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This dissertation concerns several problems in the fields of light interaction with 

nanostructured media, metamaterials, and plasmonics. We present a technique capable of 

extending operational bandwidth of hyperbolic metamaterials based on interleaved highly-

doped InGaAs and undoped AlInAs multilayer stacks. The experimental results confirm 

theoretical predictions, exhibiting broadband negative refraction response in mid-infrared 

frequency. 

We propose a new class of nanofocusing structures, named hypergrating, combining 

hyperbolic metamaterials with Fresnel optics, able to achieve extremely subwavelength focal 

spots (up to 50 times smaller than free-space wavelength) in the far field of the input interface. 

Several experimental realizations of hypergratings for visible and infrared frequencies are 

presented. 



 

 We further develop a new technique capable of imaging subwavelength objects with 

far-field measurements. The approach utilizes a diffraction grating, placed at the object plane, 

to convert subwavelength information of objects into propagating waves and project this 

information into far-field. The set of far-field measurements is used to deconvolute the 

images. The resolution of the proposed method can surpass 1/20-th of the free-space limit, 

strongly overperforming other subwavelength imaging technology. 

 We develop a new mode matching approach for analysis of scattering and propagation 

of surface and volume modes in multiple multilayered-stack structures. Our theory relies on 

the complete spectrum of free-space and guided electromagnetic modes to solve Maxwell’s 

equations in the extended systems that have relatively few interfaces. We demonstrate the 

convergence of this technique on a number of plasmonic and metamaterial structures. 

Finally, we consider the problem of plasmonic beam-steering structures consisting of 

a single slit flanked by a periodic set of metallic corrugations. We show that the light emitted 

by the structures forms a prolonged focal range that may extend for hundreds of wavelength 

from the plasmonic interface and eventually splits into two plasmonic beams. We develop a 

quantitative theory to physically describe the beam formations and evolution of field pattern. 

 The numerical and analytical results presented here can be applied to several 

nanooptics applications including deep-subwavelength imaging, nanolithography, on-chip 

communications, high-density energy focusing, and beaming devices, and can be used for 

metamaterial and plasmonic composites operating across ultraviolet, visible, infrared, or 

terahertz spectra. 
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Chapter 1 - Introduction of Nanooptics 

Nanoscience deals with the engineering of functional systems at the molecular and atomic 

scales. Its original motivation is to build nanomachines – for example, motors, robot arms, and 

even whole computers – on the scale of molecules [1, 2]. Nanoscience research became 

overwhelmingly active after the discovery of fullerenes and carbon nanotubes in 1980s [3-5]. 

At the present time, nanoscience has covered broad areas, evolved to include both bottom-up 

and top-down approaches, and has provided various scientific applications, including 

nanomaterials [5-10], nanomedicine [11, 12], and nanoelectronics [13-17]. 

An important class of nanoscience called nanooptics, which we will discuss at length 

in this dissertation, describes light manipulation on the nanoscale, which recently has 

enormous influences on imaging, communication, security, and sensing applications. One of 

the big successes in the nanooptics field was the invention of metamaterials, the engineered 

nanostructures that can control the propagation of electromagnetic waves inside themselves 

[18]. The very first optical metamaterial composite consists of a periodic array of metallic 

wires and conducting nonmagnetic split ring resonators where their alignments and portions 

tune effective optical properties of the composite, leading to simultaneously negative 

permittivity and permeability for microwave frequencies [19-25]. When electromagnetic fields 

propagate inside such a structure, they encounter negative refraction, where directions of 

energy and wavefront (locus of points having the same phase) propagations are antiparallel. 

This kind of refraction has also been verified experimentally and theoretically with fishnet, 

chiral, and nanorod array metamaterials, and honeycomb-lattice photonic crystals in the 

visible and infrared spectrum [8, 9, 26-37]. Another kind of negative refraction requires strong 
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anisotropy of permittivity, allowing forward direction of wavefront propagation and negative 

refraction of energy propagation [6, 38-45]. 

 One of the major applications in original negative refraction material is superlens, 

which is able to perfectly image objects that are placed close enough to the lens by amplifying 

the evanescent fields of the source [19, 46-56]. However, the resolution of image is highly 

sensitive to losses inside the material and the image is restricted to near field [57-60]. Another 

imaging device, named hyperlens is fabricated using interleaved metallic-dielectric 

multilayered metamaterial with cylindrical structure, and yields imaging magnification in far 

field [14, 61-68]. 

 The flexibility of designing effective optical properties inside metamaterials leads to 

the controlling of light propagation which may not be found in nature [18, 69-72]. A 

mathematical approach, called transformation optics, transforms initial configuration of 

electromagnetic fields on the Cartesian mesh to a specific coordinate system where light can 

propagate as designed. One achievement of this mapping technique is represented by the 

cloaking device, where its engineered coordinate is designed to bend electromagnetic waves 

around a concealed volume, and return the waves to their original trajectory [73-83]. It can be 

assumed that no radiation leaves and enters the concealed volume of space; so that, an object 

of arbitrary shape is invisible inside the volume. Transformation optics has also been extended 

to model celestial mechanics, general relativity, and even optical black holes inside 

metamaterials [84-91]. 

Nanophotonics of surface plasmon polaritons is another important class of nanooptics 

technology, where the physics of confined surface waves at a metal-dielectric interface is 

studied [92-99]. It has been known that in present electronic devices, the speed of information 
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transfer is restricted by the speed and mass of electrons, leading to high losses of energy due 

to heat inside circuits. Therefore, surface plasmon polaritons have been proposed as a means 

of data transfer for on-chip devices, due to their extremely high frequencies. Recently, 

researches in surface plasmons have been pointed interests to extraordinary transmission by a 

single slit [100-106]. When the slit is surrounded by a set of metallic grooves on the input 

side, the transmitted field is enhanced by surface plasmon polaritons induced by the periodic 

corrugation. Such a phenomenon is not found in the single slit without a corrugation surface. 

On the other hand, if periodic corrugation is installed on the output side of the slit, the 

transmitted field is confined in some directions, allowing directional control of light beams 

[107-114]. This beam-steering device can be applied to on-chip communications which 

transfer photonic signals. 

 In this dissertation, we will develop physical insight for important problems in the 

nanooptics field, including broadband negative refraction, subwavelength imaging, surface 

plasmon scattering, and directional optical beaming. In Chapter 2, we will theoretically 

present mathematical conditions for negative refraction inside strongly anisotropic 

metamaterials and designs of broadband and flat response negative-refraction spectrum will be 

represented. The theory was supported by the experiments, performed by our Princeton 

University (PU) collaborators. This proposal leads to understanding of designing broadband 

response in applications of cloaking and imaging metamaterial devices. In Chapter 3, we will 

propose the structure, named hypergrating, which employs a subwavelength Fresnel 

diffraction plate for generating high-wavevector information, and a strongly anisotropic 

metamaterial to propagate high-resolution signal to the far field. Consequently, hypergratings 

introduce new type of subwavelength imaging devices, nanolithography, or even optical 

communications with high spatial resolution. 
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A mathematical algorithm used to image subwavelength objects with the far-field 

measurement will be presented in Chapter 4. The general mechanism is to use a 

subwavelength diffraction grating behaving as an optical device, to shift high-transverse-

wavevector signal of an object into the propagating regime which is detectable in the far field. 

Later, the mathematical formulation is used to deconvolute original propagating signals and 

originally evanescent signals. Moreover, we will illustrate that the technique can classify the 

shape and size of objects that are much smaller than the wavelength of incident light. This 

approach offers a new low-cost technique to image subwavelength objects using planar-

structure fabrication. In Chapter 5, a new wave-matching method will be developed to 

numerically compute electromagnetic fields inside planar structures. The method is extremely 

memory efficient when compared with the finite-element and finite-difference time-domain 

algorithms. The method will be applied to the problem of control of surface plasmon 

scattering and modal cross-talk in planar waveguide structures. We will also show the 

robustness of our approach in several photonic and plasmonic applications. Chapter 6 will be 

devoted to a theoretical model which is used to predict directions of beams in plasmonic 

beam-steering structures. We will confirm the robustness of our model with analytical, finite-

element simulations, and experimental results obtained from our University of Massachusetts 

(UMass) collaborators.  
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Chapter 2 - Hyperbolic Optical Metamaterial 

2.1 Introduction 

An optical metamaterial is an artificial medium engineered to provide effective optical 

properties which may not be found in nature. A composite consists of nanostructured 

components aligned in a periodic pattern. On the microscopic scale, electromagnetic fields 

interact with each individual constituent, and consequently the microscopic electric and 

magnetic fields are inhomogeneous. However, the macroscopic electric field and polarization 

can be obtained by averaging the microscopic electromagnetic fields and local dipole 

moments over the groups of constituents, leading to the macroscopic optical properties of the 

composite, for example, electrical conductivity, permittivity, and permeability. 

The origin of the overwhelming interest in the metamaterial research started from 

theoretical possibility of perfect imaging by a slab of negative index material, whose both 

permittivity   and permeability   are simultaneously negative [19, 115]. Since then, several 

negative index metamaterial designs have been proposed [20-25]. However, the metamaterials 

require the overlapping resonances in permittivity and permeability, leading to the 

complication of metamaterial design and fabrication [20-25]. Furthermore, the metamaterials 

are highly lossy due to the dissipation at the resonances [116-118], significantly reducing the 

resolution of imaging [57-60]. 

 Another class of negative refraction employs a uniaxial anisotropic medium having 

the hyperbolic form of the dispersion relation [6, 38-45, 119-124]. Such a material requires 

only a single resonance and hence the optical loss is significantly reduced, and more 

importantly negative refraction spectrum is not limited by double resonances. Here we design 
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semiconductor multilayered composites, which exhibit negative light refraction in mid-

infrared frequency regime. The planar structure provides many fabrication advantages and can 

be easily adapted to current industrial techniques. 

 This Chapter is organized as follows. In Section 2, we will derive the refraction 

properties of the electromagnetic field inside a hyperbolic material, and will show how the 

hyperbolic material can transfer high-wavevector signals to the far field. Later, an effective 

medium theory used in averaging field properties to calculate the effective optical quantities, 

will be described. In Section 3, we will study theoretically negative light refraction in the 

semiconductor nanolayered structure, comprising interleaved highly doped InGaAs and 

undoped AlInAs nanolayers. The simulations are in good agreement with experimental results, 

obtained from our PU collaborators. To reduce the dispersion of effective dielectric constant 

tensor, the design of the broad bandwidth and flat response of negative refraction in such 

heterostructures will be presented in Section 4. The agreement between simulation and 

experimental results will be confirmed. 

2.2 Wave Propagation in Hyperbolic Metamaterial 

In this Section, we will present an overview of the mathematical description of light 

propagation in anisotropic materials that will be used throughout this dissertation. We will 

setup Maxwell’s equations for general uniaxial anisotropic materials, named birefringent 

media [116], in the Cartesian coordinate system, and the conditions for the hyperbolic 

dispersion relation will be presented. The solutions of Maxwell’s equations show uncommon 

relation of energy and phase propagation in such the hyperbolic material, yielding positive and 

negative wave refractions. Even though hyperbolic materials are found in nature [42, 43], the 

losses inside those materials are very high for realistic applications and the changes in their 
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crystal structures are sensitive to the environmental stimulations. However, it is possible to 

artificially make the low-loss and structurally-strong hyperbolic metamaterials. Effective 

medium theory (EMT) will be employed to design the optical properties of the metamaterials. 

 

 

 

 

FIGURE 2.1: (a) Cartesian coordinate of the structure; the optical axis is parallel to   axis; 

arrows show directions of electric and magnetic fields and wavevectors for TE- and TM-

polarized light; (b) relation of all electromagnetic vectors for TM-polarized wave;               

and            ; (c) illustration of isotropic dispersion relation [Eq. (2.7)] when TE-polarized 

filed propagates inside a uniaxial material (assuming no loss); radius of circle is     
    ; (d) 

dispersion relation Eq. (2.8) encounters elliptic form when    
    

 ; solid and dashed curves 

correspond to   
     

    and    
    

    cases (assuming no loss); (e) hyperbolic 

dispersion relation occurs when either    
  or   

  is negative (assuming no loss); solid and 

dashed curves correspond to    
      

  (positive refraction) and   
       

  (negative 

refraction) cases; in the positive refraction case, propagation condition yields   
     

    ; 

in contrast, the negative refraction case can cover all   
  spectra. 
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2.2.1 Maxwell’s Equations and Dispersion Relations 

 Maxwell’s equations for a nonmagnetic uniaxial medium for a monochromatic wave 

are given by [116-118] 

              (2.1) 

             (2.2) 

        
 

 
       (2.3) 

          
 

 
        (2.4) 

where 

    

     

     

    

  (2.5) 

is a dielectric constant tensor of the uniaxial material,   is the angular frequency of light,   is 

the speed of light in air, and                is wavevector of light [Fig. 2.1]. Here the optical 

axis (O.A.), representing the direction of the material symmetry, is perpendicular to the   -

plane, and the electromagnetic fields depend on                  . These conditions will be 

used throughout this dissertation. Maxwell’s equations are reduced to the wave equation given 

by 

                    
  

  
        (2.6) 

Note that for the isotropic medium, the first term on the left-hand side vanishes, and Eq. (2.6) 

yields the spherical form of the dispersion relation [116]. The so-called anisotropic wave 
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equation [Eq. (2.6)] can be written as a system of linear equations for the electric field 

components, and the nontrivial solutions exist when 

  
    

    
     

  

  
 (2.7) 

or 

  
    

 

  
 

  
 

   
 

  

  
   (2.8) 

In the case of light propagating on the    plane (    ) [Fig. 2.1(a)], Maxwell’s equations 

and Eq. (2.7)  allow possible field components:              and               . Such a 

wave is called “transverse electric (TE)” or “ordinary” polarized electromagnetic field, and its 

“circular” dispersion relation [Eq. (2.7)] relating all possible    and    to     and  , is 

illustrated in Fig. 2.1(c). The waves with this polarization behave as electromagnetic fields 

propagating inside an isotropic medium; both wavevector (direction perpendicular to 

wavefronts) and Poynting vector (direction of energy propagation)       , are related by 

      
  

   
    

 
           (2.9) 

and have the same direction. Consequently, the directions of wavefront and energy 

propagations are co-parallel. 

 On the other hand, another polarization, called “transverse magnetic (TM)” or 

“extraordinary” electromagnetic wave, consists of the field components:               and 

             , and its dispersion relation Eq. (2.8) relates    and    to    ,   , and  . The 

Poynting vector        is related to wavevector by 
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    (2.10) 

Note that for TM-polarized field, both wavevector and Poynting vector, and both      and     are 

nonparallel. Their relations are illustrated in Fig. 2.1(b). Apparently, in a uniaxial material for 

a TM-polarized field, wavefronts and energy propagate in different directions. 

2.2.2 Refraction Laws: Positive and Negative Refractions 

 Now we may classify combination of     and    into two groups: (i) both    
  and   

  

are positive quantities, and (ii) either    
  or   

  is negative but not both. Note that notations   

and    denote real and imaginary parts of a complex number quantity, respectively, and they 

will be used throughout this dissertation. 

The dispersion relation of the material in the group (i) has the elliptical form, shown 

in Fig. 2.1(d). The solid and dashed curves correspond to   
     

    and    
    

    

cases, respectively. The medium can be found plentifully in nature, for instance, calcite, 

quartz, and ruby crystals [125, 126]. Applications include beam splitter, liquid crystal 

displays, light modulators, color filters, wave plates, and optical axis gratings [127-130]. 

 The group (ii) is the primary focus of this dissertation. When one of permittivities in 

Eq. (2.8) is negative, mathematically the dispersion relation has the hyperbolic form, and each 

hyperbola belongs to each negative permittivity. Specifically, negative    
  gives the east-west 

opening hyperbola, and negative   
  gives the north-south opening hyperbola [38-41] [Fig. 

2.1(e)]. The peculiar behaviors of propagation of TM-polarized waves inside hyperbolic media 

are clearly seen when considering propagation from an isotropic material into a strongly 

anisotropic material. 
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FIGURE 2.2: Schematics representing the transmitting wavevector        and Poynting vector 

      for (a, c) positive and (b, d) negative refractions; (a, b) arrows of reflecting     and    are 

not shown; (c, d) full numerical calculations demonstrating positive and negative refractions 

of a monochromatic TM-polarized Gaussian beam across an air-metamaterial interface. 

