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Species’ distributions across the landscape are perhaps the least understood yet 

most conspicuous features of life on earth. Ecologists have long studied species’ 

distributions; yet, many questions remain about why species occur where they do. Such 

questions persist largely because species’ distributions are complex systems with 

challenging properties like non-linearity, high dimensionality, and strong interactions. One 

impediment to our understanding of species’ distributions is the use of standard 

quantitative approaches, which have limitations when applied to data from complex 

systems. The objective of this work is to develop tools that can be used to improve our 

understanding of natural complexity, in particular, factors relating to species’ distributions 

at large scales. Our study systems are tree species’ distribution from Forest Inventory 

Analysis (FIA) sites across the Pacific coastal USA. 

 Ecological thresholds are an example of complex system behavior. While an 

ecological threshold is a widely accepted concept, most empirical methods have not 

quantified the direct drivers of thresholds. Causal understanding of thresholds detected 



 
 

 
 

empirically requires their investigation in a multi-factor domain containing the direct 

drivers (often referred to as state space). This work develops an approach to quantify 

thresholds from response surfaces in three-dimensional state space. Two new indices of 

shape attributes are measured from response surfaces: threshold strength and diagonality.  

Our ability to describe and probe the basis of species’ distributions depends on the 

quality of our data. The most extensive and thorough field data set on tree species in North 

America is provided by the FIA program. Because the FIA inventory recently changed 

from an amalgam of different sampling approaches to a nationally-standardized approach 

in 2000, the two types of inventories represent different probabilities of detecting trees per 

sample unit. The application of non-parametric multiplicative regression to build and 

compare niche models for 41 tree species from the old and new FIA design shows two 

likely effects of differences in inventory approach on niche models and their predictions. 

First, there is an increase from 4 to 6% in random error; this increase is noted for modeled 

predictions from the different inventories when compared to modeled predictions from 

two samples of the same inventory. Second, systematic error (or directional disagreement 

among modeled predictions) is detectable for 4 out of 41 species among the different 

inventories.  

Models of tree species’ distributions rarely incorporate historical extremes in 

climate as predictors. I examine this by pitting climate means versus climate extremes to 

determine species probability of occurrence by life stage. Interactions between climatic 

oscillations are characterized in a new way to define climate extremes and make them 

computationally tractable as predictors of species’ distributions. Results indicate that 27% 

of the models across 22 species and seven climate variables show a climate extreme 

explaining more variability than the climate mean. Extremes associated with freeze-thaw 

events, seasonality of precipitation, and winter minimum temperature are most frequently 

represented.  

Overall, this study contributes statistical approaches tailored for use with complex 

data and provides insights into species’ distributions of trees across the Pacific coastal 

USA. In particular, this study advances the detection and measurement of thresholds in 



 
 

 
 

response surfaces, the evaluation of the consequences of a major change in sampling and 

measurement methodology, and the relationship of both climatic extremes and means to 

species’ distributions. 
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Ecological Thresholds, Climate Extremes, and Tree Species’ Distributions  
across the Pacific Coastal United States 

 
 

Chapter 1. Introduction 
 

“Progress in science depends on new techniques, new discoveries and new ideas, 
probably in that order.” 
Sydney Brenner, 2002 

 
 

The field of ecology addresses the most complex natural systems on Earth. 

Ecological systems exhibit complex interactions, hierarchical relations, and emergent 

non-linear behavior like thresholds (Holling 1973, Allen and Starr 1998, Jørgensen et al. 

1992, Maurer 1998). The study of complex systems bridges mathematics, statistics, 

computer science, and disciplines dealing with complex system behavior like ecology 

(Érdi 2008). Although there is a strong sub-discipline of ecology devoted to systems 

study (e.g. Jørgensen et al. 1992, Odum 1971), and another to statistical methodology 

(e.g. Elith et al. 2006, Oksanen and Minchin 2002), many aspects of the science of 

complex systems have yet to find home in ecological thought and methodology. Thus, it 

is not surprising that identification of underlying theory in ecology is still challenged by 

analytical constraints (Weng et al. 1999, Taylor 2005). Development of quantitative tools 

that are tractable with principles from complex systems are needed to make headway 

with complex ecological phenomena. Computer intensive statistical methods or data 

mining approaches are a starting point for statistical questions that embrace complexity 

(Efron and Tibshirani 1991). Examples of questions that incorporate ecological 

complexity include: what drives species’ occurrence on the landscape, and how will 

species’ occurrence respond to climate change?  

To date, understanding of species’ distributions is based on an important concept 

in ecology: the species’ niche. The relationship between a species and its habitat is part of 

an ‘n-dimensional hypervolume’ or species’ niche that describes conditions where a 
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species can persist (Hutchinson 1957). The niche concept follows a long history in 

ecology (e.g. Grinnell 1917, Gause 1934, Hutchinson 1957, MacArthur 1972, Austin et 

al. 1990). Contemporary niche models have widespread and diverse use including: 

species’ conservation (e.g. Hannah et al. 2002, Marini et al. 2009), species’ re-

introduction (Yanez and Floater 2000), species’ migration and invasion (e.g. Woodall et 

al. 2009b, Crossman and Cooke 2011, Peterson 2003, Thuiller et al. 2004), biodiversity 

conservation (e.g. Thuiller et al. 2005, Crossman and Cooke 2011), specimen collection 

(e.g. Jarvis et al. 2005, Raxworthy et al. 2003), the discovery of new species (Raxworthy 

et al. 2003), and predicting species’ response to climate change (e.g. Peterson et al. 2002, 

Shafer et al. 2001, Rehfeldt et al. 2006). Niche models are also used for basic research 

that targets causal understanding related to topics such as speciation (e.g. Graham et al. 

2004; Peterson et al. 1999), species’ co-occurrence (e.g. Kelly et al. 2008), species’ 

distributions (e.g. Engelbrecht et al. 2007, Svenning and Skov 2004), and molecular 

diversity (e.g. Hugall et al. 2002).  

Most niche models rely on statistical relationships. Apart from the works 

described above, a smaller subset of approaches merge different statistical relationships 

(often at a finer physiological scale) using equations that are applied sequentially in time 

(e.g. Chuine and Beaubien 2001, Landsberg and Waring 1997). These are known in 

ecology as dynamic models and they are used for various purposes including forecasting. 

There are varying opinions over the relative advantages and pitfalls of dynamic modeling 

versus purely empirical modeling. The bottom line is that both approaches are needed to 

make headway with the complexity of species niches, and there is ample room for 

improvement in both approaches. This thesis examines top-down, empirical statistics in 

niche modeling. It focuses on improving our understanding of natural complexity and 

species’ distributions by improving our toolsets to evaluate emergent pattern at the scale 

it is produced.    

The need for methodological improvements in niche modeling has been identified 

over the past decade (e.g. Elith et al. 2006, Guisan and Zimmerman 2000, Araújo and 

Guisan et al. 2006, Hampe 2004, Austin 2002).  Chapters herein tackle a subset of 
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methodological issues from the viewpoint that challenges associated with method 

development come from the complexity of nature and its related statistical properties. 

These properties can manifest themselves in the shape of a response surface. These 

properties can also manifest themselves in a more complex way through interactions 

occurring at different scales in space and time. One major challenge for this thesis is that 

adequate representation of response surfaces using a statistical model has not been widely 

addressed for a species’ niche. The main questions driving my work are thus: How can 

we better characterize emergent behavior and interactions coming from complex systems 

through statistical modeling? How can we better capture the “true” shape of an empirical 

response given the potential complexity of underlying interactions and resulting non-

linearity? How do current tools stack up in this regard? How can we characterize 

complex interactions occurring in space and time that affect a species’ niche? How might 

new analytical approaches open doors to advancing ecological theory? I believe answers 

to these questions can change the trajectory of our discipline to one more directed toward 

complex systems research. Answers to these questions can also increase our 

understanding of emergent ecological phenomena and help move ecology toward a more 

predictive science. In addition to addressing the above questions, this dissertation 

examines a related issue associated with data integration for the species data that I use in 

each chapter, data from the U.S.D.A. Forest Inventory and Analysis Program.  

Chapter 2 develops a method to quantify thresholds with respect to more than one 

driver in state space (or the space containing thresholds responses and their direct 

drivers). Prior to this research, no method was available to quantify thresholds with 

respect to more than a single driver.  The first step involves testing different data mining 

methods with respect to how well they capture the shape of the underlying data structure. 

This serves as preliminary work toward developing two new indices. The indices 

demonstrate how to answer mechanistic questions related to ecological thresholds using 

emergent properties of response surfaces, namely shape attributes.  

Chapter 3 examines the statistical effect of a massive overhaul in a forest 

inventory. The overhaul occurred in the year 2000 for the Forest Inventory and Analysis 
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program (FIA). Data from FIA represent the largest data set of in situ forest monitoring in 

North America. Data on tree presence/absence date back several decades. Although the 

data are ripe for trend detection, the change in inventory type can confound trends among 

measurements made before and after the year 2000. Here, I ask whether the change in 

inventory affected niche models for tree species across the western United States. A new 

method in niche modeling was used for this work, Non-parametric Multiplicative 

Regression (NPMR) (McCune 2006). NPMR represents the nature of organismal 

response to multiple interacting factors (McCune 2006). This method was also tested in 

Chapter 2.  

Chapter 4 explores if there is current evidence to support climate extremes 

explaining more variability than means in species’ probability of occurrence. I also ask if 

the answer depends on life stage for tree species. The question is based on the zeitgeist in 

ecological theory with respect to species’ niches surging from a recent blend of paleo-

climate and paleo-ecological works (e.g. Jackson et al. 2009). Juvenile niches for tree 

species are thought to be narrower than adults and thus more sensitive to climate 

extremes. This is hypothesized to enhance episodic recruitment or pulses of tree 

establishment coinciding with particular temporal windows of climatic opportunity. The 

use of unconventional methodology to identify and characterize complex interactions in 

climate plays an important role in gaining access to the question. NPMR is also used. 

Finally, I develop two new indices to measure climate climatic phenomena important to 

plants, namely spring and fall freeze-thaw events. Such events occur during vulnerable 

periods of hardening and de-hardening for plants and can cause freeze damage and 

mortality. 

In summary, each of the chapters in this thesis map to my overall objective to 

forge new paths toward a better acknowledgement and characterization of complexity in 

nature through method development. The results of this work and directions for future 

study are summarized in Chapter 5. 
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ABSTRACT 

Ecological thresholds are abrupt changes of ecological state. While an ecological 

threshold is a widely accepted concept, most empirical methods detect them in time or 

across geographic space. Although useful, these approaches do not quantify the direct 

drivers of threshold response. Causal understanding of thresholds detected empirically 

requires their investigation in a multi-factor domain containing the direct drivers (often 

referred to as state space). Here, we present an approach to quantify thresholds from 

response surfaces modeled empirically in state space. We present two indices of shape 

attributes measured from response surfaces. The response surfaces are built using a 

regression method in state space. The indices are threshold strength (T) and diagonality 

(D). We use 48 simulated response surfaces of different shapes to test the efficacy of the 

indices in 3-D. Our results show that T is sensitive to the steepness of the transition from 

one state to the next, with various forms of abrupt, centralized thresholds yielding the 

highest values among the simulated surfaces. D represents the orientation of the response 

surface or the simultaneous influence of more than one predictor in eliciting the response 

gradient. Strongly diagonal surfaces have the most diagonal surface area demonstrated by 

sharply undulating diagonal surfaces. Given that the success of T and D requires a 

regression method to accurately capture any shape of complex data structure, we also test 

the accuracy of empirical regression methods known to be tractable with complex data. 

We test Classification and Regression Trees (CART), Random Forest, and Non-

Parametric Multiplicative Regression (NPMR) for binary and continuous responses. We 

use the 48 simulated response surfaces to test the methods, and we find that prediction 

accuracy depends on both the T and D of the simulated data for each method.  We choose 

the most accurate method among those we test for capturing any shape of response 

surface from real data, NPMR. Finally, we use NPMR to build response surfaces and 

quantify T and D from real ecological data sets. We demonstrate how measuring 

threshold strength and diagonality from multi-factor response surfaces can advance 

ecology. 
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INTRODUCTION 

Ecological thresholds are an increasing research priority among natural, earth, and 

social sciences (USCCP 2009, Andersen et al. 2009). Simply defined, ecological 

thresholds are a non-linear response where a small change in the input produces an abrupt 

change in the output for the scale at hand (USCCP 2009, Groffman et al. 2006, Andersen 

et al. 2009). The occurrence of ecological thresholds can carry profound societal risks 

especially in the face of unprecedented environmental change (USCCP 2009). Examples 

of ecological thresholds include shifts in water clarity of lakes caused from continuous 

nutrient loading that passes a critical point (Scheffer et al. 1993) and the conversion of 

arctic tundra to shrubland triggered by a slight increase in temperature (USCCP 2009). 

Such threshold behavior is common across diverse systems and scales and represents 

adaptive, complex behavior (Levin 1999, Holling 1992).  

Despite their importance, the mathematical characterization of ecological 

thresholds is poorly developed. Current methods that quantify thresholds focus either on 

threshold or change-point detection in time (Andersen et al. 2009) or across geographic 

space (Fortin 1994, Jacquez et al. 2000). Yet, thresholds can be represented in state 

space, geographic space, or time. While thresholds may be observed in time and 

geographic space, the causal drivers of thresholds are found in state space (Scheffer and 

Carpenter 2003).   

Surprisingly, few methods exist for the quantification of ecological thresholds in 

state space, and for those that do, most detect the location of the threshold and apply only 

to a single predictor (e.g. Baker and King 2009, Brenden et al. 2008, Damgaard 2006, 

Toms and Lesperance 2003). In fact, to our knowledge, no method addresses the 

challenges that arise in state space when thresholds are characterized with respect to more 

than one predictor. Given the inherent complexity of ecosystems, empirical 

characterization of thresholds with respect to more than one predictor (or driver) is 

clearly warranted (Limburg et al. 2002). The most important reason for expanding 

threshold analysis to multi-factor predictor domains is simple. In higher dimensional 
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predictor space, one can detect and measure thresholds that would not be observed by 

analyses limited to single predictors.   

One grand challenge of measuring thresholds in higher dimensional state space is 

that ecological thresholds can take more than one geometric form. Ecological thresholds 

(along with other shapes that emerge from complex systems) can result from complex 

behavior including interactions, hierarchical relationships, and other forms of 

nonlinearity (Goldenfield and Kadanoff 1999, Weng et al. 1999, Limburg et al. 2002, 

Kinzig et al. 2006, Andersen et al. 2009). Such complex behavior can yield many 

different response shapes. For example, thresholds in 3-D can be oriented perpendicular 

or diagonal with respect to the input gradients, they can look like Niagara Falls, or they 

can be confined to part of a response surface. Thus, the quantitative assessment of 

thresholds in n-dimensional state space is not as simple as fitting parametric equations, 

such as the logistic curve, to data. Parametric regression equations yield a distinct 

geometric shape or type of shape (e.g. planes or logistic curves depending on the class of 

equation). Consequently, by its nature, parametric regression imposes specific shapes or 

shape families a priori on data patterns.  However, in complex data analysis, prudence 

calls for regression methods that can easily adapt to any response shape. The shape of a 

response surface is an emergent property of the underlying system. It warrants accurate 

capture, quantitative assessment, and interpretation. Unless a specific shape is expected 

or of interest, it should be treated as unknown prior to exploratory analysis, and ideally, 

exploratory analysis would use a method that does not impose a specific shape a priori.  

An ecological threshold can be considered a type of response shape, and non-

parametric regression may be the best option for assessment of multi-factor shapes or 

thresholds in state space. Our use of the term ‘non-parametric regression’ follows the 

definition for ‘computer-intensive’ regression established by Efron and Tibshirani (1991) 

with CART and kernel smoothers as examples. Such methods are known to be tractable 

with complex data and rely on computationally intensive algorithms that can involve 

iteration and re-sampling. Non-parametric regression may avoid imposing shape-related 

constraints on data patterns, however, little work tests their accuracy in recovering 
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different shapes of response patterns. Hence, we test the prediction accuracy of non-

parametric methods, particularly, we test how well they predict the true underlying shape 

of the data pattern. The results of this test provide us with a regression method we can use 

to measure shape attributes of predicted response surfaces.  

Our over-arching goal is to measure the strength and orientation of multi-factor 

thresholds in state space. In so doing, we provide a method to verify claims of ecological 

thresholds and increase our understanding of the multi-factor nature of thresholds. Our 

method follows two general steps. First, we model a data set and generate a predictive 

response surface. Then, we quantify shape attributes from that surface. We are not aware 

of any work that quantifies shape attributes from multi-factor response surfaces as we 

define them.  

