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COVARIANT DERIVATIVES ON NULL SUBMANIFOLDS

1 INTRODUCTION

The covariant derivative, ∇, is one of the primary tools used to describe the geo-

metric structure on a manifold. Separate points on a manifold have different tangent

spaces and the covariant derivative defines a relationship between the tangent spaces. For

this reason, the covariant derivative is often called the connection on the manifold. The

covariant derivative determines the Riemann and Ricci curvature tensors as well as the

scalar curvature, all of which describe geometric properties of the manifold.

A non-degenerate metric uniquely determines a metric-compatible, torsion-free con-

nection on the manifold, called the Levi-Civita connection; the corresponding connection

coefficients, called Christoffel symbols, depend only on the metric. For a non-degenerate

submanifold, it is straightforward to obtain a Levi-Civita connection from the metric on

the full manifold. However, if the metric on the submanifold is degenerate, the Christof-

fel symbols can not be computed, so an alternate strategy is needed. The remainder of

this dissertation discusses and extends previous attempts to produce connections in the

degenerate case.

1.1 Connections on Null Submanifolds

Degenerate metrics often occur when considering submanifolds defined with a Lorentzian

metric. A Riemannian metric is positive definite, i.e., has signature + + . . . +, while

Lorentzian metrics are not positive definite. For example, the metric of a spacetime in



2

relativity has Lorentz signature, that is, − + + +. A manifold defined with a Lorentzian

metric is called a Lorentzian manifold. Vectors on a Lorentzian manifold are classified as

spacelike, v · v > 0, timelike, v · v < 0, and lightlike, v · v = 0. If there is a lightlike vector

n that is also orthogonal to the submanifold, then the submanifold is classified as lightlike

or null. Null submanifolds have degenerate metrics, thus introducing great difficulties in

defining a covariant derivative.

The need for a well-defined covariant derivative on a null submanifold arises in the

study of asymptotically flat spacetimes. The boundary of an asymptotically flat spacetime

can be studied according to several different structures corresponding to approaching

infinity along spacelike, timelike or null directions. In Geroch [1], both the spatial and

lightlike cases are addressed. Notation, structure and methods are given to define these

infinite boundaries as submanifolds in Lorentzian space. Moving in a lightlike direction

results in a null submanifold. According to Geroch:

In the null case, one has no unique derivative operator, and so one works more

with Lie and exterior derivatives, and with other differential concomitants. As

a general rule, it is considerably more difficult in the null case to write down

formulae which say what one wants to say.

Geroch’s discussions of null boundaries of asymptotically flat spacetimes motivated the

techniques used here to find a preferred derivative operator on null submanifolds and will

be summarized in Chapter 4.

1.2 Statement of the Problem

Given a null submanifold, is it possible to define a preferred torsion-free, metric-

compatible covariant derivative? Is it possible to determine, a priori, when such a con-

nection may be found? Attempts to define a covariant derivative on the null boundary of
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an asymptotically flat spacetime are the primary motivations for this dissertation. Two

results will be given to address these questions. Chapter 5 provides a construction, based

on the Lie derivative, to define the preferred covariant derivative on some null submani-

folds. The second result, given in Chapter 6, uses the Ricci tensor to determine when the

construction in Chapter 5 is possible.

1.3 Standard Methods to Define a Covariant Derivative

The results of this dissertation are motivated by numerous examples using standard

techniques to define a connection. Chapter 2 demonstrates the use of Gauss decompo-

sition to induce the connection on a non-degenerate submanifold. Using an analogous

decomposition, the connection on a null submanifold is addressed, summarizing work by

Duggal and Bejancu [2]. The chapter concludes with a simple example where the Duggal

method fails, thus motivating the need for an alternate method to construct a covariant

derivative.

Chapter 3 provides another series of examples that introduce the method of the

pullback to define the covariant derivative on null surfaces. Through the examples, lim-

itations of the pullback method will be demonstrated. Motivated by work of Geroch [1]

on the asymptotic structure of spacetime, conformal transformations will be investigated

in order to define a connection on the null surfaces. Chapter 4 will give a more detailed

summary of the Geroch approach.

Again based on the work of Geroch, Chapter 5 establishes an existence condition,

using Lie derivatives of the degenerate metric, to determine when the pullback method

can be used or whether an additional conformal transformation may be necessary to de-

termine the connection. In the case where the conformal transformation is needed, an

equation for the conformal factor is given. The conformal transformation is applied to
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the original manifold, the connection coefficients are then recalculated and pulled back

to the submanifold. This process requires one to work with the metric on the degenerate

submanifold for the Lie derivative, compute the conformal factor, carry out the conformal

transformation on the original manifold itself, and finally compute and pullback the con-

nection coefficients. This is a tedious process that requires one to obtain information from

both the null submanifold and the original manifold in which the null surface is defined.

Chapter 6 provides a simpler method applied on the original manifold to determine

when and if the conformal transformation method is possible. This check, involving a

limit of the difference of Ricci tensors on the original manifold, simplifies the previous

results by working only on the original manifold and a conformal transformation of the

manifold. This result eliminates the need to bounce back and forth between the two metric

structures. Other than needing to know the metric on the submanifold, all calculations

are done in the 4-dimensional space of the overlying manifold.

The results of the previous two chapters are tested in Chapter 7 on two specific

spacetimes used regularly in relativity. In particular, the horizon of the Schwarzshild

geometry and the class of all spherically symmetric spacetimes are investigated. In both

cases, the existence of a well-defined covariant derivative is shown. Lastly, Chapter 8

provides a summary of the results, with areas of possible future research included.
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2 CONNECTION ON SUBMANIFOLDS, TRADITIONAL
APPROACHES

For a Riemannian manifold M , let Γ(TM) = C∞(M,TM) denote the set of smooth

vector fields on M. The covariant derivative ∇ on M is an affine connection from Γ×Γ→ Γ

such that

1. ∇αX+βY Z = α∇X Z + β∇Y Z,

2. ∇X (Y + Z) = ∇X Y +∇X Z,

3. ∇X (αY ) = (Xα)Y + α∇X Y

where X, Y, Z are vector fields in Γ with α and β functions on M . These three conditions

do not determine the connection uniquely. The Levi-Civita connection is the unique affine

connection satisfying the additional conditions

4. ∇ is torsion free: [X,Y ] = ∇X Y −∇Y X,

5. ∇ is metric compatible: Z g(X,Y ) = g(∇Z X,Y ) + g(X,∇Z Y ).

Given coordinates (x1, x2, ..., xn), the connection coefficients can be defined by

∇∂/∂xj ∂/∂xi = Γk
ij ∂/∂x

k (2.1)

The coefficients for the Levi-Civita connection are given by the Christoffel symbols,

Γk
ij =

1
2
gkh

(
∂gih

∂xj
+
∂ghj

∂xi
− ∂gij

∂xh

)
. (2.2)

If (Σ, q) is a submanifold of (M, g) given by ϕ : Σ → M , and if q = ϕ∗g is a

nondegenerate metric on Σ, then a connection ∇ on M induces a natural connection D

on Σ. A traditional approach to defining this connection is to split TM into the direct

sum

TM = TΣ⊕ (TΣ)⊥, (2.3)
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where (TΣ)⊥ is the orthogonal complement of TΣ in TM .

For X, Y ∈ Γ(TM), ∇XY can be separated on Σ into tangential and orthogonal

components of TM which define the induced connection, DX Y , and the second funda-

mental form, II(X, Y ). Explicitly, we have

DX Y = (∇X Y )‖ (2.4)

II(X, Y ) = (∇X Y )⊥ = ∇XY −DXY. (2.5)

If∇ is the Levi-Civita connection onM , thenD turns out to be the Levi-Civita connection

on Σ. The decomposition

∇X Y = DXY + II(X,Y ) (2.6)

is called Gauss’ formula [3].

2.1 An example: ds2 = −dt2 + qij dxi dxj

To demonstrate Gauss’ formula, consider the line element

ds2 = −dt2 + qij dx
i dxj (2.7)

with corresponding metric

g =

 −1 0

0 qij

 (2.8)

where all components are functions of t = x0, x1, x2, x3.

Let Σ = {t = constant} with induced line element

ds2 = qij dx
i dxj (2.9)

where all components are now functions of x1, x2, x3. The Levi-Civita connection ∇ on
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M is given by

∇ ∂

∂xj

∂

∂xi
= Γ0

ij
∂

∂x0
+ Γk

ij
∂

∂xk
(2.10)

∇ ∂

∂xj

∂

∂x0
= Γ0

0j
∂

∂x0
+ Γk

0j
∂

∂xk
(2.11)

∇ ∂
∂x0

∂

∂xi
= Γ0

i0
∂

∂x0
+ Γk

i0
∂

∂xk
(2.12)

∇ ∂
∂x0

∂

∂x0
= Γ0

00
∂

∂x0
+ Γk

00
∂

∂xk
(2.13)

where the Christoffel symbols are defined by equation (2.2).

Since 0 = ∇V

(
∂

∂x0 · ∂
∂x0

)
= 2

(
∇V

∂
∂x0 · ∂

∂x0

)
, we have

∇ ∂
∂x0

∂

∂x0
· ∂

∂x0
= −Γ0

00 = 0, (2.14)

∇ ∂

∂xj

∂

∂x0
· ∂

∂x0
= −Γ0

0j = −Γ0
j0 = 0. (2.15)

Using ∇V

(
∂

∂x0 · ∂
∂xi

)
= ∇V

∂
∂x0 · ∂

∂xi +∇V
∂

∂xi · ∂
∂x0 = 0 with V = ∂

∂x0 yields

∇ ∂
∂x0

(
∂

∂x0
· ∂
∂xi

)
= −Γ0

i0 + qikΓk
00 = 0, (2.16)

which implies

Γk
00 = 0, (2.17)

where the last equation follows from (2.15) when q is nondegenerate. Thus, equations

(2.10)–(2.13) simplify to

∇ ∂

∂xj

∂

∂xi
= Γk

ij
∂

∂xk
+ Γ0

ij
∂

∂x0
(2.18)

∇ ∂

∂xj

∂

∂x0
= Γk

0j
∂

∂xk
(2.19)

∇ ∂
∂x0

∂

∂xi
= Γk

i0
∂

∂xk
(2.20)

∇ ∂
∂x0

∂

∂x0
= 0 (2.21)

Comparing the first term of (2.18) with (2.6) allows us to read off the coefficients

for the induced connection D on Σ. Furthermore, due to the assumed form (2.8) of the
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metric g on M , these connection coefficients are

Γk
ij =

1
2
qkh

(
∂ qih
∂xj

+
∂ qhj

∂xi
− ∂ qij
∂xh

)
. (2.22)

Comparing with (2.1), we see that D is the Levi-Civita connection on Σ,

DX Y = Xi Γk
ij Y

j ∂

∂xk
. (2.23)

The second term of (2.18) now gives an expression for the second fundamental form,

II(X,Y ) = Xi Γ0
ij Y

j ∂

∂x0
. (2.24)

A closer look at Γ0
ij will produce a more explicit expression of II for this example.

Returning to M ,

Γ0
ij =

1
2
g0h

(
∂

∂xj
gih +

∂

∂xi
ghj −

∂

∂xh
gij

)
. (2.25)

Again using the assumed form (2.8) of g, (2.25) simplifies to

Γ0
ij =

1
2
∂ qij
∂x0

. (2.26)

Finally notice (2.24) is defined only in terms of ∂/∂x0 ∈ Γ((TΣ)⊥). With x0 = t and

letting n = ∂/∂t, equation (2.18) produces the decomposition

∇X Y = DX Y +
1
2

(
dq

dt
(X,Y )

)
n. (2.27)

Thus, the second fundamental form can be expressed as a multiple of the unit normal, n,

II(X,Y ) = B(X,Y )n (2.28)

and Bij is given by (2.26).

2.2 Duggal Lightlike Hypersurfaces, Definitions and Notation

Difficulties arise when the metric q, on Σ, is degenerate. In this case, the Christoffel

symbols are not even defined on Σ. Furthermore, if Σ is lightlike, TM cannot be decom-

posed into the direct sum of TΣ and (TΣ)⊥, since there are vectors in TΣ that are also in
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(TΣ)⊥, as well as vectors that are in neither space. Despite these difficulties, Duggal [2]

introduces a decomposition that produces equations similar to the Gauss formula (2.6) as

we now describe.