 

 Let us setup the system as follows: a TM-polarized wave of wavelength    propagates 

from air to a hyperbolic material, either    
      

  or   
       

  case, with arbitrary 

incident angle      [Fig. 2.2]. The propagation of the refracted fields inside the hyperbolic 

materials can be analyzed by employing the Poynting vector-wavevector relation [Eq. (2.10)], 

with the requirements of conservation of transverse component of the wavevector and energy 

flowing in the forward direction    
    . Hence, in the case of    

      
  material [38-

41] we need to choose   
    and   

     
    . As a result, the wave transmits into the 

hyperbolic dielectric with backward wavefront propagation    
     with respect to the 

interface and exhibits positive refraction    
     [Fig. 2.2(a)]. In contrast, materials of the 

  
       

  permittivities [38-41] allow wave propagation when   
    and   

   ; so that 
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transmitted wave encounters negative refraction and forward wavefront propagation [Fig. 

2.2(b)]. Both circumstances are very essential for imaging, high resolution transfer device and 

nanolithography, which will be mentioned later in Section 2.2.3. Full numerical calculations 

demonstrating positive and negative refractions of a monochromatic TM-polarized Gaussian 

beam across an air-metamaterial interface are shown in Fig. 2.2 (c, d). 

 In an anisotropic material, the Poynting vector and wavevector have different 

directions; their directions depend on the effective group      and phase      indices of 

refraction, respectively. The group index is obtained from Snell’s law, giving the continuity of 

the transverse Poynting vectors at the interface: 

                    (2.11) 

where         is index of refraction of air,    is permittivity of air, and    corresponds to 

the direction of transmitted Poynting vector, respective to the optical axis. Similarly, the phase 

index is obtained from Snell’s law, giving the continuity of the transverse wavevectors at the 

interface: 

                    (2.12) 

where    is angle of the transmitted wavevector, respective to the optical axis. Consequently, 

the group and phase indices of refraction are represented as 

   
  
   

     
   

  
   

   

  
              (2.13) 

           
   

  
              (2.14) 
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Surprisingly, contrary to the conventional isotropic refractive index, both group and phase 

indices of refraction depend on the angle of incidence. The    
      

  hyperbolic material 

gives positive    and negative   , yielding positive energy refraction and backward wavefront 

propagation as mentioned earlier. The opposite case (  
       

 ) gives negative    and 

positive    allowing negative energy refraction and forward wavefront propagation for all 

angles of incidence [131]. Negative refraction by hyperbolic metamaterials has been shown in 

experiments in the UV, optical, and mid-IR spectra [6, 44, 45, 119, 120]; applications include 

broadband Purcell effect [132-134], imaging hyperlens [14, 61-66], waveguiding [12, 42, 43, 

135],  out-of-plane scattering elimination [136, 137], and on-chip light-communication [16, 

17]. 

 The other crucial quantities for bulk hyperbolic metamaterials are Fresnel coefficients 

[116], describing the fractions of the incident light that will be reflected from or transmitted 

through the air-metamaterial interface. For TM-polarized illumination, the reflecting (   ) 

and transmitting (   ) coefficients computed by the ratio of    components, are expressed as 

    
                 

                 
   (2.15) 

    
        

                 
   (2.16) 

where the refracted angle,            , is defined as the ratio of different components of 

Poynting vector. The fractions of the incident power that is reflected from and refracted 

through the interface are given by the reflectance (   ) and transmittance (   ), and are 

related to Fresnel coefficients by            and                            

         , respectively. The incident plane wave can encounter phenomena observed in a 
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conventional isotropic medium, for instance, total internal reflection and minimum of TM-

polarized reflection at Brewster’s angle. 

Table 2.1 summarizes all necessary information for TM- and TE-polarized light 

propagating inside hyperbolic metamaterials. The information will be invoked again in the rest 

of the dissertation. 

 

TABLE 2.1: Summary of important information when TE- and TM-polarized fields, 

illuminated from air, propagate inside hyperbolic metamaterials. 

Polarization Dispersion Relation 
Hyperbolic Metamaterials 

   
      

     
       

    

TE 
  
    

 

   
 

  

    No Wave Propagation 
Forward Wavefront 

Positive Refraction 

TM 
  
 

  
 

  
 

   
 

  

    Backward Wavefront 

Positive Refraction 

Forward Wavefront 

Negative Refraction 

 

2.2.3 Resolution of an Image 

Another unusual characteristic of hyperbolic materials that goes beyond conventional isotropic 

media is the propagation of high-wavevector-spectrum field components, which contain 

subwavelength information which is necessary for high image resolution [14, 16]. In this 

Subsection, we will prepare the physical understanding of image resolution limitations when 

an object is placed in an isotropic medium. We will later show that a hyperbolic material can 

achieve deep subwavelength resolution. 
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FIGURE 2.3: (a) Schematic of wavevector spectrum illustrating the separation of propagating 

and evanescent regimes of an isotropic medium with permittivity  ; the coarse and fine image 

details are kept in propagating and evanescent spectrum, respectively; (b, c) the retrieval of a 

subwavelength single slit with width      when (b)   
         and (c)   

          ; 

the dashed lines show the original size of the slit; the measurements are performed at the same 

distance   from the slit. 

 

Let us consider a subwavelength object placed in an isotropic medium with permittivity  . The 

object can be written as a Fourier function,        , constructed from broad range of 

transverse-wavevector components,    [138]: 

                
             

  

  

 (2.17) 

where         contributes to the field amplitude for each   , and                  
  

representing the spherical dispersion relation [Eq. (2.7)], classifies the type of field transfers. 

Assuming the isotropic material is lossless, the wavevector spectrum may be separated into 

two regimes: propagating              and evanescent              [Fig. 2.3(a)]. The 

wavevector governing the propagating regime can be detected in the far field; in contrast, the 

wavevector governing the evanescent regime is only measurable in the near field. The 
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resolution of an image that each wavevector keeps can be described as       . Therefore, the 

propagating regime occupies low-wavevector-spectrum values, and stores coarse-resolution 

details, while the evanescent regime occupies high-wavevector-spectrum values, and stores 

fine-resolution details [Fig. 2.3(a)]. As a result, a conventional optical microscope cannot 

image a subwavelength object with the resolution beyond about     , because it only retrieves 

the coarse information [139]. 

 We illustrate the resolution limitation of the conventional microscope with a single slit 

of width      in air. Fig. 2.3(b) illustrates the retrieval of the subwavelength single slit when 

  
         is measured in the far-field. It is clearly seen that this maximum wavevector 

only contains propagating values, that the subwavelength resolution cannot be achieved. 

However, it is possible to use a hyperbolic material, whose dispersion relation has open 

hyperbolas with a broader    range [Eq. (2.8)], to transfer high-wavevector-components 

(subwavelength information) into the far field. Fig. 2.3(c) illustrates the complete retrieval of 

the single slit placed in a lossless hyperbolic material when   
           is included in 

calculation. 

 Therefore, hyperbolic materials, which can support high-wavevector-spectrum 

propagation, are capable of providing subwavelength imaging and nanolithographic 

techniques. Moreover, the hyperbolic materials posses a broad bandwidth singularity in the 

photonic density of states; hence they are also a good candidate for enhancing the spontaneous 

emission of a light source [132-134]. In the next Subsection, we will employ the effective 

medium theory (EMT) [140-143] to design effective optical properties of the hyperbolic 

metamaterials; such a media can be fabricated using present technology. 
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2.2.4 Effective Medium Theory 

Effective medium theory is an approach for computing macroscopic properties of a composite 

from the microscopic properties and relative fractions of its constituents. The first traditional 

EMT models for application in the optical regime was proposed by J.C. Maxwell Garnett, 

where optical properties of a medium containing minute metallic spheres were examined 

[140]. More recently theory developed by Von D.A.G. Bruggeman treats two composites in a 

symmetrical fashion [141]. Moreover, modern applications allow the approximation of the 

optical properties of nanocrystals embedded in a crystalline matrix [144-146], and 

nanolayered and nanowire structures [41, 147, 148]. 

 Nanolayered and nanowire structures are among most important compositions used to 

design the dielectric constant tensor in hyperbolic metamaterials. The approximation is 

restricted in the sense that the size of the inclusions, either nanolayer thickness or nanowire 

radius, should be much smaller than the wavelength; in consequence, the radiation cannot 

distinguish the collection of elements from the homogeneous material. Therefore, macroscopic 

electric and displacement fields are obtained from averaging local electric and local 

displacement fields inside the composites. The effective dielectric constant tensor     results 

from the ratio of components of the average displacement      and the average electric field 

    : 

             (2.18) 

where the bracket    represents spatial averaging of the material quantities for microscopic 

scales over macroscopic compositions, and the indices   and   represent summation in 

Cartesian coordinates. 
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FIGURE 2.4: (a, c) Nanolayered structures consist of interleaved layers of metal and dielectric 

of thicknesses and permittivities   ,    and   ,   ; the formation of layers is aligned along to 

the optical axis (O.A.); (b, d) nanowire structures consist of metallic wires of radius   with 

center-to-center distance   embedded in the dielectric host; (c, d) scanning electron 

microscope (SEM) images of (c) InGaAs/AlInAs nanolayered structure [6] and (d) Au/Al2O3 

nanowire structure [123]; reprinted with permission from Ref. [6] (c) and Ref. [123] (d). 

  

For the two-dimensional nanolayered metamaterial, a structure is comprised of multiple 

interleaved layers of metal and dielectric perpendicular to the optical axis; layer thickness and 

permittivity are   ,    for metal and   ,    for dielectric [Figs. 2.4(a, c)]. The EMT yields 

the effective permittivities as [41, 117, 140] 

    
         

     
   (2.19) 

   
           

         
   (2.20) 

The effective optical properties can be tuned to obtain the hyperbolic dispersion. However, the 

efficiency of the EMT is controlled by   ,       where    is the free-space wavelength. 

Eqs. (2.19) and (2.20) are viewed as a formula relating the bulk dielectric constant tensor    in 

terms of its constituents    which form inclusions of volume fraction              in 
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the host   . The multilayered sandwich structure of doped In0.53Ga0.47As and undoped 

Al0.48In0.52As semiconductor layers, and a curved periodic stack of Ag and Al2O3 have been 

shown in the experiments demonstrating negative refraction of TM-polarized light in UV, 

visible, and mid-IR spectra [6, 64, 119, 120]. 

 Another composition is the nanowire structure, consisting of metallic nanorods 

embedded in the dielectric template matrix [Figs. 2.4(b, d)]. The composite can be fabricated 

with electrochemistry [7]. The controllable parameters of the effective optical properties are 

metallic nanorod radius  , metallic permittivity   , average separation distance between each 

wire  , and membrane dielectric permittivity   . Letting the optical axis be parallel to the 

alignment of nanorods, the effective permittivities are given by [41, 140, 147] 

     

     
     

         

   
     

       
   (2.21) 

                 (2.22) 

where          is the inclusion factor. Note that the efficiency of EMT requires     

and  ,     . The hyperbolic dispersion has been shown experimentally in Refs. [44, 45, 

121, 122] with the compositions of Ag/Al2O3, Au/Ta2O5, and Au/Al2O3, operated at UV, 

visible, and near-IR frequencies. 

 Note that for the nanowire structures, the effective optical properties described above 

originates from the averaged microscopic properties of the constituents. Hence, the desired 

response does not require any periodicity of the constituent arrangement and only the average 

concentration has to be controlled during the fabrication step. 
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2.3 Semiconductor Metamaterial 

Here we demonstrate numerically negative refraction behavior for the mid-IR TM-polarized 

illumination in the multilayered structure of all-semiconductor composites. Later, the 

correctness of the simulations is confirmed by the experimental results, performed by our PU 

collaborators. The advantages of the structure are that it has remarkably low-loss and 

optically-thick planar structure, and also employs the single epitaxial growth process available 

in the present nanofabrication technology. 

Similar to Refs. [6, 120], the multilayered stack of total thickness        , 

comprised of interleaved layers of In0.53Ga0.47As and Al0.48In0.52As, each      -thick, is 

placed on the       -thick lattice-matched InP substrates (         ), and the light is 

illuminated on the interleaved-layers side. The undoped AlInAs layers are treated as dielectric 

media with permittivity                 [149]. The InGaAs layers are uniformly highly 

doped by Si to provide plasma free carriers, and then behave as metallic inclusions. The 

permittivity of the doped InGaAs layers is expressed by Drude model [117, 118]: 

                     
  

 

        
    (2.23) 

  
  

      

       
           

   (2.24) 

where                 is the high frequency permittivity of InGaAs,            

represents the electromagnetic losses due to damping by inelastic scattering inside the 

material,                is electron charge,        
              is effective mass 

of electrons in InGaAs layers, and    is the plasma frequency depending on the doping 

concentration    of      unit. Consequently, the effective dielectric constant tensor can be 
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computed by Eqs. (2.19) and (2.20), and the range of wavelengths corresponding to negative 

refraction is tuned by adjusting the doping density in the InGaAs layers. 

The dependence of the calculated permittivities     and    on wavelengths for free-

electron density                  is illustrated in Fig. 2.5(a, b); corresponding plasma 

frequency is               which is in the infrared spectrum. The high imaginary part of     

around         is due to the plasma resonance in the highly doped InGaAs layers. The 

spectral region, where the metamaterial exhibits negative refraction, is shaded by the yellow 

band. The onset of negative refraction occurs at the critical wavelength           , when  

  
   . For the smaller wavelength      , the metamaterial behaves as the conventional 

uniaxial anisotropic material. However, beyond the negative refraction spectrum the 

metamaterial exhibits positive refraction. Note that for this typical doping concentration, both 

    and    encounter negative values at approximately                  . The 

absorption coefficient,                         and the figure of merit, FOM 

  
    

  , are shown in Fig. 2.5(c) for various wavelengths and incident angles.     and     are 

the TM transmittance and reflectance, respectively. The strong peaks around the critical 

wavelength arise from high imaginary parts of   , relating to losses inside the material and the 

real part of    vanished. We also compute the shift (  ) of the laser beam with    angle of 

incidence transmitting through the metamaterial using the ray-tracing method for various 

wavelengths [Fig. 2.5(d)]. It is clearly seen the negative shift in the negative refraction spectral 

region. 

To obtain experimental verification of negative refraction, our PU collaborators 

performed reflectance ( ) and transmittance ( ) measurements with incident TM- and TE- 

polarized illumination as a function of incident angles and wavelengths. For transmittance  
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FIGURE 2.5: (a) Real and (b) imaginary parts of     and    for                  as a 

function of wavelength; the yellow band covers negative refraction spectra; (c) absorption 

coefficient (solid curves corresponding to the left vertical axis) and FOM (dashed curves 

corresponding to the right vertical axis) as a function of wavelength and incident angle, are 

plotted on the log scale; plots show  ,   ,   , and    degrees of incident angles; (d) shift 
     of transmitted fields behind the metamaterial for   degree angle of incidence; negative 

shift is in the yellow band; the inset shows definition of the shift. 

 

measurements, the ratio of the TM and TE transmittance is taken to reduce environmental 

fluctuations [Fig. 2.6(a)]. The strong absorption dip around      is observed; the dip 

corresponds to high imaginary parts of   . For the separated TM and TE transmittance plots 

[Figs. 2.6(c, e)], the overall decrease in transmission with increasing wavelengths for each 

angle of incidence is due to   
   inside the metamaterials [Fig. 2.5(c)]. In addition, it also 

appears the strong dip around      in the TM transmittance plot [Fig. 2.6(c)]; the dip is not 

observed in the TE transmittance plot [Fig. 2.6(e)]. Note that the critical wavelengths from 

experiment and calculation are slightly different; this deviation occurs from variation of the 

experimental doping concentration. 
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FIGURE 2.6: Experimental transmission and reflection measurements for various wavelengths 

and incident angles; critical wavelength for the doping density                  is 

expected at        ; each plot illustrate (a)        , (b)        , (c)    , (d)    , (e) 

   , and (f)    ; the strong dips in (a) and (c) represent experimental critical wavelength at 

around     ; no dip occurs in TE-polarized transmission plot (e); (e) small transmission of 

TE-polarized fields occurs after       due to negative real part of    ; (b, d) discontinuity of 

Brewster’s angle trace (solid white curve in     plot) occurring at critical wavelength, is the 

feature of the transition of normal positive refraction into negative refraction; (f) clearly, TE 

polarization is not affected by the anisotropy of the material and does not exhibit any strong 

features at critical wavelength; the dip in reflection around       occurs because the real part 

of     is approaching 0 and the imaginary part is becoming increasingly large; printed with 

permission from our PU collaborators. 
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 The interval of negative refraction may be observed by tracing Brewster’s angle for 

each wavelength. Brewster’s angles, corresponding to minimum reflectance of TM-polarized 

light, are marked as solid white curves in Fig. 2.6(d). The different spectra locations of the 

minima are due to the wavelength-dependent permittivity of the metamaterial. The apparent 

discontinuous step of the Brewster’s angle tracing specifies the critical wavelength switching 

the optical properties of the metamaterial. Therefore, in experiments the discontinuity of 

Brewster’s angles is utilized as the spectral indicator of the onset of negative refraction 

bandwidth. Figs. 2.6(d, f) show the color plots of the experimental TM and TE reflectance, 

respectively. The wavy fringes in spectra are due to multiple reflection effect across the 

epitaxial layer. Not surprisingly, TE reflectance does not exhibit Brewster’s angles. 