We define threshold strength (T) as the abruptness of an ecological threshold in 

state space. We complement this index by measuring the orientation of thresholds with 

more than one predictor, something we call diagonality (D). Diagonality occurs in 3-D 

responses including thresholds, and its mathematical basis merits attention in the study 

and interpretation of response surfaces in general. Diagonality gauges the degree to 

which a threshold (or any other response shape) is influenced by more than one predictor. 

Diagonality can assist in identifying and describing complex interactions. 

The specific research objectives of this paper are: to design indices of threshold 

strength and diagonality and validate them using numerous simulated data sets of 

different shape, to test the ability of nonparametric regression methods to recover a wide 

range of shapes of response structures or surfaces (including thresholds) from simulated 

data sets to optimize measurement of thresholds, and to provide examples of how 

measuring threshold strength and diagonality from real response surfaces can advance 

ecology. 

METHODS 

 Index of threshold strength. We describe our index of threshold strength for 

three-dimensional response surfaces in state space. We define a response surface as a 



10 
 

 
 

uniform grid of predicted values generated using a model with continuous variables as 

input (Fig. 1). The response value is named z, while the two predictors are x and y. We 

also describe a two-dimensional version (see Appendix A). The central premise of the 

index is based on two criteria. First, the strongest thresholds have the greatest bimodality 

in their frequency distribution. Second, the strongest thresholds also have the greatest 

monotonicity (or least change in the sign of slopes across the response surface). The 

second criterion is designed to rule out pathological surfaces exhibiting high bimodality 

but showing a spatial arrangement of response values dissimilar to a threshold.  

To calculate the index, the response values are divided by their maximum range to 

standardize among response surfaces with different ranges. We measure departure from 

monotonicity incrementally across the surface using a moving circular window, which we 

refer to as a ‘spider’ (Fig. 1A). Our definition of monotonicity comes from calculus, 

which specifies one-dimensional input. We extend the concept of monotonicity to three 

dimensional response surfaces by calculating the average departure from monotonicity 

among repeated sets of three points as we further describe. Each set represents one-

dimensional input. 

To measure monotonicity from a surface of points, we use a spider comprising 

nine adjacent points on a grid of 100 by 100 increments or 101 by 101 points. This is a 

fine enough grid to capture abrupt changes in slope on a response surface. Four pairs of 

opposing vectors sharing a center point are defined per spider, NESW, NWSE, NS, and 

EW (Fig. 1A). A case definition follows for each vector pair: if the two endpoints are 

either both above or both below the center point, then departure from monotonicity 

occurs, if not, then departure from monotonicity is zero. For cases expressing departure 

from monotonicity, the degree of the departure follows  
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where z denotes a response point within a spider, and i and j index the point on a uniform 

grid. To give the spider a circular footprint and approximate invariance to rotation, 

diagonally-oriented vectors are shortened through interpolation and interpolated points 

are denoted as *z  (Fig. 1A). See Appendix A for a description of the interpolation 

method. Departure from monotonicity for a spider is the sum of the 

departures, .,,,,, jijijijiji EWNSNESWNWSES +++=  The sum of jiS , across all spiders 

yields overall departure from monotonicity for a response surface                                                               
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where n is the number of points within one predictor dimension. ∑∑
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S  is divided by 

the total number of paired, opposing vectors for the surface (four times the total number 

of spiders evaluated or 2)2(4 −n  in three dimensions) to yield average departure from 

monotonicity for the surface, K. We calculate monotonicity (M) using a negative 

exponential function of K, specifically, 
KeM 950−= .                                     (6) 

M  has a y-intercept of 1 for perfect monotonicity and an asymptote at zero for strong 

departures from monotonicity. We set the exponential coefficient to 950 to ensure that 

the low end of the range in M across 48 test surfaces (presented in Figure 2) approaches 

zero for the two most undulating test surfaces. The rank order of monotonicity of the test 

surfaces in Figure 2 according to M are virtually the same across three orders of 

magnitude of exponential coefficients that adequately detect departures from 

montonicity. Threshold strength (T) is the product of monotonicity, M, and the 

bimodality of the response (Eq. 8). The standard deviation ( zσ ) measures the bimodality 

of the frequency distribution of the response where N is the total number of response 

points. The denominator is N instead of N-1 as we use the standard deviation to describe 

shape rather than a population sample. The standard deviation (Eq. 7) is doubled to 

range from 0 to 1 (Eq. 8). Threshold strength is simply a function of bimodality for 

perfectly monotonic surfaces or when monotonicity (M) is equal to one.                                 
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 Index of diagonality. We define diagonality as how oblique or diagonal the 

gradient of a response surface is oriented relative to at least two predictor gradients.  

Diagonality represents the simultaneous influence of more than one predictor gradient in 

eliciting the response (Fig. 3A). For example, perfectly diagonal surface area represents 

equivalence among partial first derivatives for planes (e.g. the right-most plane of Figure 

3A). In contrast, non-diagonal planes vary strictly with one predictor (e.g. the left-most 

plane of Figure 3A). Further, surfaces with traditional, statistical interactions create 

curvature and thus some diagonality (for example, regression models containing 

multiplicative terms in an additive model) (Fig. 3B), but diagonal surfaces need not have 

statistical interactions (e.g. the right-most plane of Figure 3A). Statistical interactions 

occur when the effect of one predictor on a response depends on values of another 

predictor or predictors. 

Diagonality (D) is calculated for a three-dimensional response surface formed by 

a grid of 101 by 101 points. The grid is comprised of many four-sided polygons each 

defined by a unique set of four adjacent points (Fig. 1B). The vertical distance between 

diagonally opposed points is calculated for each polygon, and the absolute difference 

between these two vertical distances is termed gd , where g indexes a single polygon 

                                1,1,,11, ++++ −−−= jijijijig zzzzd .                                       (9) 

   Pure diagonality (P) is the sum of gd  across the total number of polygons (q). P 

is divided by the standard deviation of the response ( zσ  from Eq. 7) for comparison 

among disparate surfaces to yield H or standardized pure diagonality. H increases linearly 

with the square root of q; hence, it is divided by the square root of q to yield diagonality, 

D, a variable insensitive to q,   

           
q

HD =  .                                                              (10)                         
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 Simulated data. We test the indices with simulated data sets representing varying 

degrees of threshold strength and diagonality common to ecological data in state space 

(Table 1, Fig. 2). Our choice of simulated data emerges from theoretical expectations of 

ecological response surfaces (e.g. Scheffer and Carpenter 2003, Austin 2007), published 

examples where shapes are unconstrained by modeling methods (e.g. Waring and Major 

1964, Makarewicz and Likens 1975, Bartlein et al. 1986), and author experience with 

hundreds of ecological response surfaces. Also, several data sets are included to expand 

the diagonality gradient (e.g. Z46, Z47, and Z48 in Fig. 2). Although several data sets 

appear quite similar (Z22, Z23, and Z24 in Fig.2), they have subtle yet important 

differences in steepness and step height. 

 Method Comparison. We test the performance of each of three methods in 

modeling 48 simulated data sets as continuous and binary data. We select different 

classes of non-parametric regression methods known to be tractable with complex data 

(Efron and Tibshirani 1991): Classification and Regression Trees (CART) (Breiman et al. 

1984), Non-parametric Multiplicative Regression (NPMR) (a kernel smoother) (McCune 

2006), and a statistical ensemble method using CART as a building block, Random 

Forest (Breiman 2001). For each method we use the same settings across all test surfaces. 

We establish settings from recommendations and examples in peer-reviewed literature 

(explanations of methods and settings are described in Appendix A). 

We compare the prediction accuracy (henceforth referred to as accuracy) of the 

methods by examining prediction error across all simulated shapes for binary and 

continuous responses. The accuracy for a continuous response is assessed with 2R . For 

accuracy in binary classification, we use the area under the receiver operator 

characteristic curve (AUC) (see Appendix A) (Hanley and McNeil 1982). Fig. 4 depicts 

scatterplots of accuracy versus threshold strength and diagonality for CART, Random 

Forest, and NPMR. Each point represents a median, externally-validated accuracy of 100 

models built from random samples (N=250), which are drawn from a simulated data set 

(100 increments squared or size N=10,201) of specific shape; we choose N=250 as a 

realistic size for an ecological data set. External validation gauges prediction error for 
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external data. We rely on variable selection and overfitting controls inherent to each 

method when supplied with the two predictors (x, y). 

RESULTS 

 Efficacy of the threshold strength index. The rank order of threshold strength is 

sensitive to steepness or how closely the response surfaces resemble a single step with 

highly undulating surfaces yielding the lowest threshold strength (T = 0), progressing 

through the Gaussian hill (T = 0.36) to the Gaussian ridge (T = 0.68) to end with various 

forms of strong, centralized thresholds (T > 0.93) (Table 1, Fig. 2). All surfaces with 

morphologies resembling single steps rank higher than the other shapes presented. The 

index tracks incremental changes in steepness among similarly-shaped monotonic 

surfaces such as single steps (e.g. Table 1, Z1 and Z2 in Fig.2; see Appendix A); 

however, increased departure from monotonicity can slightly increase with increased 

steepness in ‘staircases’ (Z24 > Z23 in Fig. 2); yet, the effect of this is not detectable at 

two decimal places. The index ranks surfaces resembling centralized steps similarly 

regardless of exact form. Thus, a central threshold showing a steep transition albeit with 

more curvature (from a bird’s eye view) (e.g. Z3) ranks closely with a central step 

showing a steep transition but no curvature (e.g. Z34) (Table 1, Fig. 2). The general shape 

of a threshold (albeit with variable steepness) is lost below T = 0.72 for the sample of 48 

shapes we provide (Table 1, Figure 2). Additionally, surfaces in two and three 

dimensions generated from the same function yield equivalence in threshold strength (see 

Appendix A). Finally, the index detects abrupt changes between planar features that are 

parallel to the x-y plane. For example, the surface Z35 contains an abrupt change between 

different regions of the response surface where one side of the transition is 0=z (or a 

static value for the response variable shown as a single color, black) but the other side of 

the transition resembles a skate ramp (shown with the color gradient; Fig. 2). 

Consequently, Z35 yields a relatively low value of threshold strength (T=0.53). Although 

an abrupt transition exists in this surface, the transition does not contribute to a step-like 
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form where each state is flat and parallel to the x-y plane, which is the operational 

definition of a threshold we present here.   

Efficacy of the diagonality index. The simulated 3D surfaces varying with only 

one predictor have diagonality of zero as expected (Table 1). Strongly diagonal surfaces 

have the most diagonal surface area demonstrated by sharply undulating diagonal 

surfaces such as ‘weaving’ (D=20.31) (Z48 in Fig. 2). The index is insensitive to scale for 

scales small enough to capture global shape starting with 100 increments or 101 points by 

101 points for a square grid. Also, diagonality varies linearly with angle of rotation for a 

surface as expected (see Appendix A). However, the index does not explicitly discern the 

spatial location and configuration of diagonality present within a surface. For example, 

two different shapes of surfaces, one planar (Z17, Fig. 2) and another kite-like (Z27, Fig. 

2) have very similar values of diagonality (D=2.55, and D=2.52 respectively). 

Accuracy of modeling methods with simulated data. The accuracy of each method 

depends on the threshold strength and diagonality of the original data structure with each 

method differing in degree of dependence (Fig. 4). The accuracy of most methods 

decreases as diagonality increases and threshold strength decreases with the exception of 

NPMR with continuous data (lower right two axes, Fig. 4). NPMR demonstrates the least 

variability (seen as quantile bars in Fig. 4) and the greatest accuracy (seen as medians in 

Fig. 4) compared to the other methods for a given response shape. The sensitivities of 

modeling methods to shape attributes of data structure arises from features specific to 

each modeling method, which manifest in visual differences of predicted surfaces for 

different shapes (Fig. 5). For our subsequent analyses using real ecological data, we 

choose the most accurate and robust method we test, NPMR. We encourage testing of 

other methods.   

APPLICATION OF THE INDICES 

Application of threshold strength and diagonality with real data can test theory 

and answer questions about ecological thresholds. We present examples using real data 

with the goal of demonstrating how the indices can be applied (Fig. 6). The results 
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provided by the examples are preliminary and require further investigation. Our examples 

focus on thresholds in state space. However, we recognize that these tools can apply to 

thresholds in time and geographic space, and these are topics of future study. 

For our first example, the indices evaluate the theory formulated by Berryman 

(1982) and reviewed by Christiansen et al. (1987) (Fig. 6A). The theory holds tree vigor 

and bark beetle attack as drivers of threshold responses in tree or stand survival across 

species. Here we evaluate the question, do bark beetle densities and tree vigor drive 

threshold responses in sapwood survival across tree species? Figure 6A demonstrates that 

the response surface of Picea abies survival has a moderately strong threshold (T= 0.76), 

while Pinus contorta has a weaker threshold (T=0.61). For a benchmark comparisons, see 

surface Z2, Fig. 2, Table 1, also with T=0.76, and a diagonally tilted plane, Z19, with 

T=0.41. The results suggest that the theory does apply equally well to both species for the 

variables tested. Also, responses of both species show diagonality; thus, each surface 

demonstrates that both factors elicit the response gradient among species. However, P. 

abies shows greater diagonality compared to P. contorta (Fig. 6A). Other factors likely 

need to be given account as recent works support cross-scale drivers behind bark beetle 

thresholds (e.g. Raffa et al. 2005, Raffa et al. 2008). 

Figure 6B demonstrates an application of threshold strength in a 2-D context. 

Since this is in 2-D, only threshold strength can be measured. For this example we ask: 

does greater stomatal control (termed isohydry) create stronger thresholds in percent loss 

of conductivity versus water potential for woody vascular plants?  Isohydric plants close 

their stomata (cells controlling gas exchange from leaves) when leaf water potentials 

reach a set value. Anisohydric plants allow water potential to decline with water stress 

(Vogt 2001). Vulnerability curves measure the percent loss of hydraulic conductivity of 

xylem (water-conducting tissue) with declining water potential; they also assess the 

function of water-transporting conduits within the plant during drought stress (Sperry et 

al. 1988) (Fig. 6B). Isohydry may create stronger thresholds in vulnerability curves of 

vascular plants as the strategy precludes the need for plants to construct conduits with 

differing resistances to water stress. The measurement of threshold strength from 
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vulnerability curves of iso- or anisohydric species is necessary to evaluate the research 

question. Preliminary calculations suggest that increased stomatal control may create 

stronger thresholds in vulnerability curves (T = 0.82, 0.74 for isohydric species; T = 0.62, 

0.58 for anisohydric species) (Fig. 6B). However, a larger sample size consisting of more 

species is needed to ascertain this. 

Last, threshold strength and diagonality can be applied to selected domains within 

a complex response surface. For example, Figure 6C shows a cropped portion of a 

response surface for a model of the probability of tree species’ occurrence relative to 

climate for Pinus ponderosa in Oregon. The model is based on presence/absence data 

(Azuma et al. 2002, 2004). We select and crop the response within a specific climate 

domain. At first glance, one might assume that the selected portion of the response 

surface resembles a threshold; however, when compared to simulated data, the threshold 

strength is weak (T=0.68). Further, the low diagonality shows that the response within 

this domain is mainly driven by a single variable (D=0.76). However, the diagonality of 

the surface as a whole demonstrates that both drivers are responsible for eliciting the 

response gradient (mostly in regions outside the selected domain) (D=5.41). The lack of 

diagonality within the cropped domain in Figure 6C elicits the following question: why is 

the probability of tree species’ occurrence only attributable to PCA1 within the selected 

domain? Response surfaces are snapshots of complex system behavior, and quantifying 

the diagonality (and threshold strength) of selected regions of response surfaces can 

identify interactions within the surfaces.  

DISCUSSION 

  Ecological relevance. Threshold strength and diagonality represent the first tools to 

quantify multi-factor ecological thresholds in state space. The examples with real data 

demonstrate utility of the indices in state space. For example, we measure threshold 

strength for a diagonal response in a multi-factor state space (e.g. Figure 6A, left panel). 

We detected a relatively strong threshold. If this response data were to be analyzed with 
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respect to either one of those predictors alone, the threshold strength would be much 

lower.  

The indices can be measured from a cropped portion of a response surface. This is a 

fundamental step toward using the indices within a roving window to measure T and D at 

different scales within the surface (Figure 6C). This can serve various research purposes 

such as finding the regions of strong behavior in a multi-factor response surface. Finally, 

this approach can be generalized into asking what conditions affect strength of a 

threshold in state space. Answering this question can provide insight into mechanism.  