Given a lightlike submanifold Σ of M with tangent space TΣ, the goal is to create

a decomposition of TM by producing a vector bundle similar to (TΣ)⊥. Choose a screen

manifold Scr(TΣ) ⊂ TΣ such that

TΣ = Scr(TΣ)⊕ TΣ⊥, (2.29)

where TΣ⊥ = {V ∈ Γ(TΣ) : V ·W = 0 ∀W ∈ Γ(TΣ}) is the orthogonal complement of

TΣ in TM .

Given a screen manifold, Scr(TΣ), Duggal proves the existence of a unique comple-

mentary vector bundle, tr(TΣ), to TΣ, called the lightlike transversal vector bundle of Σ

with respect to Scr(TΣ).

Theorem 2.1 (Duggal). Let (Σ, q, Scr(TΣ)) be a lightlike hypersurface of a semi-Riemannian

manifold (M, g). Then there exists a unique vector bundle tr(TΣ) ⊂ TM , of rank 1 over

Σ, such that for any nonzero ξ ∈ Γ(TΣ⊥) there exists a unique N ∈ Γ(tr(TΣ)) such that

N · ξ = −1, N ·N = 0, N ·W = 0∀W ∈ Scr(TΣ). (2.30)

Thus, tr(TΣ) ⊥ Scr(TΣ) and since tr(TΣ) is 1−dimensional, Γ(tr(TΣ)) = Span(N).

By construction we have tr(TΣ)
⋂
TΣ = {0} and have decomposed TM to

TM = Scr(TΣ)⊕ (TΣ⊥ ⊕ tr(TΣ)) = TΣ⊕ tr(TΣ) (2.31)

where TM is restricted to Σ.

We can use (2.31) to decompose the connection∇ onM as follows. LetX, Y ∈ Γ(TΣ)

and V ∈ Γ(tr(Σ)). Then, since tr(TΣ) has rank 1, we can write

∇X Y = DX Y +B(X,Y )N (2.32)

∇X V = −AN X + τ(X)N, (2.33)
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where DX Y,AN X ∈ Γ(TΣ). Equation (2.32) can be thought of as the Gauss formula

for the lightlike hypersurface and (2.33) as the lightlike Weingarten formula. Under this

decomposition, DX Y is a connection on Σ, but, as discussed in Duggal [2], this connection

is not, in general, metric-compatible.

2.2.1 An example with null coordinates

To investigate the Duggal decomposition, consider the line element

ds2 = −2du dv + qij dx
i dxj (2.34)

and metric

g =


0 −1 0

−1 0 0

0 0 qij

 (2.35)

with i, j = 1, 2. Let ∇ be the Levi-Civita connection on (M, g). The lightlike submanifold

Σ = {u = 0} has degenerate metric

q =

 0 0

0 qij

 . (2.36)

Choose a screen Scr(TΣ) = Span ({X1, X2}) by setting

Xk =
∂

∂ xk
+ αk ξ (2.37)

where ξ = η ∂
∂ v ∈ Γ(TΣ⊥) and αk is a function of v, x1 and x2. All possible screens can

be obtained by choosing different αk. For N ∈ Γ(tr(TΣ)) satisfying Theorem 2.1, the

vectors {ξ,X1, X2, N} form a basis for Γ(TM). Using this basis, the covariant derivatives
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take the form

∇Xj Xi = γ0
ij ξ + γk

ij Xk +Bij N (2.38)

∇Xj ξ = γ0
0j ξ + γk

0j Xk +B0j N (2.39)

∇ξ Xi = γ0
i0 ξ + γk

i0Xk +Bi0N (2.40)

∇ξ ξ = γ0
00 ξ + γk

00Xk +B00N (2.41)

and

∇Xj N = −A0
j ξ −Ak

j Xk + τj N (2.42)

∇ξ N = −A0
0 ξ −Ak

0Xk + τ0N, (2.43)

with 0 used for the v index. Equations (2.38)–(2.43) give the Gauss-Weingarten decom-

position of ∇ on M ; it remains to find the coefficients explicitly.

The properties of the basis vectors {ξ,X1, X2, N} are now used to find equations

for the connection coefficients and thus determine the decomposition of ∇ as given by

equations (2.32) and (2.33). Since the metric q is degenerate on Σ, the γ’s in (2.38)–(2.41)

cannot, a priori, be defined by equation (2.22). As will be shown, only γk
ij follow the

Christoffel symbol definition given in (2.22).

2.2.2 Derivation of coefficients for ∇

Recall that for ξ ∈ Γ(TΣ⊥), ξ · ξ = 0, ξ · Xi = 0 and by (2.30), ξ · N = −1 with

N ·Xi = 0 and N ·N = 0. For any vector V ∈ Γ(TM) we have 0 = ∇V (ξ ·ξ) = 2 (∇V ξ · ξ).

Letting V = Xj and taking the inner product with equation (2.39) gives

∇Xjξ · ξ = −B0j = 0. (2.44)

Repeating with V = ξ in (2.41) yields

B00 = 0. (2.45)
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Carrying out a similar argument with ∇V (N ·N) = 2 (∇VN ·N) = 0 and letting V = Xj

in (2.42) yields

A0
j = 0 (2.46)

and V = ξ in (2.43) gives

A0
0 = 0. (2.47)

The metric compatibility condition 5 for the Levi-Civita connection gives

0=∇V (ξ ·Xi) = ∇V ξ ·Xi + ξ · ∇VXi. Setting V = ξ and using (2.41) and (2.40) gives

Bi0 = gik γ
k

00. (2.48)

Letting V = Xj and using (2.39) and (2.38) gives gik γ
k

0j +−Bij = 0, so that

Bij = gik γ
k

0j . (2.49)

It is clear from (2.37) that the commutator of Xk with any coordinate vector field

will be parallel to ξ. Thus, both [ξ,Xi] and [Xi, Xj ] are parallel to ξ. Subtracting (2.39)

from (2.40) and using the torsion-free condition 4, [ξ,Xi] = ∇ξXi −∇Xiξ, simplifies to

[ξ,Xi] =
(
γ0

i0 − γ0
0i

)
ξ +

(
γk

i0 − γk
0i

)
Xk + (Bi0 −B0i) N. (2.50)

Since [ξ,Xi] is parallel to ξ, the last two terms of (2.50) must be zero, giving

γk
i0 = γk

0i (2.51)

Bi0 = B0i. (2.52)

The nondegeneracy of q along with equations (2.44) and (2.48) implies

Bi0 = B0i = 0 (2.53)

γk
00 = 0. (2.54)
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Substituting the results from (2.45)−(2.47), (2.53) and (2.54), the Gauss and Wein-

garten formulas can now be simplified to

∇Xj Xi = γ0
ij ξ + γk

ij Xk +Bij N (2.55a)

∇Xj ξ = γ0
0j ξ + γk

0j Xk (2.55b)

∇ξ Xi = γ0
i0 ξ + γk

i0Xk (2.55c)

∇ξ ξ = γ0
00 ξ (2.55d)

and

∇Xj N = −Ak
j Xk + τj N (2.56a)

∇ξ N = −Ak
0Xk + τ0N (2.56b)

Duggal defines the last term in equation (2.55a) to be the second fundamental form,

II(X,Y ) = B(X,Y )N . Thus, equations (2.55a)–(2.55d) decompose ∇ to a form similar

to Gauss’ formula, (2.32). Once the coefficients in (2.55a)–(2.55d) are known, a connection

D on Σ has been constructed. The properties of the Levi-Civita connection ∇ on Σ are

used to find the remaining coefficients.

Using 0 = ∇V (ξ ·N) = ∇V ξ ·N + ξ · ∇VN with V = Xj in equations (2.55b) and

(2.56a) yields

γ0
0j = −τj (2.57)

and with V = ξ in (2.55c) and (2.56b) gives

γ0
00 = −τ0. (2.58)

Now using 0 = ∇V (Xi ·N) = ∇VXi ·N +Xi · ∇VN with V = Xj in (2.55a) and (2.56a)

gives

γ0
ij = −gik A

k
j (2.59)

and with V = ξ in (2.55c) and (2.56b) yields

γ0
i0 = −gik A

k
0. (2.60)
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Switching indices in equation (2.55a) and subtracting, the commutator

[Xj , Xi] = ∇XjXi −∇XiXj simplifies to

[Xj , Xi] =
(
γ0

ij − γ0
ji

)
ξ +

(
γk

ij − γk
ji

)
Xk + (Bij −Bji) N. (2.61)

Using the fact that [Xj , Xi] is parallel to ξ, equation (2.61) gives

γk
ij = γk

ji (2.62)

Bij = Bji, (2.63)

establishing symmetry in the lower indices for both γk
ij and Bij .

The remaining coefficients are found using Koszul’s formula [5],

2 g(∇X Y, Z) = X g(Y, Z)+Y g(X,Z)−Z g(X,Y )+g([X,Y ], Z)−g([X,Z], Y )−g([Y, Z], X).

(2.64)

This formula is derived through repeated sums and differences using the Levi-Civita

torsion-free condition 4 and metric compatibility 5 on the connection. LettingX = ξ, Y = Xj ,

and Z = Xi in equation (2.64) gives

2 g(∇ξ Xj , Xi) = ξ g(Xj , Xi) +Xj g(ξ,Xi)−Xi g(ξ,Xj)+

g([ξ,Xj ], Xi)− g([ξ,Xi], Xj)− g([Xj , Xi], ξ) (2.65)

Using the properties that for V ∈ Γ(TΣ) the commutator [V,Xi] is parallel to ξ and

that ξ · ξ = 0 and Xi · ξ = 0 implies the last three terms of (2.65) vanish,

g([ξ,Xj ], Xi)− g([ξ,Xi], Xj)− g([Xj , Xi], ξ) = 0 (2.66)

Now evaluating the remaining terms of (2.65) gives

2 gik γ
k

j0 = ξ gji = ξ gij (2.67)
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A simpler form of Bij is found by substituting (2.67) into (2.49) and using the lower index

symmetry from (2.51),

Bij = gik γ
k

0j = gik γ
k

j0 (2.68)

Bij =
1
2
ξ gij . (2.69)

This equation is very similar to the coefficient for the second fundamental form found in

the previous example with nondegenerate metric on Σ.

Finally, Koszul’s formula with X = Xj , Y = Xi, Z = Xh and the symmetry condi-

tion (2.62) produces the familiar definition of the Christoffel symbols

γk
ij =

1
2
qkh (Xj qih +Xi qhj −Xhqij) (2.70)

In summary, the nonzero coefficients in (2.55a)−(2.55d) are given by

γk
ij =

1
2
qkh (Xj qih +Xi qhj −Xhqij) (2.71)

γ0
ij = −gik A

k
j (2.72)

γ0
0j = −τj (2.73)

γk
0j =

1
2
gik ξ gij (2.74)

γ0
00 = −τ0 (2.75)

Bij =
1
2
ξ gij . (2.76)

Using these coefficients, the induced covariant derivative on TΣ becomes

DXj Xi = γ0
ij ξ + γk

ij Xk (2.77)

DXj ξ = γ0
0j ξ + γk

0j Xk (2.78)

Dξ Xi = γ0
i0 ξ + γk

i0Xk (2.79)

Dξ ξ = γ0
00 ξ (2.80)

Duggal goes on to prove that under certain conditions there is a unique induced connection

on Σ,
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Theorem 2.2 (Duggal). Let (Σ, q, Scr(TΣ)) be a lightlike hypersurface of (Σ, g). Then

the induced connection D is unique, that is, D is independent of Scr(TΣ), if and only if

the second fundamental form II vanishes identically on Σ. Furthermore, in this case, D

is torsion free and metric compatible.

For the example in null coordinates, Theorem 2.2 implies that if Bij 6= 0, or equiv-

alently, ξ gij 6= 0 for all i, j, then there is a need for a new method to define D. The

following examples give one case where the conditions of Theorem 2.2 are met and one

where the conditions are not satisfied.

2.2.3 Duggal and the Null Plane

The line element for Minkowski space M4 in null rectangular coordinates takes the

form

ds2 = −2 du dv + dx2 + dy2. (2.81)

The metric on M4 is

g =



0 −1 0 0

−1 0 0 0

0 0 1 0

0 0 0 1


(2.82)

The null plane is defined by Σ = {u = 0} with metric

q =


0 0 0

0 1 0

0 0 1

 (2.83)

Clearly q is degenerate.