As mentioned above, the discontinuity of Brewster’s angle is utilized to mark of 

beginning of the experimental negative refraction spectral region; moreover, we can also 

determine the end of the bandwidth    by the large increase in the reflectance [Fig. 2.6(d)]. 

This instant increase at    is due to both real parts of     and    approaching  , and their 

growing imaginary parts. The bandwidth ( ) of the negative refraction is computed as the 

percentage deviation from the middle of the interval [6], 

  
      

 

            (2.25) 

For example, in this typical metamaterial, the negative refraction bandwidth is about       

covering               . 

 Furthermore, we compare the experimental measurements to our theoretical 

simulations [Fig. 2.7]. The simulations use the anisotropic transfer-matrix approach [116] [see 

details in Appendix A] to compute the electromagnetic fields in the planar semiconductor 
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heterostructure of air-metamaterial-InP-air. The discontinuity of minima occurs around the 

critical wavelength. An interesting observation is that the minimum dip of the experimental 

transmittance data at the critical angle stops at high incident angle; in contrast, the simulation 

shows continuity of the minimum at high angle. Possibly the stop of the minimum dip is the 

remark of nonlocality in the multilayered structures [59, 150, 151]. This behavior was 

seriously studied in the nanowire structures [152]. 

 

 

FIGURE 2.7: Calculations of the ratio of (a) TM and TE transmittance and (b) TM and TE 

reflectance; the results are in good agreement with experiments; however, position of critical 

wavelength is quite off due to the variation of the doping concentration in the experiments. 

 

2.4 Broadband Negative Refraction and Flat Response 

The effective dielectric constant tensor is a dispersive quantity. However, in imaging or 

optical cloaking applications [14, 16, 70, 76, 83, 153] the optical properties of metamaterials 

are required to remain unchanged for a range of wavelengths, and the bandwidth of negative 

refraction spectra should become significantly broadened. 
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In this Section, we design the graded-negative refraction metamaterials which have 

flatter dispersion and broader spectral response. Let us consider refraction of an 

electromagnetic wave with a wavelength and an incident angle from air to a metamaterial. The 

shift of the transmitted wave is directly related to the refracted angle, and depends on the 

dispersive dielectric constant tensor. Therefore, theoretically if we can design a structure 

which is capable of supporting constant shift in a range of spectrum, then as a result, we 

achieve a flat dispersive response and a broadband spectrum. 

The general concept of the design is very similar to the chromatic aberration 

correction used in the conventional lens systems [116]. We need to add a set of multilayered 

metamaterial stacks with longer critical wavelength and thinner thicknesses to the main 

metamaterial stack, which is thickest and has highest doping constant. The negative refraction 

bandwidth of each metamaterial stack is overlapped with each other to support the broader 

bandwidth, and the thickness of each stack is tuned to flatten the negative electromagnetic 

wave shift. 

 Three samples are designed for the study: one, two, and four metamaterial substacks 

are labeled as sample A, B, and C, respectively. The designed structural parameters, including 

different critical wavelengths are given orderly in Table 2.2. Fig. 2.8(a) shows the real parts of 

individual dielectric functions of different substacks. It is clearly seen that the critical 

wavelength of each metamaterial stack increases along with the decrease of doping 

concentration. The ray-tracing simulations of all samples are shown in Fig. 2.8(b). Obviously, 

the shift responses of two-layer and four-layer structures are almost independent of 

wavelength in the range of         and            , respectively. In addition, the 

bandwidths in the structures are also expanded. 
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TABLE 2.2: Summary of the sample parameters of the study; the alignment of substacks is 

shown in inset of Fig. 2.8(b); the doping concentration and substack thickness are tuned for 

samples B and C to broaden negative refraction bandwidth and flatten the optical properties; 

calculations are compared to the baseline sample, sample A. 

Sample Substack Thickness                              

A                   

B                    

                    

C                    

                    

                    

                    

 

 

 

 

FIGURE 2.8: (a) Real part of    for various doping concentration; the critical wavelength is 

increasing when the concentration is decreased, due to smaller free-carrier electrons; (b) the 

shifts      of the beam transmitting through each sample for    incident angle; sample C with 

four substack metamaterials has flatter and broader bandwidth; sample A, which is the 

baseline sample, has the most narrow bandwidth; the inset illustrates how the substacks are 

aligned. 
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We also perform the transmittance and reflectance calculations for sample B and C [Fig. 2.9]. 

In the transmittance plots, we see the overlapping of the absorption dips from different 

metamaterial stacks; the degrees of absorption reduce along to thickness of the corresponding 

doped substacks. In the reflectance plots, sample C is less dispersive than sample B. 

 Our PU collaborators verified experimentally the transmittance and reflectance of 

sample A-C [Fig. 2.10]. In the transmittance plots, we can see the overlapping of the minimum 

dips, mentioned above. In the reflectance plots, we see the broader spectral region of the 

negative refraction in sample C and B with bandwidth ( ) of       and       respectively, 

while the bandwidth of the baseline sample is      . Therefore, the broadening of the 

bandwidth is improved by designing in advance the supplementary metamaterial substacks. 

 

FIGURE 2.9: Theoretical transmittance and reflectance calculations with parameters given in 

Table 2.2; for sample B, (a)        , (b)      ; for sample C, (c)         , (d)      ; it is 

clearly seen broader negative refraction spectra in (d). 
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FIGURE 2.10: Experimental transmittance and reflectance measurements of samples B and C; 

(a, c) the overlapping of the absorption dips across differently highly doped substacks occurs 

in the flat dispersion portion of the negative refraction regime; (b, d) the broader negative 

refraction spectra are observed in the designed multiple-metamaterial substack composition 

with bandwidth of     and       for samples B and C; printed with permission from our 

PU collaborators. 

 

 The broader bandwidth can be further improved by adding more designed 

metamaterial substacks. However, as shown in Fig. 2.5(c), the loss is highest at the critical 

wavelength. Therefore, the overall loss inside the material in the flat dispersion portion of the 

negative refraction regime is increased. 

2.5 Conclusion 

To summarize, we first discussed the mathematical constitution of field propagation with 

backward-wavefront positive-refraction and forward-wavefront negative-refraction in 
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hyperbolic metamaterials. The physical understanding of image resolution inside isotropic and 

hyperbolic media was clarified. Later, the effective optical properties of nanolayered and 

nanowire structures were computed using the effective medium approximation; the dielectric 

constant tensor yielded hyperbolic dispersion relation, relating to the unusual field propagation 

behavior. 

We showed theoretically and experimentally the negative refraction of waves 

transmitting through the InGaAs/AlInAs multilayered semiconductor metamaterials with 

different doping concentrations in mid-IR frequencies. The onset of negative refraction spectra 

occurring at the critical wavelength can be controlled by determining the doping density and 

layer thickness. Finally, we extended the spectral bandwidth of negative refraction and flatten 

the optical response by adding the substacks of predesigned metamaterials. The potential 

applications of such metamaterials include waveguiding, imaging, security and sensing, beam-

steering, and nanolithography.  
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Chapter 3 - Hypergratings: Light Communication in Planar Hyperbolic 

Metamaterials 

3.1 Introduction 

Progress in sensing, imaging, and communication technology requires ever improving control 

over the propagation of electromagnetic waves [14, 19, 47-51, 61, 64-66, 70, 154-160]. A 

generic photonic unit (e.g. optical sensor, lithographic or imaging apparatus, communication 

unit) can be considered as a device providing the optical communication between several 

spatially separated spots (“object” and “image”). The separation between the spots (“focal 

distance”) and the size of the spot (“resolution”) are among the main figures of merit for 

optical systems. 

In this Chapter, we propose a technique for far-field communications between several 

subwavelength spots based on manipulation of subwavelength signals in planar slabs of 

hyperbolic metamaterials [16]. Our method combines the benefits of planar optics offered by 

Fresnel zone plates [116]  and negative-refraction lenses  [19, 115], wide-spectrum-generation 

offered by near-field plates [156-159], and diffraction-less propagation offered by strongly 

anisotropic (hyperbolic) metamaterials. The method is illustrated on the example of far-field 

subwavelength foci generated by the diffraction plates in hyperbolic metamaterials. Analytical 

estimates of the performance of such “hyper”-gratings are provided and verified with 

numerical solutions of Maxwell’s equations. Generalizations of the proposed technique for on-

chip communications are suggested. 

The optical behavior of imaging or focusing devices is most clearly seen by 

considering the wavevector space of a system. In this approach, an optical pulse at the 
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entrance of a device is represented as a set of plane waves with well-defined components of 

the wavevector     and frequency  . The spatial evolution of each of these waves is then 

analyzed, and finally the spectrum is converted back into the real-space domain at the exit 

point of the device. 

As mentioned in Section 2.2.3, most transparent natural materials support propagating 

waves with some limited range of transverse wavevectors. The maximum value of the 

transverse wavevector component   
          determines the minimum size of the focal 

spot that can be achieved in a device in the far-field limit      
           [116, 139]. 

The role of conventional optical elements is therefore reduced to adjusting the phase-shifts 

between different wavevector components to achieve the best-possible (although still 

diffraction-limited) resolution. This adjustment is typically provided by material 

inhomogeneities (lenses), or by diffraction gratings (Fresnel lenses or zone plates). 

Several techniques have been suggested to achieve subwavelength imaging. Some of 

these techniques – near-field scanning optical microscope (NSOM) [161-163], superlens [19, 

50], and near-field plates [156-159] – rely on exponentially decaying (evanescent) fields with 

       
    to surpass the diffraction limit. Unfortunately, the realistic applications of these 

techniques are limited to near-field proximity of the imaging system [60]. Another class of 

structures, either uses transformation optics techniques (light compressors) [66, 70], or makes 

use of ultra-high-index modes in plasmonic [155] or strongly anisotropic [15, 42, 164]  media. 

While these systems are able to achieve subwavelength light manipulation in the far-field, 

their fabrication requires three-dimensional patterning. Moreover, the devices themselves are 

often non-planar which further restricts the range of their possible applications [14, 61-64]. 
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FIGURE 3.1: (a) Schematic of the hypergrating structure; 1D diffraction plate is shown; (b) 

diffraction-limited propagation in Si,         ,          ,     ,          ; (c), 

(d) subdiffraction propagation in (c) negative refraction and (d) positive refraction 

metamaterials, (c)           and (d)          ; dashed lines show the direction of 

          modes [Eq. (3.4)]; panels (e)-(g) show spectra of the systems in (b)-(d), 

respectively; reprinted with permission from Ref. [16]. 

 

Here we propose a system capable of far-field subwavelength light manipulation which is free 

of the above restrictions [16, 17]. The schematic of the proposed planar structure and several 

realizations are shown in Fig. 3.1. The system comprises a planar slab of the hyperbolic 

metamaterial covered with a subwavelength metallic diffraction plate. As will be explained 

below, the diffraction plate is responsible for generating the high-wavevector components of 

transmitted electromagnetic fields, and the slab is used for the routing of the resulting 

subwavelength signals. 
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This Chapter is organized as follows. In Section 2, propagation of diffracted fields 

from a single slit in hyperbolic metamaterials will be studied. Formalism of the subwavelength 

focusing structure will be developed in Section 3. Limitation of the technique is also 

discussed. In Section 4, we suggest that Fresnel zone plate hypergratings may behave as a 

converging lens and can be utilized for magnification and far-field imaging with 

subwavelength resolution. 

3.2 Light Diffraction from a Single Slit 

We begin by discussing the propagation of TM-polarized light generated by a thin slit of width 

      with center positioned at     . We assume that the pulse propagates along the 

optical axis [axis   in Fig. 3.1(a)] of a uniaxial anisotropic metamaterial with the dielectric 

permittivity tensor    [Eq. (2.5)]. The field due to the slit inside the metamaterial at the distance 

  from the interface is given by [138] 

                      
       

 

  

 (3.1) 

with the slit source         and the transfer           functions given by 

                           
         (3.2) 

                (3.3) 

where          
  

   
  
 

  
  is given by the anisotropic dispersion relation [Eq. (2.8)], and 

the sign of the square root is chosen to enforce the field decay inside the absorptive medium. 

 The amplitude of the transfer function defines the evolution of the wavevector 

spectrum, and thus effectively defines the resolution of the system. As seen from Eq. (3.3), in 
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isotropic systems, the high-   components of the spectrum are exponentially suppressed [Fig. 

2.1(c) and Fig. 3.1(b, e)], and the subwavelength solution is limited to the proximity of the slit. 

 The situation is dramatically different in strongly anisotropic metamaterials that have 

        where hyperbolic dispersion virtually eliminates high-   cut-off [42, 121, 132, 

133]. Nanolayer [6, 120] and nanowire [44, 147, 165] realizations of these unique structures 

have been theoretically predicted and experimentally demonstrated for near-UV, visible, near- 

and mid-IR frequencies. It has been shown – both theoretically and experimentally – that 

optical properties of relatively thick metamaterials are well-described by effective medium 

theories [6, 41, 45, 120, 140, 143, 147]. Here we illustrate the subdiffractional manipulation of 

light for an Au-alumina nanowire system [41, 147] and InGaAs-AlInAs nanolayer [6, 120] 

structures operating at        and       respectively, where applicability of effective 

medium theories has been verified. The particular material parameters that we use in our 

simulations are:              ;                for nanowire system and     

         ;            for multilayered structure [149]. 

 We emphasize again that the two structures have opposite anisotropy. The nanowire 

composite exhibits negative refraction (positive phase index) properties for incident light with 

       wavelength as described in Chapter 2, and supports the propagation of both small 

(           ) and high-wavenumber waves. In contrast to this behavior, the nanolayer 

composite operates in the positive-refraction (negative phase index) regime for incident light 

with       wavelength; the structure only supports high-wavenumber components. As seen 

in Fig. 3.1, both structures dramatically outperform their isotropic counterparts. However, 

suppression of diffraction-limited background in nanolayered structure makes these systems 

more suitable for far-field operations. 
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 As described above, the subdiffraction manipulation of light relies on the propagation 

of high-   modes. In strongly anisotropic systems these waves propagate almost parallel to 

each other, where the angle between the propagation direction and the optical axis is given by 

the ratio of Poynting vector components [166, 167]: 

      
  

  
   

   
 

  
 
   (3.4) 

The concentration of subwavelength components into the two subwavelength beams emerging 

from the point slits are clearly seen in Fig. 3.1(c, d); the directions of these beams are in 

perfect agreement with Eq. (3.4). Resonance cones exist only in the frequency regions where 

either     or    becomes negative, but not both. For negative refraction, the diffracted fields 

propagate inside the cone yielding the hyperbolic wavefront pattern on the optical axis; in 

contrast, positive refraction metamaterials yield waves propagating outside the cone, and the 

hyperbolic wavefront pattern is perpendicular to the optical axis. Note that while the field 

distribution in nanowire metamaterials is dramatically different from that in nanolayer 

structures, the spectra of both systems contain substantial contributions of subdiffractional 

components [Fig. 2.1(d, e) and Fig. 3.1(f, g)]. 

3.3 Fresnel Zone Plate Hypergratings 

The light propagation behind an arbitrary 1D diffraction plate with slits of thickness   ,   ,… 

positioned at   ,   ,… is given by Eqs. (3.1)-(3.3) with the multiple-slit source function 

                   . Thus, each slit of the diffraction grating generates a set of two 

subwavelength beams diverging at an angle  . The interference of these beams can then be  
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FIGURE 3.2: 1D hypergratings for subdiffractional photonics in the bulk of (a) nanowire and 

(b) nanolayer metamaterials; profile of several subwavelength foci from (a) and (b) is shown 

in (c) and (d), respectively; the fields in (c, d) are normalized to the maximum field at the 

given distance from the plate; dashed and solid lines in (a, b) correspond to the positions  of 

field profiles shown in (c, d); geometry parameters: (a, c): slit thickness             
      , slit positions           ,           ,          ,          ; (b, d): 

slit thickness                   , slit positions         ,         , 

       ,        ; reprinted with permission from Ref. [16]. 