 Statistical relevance. Each empirical modeling method we test recovers data 

structure using a ‘building material’ specific to the algorithm. By analogy, CART uses 

square or rectangular prisms, Random Forest tends to stipple with long narrow 

rectangular prisms, and NPMR uses smooth, stretchy material (see Fig. 5). Model 

building algorithms can introduce substantial model bias when the geometric constraints 

of building material are not suited to the shape of the response. For example, CART’s 

building material, square and rectangular prisms, inefficiently captures diagonal 

gradients. Overall, CART performs better with non-diagonal thresholds by splitting data 

at threshold values and creating discrete prediction levels for subsets of predictor values. 

This maintains square, flat areas typical of non-diagonal thresholds or thresholds 

responding to a single predictor (Fig. 5). CART models can be ‘pruned’ numerous ways 

(Hastie and Tibshirani 2001), which change the size of the prisms and hence sensitivity to 

diagonality. However, our method of pruning using ten-fold cross-validation is the most 

objective and robust to external data (Hastie and Tibshirani 2001), yet, this process 

creates large prisms.  

Random Forest also uses rectangular prisms as building material but the prisms are 

typically much narrower and longer compared to CART. Diagonality challenges Random 

Forest the same way it challenges CART. Rectangular prisms inefficiently capture the 

diagonal faces while efficiently capturing large, rectangular, flat areas typical of non-

diagonal thresholds (see Fig. 5).  
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NPMR produces smooth renditions of response patterns, and the sensitivity of the 

method to threshold strength and diagonality is not due to the geometric constraints of the 

predictions. The sensitivity of NPMR to threshold strength and diagonality for continuous 

data is likely due to the decrease in accuracy of NPMR predictions occurring when 

sloping surfaces abut the edges of the predictor space. The smoothing function biases the 

edges toward the central tendency of the data. The degree of this bias depends on the type 

of smoothing function and the width of the kernel per predictor. Broader kernels incur 

more bias.  

In summary, non-parametric regression methods vary in their efficacy of capturing 

response shapes. They are sensitive to the threshold strength and diagonality of the 

underlying surface. The contribution of tests that use threshold strength and diagonality is 

especially relevant to the comparisons of empirical methods designed for complex data 

analysis such as species-habitat models in ecology (e.g. Elith et al. 2006, Guisan et al. 

2007). Currently, methods are compared using real data sets of unknown structure, and 

the comparisons do not discern the role of the response shape in method performance 

(e.g. Elith et al. 2006, Guisan et al. 2007). Our work shows that non-parametric 

regression approaches can impose substantial model bias, and this bias depends on the 

geometry of the algorithm’s ‘building blocks’ coupled with the geometry of the data 

structures. For example, the accuracy of CART is highest with non-diagonal shapes and 

lowest for diagonal shapes of data structure. The error or bias incurred from the limits of 

CART’s algorithm is more pronounced for strongly diagonal surfaces. Strongly diagonal 

surfaces are not amenable to capture by rectangular prisms (the analytical type of 

‘building block’ imposed by the algorithm). Such model bias has unknown and possibly 

far-reaching consequences across disciplines that apply these methods. Other disciplines 

using these methods range broadly from epidemiology to earth sciences. 

Methodological considerations.We measure threshold strength and diagonality on a 

continuous scale rather than assigning a simple ‘yes’ or ‘no’. Values for threshold 

strength can be interpreted by comparison to our benchmarks (the shapes represented 

among the 48 simulated data sets;Table 1, Fig. 2) or by comparison among data sets. 
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Because our simulated gradients represent many possible response surfaces, T and D can 

be applied to any ecological regression with one or two continuous predictors. T and D 

depend on how well the shape of the response surface is sampled and fit. All of our 

examples with real data involve well-sampled response surfaces with strong fits. Figure 

6A and B show examples with continuous response (or dependent) variables, and Figure 

6C shows a binary response variable. The indices can be used with response surfaces 

modeled in state space from other disciplines. An important exception includes surfaces 

where more than one response value corresponds to a single unique combination of input 

values. A classic example of this comes from the cusp catastrophe of catastrophe theory 

where a surface in state space exhibits a cusp-like fold in the ordinate or z-dimension of 

an x, y, z coordinate system (Thom 1989). Although the cusp catastrophe surface is not 

generated using regression, it is still a surface in state space, albeit theoretical. Folds in 

the ordinate dimension of state space can exist empirically and theoretically. However, 

regression methods cannot capture such folds, and the indices we present are not 

equipped to measure such folds.  

Although we limit the index development to three dimensions of state space, the 

indices are specifically designed for ease of algebraic extension to n-dimensions of state 

space. Evaluation of multi-factor thresholds in more than three dimensions of state space 

would offer more realism to threshold analysis. Extension of the indices to n-dimensions 

of state space is a topic of future research. Finally, the indices are not equipped (as we 

present them here) to rank or measure the relative importance among predictors in 

eliciting a threshold in state space. However, this is can be measured using statistics from 

non-parametric modeling methods. For example, in NPMR, “sensitivity” is a measure of 

relative variable importance.   

Geographic relevance. The indices of threshold strength and diagonality may 

conceivably be used in domains other than state space such as geographic. Thresholds in 

the geographic domain are considered ‘boundaries’ or transition zones that delineate 

patches (Cadenasso et al. 2003). Boundaries in a geographic domain can be visualized as 

meandering zones of abrupt change differing in extent and magnitude, and the objective 
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is to map and characterize these meanders across space. Employing threshold strength 

(presented here) incrementally within a window at a fixed resolution in geographic space 

may be appropriate for some applications. In fact, an algorithm measuring abruptness of 

geographic boundaries in ecology already exists (Bowersox and Brown 2001) based 

largely on the work of Fortin (1994) and Womble (1951); however, this algorithm does 

not provide a value of threshold abruptness that is insensitive to rotation with respect to 

longitude and latitude (or the analogous x-y plane). We explain this and the associated 

significance below. 

First, boundary mapping employed by Fortin (1994) and Womble (1951) identifies 

abrupt change across a spatial grid of points by employing arbitrary cut-off values in the 

absolute values of partial first derivatives among adjacent points. The identified steep 

slopes and their spatial locations are called boundary elements. Bowersox and Brown 

(2001) build on boundary elements to develop a method to measure the abruptness of 

such a boundary. They measure the area under the curve representing a frequency 

distribution of boundary elements using a gradient of twenty different cut-off values. The 

idea is that strong thresholds will show a spike in numbers of boundary elements with 

high cut-offs. This makes a taller, narrower curve with a longer tail compared to other 

curves. However, partial first derivatives change across the same point pattern but rotated 

45 degrees, and consequently, they are not rotationally invariant in the x-y plane. Hence, 

the same boundary rotated 45 degrees will yield different magnitudes of partial first 

derivatives tied to each boundary element. Further, the metric is not spatially explicit and 

does not distinguish a threshold shape from a different shape with the same frequency 

distribution of boundary elements.  

In contrast, our threshold strength index solves these problems. Our criteria of 

monotonicity (Eq. 6) and bimodality (the left multiplicand Eq. 8) together describe the 

characteristic of the shape as a whole. The criteria distinguish abrupt thresholds from less 

abrupt thresholds, or abrupt thresholds from shapes with no thresholds, and so on, 

regardless of their orientation in the x-y plane.  
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CONCLUSION 

Threshold strength and diagonality are measurable shape attributes of multi-

dimensional thresholds. We provide new tools to quantify this underused type of 

information. The shape of a data pattern is fundamental to the development of theory in 

ecology (e.g.Whittaker 1975); yet, shortfalls in the description and understanding of a 

complex response shapes may be pervasive. These shortfalls can impede theoretical 

advancement, successful prediction, and management application (Efron and Tibshirani, 

1991, Scheffer and Carpenter  2003).  

We move beyond single-factor methods of quantifying thresholds that occur in 

state space to add realism and higher dimensionality. We introduce a parameter-free way 

to quantify threshold strength and diagonality from thresholds occurring in state space. 

Future methodological and basic research objectives for the indices include: measure if 

and how the prediction accuracy of other non-parametric regression methods depends on 

T and D, develop a roving window method that can measure the indices at different scales 

within a response surface, study mechanisms underlying multi-factor thresholds for 

ecological systems hypothesized to exhibit thresholds, and answer the question, how can 

this approach be used to identify systems approaching threshold responses before they 

happen?  
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FIGURES 

Figure 1.  (A) We calculate three-dimensional threshold strength from a modeled surface 
formed collectively by a grid of points. A ‘spider’ is established for each unique set of 
nine adjacent points indexed as shown. The circular spider on the right results from 
interpolating the diagonal vectors in the square spider on the left. Each z represents a 
response point, and each z* represents an interpolated response point. Four pairs of 
opposing vectors are defined for each spider, NESW, NWSE, NS, and EW. (B) We 
demonstrate calculation of diagonality from a modeled three-dimensional surface formed 
collectively by many four-sided polygons defined by points as shown; the diagram to the 
upper right represents one polygon and illustrates indexing of the four points for 
calculating a metric, d, for each polygon to sum across the surface. 
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Figure 2. Bird’s eye views of three-dimensional 48 simulated response surfaces. Each 
surface is labeled to match corresponding names and index values in Table 1. The color 
gradient represents different values of for each response ranging from min to max as 
shown. 
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Figure 3. (A) Four three-dimensional planes (top row) with each generating function 
(titled above) and matching bird’s eye views (bottom row). The planes increase in 
diagonality from left to right. Perfectly diagonal surface area (e.g. the right-most plane) 
represents equivalence among partial first derivatives. In contrast, non-diagonal surface 
area varies strictly with one predictor (e.g. the left-most plane). In between the extremes, 
the rate of change of z with respect to y gradually becomes more important until it 
reaches equivalence with the rate of change of z with respect to x for a diagonal plane. 
(B) Four three-dimensional response structures (top row) with each generating function 
(titled above) and matching bird’s eye views (bottom row). Each function represents a 
different additive, statistical model containing an interaction term or, in this case, a 
multiplicative term comprising predictors x and y. The details of the four additive models 
vary; in particular, the functions are a mix of different orders. The four structures capture 
the shape family of additive models with multiplicative terms, hyperbolic paraboloids. 
Despite the details of the additive model and multiplicative terms, the equations yield 
similar shapes. Interactions of this sort create some diagonality but strongly diagonal 
surfaces such as diagonal planes need not have statistical interactions.  
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Figure 3 Continued. 
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Figure 4. Prediction accuracy of Random Forest, Classification and Regression Trees  
(CART), and Non-parametric multiplicative regression (NPMR) for continuous and 
binary responses plotted versus threshold strength (T) and diagonality (D).  Each point is 
a median, externally-validated accuracy of 100 models built from random samples size 
N=250. The samples draw from a large subset of a simulated data set (N=9,201). A 
separate subset of 1000 points performs external validation for each simulated data set 
(see Fig. 2 for the simulated data sets). Error bars represent 95% quantiles. 
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Figure  5. A visual comparison of predicted three-dimensional response surfaces together 
with surfaces showing the original data (bird’s eye views). Results are shown from three 
modeling methods for two types of responses, continuous and binary. In the case of the 
right-most three columns, the binary response surfaces represent the probabilities of 
underlying point densities. The top row depicts the original response surfaces each 
comprising 10,201 data points or 100 by 100 increments. The lower rows show predicted 
values for models built from a random subsample (size N=250) of each original response 
surface in the top row. Two replications of random samples are shown for each modeling 
method to provide a sense of the variation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



29 
 

 
 

Figure 6. The application of threshold strength (T) and diagonality (D) to ecological data 
using prediction surfaces (right) generated by NPMR for different data sets (see 
Appendix C: Table C1 for specifications). Threshold strength (T) and diagonality (D) 
values (middle) are measured from modeled surfaces (right) test different questions (left). 
(A) Proportion of sapwood survival versus separate measures of tree vigor and severity of 
bark beetle attack for two tree species. Left: Picea abies attacked by Ips typographus. 
Right: Pinus contorta attacked by Dendroctonus ponderosae; data and theory from 
(Christiansen et al. 1987). (B) Mean percent loss in hydraulic conductivity versus shoot 
water potential (-MPa) of branches of two isohydric (red lines) and two anisohydric 
(black lines) species. Lines show predicted curves from data of stems of two shrub 
species, Grayia spinosa and Chrysothamnus nauseosus (Hacke et al., 2001), and 
branches of two tree species Juniperus osteosperma and Pinus edulis (Linton et al. 1998) 
(see Appendix B: Fig. B1). (C) Probability of occurrence for a dominant tree species in 
Oregon, Pinus ponderosa, modeled relative to two axes derived using Principal 
Components Analysis representing a summer aridity gradient (Axis 2) increasing 
vertically and a continentality gradient (Axis 1) increasing from right to left (see 
Appendix B: Fig. B2). Together, the axes explain 82% of variability in the source data 
(see Appendix C: Table C2 for table of source data). Threshold strength and diagonality 
are measured from a cropped portion of the surface (left). Data come from 1724 plots of 
the Forest Inventory Analysis program in Oregon (Azuma et al. 2002, 2004). 
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Figure 6 Continued. 
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TABLES 

Table 1. Simulated data surfaces from Figure 2 named and ranked in descending order by 
values of diagonality (D) (left panel) and threshold strength (T) (right panel). 

D Label  Surface name T Label  Surface name 
20.31 Z48 weaving  0.980 Z14 steep step  
16.15 Z45 diag waves  0.963 Z3 steep Niagara step  
15.29 Z44 zig-zag slant 0.961 Z34 steep diag step 
13.36 Z38 zig-zag diag abrupt 0.936 Z4 Niagara step 
11.03 Z40 organic peaks 0.931 Z13 moderately steep step 
9.12 Z47 undulating sea 0.846 Z33 steep diag step off-center 
8.58 Z43 stream valley 0.805 Z1 steep Niagara step off-center  
7.71 Z37 diag two waves abrupt 0.801 Z12 gentle step 
7.63 Z42 diag Gaussian ridge  0.781 Z5 Niagara edge step  
6.17 Z39 wide zig 0.772 Z8 steep corner square step 
5.96 Z30 parachute 0.770 Z7 corner square step 
5.90 Z25 short stream valley 0.757 Z2 Niagara step off-center  
5.31 Z46 four eggs 0.727 Z11 s-curve 
4.93 Z29 diag Gaussian hill-ridge  0.716 Z6 corner wave step 
4.85 Z18 z=x+y 0.676 Z15 Gaussian ridge 
4.85 Z19 z=0.5x+0.5y 0.673 Z16 wide Gaussian ridge 
4.65 Z35 skate-ramp abrupt diag 0.623 Z41 diag Gaussian ridge abrupt L 
4.64 Z31 Gaussian wide hill 0.618 Z42 diag Gaussian ridge  
4.42 Z20 s-curve off-center 45 0.597 Z24 triple staircase 
4.14 Z36 Gaussian skate-ramp abrupt 0.597 Z22 triple staircase diff levels 
4.05 Z34 steep diag step 0.596 Z23 steep triple staircase 
3.73 Z32 Gaussian hill 0.583 Z10 z=x 
3.69 Z41 diag Gaussian ridge abrupt L 0.576 Z21 s-curve off-center 60 
3.35 Z33 steep diag step off-center 0.575 Z9 z=x3 
3.14 Z21 s-curve off-center 60 0.569 Z27 Niagara kite  
2.99 Z26 z=xy 0.554 Z20 s-curve off-center 45 
2.9 Z28 z=x-xy 0.528 Z35 skate-ramp abrupt diag 

2.55 Z17 z=x+0.4y 0.500 Z31 Gaussian wide hill 
2.52 Z27 Niagara kite  0.454 Z29 diag Gaussian hill-ridge  
2.37 Z2 Niagara step off-center  0.449 Z17 z=x+0.4y 
2.25 Z1 steep Niagara step off-center  0.448 Z30 parachute 
1.94 Z4 Niagara step 0.445 Z26 z=xy 
1.89 Z3 steep Niagara step  0.443 Z25 short stream valley 
1.77 Z5 Niagara edge step  0.426 Z28 z=x-xy 
0.37 Z6 corner wave step 0.421 Z43 stream valley 
0.36 Z24 triple staircase 0.412 Z18 z=x+y 
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Table 1 continued. 
D Label Surface name T Label Surface name 

0.34 Z7 corner square step 0.412 Z19 z=0.5x+0.5y 
0.26 Z22 triple staircase diff levels 0.409 Z39 wide zig 
0.21 Z23 steep triple staircase 0.365 Z32 Gaussian hill 
0.10 Z8 steep corner square step 0.362 Z36 Gaussian skate-ramp abrupt 
0.00 Z14 steep step  0.336 Z37 diag two waves abrupt 
0.00 Z12 gentle step 0.280 Z46 four eggs 
0.00 Z13 moderately steep step 0.220 Z38 zig-zag diag abrupt 
0.00 Z11 s-curve 0.215 Z44 zig-zag slant 
0.00 Z16 Gaussian ridge 0.198 Z47 undulating sea 
0.00 Z15 wide Gaussian ridge 0.122 Z45 diag waves  
0.00 Z10 z=x 0.000 Z40 organic peaks 
0.00 Z9 z=x3 0.000 Z48 weaving  
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APPENDIX A: SUPPORTING METHODS 

Threshold strength calculation in two dimensions. Here, we present equations to 

calculate threshold strength from two-dimensional, modeled surfaces (e.g. Fig. 6B). The 

response values are divided by their maximum range to standardize among response 

surfaces with different ranges as in three dimensions. Spiders comprise )1(3 −w  points 

where w is number of dimensions. This yields a spider of three points in two dimensions 

(for a single predictor divvied into 100 increments or 101 points). A single metric 

measuring departure from monotonicity, EW, is subject to the following criterion as in 

three dimensions: if the two endpoints are either both above or both below the center 

point, then departure from monotonicity occurs, if not, then departure from monotonicity 

is zero. For cases expressing departure from monotonicity, the degree of the departure 

follows   

      { }121 ,min +++ −−= iiiii zzzzEW .                                     

