

first kind for a # 0.
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Theorem (3.D). If ueX is a solution of a quadratic
equation Qu =0 of first kind, then Q(ut+w) =0 for all
weO{B}.

- Proof: For all we({B}, and any ueX,
{3.19) B(u + w)(u + w) = Buu,
and by Theorem (2.C), as equation (3.15) is satisfled by
some zeX, weO{B} lmplies weO{L}, and thus
(3.20) L{u + w) = Lu
for all ueX. As thus
(3.21) Qu = glu + w)
for all ueX and all weC{B}, w(utw) = O if and only if
Qu = 0.

Theoren (3.E). The roots of a quadratic equation of
first kind ococur in pairs: Qu = Q(z + x) = 0 if and only
if Qu = Q(z — x) = O.

Proof: From eguation (3.18), QX = 0 Af and only if
Q, (~x) = 0, and the theorem thus follows from the satis—
faction of equation (3.15) by some zeX in the case of the
quadratic equation of first kind.

~ Definition (3.B). A quadratlc equation
(3.22) Q'u = B'uu + Iu + v = 0
which 18 not of first kind is sald to be of second kind 1f
(3.23) (@' lz)™t = 8
exists for some zeX.

If equation (3.22) is of second kind, set u=x+z,
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where z satisfies equation (3.23). From equation (3.13),

1

(3.24) G'(x +2) =B'xx +8 "x +Qz = 0

1s satisfled by (x+=z)eX if and only if

(3.25) Gox = Bxx + Ix +y = 0,
where
(3.26) B = SB!', y = SQz.

Equation (3.25) is called the normal form of a quadratic
equation of second kind.

Theorem (3.F). The normal form of a quadratic equa—
tion of second kind is a quadratic equation of second kind.

| Proof: From equation (3.25),

(3.27) (46, 0) = (a0, l0)7F = 1,
8o the normal form of a quadratic equation of second kind
is of second kind if it is not of first kind. From equa—
tions (3.22) and (3.23),

(3.28) oBly + L = &1,
If there existe a2 Ze¢X such that
(3.29) (de,|2) = 28B'Z + I = 0,

it follows from equation (3.28) that
(3.30) (ag'|z—%) = 2B'(z~%) + L = O,
eontrary to the assumption that the equation Q'u=0 1is
of second kind.

" Theorem (3.G). If G'u=0 is a quadratic equation of
second kind, then for all x,XeX,
(3.31) (ae'lx) # —(aq'|%).
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o Proof: If equation (3.31) is satisfied by any x,XeX,
(3.32) (ag' (%% = o,
contrary to the assumption that ¢'u=0 1s of second kind.

Thisg is in contrast with the quadratic equation of
first kind, where if Qu = Q(z +x) = O, by Theorem (3.E),
Qﬁ = Q{z—x) = 0, and since (daiz) = 0O,

{(3.33) (agiz+x) = —(dq|z—x).

Theorem (3.H). If u is & solution of the quadratlc
equation (3.22) of second kind, and w # O is an element
of 0f{B'}, then G'(u+w) # O.

P?eﬁf: If u=z+x and u+w = x+2z+w satisfly equa—
tion (3.22), where we0{B'}, then x and x +w are solutions
of equation (3.25). As O{B} = of{su'} = 0{B'},

(3.34) Q(x+w) = Bxx + x +w +y = QX +w,
and szx*w) = Q,x +w =0 1if and only if w = 0.

Theorem (3.I). If u and i are distinct solutions of
a quadratic equation of second kind, then
(3.35) (aa'fw) # (aQ'id).

- Proof: If (4Q'[w) = (4¢'|H), then
{(3.36) 2B'u + L = 2B + L,
and 8o (u—%)e0{B'}. However, by Theorem (3.H), if Q'u=0
and Q'3 = O, u#%, then (u—1)F¢0{B'}, which proves (3.35).

These theorems for the quadratic equation of second
kind show, by comparison with Theoren (3.D) for equations

of first kind, that the properties of the equation of
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second kind are quite different from those of equation
(1.03) for real and complex numbers.