 

used to generate a subwavelength pattern inside the bulk of metamaterial or on its opposite 

edge. 

 The class of nanophotonic devices based on combinations of planar hyperbolic 

metamaterials and diffraction plates can be called hypergratings [16, 17], reflecting some 

analogy between these systems, Fresnel optics, and hyperlenses. 

 The developed framework is easily extendable for 2D diffraction plates, with each 

point of the plate generating a cone of radiation with apex angle    [see Eq. (3.4)]. The 

superposition of these cones explains, in particular, the appearance of periodic subwavelength 

patterns in recent numerical simulations which image 2D arrays of holes by multilayered  
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FIGURE 3.3: (a) Subdiffractional light focusing at the interface between a nanolayer 

composite and air and in the bulk of the structure; (b) light focusing inside 2D hypergrating; 

profiles of several subwavelength foci from (a) and (b) are shown in (c) and (d), respectively; 

the fields in (c, d) are normalized to the maximum field at the given distance from the grating; 

dashed and solid lines in (a, b) correspond the positions of field profiles shown in (c, d); 

geometry parameters: (a, c): slit thickness                   , slit positions 

        ,         ,        ,        ; (b, d):             ,        , 

       ; reprinted with permission from Ref. [16]. 

 

composites [160]. The limit            yields     and corresponds to canalization regime 

observed in low-frequency nanowire structures [168, 169]. 

 Hypergratings have potential to enable numerous exciting applications, including the 

communication between diffraction-limited optics and subwavelength length scales, 

communication between several subwavelength objects inside a system, high-resolution 

lithography, high-density data storage, and high-density sensing. In particular, hypergratings 

can be designed to realize the planar Fresnel-like lenses with subwavelength foci, potentially 

enabling unprecedented density of pixels at the focal plane. 
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 Several examples of generation of subwavelength field patterns inside and at the back 

edge of the metamaterial are shown in Figs. 3.2 and 3.3. Note that the size of the hypergrating 

foci ranges from       to       and is almost unaffected by the presence of material 

interfaces. 

 Such Fresnel hypergratings can be designed for any value of focal distance   by 

blocking (or reversing phases) of even (or odd) Fresnel zones. The wavelength-dependent 

coordinates    of boundaries of Fresnel zones [see Appendix B] in hyperbolic media are 

expressed by 

    
      

   
      

      
   

   
   

 
 (3.5) 

where    is the horizontal displacement of the first opened Fresnel zone from the optical axis; 

for materials with    
   ,      and for materials with    

   ,         . The sign in 

Eq. (3.5) corresponds to the sign of   
 . Note that Fresnel lens with   

       
  is “left-

handed”: for oblique incidence, its focal point stays on the same side of the normal as the 

incident beam [see Section 3.4]. Moreover, the Fresnel lens hypergratings supports a number 

of secondary foci along the optical axis in addition to its main focal spot [Fig. 3.4(a)], as well 

as those usually found in the conventional Fresnel zone plate. 

We now turn to the analysis of limitations of the proposed technique. The main 

limitation of the resolution of anisotropy-based nanophotonics comes from material 

absorption. In the limit of low loss, the high-   behavior of the transfer function can be 

characterized by 



40 
 

 

FIGURE 3.4: Effect of losses on far-field resolution of Fresnel zone plate hypergratings; sizes 

and positions of the slits are given by Eq. (3.5); panels (a, b) show field distribution in low-

loss (a) nanowire and (b) nanolayer structures (    is reduced    times with respect to bulk 

values shown in Section 3.2); panels (c, d) show field profiles in the focal planes; solid lines 

correspond to field distribution in low-loss systems, dashed lines represent performance of 

structures with full loss; reprinted with permission from Ref. [16]. 

 

               
 

 
  

   
 

  
  

   
  

    
  

 
  
  

   
  
       (3.6) 

The evolution of the spectrum of the wavepackets inside anisotropic metamaterials calculated 

using numerical solutions of Maxwell’s equations are shown in Fig. 3.1(f, g). Note that the 

performance of realistic metamaterials greatly exceeds the performance of their isotropic 

counterparts [Fig. 3.1(e)]. 

 Assuming that the wavevector spectrum at the focal spot is dominated by the high-

wavevector components given by Eq. (3.6), and neglecting the specific dynamics of      
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    waves, we arrive at the following estimate of the resolution in the anisotropy-based 

hypergratings: 

     
   
 

  
  

   
  

    
  

 
  
  

   
  
    (3.7) 

Thus, material absorption serves as a major limitation to far-field subdiffractional focusing. 

However, since hypergratings are nonresonant and thus do not require restoration of 

evanescent waves, it is possible to achieve resolution        at a distance        . Note 

that the resolution of hypergratings is directly proportional to the losses,       (in contrast to 

            dependence of superlenses [60]). Reducing the losses (for example by 

incorporating the gain into the system [170-175] or engineering larger interatomic distances in 

metallic conclusions [176]) restores the resolution [Fig. 3.4]. Our analysis indicates that under 

realistic conditions, Eq. (3.7) tends to overestimate the FWHM of the image. 

 The second limitation of the proposed technique emanates from the appearance of 

nonlocal corrections in the        response of composite systems. Extensive previous 

research [147, 150, 177] indicates that these corrections become important when the scale of 

field variation in the system becomes comparable with the size of its structural unit. Thus, the 

nonlocal corrections will limit the resolution of hypergratings systems to the scale of the 

metamaterial component (          in realistic nanowire and nanolayer structures). 

3.4 Hypergrating as a Magnifying Lens 

It has been known that a conventional Fresnel zone plate can behave as a thin lens [116]. In 

this Section, we show that, similar to the typical converging thin lens, the Fresnel zone plate 

hypergratings with negative-refraction metamaterials are capable of performing spatial 
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Fourier-optics, transforming an incident plane wave into the point on the focal plane with the 

position of the focal point depending on the angle of incidence of the original plane wave [17]. 

In the paraxial limit, magnifying objects by hypergratings is possible. 

 

 

FIGURE 3.5: (a) Schematic of focal spot shifted by incident fields with small angles of 

incidence; for negative refraction materials, focal spots stay on the same side as the incident 

waves; (b) positions of focal points on the focal plane when    is varied; around   degree, 

focal spot is destroyed; squared dots show maximum field intensity of simulations and orange 

line corresponds to Eq. (2.11). 

 

 As mentioned above, a Fresnel lens with   
       

  is “left-handed”: when a plane 

wave is incident on a hypergrating with a small angle of incidence, the focal point shifts from 

the normal spot toward the same side as the incident beam [Fig. 3.5(a)]. The shift      of the 

focal plane agrees well with Snell’s law [Eq. (2.11)] where           . In Fig. 3.5(b), we 

numerically measure the position of maximum field intensity on the focal plane for small 

angles of incidence. The particular parameters used in the simulations are         , 

       ,        , and       . The deviation of the measured focal spots from the 

predicted positions may come from coarse step size used in the simulations. However, the 

focal spot is destroyed for angles larger than      . Note that the shift of a focal spot with 
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small angle of incidence is a property of a conventional lens. We emphasize again that the 

Fresnel zone plate hypergratings are highly capable of transmitting signals to deep 

subwavelength detectors placed on many locations at the focal plane. 

 So far we have considered hypergratings with plane wave incidence. However, as well 

as conventional Fresnel lens, the hypergratings can magnify objects (sources) when the 

paraxial limit is taken into account. Fig. 3.6 shows theoretically the imaging schematic. With 

          and formalism developed in Appendix B, we arrive at 

      
  
 

  
         

       
  
 

   
 

  
 

  
      

   

 
 (3.8) 

where    and    are image and object distances, respectively. Eq. (3.8) represents coordinates 

of boundary of  -th Fresnel zone, related to   ,   , and optical parameters. When      

(plane wave incidence), Eq. (3.8) reduces to Eq. (3.5). In the paraxial limit in which 

     
          and      , we obtain a hypergrating thin-lens equation: 

 

  
 

  
 

    
   

  
   

  
  

(3.9) 

with 

     
   
 

  
 

  
 

  

 
 
 
 

  
 

    
   

 
 

  
 
 
 
 

 (3.10) 

 (maximum zone number is discussed in Appendix B). Such a structure behaves as a 

converging lens on a slab of negative-refraction metamaterial [Fig. 3.6] where the object and 
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image focal distances are       
     

     
         and       

       , respectively. 

Note that in this imaging structure, a ray tracing approach is employed in the paraxial limit of 

hypergratings. The locations of the object and focal spots, and the image and object positions 

are shown in Table 3.1. The transverse magnification of the hypergrating lens is given by 

    
  
 

    
 

  
  

   
(3.11) 

In contrast to negative-refraction metamaterials, hypergratings with a slab of    
      

 , 

materials may not behave as a thin lens since the paraxial limit cannot be satisfied (   

       
    

 ). Physically, electromagnetic fields coming out from an object inside the 

metamaterial slab propagate outside the resonance cones; hence, in air the diffracted fields 

will diverge and prevent the formation of the image. 

 

 

FIGURE 3.6: Imaging mechanism of thin-lens hypergratings; when subwavelength object is 

placed at       (in negative refraction metamaterials or in reality, behind hypergratings with 

thickness   ), real magnified image occurs at    (in air) with erect orientation; ray tracing 

technique is employed in this analysis. 
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TABLE 3.1: Object and image properties in Fresnel lens hypergratings. 

Object Image 

Location Type Location Orientation Relative Size 

       real in air erect magnified 

             

       virtual in metamaterial inverted minified 

 

 

3.5 Conclusion 

We have proposed a new class of planar nanophotonic systems, hypergratings, which combine 

the benefits of planar zone plates with the far-field subwavelength resolution of the hyperlens. 

Subwavelength focal spots in the far-field of the hypergratings were demonstrated numerically 

and the analytical description of the underlying physics was derived analytically. Examples of 

1D and 2D amplitude gratings were presented. It is reasonable to assume that the results can 

be further optimized with phase gratings. We also showed that hypergratings can be utilized 

for magnification and far-field imaging with subwavelength resolution. The technique, 

illustrated here on examples of near-IR and mid-IR frequencies, is scalable from near-UV to 

mid-IR. Furthermore, the approach can be easily extended to enable the communication 

between subwavelength spots inside the bulk of metamaterials. Applications of the developed 

formalism lie in high-resolution sensing, nanolithography, high-density data storage, and on-

chip communications.  
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Chapter 4 - Subwavelength Far-Field Imaging Technique 

4.1 Introduction 

High-resolution imaging is of interest for a broad class of applications spanning all parts of the 

electromagnetic spectra. Some applications of subwavelength imaging in information 

technology and life science include real-time biomolecule imaging, nanolithography, high-

capacity optical data storage systems, and compact integrated optical telecom solutions [178-

184]. Electromagnetic metamaterials and plasmonic systems promise to conquer the 

diffraction limit and offer numerous solutions to the problem of subwavelength imaging [14-

19, 155]. However, while subwavelength light management in metamaterial systems may be 

free from the diffraction limit, the finite wavelength of light in air provides substantial 

challenges in experimental studies of nanophotonics. 

 Although near-field scanning optical microscopy (NSOM) [161-163] provides a way 

to analyze subwavelength field distributions, this technique suffers from a nontrivial 

convolution of the field pattern with the tip function. It is also implicitly slow and does not 

support real-time imaging since the evanescent signal is collected on a point-by-point basis. 

Moreover, NSOM is limited to visible and GHz parts of the spectrum and is not available at 

mid- and far-IR and THz frequencies. Another technique, called stimulated-emission-

depletion microscopy (STED) [185-187] utilizes a light spot to excite fluorescence in 

subwavelength areas of samples. However, the technique forms images using the scanning 

scheme, and also needs fluorescent dyes and high illumination intensities to achieve a 

nonlinear response. Structured illumination microscopy (SIM) [188-192] was shown to 

improve the resolution of conventional optics by a factor of two by analyzing the light 

transmitted through a wavelength-scale diffraction grating, under a set of different 
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illumination conditions. More recently, an approach called far-field superlens (FSL) [193-196] 

was proposed to conquer the resolution limit. The technique utilizes a plasmonic thin film as 

superlens [19, 23] to enhance evanescent fields and then uses a first-diffraction-order metallic 

subwavelength grating to convert these evanescent fields into propagating waves which are 

detectable in far field. FSL can achieve       resolution. 

In Chapter 3, we developed the hypergratings structure which can focus incident plane 

waves into              resolution spot sizes. However, so far in our best knowledge, 

there has been no imaging technique that can achieve this high resolution by using far-field 

measurements. Here we present an approach that can be used to image unknown 1D objects 

with far-field measurements [197]. 

It has been known that the spectrum of the subwavelength object is dominated by 

high-wavenumber components that exponentially decay away from the object. Measurement 

of these evanescent components is impossible in the far-field regime. However, a 

subwavelength grating, located at the object plane, can potentially help the image-

reconstructing procedure by converting the evanescent waves into propagating waves. 

Therefore, our technique, similar to FSL, relies on designing the plasmonic subwavelength 

grating to convert the information of subwavelength features into propagating waves. In 

contrast to FSL, our technique does not rely on resonant enhancement of subwavelength 

information with plasmonic structures, and we take advantage of many diffraction orders of 

the grating to obtain higher resolution. The approach promises broadband spectral response 

and direct imaging of high-resolution objects. 

The rest of this Chapter is organized as follows. In Section 2, we will mention the 

concepts of the diffraction grating related to the grating equation and optical transfer function; 
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those will be necessary for our image-reconstruction technique. We will develop the imaging 

formalism in Section 3. In Section 4, we will illustrate the robustness of the developed 

technique by reconstructing the images of several single-slit sources, double slit-slit sources, 

and the size and shape of a subwavelength focal spot inside a hypergrating system. 

4.2 Diffraction Grating 

A diffraction grating, formed by a periodic set of slits, is an optical component that transforms 

the incident electromagnetic plane wave into a set of diffracted plane waves, called diffraction 

modes. The direction of propagation of each mode depends on angle of the incident plane 

wave, operating wavelength, permittivities of media, period of diffraction grating, and mode 

number. Grating applications include monochromators, spectrometers, and even imaging 

apparatus [186-191]. 

 

 

FIGURE 4.1: (a) Schematic of light diffraction; plane wave of operating wavelength    in 

isotropic medium    with incident angle    is incident on a grating with period  ; only one-

diffraction-mode transmitted wave in isotropic medium    is shown; (b) absolute value of 

optical transfer function      for several diffraction modes   and incident wavevector     . 
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Consider the incidence of an electromagnetic wave, either propagating or evanescent, on a 

diffraction grating with parameters: permittivity   , periodic  , thickness  , and ridge filling 

factor   [Fig. 4.1(a)]. The grating is surrounded by two isotropic media with permittivities    

(on input side) and    (on output side), respectively. The diffracted fields occupy many 

diffraction orders  , and a diffracted transverse-component wavevector for each order is 

given by the grating equation [116, 198]: 

              (4.1) 

where         is the grating wavevector,      is the transverse-component wavevector of 

the incident field, and      is the transverse-component wavevector diffracted by an  -th 

order. It is clearly seen that the transverse wavevector component for each diffraction mode is 

translated by the amount of    . 

 When the wavevector of the incident field is in the evanescent spectra (     

          ), with proper design of a subwavelength grating the diffracted wavevector may be 

shifted into the propagating regime (               ) which is detectable in the far field. 

Our imaging technique that uses a subwavelength grating to convert evanescent into 

propagating fields will be mentioned in details in Section 4.3. 

 In contrast, when the wavevector of the incident field is in the propagating regime; 

that is, a plane wave operated at wavelength    is incident with an angle   , the diffracted 

fields can occupy both propagating and evanescent regimes. In this case, the grating equation 

is reduced to 

                           (4.2) 
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giving   , the diffracted angle for each diffraction order  . For normal incidence and 

       ,            . 

 As mentioned earlier, our image-retrieval technique employs a subwavelength 

diffraction grating to convert the evanescent spectrum into propagating waves. Hence, it is 

important to know the contribution of each wavevector – both propagating and evanescent – to 

the diffracted fields. The quantity describing this contribution, called optical transfer function 

[OTF;         ], is defined as the ratio of transmitted amplitude of the  -th mode           

over incident amplitude          , for various incident wavevectors [    ]: 

         
       

       
   (4.3) 

Rigorous coupled-wave analysis (RCWA) [199-202] is one of the most efficient techniques 

employed to compute reflecting and transmitting field amplitudes for each diffraction order. 