(A.1) 

EW represents departure from monotonicity for the spider in two dimensions    

ii EWS = .                                          (A.2) 
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iS  becomes the overall departure from monotonicity for the 

response surface. The average departure from monotonicity (K) derives from  
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where the denominator is the total number of vector contrasts evaluated for the response 

surface, N-2,  or 99 for the fixed scale of 100 increments or 101 response points. We 

calculate monotonicity (M) using a negative exponential function, Ke 950− , as in three 

dimensions. Threshold strength (T) is the product of monotonicity (M) and the bimodality 

of the response (the left multiplicand in Eq. A.5) as in three dimensions                                                     
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      MT zσ2= .                                                            (A.5)    

Linear interpolation of NWSE and NESW for the spider in three dimensions. The 

3D spider yields four pairs of opposing vectors with each vector spanning two grid 

points, the outer point and the center (Fig. 1). Diagonal vectors are shortened ( *z ) to 

match the radius of non-diagonal vectors through linear interpolation following  

     ))(12(*
outercenterouter zzzz −−+= .               (A.6) 

Equation A.6 calculates a single interpolated point (Fig. 1). The center and outer points 

and are illustrated in the diagonal ‘legs’ of the spider (Fig. 1). The resulting points yield a 

spider with a circular footprint. We discovered that this method of interpolation (using 

two points) yields values essentially equivalent to other methods incorporating more than 

two points because we apply it to smooth surfaces at a fixed, fine resolution. 

Testing threshold strength across dimensions. Consider response surfaces derived 

using a four-parameter form of the logistic function, which generates surfaces resembling 

steps but of variable steepness   

b

c
x
daz
⎟
⎠
⎞

⎜
⎝
⎛+

−
=

1
                 (A.7)                 

where a is the maximum horizontal asymptote, d is the minimum horizontal asymptote, c 

is the value of x at the inflection point, and b controls the steepness of the step. If we vary 

b to increase the steepness of the step with all else equal, the threshold strength (T) of a 

surface should increase. We calculate threshold strength for two-dimensional and three-

dimensional threshold surfaces using Equation A.7 while varying only dimensionality of 

the input. We assume a maximum horizontal asymptote (a) of 30, minimum asymptote 

(d) of 0, and inflection point (c) of 10.  The input for the three-dimensional surfaces is a 

perfect grid of 101 by 101 points where x and y each range from 0 to 20 (see Appendix B: 

Fig. B3). Two-dimensional curves follow 100 increments of x from 0 to 20. Threshold 

strength (T) increases with b or steepness in the rise of the step as shown in Figure B3 of 

Appendix B. Threshold strength values for the three-dimensional and two-dimensional 



35 
 

 
 

responses generated from same underlying logistic equation are equivalent (see Appendix 

B: Fig. B3). 

Testing diagonality by rotation. Consider a single surface rotated in the x-y plane. 

Diagonality (D) should decrease with the angle of the response gradient relative to one 

reference predictor axis (e.g. x) along 45 degrees of rotation. To test this, we translate the 

surface origin to the center of the predictor space (10, 10). The function input ranges 

from 0 to 20 per predictor on a grid of 101 by 101 increments. We trim the base to a 

circle to facilitate uniformity in sample size and shape each time the circle is rotated (see 

Appendix B: Fig. B4); rotating a square base within the constraints of a grid can yield 

uneven edges or slight sample size differences among rotations. Diagonality decreases 

with the angle of the response gradient relative to one reference predictor axis (e.g. x) 

along 45 degrees of rotation (see Appendix B: Fig. B4). 

Converting continuous response to binary with simulated data. We simulate 48 

binary response surfaces with the same underlying structure as the 48 continuous 

response surfaces. To do this, we treat the continuous response as a probability structure 

that converts to a point density for a binary response. First, we create a vector (or string 

of numbers), c’, for each continuous response vector, c, composed of random numbers 

drawn from a uniform distribution within the same range as c. Values for elements of c’ 

follow rndcccc iiii *))min()(max()min(' −+= where rnd is a uniformly distributed 

random number ranging from 0 to 1, and ic  is an element of the continuous response 

vector, c, and i indexes the vector position. We execute a conditional rule among vectors 

to create the binary vector: if 'ii cc > , then ib =1; otherwise, if 'ii cc ≤ , then ib =0 with b 

as the resulting binary vector.  

Explanation of the Area Under the Receiver Operator Characteristics (ROC) 

curve (AUC). The AUC is a metric derived from an ROC curve for the purpose of 

comparing the performance of probabilistic classifiers. Probabilistic classifiers are 

algorithms yielding instance probabilities or the degree to which an instance belongs to a 

class rather than output in the form of full class membership. The ROC curve is designed 

to visualize such a classifier’s performance by plotting the true positive rate versus the 
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false positive rate for different cut-off levels. A cut-off level converts the instance 

probability to a category. For example, in the case of a binary response, a cut-off level of 

0.7 would classify an instance probability of 0.8 as a 1 and an instance probability of 0.5 

as a 0.  The true positive rate at each cut-off level is calculated as the total number of 

positives correctly classified divided by the total of the positives classified. The false 

positive rate at each cut-off level is calculated as the total number of negatives incorrectly 

classified divided by the total of the negatives classified. Points corresponding to a 

gradient of cut-off values are plotted to form the ROC curve. The area under this curve is 

calculated to give a measure of performance that does not depend on either a single cut-

off value or the proportion of class representation (the frequency of 1s compared to 0s in 

the original data) (Fawcett 2006). The 1:1 line on the graph represents an AUC of 0.5 or 

performance no better than random chance.  

Explanation and implementation of CART. CART creates a dichotomous tree 

model with a series of splitting rules using binary recursive partitioning. Each branch 

split in the tree results from minimizing the variability of two separate groups of data. A 

predictor at a single value serves as a data partition or branch split. Data are successively 

partitioned until branch endpoints are homogenous or a default number of data points in 

branch endpoints are reached, whichever comes first. The number of terminal nodes or 

endpoints of the tree gauge the tree size, and each terminal node yields an average 

prediction for regression or the most probable category for classification (categorical 

response). A CART tree requires ‘pruning’ or cutting branches from the tree (Hastie and 

Tibshirani 2001). The most objective and robust method of pruning is achieved by cross-

validation, and we performed automated ten-fold cross-validation to guide pruning for 

each CART model we present (Hastie and Tibshirani 2001). Cross-validation is a process 

where a random division of data into two groups creates a ‘testing’ set and ‘training’ or 

‘learning’ set. A CART model grows from the training set and prediction accuracy for the 

model is measured with the testing set. Data division and model validation occur 

repeatedly at numerous tree sizes, and the lowest average variability (or deviance in this 

case) per tree size determines the optimal tree size. We implement the CART analysis for 



37 
 

 
 

continuous and binary data surfaces using the computer language S in the software 

package S-Plus 7.0. Chambers and Hastie (1992) described the code to implement CART 

and perform the cross-validation.  

Explanation and implementation of Random Forest. The Random Forest analysis 

generates many CART-like trees where each tree grows from a random sub-sample of 

data rather than the whole pool. Additionally, a random selection of predictors determines 

the possible candidates to define each split of each tree, and no pruning is performed on 

any trees. Test values are run through the entire forest and a predicted value is either a 

vote count from all trees (for classification) or an average value from all trees (for 

regression). Berk (2006) provides excellent introductions to Random Forest and CART. 

We implement Random Forests in computer language R, which is available in the 

software package R 2.3.1. We use default settings of the function “randomForest,” which 

builds the forest from 500 trees. The function and its default settings are described in help 

text of the “randomForest” package available at 

http://cran.cnr.Berkeley.edu/bin/windows/contrib/2.3/randomForest_4.5-16.zip.  

Explanation and implementation of Non-Parametric Multiplicative Regression 

(NPMR). NPMR is a kernel smoothing technique that objectively determines kernel 

width by maximizing fit from cross validation. It works like other kernel smoothers 

where local windows center on target points within the predictor space. A weight 

function (or kernel function) applies in a window to relegate importance or numeric 

weight to points closest to the target. A local model such as weighted linear regression 

predicts the dependent variable at the target point. A prediction curve or surface of 

estimates results from repeating this process for all target points. NPMR differs from 

other kernel smoothing applications in several aspects. First, NPMR optimizes the 

breadth of the smoothing function for each predictor, known as the kernel width or 

tolerance, to maximize global fit. Second, NPMR leaves the target point out when 

predicting the target within a window to ensure robust prediction, which is known as 

leave-one-out cross validation. Third, NPMR multiplies weights from individual 

predictors to accommodate complex interactions in many dimensions. NPMR provides 
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measures of model fit for model selection that incorporates the leave-one-out cross-

validation, namely cross-validated R2 for a continuous response and AUC and log 

likelihood ratio (LogB) for a binary response. We automate model fitting for random 

sampling using NPMR default settings.  
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APPENDIX B: SUPPORTING FIGURES 

Figure B1. Scatter plots and predicted curves of the mean percent loss in conductivity 
versus shoot water potential by species for data presented in (Linton et al. 1998, Hacke et 
al. 2000) and modeled using NPMR (Fig. 6B). NPMR specifications for Figure 6 are 
listed in Table C1 of C. 
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Figure B2. Ordination of first two axes from a Principal Components Analysis of 
variables defined in Table C2 of Appendix C. Axis 1 and 2 serve as predictors for models 
of tree species’ presence in Figure 6C. Each point represents a plot from the Forest 
Inventory Analysis of the U.S. Forest Service; 1724 plots sample a systematic grid of 
density 3.4 miles in eastern and western Oregon (Azuma et al. 2002, 2004). The distance 
from one point to the next in the ordination is proportional to their dissimilarity with 
respect to the variables shown. The angle and length of lines in the ordination represent 
loadings of variables on the PCA axes. Axis 1 captured a continentality gradient while 
axis 2 captured a summer drought gradient. The axes explain 82% of the variability in the 
data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



41 
 

 
 

Figure B3. Threshold strength (T) plotted versus the logistic function exponent, b 
(determining steepness), for three-dimensional patterns as black circles and two-
dimensional patterns as red crossmarks (Panel A). The same equation with differing 
dimensionality of input was used to generate the three-dimensional versus two-
dimensional patterns. Panel B shows corresponding three-dimensional patterns for select 
values of b plotted in Panel A. 
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Figure B4. Diagonality (D) decreases as the three-dimensional diagonal Gaussian ridge 
(shown) is rotatedθ degrees in the (x,y) plane. The three-dimensional surfaces depict the 
diagonal Gaussian ridge for each extreme value of θ . The surfaces sit on a circular base. 
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APPENDIX C: SUPPORTING TABLES 

Table C1. NPMR specifications and results for models displayed in Figure 6. NPMR is 
further described by McCune (2006). Specifications are associated with settings from 
Hyperniche version 1.19 (McCune and Mefford 2004). Table abbreviations are as 
follows: LM is local mean model form, LL is local linear model form, Q represents a 
quantitative (or continuous) response, B is a binary response, N* is the average 
neighborhood size, tolerance is the kernel width per predictor, and PLC is the percent loss 
of hydraulic conductivity. 
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Table C1 Continued. 

 

 

 

Response  Model 
form 

Data 
type  

N* Predictor Tol-
erance 

Panel A 

Picea abies; sapwood 
survival 

LM Q 10.8 Wood production  2.2 

(Bark beetle 
attacks*20)/DBH 

207.3 

Pinus contorta;  
sapwood survival 

LM Q 7.6 Tree vigor 22.2 

Bark beetle attacks/m2 11.5 

Panel B 

Juniperus 
osteosperma;  PLC 

LL Q 2.4 Branch water potential      
(-MPa) 

1.5 

Grayia spinosa; PLC    LL Q 1.6 Stem water potential         
(-MPa)                               

8 

Pinus edulis; PLC LL Q 0.9 Branch water potential      
(-MPa) 

0.8 

Chrysothamnus 
nauseosus; PLC 

LL Q 0.9 Stem  water potential        
(-MPa) 

0.8 

Panel C 

Pseudotsuga menziesii 
presence/absence 

LM B 235 PCA axis 1 0.88 

PCA axis 2 1.18 

Pinus ponderosa 
presence/absence 

LM B 98 PCA axis 1 0.49 

PCA axis 2 0.66 
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Table C2. Names and definitions of variables used to derive principal components for 
Figure 6C. Most variables and definitions follow use by Ohmann and Spies (1998). We 
use Daymet  climate data (Thornton et al. 1997), and latitude and slope data for radiation 
and heatload estimates following McCune and Keon (2002). See Appendix B, Fig. B2, 
for the accompanying PCA ordination.  

 

Variable  Definition 
ANNPRE Natural logarithm of mean annual precipitation (mm) 
SMRPRE Natural logarithm of mean precipitation from May to September 

(mm) 
CVPRE Coefficient of variation of mean monthly precipitation during wet 

and dry months (December and July)  
SMRTMP Mean summer temperature (oC) from May to September 
SMRTP Moisture stress during the growing season; a ratio of mean summer 

temperature (SMRTMP) over mean summer precipitation 
(SMRPRE) 

ANNTMP Mean annual temperature (oC) 
AUGMAXT Mean maximum temperature in August (oC)  
DECMINT Mean minimum temperature in December (oC) 
DIFTMP Difference between AUGMAXT and DECMINT (oC) 
CONTPRE Percentage of mean annual precipitation falling June through 

August 
slope Average slope of the plot (%) 
PDIR Potential annual direct incident radiation (MJ cm–2 yr–1) 
heatload Index accounting for aspect with zero being coolest and one as 

warmest (S6). 
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Chapter 3. Sensitivity of Climatic Niche Models to Changes in Inventory 
Method 
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ABSTRACT 

Data from large-scale biological inventories are essential for understanding and 

managing Earth’s ecosystems. The Forest Inventory and Analysis Program (FIA) of the 

U.S. Forest Service is the largest biological inventory in North America; however, the 

FIA inventory recently changed from an amalgam of different approaches to a nationally-

standardized approach in 2000. The two types of inventories represent different 

probabilities of detecting trees per sample unit. Published analyses that rely on FIA data 

may lump FIA data from different regionally-based designs (pre-2000) or lump data 

across the temporal changeover without exploring the consequences. The main goal of 

this study is to evaluate the effect of the inventory approach on a common analysis in 

ecology, modeling of climatic niches (or species-climate relations). We use non-

parametric multiplicative regression (NPMR) to build and compare niche models for 41 

tree species from the old and new FIA design in the Pacific coastal United States. We 

discover two likely effects of differences in inventory approach on niche models and their 

predictions. First, there is an increase from 4 to 6% in random error; this is noted for 

modeled predictions from the different inventories when compared to modeled 

predictions from two samples of the same inventory. Second, systematic error (or 

directional disagreement among modeled predictions) is detectable for 4 out of 41 species 

among the different inventories: Calocedrus decurrens, Pseudotsuga menziesii, and 

Pinus ponderosa, and Abies concolor. Hence, at least 90% of niche models and 

predictions of probability of occurrence demonstrate no obvious effect from the change in 

inventory design. Further, the fit or accuracy of all models developed for species’ 

occurrence based on climate was high for both data sets (mean externally-validated AUC 

= 0.935). Tree species’ occurrence is generally and strongly linked to climate in the 

Pacific coastal United States.  
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INTRODUCTION 

Survey data collected in situ across space and time are indispensable for 

understanding and managing earth’s ecosystems. Biological inventories occur worldwide 

as repositories of ecological data that can accommodate diverse stakeholders and research 

(EC 1997, Rudis 2003a,b). The Forest Inventory and Analysis Program (FIA) of the U.S. 