For the null plane, the tangent space TΣ is spanned by
{

∂
∂v ,

∂
∂x ,

∂
∂y

}
with
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TΣ⊥ = Span
{

∂
∂v

}
. The screen manifold is constructed such that Scr(TΣ) ⊂ TΣ and

Scr(TΣ)⊕ TΣ⊥ = TΣ. This screen is not unique. In general, a basis for Scr(TΣ) is{
α
∂

∂v
+

∂

∂x
, β

∂

∂v
+

∂

∂y

}
. (2.84)

Let

X1 = α
∂

∂v
+

∂

∂x
, X2 = β

∂

∂v
+

∂

∂y
, ξ = η

∂

∂v
(2.85)

where X1, X2 ∈ Γ(Scr(TΣ)) and ξ ∈ Γ(TΣ⊥).

Recall Theorem 2.1: For ξ ∈ Γ(TΣ⊥) there is a unique N ∈ Γ(tr(TΣ)) such that

N · ξ = −1, N ·N = 0, N ·W = 0∀W ∈ Γ(Scr(TΣ)). (2.86)

For the null plane, tr(TΣ) ⊂ TM has basis{
∂

∂v
,
∂

∂u
+ α

∂

∂x
+ β

∂

∂y

}
. (2.87)

so N must be of the form

N = A
∂

∂v
+B

(
∂

∂u
+ α

∂

∂x
+ β

∂

∂y

)
. (2.88)

One can now find A and B so that N satisfies the conditions of (2.86).

Using N · ξ = −1 gives

−η B = −1 (2.89)

B = 1/η (2.90)

and N ·N = 0 yields

−2AB +B2α2 +B2β2 = 0 (2.91)

A =
B(α2 + β2)

2
=
α2 + β2

2η
. (2.92)
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Thus N is of the form

N =
1
η

(
∂

∂u
+
(
α2 + β2

2

)
∂

∂v
+ α

∂

∂x
+ β

∂

∂y

)
(2.93)

It is not difficult to check X1 ·N = 0 and X2 ·N = 0.

Finding N verifies Theorem 2.1, making way for the decompostion of ∇ on the null

plane satisfying (2.32). To check that the induced metric on Σ produces a Levi-Civita

connection independent of the screen, as stated in Theorem 2.2, it remains to verify that,

for ξ = η
∂

∂v
, Bij =

η

2
∂gij

∂v
vanishes on the null plane. For u = 0 on M ,

g =



0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1


(2.94)

Clearly
∂gij

∂v
= 0, so Bij = 0. Thus a unique connection is defined using the screen

distribution and transversal vector bundle.

2.2.4 Duggal and the Null Cone

The line element for Minkowski space M4 in null spherical coordinates takes the

form

ds2 = −2 du dv + r2 dθ2 + r2 sin2 θ dφ2 (2.95)

with r = (v − u)/
√

2. The metric is then given by

g =



0 −1 0 0

−1 0 0 0

0 0 r2 0

0 0 0 r2 sin2 θ


(2.96)
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The null cone is defined by Σ = {u = 0}, so r = v/
√

2 and the degenerate metric on the

cone is

q =


0 0 0

0
v2

2
0

0 0
v2

2
sin2 θ

 (2.97)

Similar to the null plane, the tangent space TΣ for the null cone is spanned by{
∂
∂v ,

∂
∂θ ,

∂
∂φ

}
with TΣ⊥ = Span

{
∂
∂v

}
. The screen manifold is constructed with basis

vectors

X1 = α
∂

∂v
+
√

2
v

∂

∂θ
, X2 = β

∂

∂v
+
√

2
v sin θ

∂

∂φ
. (2.98)

For ξ = η ∂
∂v ∈ Γ(TΣ⊥), we will find N ∈ Γ(tr(TΣ)). With basis for tr(TΣ){

∂

∂v
,
∂

∂u
+
α

r

∂

∂θ
+

β

r sin θ
∂

∂φ

}
. (2.99)

this amounts to finding A and B for

N = A
∂

∂v
+B

(
∂

∂u
+
α

r

∂

∂θ
+

β

r sin θ
∂φ

)
(2.100)

that satisfy (2.86). N · ξ = −1 again gives

B = 1/η (2.101)

and N ·N = 0 also yields

A =
α2 + β2

2η
. (2.102)

Thus N is

N =
1
η

(
∂

∂u
+
(
α2 + β2

2

)
∂

∂v
+
α

r

∂

∂θ
+

β

r sin θ
∂

∂φ

)
(2.103)

As with the null plane it is not difficult to check X1 ·N = 0 and X2 ·N = 0 on Σ.
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For the null cone, finding N demonstrates the procedure in Theorem 2.1, but for

a Levi-Civita connection, independent of screen, the hypotheses of Theorem 2.2 must be

checked, namely Bij =
1
2
ξgij = 0. For ξ = η

∂

∂v

∂g

∂v
=



0 0 0 0

0 0 0 0

0 0
√

2r 0

0 0 0
√

2r sin θ


(2.104)

where r = (v − u)/
√

2. On the null cone, Σ = {u = 0},

∂g

∂v
=



0 0 0 0

0 0 0 0

0 0 v 0

0 0 0 v sin θ


(2.105)

so Bij 6= 0. Thus, the method using the screen distribution and transversal vector bundle

will not necessarily yield a Levi-Civita connection on the null cone. Alternate methods

will be developed in this paper.
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3 CONNECTIONS VIA THE PULLBACK

A series of surfaces are examined to motivate the methods used to define a co-

variant derivative on null surfaces. The plane and cone in Euclidean space will be used

to demonstrate how the covariant derivative can be defined directly from the definition

involving Christoffel symbols. While the Euclidean examples may not be very exciting,

they do demonstrate the need for the other methods in the Minkowski space examples.

Progression through the examples will also lay the groundwork for the final results.

3.1 Notation and Definitions

The preceding examples all used standard math tensor notation and component

notation pwhen a specific basis was given. There is yet a third notation commonly used

by relativists, abstract index notation. This notation allows one to keep track of the tensor

index with out specifying components. The table below summarizes abstract index and

component notation. For the remainder of this dissertation, abstract index notation will

be used unless a coordinate basis is specified.
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Abstract Index Component/Basis

Basis (x0, x1, x2, x3)

vector va v = vi ∂/∂xi

1-form wa w = wi dx
i

metric gab g = [gij ]

Christoffel symbol Γa
bc (not a tensor) Γi

jk = 1
2g

im

(
∂gmj

∂xk
+
∂gmk

∂xj
−
∂gjk

∂xm

)
vector derivative ∇av

b = ∂av
b + Γb

ac v
c ∇Xv = Xi

[
∂vj

∂xi
+ Γj

ikv
k

]
∂/∂xj

∇∂/∂xi ∂/∂xj = Γk
ji ∂/∂x

k

1-form derivative ∇awb = ∂awb − Γc
abwc ∇Xw = Xi

[
∂wj

∂xi
− Γk

ijwk

]
dxj

∇∂/∂xi dxj = −Γj
ki dx

k

The calculations required to compute the Christoffel symbols given a metric gab are

very involved and tedious. For all of the examples the computer algebra system Maple

and the GRTensor package were used to check the computations of the Christoffel symbols

as well as the Riemann and Ricci tensors.

3.2 Euclidean Space

In Euclidean space with rectangular coordinates the line element is given by

ds2 = dz2 + dx2 + dy2.

In E3 the metric is then

[gij ] =


1 0 0

0 1 0

0 0 1


All of the Christoffel symbols are zero and the covariant derivative is given by

∇bv
a = ∂va/∂xb for vectors and ∇bwa = ∂wa/∂x

b for 1-forms.
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3.2.1 Euclidean Plane

A plane in E3 with x = z has line element

ds2 = 2 dx2 + dy2.

The plane is a 2-surface with 2× 2 metric

[qij ] =

 2 0

0 1


For this surface the covariant derivative can be computed directly. All of the

Christoffel symbols are zero, and the covariant derivative is given by Dbv
a = ∂va/∂xb

and Dbwa = ∂wa/∂x
b.

Since vectors on the plane can be thought of as vectors in E3, the symbols va and

wa have been used for both spaces.

3.2.2 Cylindrical Coordinates in E3

The line element in cylindrical coordinates is given by

ds2 = dz2 + dr2 + r2 dθ2.

The metric is

[gij ] =


1 0 0

0 1 0

0 0 r2


On the cone the nonzero Christoffel symbols are

Γθ
rθ =

1
r
, Γr

θθ = −r. (3.1)

Letting Θ = ∂/∂ θ, the covariant derivative is given by

∇Θ (dθ) = −Γθ
rθdr = −1

r
dr (3.2)

∇Θ (dr) = −Γr
θθdθ = r dθ (3.3)
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All other derivatives will be zero. In particular, the derivative ∇Θ (dz) = 0 will be used

in the next example

3.2.3 Euclidean Cone

In E3 the cone, C, is given by r = z. The line element is

ds2 = 2 dr2 + r2 dθ2.

The metric is

[qij ] =

 2 0

0 r2


The nonzero Christoffel symbols are

Γθ
rθ =

1
r
, Γr

θθ = −r
2

(3.4)

The covariant derivative can be defined on 1-forms by

DΘ (dθ) = −Γθ
rθ dr = −1

r
dr (3.5)

DΘ (dr) = −Γr
θθ dθ =

r

2
dθ (3.6)

One may wish to relate the derivative operator on the cone C to the space in which

it is imbedded, E3. Consider v = r+ z and u = r− z in E3 with differentials dv = dr+ dz

and du = dr − dz. Their respective Θ−derivatives are

∇Θ (dv) = ∇Θ (dr) +∇Θ (dz) = r dθ + 0 = r dθ (3.7)

∇Θ (du) = ∇Θ (dr)−∇Θ (dz) = r dθ − 0 = r dθ (3.8)

On the cone with r = z, let v = 2r and u = 0 where the underline is used to show that u

and v are now on the 2-dimensional cone and not in 3-dimensional Euclidean space. The

differentials become dv = 2 dr and du = 0 the Θ−derivatives are

Dθ (dv) = DΘ (2 dr) = 2
r

2
dθ = r dθ (3.9)

DΘ (du) = DΘ (0) = 0 (3.10)
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Returning to Euclidean 3-space, evaluate the Θ−derivatives at r = z to check if the

derivatives agreement with those computed on the cone. In this case, let ∇Θ dv represent

the 3-space derivative evaluated at r = z and then expressed in the 2-dimensional space

of the cone,

∇Θ (dv) = r dθ (3.11)

∇Θ (du) = r dθ (3.12)

The derivatives of dv are the same, ∇Θ dv = DΘ dv, but the derivatives of du do

not agree, ∇Θ du 6= DΘ du. This example demonstrates the difficulties in obtaining a

well-defined derivative on submanifolds based on the space in which they are imbedded.

3.3 Minkowski Space

The next examples will concentrate on surfaces in Minkowski space. More chal-

lenges will present themselves when trying to obtain a well-defined covariant derivative

on submanifolds. Surfaces in Minkowski space lead to degenerate metrics. Without an in-

vertible metric it is not even possible to compute Christoffel symbols on the surface. Since

our definition of covariant derivative is based on Christoffel symbols, it is not possible to

directly define the derivative on the surface. Other methods must be investigated.

3.3.1 Rectangular Coordinates in M4

The line element in Minkowski space is given in rectangular coordinates by

ds2 = −dt2 + dz2 + dx2 + dy2

with metric
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[gij ] =



−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


Like Euclidean space, all of the Christoffel symbols are zero and the covariant deriv-

ative is given by ∇bv
a = ∂va/∂xb and ∇bwa = ∂wa/∂x

b.

3.3.2 Minkowski Plane

Define a plane in M4 by Σ = {t = z}. The line element on this plane in Minkowski

space is given in rectangular coordinates by

ds2 = dx2 + dy2

with metric

[qij ] =


0 0 0

0 1 0

0 0 1


Clearly qab is not invertible. The covariant derivative, D, cannot be defined using

Christoffel symbols since the inverse metric is needed to calculate Γa
bc. The properties

of the derivative ∇ on M4 will be used to arrive at a definition of the derivative D on Σ.

Before attempting this, more formal definitions and notation must be introduced to allow

objects to be moved from one space to another.