The technique expands the periodic relative permittivity in the grating region into the form of 

a Fourier series, writes electromagnetic fields in input and output regions of the diffraction 

grating as a linear combination of many diffraction modes, and then finds solutions that satisfy 

Maxwell’s equations in all regions by solving the exact electromagnetic-boundary-value 

problem.  

Fig. 4.1(b) shows the absolute value of OTF,            as a function of          

and                  for a diffraction grating surrounded by air with parameters    

    ,       ,         , and        , and the operating wavelength of        . 
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FIGURE 4.2: (a) Schematic of imaging structure; an object is placed closed to the 

subwavelength plasmonic grating with period   (at       ) and is irradiated by the plane 

wave with incident angle     ; the far-field intensity is measured inside an isotropic material 

with permittivity  ; (b) transfer of evanescent information into propagating regime by the  -

th diffraction order of the grating; normal incidence is assumed. 

 

4.3 Imaging-Reconstruction Formalism 

In this Section, we will develop the formalism of image reconstruction as follows. A 

subwavelength diffraction grating is placed at the object plane where the object is surrounded 

by a dielectric medium or hyperbolic metamaterial [Fig. 4.2(a)]. Light with transverse-

component wavevector     and angle of incidence      illuminates the object. Consequently, 

scattering fields with a broad range of wavevectors   , covering both propagating and 
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evanescent regimes, are diffracted by the grating. Each wavevector of the diffracted wave    

can be related to the wavevector of the scattering field    by [Eq. (4.1)]  

                   (4.4) 

Therefore, the subwavelength grating shifts some portions of the original propagating spectra 

into the evanescent regime, and shifts some portions of the evanescent spectra into the 

propagating regime [Fig. 4.2(b)], and then the originally-evanescent components can be 

detected with far-field measurements. 

This procedure, however, leads to overlapping of the original evanescent signals with 

original propagating waves; so that extra measurements are required to deconvolute the 

different parts of the spectra from the far-field measurements. The approach to distinguish the 

propagating and evanescent spectra is detailed below. For simplicity, here we consider only 

TM-polarized incident waves. However, the formalism developed is directly applicable for 

TE-polarized light. 

 In Fourier space, an object comprises Fourier amplitudes with all ranges of 

wavevectors,           . However, only a part of the spectra is substantially important, 

and then we might omit the other insignificant parts. Therefore, the electromagnetic field of 

the object can be represented as [138] 

  
   

                   
                

      

       

 (4.5) 

where      is the position on  -axis where the object is originally placed,        is cut-off 

wavevector spectrum,    is related to    through the dispersion relation [Eqs. (2.7)-(2.8)], and 

      is the unknown complex amplitudes of the Fourier-decomposition of the light scattered 
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by the object. Hence, numerically the problem of imaging can be reduced to the problem of 

finding      . When a subwavelength grating is placed at the object plane, each    

component will be diffracted according to Eq. (4.4). Consequently, it is straightforward to 

show that the far-field TM-polarized light measured in a dielectric medium can be described 

numerically as 

  
                                          

               

  

 (4.6) 

where                    
 ,   is permittivity of the isotropic medium in which the 

field is measured, and              is OTF [Eq. (4.3)]. It is clearly seen that        

                       . The index   corresponds to the summation over different 

diffraction orders, while the index   represents numerical integration over    with weighting 

factors    [203] [Fig. 4.2(b)]. 

When high-wavevector regimes are shifted into the propagating spectrum by the 

diffraction modes, the far-field propagating regime includes the overlapping of original 

propagating (clearly, by the     diffraction order) and original evanescent (    modes) 

components. We now come to the question how to deconvolute the different parts of the 

spectra from the far-field measurements. Both SIM and FSL rely on rotation of polarization of 

incident light to attain additional measurement and perform the deconvolution above. This 

procedure, however, is not desirable for systems where the properties of the sample strongly 

depend on polarization. Here we propose to fix the polarization of incident light, and instead 

rotate the direction of incident light (given by the angle of incidence     ) as shown in Fig. 

4.2(a). 
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 This idea can be illustrated by the following simple example: let us consider a 

subwavelength single slit, surrounded by air and illuminated by a plane wave with incident 

angle     . Spectra of diffracted fields at two different distances behind the slit are shown in 

Fig. 4.3. It is obvious that in the evanescent regimes (         ), the spectra of different 

incident angles are distinguishable in the near field, but indistinguishable in the far field. In 

contrast, the spectra of different incident angles in the propagating regime (         ) are 

separated explicitly even in the far field. Hence, we may utilize this approach to split the 

overlapping spectra. 

 

 

FIGURE 4.3: Field spectra of diffracted waves from a single slit with (a) near and (b) far 

distances; colored curves represent spectra of different angles of incidence (see inset); gray 

areas (         ) correspond to propagating regions. 

 

In this work, we numerically measure the field intensity at different transmitting angles       

on a semicircle. Let this data be represented by   intensity      data points,                  . 

As an example, here we emulate the real experiment by sampling the numerical solutions of 

Maxwell’s equations, obtained from commercial finite-element (FEM) [204] simulations. A 

nonlinear least-squares fitting technique based on Gauss-Newton algorithm [205] is used to 
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find the transmission coefficients. The method finds the unknown complex coefficients by 

minimizing the intensity deviation, represented by the sum     of squared residuals, 

                       
 

 

   

 (4.7) 

where                    
   

               
 
. Assuming      is smaller than the cutoff 

wavevector       , the unknown complex transmission coefficients may be represented as a 

polynomial 

           
 

      
  

 

      
 

      
 

 

     (4.8) 

The minimum occurs when           . Finally, when the spectrum of the source is 

determined, the object is recovered using Eq. (4.5). 

 We emphasize that the most important aspects of our imaging-retrieval technique is to 

(i) use a subwavelength diffraction grating to allow measurements of subwavelength 

information in the far field, and (ii) vary angles of incidence to deconvolute the overlapping 

signals. In this work, we use the least-squares fitting technique to compute the unknown 

coefficient function; however, the technique could be vastly improved by employing more 

efficient mathematical algorithms to obtain the object’s unknown Fourier function. 

4.4 Far-Field Imaging with Typical Objects 

The developed formalism is first illustrated on the examples of imaging several single-slit 

sources with widths       ,     ,     , and       and double slit-slit sources with two 

     slits separated by     , all placed in air. We assume that all linear dimensions are 
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normalized to the wavelength in the air   , and use the following parameters for plasmonic 

grating:        ,        ,      , and        . RCWA shows that this typical 

grating provides substantial coupling between propagating modes and the evanescent 

spectrum covered by the first seven diffraction orders which potentially yields a resolution of 

      [Fig. 4.1(b)]. To simulate experimental conditions, we calculate the intensity behind the 

grating using the FEM commercial software [204], and use the calculated intensity as the 

“experimental” input field. The good agreement of our retrieval technique for the single and 

double slits and their original configurations is shown in Fig. 4.4 and Fig. 4.6(a), respectively. 

 

 

FIGURE 4.4: Reconstruction (blue solid curves) of single slits with width (a)     , (b)     , 

(c)     , and (d)      ; gray dashed lines represent original sizes of the slits; air-to-air 

measurement is assumed. 

 

We further apply the developed formalism to recover the field distribution at the focal plane of 

the planar subwavelength focusing device based on the strongly anisotropic metamaterials, 
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hypergrating [see Chapter 3]. The TM-polarized field of wavelength          is incident 

on the hypergrating structure with the particular metamaterial parameter:            

      and                [16, 149], and the subwavelength focal spot is found at a 

distance behind the diffraction plate. With this positive-refraction metamaterial, small    

components of the field are suppressed, so that the image recovery can be achieved with only 

single      measurement. The parameters of the Cu grating are                     

[149],        ,      , and               . Fig. 4.6(b) shows good agreement of 

subwavelength focal spot retrieval and FEM simulation. 

 Finally, we analyze the tolerance of the imaging algorithm to noise, present in any 

experiment, by adding a random    noise to the “experimental” field distributions from the 

single slits, and averaging the field recovered after several noise realizations. Our simulations 

demonstrate that the recovered image is not sensitive to the small experimental noise [Fig. 

4.5]. 

 

FIGURE 4.5: Reconstruction (blue solid curves) of single slits [as in Fig. 4.4] with a random 

   noise added in the experimental field distributions. 
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FIGURE 4.6: (a) Reconstruction of two      slits separated by      (air-to-air measurement); 

(b) reconstruction of the subwavelength focal spot of the hypergrating based on measurements 

in air; solid blue and dotted black curves correspond to retrieved and original images, 

respectively; intensities from both methods are normalized; positive refraction metamaterial-

to-air measurement is assumed. 

 

We now discuss the advantages and limitations of the proposed technique. The main 

mechanism of the imaging retrieval depends only on designing the subwavelength diffraction 

grating to support the evanescent-to-propagating wave transformation in a particular material. 

Once the permittivities of the materials surrounding the object are known, an appropriate 

grating can be designed. The design of this grating does not depend on the shape of the object. 

In addition, our technique is not only limited to TM-polarized incident fields, because our 

structure does not need the slab of metallic layer to enhance the evanescent fields [19, 193]. 

 The main limitation of the complete imaging retrieval is related to the robustness of a 

mathematical approach, employed to fit the unknown amplitude function [Eq. (4.8)] with 

experimental data. Moreover, the speed of real-time bimolecular imaging depends on the 

process of varying incident angles and fitting computation. 

4.5 Conclusion 

We proposed a technique capable of retrieving the size and shape of the unknown 

subwavelength objects with far-field measurements and computer post-procession. The 
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approach relies on a predesigned subwavelength diffraction grating scattering evanescent 

information into the far field and on a numerical algorithm that is capable of deconvoluting 

this information based on the far-field intensity measurements. We showed the robustness of 

the technique by retrieving subwavelength single and double slits, with and without noise, and 

determining the size of the subwavelength focal spot in infrared spectrum regime. As 

compared to the previously introduced techniques (SIM and FSL), the proposed approach is 

implicitly non-resonant, and thus provides a relatively large operating bandwidth. It also 

enables deep subwavelength resolution (      ), and opens the door for high-resolution 

real-time imaging.  



60 
 

Chapter 5 - Wave-Matching Technique: Computing Light in Planar 

Structures 

5.1 Introduction 

Accurate numerical analysis of electromagnetic fields is required to adequately understand the 

behavior of plasmonic and metamaterial systems. Although a number of finite-difference and 

finite-elements [206] techniques can successfully solve the problem of scattering in relatively 

small geometries (     ), analysis of wave propagation in an extended system is beyond the 

capabilities of methods that rely on finite-size meshing of space/time. One of the ways to 

reduce memory requirement to calculate the field in an extended structure with a moderate 

number of scattering interfaces is to implement some sort of wave-matching technique where 

the modal spectrum is constructed to satisfy the solutions of Maxwell’s equations in the space, 

and only boundary conditions at scattering interfaces are enforced, resulting in calculations of 

amplitudes of the modes. Effectively, modal expansion can replace the need to calculate all 

field components at every point of space with the need to calculate modal amplitudes in every 

region of space. 

 One of the first descriptions of the wave-matching approach and its applications for 

highly conductive plasmonic guides can be found in Refs. [207, 208]. Ref. [207] also 

describes scattering by planar guides with highly symmetric cross-sections. Green’s function 

formalism has been utilized to analyze out-of-plane scattering of plasmonic guides in Ref. 

[209]. An approach to calculate the modal cross-talk and scattering in 1D guides was 

developed in Ref. [210]. Scattering by periodically corrugated systems has been analyzed with 

rigorous coupled wave analysis in Refs. [199-202]. Basis expansion of electromagnetic field 

in piecewise rectangular structures was proposed in Ref. [211]. Recently, the generalization of 
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field expansion to calculate scattering in plasmonic planar guides has been presented in Ref. 

[212]. However, while the mode-matching calculations were proven to be highly efficient, this 

technique had failed in the proximity of the plasmon resonance condition, when the field of a 

surface wave is highly confined to the proximity of a metal interface. Here we present the 

extended wave-matching technique that is capable of solving for wave scattering in complex 

systems formed by coupled planar waveguides [137]. 

 The rest of this Chapter is organized as follows. In Section 2, we will present the 

mode structure of an arbitrary planar guide used in this work. Section 3 will be devoted to the 

development of the mode-matching technique in a quasi-planar system comprising a uniform 

in  -direction array of planar guides. The extension of the technique to multistack structures 

will be proposed in Section 4. The presented numerical approach will be illustrated on 

examples of light propagation in several plasmonic and metamaterial systems in Section 5. 

 Notations: In this work, we use the following notations for the electric and magnetic 

fields in the system: the total electric ( ) and magnetic ( ) fields are shown in italic letters; 

the fields of modal components contributing to the total field are represented with symbols   

and  ; the components of an individual mode in a particular layer of the multilayer stack are 

represented with calligraphic symbols   and  . 

5.2 Modal Spectrum of Planar Guides 

We start from analysis of a modal spectrum of a planar waveguide, schematically shown in 

Fig. 5.1(a). The structure comprises a set of   planar layers with layer interfaces parallel to 

the    plane, with the  -th layer occupying the space between          , and having the 

uniaxial dielectric tensor described by 
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    (5.1) 

We assume that       and     . Here we consider the structure that is infinitely 

extended in the    plane. 

The electromagnetic fields in this layered system can be represented as a set of TE and 

TM polarized waves (modes). Each mode of the multilayer constitutes a solution of Maxwell’s 

equations that is finite for        [116]. In a homogeneous layered structure, the mode 

can be parameterized by a combination of (i) its polarization (TE/TM), (ii) the in-plane 

components of the wavevector (     ), and (iii) a set of layer-specific complex coefficients 

   
   playing the role of amplitudes of the mode components: 
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where the fields and dispersion relations in each layer are described by 
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FIGURE 5.1: Schematic geometry of the multilayered structures and electromagnetic mode 

types; geometry of the single multilayer stack is shown in (a); coefficients   
  play the role of 

amplitudes of the mode components in each layer; panel (b) explains the composition of top, 

bottom, and guided modes; field profiles in the outmost layers of the multilayer are shown; the 

interface between two multilayer stacks is shown in (c); modal amplitudes constituting total 

fields in each stack are given as   ; panel (d) shows geometry of  -stack structure with 

      interfaces; reprinted with permission from Ref. [137]. 

 

TE – polarized waves: 
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TM – polarized waves: 
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Note that for a given mode only two of the amplitudes   
  are independent to each other. 

Indeed, the remaining amplitudes can be calculated using the well-known transfer matrix 

method [Appendix A]: 

 
    
 

    
      

        
         

 

         
          

   
  
 

  
   (5.6) 

with polarization-dependent parameters   ,   , and    given by   
               

        ,   
      ,   

                 ,   
              , and   

               

             . 

 For multilayer systems, layer-specific transfer matrices can be multiplied together, 

yielding the transfer-matrix relating the fields in any two layers of the multilayer stack, and 

thus solving the problem of reflection and transmission of a plane wave by the multilayer 

composite. The singular solution that corresponds to nonzero scattered waves on both sides of 

the multilayer structure    
    

     with zero incident fields    
    

     corresponds to 

the eigen (guided) mode of the stack [116, 207, 210]. 

 For each polarization, the full spectrum of modes supported by the stack includes 

three groups of waves [Fig. 5.1(b)]. The first group contains a discrete spectrum of guided 

modes, exponentially decaying into first and last layers    
    

      
    . Here we 

characterize these waves by the in-plane components of their wavevectors        . The 

remaining groups of modes contain the continuum of waves, known as open-waveguide 

modes [207, 212] (bulk modes). The first of these groups represents the modes originated by a 

plane wave that is incident on the layered structure from the top layer    
      

    , 

while the second group represents the wave incident on the structure from the bottom layer 
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    . Here, the modes of the first group (“top modes”) are parameterized by the 

real-valued      in the top       layer, while the “bottom modes” are parameterized by the 

real-valued      in the bottom       layer. 