Forest Service conducts the largest in situ forest data collection effort in North America. 

However, the current nationally-standard inventory resulted from recent modifications of 

regional sample designs beginning in 2000. Before 2000, forest inventory data measured 

by FIA used varied plot sizes, densities, sampling extents, sampling periods, and 

protocols. While these differences do not affect the ability to provide statistical 

summaries at local to national scales for many attributes of interest (Barrett 2004, 

Bechtold and Patterson 2005), the comparison of plot-level attributes across inventories 

can be affected (Gray 2003). To use historical data with new standardized data, we need 

to confront an important issue that can pervade other biological inventories and large 

scale data (e.g. Nelson et al. 1990, Hijmans et al. 2000, NRC 2000): how do differences 

among inventories, when combined, confound patterns found in the data.  While one 

study concluded that lumping FIA sample designs is hazardous for the assessment of tree 

migration through time (Woodall et al. 2009a), data from the different FIA sample 

designs are often lumped across regions (before 2000) or across sample designs (pre- and 

post-2000) without knowledge of the consequences (e.g. Ohmann and Gregory 2002, 

Smith et al. 2004, Swenson and Waring 2006).  

One important use of forest inventory data is the development of ecological niche 

models (e.g. Iverson and Prasad 1998, Rehfeldt et al. 2008, McKenzie et al. 2003, 

Svenning and Skov 2004, Evans and Cushman 2009). The relationship between a species 

and its environment is part of a ‘species niche’ or an ‘n-dimensional hypervolume’ that 

describes conditions where a species can persist (Hutchinson 1957). Currently, niche 

models are used for many research purposes including species’ conservation (e.g. Hannah 

et al. 2002, Marini et al. 2009), species’ re-introduction (Yanez and Floater 2000), 

species’ migration and invasion (e.g. Woodall et al. 2009b, Crossman et al. 2011), 
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biodiversity conservation (e.g. Newbold and Eadie 2004), specimen collection (e.g. Jarvis 

et al. 2005), and the discovery of new species (Raxworthy et al. 2003). Niche models are 

also used to investigate basic scientific questions on various topics (e.g. Graham et al. 

2004, Kelly et al. 2008, Engelbrecht et al. 2007, Svenning and Skov 2004,  Hugall et al. 

2002). 

Generally, the effect of combining data collected using different approaches is a 

problem not only for niche modeling but for other applications, data sets, disciplines, and 

regions. For FIA data, differences in sample effort result in different plot-level 

probabilities of detecting species (Grosenbaugh and Stover 1957). This can bias niche 

models, particularly if different sample designs are used in different portions of a species’ 

niche and/or geographic range. In addition, sample effort typically increases with tree 

size in forest inventories, which could bias models if tree size varies substantially in 

different portions of a species’ niche or range. Consequently, we ask, does the change in 

FIA sample design affect niche models and their predictions for tree species across the 

Pacific coastal United States? In so doing, we determine how results from an amalgam of 

approaches (from the old inventory) compare to results from a single, large-scale 

standardized approach (the new inventory). We assume little change in species’ 

probability of occurrence across two sequential time periods of study. We also treat all 

aspects of sampling that changed in 2000 (further described below) as a single source of 

potential error. We compare data from the old and new design.  We also compare two 

samples of data from the new design. We juxtapose these comparisons to identify error 

due to sub-sampling within a given data set. Specifically, we ask: 

-How does the change in FIA inventory affect random error among predictions for 

models built from each inventory?  

-How does the change in FIA inventory affect systematic error among predictions for 

models built from each inventory?  

-How do random and systematic errors in modeled predictions compare among samples 

within the new, standardized inventory and among samples across inventories? 
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-How do models and geographic maps of modeled predictions compare among samples 

across inventories and within the new, standardized inventory? 

We answer these questions and also investigate evidence of bias in the data themselves to 

assist our interpretation of its effect on models and predictions. 

METHODS 

FIA inventories. The U.S. Forest Service Research branch was mandated in 1928 

to report on the status and trends of forest resources on all lands, with a focus on timber 

production (USDA 1992).  Since the 1930s, surveys have differed by state and region, 

and inventories were conducted all-at-once for a state (known as the periodic inventory). 

The periodicity of state inventories ranged from 4 to 18 or more years, and by the early 

1990s, most states completed a third inventory cycle with some states re-inventoried as 

many as six times (Hiserote and Waddell 2003, USDA 1992). Starting in 1990, the Forest 

Service initiated surveys through the Forest Health Monitoring Program (FHM), which 

used a fixed sampling grid across the U.S. with a quarter of the grid measured each year 

(Scott et al. 1993). A decade later, the periodic inventory merged with FHM to form the 

nationally-consistent annual inventory. Instead of periodic sampling that differed by state 

and rotated by state, the annual inventory samples 10% of permanent plots yearly in the 

west on a common national grid irrespective of state boundaries.  

Key differences among the periodic and the annual inventories for our study 

region include periodicity, grid density, sampling extent, plot size, and protocol (Tables 1 

and 2).  Each inventory represents a systematic sample with variable density, sampling 

dates, and types of lands included. In the old periodic inventory, some management 

regions only included land capable of timber production (or sites capable of producing 

1.4 cubic meters per hectare per year at their peak of mean annual increment). Not all 

inventories included lands protected from timber production (e.g., State and National 

Parks and federal Wilderness). The greatest difference in sample population between old 

and new inventories was the large National Parks in California and Washington that were 

measured in the new inventory. Some inventories relocated subplots from the fixed 
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design if a plot happened to straddle more than one condition class. Condition class 

classifies variation in a sampled area with respect to land use, forest type, and stand size 

class. Important differences between inventories at the plot level include the area sampled 

and the sampling methods used; the new design relies on a standard set of nested, fixed-

radius plots centered on four points for sampling trees of different sizes (See Appendix 

A, Figure A1). However, the old inventory often used a variable-radius method to sample 

most trees >12.7 cm DBH. This was done using a wedge prism projecting a fixed angle 

from a central point (Bitterlich 1948, Grosenbaugh 1952). The prism angle (or basal area 

factor, BAF) varied among regions to maximize efficiency (Table 2; also see Appendix 

A; Fig. A1), and this affected the probability of sampling trees of different diameters. The 

probability of tree capture is proportional to tree basal area for the variable-radius method 

(Grosenbaugh and Stover 1957); whereas, the probability of tree capture is proportional 

to tree density for fixed-radius plots (Grosenbaugh and Stover 1957). Also, the subplots 

of the new design, in general, are closer together and fewer compared to the old design, 

thus capturing less within-stand variation. The tree tally size criteria differ among and 

within designs (Table 2; Fig. A1 of Appendix A). 

The data we used from the old design sampled 100% of the plots on a 1 to 4 year 

cycle but not synchronously among regions (Hiserote and Waddell 2003). We used data 

from the new design that sampled 10% of plots across regions per year with a full round 

occurring every decade. Data from the new design spanned 2001 to 2007, and the data 

from the old design spanned 1988 to 2000 (with the exception of one ownership, which 

ended in 2001).  

 Study Area and Data Preparation. The area of study comprised the conterminous 

states within the Pacific Coast unit for the FIA program. The included states, California, 

Oregon, and Washington, are topographically diverse with numerous mountain ranges. 

Maritime influence combines with complex orographic effects and a wide span of latitude 

to create a variety of different climatic zones and vegetation types. The region has the 

broadest range of average annual precipitation (from 25 to 4600 mm/yr) found in the 

lower 48 United States. 
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Plot grid density and sample size were equalized among model-building data sets. 

Plots were selected from the old design that were on the shared base grid with 5.5 km 

spacing, except for the R5 inventory where this was not possible, which resulted in a 

subset of plots with mean spacing of 3.9 km. Plots with a tree species recorded more than 

100 kilometers outside the species’ range (as determined by existing flora and current 

herbarium records) were examined and removed from the analysis because they were 

presumed to be errors in identification. A total of 27 plots from the old design and 36 

from the new design were removed. Only plots that were at least 50% forested were 

selected from each dataset, resulting in pools for the old and new designs of 10,831 and 

6,950 plots respectively. The larger sample from the old design was randomly sampled to 

obtain a sample size equivalent to that of the new design (N=6950).  

Each data set (one for the old and one for the new inventory) was randomly 

sampled without replacement to split into two halves of equal size, referred to as the 

“training” and “testing” data sets. Species’ occurrences were summed for the training 

data. Species with more than 25 occurrences in both training sets were retained for a total 

of 41 species (Table 3). The training data were used to build models and the testing data 

were used for model selection and evaluation. Figure 1 shows geographic comparisons of 

training data set locations among designs. 

We extracted climate data corresponding to FIA plot locations to serve as climatic 

variables or predictors for our species-climate models. We started with 11 variables 

derived by Ohmann and Gregory (2002) from Daymet grids of the western United States 

(Thornton et al. 1997) (Table 4). We reduced the number of grids or climate variables as 

input for our analyses by performing a Principal Components Analysis (PCA) (PC-ORD 

version 5.2; McCune and Mefford 2006). We first gathered data for the PCA by taking a 

random sample comprising 8,000 points across Washington, Oregon, and California. We 

extracted the corresponding data from the 11 climate grids. We performed a PCA based 

on a matrix of correlation coefficients among the data. We selected the first four 

components that represented 97% of variability in the data (Table 5). The four 

corresponding eigenvectors were then used to generate the new grids representing PCA 
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scores across Washington, Oregon, and California (Table 5). The use of PCA scores as 

predictors in our species-climate models ensured statistical independence among the 

predictors. The PCA scores also simplified the comparison among inventories by 

reducing the number of predictors.  

Model building. Non-parametric multiplicative regression (NPMR) was used to 

build the climate niche models using Hyperniche 2.0 (McCune 2006, McCune and 

Mefford 2008). This technique was chosen among numerous empirical techniques in the 

literature for species-habitat models (e.g. Elith et al. 2006, Guisan et al. 2007) as it 

captures the nature of biological response to multiple interacting factors (McCune 2006). 

Further, current theory supports that species’ response patterns take non-linear, complex 

shapes (Austin 2002, Oksanen and Minchin 2002), and when tested against other popular 

techniques for modeling different shapes of simulated data sets, NPMR proved to be most 

tractable with any shape of underlying data structure (Lintz et al. 2010).  

NPMR objectively optimized kernel width by maximizing fit. To do this, a local 

window centered on a target point within the predictor space (as with other kernel 

smoothers). A weight function was applied within the window to assign numeric weight 

to points surrounding the target that decrease with distance from the target. A local model 

(the local mean) predicted the dependent variable at the target point. NPMR repeated this 

procedure for all target points to generate a prediction curve or surface. NPMR omitted 

the target point when predicting the response at that point and multiplied weights from 

individual predictors to automatically accommodate complex interactions in many 

dimensions.  

To adequately gauge the effect of inventory on species-climate models, we 

compared statistics from models built from the different data. We also compared 

qualitative attributes of the models and geographic maps of predicted probabilities of 

occurrence generated from the different models. We juxtaposed comparisons of the old 

and new inventories (referred to as ‘old-new’) with comparisons of the two subsamples 

of the new inventory (referred to as ‘new-new’). The old-new comparison used the 

training sets from each inventory for model building. The new-new comparison used both 
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the testing and training data sets within the new design for model building. Each half of 

the data set from the new inventory was a sample for model building with the other half 

used for model testing. In this way, we examined the type of error that can arise in 

NPMR from taking different samples of the same data set. The data sets were so large 

that bootstrapped confidence bands were both unnecessary and too time consuming. We 

reasoned that if the same magnitude and type of deviations from the predicted 1:1 line 

across species in the ‘old-new’ comparison are also seen in the ‘new-new’ comparison, 

then error arising from sources other than sample design or environmental change were 

likely the cause.  

 Model Evaluation and Selection. Two measures of model performance for binary 

data were used for different purposes, model selection and model evaluation. First, we 

used the LogBor the average contribution of a sample unit (or FIA plot) to the log 

likelihood ratio for model selection (McCune 2006). Popular statistics for model selection 

with classifiers are often derived from the likelihood ratio such as the Akaike Information 

Criterion (AIC) and the Bayesian Information Criterion (BIC) (Hastie and Tibshirani 

2001); however, the AIC and BIC approximate the optimization curve used in model 

selection for sample sizes too small to generate the curve empirically (Hastie and 

Tibshirani 2001). The empirical optimization curve represents the loss in externally-

validated fit that occurs as model complexity increases. Theoretically, the model with the 

greatest externally-validated likelihood ratio is the most robust and accurate. Given our 

large sample size, instead of relying on an index to approximate this curve such as an 

AIC, we rely on external validation itself using LogB. This is considered to be the ideal 

scenario for model selection that can occur only when sufficient data are available 

(Hastie and Tibshirani 2001).  

Second, we use the Area under the Receiver Operator Characteristic (ROC) curve 

or AUC for model evaluation (Hanley and McNeil 1982). The LogB is not suited to 

comparing the fit of models among species with different prevalence. Instead, the AUC is 

best for comparing model performance among species that differ in prevalence as it does 

not depend on prevalence (Fawcett 2006). Hence, we used the externally-validated AUC 
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to compare the best models among species. An AUC of 0.5 represents a model fit no 

better achieved by chance alone. The maximum value of the AUC is 1.   

Climate and species’ occurrence data from plots withheld from model building 

were used to calculate externally-validated measures of model performance. The 

withheld climate data were supplied as input to the candidate models (after the models 

were built from the training data sets), and the corresponding withheld species’ 

presence/absence data were compared to the resulting predictions.  

The relationship between the externally-validated AUC and the externally-

validated LogB showed strong correlation across species for the best candidate models 

(See Appendix A; Fig. A2). Each species displayed a different shape and slope of the 

relation between the AUC and LogBdue to the dependence of LogBon species’ 

prevalence. Model performance was linked to the number of predictors (Fig. A2).  

  Sample Design Effect on Models and Data. We compared models based on the 

two sample designs using the following measures: the fit as externally-validated AUC, 

the quality of the predictors or the type of predictors chosen for a model, random 

deviations from the 1:1 line for predicted values among models of the same species, and 

systematic deviations from the 1:1 line (or whether models from one data set tended to 

overestimate or underestimate probability of occurrence, relative to the other data set). 

Model comparisons were generated by obtaining predictions from models based on the 

same random sample of 3,475 points within the study area. Predictions were compared 

for old-new and new-new comparisons. The random error or non-directional deviation 

from the 1:1 line was derived using Root Mean Squared Prediction Error (RMSE). 

However, the RMSE is a function of the maximum in predicted probability of occurrence 

for a species, which varied with species’ prevalence. Hence, the RMSE was standardized 

to compare across species with different maxima in probability of occurrence. The 

differences from the 1:1 line were divided by the range of the data or maximum 

probability of occurrence before squaring and summing to yield the ‘normalized RMSE’ 

or NRMSE. The NRMSE is often expressed as a percentage. The NRMSE represents the 

degree of deviation from the 1:1 line as a percentage of the axis length. The Wilcoxon 
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signed-rank test evaluated the null hypothesis that the median in NRMSEs from the new-

new and old-new comparisons were equal (Wilcoxon 1945). The systematic deviations 

from the 1:1 line were also compared. The residuals were standardized by their range, 

and three quantiles were plotted and compared for the old-new and new-new comparison, 

the 25th, 50th, and 75th. These indicate the central tendency of the residuals and whether 

one data set tends to model and predict a greater probability of occurrence compared to 

another. The median standardized residual tracks the median non-zero standardized 

residual closely and linearly except for values very near to zero, which were not 

meaningful.  