Theorem (3.J). If the quadratic equation (3.01)
has a solution xeX, it has a solution ¥#x in X if and
only if the quadratic equation
(3.37) BRZ + (dqlx)% = O
hag & solution % # O.

Proof: Set ¥ = x+%. By equation (3.13), Q¥=0 if
and only if % satisfies equation (3.37), provided that
Qx = 0.

For the application of Newton's method to the solu—
tion of the quadratic equation (3.01), it is required that
(&Q}zyml exigt for some zeX (2, pp. 827-831), so that
this procedure applies only to some equatlions of flrst
and second kinds. »

Definition (3.€). A quadratic egquation (3.01) for
which (dQ|x)™} fails to exist and (4Q{x) # O for all xeX
is salid to be of third kind.

This definition is inecluded for the sake of loglcal
completeness; in what follows, only the quadratic equa—
tiong of first and second kinds will be considered, and

thege in their rnormsl forms.
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CHAPTER IV
THE QUADRATIC FORMULA

The quadratic formula (1.04) will now be extended to
quadratic equations (3.01) of first and second kinds, and
it will be shown that the validity of this formula depends
on a certaln property of the bilinear operator B.

Definition (4.A). If B is a symmetric bilinear op—
erator in X, the subset
(4.01) F{B} = {x: (Bx)? — B(Bxx) = 0}
of X is called the factor set of B, If F{B} =X, B is
gald to be totally factorable.

It follows that OeF{B} for =21l B, and that if xeF{B},
(Ax) ¢P{B} for all numbers A, as B and Bx are homogeneous.

Theorem (4.A). If xeF{B} and yeF{B}, (x+y)eF{B} if
and only if
{4.02) BxBy + ByBx = 2B(Bxy).

Proof: For all x,ye F{B},

(4.03) {Blx+y)}? — B{B(x+y) (x+y)} = (Bx)? + BxBy +

+ ByBx + (By)z - B{Bxx) — 2B(Bxy) — B(Byy) =

= BxBy + ByBx — 2B(Bxy),
80 that the satisfaction of equation (4.02) is s necessary
and sufflicient condition that (x+y)eF{B} if x,y & F{B}.

For a given symmetric bilinear operator B in X, and
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an element zeX, conslder the three asscclated bilinear
operators, defined for all x,y € X by
(4.04) (Tz)xy = Bz(Bxy),

which 18 symmetric,

{4.05) (T'z)xy = Bx(Bzy),
‘and its permutation,
{4.06) (T'z)#xy = By(Bzx).

Theorem (4.B). A symmetric bilinear operator B in
X is totally factorable Af and only if
(4.07) Tz = Tig
for all zegX,

Proof: 1If equation (4.07) holds, then for all x,y,z

in X,

(4.08) 2Bz (Bxy) = Bx(Bzy) + By(Bzx),
and, in particular, for x = y,

(4.09) Bz (Bxx) = (Bx)zz,

or

(4.10) {(Bx)? - B(Bxx)}z = O,

and since equation (4.10) holds for each xeX and all zeX,
xeF{B} for all xe¢X. If now B i& totally factorable, from
Theorem (4.4), equation (4.02) 1s satisfied for all x,yeX,
so equation (4.08) is satisfied for all x,y,z € X, which
implies that equation (4.07) holds for all zeX.

’ It will now be shown that the quadratic formula for
the solution of the quadratic equations (3.18) and (3.25)
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is valid only on the subset F{B} of X.
Theorem (4.C). The quadratic equation of first kind
le = Bxx +y =0
has a solution xeF{B} if and only if (~~-B:y)l‘/2 exists and

(4.11) Bx = (~By)1/2,
and
(5.12) (-y) /%% + y = 0.

Proof: By Theorem (3.4), if G~By)1/2 exists and x

satiefies equations (4.11) and (4.12), then Q% = 0. It
thue follows that Bxx = -y, so that
(4.13) B(Bxx) = —By = {(-By)}/?}2 = (Bx)?,
and xeF{B}. If now xeF{B} satisfies equation (3.18),
(4.148) (Bx)z = B(Bxx) = —-By,
80 that (*By)l/z = Bx exists, and x satisfies equation
(3.11), the satisfaction of equation (4.12) by x follow—
ing at once from Theorem (3.A).