 In the limit of symmetric distribution of permittivity             , the spectrum of 

top and bottom modes proposed here is equivalent to the earlier proposed [207] combinations 

of “standing wave” modes with symmetric and antisymmetric  -profiles. However, in contrast 

to the later, the combination of top and bottom modes is more easily generalizable to the case 

of nonsymmetric (such as plasmonic) planar guides. Note that in a majority of previous 

studies of plasmonic structures [212], bottom modes were explicitly omitted. As will be 

explained below, this omission becomes crucial in the regime of strong surface plasmon 

polariton (SPP) [92, 93] scattering, e.g., in proximity to SPP resonance or in plasmonic step 

geometry [Fig. 5.4]. Overall, the field inside the guiding structure can be written as 
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The first terms in Eqs. (5.7) and (5.8) represent the summation of all guided modes, while the 

remaining two terms integrate all possible open-waveguide modes. Here we assume that all 

the modes in the layered material have the same value of   . This assumption does not limit 

the applicability of the developed technique, since due to translational symmetry any solution 

of Maxwell’s equations in the set of coupled waveguides can be represented as a linear 

combination of solutions corresponding to a set of    values. Likewise, we assume that 

excitation and response of the system are monochromatic                . The linearity 

of Maxwell’s equations makes it possible to generalize the developed formalism for the 

arbitrary pulse excitation by representing the incident radiation by the linear combination of 

monochromatic waves. 

 Note that in the process of calculating waveguide modes it may be necessary to 

determine the proper sign of the    (or   ) component of the wavevector in a particular layer. 

If the component of the wavevector has complex value, this sign is determined from the 

requirement for the mode to be finite in its domain. If the wavevector component is real, its 

sign should be determined to impose the propagation of energy in the positive   (or  ) 

direction [42, 213]. 

 The set of waveguide modes defined above allows the introduction of the scalar 

product 

             
                 

       
 

  

 (5.9) 

where the dagger (†) corresponds to the adjoined field, i.e., field of the mode propagating in 

the reversed   direction [207, 210]. It can be shown [207, 210, 212] that in a given multilayer 

(i) all TM-polarized waves are orthogonal to all TE-polarized waves, (ii) the guided modes are 
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orthogonal to each other, and (iii) the top and bottom modes may have some coupling, 

depending on     and    : if        , the top and bottom modes corresponding to the same 

value of    are coupled to each other and are orthogonal to all other modes; if one of the two 

materials is lossy (as is usually the case with plasmonic structures), the top and bottom modes 

are, as a rule, orthogonal to each other. 

 Note that, similar to what has been suggested in Ref. [212], the scalar product can be 

calculated analytically, significantly speeding up the calculation [Appendix C]. 

5.3 Mode Coupling Across Two Multilayer Stacks 

We now turn to the main point of this work – discussion of coupling of the modes at the 

boundary between the two multilayer structures. For simplicity, we present results for the case 

when the interface is located at     [Fig. 5.1(c)]. Generalization of the technique for other 

locations of the interface is straightforward. 

We are solving the classical scattering problem: finding the fields scattered by the 

interface provided that the incident fields are known. The incident fields are represented by the 

modes propagating in the    direction on the left-hand side of the interface       and by 

the modes travelling in the –   direction on the right-hand side of the interface      ; the 

scattered fields are represented by the modes travelling in the –   direction on the left-hand 

side of the interface and by the modes travelling in the    direction on the right-hand side of 

the interface. The modal representation [Eqs. (5.7)-(5.8)] reduces the scattering problem to an 

arithmetic task of finding the coefficients   
  and   

  as a function of   
  and   

 , which can be 

solved by imposing the following set of boundary conditions: 
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   (5.10) 

    
    

                              
    

   (5.11) 

As can be explicitly verified, the remaining boundary conditions follow from Eqs. (5.10)-

(5.11). In the case of normal incidence       , TM- and TE-modes do not couple to each 

other. Correspondingly, in this case Eqs. (5.10) describe the reflection, transmission, and 

scattering of TM-polarized waves, while Eqs. (5.11) describe the optical properties of TE-

polarized modes. 

 In order to solve the scattering problem, Eqs. (5.10)-(5.11) need to be converted into a 

set of coupled linear equations which contain amplitudes of the scattered modes. To achieve 

this goal, we substitute the modal expansion [Eqs. (5.7)-(5.8)] in Eqs. (5.10)-(5.11), and 

subsequently multiply the resulting expressions by the adjoined fields of left- and right-hand 

side modes, as will be described below. 

In numerical computations, it is necessary to replace the continuous integration over 

   with finite sums. Thus, Eqs. (5.7)-(5.8) become 

                                  

 

       (5.12) 

                                      

 

       (5.13) 

where                     
   

 , and similar for      ; the summation in Eqs. (5.12)-(5.13) go over 

all modes (top, bottom, and guided) of TE and TM polarizations, and the weight factors   are 

equal to   for the guided modes, and are determined by the numerical integration method used 

for top and bottom modes [203]. Note that the number of modes on the left-hand side of the 
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interface      does not necessarily equal the number of modes on the right-hand side of the 

interface     . Eqs. (5.10)-(5.11) now become 

    
    

   

    
   

    
   

    
   

   

  

   

     
    

   

    
   

    
   

    
   

   

  

   

   

    
    

   

    
   

    
   

    
   

   

  

   

     
    

   

    
   

    
   

    
   

   

  

   

   

 (5.14) 

    
    

   

    
   

    
   

    
   

   

  

   

     
    

   

    
   

    
   

    
   

   

  

   

   

    
    

   

    
   

    
   

    
   

   

  

   

     
    

   

    
   

    
   

    
   

   

  

   

   

 (5.15) 

To solve for       unknown amplitudes, we multiply Eqs. (5.10) by the fields of TM-

polarized modes and integrate the resulting products over  ; similarly, we multiply Eqs. (5.11) 

by the fields of TE-polarized modes and perform the integration. Assuming that the index   

first spans the TE-polarized and then TM-polarized waves, the procedure results in the 

following two sets of matrix equations: 
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and 
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where the summation over repeated index   is assumed and matrix elements are given by 

       
   

       
   

 
 
 

 
         

    
   

    
  

 

  

     
  

        

    
   

    
  

 

  

     
  

     

       
   

       
   

 
 
 

 
         

    
   

    
  

 

  

     
  

        

    
   

    
  

 

  

     
  

     

       
   

       
   

 
 
 

 
         

    
   

    
  

 

  

     
  

        

    
   

    
  

 

  

     
  

     

                                             
   

       
   

 
 
 

 
         

    
   

    
  

 

  

             
  

        

    
   

    
  

 

  

             
  

     (5.18) 

An example of the matrix    
   formation is illustrated in Fig. 5.2; the formations of other 

matrices are similar. The modes of     region are not necessarily orthogonal to the modes in 

the     region. Thus, the matrices    
  ,    

  ,    
  , and    

   may have substantial 

nondiagonal components describing cross-talk between modes across the interface. Note that 

in the planar structure, the scalar product yields analytical solution [see Appendix C]. The 

improper integration can be chopped into segments according to layers in both stacks. 
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FIGURE 5.2: Matrix    
   formation; columns     are from the discretization of the 

continuous integration over    where     and     are the number of TE and TM   -discrete 

modes; the adjoined TM- and TE-polarized fields are multiplied to make rows    . 

 

In fact, the above matrices are square and invertible only when      , in which case one of 

Eqs. (5.16)-(5.17) can provide the information required to solve the scattering problem. 

However, even in this case, inversion procedure may lead to significant numerical problems 

and is undesirable. When       these matrices are rectangular and thus, even theoretically, 

cannot be inverted. To overcome this difficulty, we reduce Eqs. (5.16)-(5.17) to the following 

set of equations that represent the generalization of transfer-matrix formalism for coupled 

waveguide structures: 
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where        
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Finally, combining the second equation of Eqs. (5.19) and the first equation of Eqs. (5.20), we 

arrive to the generalization of the scattering-matrix technique that solves the problem of 

interlayer coupling: 

 
   

         
    

  
  

   
                

         
    

  
  

   
    

        
 

   
         

    
  

  
   
    

        
         

    
  

  
   
               

 
  (5.23) 

with    being identity matrices. Eqs. (5.23) represent the main result of this Section. 

5.4 Wave Calculation in Multistack Structure 

In this Section, the wave-matching technique is extended to any general  -stack structure [Fig. 

5.1(d)]. Let unknown coefficients in  -th stack be defined as    
     

         

    
 

 ; 

therefore, we are solving the classical scattering problem in which the coefficients    
  and    

  

are described as a function of    
  and    

 . The set of two-stack transfer-matrix equations [Eqs. 

(5.19)-(5.20)] can be extended for  -stack structures: 
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where 

                                              (5.26) 

                                              (5.27) 

          is the transfer matrix of wave propagation from      -th to  -th stack [Eq. (5.19)] 

and           from  -th to      -th stack [Eq. (5.20)]. The elements of the matrices 

          and           are defined in agreement with Eqs. (5.21) and (5.22), respectively, for 

     interface. Eventually, Eqs. (5.24)-(5.25) provide scattering matrices solving the 

problem of multistack wave coupling [Eqs. (5.23)]. 

 Before illustrating the accuracy of the developed approach, we would like to underline 

its main advantages and disadvantages. The approach is ideal for calculation of light 

propagation in extended structures with a relatively small number of multilayer segments; the 

increase in the number of segments results in additional memory use for each given segment 

and, correspondingly, minimizes the advantages of a wave-matching approach over finite-

difference and finite-element schemes. 

 The developed technique provides an efficient solution to the problem of coupling 

between multilayer stacks with high index contrast (high optical mode density difference) by 

implementing a multilayer-dependent number of modes. However, our calculations show that 
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careful design of the spectrum of the open-waveguide modes is necessary when the coupling 

to and from the highly confined modes is calculated. 

 

 

 

FIGURE 5.3: (a) Light reflection in the planar air-Si-air waveguide coupled to a homogeneous 

dielectric;          , waveguide thickness         ; the geometry and profiles of the 

waveguide modes supported by the system are shown in the inset; excitation by TM2 mode is 

assumed; the graph shows the comparison between the technique presented here (lines) and 

FEM simulations (dots);      since the symmetry of TM1 mode is different from that of 

TM0 and TM2 modes; (b) reflection in plasmonic gap (Au-air-Au) waveguide;      
      ; thickness of lines illustrates the convergence of the computations; panels (c) and (d) 

illustrate the field distributions in the system (a) with          (c) and               , 
                  (d); reprinted with permission from Ref. [137]. 
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For guided modes, the approach allows straightforward calculation of intermode cross-talk by 

calculating the mode-specific pointing-flux and multiplying it by the amplitude of the given 

mode squared: 

  
    

        
 
              

 

  

   (5.28) 

Similarly, the approach allows for easy calculation of emission directionality, naturally 

separating the fields produced by guided modes from the fields of open-waveguide modes and 

separating the fields of the incident waves from the fields of the scattered waves. 

5.5 Interguide Coupling in Plasmonic and Metamaterial Systems 

We now illustrate the accuracy of the presented approach on several examples of plasmonic 

and metamaterial systems. 

5.5.1 Light Emission and Scattering by Single-Mode Waveguide 

We first consider light coupling to and from a waveguide. As an example, we use a    -   -

thick Si waveguide surrounded by air, and calculate the coupling between this system and a 

homogeneous dielectric at          ;           [149] [Fig. 5.3(c)]. 

 To analyze the accuracy of our technique we assume that the system is excited by the 

TM2 (symmetric) mode with an amplitude of 1, and study the percentage of the reflected light 

into TM0, TM1, and TM2 modes as a function of dielectric permittivity of the homogeneous 

dielectric [see inset in Fig. 5.3(a)]. For comparison, we calculate the same parameters with 

commercial finite-element-method (FEM) software [204]. The perfect agreement between the 

results of our technique and FEM simulations is shown in Fig. 5.3(a). As expected, even for 
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this relatively simple system, the scattering-matrix approach uses orders-of-magnitude less 

memory than the FEM model (        for mode matching vs.       for FEM). 

 The field matching obtained with our technique for          is illustrated in Fig. 

5.3(c). Panel (d) of the same figure illustrates the matching obtained in coupling between an 

air-Si-air guide and an anisotropic hyperbolic metamaterial with               ,       

            [41]. 

 

 

 

FIGURE 5.4: Scattering of the SPP propagating across the Au-air step; panels (a) and (b) 

show transmission, reflection, and scattering           of an SPP that is incident on 

the step; geometry of the structures is shown in insets; curves correspond to the formalism 

developed in this work (curve thickness represents data variation due to changes in spectra of 

bulk modes); dots represent results from FEM simulations; panels (c) and (d) illustrate the 

field distribution obtained from scattering matrix (c) and FEM (d) simulations for   
      ; reprinted with permission from Ref. [137]. 
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5.5.2 Light Scattering in Plasmonic Systems 

To further analyze the accuracy and limitations of the developed field-matching technique, we 

calculate the scattering from the plasmonic analog of the Si guide presented above: a    -  -

thick plasmonic gap waveguide operating at          . We assume that cladding of this 

guide is composed from two gold plates with                 [149]. The agreement 

between the mode matching and FEM calculations of modal reflectivity in plasmonic gap 

guides is shown in Fig. 5.3(b). 

 We have further simulated the propagation of plasmonic modes across surface 

structure defects. In particular, we have used our approach to simulate the SPP propagation in 

“plasmonic step” geometry [Fig. 5.4]. As expected, when the incoming SPP is travelling on 

the upper side of the plasmonic step, most of the incident energy is converted into free-space 

modes. In contrast, when the incident SPP is travelling on the lower side of the step, the 

majority of energy is converted into the reflected SPP wave. 

 Our numerical simulations demonstrate that at near-IR frequencies (when        ), 

the scattered field can be successfully decomposed into “top” open waveguide modes, as 

suggested in Ref. [212]. However, in the proximity of SPP resonance (      ), the 

inclusion of the “bottom” modes is necessary to adequately describe the optical properties of 

the system. 

 Note that the results of wave-matching simulations are almost identical to those 

obtained with FEM. Once again, we underline that the wave-matching technique allows for 

calculation of light propagation in much larger systems than the FEM system does. 
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 To assess the convergence of our method, we have performed a set of simulations for 

each SPP structure described above, varying the configuration of spectra of top and bottom 

modes (for simplicity, equidistant    spectra between     and      modes were used for 

Riemann numerical integration [214]). As expected, our simulations showed that it is 

necessary to design the spectrum of bulk modes to adequately resolve the SPP propagating at 

the     interface. Interestingly, the “averaged” parameters (such as amplitudes of reflected 

guided modes) are much more sensitive to spectrum variations than the matching of the 

boundary conditions at     interface, which is often considered to be an indication of 

accuracy of a numerical method. The typical inter-set variation of reflection, transmission, and 

scattering are illustrated in Figs. 5.3 and 5.4. The latter figure also shows the agreement 

between the field distribution obtained with our generalized scattering-matrix formalism and 

with FEM. 

5.5.3 Truly Planar Optics 

We now apply the developed wave-matching approach to analyze intermode coupling and out-

of-mode scattering in planar optics [136, 212, 215]. Planar optics, in general (and SPP optics 

in particular), are fundamentally different from their free-space counterparts. Thus, when a 

plane wave is incident on a planar interface, the scattered field can be decomposed into one 

reflected plane wave and one transmitted plane wave. In contrast to this behavior, when one 

guided mode is incident on a planar interface between two waveguides, it generates a 

continuum of open-waveguide modes in addition to the sets of reflected and transmitted 

guided waves. 

 As seen from Figs. 5.5 and 5.6 and from Ref. [212], the typical interface between 

waveguide systems leads to the scattering of about     of incident radiation. Every attempt 
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to change the effective index of the mode in planar structures is necessarily accompanied by 

modal cross-talk or by out-of-plane scattering of radiation. 

 It is possible, however, to utilize anisotropic metamaterials to completely eliminate 

the cross-talk and to map the familiar laws of 3D optics to optics of planar guides [136, 216]. 

The main idea of planar optics lies in the ability to guide light along the planar optical circuit 

without out-of-plane scattering or modal cross-talk. Here we assume that the layers on both 

sides of the interface are aligned with each other (         ). 

 In order to realize the efficient control over pulse propagation in the plane, the two 

layered structures must (i) have the same number of guided modes, and (ii) provide the ability 

to independently control the index of the mode (crucial for steering the light) and modal 

profile (crucial for optimizing the overlap integrals involved in    and    matrices). 

 As shown in Ref. [136] on the example of surface waves, these conditions can be 

satisfied when 

                  (5.29) 

                  (5.30) 

with   being the constant number that does not depend on layer number  . 