3.3.3 Pullback

Let Σ be a submanifold of M4 with ϕ : Σ → M4 an embedding of Σ into M4. For

vectors va ∈ TΣ, ϕ∗ va is a vector in TM4. That is, vectors are “pushed” from the tangent

space of Σ onto the tangent space of M4. On the other hand, 1-forms wa defined on M4
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are “pulled” back to the surface Σ. The pullback of wa onto Σ is given by ϕ∗wa such that

(ϕ∗wa)vb = wa(ϕ∗ vb).

Since ϕ∗ acts on forms, the covariant derivative will be computed on 1-forms in M4

and then pulled back to Σ. As with the previous example, D will represent a covariant

derivative on Σ and ∇ a covariant derivative on M4. This approach attempts to define a

covariant derivative on Σ by

Da(ϕ∗wb) = ϕ∗(∇awb). (3.13)

Less formal notation will be adopted to represent the pullback. Instead of ϕ∗ for

the pullback, an ← will be used. The pullback of 1-forms will be written ϕ∗wb = wb←−.

This notation will be less cumbersome and will lend itself to a more visual representation

of pulling the object back to the surface Σ. With this new notation the pullback of the

covariant derivative is written

Dawb←− = ∇awb←−−−. (3.14)

This notation will also eliminate the confusion of where objects live. wb is a 4-dimensional

1-form defined on M4 while wb←− is the 3-dimensional 1-form pulled back to Σ. This notation

will be used throughout the remainder of this document. Since the pullback is not the

traditional method used to define D, care must be given to insure the derivative is well-

defined.

3.3.4 Minkowski plane revisited

For the plane, the pullback method can be summarized by starting in M4 to calculate

the Christoffel symbols, define ∇ on M4, and then pull the derivative back to the plane

by letting z = t. Since all of the Christoffel symbols vanish in M4, the pullback of the
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covariant derivative to the plane becomes

Dbwa←− = ∇bwa←−−− = ∂wa←−/∂x
b = ∂bwa←−. (3.15)

In other words, using the pullback definition (3.14) the covariant derivative D on

the plane is again given by partial differentiation.

Now to check that this derivative operator is well defined. Consider v = t + z and

u = t− z in M4 with differentials dv = dt+ dz and du = dt− dz. Minkowski space with

t = z gives derivatives

∇X dv|t=z = ∇X dz +∇X dz = 2 ∂Xdz (3.16)

∇X du|t=z = ∇X dz −∇X dz = 0 (3.17)

Pulling these derivatives back to the plane gives

∇X dv←−−−− = 2 ∂X dz←− (3.18)

∇X du←−−−− = 0 (3.19)

Using (3.15) on the plane with dv←− = 2 dz←− and du←− = 0 yields

DX dv←− = 2 ∂X dz←− (3.20)

DX du←− = 0 (3.21)

Indeed, both derivatives agree. The pullback method has produced a well-defined deriva-

tive operator on the Minkowski plane, a surface with degenerate metric.

3.3.5 Well-Defined Covariant Derivative

Since the pullback is not a traditional method used to define the covariant derivative,

we must clarify what will be accepted as “well defined.” Consider a surface defined by

Σ = {u = 0} and any 1-form, w. For an arbitrary function f , the pullback of w + f du

onto Σ is w + f du
←−−−−−−

= w←− since du←− = 0 on Σ. In this case

∇X (w + f du)
←−−−−−−−−−−

= ∇X w←−−−+ (∂X f |u=0) du|u=0 + (f |u=0)∇X du←−−−− = ∇Xw←−−− (3.22)



29

as long as ∇X du←−−−− = 0. Dealing with the du−term in pullback derivative certainly is

not ideal, but it does provide the necessary condition to define a “well-defined” pullback

derivative on Σ. The u−coordinate defines the surface, but is not part of the coordinate

representation of Σ. For this reason, as long as the pullback derivative

DX du←− = ∇X du←−−−− = 0 (3.23)

the derivative D will be considered well defined. On the other hand, if ∇X du←−−−− 6= 0 the

covariant derivative D on Σ will not be well defined.

3.3.6 Minkowski Null Rectangular Coordinates

The choices u = (t − z)/
√

2 and v = (t + z)/
√

2 are called null coordinates in

Minkowski space. This coordinate transformation turns out to be commonly used to

represent spacetimes in relativity. Now the covariant derivative on M4 will be determined

using null coordinates. The line element in null coordinates is

ds2 = −2du dv + dx2 + dy2

with metric

[gij ] =



0 −1 0 0

−1 0 0 0

0 0 1 0

0 0 0 1


All of the Christoffel symbols are zero and the covariant derivative on 1-forms is given

by ∇awb = ∂awb. As expected this is exactly the same as the derivative in rectangular

coordinates.

3.3.7 Minkowski Plane, Null Coordinates

Null coordinates give a very simple definition of the null plane, Σ = {u = 0}. In

null coordinates the line element for the null plane is

ds2 = dx2 + dy2
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and the metric is

[qij ] =


0 0 0

0 1 0

0 0 1


This appears to be the same degenerate metric as in rectangular coordinates, but

they are different in their coordinates. In the rectangular case the coordinates on the

plane are [z, x, y] while in the null case the coordinates are [v, x, y]. Pulling ∇ back to the

null plane yields the covariant derivative Dawb←− = ∇awb←−−− = ∂awb←−. Once again this is the

same derivative as computed in rectangular coordinates.

3.3.8 Minkowski Spherical Coordinates in M4

The line element in Minkowski space is given in spherical coordinates by

ds2 = −dt2 + dr2 + r2dθ2 + r2 sin2 θdφ2

with metric

[gij ] =



−1 0 0 0

0 1 0 0

0 0 r2 0

0 0 0 r2 sin2(θ)


The nonzero Christoffel symbols are

Γθ
rθ =

1
r
, Γr

θθ = −r (3.24)

Γθ
φφ = − sin θ cos θ, Γr

φφ = −r sin2 θ (3.25)

Γφ
rφ =

1
r
, Γφ

θφ = cot θ (3.26)
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The nonzero components of the covariant derivative are

∇Θdθ = −Γθ
rθdr = −1

r
dr, ∇Θdr = −Γr

θθdθ = rdθ (3.27)

∇Φdθ = −Γθ
φφdφ = sin θ cos θdφ ∇Φdr = −Γr

φφdφ = r sin2 θdφ (3.28)

∇Φdφ = −Γφ
rφdr +−Γφ

θφdθ = −1
r
dr − cot θdθ (3.29)

All of the remaining components of the derivative vanish. In particular, ∇Θ dt = 0.

3.3.9 Minkowski Cone

Using spherical coordinates in Minkowski space the cone, Σ = {t = r}, has line

element

ds2 = r2dθ2 + r2 sin2 θdφ2

with degenerate metric

[qij ] =


0 0 0

0 r2 0

0 0 r2 sin2(θ)


Since qab is not invertible the Christoffel symbols needed to define D cannot be

calculated. This forces a return to M4 to get the derivative ∇ and then pull the covariant

derivative back to the cone by letting t = r. The nonzero components are of D on the

cone are given by

DΘ dθ←− = ∇Θ dθ←−−−− = −1
r
dr←−, DΘ dr←− = ∇Θ dr←−−− = r dθ←− (3.30)

DΦ dθ←− = ∇Φ dθ←−−− = sin θ cos θ dφ
←−
, DΦ dr←− = ∇Φ dr←−−− = r sin2 θ dφ

←−
(3.31)

DΦ dφ←−
= ∇Φ dφ←−−−−

= −1
r
dr←−− cot θ dθ←− (3.32)

In this case there are no problems pulling ∇ back to the cone, but it turns out that

this derivative D is not well defined. Recall that a well-defined derivative must satisfy
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the condition DX du←− = ∇X du←−−−− = 0 on the surface given by Σ = {u = 0}. On the cone

u = t − r. For t = r the pullback of the 1-forms must be equal, dr←− = dt←−. Our condition

for a well-defined derivative on Σ then becomes

DX du←− = ∇X du←−−−− = ∇X (dr − dt)
←−−−−−−−−−

= ∇X dr←−−−−−∇X dt←−−− = DX dt←−−DX dr←− = 0. (3.33)

So it remains to check if the pullback method yields DX dt←− = DX dr←−. Consider the

derivative along θ,

DΘ dr←− = ∇Θ dr←−−− = r dθ←− (3.34)

DΘ dt←− = ∇Θ dt←−−− = 0. (3.35)

Clearly DΘ dr←− 6= DΘ dt←− even though dr←− = dt←− on Σ. Thus D is not well defined on Σ. The

lesson here is that one must be particularly careful when using the pullback to ensure a

well defined derivative D.

3.3.10 Minkowski Null Spherical Coordinates

As with the plane, the null coordinates u = (t− r)/
√

2 and v = (t+ r)/
√

2 can be

used in spherical coordinates. Now r = (v− u)/
√

2 and t = (v+ u)/
√

2. The line element

in null spherical coordinates is

ds2 = −2du dv + r2 dθ2 + r2 sin2 θ dφ2 = −du dv +
(v − u)2

2
dθ2 +

(v − u)2

2
sin2 θ dφ2

with metric

[gij ] =



0 −1 0 0

−1 0 0 0

0 0
(v − u)2

2
0

0 0 0
(v − u)2

2
sin2 θ


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For this coordinate system there are many more nonzero Christoffel symbols,

Γθ
uθ =

−1
v − u

Γθ
vθ =

1
v − u

Γθ
φφ = − sin θ cos θ (3.36)

Γφ
uφ =

−1
v − u

Γφ
vφ =

1
v − u

Γφ
θφ = cot θ (3.37)

Γv
θθ =

−(v − u)
2

Γv
φφ =

−(v − u)
2

sin2 θ (3.38)

Γu
θθ =

v − u
2

Γu
φφ =

v − u
2

sin2 θ (3.39)

The nonzero components of ∇X are given below.

∇Xdθ terms:

∇Θdθ = −Γθ
uθ du− Γθ

vθ dv =
1

v − u
(du− dv) (3.40)

∇Φdθ = −Γθ
φφ dφ = sin θ cos θ dφ (3.41)

∇Xdφ terms:

∇Φdφ = −Γφ
uφ du− Γφ

vφ dv =
1

v − u
(du− dv) (3.42)

∇Φdφ = −Γφ
θφ dθ = − cot θdθ (3.43)

∇Xdv terms:

∇Θdv = −Γv
θθ dθ =

(v − u)
2

dθ (3.44)

∇Φdv = −Γv
φφ dφ =

(v − u)
2

sin2 θ dφ (3.45)

∇Xdu terms:

∇Θdu = −Γu
θθ dθ = −v − u

2
dθ (3.46)

∇Φdu = −Γu
φφ dφ = −(v − u)

2
sin2 θ dφ (3.47)

It is important to note that ∇Xdu contains nonzero terms other than du. As the

null cone example will show, this creates problems when one tries to use the pullback

(3.14) to define a derivative.



34

3.3.11 Minkowski Cone, Null Coordinates

The null cone is defined by Σ = {u = 0} . Now the line element for the null cone is

ds2 = (v2/2) dθ2 + (v2/2) sin2 θ dφ2

and the metric is

[qij ] =


0 0 0

0 v2/2 0

0 0 (v2/2) sin2 θ


Now with this degenerate metric the attempt to pull the derivative back from M4

with null coordinates will lead to problems when ∇ is pulled back to the null cone. As

a reminder, a well-defined derivative D on the null cone must have ∇Xdu←−−−− = 0. Consider

only the nonzero terms from ∇Xdu = 0 yields

∇Θdu←−−− = −v − 0
2

dθ←− 6= 0 (3.48)

∇Φdu←−−− =
(v − 0)

2
sin2 θdφ

←−
6= 0. (3.49)

As with the cone in spherical coordinates, the pullback method does not result

in a well defined derivative operator D. This will be a problem for any null surface,

Σ = {u = 0}, when there are nonzero components other than du in ∇X du.

3.3.12 Conformal Minkowski Cone

This example will use a conformal transformation to obtain a well-defined derivative,

D, on the Minkowski cone. A conformal transformation on the 4-metric gab is of the form

gab = ω2gab. (3.50)

The transformation is chosen so ∇a du has no components other than du itself.