Theorem (4.D). The quadratic equation of second kind

GpX = Bxx + Ix +y =0

has a solution xeP{B} if and only if (I—4By)l/? exists,

and
(4.16) %{I + (I - 34'BY)1/2}X +3 = 0.

Proof: If (I-A8y)l/2 exists and x satigfies equa—
tione (4.15) and (4.16), then Q,x = 0 by Theorem {(3.4).
It thus follows that
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(4.17) B(Bxx) = —Bx - By,
while from equation (4.15),
(4.18) (80)? = 1 - 2(1-umy) Y2 + L1 - By

m‘%{1‘~ (I~ aBy)l/z} - By

= -Bx — By,

go xeP{B}. If now xeF{B} is a solution of equation (3.25),
(4.19) I - 4By = I + 4Bx + 4B(Bxx)

= I + 4Bx + 4(Bx)%

= (1 + 2Bx)%,
éo that (I-@By}l/z = I*&EBx exists and x satisflies equa—
tion (4.15). By Theorem (3.A), x also satisfies equation
(4.16).

It may be noted that Theorems (4.C) and (4.D) hold
for equations involving additive and bi~addltlve homogen—
eous operators in a linear spzce, as the metrlc propertles
{bpoundedness and continuity) of linear and bilinear oper—
ators in a Banach space are not used in thelr proeofs.
However, the analytic problems of the solution of linear
equations and the constructlon of square roots of linear
operators are considered more conveniently in a Banach
space. Unfortunately, the theory of the existence, mul—
tiplieity, and the construction of the asquare roots of
linear operators is not in a satisfactory state at this

time; in particular, the results obtained by Einar Hille
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(6, pp. 124—126) hold provided that LM =ML for all L,M in
{X), which is not the case for a number of vector and
function spaces X of interest in applied mathematlics.

The multiplicity of solutions xeF{B} of quadratic
equations of first and second kinds is related in a sim
ple manner to the multiplicity of square roots of the
linear operators —By and I — 4By, respectively.

Theorem (4.E). If O{B} = {0}, the quadratic equa—
tion (3.18) of first kind can have no more solutions x in
F{B}] than there are distinet linear operators M such that
M° = —By.

Proof: If Bx = BX = (~By) /2, (x—%)e0{B}, and x =%
when 0{B} = {0}. The Theorem now follows from equation
(5.11).

Theorem (4.F). The quadratic equation (3.25) of
gecond kind has at most one solution xeF{B} corresponding
to each pair M,~M of distinct linear operators M such
that ¥% = (-m)% = I — 4By.

Proof: If for a given definition of (I-*%By)l/g,

then

and by Theorem (3.I), at most one of the elements x,X can
satisfy equation (3.25). If xeF{B} is a solution of equa—
tion (3.25), then for some definition of (I *'#By)lfz, %
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satisfies equation (4.15). There is thus no XeX such that
(4.22) B% = 2{-I — (I - yey) /2y
for the same definition of the square root of I—A4By, as
thls would lmply that
(4.23) (40, %) = —(aq,lx),

An contradiction to Theorem (3.G).

Theorem (4.G). If (~Byful exists, all solutions
xeF{B} of QX = O are unique in the gpheres
(4.24) lix = xIl < 2/¢11BIH] (B0 .

Ir (I**&By)“l exists, all solutions xeF{B} of Q,x=0 are
unique in the spheres
(%.25) % = x|l < /{18l (T + 2B 1},

Proof: By Theorem (1.C), (*Eyfwl/z and (I~*&Ey)~l/2
exist provided that {*By)"l, (~By)l/2, and (I—~aBy)“1,
(1-&B&)l/2 exist, respectively. If now xeF{B} 1s a sol—
ution of Q;x = 0, by Theorem (5.C),

(1.26) 2Bx = (dg, %) = 2(-B) /2,

and equation (4.24) follows from Theorem (3.C). Likewlse,
if xeF{B} is a solution of Q,x = 0, from Theorem (4.D),
(4.27) I +2Bx = (ag,|x) = (I — 4By)1/2,

equation (4.25) thus following from Theorem (3.C).