Raw differences among data sets were investigated to aid the interpretation of 

modeled comparisons. We compared several metrics from the data: ‘climatic bias,’ 

probability of tree capture, and species’ prevalence. Climatic bias was defined as the 

disagreement among two histograms where each histogram represents the frequency of 

climatic data values corresponding to locations where a species’ was found (Kadmon et 

al. 2003). This characterized and compared species-specific structure of climatic data 

from two different samples of presence/absence data. Although, instead of calculating a 

statistic to characterize climate bias, we examined it visually for reasons discussed in 

Appendix B. Also, we derived gross measures of probability of tree capture across 

sample designs using the average number of trees per FIA plot by management region. 

Before the switch from the old to new design, approaches to sampling differed in 

numerous aspects by management region; hence, we used management regions as sample 

units to examine probability of tree capture across designs.  

Sample Design Effect on Maps. We used geographic grids of PCA scores of climate 

variables across the study area as input to make maps of probability of species’ 

occurrence for species-climate models (using Hyperniche 2.0 and ArcGis 9.2). We 

mapped differences among predictions for new-new and old-new comparisons. This was 

done for three species, Arbutus menziesii, Tsuga heterophylla, and Pinus ponderosa. The 

species were chosen to span a representative range of prevalence in the data (N=301, 613, 

958 respectively). We extrapolated conservatively or little beyond the existing range of 
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the data using the default setting in Hyperniche 2.0 where the minimum neighborhood 

size (in environmental space) for an estimate (in geographic space) is equal to or greater 

than a quarter of the average neighborhood size for a model. The average neighborhood 

size is the average amount of data bearing on the estimate of the response variable at each 

point.   

RESULTS 

Sample Design Effect on Models. Most species from the old and the new FIA 

sample designs yielded similar predicted values for models of species’ probability of 

occurrence (models built from the different data sets were given the same new set of 

climatic data as input) (Fig. 2). The mean NRMSE in the old-new comparison was 6% 

(95% quantiles: 3%, 12%) compared to a mean of 4% (1%, 10%) in the new-new 

comparison for the 41 species. The difference among median NRMSEs (across species 

for old-new and new-new comparisons) was not likely to be due to chance alone 

(Wilcoxon signed-rank two-tailed, p < 0.001). Additionally, many species that showed 

strong systematic deviation from the 1:1 line among designs (detectable by eye) also 

showed this type of deviation for models built from different samples of the same design 

(AECA, CHNO, PIAL, POBAT, QUAG, QUDO, QUWI; Fig. 2, Fig. 3). Others showed 

greater deviation from the 1:1 line in the old-new comparison than in the new-new 

(ABAM, ABMA, CONU, PIJE, PILA, PIMO, PIMONT, PIPO, PISA, QUKE, SESE). 

Many of these species comprised a subset of 16 species with prevalence below 100 

among training data sets (where N=3475; Table 3).  

The median standardized residuals gauged systematic error in the residuals and 

remained close to zero for most species. Medians ranged from 0.02 to -0.06 among old-

new and new-new comparisons (Fig. 4). Four species, ABCO, CADE, PIPO, and PSME, 

had greater probabilities of occurrence predicted for the old design compared to the new 

(Fig. 4). The medians of the deviations were, however, small (absolute systematic 

deviation < 0.06). Systematic error was present but substantially weaker in the new-new 

comparison than in the old-new comparison for CADE, PIPO, and PSME (Fig. 4).  
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The differences among models built with old and new data did not appear to be 

caused by model selection of different predictor variables. The same number and type of 

predictors were chosen among models for 26 species in the new-new and 26 species in 

the old-new comparisons (see species codes with asterisks in Figues 2 and 3). Most 

models selected four predictors out of the four available (an overall mean of 26 species 

among models built from different data pools). Only four instances occurred with models 

containing two predictors, and the rest contained three.  

All models contained the first PCA component. Also, most predictions fell near 

the 1:1 line even for models without the same number and/or type of predictors (e.g. 

ABAM, ABGR, ABLA in Fig. 2 and 3).  Despite the differences among predictors for 

many of the compared models, agreement in model fit for old-new was strong and similar 

for new-new (NRMSE of AUC=8% for new-new and 13% for old-new; Fig. 5A, Fig. 

5B). The minimum model fits (or the externally-validated AUC) among the comparisons 

were 0.766 (new-new) and 0.835 (old-new), and the maximum models fits were 

essentially the same, 0.995 and 0.996 (new-new and old-new respectively). The mean 

externally-validated AUC across all models was 0.935. Four species consistently had fits 

above 0.975 across data sets: Pinus monophylla, Sequoia sempervirens, Quercus 

douglasii, Quercus agrifolia. These species have prevalence under 100 and occur mostly 

in California. Most species’ with strong fits tended toward increased agreement among 

predictions (Fig. 5C, Fig. 5D). However, the agreement between compared models in 

type and number of predictors did not play a role in these relationships (see symbol 

coding in all subplots of Fig. 5). Species with high prevalence had slightly lower fit than 

species with low prevalence, albeit very weakly (nonparametric regression, cross-

validated r2= 0.08) and nonlinearly (results not shown). Model fit did not vary with 

sample design across all models.  

Sample Design Effect on Data. The mean number of trees per plot by size class 

(where the mean is used as a proxy for probability of tree capture) deviated strongly from 

the expected 1:1 line (RMSE=8 or NRMSE=25%). The deviation was pronounced for all 

but the largest trees (Fig. 6). The number of trees per plot were higher for the R6 and 
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BLM areas for all tree sizes in the old design compared to the new design. For the regions 

using variable-radius sampling in the old inventory, numbers of small trees (12.7-38.1cm 

dbh) per plot were lower in the old inventory, while numbers of larger trees (38.1-76.2 

cm) were higher in the old inventory (Fig. 6; tree selection probabilities for each design 

are shown in Figure A1).  

Differences among the ECDFs (empirical cumulative distribution functions) from 

different sample designs for each species was more visually pronounced for species with 

prevalence <100 (e.g. CONU, PIMO, QUAG, and POBAT) (Fig. 7). However, the 

difference among two ECDFs drawn from the same population is always more 

pronounced for smaller samples (see Appendix A; Fig. A4). Still, little disagreement or 

climatic bias was evident for most species (where climate bias is the difference among 

two ECDFs of climate values corresponding to species’ locations) (Fig. 7). One would 

expect that species with the most pronounced systematic error in the modeled predictions 

would demonstrate greatest evidence of climatic bias in the data (which may be attributed 

to sampling differences). This was not clearly the case as ABCO, CADE, PIPO, and 

PSME did not have climatic bias greater than that shown for species without systematic 

error among predictions (e.g. ALRU, QUCH, TSHE, LAOC, CHNO, ABSH)(Fig. 4, Fig. 

7). However, for species with greater prevalence like PSME, a small gap likely has more 

ecological consequence and meaning compared to the same gap in a species with low 

prevalence (see Fig. A4). To zoom in on ABCO, CADE, PIPO, and PSME we used 

Quantile-Quantile plots (QQ-plots). QQ-plots among two samples will be linear if two 

samples come from the same distribution. The ABCO QQ-plots showed the strongest 

exception to linearity for PCA2, and the tail of the QQ-plot for the old-new comparison 

deviated compared to the new-new comparison (Fig. 8).  

Sample Design Effect on Maps. Coarse patterns in predicted probability of occurrence 

in geographic space appeared similar between sample designs within species, except for 

the aerial extent where predictions were made (Fig. 9). Also, maps of the differences 

among predictions within the old-new and new-new comparisons revealed spatial 

clustering of strong differences at different scales (Fig. 10). These patterns (e.g. in the 
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highest magnitude residuals per map) tended to follow broad gradients in topography and 

climate rather than cluster by management region (Fig. 10). A map of FIA management 

regions in the old inventory is provided (Appendix A; Fig. A5). Spatial clustering does 

not appear to correspond with these regions. Spatial clustering at scales much smaller 

then FIA management units was evident across new-new and old-new comparisons (e.g. 

the contiguous blue patch in the upper left portion of the map of “ARME new-new,” Fig. 

10). The source of that error is unknown but is likely due a contributing variable not 

included in models such as fire or competitive exclusion.  

The maximum absolute differences in predictions differed among species (Fig. 10). 

These magnitudes depended on the difference among predictions for a location and the 

range in probability of occurrence predicted for a species. In all three examples the old-

new had the highest absolute differences among the comparisons.  

DISCUSSION 

We found two likely effects of inventory method on niche models and their 

predictions. First, there is a 2% increase in random error among modeled predictions 

when using one design to predict occurrences in the other design (an average 2% more 

than within-design sample error for a single within-design comparison). Second, small 

quantifiable systematic error is present for 4 out of 41 species, yet the error for only one 

species, ABCO, shows the strongest evidence for a link to inventory.  Each of these two 

effects are discussed below.  

Since the 2% effect in NRMSE was evident as as a central trend across species, 

systematic environmental change such as climate change is probably not the main reason. 

This argument is based on evidence from the past as climate change affected tree species’ 

ranges in the northern hemisphere differentially rather than uniformly during periods of 

historical migrations (Davis and Shaw 2001). However, it is not possible to completely 

rule out climate change or other potential causes that differ from inventory type.  The 

forest at time t can be slightly different than the forest at time t + 10 years for natural 

reasons such as logging, fire, pathogen outbreak, or recruitment patterns that follow 
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changes in climate. However, presence/absence is a coarse-scale variable, and trees are 

long-lived. For such natural factors to translate to presence/absence requires a large 

magnitude of effect. 

We believe the effect in NRMSE for the old-new comparison is due largely to the 

change in inventory methods for the following reason: probability of occurrence is a 

function of plot size, and plot sizes differed across management regions in the old 

inventory. Larger plots were used for all tree sizes on R6 and BLM lands while other 

management regions used variable radius plots with plot size proportional to tree 

diameter. At least with respect to tree fequency, the varied effects of different regional 

inventories on tree frequency are suggested (Fig. 6). Hence, when the data from the old 

design were pooled across regions with different protocols, the cumulative effect (of 

different types of bias imposed by different sampling methods) likely manifested as 

random error that propagated to modeled predictions. The difference in plot size that 

changes a presence record to an absence record at a local scale will depend on the 

species’ density and size distribution for each of species. Our work suggests that the 

variation in size of FIA plots within and among inventories probably has a small effect on 

presence/absence data patterns. 

Inventory change does not seem to be the cause for the systematic error associated 

with Calocedrus decurrens, Pseudotsuga menziesii, and Pinus ponderosa. We reach this 

conclusion given the assumption that the effect of the inventory would first manifest as 

climatic bias (where climate bias is the difference between histograms of climatic data 

corresponding to presence locations), which was not clearly the case for these species. 

Also, systematic error among modeled predictions was present for these three species in 

the new-new comparison (albeit weaker than the systematic error for the old-new 

comparison).  

Conversely, evidence of climatic bias existed for Abies concolor (Fig. 4, Fig. 7, 

Fig. 8). Abies concolor is part of an intergrading complex of species with Abies grandis 

(Critchfield 1988). Field discernment of the two species can be difficult where they 

hybridize yet the species are ecologically distinct (Ferrell and Smith 1976, Zobel 1974). 
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Protocols for identification of both species changed in some areas from the old to new 

design. Old data from R6 national forests tended to either use one species code or the 

other in areas where new crews have used both, which would affect the tails of the 

frequency distributions in climate (see Figures 7 and 8). This change of protocol 

associated with inventory shows up as climatic bias because it changes the geographic 

distribution of presences. The change manifests as difference between frequency 

distributions of a climate variable. 

Spatial patterns in the mapped differences between predictions occurred across 

scales for the old-new as well as the new-new comparisons. To further examine whether 

differences among inventories may be the cause for these patterns, we clipped the maps 

shown in Figure 10 by management regions (see Appendix A; Fig. A5) and compared 

distributions of the differences for old-new and new-new by region. Although the 

disparity in median differences (among mapped predictions) was greater for select 

management regions in old-new compared to new-new, the patterns did not correspond 

clearly with differences in inventory (not shown). Apparently the climate predictors did 

not segregate by management region enough to affect the distribution of residuals within 

them. The overlap in climate values among regions with different plot designs probably 

explains why, despite greater error, the accuracy of the species’ predictions were high 

and similar among designs (e.g. revealed by externally-validated AUCs).  

Spatial autocorrelation. Maps of the differences between predictions (Fig. 10) 

show spatial autocorrelation. Spatial autocorrelation occurs when observations in close 

spatial proximity tend to be more similar than expected for observations more spatially 

separated (Schabenberger and Gotway 2005). The treatment of spatial autocorrelation in 

niche modeling is a topic of active research (Segurado et al. 2006, Miller et al. 2007, 

Dormann et al. 2007, Fortin and Dale 2009). In our work, we used a kernel smoother in 

climate space. The climate variables were spatially auto-correlated in geographic space. 

We ignored the autocorrelation structure among the data in climate space, and this is 

known as the “working independence” method in kernel regression, which has theoretical 

basis (Ruckstuhl et al. 2000, Lin and Carroll 2000). Kernel smoothers are designed to 
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accommodate spatially dependent data (e.g. Yakowitz and Szidarovszky 1985, Wahba 

1990, Hutchinson and Gesler 2004). Spatial aggregation at variable scales should be 

expected in the maps of differences among predictions (our results). We do not attempt to 

account for local processes that can govern spatial autocorrelation (e.g. in local climate, 

which potentially explains much variability in species’ presence/absence). Additionally, 

spatial aggregation in residuals can result from failing to account for other potential 

drivers.  

Cross-validation methods. We found noteworthy variation in modeled output due 

to within-design sub-sampling. This variability can be mitigated through a different 

method of model selection. Model selection by external validation (the method we used 

here) is a variation of k-fold cross-validation where k = 2. Model selection with greater 

than 2-fold cross-validation uses models built from repeated sub-sampling of the data 

(henceforth called cross-validation). In cross-validation, the sample is randomly divided 

into k > 2 subsamples. One sub-sample is retained (out of the k sub-samples) as the 

testing or validation data, and the other k-1 subsamples are used each to train or build 

models. Results of model performance for iteration through k subsamples are combined 

for optimization. The model that is most robust to external data and accurate is selected.  

We further examined the reason behind differences in the quality of models for 

the subsets of models choosing different predictors for a species and among sub-samples. 

The results presented here suggest that model selection using cross-validation with 

NPMR may result in greater precision (without compromising robustness) compared to 

external validation. This interpretation is based on preliminary results (not shown) 

stimulated from the modeling results of this work. New-new predictions generated from 

models selected by external validation were compared with new-new predictions 

generated from models selected by cross-validation. The agreement among predictions 

improved and model similarity increased for model selection using cross-validation. This 

is an interesting (albeit preliminary) finding given that the statistical paradigm considers 

external validation as the gold standard in model selection (Hastie and Tibshirani 2001).  
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More research is needed in this regard with respect to kernel regression, NPMR, and 

large sample sizes.  

Sampling effects. Sampling has been identified as an area requiring further 

investigation in niche modeling especially given the haphazard nature of some data sets 

(Elith et al. 2006, Guisan and Zimmerman 2000, Araújo and Guisan et al. 2006, 

Heikkinen et al. 2006, Hampe 2004). Recent papers that address sampling issues with 

respect to niche modeling emphasize presence-only data and explore sample size (e.g. 

Pearce and Ferrier 2000, Stockwell and Peterson 2002, Elith et al. 2006, Hernandez et al. 

2006), sample completeness (e.g. Kadmon et al. 2003), sample attributes for optimal 

model validation (e.g. Araújo et al 2005), idealized sampling strategy for niche models 

(e.g. Wessels et al. 1998, Reese et al. 2005), and sample bias due to site accessibility 

and/or presence-only data (Reese et al. 2005, Kadmon et al. 2003, Kadmon et al. 2004). 

Sampling bias can add extraneous error to ecological signals especially with presence-

only data, which can mislead model development, spuriously increase or decrease fit, and 

affect spatial predictions (Barry and Elith 2006, Guisan et al. 2006, Araújo and Gusian 

2006). Our work suggests a small effect occurs on predictions from niche models due to a 

major change in a large biological inventory, which, in part, represents a change in 

sample design. 

CONCLUSION 

The many features that changed with the overhaul of sample design for the Forest 

Inventory Analysis Program had a small cumulative impact on niche models and maps of 

probability of occurrence based on tree species’ presence/absence data. Further, the fit of 

all the models was high across data sets. Tree species’ occurrence is strongly linked to 

climate in the Pacific coastal United States. Modeled predictions in probability of 

occurrence disagreed little between inventories and also between two sequential decades. 