When ∇ is pulled back to the cone, D will be a well-defined derivative. Let ω = 1/r

where r = (v − u)/
√

2. The line element becomes

ds2 =
1
r2
(
−du dv + r2dθ2 + r2 sin2 dφ2

)
= − 2

(v − u)2
du dv + dθ2 + sin2 θdφ2
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with metric

[
gij

]
=



0
−1

(v − u)2
0 0

−1
(v − u)2

0 0 0

0 0 1 0

0 0 0 sin2 θ


which gives nonzero Christoffel symbols:

Γθ
φφ = − sin θ cos θ Γφ

θφ = cot θ (3.51)

Γv
vv =

−2
v − u

Γu
uu =

2
v − u

(3.52)

The nonzero ∇a terms are

∇φ dθ = −Γθ
φφ dφ = sin θ cos θ dφ (3.53)

∇φ dφ = −Γφ
θφ dθ = − cot θ dθ (3.54)

∇v dv = −Γv
vv dv =

2
v − u

dv (3.55)

∇u du = −Γu
uu du = − 2

v − u
du (3.56)

Now there are no problems in the pullback to the cone. The first three derivatives

pull back to the cone with u = 0. With u = 0 and du←− = 0 the last term will vanish in the

pullback,

Dudu←− = ∇udu←−−− =
2

v − 0
du←− = 0. (3.57)

The covariant derivative D now becomes

Dφdθ←− = ∇φdθ←−−−
= sin θ cos θdφ

←−
(3.58)

Dφdφ←−
= ∇φdφ←−−−

= − cot θdθ←− (3.59)

Dvdv←− = ∇vdv←−−− =
2

v − 0
dv←− =

2
v
dv←− (3.60)
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3.4 Christoffel Symbols and the Pullback of ∇

In summary, we have seen three examples of null surfaces where using the pullback

resulted in well-defined covariant derivatives; the plane, the plane in null coordinates and

the cone with conformal null coordinates. There were two surfaces that did not yield well-

defined derivatives; the cone in spherical and in spherical null coordinates. As defined

earlier, D is not well defined when Da du←− = ∇a du←−−− 6= 0. Based on the previous examples

this occurs any time there are non-du terms in ∇a du. Looking more closely at this

derivative reveals the Christoffel symbols on M4 will determine if the derivative is well

defined on Σ:

∇a du = ∇a δ
u
b dx

b = ∂a (δu
b dx

b)− Γc
ab δ

u
c dx

b = 0− Γu
ab dx

b. (3.61)

So ∇a du will have non-du terms anytime Γu
ab 6= 0 on M4. There is one exception to this

condition. If Γu
au 6= 0, the pullback Γu

au|u=0 du←− will still vanish. Now, checking if the

pullback of ∇ is well-defined amounts to looking for nonzero Christoffel symbols of the

form Γu
ab.

For the cone in spherical coordinates, u = 0 implies t = r and the Christoffel symbols

were Γr
θθ = −r, Γr

φφ = −r sin2 θ, Γr
θθ = −r and Γt

φφ = 0. Pulling the derivative back

to Σ resulted in nonzero terms, ∇a du←−−− = ∇a (dt− dr)
←−−−−−−−−

6= 0

For the cone in null spherical coordinates it was much easier to look at the Christoffel

symbols to realize the pullback will not give a well-defined derivative. Here one sees

Γu
θθ =

v − u
2

and Γu
φφ =

−(v − u)
2

sin2 θ so the pullback of ∇ will not be well-defined.

The fundamental question after all of the examples becomes: What are the necessary

conditions on a null surface to give a well-defined covariant derivative? We began with a

definition of well-defined that required ∇a du←−−− = 0. A closer look at ∇ led us to check the

Christoffel symbols of the form Γu
ab. Now the question becomes, if there are Christoffel

symbols Γu
ab 6= 0, is there a conformal transformation that results in a well-defined deriv-
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ative, and if so, what is the conformal factor? We address these questions in Chapter 5,

but first some results on conformal transformations are presented from Geroch’s work on

asymptotically flat spacetimes.
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4 ASYMPTOTICALLY FLAT SPACETIMES VIA GEROCH

Our prior constructions led to a well-defined covariant derivative on the conformal

cone in section 3.3.12, but not for the null cone in section 3.3.11. It turns out the conformal

transformation is key in defining a covariant derivative on null hypersurfaces using the

pullback method. In a 1976 paper, Geroch [1] used conformal transformations to study

the asymptotic structure of spacetimes in general relativity.

The boundary of a spacetime can be approached along spacelike, timelike, or lightlike

paths. It is Geroch’s work on the null case, with its degenerate metric, that is considered

in this chapter. The null boundary of a spacetime is a hypersurface that is attached to

the physical spacetime using a conformal transformation. This technique allows one to

study the properties of the boundary as a submanifold.

While the covariant derivative was not the focus of his work, Geroch’s techniques

using conformal transformations turn out to provide the tools needed to define a connection

on some null hypersurfaces. This chapter summarizes Geroch’s, presentation including the

definition of an asymptotically flat spacetime, some equations that result from conformal

transformations, and the use of an additional conformal transformation to guarantee that

the null vector field is a Killing vector field. All of the calculations use abstract index

notation.

4.1 Physical vs. Unphysical Spacetime

Let
(
M̃, g̃ab

)
be a spacetime (i.e., a 4-manifold with smooth metric of Lorentz

signature). By an asymptote of
(
M̃, g̃ab

)
we mean a manifold M with boundary I,

together with a smooth Lorentz metric gab on M , a smooth function Ω on M and a

diffeomorphism ψ from M̃ to M − I (by means of which we shall identify M̃ and M − I),
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satisfying the following conditions:

1. On M̃ , gab = Ω2 g̃ab.

2. On I,

(a) Ω = 0,

(b) ∇aΩ 6= 0, and

(c) gab(∇aΩ)(∇bΩ) = 0, where “∇a” denotes the gradient on M .

The metric gab is called the unphysical metric (to distinguish it from the physical

metric g̃ab), while I is called the boundary (at null infinity). Note that the definition

requires the unphysical metric to be defined and have Lorentz signature also at points

of the boundary. By contrast, the physical metric is not even defined on I (and, indeed,

according to conditions 1 and 2a could not be given sensible meaning there). It follows

from the definition that Ω is nonzero on M̃ (by convention, we choose it positive there),

and that I is a null surface (since ∇aΩ on I is normal to I, nonzero, and null.) The normal

vector will be defined by na = gab∇bΩ.

It is intended that the definition represent the intuitive idea of “the attachment

to the spacetime manifold M̃ of additional ideal points at null infinity.” The additional

points are of course those of I, while the diffeomorphism ψ inserts M̃ in M ; thus M itself

represents the physical spacetime manifold with points at infinity attached. Condition

1 states that the conformal factor rescales the physical metric to the unphysical, while

condition 2a together with the requirement that the unphysical metric be well-behaved

on I states that “infinity is g̃ab-far away.” Condition 2b fixes the asymptotic behavior of

Ω; in effect, it states that Ω falls to zero “as 1/r.” Finally, condition 2c states essentially

that we are dealing with null infinity.
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4.2 Conformal Transformations

A conformal transformation is most commonly thought of as a rescaling of length.

The conformal transformation in our case is a rescaling of the metric in the spacetime, in

effect bringing the boundary at infinity to a finite distance. Under this transformation it

is now possible to study the structure of the null hypersurface I. First we must consider

the covariant derivative under the conformal transformation.

4.2.1 Conformal Coefficients for the Covariant Derivative

Let
(
M̃, g̃ab

)
be an s−dimensional manifold with a non-degenerate metric of any

signature. If Ω is a smooth, strictly positive function, then the metric gab = Ω2 g̃ab is said

to arise from g̃ab via a conformal transformation. Ω is called the conformal factor. Since

now either g̃ab or gab could be used to raise and lower indices of tensor fields on M̃ , we

adopt the convention that the indices of tensor fields with a “˜” are to be raised and

lowered with g̃ab those without the tilde use gab.

Each of g̃ab and gab gives rise to a Levi-Civita derivative operator, ∇̃a and ∇a

respectively. Setting Cm
ab = Γ̃m

ab − Γm
ab, where Γ̃m

ab and Γm
ab are the Christoffel

symbols for ∇̃a and ∇a respectively, we have

∇̃aα
b···c

d···e = ∇aα
b···c

d···e + Cb
am αm···c

d···e + · · ·+ Cc
am αb···m

d···e

− Cm
ad α

b···c
m···e − · · · − Cm

ae α
b···c

d···m (4.1)

for any tensor field αb···c
d···e on M̃ . While the Christoffel symbols are not tensors, Cm

ab

is none the less a tensor field, symmetric in its lower indices.

To find Cm
ab, we use metric compatibility and the Leibnitz rule for the derivative
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operator:

0 = ∇̃a g̃bc = ∇̃a

(
Ω−2gbc

)
= −2Ω−3

(
∇̃aΩ

)
gbc + Ω−2 ∇̃a gbc

= −2Ω−3 (∇aΩ) gbc + Ω−2
(
∇a gbc − Cd

ab gdc − Cd
ac gbd

)
(4.2)

Assuming gab is invertible, we can symmetrize equation (4.2) in a and b, and solve for

Cc
ab, giving

Cc
ab = −Ω−1

(
∇aΩ δc

b +∇aΩ δc
b − gab g

cl∇lΩ
)

(4.3)

The Riemann curvature tensor is now expressed in terms of ∇a using

R̃d
cab ωd = −

(
∇̃a∇̃b − ∇̃b∇̃a

)
ωc, for any one-form ωc. The relationship between the

curvature tensors R̃d
cab and Rd

cab is derived using equation (4.1)

∇̃b ωc = ∇b ωc − Ck
bc ωk (4.4)

∇̃a∇̃b ωc = ∇̃a

(
∇b ωc − Ck

bc ωk

)
(4.5)

= ∇a

(
∇b ωc − Ck

bc ωk

)
−C l

ab

(
∇l ωc − Ck

lc ωk

)
− C l

ac

(
∇b ωl − Ck

bl ωk

)
(4.6)

Again using the symmetry of Ck
ab and the Leibnitz property of ∇a we get

−R̃d
cab ωd = −Rd

cab ωd −
(
∇aC

d
bc −∇bC

d
ac

)
ωd

+
(
C l

acC
d

bl − C l
bcC

d
al

)
ωd (4.7)

Since ωd is arbitrary, we have the relationship

R̃d
cab = Rd

cab +
(
∇aC

d
bc −∇bC

d
ac

)
−
(
C l

acC
d

bl − C l
bcC

d
al

)
(4.8)

The Ricci Tensor, R̃ab = R̃k
akb, can now be expressed in terms of Rab and Ck

ab,

R̃ab = Rab −
(
∇aC

k
kb −∇kC

k
ab

)
+
(
C l

abC
k

kl − C l
kbC

k
al

)
(4.9)
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Equation (4.3) can be used to express the Ricci tensor in terms of Ω and gab. The

results are given without derivation.

R̃ab = Rab + (s− 2) Ω−1∇a∇b Ω + Ω−1 gab∇m∇m Ω

− (s− 1) Ω−2 gab (∇mΩ) (∇m Ω) (4.10)

The Ricci scalar curvature, R̃ = g̃ab R̃ab = Ω2 gab R̃ab, is given by

R̃ = Ω2R+ 2(s− 1) Ω∇m∇m Ω− s(s− 1) (∇mΩ) (∇mΩ) (4.11)

4.3 Lie Derivative under Conformal Transformations

The Lie derivative of an (0, 2) tensor τab is given by

£v τab = vc∇cτab + τcb∇av
c + τac∇bv

c (4.12)

Let the (0, 2) tensor be a metric tensor, gab, and replace va with the normal vector field

na = gak∇kΩ = ∇aΩ. Assuming a metric-compatible (∇c gab = 0) and torsion-free

(∇a∇bΩ = ∇b∇aΩ) derivative operator, we get

£n gab = gcb∇a n
c + gac∇b n

c

= gcb∇a g
ck∇kΩ + gac∇b g

ck∇kΩ

= δk
b ∇a∇kΩ + δk

a ∇b∇kΩ

= ∇a∇bΩ +∇a∇bΩ

= 2∇a∇bΩ (4.13)

This result can now be substituted into equation (4.10) to give

R̃ab = Rab +
(s− 2)

2
Ω−1 £n gab + Ω−1 gab∇m∇mΩ

− (s− 1) Ω−2 gab (∇mΩ) (∇mΩ) (4.14)
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4.3.1 A Second Transformation, Killing Vector Field

A vector field, na, such that £n gab = 0 is called a Killing vector field. Using the

“gauge freedom” in the original conformal transformation given in condition 1, we can

make the Lie derivative above vanish. To do this, we seek to use a nonzero smooth

function ω on I to define a diffeomorphism φ : I→ I such that:

1. gab = ω2 gab and

2. £n gab = 0,

where na = ω−1 na. As shown by Geroch, this preserves the conditions outlined for I.