As a consequence of the definition of the set F{B},
1t follows at once that 0{B} (__ F{B}. For the roots of
Qx = 0 and Q,x = O in 0{B}, the following two theorems

are ilmmediate consequences of previous definitlons.
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Theorem (4.H). The quadratic equation Qyx = 0 has
a solution xe0{B} if and only if y = O, in which case
Qyx = 0 for all xe0{B}.
Theorem (4.I). The cuadratic equation G,x = O has
a solution xeO{B} if and only if yeO{B}, in whieh case
x ==y 18 the unique solution of Qx = 0 in c{B}.
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CHAPTER V
QUADRATIC INTEGRAL EQUATIONS

In order to illustrate the results of the previous
chapters, the Banach space X of real continuous functlons

x = x(8), 0 < s <1, with the norm

(5.01) lxll = 22X [x(s) |

will be coneidered. Linear operators in X are represented
by kermels L = L(s,t), 0 < s,t < 1, where the function
y(8) such that y = Lx is computed by

1

{(5.02) y(s) qu(s,t)x(t)dt,
0

and it is required that yeX for all xeX in order that L
be in (X). For ||Ll], the estimate

1
(5.03) il < Qggélfgr.,(s,t) lat
4]

is valid (5, pp. 155-157 and 7, pp. 12—13).
The kernel of the identity operator I 1s defined
to be 8(s,t); that 1is,
1

(5.04) x(s) mdfpé(s,t)x(t)dt
0
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for all x¢X. Bilinear operators in X are llkewise repre—
gented by kernels B = B(s,t,u), where the function z(s)

such that z = Bxy is given by

11
(5.05) z(s) wjyﬁ(s,t,u)x(u)y(t)du&t.
00

It 1s evident that B is symmetric if and only if

(5.06) B(s,t,u) = B(s,u,t)

0 < s8,t,u <1, except perhaps for a set of measure zero
(10, pp. 64—69). For ||B|l the estimate

11
(5.07) [|B]| < [Bax F!B(s,t,u)fdudt

ig available (7, p. 158). The general quadratic equation
in X thus has the form

11 ,
(5.08) I/B(s,t,u)x(u)x(t)dudt +Jri4(s,t)x(t)dt +y(s) =0,
00 0

& nonlinear integral eguation.

A characterization of totally factorable blllinear
operators B in X will now be obtained from Theorem (4.B).
From equation {(4.04),

11

(5.09) (Tz) adf\3(s,w,v)z(v)8(w,t,u)dvdw,
00

while from equation (4.05),
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gﬁ.
(5.10) (T'z) = //B(s,w,u)B(w,t,v)z(v)dvdw,

JJ
00
and from equation (4.06),
11

AP
{(5.11) (T1z)® mh{;B(s,w,t)B(w,u,v)z(v)dvdw.
00

Theorem (5.4). A bilinear operator B in X is total-
ly facotorable if and only if

1 1
[f\
Zr;Ei(s,w,v)B(w,t,u)dw = % B

0 0

(s,w,u)B{w,t,v)dw +

(5.12)

s

1
I
+ ,Q/B

0O

8o

(s,w,t)B(w,u,v)dw,

0 < s8,t,u,v <1, except for at most a set of measure zero.

Proof: This is a direct consequence of equatlions
(5.09~11) and Theorem (4.B), as the validity of equation
(5.07) for all zsX is equivalent to the totaly factor—
ability of B.

It follows from Theorem (5.A) that a bllinear oper—
ator B with a2 kernel B(s,t,u) which is a symmetric funec—
tion of s,t,u is totally factorable. Simple examples of
quadratic equations of first and second kinds will now
be oonsidered.