However, presence/absence data and their predictions will not necessarily detect low-

level mortality or changes by life stages. Finally, our ability to describe and probe the 

basis of species’ distributions depends on the quality of our data. This work corroborates 



65 
 

 
 

with the pervasive and pressing need to quantify different types of error in niche 

modeling to address issues associated with large-scale data integration (Barry and Elith 

2006, Elith et al. 2002).  
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FIGURES 

Figure 1. Study area. Locations of FIA plots for training samples (N=3475) are shown 
for the old and new design.  
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Figure 2. Predicted probability of occurrence by species for models built from new 
versus old sample designs. Red line represents the ideal 1:1 line. Predicted values were 
generated from a random sample of unseen climate data (N=3475). Species codes with 
asterisks* denote that the compared models for that set of axes had the same model 
functional form or number and type of predictors.  
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Figure 3. Predicted probability of occurrence by species for models built from ‘new 
versus new’ sample designs where a random sample from one design is compared to a 
second random sample from the same design. Red line represents the ideal 1:1 line. 
Predicted values were generated from a random sample of unseen climate data (N=3475). 
Species’ codes with asterisks* denote that the compared models for that set of axes had 
the same model functional form or number and type of predictors.  
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Figure 4. Stem plots show the central trend in the standardized residuals with respect to 
the 1:1 lines in Figures 2 and 3. The mean (white dot), the 25th quantile (black dot), and 
the 75th quantile (black dot), are shown by species (rows) and by comparison, old-new 
(left) and new-new (right). 
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Figure 5. Top row: Externally-validated area under the receiver-operator characteristic 
curve (AUC) compared from old-new comparison and new-new comparison. Bottom 
row: Standardized RMSE (NRMSE) versus mean AUC among models for old-new and 
new-new comparisons. Points represent species. Paired models where qualitatively 
different predictors were chosen for the same species are shown with circles. Paired 
models where the same predictors were chosen for a species are shown with triangles. 
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Figure 6. Mean number of trees per plot and by age class. The ideal 1:1 line is shown. 
Each point represents a size class in a particular management region from the old design 
(see Table 1). 
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Figure 7. The ECDF (empirical cumulative distribution function) for each climate 
variable (or PCA component) as it corresponds to species’ occurrence for each design 
(old and new).  Climate variables are color coded, magenta shows PCA1 from both 
designs, black shows PCA2 from both designs, blue shows PCA3 from both designs, and 
red shows PCA4 from both designs.  
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Figure 8. QQ-plots are shown comparing the frequency distributions of climate variables 
corresponding to species’ presence records across four species (rows) and climate 
variables (columns). QQ-plots for the old-new comparisons are shown in black and QQ-
plots from the new-new comparisons are overlaid in pink. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



74 
 

 
 

Figure 9. Maps of probability of occurrence are shown for three species Arbutus 
menziesii (top row), Pinus ponderosa (middle row), and Tsuga heterophylla (bottom 
row). Maps correspond to prediction from each data set compared (see Fig. 2).   
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Figure 10. Maps of differences among probabilities of occurrence show regions of 
uncertainty among the maps of probability of occurrence (see Fig. 9). The difference for 
the old-new comparison equals the new minus the old (maps shown in Figure 9 were 
subtracted). The difference for the new-new comparison equals the second sample of the 
new minus the primary sample of the new. Differences are shown for the old-new 
comparison (top row) and the new-new comparison (bottom row) for the three species in 
Figure 9, Arbutus menziesii (left column), Pinus ponderosa (middle column), and Tsuga 
heterophylla (right column).  
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TABLES 

Table 1. Data source definition, inventory dates, and sampling density by inventory units 
in California, Oregon, and Washington (Hiserote and Waddell 2003). 

 

 

 

Data 
Code Source name States Dates of 

Inventory 

Distance 
between 
points of 

sample grid 
Old, Periodic Inventory 
WWA FIA, Western 

Washington 
WA 1988-1990 

 
3.9 km 

 
EW FIA, Eastern 

Washington 
WA 1990-1991 5.5 km  

CA FIA, California CA 1991-1994 5.5 km (7.7 
km in oak 
woodland) 

WOR FIA, Western Oregon OR 1995-1997 5.5 km 
EOR FIA, Eastern Oregon OR 1998-1999 5.5 km 
R6 Forest Service, 

Region 6, Pacific 
Northwest 

OR, WA 1993-1997 
 

2.7 km (5.5 
km in 
wilderness) 

R5 Forest Service, 
Region 5, Pacific 
Southwest  

CA 1993-2000 
 

Numerous 
(5.5 km base 
grid) 

BLM Bureau of Land 
Management 

Western OR 1997 
 

5.5 km 
 

RMRS FIA, Rocky 
Mountain Research 
Station 

Eastern WA, 
Eastern CA 

2001, 1997 5.5 km 

New, Annual Inventory—all states 
PNW 
Annual 

FIA CA, OR, WA CA and OR 
began in 
2001;WA in 
2002 

5 km 
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Table 2. Differences in plot-level protocols by inventory units for the “large tree” size 
class. Variable radius plots were sampled using a wedge prism. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Unit code Plot Radius 
(m) 

BAF* 
(m2/ha) 

 Sub-
plots 
(#) 

Total 
area 
(m2) 

Tree tally 
size criteria    
(DBH, cm) 

Periodic Inventory 
WWA variable 6.9  5 variable >17.8** 
EWA variable 9.2 5 variable >12.7 
CA variable 6.9 5 variable >17.8  
WOR variable 6.9 5 variable >12.7  
EOR variable 4.6 or 

6.9 
5 variable >12.7  

R6+BLM 8.016 N/A 5 1009.4 >7.6  
R6+BLM  15.575 N/A 5 3810.6 >33  
R5 variable 4.6 or 

9.2 
5 variable >12.7  

Annual Inventory 
PNW 
Annual  

7.32 N/A 4 672.5 >12.7  

PNW 
Annual  

15.575 N/A 4 4050.1 >76.2 west; 
>61 east 

      
*BAF stands for basal area factor. 
**DBH stands for tree diameter at breast height. 
 “West” and “east” refer to locations relative to Cascade Mountains in 
Oregon and Washington. In California, the same minimum diameter as 
“east” was used. 
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Table 3. Forty-one species were studied. Species were retained for study if they 
contained more than 25 occurrences in the primary training data sets from the old and the 
new design.  

Code Latin name Common name 
Prev-
alence 
(old) 

Prev-
alence 
(new) 

ABAM Abies amabilis Pacific silver fir 243 213 
ABCO Abies concolor white fir 801 579 
ABGR Abies grandis grand fir 333 351 
ABLA Abies lasiocarpa subalpine fir 189 164 
ABMA Abies magnifica California red fir 214 121 
ABPR Abies procera noble fir 70 80 
ABSH Abies shastensis Shasta red fir 31 46 
ACMA Acer macrophyllum bigleaf maple 291 261 

AECA Aesculus californica California 
buckeye 26 37 

ALRU Alnus rubra red alder 334 358 
ARME Arbutus menziesii Pacific madrone 305 301 
CADE Calocedrus decurrens incense-cedar 573 398 

CHNO 
Chamaecyparis 
nootkatensis 

Alaska yellow-
cedar 32 35 

CONU Cornus nuttallii Pacific dogwood 100 72 
JUOC Juniperus occidentalis western juniper 274 356 
LAOC Larix occidentalis western larch 210 212 
LIDE Lithocarpus densiflorus tanoak 197 271 
PIAL Pinus albicaulis whitebark pine 57 34 
PICO Pinus contorta lodgepole pine 475 450 
PIEN Picea engelmannii Engelmann spruce 178 145 
PIJE Pinus jeffreyi Jeffrey pine 389 213 
PILA Pinus lambertiana sugar pine 515 324 
PIMO Pinus monophylla singleleaf pinyon 58 76 
PIMONT Pinus monticola western white pine 255 184 
PIPO Pinus ponderosa ponderosa pine 1133 958 

PISA Pinus sabiniana California foothill 
pine 48 73 

PISI Pinus serotina pond pine 76 73 
POBAT Populus balsamifera black cottonwood 60 35 
PSME Pseudotsuga menziesii Douglas-fir 1830 1920 
QUAG Quercus agrifolia California live oak 48 31 
QUCH Quercus chrysolepis canyon live oak 407 374 
QUDO Quercus douglasii blue oak 56 97 
QUGA Quercus garryana Oregon white oak 101 106 
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Table 3 Continued. 
 

 

 

 

 

 

 

 

 

Table 4. Definitions for climate variables derived by Ohmann and Gregory (2002) from 
Daymet values (Thornton et al. 1997) used in the Principal Components Analysis. 

 

Code Latin name Common name 
Prev-
alence 
(old) 

Prev-
alence 
(new) 

QUKE Quercus kelloggii California black oak 463 317 
QUWI Quercus wislizenii interior live oak 84 94 
SESE Sequoia sempervirens redwood 44 76 
TABR Taxus brevifolia Pacific yew 116 81 
THPL Thuja plicata western redcedar 332 321 
TSHE Tsuga heterophylla western hemlock 567 613 
TSME Tsuga mertensiana mountain hemlock 180 161 

UMCA Umbellularia 
californica California-laurel 97 98 

Variable  Definition 
ANNPRE Natural logarithm of mean annual precipitation (mm) 
ANNSWRAD Annual average of the total daily incident shortwave radiative flux    

(MJ m-2 day-1) 
SMRTMP Mean monthly summer temperature for June, July, and August (oC) 
SMRPRE Natural logarithm of mean precipitation from May through 

September (mm) 
CVPRE Coefficient of variation of mean monthly precipitation for wet and 

dry months (December and July)  
ANNGDD Average number of growing degree days where daily air 

temperatures exceed 0.0 °C 
SMRTP Moisture stress during the growing season; a ratio of mean summer 

temperature (SMRTMP) over mean summer precipitation 
(SMRPRE) 

ANNVP Annual mean of the daily average of partial pressure of water vapor 
in the air near the surface (Pa) 

AUGMAXT Mean maximum temperature in August (oC)  
DECMINT Mean minimum temperature in December (oC) 
DIFTMP Difference between AUGMAXT and DECMINT (oC) 
CONTPRE Percentage of mean annual precipitation falling June through 

August 
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Table 5. PCA loadings corresponding to the Daymet climate variables for each 
component or eigenvector. We used (and show) the first four eigenvectors or V vectors as 
climatic predictors where each is scaled to its standard deviation. The PCA was based on 
a matrix of correlation coefficients among the data. Each respective eigenvalue is shown 
in the second to last row, and the cumulative variance explained with the addition of each 
eigenvector is shown in the last row.  

  
Climate 
Variable PCA1 PCA2 PCA3 PCA4 
ANNGDD 0.9228 0.2589 0.2695 0.0319 
ANNPRE -0.8082 0.5282 -0.0299 0.1217 
ANNSWRAD 0.7613 -0.1694 -0.4915 -0.2046 
ANNVP 0.2223 0.7232 0.6341 0.1060 
AUGMAXT 0.9291 -0.1634 0.1353 0.2793 
CONTPRE -0.1127 -0.7740 0.6006 -0.0894 
CVPRE -0.0056 0.7378 -0.6187 0.2054 
DECMINT 0.6329 0.6928 0.3103 -0.0735 
DIFTMP 0.3694 -0.8390 -0.1563 0.3644 
SMRPRE -0.9135 -0.0095 0.3162 0.1599 
SMRTP 0.9703 0.0903 0.0506 -0.0096 
Eigenvalue 5.323  3.260 1.702 0.361 
Cumulative % 
variance 48.39 78.03 93.49 96.78 
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APPENDIX A: SUPPORTING FIGURES 

Figure A1. Relationship of minimum tree diameter versus plot size for the different 
inventory approaches in the study area. For all inventories, smaller-diameter trees are 
measured on smaller plots.However, the probability of inclusion of a particular tree size 
varies among inventories. Legend codes match those used in Tables 1 and 2.   
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Figure A2. Externally-validated AUC is plotted versus externally-validated LogBfor 
comprehensive lists of candidate models generated from NPMR (top and bottom). Values 
are shown for models generated for three species from the first training sample of the 
new design, Arbutus menziesii (ARME), Tsuga heterophylla (TSHE), and Pinus 
ponderosa (PIPO). The numbers of presences varies per species: 301 for Arbutus 
menziesii, 613 for Tsuga heterophylla, and 958 for Pinus ponderosa. The top axes color 
code values by species. The color in the bottom axes show the number of predictors or 
independent variables going into each model. 
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Figure A3. Data were simulated to test the two-sample Kolmogorov-Smirnov statistic 
(d), a measure of effect size, for determination of “climatic bias” among samples of 
different sizes. 6950 values were generated from normal and bimodal distributions (panel 
A and B). A pair of random subsamples were taken, one from each distribution, to 
calculate d. This was repeated for 200 replicates across the different sample sizes shown. 
We plot the means across sample sizes for both comparisons: normal with normal, and 
bimodal with normal (Figure 5C). The dotted lines represent 95 percent quantiles for the 
distribution of replicates at each sample size. 
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Figure A4. ECDFs (empirical cumulative distribution functions) in the bottom row are 
generated from simulated distributions shown in the top row at different sample sizes. 
The figure illustrates the effect of sample size on each ECDF. Small samples yield more 
jagged ECDFs with a greater likelihood of absolute error among any two compared 
distributions. The figure also shows how the shape of the ECDF reflects the 
corresponding shape of the different types of frequency distributions.  
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Figure A5. Management regions are shown representing different inventory approaches 
lumped across the study area for the old inventory. Five distinct geographic regions are 
demarcated and labeled on the map with boundaries shown by a thin black line (regions 
EWA, WWA, EOR, WOR, and CA), and two regions are shown by shading (see 
legend)(R5 and R6+BLMWO). (B2). 
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APPENDIX B: SUPPORTING METHODS 

Examination of climatic bias with ECDFS and QQ-plots. Our characterization of 

climatic bias from the data requires explanation. We considered using a measure of effect 

size, the Kolmogorov-Smirnov Two-Sample Test statistic (d) (Massey 1951), to compare 

climatic bias across different sample sizes (or species with different prevalences). This 

statistic assumes no particular form between the compared distributions, it measures the 

maximum absolute difference among empirical cumulative distribution functions, and it 

accommodates differences in both shape and central tendency. However, we checked the 

immunity of this statistic, d, to sample size, and we discovered d to depend on sample 

size using simulated data (see Appendix A; Fig. A3).  The shape of the dependence varies 

with the distributions being tested (Fig. A3). As sampling differences can be reflected not 

only in the mean but in the shape of a frequency distribution, we instead simply plotted 

the empirical cumulative distribution functions (ECDFs) from the old and new data sets 

to visualize the climatic bias per species (Chambers et al. 1983). For each observed value 

in a distribution, the empirical ECDF plots the fraction of points that are less than the 

observed value. Numerous ECDFs can be easily condensed and shown in tandem, and 

they represent the mean, standard deviation, and standardized third and fourth moments 

all in one figure (Wilk and Gnanadesikan 1968). We also used quantile-quantile plots 

(QQ-plots) of two distributions to further investigate evidence for climatic bias with four 

species. QQ-plots show empirical quantiles from two samples plotted against each other 

to determine if they come from the same distribution (Chambers et al. 1983). QQ-plots 

are a powerful approach to zoom in and compare shape of distributions underlying two 

samples of data.  
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Chapter 4. Do Climate Extremes Explain More Variability than Means in 
Tree Species’ Occurrence by Life Stage?  

 

 

Heather E. Lintz, Andrew N. Gray, Bruce McCune 
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ABSTRACT 

We pit climate means against climate extremes to determine species’ probability 

of occurrence by life stage for tree species across the Pacific coastal United States. We 

use climate means and extremes for variables that have direct bearing on plant fitness, 

growth, and mortality. Variables include growing season length, seasonal vapor pressure 

deficit, seasonal minimum temperature, degree of freeze-thaw events occurring in the 

spring and fall, and seasonality of precipitation. These are derived from PRISM climate 

data at a monthly time step across the period from 1900 to 2007. We derive climate 

extremes by first testing for differences among time intervals in climate with Multivariate 

Response Permutation Procedure or MRPP. We calculate average measures of climate 

deviation per time interval defined by combinations of climatic oscillations, which we 

call oscillation schemes. We build niche models for presence/absence data of seedlings 

and adults across 22 tree species using data from USDA Forest Inventory and Analysis 

(FIA). To build a model for a species and climate variable, we supply the long-term 

climate mean and related extremes to the model building process using Non-Parametric 

Multiplicative Regression (NPMR). This process is repeated for 22 species, two life 

stages, and seven climate variables. Results indicate that 27% of the models had a climate 

extreme explain more variability than a climate mean. Extremes associated with freeze-

thaw events, seasonality of precipitation, and winter minimum temperature were most 

frequently represented. This is suggestive evidence that extremes were less often chosen 

for models of seedling niches compared to adults (p=0.054). The reason for this is 

counterintuitive and unclear. Perhaps the adult niche has a longer “memory” to climatic 

events and thus a higher likelihood of being shaped by climate extremes. 