Using equation (4.12) to calculate the Lie derivative gives:

£n gab = ω−1 nc∇c

(
ω2gab

)
+ ω2 gcb∇a

(
ω−1 nc

)
+ ω2 gac∇b

(
ω−1 nc

)
= ω−1 nc

(
2ω (∇c ω) gab + ω2∇c gab

)
+ ω2 gcb

(
−ω−2 (∇aω)nc + ω−1∇a n

c
)

+ω2 gac

(
−ω−2 (∇b ω)nc + ω−1∇b n

c
)

= nc (2 gab∇c ω − gcb∇a ω − gac∇b ω) + ω£n gab (4.15)

Requiring that na be a Killing vector field and solving for ω gives

nc (2 gab∇c ω − gcb∇a ω − gac∇b ω) = −2ω2Ω gab (4.16)

where 2Ω = gab∇a∇b Ω is the d’Alembertian. Using the inverse of the metric tensor gives

nc
(
2δa

a∇cω − δa
c∇aω − δb

c∇bω
)

= −ω2
s
2Ωδa

a (4.17)

nc (2n∇cω −∇cω −∇cω) = −2ω2Ω (4.18)

nc∇c lnω =
−1
s− 1

2Ω (4.19)

So ω is the solution to the ordinary differential equation (4.19) along each integral curve

na.
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In summary, given an asymptotically flat spacetime satisfying the original Geroch

conditions, one can construct a second conformal transformation so as to ensure a Killing

vector field, £ngab = 0.
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5 KILLING VECTORS AND CONFORMAL TRANSFORMATIONS

The examples in Chapter 3 used the pullback method to produce a well-defined

covariant derivative operator on the null surfaces Σ = {u = 0}. It was shown that the

pullback method works provided the Christoffel symbols of the form Γu
ab, except Γu

au,

vanish. Geroch, on the other hand, requires the Lie derivative on the unphysical manifold

satisfy a “divergence free” condition, £nqab = 0. If this condition is not satisfied, a second

conformal transformation can be introduced to obtain a divergence free manifold. In this

chapter, the necessary Lie derivative will be computed for several examples to verify that

Geroch’s conditions hold. Finally, sufficient conditions on a null-surface, Σ = {u = 0}, will

be derived for the existence of a well-defined derivativeD on Σ. This result will be shown to

be equivalent to Geroch’s conditions without needing to introduce a non-physical manifold

by “attaching” a null surface to the physical manifold using the conformal transformation

Ω = ∇au.

5.1 Lie Derivative

Recall from equation (4.12) that the Lie derivative of the metric tensor is given by

£ngab = nc∇cgab + gcb∇an
c + gac∇bn

c (5.1)

where £ngab is an (0, 2) tensor. For a metric-compatible derivative operator, equation

(5.1) reduces to

£n gab = gcb∇a n
c + gac∇b n

c = ∇a (gcbn
c) +∇b (gacn

c) = ∇a nb +∇b na. (5.2)

Notice that in (5.1), n is a normal vector of the form nc while in (5.2) the right-hand

side of the equation is taking a derivative of 1-forms, nb = gbc n
c. For a null surface with
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nb = δu
b ,

∇a nb = ∇a δ
u
b = ∂a δ

u
b − Γc

ab δ
u
b = −Γu

ab. (5.3)

The symmetry of the Christoffel symbols implies ∇a nb = ∇b na. The Lie derivative (5.2)

can now be simplified to

£n gab = 2∇a nb = −2 Γu
ab. (5.4)

To find the Lie derivative on the surface Σ, use the pullback to get

£n qab = £n gab←−−−−
= 2∇a nb←−−−−. (5.5)

In coordinates, the 1-form nb is du and the coefficient of the ijth−component of

£n g is

(£n g)ij = −2 Γu
ij . (5.6)

The full tensor notation for the Lie derivative of the metric is then

£n g = −2Γu
ij dx

i dxj (5.7)

5.1.1 Lie Derivative under Conformal Transformations

If the normal vector, na, is changed under the transformation to na = ω−1na and

gab = ω2gab, the calculation of £ngab will also be different.

Using equation (4.12) to calculate the Lie derivative of the metric gives:

£n gab = ω−1 nc∇c (ω2 gab) + ω2 gcb∇a

(
ω−1 nc

)
+ ω2 gac∇b

(
ω−1 nc

)
= ω−1 nc

(
2ω (∇c ω) gab + ω2∇c gab

)
+ ω2 gcb

(
−ω−2 (∇a ω)nc + ω−1∇a n

c
)

+ω2 gac

(
−ω−2 (∇b ω)nc + ω−1∇b n

c
)

= nc (2(∇c ω) gab − gcb∇a ω − gac∇b ω) + ω (nc∇c gab + gcb∇a n
c + gac∇b n

c)

= nc (2(∇c ω) gab − gcb∇a ω − gac∇b ω) + ω£n gab (5.8)

From the previous examples, it appears that if the pullback of the Lie derivative of

the metric is zero, the pullback of ∇ gives a well-defined derivative, D, on Σ. The null
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cone did not satisfy this property, but a conformal transformation was used to get the

Lie derivative to vanish. The choice of ω = 1/r was given without justification. The next

section will provide the conditions and equation for finding ω.

5.2 Killing Vectors and Well-Defined Covariant Derivative

Recall that a vector field va is Killing if £v gab = 0. Given a null surface, Σ = {u = 0},

the first theorem shows that if the vector na is Killing, then there is a well defined covari-

ant derivative on Σ. The second theorem will give a condition on Σ such that a conformal

transformation exists, after which the Killing condition is satisfied. A consequence of the

proof will be an expression which can be used to compute ω. Together, the two theo-

rems provide the conditions and techniques to define a covariant derivative operator on

some null hypersurfaces. It should be pointed out that the following results are found in

Geroch [1], but are not there applied to the covariant derivative.

5.2.1 Killing Null Vector

Theorem 5.1 (Covariant Derivative on Σ). If £nqab = 0 on a null surface Σ, then the

connection defined by the pullback is well-defined.

Proof. Let na be a null 1-form and let wb be any 1-form on the surface Σ. We would like

to define a covariant derivative using the pullback, Dawb = ∇aWb←−−−−, where Wb is a 1-form

such that Wb←− = wb, but we must show that this is well defined.

On Σ = {u = 0}, nb is given in coordinates by du and du←− = 0 on Σ. In abstract

index notation nb←− = 0. Let Vb be a 1-form given by Vb = Wb+k nb where k is any function.

Vb has the same pullback as Wb,

Vb←− = Wb←−+ k nb←−− = wb + 0. (5.9)

Since Vb and Wb are identical on Σ, a well defined derivative operator must satisfy
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∇a (Vb −Wb)←−−−−−−−−−
= 0. Consider the pullback of the derivative of Vb −Wb,

∇a (Vb −Wb)←−−−−−−−−−
= ∇a (k nb)←−−−−−−
=

(
∇a k←−−

)
nb←−+ k←−

(
∇a nb←−−−

)
=

(
∇a k←−−

)
0 + k|u=0

(
∇a nb←−−−

)
= k|u=0

(
∇a nb←−−−

)
(5.10)

Since k is an arbitrary function, a well-defined covariant derivative must require∇a nb←−−− = 0.

Recall from Equation (4.12) using metric compatibility and defining £nqab = £ngab←−−−
,

£nqab =
(
nc∇cgab←−−−−−

+ gcb∇an
c

←−−−−−
+ gac∇bn

c

←−−−−−

)
=

(
0 +∇anb←−−−+∇bna←−−−

)
(5.11)

Now if ∇a nb←−−− = 0, as required for a well-defined connection, then £nqab = 0. Thus, if

£nqab = 0, a well defined covariant derivative can be defined on the null surface Σ by

D = ∇←−.

5.2.2 Conformal Killing Vector

Theorem 5.2 (Conformal Killing Vector). If £nqab = f qab, then there exists a unique

conformal factor ω, up to a constant function, such that £nqab = 0.

Proof. For conformal transformation given by na = ω−1na and gab = ω2gab the Lie deriv-

ative of the metric is given in (5.8) is

£n gab = nc (2(∇c ω) gab − gcb∇a ω − gac∇b ω) + ω£n gab. (5.12)

Pull the Lie derivative of the metric back to Σ with £n qab = 0 and £n qab = f qab to get

nc (2(∇cω) qab − qcb∇a ω − qac∇b ω) = −ωf qab (5.13)

2(nc∇cω) qab − (qcb nc) ∇a ω − (qac n
c) ∇b ω = −ω f qab (5.14)

2(nc∇c ω) qab − nb∇a ω − na∇b ω = −ω f qab (5.15)
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On the null surface na = qac n
c = 0, leaving only

2(nc∇c)ωqab = −ω f qab. (5.16)

Letting ω̇ = nc∇c ω the equation simplifies to

ω̇

ω
= −f

2
(5.17)

This ordinary differential equation will have a unique solution, up to a constant function,

yielding an ω such that the conformal transformation will result in £nqab = 0.

5.3 Well-Defined Covariant Derivative via Pullback

In combination, the two theorems above use the Lie derivative to determine if and

when the pullback method will give a well defined covariant derivative on the null-surface

using the pullback.

5.3.1 First Result

Theorem 5.3 (Covariant Derivative on Σ with conformal transformation). If £nqab = f qab

on a null surface Σ, then the pullback method produces a well defined covariant derivative,

D, on Σ.

Proof. Since £nqab = f qab, Theorem 5.2 gives an ω such that under the conformal trans-

formation £nqab = 0. Now by Theorem 5.1, define the covariant derivative by D = ∇←−.

5.4 The Examples and the Lie Derivative

Up to this point, the examples have been used to motivate the technique of using

the pullback to define a covariant derivative on the null surfaces. Here we revisit the

examples to show they satisfy the hypotheses of our theorem as well as the differential

equation (4.19) for the conformal factor, ω.
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5.4.1 Plane in M4

From 3.3.1 the covariant derivative in rectangular coordinates on M4 was shown to

be ∇awb = ∂awb. The Minkowski plane was defined by Σ = {t = z}. Letting u = t−z = 0

and du = dt − dz gives ∇Xi du = ∇Xi (dt − dz) = 0. The Lie derivative of the metric is

then £ngab = 0. Pulling this result back to the plane yields £n qab = £n gab←−−−−
= 0. Notice

the Lie derivative on the plane satisfies the Geroch condition needed to give a well-defined

derivative on the Minkowski plane, Da = ∂a.

5.4.2 Plane in M4 with null coordinates

Using null coordinates on M4, 3.3.7 showed the covariant derivative is∇awb = ∂awb.

On the plane, Σ = {u = 0}, ∇Xi du = 0. The Lie derivative of the metric is again

£n gab = 0. Pulling back to the plane gives £n qab = £n gab←−−−−
= 0. The Geroch condition for

a well-defined derivative is satisfied and as previously shown Da = ∂a on the null plane.

5.4.3 Cone in M4

For the cone in M4, the normal vector is given by du = d(r − t) = dr − dt. Now

we need to compute the derivatives ∇X (dr) and ∇X (dt) on M4 and then pull the result

back to the cone.

Recalling the Christoffel symbols from 3.3.8,

Γθ
rθ =

1
r
, Γr

θθ = −r

Γθ
φφ = − sin θ cos θ, Γr

φφ = −r sin2 θ

Γφ
rφ =

1
r
, Γφ

θφ = cot θ.