Example (5.A). The equation
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: 11
, rr
{(5.13) 1%; stux(wx(t)dudt — s = 0O
00

is a quadratic ecuetion of first kind in normal form with
B(s,t,u) = 1l6stu and y(s) =—s. As B is totally factor—
able, the considerations of Theorem (4.C) apply. Here

1

.2
(5.14) (—-By) = 1§/stu
0

du = %?st.
Two square roots of (—By) are 4et and—4st, as, for ex—

ample

f} 16
(5.15) di(@sr)(@rt)ﬁr = st .
O
Corresponding to these definitions of (*By)l/2 are the
solutions x(s) = s° and x(s) m-sz, as may be verified
from equations (4.11) and (4.12). As O{B} comsists of

all funetions w(e) such that

(5.16) ‘/iw(s)ds = 0,
0
an example of which is
(5.17) w(s) = 3s — 58°,
all funotions
(5.18) xk(s) = g% + A3s — 583),

~® < A < +m, are solutions of equation (5.13) by Theorem

(3 OD) .
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Example (5.B). The equation
11
(5.19) 8135 stux{u)x(t)dudt + x(s8) +s(lns— 1) = O

18 of second kind, as if for some zeX,

1
(5.20) 16%/\stuz(u)du + 5(s,t) = O,

operation on x(s) = —1 yields

1
(5.21) 1= “162.:/3 z{u)du,
0O

which camnnot be satisfled by any zeX as the function on
the right side of equation (5.21) is zero for s = 0. As
Theorem (4.D) applies to equation (5.19), and

(5.22) I — 4By = 8(s8,t) + libst,

consider (I-—-nBy)l/z = 5(g,t) + 18st and (I—*&Ey)l/z =
= —§(8,t) — 18st. By Theorem (4.F), one of these defi—
nitions of (I*l&By)l/z must be rejected. From equation
(4.15) and the consideration of equations (5.20) and
(5.21), only (I*L»By)l/zw&(s,t) +18st is possible. Cor—
responding to this value of (I--’»&By)llz, a solution of
equation (5.19) is

(5.23) x(s) = -s1lns,

as may be verified from equations (4.15) and (4.16).
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CHAPTER VI
AN FQUATION OF CHANDRASEKHAR

An important example of a quadratic integral equa—
tion is the one derived by Chandrasekhar in his study of
radiative transfer (3, pp. 87—126). Here it is requilred
to find x(s) such that

}.

{6.01) x{(s) = 1 +'§ﬁgx(82/s+t ——x(t)dt,
0O

where Ty is a constant called the albedo, and O <my =1
The attempt to solve this eguation was one of the moti—
vating factors in the present study of the theory of the
gquadratic equation in Banach space.

Equation (6.01) may be put into the form (5.08) with
B(s,t,u) satisfying equation (5.06) by setting A = no/a,

(6.02) B(s,t,u) = “A{-wﬁ(s t) + 3+t5(s ul},
(6.03) L(=s,t) = 5(s,t),

and

(600}‘;’) y(s) = -],

As it stands, equation (6.01) is of second kind
if it 18 not of first kind. If for some zeX, I1+2Bx=0,
then
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1
(6.05) {1 — 2a/==z(uw)du}8(s,t) = 2>\z(s)

0

S‘H.l

Operation on %(s) = 1 ylelds

e

(6.06) 1 = Zk{jmz(u)du + sz(s) 1n (Zh)},

which cannot be satisfled by any zeX, as the function
on the right side of equation (6.06) is zero for & = O.
For £ = 2\ = TTO/Z and all xeX,
1

(6.07) I+2Bx = {1 — g/=S=x(u)au}s(s,t) — gx(s)gis
O

Also,

08)  TenBv = (1 — ore 1n (EFL — ppB
(6.08) I-—uBy = {1~ 2gs1n (=5=)}8(s,t) — 28535,

and for
(6.09) K(s,t) = {s1n (ED)}s(s,t) + 5,
(6.10) I — 4By = 8(s,t) — 2(K(s,t).