 As can be explicitly verified, when Eqs. (5.29) and (5.30) are satisfied, all    and    

matrices become diagonal. Thus, the intermode coupling is absent across the interface. The 

interface remains completely transparent to TE-polarized waves, while reflection and 

refraction of TM-polarized modes are controlled by the ratio of out-of-plane permittivities. 

The direction and amplitudes of the reflected and refracted modes are related to the direction 

and amplitude of incident modes via the following Snell’s law, 
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                         (5.31) 

and Fresnel coefficients, 
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The above equations represent generalization of the formalism of Ref. [136] to multilayered 

guides. 

 The concept of truly 2D optics is illustrated in Fig. 5.5 on example of an air-Si-air 

system coupled to a metamaterials waveguide. As expected, reflection of a single mode in a 

conventional planar system is accompanied not only by significant radiation scattering and 

modal cross-talk but also by cross-polarization coupling [Fig. 5.5(c)]. In contrast, for 

metamaterial guides the single-incident mode excites one reflected wave and one transmitted 

wave [Fig. 5.5(d)]. 

 An interesting extension of truly planar optics is possible in plasmonic systems. From 

the fabricational standpoint, it is highly desirable that the plasmonic circuit is fabricated on top 

of common metallic substrate. Fabrication of an extremely low-scattering plasmonic circuit is 

possible when using anisotropic dielectrics deposited on noble metals in the limit of visible 

and near-IR frequencies, where the permittivity of metal is much larger than the permittivity 

of the dielectric (               ). 
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FIGURE 5.5: (a, c) An interface between an air-Si-air waveguide and isotropic air-(      )-

air guide leads to substantial modal cross-talk, polarization mixing, and out-of-plane 

scattering; while the interface between air-Si-air waveguide and its anisotropic truly planar 

optics analog allows for ideal mode matching with light steering capabilities (b, d); guided 

modes in (c, d) correspond to mode number      ; the system is excited by a TM2 guided 

mode propagating at the angle     to the     interface; the amplitudes of modes in panels 

(c, d) are normalized to the amplitude of the incident mode; reprinted with permission from 

Ref. [137]. 

 

 Consider the situation where the in-plane (  ) component of the dielectric’s 

permittivity is kept constant across a plasmonic system, and only the out-of-plane ( ) 

permittivity component of the superstrate is varied. In such a system, the propagation constant 

of a plasmonic mode, is approximately given by [216] 

  
    

         
     

    
 

  

  , (5.34) 
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and can be effectively controlled by changing the parameter     . In the same limit, the 

exponential decay of the mode into the dielectric                     

       
        does not depend on its propagation constant. The only source of out-of-plane 

scattering in such a structure is related to a weak dependence of the field profile in metal 

                                        on     . 

 

 

FIGURE 5.6: Anisotropic coatings (b, d) can significantly reduce (and almost eliminate) the 

scattering losses in plasmonic circuits; the figure shows reflection, transmission, and scattering 

in conventional plasmonic circuit (c) and in a plasmonic system where the space    ,     

filled with material      ,       (d); field distribution for      (a) clearly shows that 

only a fraction of the energy of incident SPP is transferred into SPP on the right-hand side of 

the interface; on the other hand, the interface between the anisotropic system with      , 

     (b) allows for substantial modulation of SPP index, and results in almost perfect SPP-

SPP coupling across a     interface; reprinted with permission from Ref. [137]. 
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As seen from Fig. 5.6, anisotropy in the dielectric constant of a superstrate is achievable, for 

example, using the electrooptic effect [216], providing orders-of-magnitude suppression of 

out-of-plane scattering in plasmonic systems with respect to their isotropic counterparts. 

5.6 Conclusion 

We developed a reliable wave-matching technique for calculation of light propagation in 

planar guides and in arrays of planar guides. The technique combines full spectrum of three 

groups of modes: top, bottom, and guided, and finds solutions that satisfy boundary conditions 

at the interfaces of the multilayered stacks. We illustrated the developed formalism on 

examples of photonic, metamaterial, and plasmonic guides, and presented an approach to 

utilize anisotropic metamaterials for the minimization and elimination of modal cross-talk in 

planar optical circuits. Mode-matching computations showed substantial reduction of memory 

usage (        for our mode matching vs.       for FEM).  
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Chapter 6 - Plasmonic Beaming: Modeling Beam Formation 

6.1 Introduction 

It has been known that light emerging from a subwavelength aperture is diffracted in the form 

of cylindrical (circular) waves [116, 217]. However, it was recently shown that a single 

subwavelength aperture, surrounded by a set of periodic grooves on the output side, emits 

highly-directional beams of light under TM-polarized illumination [98, 103, 107]. This 

directional beaming was observed in experiments using optical [218, 219], mid-IR [112, 113], 

and microwave [220-223] radiation. Several theoretical explanations supporting the 

directionality of the emission have been published, including methods of Huygens’s principle 

and surface cavity resonance [108-110], of multiple scattering effects of surface plasmon 

polaritons (SPPs) [111], and of field expansion from impedance boundary matching [114]. 

Since then, various aspects of beaming structures have been studied; for example, multiple 

direction beaming [224], a nonuniform and nonperiodic set of grooves [225], off-axis 

directional beaming [226, 227], grooves in curved depths [228], dielectric surface gratings 

[218], and beam focusing through a tapered subwavelength aperture [229]. Note that most of 

the previous studies are related to deforming configurations or optical properties of the 

grooves. Recently, two groups of researchers numerically observed focusing phenomena of 

beaming structure [230, 231], and dependences on number of grooves and period were 

studied. However, there was no analytical theory to explain the focusing behavior. 

 In numerical studies of the beaming phenomena, finite-element (FEM) and finite-

difference time-domain (FDTD) methods are useful numerical approaches to compute light in 

beaming structures. However, the substantial limitation of the techniques is that the area of 

computation is restricted to only small geometries (     ). In experimental studies, field 
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intensity distribution is always measured in the extreme far field, a region where FEM and 

FDTD cannot access. Consequently, in order to verify the experimental results by these 

numerical methods, we need a numerical approach to extend the numerical FEM or FDTD 

fields to the extreme far field. 

 In this work [113], we provide a numerical technique to extend electromagnetic fields 

computed by a commercial FEM software [204] into the far-field regime, and also propose a 

model to predict focal spots and beaming directions. 

 The rest of this Chapter is organized as follows. Generalization of the beaming-

steering structure and our plasmonic mid-IR beaming device will be briefly described in 

Section 2. The experimental results from our UMass collaborators and applications will be 

mentioned. This Section will give the motivation to the rest of this work. In Section 3, we will 

propose a technique to extend the field distribution in the limited space from the FEM 

simulations. Full description of our model for beaming directions and array of focal spots will 

be shown in Section 4. We will verify our field expansion technique and our model with 

experimental results, FEM simulations, and field calculation in Section 5. All of them show 

very good agreement. 

 

FIGURE 6.1: Diffraction of TM-polarized incident fields by (a) a subwavelength single slit 

and (b) a subwavelength single slit flanked by a set of periodic grooves; (a) waves diffracted 

in all directions and have circular (cylindrical) wavefront form; (b) transmitted fields 

concentrate in specific directions, giving highly-directional beams. 
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6.2 Mid-Infrared Beam Steering Structure 

As mentioned earlier, a subwavelength single slit diffracts an incident plane wave in all 

directions [Fig. 6.1(a)]. In contrast, an aperture, flanked by a set of periodic grooves on the 

output side with TM-polarized illumination, can confine the diffracted wave into directions 

that depends on the incident wavelength, optical properties of metallic film, substrate, and 

superstrate, and period of the grooves [Fig. 6.1(b)]. This directional emission is created by the 

interference of scattering waves due to SPPs propagating through a corrugated structure [98, 

102, 107-111]. In this Section, we review the mid-IR beaming experiments that our UMass 

collaborators performed [112]. The discrepancy between the experimental and preliminary 

numerical FEM results leads to the motivation through the rest of this Chapter. 

The schematic of the beam-steering device is shown in Fig. 6.2(a). The     grooves 

are deposited on GaAs substrate of thickness   with unpolished surface, and then gold layer is 

coated on top of the grooves. The TM-polarized field with wavelength    is illuminated on top 

of the gold layer in the air. The transmitted waves are collected as a function of angle   

respective to normal axis in the very far-field air behind GaAs [see the experimental setup in 

Fig. 6.2(b)]. Note that the GaAs substrate provides the benefit of both carrier concentration 

and thermal tunabilities of beaming [112, 232-235]. Geometrical and optical parameters are 

given by the following: number of grooves       , groove period         , groove 

depth         , groove and slit width         , gold layer thickness         , 

GaAs thickness         , and permittivity of GaAs substrate             at room 

temperature       [233] (permittivity is a wavelength-dependent quantity; however, for 

simplicity we use it of      -wavelength). Two pulse tunable quantum cascade lasers 
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(QCLs) with wavelength    ranges of            and             are used as the 

incident radiation sources. 

Directional beaming is clearly seen in experiments at room temperature [Fig. 6.3] 

where the gap in the experimental data represents the portion of the spectrum not accessible 

with QCLs. The normal beaming wavelength (a wavelength which the beaming direction is 

normal to the GaAs/Au interface) is found at approximately       . The transmitted beams 

split into two, and steering angles increase while the incident wavelength is tuned away from 

the normal beaming wavelength. The dashed lines come from our theoretical model (as will be 

proposed in Section 6.4). The asymmetric intensity of the split beams likely emerges from the 

slight misalignment of the single aperture respected to the grooves. 

 

FIGURE 6.2: (a) Schematic of our mid-IR plasmonic beaming structure used in experiments; 

      ,         ,         ,         ,         , and         ; (b) the 

experimental setup for determination of the angle-resolved transmission of beamed light; field 

intensity is collected for different angles  ; reprinted with permission from Ref. [112]. 
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FIGURE 6.3: (a) Two-dimensional profiles of transmitted beams for five wavelengths 

between     and       ; the narrowest beam width is seen for a laser wavelength of        

(normal beaming wavelength); (b) the experimental (contour plot) and predicted (dashed lines) 

angular distribution of the transmitted beam as a function of wavelength; the gap in the 

experimental data represents the portion of the spectrum not accessible with our lasers; the 

dashed lines are computed from Eq. (6.14); the computed normal beaming wavelength is 

found at wavelength        ; reprinted with permission from Ref. [112]. 

 

 

 

FIGURE 6.4: Normalized beam intensity vs. steering angle for a laser wavelength of       as 

a function of temperature; device temperature is increased from    to     ; the highest peak 

in each curve represents beaming direction; computed beaming direction for each temperature 

is shown in arrow; reprinted with permission from Ref. [112]. 



89 
 

The beaming directions can be tuned by changing optical properties of the steering materials. 

In Ref. [112], our UMass collaborators control the permittivity of GaAs by increasing the 

temperature inside the substrate from room temperature to      [see Table 6.1].  For incident 

light at a laser wavelength of      , the total shift in the steering angle of the transmitted 

beams is found to be approximately    [Fig. 6.4]. 

 

TABLE 6.1: Dependence of permittivity of GaAs on temperature [232, 233]. 

Temperature     Permittivity of GaAs 

           

            

            

            

 

We verified the experimental results by modeling our beam-steering device with commercial 

FEM software [204]. The transmitted beams are measured at the GaAs/air interface where 

Snell’s law is also applied in order to compare to realistic refracting behavior. However, in 

contrast to the previously reported works [108], our simulation-designed pattern (with 

        ) does not represent the experimentally observed pattern (with         )  [see 

Fig. 6.5(a) compared to Fig. 6.3(b)]. Moreover, we observe the dependence of normal 

beaming wavelength on the thickness of GaAs substrate [Fig. 6.5(b)]. Surprisingly, in 

experiments with extremely far-field measurements, we do not see any dependence of 

beaming directions on the substrate thickness. Note that due to the limited memory unit of our 

computing resource, we cannot simulate samples where          with a fixed mesh size. 
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FIGURE 6.5: (a) Angular distribution of the transmitted beam as a function of wavelength 

from FEM simulations for         ; normal beaming angle is found at        ; (b) 

dependence of normal beaming wavelength, observed from FEM simulations, on GaAs 

thickness; field intensity is measured at GaAs/air interface. 

 

The discrepancy between experimental and numerical results comes from the evolution of 

wave packet (beam formation) that still happens in “extreme” far field of the sources, which is 

not accessible with the FEM approach. Therefore, we (i) need a new technique allowing the 

extension of the FEM numerical solutions into the extreme far field, and (ii) need a 

quantitative description of beam formation. The latter is very crucial when beaming is used in 

on-chip devices where the distance from the aperture to the receiver is on the order of a few 

tens (hundreds) of wavelength. In Section 6.3 and Section 6.4, we will develop formulation to 

support these two goals [113]. 

6.3 Field Extension Technique for Finite Element Results 

The FEM technique gives solutions of Maxwell’s equations satisfying boundary conditions in 

every point in the space. On the other hand, the magnetic field,        , of the TM-polarized 

wave could be represented as 
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 (6.1) 

where           
       

  and in the distance very far from the source,    occupies only 

the propagating regime,                           . The summation over   

represents nodes in numerical integration techniques [203].    corresponds to the weighted 

complex coefficient for each wavevector component     , which is not given by the FEM 

approach; therefore, we need a reliable method to extract the spectrum    with the given 

FEM data. Eventually, we can compute the extreme far-field         using Eq. (6.1). 

 Here the problem of the spectrum definition can be considered as the linear least-

squares fitting problem [205]. Assuming that the FEM software gives us the measured  -

component magnetic fields    of   data points:                                    , the 

problem of the fitting technique is to minimize the field deviation: 

              
 

 

   

 (6.2) 

where              is given by Eq. (6.1). The minimum occurs when         ; 

consequently, the amplitudes of modes    are obtained as 

             (6.3) 

where 
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FIGURE 6.6: Field extension technique for FEM results; (a) field distribution from the FEM 

simulation is shown in small rectangle; (b) extension of the FEM fields; the dashed rectangle 

shows the original region; (c) retrieved spectrum components      ; red, black, and pink 

curves represent real part, imaginary part, and absolute value of the components, respectively; 

two lines correspond to highest peaks in spectrum, computed by Eq. (6.13). 

 

Fig. 6.6 shows the extension of the field at         for           . The fitting 

coefficients are shown in Fig. 6.6(c). The directions of the beams correspond to    of the 

dominant peaks; the lines, specifying the peaks, are given by Eq. (6.13). Note that in Eq. (6.1), 

the wavevectors of SPPs are neglected [92, 93]                                    

          ; therefore, near the GaAs/Au interface we cannot see the SPP scattering in Fig. 

6.6(b). Omitting SPPs will not affect field distribution in very far field because here plasmonic 

mid-IR SPPs are only significant in the range of                    . 

6.4 Focusing and Beam Formation 

Even though it has been almost a decade after the first discovery of beaming phenomenon 

[107], up until now there has been no theory that can clearly and completely describe the 

underlying physical mechanism of the formation of the beams. In this Section, we develop the 
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formalism to compute the transmitted fields in the real space, and describe the focusing 

property of scattering waves from each groove (scatter) and its neighbor. In addition, our 

model is substantially different from conventional understanding in the case that the beams 

emerge from the focal points, not the aperture. Consequently, the numerical measurements of 

beaming directions from FEM simulations must be careful. 

6.4.1 Field Computation 

In the beam steering device, SPPs excited by a subwavelength aperture, propagate away from 

the slit along the metal-dielectric interface. The periodic surface corrugation results in partial 

out-coupling of SPPs into free-space. As a result, the light emitted by the device represents the 

interference of the cylindrical wave emitted by the central hole and the portion of original SPP 

scattered by periodic surface corrugations. Since the emission of the central hole lacks 

directionality, the direction of the beams is determined solely by interference of SPP-scattered 

waves. 

Therefore, the field behind the corrugated surface, combining SPPs and scattered 

waves is described as 

                        
                  

  

     

  

  

 (6.10) 

where the index   includes all scatterers in the beam-steering structure,       is the position 

of the  -th bump, and        describes scattering at     . For simplicity, we assume that the 

bumps are point scatterers, so         .    represents the amplitude and phase of single SPP 

at the  -th scatterer in which      
   

 and                     . Note that       , 
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computed by the FEM software, is the normalized amplitude of single SPP transmitting 

through a delta-function bump. Here we are interested only in problem of the far-field 

beaming;    is limited to the propagating spectrum,               . Using geometric 

series, the far-field distribution is reduced as 

                   
             

          

          

   (6.11) 

      
   

     

     
     

       
      

  
  

   
    

     
    

       
     

  
    (6.12) 

The function        can be used to calculate       in Eq. (6.1). Instead of the point scatterers, 

if the subwavelength single slit is surrounded by a set of periodic grooves with a finite width, 

then       is directly proportional to            .  