For the Lie Derivative, £n gab, only the ∇Xj (dt) and ∇Xj (dr) need be considered:

∇Xj (dt) = Γt
ij dx

i = 0∀i, j (5.18)

∇Θ (dr) = Γr
θθ dθ = −r dθ (5.19)

∇Φ (dr) = Γr
φφ dφ = −r sin2 θ dφ. (5.20)
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The only nonzero components of £n g are,

(£n g)θθ = −2Γr
θθ = 2r (5.21)

(£n g)φφ = −2Γr
φφ = 2r sin2 θ. (5.22)

Pulling the Lie derivative back to the cone gives,

£n q =


0 0 0

0 2r 0

0 0 2r sin2(θ)

 =
2
r


0 0 0

0 r2 0

0 0 r2 sin2(θ)

 =
2
r
q (5.23)

Clearly £nqab 6= 0, but the Lie derivative is proportional to q, £n qab = (2/r) qab.

5.4.4 Cone in M4 with null coordinates

Using null coordinates on M4, recall the Christoffel symbols from 6.3.2 are

Γθ
uθ =

−1
v − u

Γθ
vθ =

1
v − u

Γθ
φφ = − sin θ cos θ

Γφ
uφ =

−1
v − u

Γφ
vφ =

1
v − u

Γφ
θφ = cot θ

Γv
θθ =

−(v − u)
2

Γv
φφ =

−(v − u)
2

sin2 θ

Γu
θθ =

v − u
2

Γu
φφ =

v − u
2

sin2 θ

The components of £ngab come only from ∇Xdu which has two nonzero components:

∇Θ du = −Γu
θθ dθ =

v − u
2

dθ (5.24)

∇Φ du = −Γu
φφ dφ =

v − u
2

sin2 θ dφ (5.25)

The only nonzero components of £n g are,

(£n g)θθ = −2Γu
θθ = (v − u) (5.26)

(£n g)φφ = −2Γu
φφ = (v − u) sin2 θ. (5.27)
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Pulling the Lie derivative back to the cone, u = 0, gives

£n q =


0 0 0

0 v 0

0 0 v sin2(θ)

 =
2
v


0 0 0

0 v2/2 0

0 0 (v2/2) sin2(θ)

 =
2
v
q (5.28)

Again £nqab 6= 0, but the Lie derivative is proportional to q, £n qab = (4/v) qab. Recall

for null coordinates r = (v − u)/2, so on the null cone, u = 0 and r = v/2 which is the

same constant of proportionality for the Lie derivative in 5.4.3.

5.4.5 Conformal Factor for the Null Cone

The Lie derivative of the metric for the null cone was shown to be £n qab = (2/v) qab.

Substituting f = 2/v into (5.17) gives the ordinary differential equation

ω̇

ω
= −1

v
. (5.29)

In null coordinates ω̇ = nc∇c ω = ∂ω/∂ v giving

1
ω

∂ω

∂ v
= −1

v
. (5.30)

Integrating with respect to v gives

ln ω = − ln v + c = ln
1
v

+ c. (5.31)

Solving for ω gives ω = C (1/v) where C = ec. In the original example 3.3.12 the conformal

transformation was ω = 1/r applied to first M4 and then the results were pulled back to

Σ. As pointed out earlier on Σ, 1/r is evaluated at u = 0 giving

(1/r)|u=0 = (2/(v − u))|u=0 = 2/v. (5.32)

Letting C = 2 gives the conformal factor, ω = 2/v which was used in the examples.
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5.4.6 Conformal transformation on null cone in M4

Lastly consider the Lie Derivative for the null cone after the conformal transforma-

tion, ω = 1/r where gab = ω2gab. Recall from 3.3.12 the Christoffel symbols under that

conformal transformation are

Γθ
φφ = − sin θ cos θ, Γφ

θφ = cot θ, (5.33)

Γv
vv =

−2
v − u

, Γu
uu =

2
v − u

. (5.34)

The components of £ngab come only from ∇U du which has just one nonzero component:

∇U du = −Γu
uu du = − 2

v − u
du (5.35)

leaving the only nonzero component of £ngab,

(£n g)uu = −2Γu
uu = − 4

v − u
(5.36)

The tensor notation for the Lie derivative is just £n g = − 4
v − u

du du. Pulling this

result back to Σ with du←− = 0 yields £n q = 0. While the null cone did not satisfy the

Geroch condition for a well-defined covariant derivative, the null cone with conformal

transformation does satisfies the Geroch condition and the covariant derivative D can be

defined by the pullback as in 3.3.12.

5.4.7 Lie Derivative conclusions

In the Minkowski space examples, the Lie derivative of the metric on Σ vanished

for both the null plane and the conformal null cone where the covariant derivative D was

well defined using the pullback. In both cases where the Lie Derivative of the metric did

not vanish, the pullback method for the covariant derivative failed. In the case of the null

cone, a conformal transformation produced the desired Lie derivative conditions and the

choice of the conformal factor ω = 1/r was shown to satisfy (4.19).
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6 RICCI TENSOR AND COVARIANT DERIVATIVE

6.1 Conformal Pullback and Geroch

The techniques from Geroch have addressed the fundamental question: What are

the conditions on a null surface needed to construct a well-defined covariant derivative?

Either a Killing normal vector, £nqab = 0, or £nqab = f qab, a conformal Killing vector,

combined with a conformal transformation gives a well-defined covariant derivative on a

null surface Σ using the pullback method.

One of the drawbacks of this method to define D is that the Lie derivative of the

metric must first be computed on M and then pulled back to Σ to test the hypotheses

of the theorems. If the hypotheses are met, we return to M , compute ∇, then pull this

derivative back to Σ, giving D. If the hypotheses are not met, there is the additional

conformal transformation step that is required before ∇ can be pulled back to Σ. It would

be nice if there was a test to tell if the pullback led to a well-defined covariant derivative

on Σ and if a conformal transformation is required before pulling the ∇ back to Σ. Again

the work of Geroch has pointed to exactly such a check, as explained in the following

section.

6.2 Ricci Tensor and Covariant Derivative

In Chapter 4, an equation for the Ricci tensor under a conformal transformation

was given in equation (4.10). For Ω a smooth, strictly positive conformal factor, and with

metric g̃ab = Ω−2gab, the Ricci tensor is expressed in terms of the Lie derivative of the

metric as well as Ω and g in equation (4.14). This is significant since the Lie derivative

of the metric is the primary indicator of when the pullback method will provide a well-
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defined covariant derivative. This result will provide another test to determine when a

well-defined derivative operator can be defined on a null hypersurface.

While the computations will be the same as Geroch, it should be pointed out that

we are able to start with a metric gab, a null surface Σ = {u = 0} and Ω defined by Ω = u.

In the sense of Geroch, we were creating an artificial “physical” space (M̃, g̃ab) in order to

determine if the pullback method will result in a well-defined covariant derivative. In the

Geroch approach, the boundary at null infinity was separated from M̃ by the conformal

transformation in order to define some structure of the null surface. The following ap-

proach begins with the null surface and uses the “physical” space to define the covariant

derivative.

6.2.1 Second Result

Theorem 6.1 (Ricci Tensor and Covariant Derivative on Σ). Given a manifold (M, gab)

with invertible metric with Lorentzian signature, a null surface defined by Σ = {u = 0},

and a conformal transformation g̃ab = Ω−2 gab where Ω = u. If Ω
(
Rab − R̃ab

)
←−−−−−−−−−−

= k qab ,

where Rab and R̃ab are the Ricci tensors from gab and g̃ab respectively, then the pullback

gives a well-defined connection on Σ.

Proof. From (4.14)

Ω R̃ab = ΩRab +
s− 2

2
£ngab + gab∇m∇mΩ

−s− 1
Ω

gab(∇mΩ)(∇mΩ). (6.1)

Setting Ω = u gives gab(∇mΩ)(∇mΩ) = 0. Solving for £ngab gives

£ngab =
−2
s− 2

(
Ω (Rab − R̃ab) + gab∇m∇mΩ

)
(6.2)

Lastly, we must pull this result back to our surface Σ. If Ω (Rab − R̃ab)←−−−−−−−−−
= k qab for some



56

function k, then £nqab is

£nqab = £ngab←−−−
=

2
n− 2

(k + (∇m∇mΩ)|u=0) qab (6.3)

With Ω = u and Ω (Rab − R̃ab)←−−−−−−−−−
= k qab, Theorem 5.3 therefore implies there is a covariant

derivative D on Σ.

6.3 Examples Revisited

Even though a connection has been shown to exist for the null plane and null cone,

the examples will be revisited once again to verify the results of the previous theorem. In

order to calculate the Ricci tensor, one must first compute the Riemann curvature tensor

Ra
bcd =

∂Γa
bd

∂xc
− ∂Γa

bc

∂xd
+ Γa

ck Γk
bd − Γa

dk Γk
bc. (6.4)

Now the Ricci Tensor is given by

Rab = Rl
alb =

∂Γl
ab

∂xl
− ∂Γl

al

∂xb
+ Γl

ab Γk
lk − Γl

ak Γk
bl. (6.5)

These tensors require a great deal of computation so Maple was again used to check the

tensors for all of the following examples.

6.3.1 Null Plane

Recall the line element for Minkowski space in rectangular null coordinates is

ds2 = −2du dv + dx2 + dy2

with metric

[gij ] =



0 −1 0 0

−1 0 0 0

0 0 1 0

0 0 0 1


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All of the Christoffel symbols are zero, so all the components of the Ricci tensor Rab are

also zero.

The null plane is defined by Σ = {u = 0}. Letting Ω = u, g̃ab = (1/u2)gab becomes

[g̃ij ] =



0 −1/u2 0 0

−1/u2 0 0 0

0 0 1/u2 0

0 0 0 1/u2


For this metric, the Christoffel symbols are not all zero, but all of the components of the

Ricci tensor are zero. Thus all the components of Rab − R̃ab are zero and the conditions

of Theorem 6.1 are satisfied trivially, Ω
(
Rab − R̃ab

)
←−−−−−−−−−−

= 0 qab.

6.3.2 Null Cone

The line element for Minkowski space in null spherical coordinates is

ds2 = −2du dv +
(v − u)2

2
dθ2 +

(v − u)2

2
sin2 θ dφ2

with metric

[gij ] =



0 −1 0 0

−1 0 0 0

0 0
(v − u)2

2
0

0 0 0
(v − u)2

2
sin2 θ


All the components of the Ricci tensor for this metric are zero.

As with the null plane, the null cone is defined by Σ = {u = 0}. Letting Ω = u,

g̃ab = (1/u2)gab becomes

[g̃ij ] =



0 −1/u2 0 0

−1/u2 0 0 0

0 0
(v − u)2

2u2
0

0 0 0
(v − u)2

2u2
sin2 θ


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For the conformal metric, the Ricci tensor is

[
R̃ij

]
=



0
2

(v − u)u
0 0

2
(v − u)u

0 0 0

0 0
−2(v − u)

u
0

0 0 0
−2(v − u)

u
sin2 θ


(6.6)

Now

Ω
(
Rab − R̃ab

)
= u

(
Rab − R̃ab

)
=



0
−2

(v − u)
0 0

−2
(v − u)

0 0 0

0 0 2(v − u) 0

0 0 0 2(v − u) sin2 θ


(6.7)

In the pullback, u = 0, giving

Ω
(
Rab − R̃ab

)
←−−−−−−−−−−

=


0 0 0

0 2v 0

0 0 2v sin2 θ

 =
8
v


0 0 0

0 v2/4 0

0 0 (v2/4) sin2 θ

 =
8
v
[qij ] (6.8)

Again the hypotheses of the theorem are satisfied, guaranteeing the existence of a connec-

tion using the conformal pullback method.
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7 FURTHER EXAMPLES

To this point, all of the examples were used to motivate the theorems. The following

examples use the techniques developed to define a covariant derivative on the null surface.

The first example is the horizon of the Schwarzshild geometry. The last example is a

generalization to all spherically symmetric spacetimes.

7.1 Horizon of Schwarzshild geometry

The Schwarzschield metric is given by the line element

ds2 = −
(

1− 2M
r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2 dθ2 + r2 sin2 θ dφ2.