From equation (5.03), [|K|l < 2 n2, so that for § <y 3}112’

(I-**&By)l/2 may be expanded in terms of its Fréchet de—
rivatives:
2 3 .
(6.11) (1-48y) /2 = 1—gx - &4 - &7 - L.,
(6, pp. 85-89). By Theorem (4.D), equation (6.01) has
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a solution xeF{B} for this definition of (1—-—@33*)1/ 2 only
if

1
(6.12) {/s+ux(u)du}8(s £) + x(s)gS = {s1n (E)}e(s,0) +

2
+m+-§[{s 1n(8+1)} §(s,t) + 8.’_t:l_n(s'*‘l) +

1
Bt £+l [ __sr
0
Hence, operating on %¥(s) = 1, x(s) satisfies (6.12) only
if

1

(6.13) {s1n (2= )}x(s) +me(u)du = aln(sﬂ)

+ L[Q{s .‘Ln(aﬂ‘)}2 + Jl"st 1n(t+1)d,’g} * .,

g+t
0
or
3 .
(6.1h) Kx = {K + %Kz + —%—KB + ...3(1),

2 linear integral equation. As the functlon on the right

of (6.14) is analytic in £, assume that
(6.15)  x(s) = xg(e) + Ex;(s) + Exy(8) + ... .

This gives for xo(a) , xl(s) , «.. & sequence of linear

integral equations



(6.16) Kx. = K(1)
Kx a%—ng(:u

I T
Kx, = 5K (1)

Kx = 1'3' '(?H’l) ﬂ+l(l)

n (n+l)'
- Lle3.5...(2n+1). n+2
RXn+l = (n+2)' (1)

LA 2 4 L IR 4 LR N . 0@

These equations have the obvious solutlons
(6.17) x5(8) = 1

x,(8) = $K(1) = s 1n (3

LI .« o0 * e 0 LI )

2 1:3...(2n1) n+l
Xn(s) (n*l)l . (l)
_ 2n—1
T on+l err*l

As thus

(6.18) x 1/ 1lx, o Il < 222 1n2,
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the uniform convergence of the series (6.15) 1s assured

for [ <

given by (6.15) and (6.17) satisfles equation (6.01).

Set

(6.19) J(s,t) = s*t

= K(S,t) - {Sln(s+l)}§(s,t)-

1 :
Tins It is not difficult to show that x(s) as
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Then
(6.20)  EJx = EK(1) + $£°K°(1) + %‘-E_BKB(].) + .-

‘ 2
~gs1n (B 1+ Sx1) + SxP (D) + ...,

and

(6.21)  x(gdx) = £{K(1) — s1n ()} + 2P (1) +

+ 2% - KWe1n (B} + L.,

= %ﬁK(l) +v%§2K2(l) + eee
80O
, 2
(6.22) x(£Jx) +1 = 1 + 3K(1) + %Kz(l) + el = x3

that is, x(s) satisfies equation (6.01) formally for all
values of { = WQ/Z. It followe that x(s) as defined by
(6.15) and (6.17) is a solution of equation (6.01) for

< ek

02w, Tips- On the basis of (6.21), it is to be ex—

pected that a continuation of this solutlon to 57%;5'5

Mo < 1 18 possible. (It 1s known that my = 1 1s a limit-
ing ease (3, p. 107).) Such an extension would go hand
in hand with 2 continuation of the expansion (6.11) of
(1-148y) /2,

Numerical evaluation of the functioms xl(s}, xz(s),
..+ BAY be carried out readily with the aid of some type
of high—-speed digital computer. In this commectlon it
should be observed that x,(s), xB(s), ... are all defined
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in terms of integral transforms of
(6.23) x, (s) = s1n (24,

which has an infinite derivative at s = 0} a sultable
rule of numerical integration must take this into ac—
count. The numerical solution of equation (6.01) pre-
sented by Chandrasekhar (3, pp. 123-126) was obtained by
the use of a polynomial rule of integration. Although
the evaluation of x(s) was carried out by Chandrasekhar
slong different lines than the method presented here,
the above considerations raise some doubt concerning the

acouracy of the tabulated vglues (3, p. 125).
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