6.4.2 Beaming Directions 

 The beaming directions corresponding to the maximum interference of SPP-scattered 

waves are given by the resonance of the function       in Eq. (6.12); that is, select    where 

           . For an infinite number of bumps, the predicted directions are given by the 

SPP diffraction equation [92, 93]: 

     
  

 
  

 

 
       

  (6.13) 

or 

       
  

       
  

  

       

 

  
 

    
 

      

 (6.14) 
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where     
  is the real part of the refractive index of SPPs,   is the beaming angle which is 

measured with respect to the  -axis, and the parameter   describes retardation of the phase of 

the SPP caused by an individual corrugation.     is an integer chosen to give pure real 

number  . For small wavelengths, Eqs. (6.13) and (6.14) supports many   modes; physically, 

it is possible to have multiple beaming directions. This phenomenon is studied seriously in 

Ref. [224]. 

 The normal beaming wavelength corresponds to the normal beaming angle    , 

given        
  . In our plasmonic mid-IR beam-steering structure, the normal beaming 

wavelength is computed as         , which is very close to the experimental measurement 

[        in Fig. 6.3]. 

 

 

 

FIGURE 6.7: (a) Schematic of beam-steering structure used in our model; scattering light 

from delta-function scatterers   and     will constructively interfere at a focal point   ; our 

model’s beams (blue line) emerge from the furthest focal spot      with directional angles  ; 

however, in the conventional understanding the beams (brown line) emerge from the slit with 

directional angles  ; an observation point is marked as        ; (b) contour plot showing the 

apparent directions of the beam,  , for different wavelengths and GaAs thicknesses; the 

simulations are computed in air upon exit from dielectric; normal beaming is marked as a 

white-dashed curve. 
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6.4.3 Focal Region and Beam Formation 

 We now come to the question of where the beams do emerge. It appears that the 

periodic corrugated surface generates array of relatively tight focal points [Fig. 6.7(a)]. 

Therefore, the beaming structure behaves as a Fresnel lens in the sense that phase difference 

of scattering light from the  -th scatterer and its neighbor      -th is    and then a focal 

point    is formed by constructive interference. Assuming that only bumps close to the slit are 

important for wave scattering        , the phase difference may be written as [Fig. 6.7(a)] 

                                                               (6.15) 
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     (6.17) 

Eventually, the focal spot of a scatterer and its neighbor is given by 

   
       

       

         
   

   (6.18) 

It is straightforward to obtain the focal spot equation without the restriction of      . The 

deviation of both equations is very small and negligible when the operating wavelengths are 

close to the normal beaming wavelength. Note that each focal point is originated from four 

scatterers (two on each side of the single slit). The focal spots corresponding to different  -

values occupy the region between    and     ; each is separated by a constant distance 

       
          

   . The furthest focal spot      represents the cut-off number of bumps 
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where the intensity of the SPP is substantially reduced    
         . Thus, the array of focal 

spots would effectively cut-off when 

      
 

    
   (6.19) 

The formation of the focal range is observed in the experiments [Fig. 6.8], simulations [Fig. 

6.9], and in Ref. [230] in the visible spectrum. It appears that the beams emit from the furthest 

focal spot     , with the beaming directions (with angles  ) given by Eq. (6.14). 

 

 

 

FIGURE 6.8: Intensity distribution in the experimental plasmonic beaming structure at 

wavelengths of (a)    , (b)    , (c)    , and (d)       ; normal beaming wavelength is 

between     and       ; oblique dashed lines represent accuracy of our model [Eqs. (6.14) 

and (6.18)]; printed with permission from our UMass collaborators. 
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Therefore, our model contrasts to the conventional understanding that the beams emanate from 

the central slit itself with directions of angles   [Fig. 6.7(a)]. Consequently, when using the 

finite-element method to deduce the field profile, one should be careful in numerically 

measuring the beaming angles. Both angles   and   are related by 

        
  
 
   (6.20) 

                     
             (6.21) 

The excellent agreement between the experimental and predicted angular distribution of the 

transmitted beam as a function of wavelength is shown in Fig. 6.3(b). The dashed lines are 

computed by Eq. (6.20) and Snell’s law. Moreover, the computed beaming angles of      -

operating wavelength for room temperature,     ,     , and      are     ,      , 

     , and       degrees, respectively [see arrows in Fig. 6.4]. 

 

 

FIGURE 6.9: Field extension from the FEM simulations for wavelengths of (a)     , (b)     , 

and (c)      ; the predicted beaming angles, shown as lines, are (a)    , (b)  , and (c)      ; 
the cross symbols show the positions of focal spots. 
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As mentioned earlier, the wavepackets of scattering fields slowly evolve; therefore, in 

relatively close proximity to the plasmonic surface, beaming profile is related to the 

observation distance. Such slow field evolution is crucial when beaming is used in on-chip 

devices. We verify the field evolution by computing the beaming angles, calculated at the 

furthest-end interfaces of the GaAs slabs, for various wavelengths and slab thicknesses [Fig. 

6.7(b)]. Obviously, for an arbitrary laser wavelength, the angle varies for small distances from 

the aperture (roughly           ), and approaches the beaming angle in the extreme far 

field (         ). 

6.5 Verification of Beam-Steering Model 

In this Section, we will verify the robustness of our beam-steering model with different 

experimental and numerical simulation examples. All of them show excellent agreement with 

the proposed approach. 

 The experimental evidence of focal range in the far field, performed by the UML 

group, is shown in Fig. 6.8. The field intensity is measured behind the plasmonic mid-IR 

beaming structure for different distances up until         . It is clearly seen that the normal 

beaming occurs for wavelengths between           . We verify the accuracy of the 

focusing range and beaming directions by Eqs. (6.18) and (6.14), respectively. In Fig. 6.8(d), 

the furthest focal spot is located around        , and the computed result is located at 

       . The oblique dashed line corresponds to computed         with respect to the  -

axis. In Fig. 6.8(a),      is found at         , and       ; so that, the negative focal spot 

is virtual, and the beams appear to emanate from behind the corrugation surface. 
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 We also use our field extension technique to decompose the spectrum components at a 

distance          and extend the measured fields into the far-field regime. The array of 

focal points and angle of beaming directions for each wavelength are computed and shown 

along with intensity distribution in Fig. 6.9; the model is in excellent agreement with FEM 

simulations. 

 It is regularly observed in a beam-steering device that the beams cross each other 

when the laser wavelength is increased [107-111]. We emphasize that the crossing behavior of 

the beams is the result of focal spots moving from virtual space (negative     ) to the front of 

the corrugated structure (positive     ). We use the field equation [Eq. (6.11)] to illustrate 

three field evolution patterns; negative, infinite, and positive      for wavelengths of     , 

    , and         , respectively [Fig. 6.10]. 

 

 

FIGURE 6.10: Calculated intensity distribution and angular identification (lines) of the 

transmission fields for the illumination wavelengths of (a)     , (b)     , and (c)         ; 

(a)-(c)          ,      , and       , and      ,     , and      , respectively; array 

of focal spots is shown as dots in (c); three beaming patterns are following: (a) diverging for 

smaller wavelength, (b) parallel for normal incident wavelength, and (c) crossing for larger 

wavelength. 
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6.6 Conclusion 

We reviewed the experiments of steering of mid-IR radiation using plasmonic structures 

consisting of a subwavelength single slit flanked by periodic subwavelength grooves on a 

semiconductor substrate. Later, we proposed the numerical technique to extend the FEM-

calculated electromagnetic waves to the extremely far-field regime, which is not accessible by 

conventional FEM routines. The model fully describing the formation of the directional beams 

was proposed. The robustness of the model and underlying physics was illustrated on the mid-

IR beaming experiments, FEM simulations, and scattering field calculations. The developed 

formalism is very crucial for optical and plasmonic applications, including on-chip, sensing 

and security devices. Even though we focus this work on mid-IR frequency, the approach is 

directly applicable to visible, near-IR, THz, and microwave frequencies.  
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Appendix A - Optical Transfer Matrix Formalism 

The optical transfer matrix method is a numerical technique used to analyze the propagation of 

electromagnetic fields through a stratified medium [116]. In this Appendix, we will represent 

the transfer matrix formalism for our planar structure with uniaxial dielectric constant tensor 

in the Cartesian coordinate system for both TM- and TE-polarized waves. The solutions will 

be further developed for scattering and waveguiding problems. 

 Let us consider the multilayered structure illustrated in Fig. A.1: the structure consists 

of   layers, each having dielectric constant tensor     [Eq. (2.5)] and thickness        

    . We assume that       and     . A plane wave with free space wavelength    is 

incident on the first layer with an incident angle     . For TM-polarized illumination, the field 

components comprise          
       

    and             
     ; Maxwell’s equations 

[Eqs. (2.1)-(2.4)] relate all components as 

  
    

  
   

  

  
  

     (A.1) 

  
      

 

    
  

     (A.2) 

where           is free-space wavevector, and    is related to    by the anisotropic 

dispersion relation [Eq. (2.8)].   
  , defined here as the main field component, is represented 

as the superposition of incoming      and outgoing      waves with corresponding 

amplitudes    and   , respectively. For an arbitrary layer  , the field inside is given as 

    
     

                
                 (A.3) 
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FIGURE A.1: Schematic geometry of the  -layer planar structure for transfer matrix 

formalism; arrows in each layer illustrate directions of incoming and outgoing waves,    
  and 

  
  at      interface. 

 

Therefore, the coefficients of layer     can be solved by employing boundary conditions at 

the      interface. Note that the exponential term           can be neglected due to the 

continuity of the tangential component of the wavevector    along the structure. Using the 

continuity of   
   and   

   across the boundary, we obtain a set of equations linearly relating 

coefficients      
–

 and     
  to   

  and   
 : 

 
    
 

    
      

        
         

 

         
          

   
  
 

  
   (A.4) 

with   
 ,   , and    given by   

                       ,   
               , and 

  
                            . 

 The analysis for TE-polarized wave is very similar. The field components given by 

           
      and           

       
   , are related to   

   by 

  
    

   

 
  

     (A.5) 
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     (A.6) 

where    is related to    by isotropic dispersion relation [Eq. (2.7)]. For a layer  , the main 

field component,   
   is given by 

    
     

                
                 (A.7) 

Using the continuity of   
   and   

   across the interface, we obtain another set of equations 

[Eq. (A.4)] relating      
–

 and     
  to   

  and   
 , and polarization-dependent parameters are 

given as   
       and   

              . Note that in this   -independent multilayered 

planar structure, TM- and TE-polarized fields are completely decoupled; consequently, we can 

compute the layer-specific coefficients separately, and the full-wave solutions are the linear 

combination of the decoupled fields. 

 The set of equations, Eq. (A.4) can be written in general from as 

 
    
 

    
           

  
 

  
   (A.8) 

where         is called transfer matrix. Such a matrix can represent field propagation through a 

layer. For a system with   layers, each layer   has its own transfer matrix        ; hence, the 

system transfer matrix is 

                                   (A.9) 

When a plane wave is incident on      interface (  
   ,   

   ), the reflecting     and 

transmitting     coefficients of the multilayered planar structure are expressed as 
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   (A.10) 

  
  
 

  
  

        

       
  

   (A.11) 

It is straightforward to show that for single interface structures, Eqs. (A.10)-(A.11) give 

Fresnel coefficients [116]. Even though the transfer matrix approach is easy to implement and 

very useful in many applications, the disadvantage we cannot avoid is the numerical error 

which arises when computing the growing exponential terms of lossy layers. Another method 

called the relaxation technique [236] requires more computational time, but provides more 

accurate results when solving the scattering problem for planar structures. 

 In many situations, we are involved with scattering problems where coefficients   
  

and   
  are known. Therefore, we can relate the system transfer matrix       to the system 

scattering matrix       by 

 
  
 

  
         

  
 

  
   (A.12) 

      
 

       
  

 
         

  

       
  

        
    (A.13) 

The equations give the scattering coefficients   
  and   

  having linear relations to the incident 

field coefficients   
  and   

 . The scattering problem can be extended to the waveguiding 

structure where   
 ,   

   . The guided modes exist when   ’s yield nontrivial solutions of 

the guiding dispersion relation,          
          [207, 210].  
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Appendix B - Coordinates of Fresnel Zones in Phase Aspect 

In this Appendix, we will derive the coordinates of the boundaries of Fresnel zones with 

hyperbolic metamaterials [Eq. (3.5)] by explicitly calculating proper phase relationships. The 

phase difference of each Fresnel zone (  ) and the first zone (  ) is [Fig. B.1] 

            (B.1) 

                        (B.2) 

               (B.3) 

where the sign in Eq. (B.1) corresponds to the sign of   
 . In other words, the sign characterizes 

refraction of fields inside metamaterials. The next step is to relate    to    ,   , and  . Using 

relation of Poynting vectors and wavevectors [Eq. (2.10)],                 , and 

                where 
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   (B.5) 

Eq. (B.1) yields 

      
      

  
 

 
      

   
             

      

     
        

  

 
 (B.6) 

Note that    and    in Eq. (B.6) are connected by the Poynting vector-wavevector relation. 

Using          , we obtain Eq. (3.5). In the case of an isotropic material, Eq. (B.6) is 

reduced to the conventional Fresnel zone plate [116]. 
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FIGURE B.1: Schematic of Fresnel lens hypergratings; the coordinate of  -th zone is related 

to Poynting vector (   ) and wavevector (    ); note that in anisotropic material,     and      

have different directions, whereas their corresponding angles to optical axis ( -axis) are    

and   , respectively. 

 

In hyperbolic structures, two significantly different types of refraction might be considered. In 

the case of   
       

 ,    is limited by the resonance cone [Eq. (3.4)]. Therefore, a Fresnel 

lens based on this material will have at most      zones where            
    . In 

contrast, the material with    
      

  yields wave propagation outside the cone. Therefore, 

this Fresnel lens has infinite number of zones with the initial minimum shift from the focal 

axis,          
    

  .  
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Appendix C - Analytical Calculation of Overlap Integrals 

In a planar structure, the scalar products yield analytical solutions, substantially speeding up 

the calculation. This Appendix is devoted to the computation of overlap integrals with all 

possible integration limits. 

Firstly, assuming that each of the modal fields has dependence [Eqs. (5.2)-(5.3)]: 

                           (C.1) 

where    is the field contribution functions independent on  . The overlapping of the field 

components can be considered by improper integration of the field components over   

covering infinite space [Eqs. (5.9) and (5.18)]. The integration can be chopped into many 

segments according to discontinuity of layers at a two-stack interface; each segment of the 

scalar product     has general form: 

                                                    

  

  

     (C.2) 

where   represents the weighting factor of the numerical integration over   . The limits of 

integration of the integral,         are classified into three cases: 

 Case 1:    and    finite 

 Case 2:    and       

 Case 3:    finite,      

 Case 4:      ,    finite 

The solutions of these three cases are given as         where    and    are following. 
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Case 1:    and    finite 

  
 

  

                                                                   

         
          

                              

    

 (C.3) 

  
 

  

                                                                   

         
         

                             

    

 (C.4) 

Case 2:    and      

In this case, the stack comprises at most single layer, allowing only propagation of top and 

bottom modes, which are characterized by real-valued wavevector   . Using the integration 

property [214] 

         

 

  

          (C.5) 

we arrive 

 

 
                                                    (C.6) 

 



129 
 

Case 3:    finite,      

This case is different from the previous one, because one of the limits goes finite; that is, the 

stack contains at least two layers. For the plasmonic planar structure, the guided modes are 

characterized by the in-plane components of their wavevectors   , which allows wavevectors 

   to be complex numbers. However, the electromagnetic fields must not contain 

exponentially growing components; hence, the condition   
     must always be enforced. If 

  
    , then    must be vanished. With the properties [214] 

         

 

  

          

 

  

              

 

  

 

                           

 

  

        
 

 
    

(C.7) 

where      is Heaviside step function, we obtain 
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    (C.9) 

Note that the terms  
 

 
     in Eqs. (C.8) and (C.9) are approximated from Eq. (C.5) [see 

illustration of the improper integration in Fig. (C.1)]. 
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FIGURE C.1: The improper integration of           over   [Eq. (C.5)] is divided into three 

regions, indicated by different colors; result of the piecewise integration is given in each 

region; total summation yields        . 

 

Case 4:      ,    finite 

This case is similar to Case 3. The analytical calculation yields 
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