Letting

T =
√( r

2M
− 1
)
er/4M sinh

(
t

4M

)
(7.1)

R =
√( r

2M
− 1
)
er/4M cosh

(
t

4M

)
(7.2)

(when r > 2M) the metric becomes

ds2 =
32M3

r
e−r/2M

(
−dT 2 + dR2

)
+ r2 dθ2 + r2 sin2 θ dφ2

To get null coordinates, the substitution

u = T −R (7.3)

v = T +R (7.4)

yields the Kruskal-Szekeres metric with line element

ds2 = −32M3

r
e−r/2M du dv + r2 dθ2 + r2 sin2 θ dφ2
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where r is given implicitly by

u v =
(
1− r

2M

)
er/2M . (7.5)

With a little work it can be shown that all the components of the Ricci tensor are

zero. Next, the Ricci tensor for the metric with conformal transformation g̃ab = Ω2 gab =

(1/u2) gab is computed. Since the difference Ω (Rab − R̃ab) is being pulled back to Σ, only

the R̃vv, R̃θθ, and R̃φφ components are needed. The resulting components are

R̃vv =Rvv = 0 (7.6)

R̃θθ =Rθθ +
r

M
(7.7)

R̃φφ =Rφφ +
r

M
sin2 θ (7.8)

Pulling the expression, Ω (Rab − R̃ab)←−−−−−−−−−
= u (Rab − R̃ab)←−−−−−−−−−

, back to Σ, all of the compo-

nents of the difference vanish to yield

Ω (Rab − R̃ab)←−−−−−−−−−
= 0 qab, (7.9)

trivially satisfying the necessary conditions of Theorem 6.1.

Now, letting ω = 1/r(u, v) the conformal metric gab = (1/r2) gab becomes

ds2 = −32M3

r3
e−r/2M du dv + dθ2 + sin2 θ dφ2.

The corresponding Christoffel symbols are

Γu
uu =−

(6M + r) ∂r
∂u

2M r
=
(

2M
r2

(6M + r) e−r/2M

)
v (7.10)

Γv
vv =−

(6M + r) ∂r
∂v

2M r
=
(

2M
r2

(6M + r) e−r/2M

)
u (7.11)

Γφ
θφ =cot θ (7.12)

Γθ
φφ =− sin θ cos θ (7.13)
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The only nonzero ∇a terms will be

∇u du =− Γu
uu du (7.14)

∇v dv =− Γv
vv dv (7.15)

∇φ dφ =− Γφ
θφ dθ (7.16)

∇φ dθ =− Γθ
φφ dφ (7.17)

Again, there are no difficulties in the pullback to Σ. This time, the first two terms

will vanish in the pullback with u = 0 and du←− = 0. The last two derivatives pull back with

u = 0 to define a covariant derivative D on Σ given by

Dφ dφ←−
= ∇φ dφ←−−−

=− cot θ dθ←− (7.18)

Dφ dθ←− = ∇φ dθ←−−−
=sin θ cos θ dφ

←−
(7.19)

7.2 Spherically Symmetric Spacetimes

Spherically symmetric space times can be written with the line element

ds2 = h du dv + r2 dθ2 + r2 sin2 θ dφ2

where h and r are both functions of the null coordinates u and v. The corresponding

metric is given by

[gij ] =



0 h(u, v)/2 0 0

h(u, v)/2 0 0 0

0 0 r2(u, v) 0

0 0 0 r2(u, v) sin2 θ


As in previous examples, the null surface is defined by Σ = {u = 0}. Unlike the

previous examples, the Ricci tensor will be calculated first. The nonzero components are
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Ruu = −
2
(
h ∂2r

∂u2 − ∂h
∂u

∂r
∂u

)
h r

(7.20)

Ruv =
r ∂h

∂u
∂h
∂v − h r

∂2h
∂v ∂u − 2h2 ∂2r

∂v ∂u

h2 r
(7.21)

Rvv = −
2
(
h ∂2r

∂v2 − ∂h
∂v

∂r
∂v

)
h r

(7.22)

Rθθ = −
4 r ∂2r

∂v ∂u − h+ 4 ∂r
∂v

∂r
∂u

h
(7.23)

Rφφ = −

(
4 r ∂2r

∂v ∂u − h+ 4 ∂r
∂v

∂r
∂u

)
sin2 θ

h
(7.24)

With Ω = u the metric g̃ab is given by

[g̃ij ] =
[
(1/u2) gij

]
=



0 h(u, v)/(2u2) 0 0

h(u, v)/(2u2) 0 0 0

0 0 r2(u, v)/u2 0

0 0 0 (r2(u, v) sin2 θ)/u2


Here the Ricci tensor has nonzero components

R̃uu =
2
(
−uh ∂2r

∂u2 − r ∂h
∂u + u ∂h

∂u
∂r
∂u

)
uh r

(7.25)

R̃uv =
u r ∂h

∂u
∂h
∂v − uh r

∂2h
∂v ∂u + 2h2 ∂r

∂v − 2u h2 ∂2r
∂v ∂u

uh2 r
(7.26)

R̃vv =−
2
(
h ∂2r

∂v2 − ∂h
∂v

∂r
∂v

)
h r

(7.27)

R̃θθ =−
4u r ∂2r

∂v ∂u − uh+ 4u ∂r
∂v

∂r
∂u − 8 r ∂r

∂v

uh
(7.28)

R̃φφ =−

(
4u r ∂2r

∂v ∂u − uh+ 4u ∂r
∂v

∂r
∂u − 8 r ∂r

∂v

)
sin2 θ

u h
(7.29)

To compute the pullback of Ω(Rab−R̃ab) = u (Rab−R̃ab) only the Rvv, Rθθ and Rφφ

components are needed since all other components vanish on Σ = {u = 0}.
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u(Rvv − R̃vv) =0 (7.30)

u(Rθθ − R̃θθ) =
−8 r ∂r

∂v

h
=

(
−8 ∂r

∂v

r h

)
r2 (7.31)

u(Rφφ − R̃φφ) =
−8 r ∂r

∂v

h
sin2 θ =

(
−8 ∂r

∂v

r h

)
r2 sin2 θ (7.32)

Evaluating the difference on Σ = {u = 0} yields

Ω(Rab − R̃ab)←−−−−−−−−−
=

(
−8 ∂r

∂v

r(0, v)h(0, v)

)
qab (7.33)

where

[qij ] =


0 0 0

0 r2(0, v) 0

0 0 r2(0, v) sin2 θ


Thus the conditions of Theorem 6.1 are satisfied, and the conformal transformation

g̃ab = (1/Ω2) gab should lead to £ñq̃ab = f q̃ab. More importantly, the conformal transfor-

mation gab = (ω2) gab with ω = r(u, v) will yield £nqab = 0, the condition needed to use

the pullback to produce a well-defined covariant derivative on Σ = {u = 0}.

With the conformal transformation, the new metric for the spherically symmetric

space time is

[
gij

]
=



0 h(u, v)/(2 r2(u, v)) 0 0

h(u, v)/(2 r2(u, v)) 0 0 0

0 0 1 0

0 0 0 sin2 θ


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The corresponding Christoffel symbols are

Γu
uu =−

2h ∂r
∂u + r ∂h

∂u

r h
(7.34)

Γv
vv =−

2h ∂r
∂v + r ∂h

∂v

r h
(7.35)

Γφ
θφ =cot θ (7.36)

Γθ
φφ =− sin θ cos θ (7.37)

The only nonzero ∇a terms will be

∇u du =− Γu
uu du (7.38)

∇v dv =− Γv
vv dv (7.39)

∇φ dφ =− Γφ
θφ dθ (7.40)

∇φ dθ =− Γθ
φφ dφ (7.41)

As with the earlier examples, there are no difficulties in pulling the components of

∇ back to Σ = {u = 0}. The first term will vanish in the pullback with u = 0 and du←− = 0.

The last three derivatives pull back with u = 0 to define a covariant derivative D on Σ

given by

Dv dv←− = ∇v dv←−−− =−

(
2h ∂r

∂v + r ∂h
∂v

r h

)∣∣∣∣∣
u=0

dv←− (7.42)

Dφ dφ←−
= ∇φ dφ←−−−

=− cot θ dθ←− (7.43)

Dφ dθ←− = ∇φ dθ←−−−
=sin θ cos θ dφ

←−
(7.44)
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8 DISCUSSION AND CONCLUSIONS

8.1 Overview

The first portion of this dissertation, Chapter 2, discussed the need for an alternate

method to define a covariant derivative on a null hypersurface. Due to the degenerate

metric on the null submanifold, traditional decomposition methods are not possible. The

work of Duggal provided a framework for constructing a covariant derivative defined sim-

ilarly to the traditional Gauss formula, but depending on the choice of decomposition. It

was shown that the null cone did not satisfy the conditions necessary for the resulting

derivative operator to be independent of the chosen decomposition.

In Chapter 3, a sequence of examples were presented to motivate a technique using

the pullback to define a covariant derivative on a null hypersurfaces. Through these

examples, it was shown that care must be taken to ensure the derivative is well defined.

This technique, motivated by Geroch’s work with asymptotically flat spacetimes, led to the

use of conformal transformations to eliminate the possible ambiguities in the derivative.

Chapter 4 provided a summary of Geroch’s use of conformal transformations to study the

boundary of asymptotically flat spacetimes as well as to produce normal vectors that are

Killing.

Chapter 5, outlined a pullback technique similar to that of Geroch and provided

conditions when a further conformal transformation is needed to arrive at a well-defined

connection. An equation for the conformal factor was provided.

Chapter 6 gave a test to see if the conformal pullback method will result in a

connection on the null hypersurface. This result allowed one to take a limit of the difference

of two Ricci tensors to test whether the conformal pullback method will work. The

conformal factor could now be checked in the equation from the first result.
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Finally, the conformal pullback method was shown to work for the horizon of the

Schwarzshild geometry and then generalized to all spherically symmetric spacetimes. It

would be interesting to test this method on other null hypersurfaces. In particular it

would be nice to find the set of all null hypersurfaces where the pullback method produces

a well-defined covariant derivative.

8.2 Summary

Due to the degenerate metric, working with null surfaces offers some very challeng-

ing obstacles. Traditional tools such as Christoffel symbols are not defined due to the

degenerate metric. The Gauss decomposition fails, since there is a non-zero null vector

that is in the hypersurface itself. The work of Duggal and Benjacu attempts to overcome

this difficulty by defining a screen manifold and a lightlike transversal vector bundle to

decompose the manifold and the null hypersurface. Even with all of this structure, it was

demonstrated that the null cone still does not satisfy the hypotheses necessary to produce

a covariant derivative independent of the screen.

A technique using the pullback of 1−forms instead of vectors to define the covariant

derivative was developed. Care must be taken when using this technique, since pulling

forms back to the null surface can result in derivative operators that are not well defined.

Upon closer inspection, it was shown that this technique will work as long as the null

vector field is a Killing vector field.

Motivated by the work of Geroch on asymptotically flat spacetimes, conformal trans-

formations were used not only to give a well-defined derivative on null hypersurfaces, but

also to provide a test to determine whether the null surface admits such a definition. An

equation for the necessary conformal transformation was presented. This method was ex-

tended by giving a test using the Ricci tensor to determine whether the conformal pullback
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method will give a covariant derivative on a given null hypersurface.

8.3 Summary of Theorems

This dissertation gives a procedure for defining a connection on a null hypersurface.

Given a Lorentzian manifold (M, gab), a null hypersurface given by (Σ = {u = 0}, qab)

and satisfying Ω
(
Rab − R̃ab

)
←−−−−−−−−−−

= k qab has a well-defined covariant derivative given by the

conformal pullback method, which can be constructed by the following procedure:

Theorem 6.1: If Ω
(
Rab − R̃ab

)
←−−−−−−−−−−

= k qab where Ω = u, then there exists an f such that

£nqab = f qab.

Theorem 5.2: If £nqab = f qab, then there is a conformal transformation gab = ω2 gab such

that £nqab = 0

Theorem 5.1: If £nqab = 0, the connection on Σ given by Da = ∇a←− is well defined.

8.4 Future Work, Further Questions

What information do the covariant derivatives constructed here provide for null

hypersurfaces? What are the implications of using ∇ defined via a conformal transforma-

tion? In the case of the null cone, the conformal transformation results in a null cylinder.

What does it mean to use ∇cyl on the cone?

All of the examples considered here are axially symmetric. Are there examples of

non-symmetric null surfaces on which this construction works? One such class of examples

to be investigated are Einstein metrics.

Is there a similar technique for Riemannian spaces? Since the traditional Gauss

decomposition works, this technique is not really needed. Furthermore, it is not clear if

there even exist analogous conditions, since n is not null. But, suppose there exists a
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conformal factor ω leading to a Killing vector field, what would ∇ mean in that case?
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