INTRODUCTION 

Patterns of species’ distributions across the landscape may be the most 

pronounced but least understood features of life on earth. Such patterns have long 

compelled scientific study and continue to do so especially with the pressing topic of 

climate change. The concept of the “species’ niche” underpins much of the scientific 
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inquiry related to species’ distributions. The niche concept was founded in the early 

twentieth century and periodically strengthened among various authors (e.g. Grinnell 

1917, Gause 1936, Hutchinson 1957, Leibold 1995). The intersection of these authors 

defines a niche as the quantitative description of conditions that allow a species to occur. 

The niche can be expressed as either ‘fundamental’ or ‘realized.’ The fundamental niche 

describes the full range of environmental conditons under which an organism can exist 

(e.g. under controlled conditions in the laboratory) while the realized niche results from 

natural constraints such as interactions with other organisms in a community (e.g. 

superior competitors). The status quo for quantitative descriptors of the niche is the use of 

mean conditions such as mean annual temperature.  

The relationship between species’ occurrence and mean condition is the basis for 

statistical models, and a recent surge of forecasts rely on species’ occurrence as a 

function of climatic means (e.g. Peterson et al. 2002, Shafer et al. 2001, Rehfeldt et al. 

2006). However, niche models using means of conditions can be oversimplified (Jackson 

et al. 2009, Chase and Leibold 2001, Colwell et al. 2009). Also, the success of means of 

climatic conditions in niche models often relies on covariance structure among climatic 

variables, which will change with broadly changing patterns of atmospheric circulation 

(Jackson et al. 2009). Further, climatic extremes will likely increase and have profound 

effects on populations that translate to niche structure (Gutschick and Bassirad 2003, 

Boyce et al. 2006, Gomulkiewicz and Holt 1995, Allen and Breshears 1998, Stenseth et 

al. 2002). Given the imperative for understanding biological effects of climate extremes 

with climate change (e.g. Gutschick and Bassirad 2003, Stenseth et al. 2002, Parmesan et 

al. 2000), the broad-scale study of species’ niches with respect to extremes in climatic 

conditions is clearly warranted. 

A recent blend of paleo-ecological and paleo-climatic work supports that modes 

of historical climatic variability synchronize with pulses and retreats of species’ 

occurrence (Swetnam and Betancourt 1998, Swetnam et al. 1999, Gray et al. 2003, 

Jackson et al. 2009). Pulses of establishment are thought to require unique climatic 

circumstances because environmental responses of species often depend on life stage 
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(e.g. Grubb 1977, Ibanez et al. 2009, Chaubert-Pereira et al. 2009, Jackson et al. 2009). In 

the case of tree species, the juvenile fundamental niche is thought to be narrower 

compared to that of adults (e.g. with respect to a mean climatic parameter) and thus more 

susceptible to climate extremes associated with climate oscillations (Jackson et al. 2009). 

These ideas are fundamental to processes that contribute to species’ occurrence. 

However, experimental tests of these ideas are not possible at the landscape scale. 

Instead, statistical tests for consistency in relationships through time play an important 

role in understanding macro-ecological process (Kerr et al. 2007). Here we perform 

statistical tests to complement ideas emerging from historical patterns. We ask if climate 

oscillations, as expressed in extremes, can explain substantial variability in species’ 

occurrence. We also test the null hypothesis that the frequency of extremes explaining 

more variability than means does not depend on life stage. The alternative to this 

hypothesis addresses the possibility that seedlings are more susceptible to extremes than 

adults. 

METHODS 

Overview. Our method involves four general steps. Each step is described in each 

of the four following sections. Here, we provide an overview. First, we obtain our 

response variables from the Forest Inventory and Aanlysis (FIA) database as 

presence/absence data by tree species and by life stage (see section entitled Study Area 

and Tree Species’ Data). Second, we derive climate predictors associated with the FIA 

plot locations that provide the presence/absence data (described under Climate Analysis). 

Climate predictors include climate means and extremes. We turn to standard climatic 

oscillations as a way to group and summarize the climate extremes.  Before deriving the 

extremes, we first test for a winning ‘oscillation scheme’ that best segregates the values 

of climate anomalies for each of seven climate variables (see the section below entitled 

Climate Analysis).  We then use the groups of years defined by each winning oscillation 

scheme to summarize anomalies by taking the mean for the group. We define extremes as 

the mean anomalies during particular oscillatory phases, i.e. segments of time. We 



91 
 

 
 

perform this process separately for the seven climate variables. Third, we build statistical 

models by species and life stage to determine if more variability is explained by climate 

extremes or climate means (described under Niche Modeling). We regress species’ 

presence/absence against climate mean and related extremes for each climate variable, 

one at a time. We repeat this for each of two life stages and for each species. Fourth, we 

use the results from the niche modeling to test the hypothesis that the frequency of 

extremes explaining more variability than means does not depend on life stage (described 

under Hypothesis Testing). Also, to give account to the differences in numbers of 

predictors supplied for each model, (e.g. one mean and x number of extremes where x 

varies per climate variable and life stage), we perform a second test. We determine the 

probability of a result as extreme or more extreme as the numbers of means chosen over 

extremes per climate variable and life stage (assuming all variable have an equal chance 

of being chosen).  

Study Area and Tree Species’ Data. The study area is the U.S. Pacific coastal 

states of California, Oregon, and Washington. Diverse climates and biomes occur bearing 

the largest range of mean annual rainfall in the conterminous United States. The region 

has the highest coniferous tree diversity and endemism second to Mexico. Evidence of 

increased mortality and migration for tree species exists in the region for the past decades 

(van Mantgem et al. 2009, Kelly and Goulden 2008).   

Plots containing at least 50% forest are selected from FIA data. This criterion 

helps to avoid species’ absences caused by factors other than climate, such as agriculture. 

Presence/absence data from seedlings and adult trees are segregated. The distinction of 

tree versus seedling is made in the field by size. Seedlings are defined as having a 

diameter of less than 2.5 cm at root collar and length greater than either 12.7 cm for 

conifers or 30.5 cm for hardwoods. Thus, the “seedlings” are beyond the initial stages of 

heavy stochastic mortality occurring typically in the first year or two.  Adult trees were 

defined as having a diameter at breast height or root collar of greater than 12.7 cm. 

Seedlings were sampled from the total area of 54 m2 per plot; whereas, adult trees are 

sampled from an area totaling 672.5 m2 per plot. Seedling prevalence (or number of 
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presences for a data set) is generally fewer compared to adult trees due to a smaller 

probability of detection. Presence/absence data from across the years 2000 through 2007 

are pooled. Only species with more than 200 presences of seedlings are retained among 

the seedling and adult data sets (Table 1). To examine preliminary evidence of niche 

differentiation between life stages, we count FIA plot locations containing just seedlings, 

just adults, and both seedlings and adults for our study species. We visually compared 

these counts. We also created data sets to build niche models. The seedlings and adult 

data pools were randomly sampled without replacement to serve in the model building 

(N=2500). Figure 1 shows the locations for the training data set (N=2500).  

Climate analysis. One grand challenge in studying niches and climate extremes is 

how to characterize the extremes. Below we describe methods to discover and use 

discrete time intervals for the purpose of summarizing extremes from the perspective of a 

tree. We select climate drivers of tree species’ occurrence based on previous works (see 

Table 2 for definitions and justification). Although the long-term means of some 

variables are strongly correlated (for example, growing season length and the minimum 

winter temperature), their deviations or extremes are much less so as we further 

demonstrate. We test whether discrete groupings of years based on large-scale 

oscillations (such as the Pacific Decadal Oscillation) are suited to characterize extremes 

in the climate drivers. To this end, we classify years within the time interval from 1900 to 

2007 according to indices of climate oscillations. We explore all possible combinations 

of the Pacific Decadal Oscillation (PDO) (Mantua et al. 1997), the Atlantic Multi-decadal 

Oscillation (AMO)(Enfield et al. 2001, Schlesinger and Ramankutty 1994), and the El 

Niño Southern Oscillation (ENSO)(Trenberth 1984, Trenberth and Stepaniak 2001, 

Trenberth 1997)(Fig. 2, Table 3). The PDO, AMO, and ENSO influence drought, 

temperature, and precipitation in the western United States (McCabe et al. 2008, Enfield 

et al. 2001, Sutton and Hodson 2005, Benson et al. 2003, Ropelewski and Halpert 1986, 

Cayan et al. 1998, Zhang and Delworth 2007). The different oscillations interact or 

modulate one another (Enfield et al. 2001, McCabe and Dettinger 1999, Zhang and 

Delworth 2007, McCabe et al. 2008).  
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We test three indices of ENSO as each represents different phenomena (Fig. 3, 

Table 3) (Trenberth and Stepaniak 2001; Trenberth and Hoar 1996). We test the Southern 

Oscillation Index (SOI) (Trenberth 1984), the Trans-Niño Index (TNI) (Trenberth and 

Stepaniak 2001), and the Niño 3.4 Index (N3.4) (Trenberth and Stepaniak 2001, 

Trenberth 1997). We aimed to discern years with a predominance of months above or 

below a threshold. Consequently, we used an annual mean threshold to classify ENSO 

events.  We test two threshold levels for each ENSO index since the threshold levels are 

subject to debate (e.g. Trenberth 1997) (Table 3). We also include a time interval called 

“R1” as a grouping variable discerning the period from 1976 to 2007 (Fig. 2), which is 

characterized by more frequent and longer El Niños (Trenberth and Hoar 1996), rapid 

temperature rise in many areas of the world (IPCC 2001), and a switch in the behavior of 

the TNI (Trenberth and Stepaniak 2001). After classifying years across the past century, 

we create a list of different classification schemes to test as grouping variables for climate 

anomalies (Table 4, Fig. 2). The schemes comprise oscillations alone and in combination. 

We compare the efficacy in group separation of anomalies among schemes separately for 

each climate variable. PDO and AMO and their combinations are treated either as unique 

groups through time (hence the label ‘gr’) or simply as phases recurring in the same 

category (e.g. PDO extremes at any time, not just a particular sets of contiguous 

years)(Table 4, Fig. 2). The unique grouping expresses climate oscillations as a unique 

events rather than a recurrent fixed mode. However, unique grouping is only possible for 

the lower frequency oscillations, otherwise, our purpose of dimensionality reduction 

would be defeated.  

We randomly sample 500 locations within Oregon, California, and Washington. 

We extract time series for each location using monthly precipitation, temperature, and 

dew point temperature from interpolated climate grids at a resolution of 4 km (PRISM; 

Daly et al. 2002). The time series date from 1900 to 2007. We derive our set of climate 

variables from the time series for each location (Table 2). We calculate annual 

‘deviations’ for each variable by subtracting the long-term mean of 108 years from 

annual-scale values.  



94 
 

 
 

We determine the strongest grouping variable across time series using Multi-

Response Permutation Procedures (MRPP) (Mielke and Berry 2001) (PC-ORD version 

5.0; McCune and Mefford 2006). MRPP is a non-parametric substitute for Multivariate 

Analysis of Variance. It tests the null hypothesis of no difference between two or more 

groups of entities. MRPP also provides an effect size or the degree of separation among 

groups, the A-value. The A-value theoretically has no lower bound and has an upper 

bound at 1 meaning that all values are identical within groups and different among 

groups. An A-value of zero is the random expectation; 0.1 represents a strong degree of 

separation for ecological data. Euclidean distance is used as the distance measure.  

We summarized deviations using the best grouping scheme per climate variable using the 

lowest p-value and the largest A-value among all MRPP tests for a climate variable. The 

average local deviation is then calculated within each group of years per oscillation 

scheme and climate variable (see Fig. 4). The calculations are repeated for each FIA plot 

location. We use Principal Components Analysis (PCA) of the climate data among our 

plot locations (N=2500) to determine the amount of covariance shared among three 

different data sets: the long-term means for the seven climate variables, all the extremes 

across the seven climate variables, and the pooled means and extremes (PC-ORD version 

5.2; McCune and Mefford 2006). The PCA used a matrix of correlation coefficients 

among the data.  

Niche modeling. We used Non-parametric Regression (NPMR) to build niche 

models (Hyperniche 2.07; McCune 2006, McCune and Mefford 2008). This is also 

known as Non-parametric Regression (NPR) when regression involves only single 

variables, which is mostly the case here. NPMR is a kernel regression technique and 

outperforms other popular niche modeling approaches (Lintz et al. 2010, Yost 2008). We 

use default settings with a local mean and Gaussian kernel. We build eight models for 

each life stage for each species, one model for each set of climate variables that were 

derived from a single raw climate variable (Table 2). The derived variables include 

means and extremes, as described above. The number of available predictors for each 

model varies by life stage and climate variable. The number of groups for the winning 
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oscillation scheme (plus one, the mean) determines the number of predictors per analysis. 

For adult presence/absence, we include all summaries of extremes dating back to 1900. 

For seedling presence/absence, we select oscillations groups dating back 30 years from 

the last year of sample (2007). Our goal is to represent extremes experienced across the 

variation of ages corresponding to that life stage. The scope of available climate grids 

determined our temporal bound of 108 years for the adults.  

NPMR selects the top single-variable models for each analysis. Model selection 

uses an iterative optimization that chooses the best log likelihood ratio based on cross-

validation. However, the log likelihood ratio is sensitive to number of presences in the 

data, and thus, is not ideal for comparing fit across species with differing numbers of 

presences. Instead, we use the Area under the Receiver Operator Characteristics (ROC) 

curve or AUC for model evaluation or measurement of fit (Hanley and McNeil 1982). An 

AUC of 0.5 represents a model fit no better achieved by chance alone. The maximum 

value of the AUC is 1. 

Hypothesis testing. We compile a contingency table to give the numbers of 

species with either the long-term mean or extreme chosen by life stage. Fischer’s exact 

test evaluates the null hypothesis that the selection of the long-term mean is independent 

of life stage for each two-by-two table.  

Since the numbers of extremes given to each analysis differed by climate variable 

and life stage, we perform another test. We calculate the probability of a long-term mean 

being chosen as frequently as or more frequently than the observed value for each life 

stage and climate variable. If means are chosen more frequently across species than we 

would expect by chance given the null model, then the p-value will be small. The null 

model assumes all variables have an equal chance of being chosen. Think of each model 

constructed as a Bernoulli trial where the two outcomes are either the long term mean is 

chosen as the best predictor or not, in which case a climate extreme was selected as the 

best predictor. Each species represented a trial for a climate variable. Because the number 

of extremes represented as possible predictors depend on the climate variable, the 

probability of the two outcomes varies for each model. We calculate the likelihood of the 
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result for each climate variable and life stage using the binomial probability mass 

function: 
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where p is the probability of success, q is the probability of failure, n is the number of 

trials (or number of species participating in the test), and k is the number of successes (or 

number of species with long-term means chosen for a given climate variable). To 

integrate probabilities that are more extreme than k, we summed probabilities across k to 

n-k. This test informs us whether observed numbers of means (or extremes) chosen could 

be due to statistical artifact if the null model holds (where all variables have an equally 

likely chance of being chosen). Although this null model likely does not hold, it is not 

impossible and still must be given account. 

RESULTS 

Climate analysis. Climate anomalies for each climate variable were successfully 

grouped by oscillation schemes as shown by A-values and small p-values from MRPP 

(Table 5, Fig. 3). The strongest oscillation scheme differed across climate variables, and 

the strength of separation among groups of years also varied. Growing season length and 

minimum summer temperature were grouped most distinctly by the same oscillation 

scheme (PAgr). This scheme included PDO and AMO phases considered as unique 

groups through time. R1 played a role in grouping anomalies for five of the seven climate 

variables. The strongest cohesion among groups of years was for winter and summer 

minimum temperatures followed by summer vapor pressure deficit and growing season 

length. Five of the seven climate variables showed the most cohesive groups of years 

when grouped in part by ENSO indices. Each of the ENSO indices tested was involved 
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with a winning oscillation scheme with SOI being most frequent.  Two of the five 

winning oscillation schemes with ENSO indices relied on strong ENSO events (with a 

cut-off of +/- 0.75oC for TNI and SOI), while the others had a more moderate cut-off (+/- 

0.4oC for N.34 and SOI). All oscillation schemes involved more than one climate 

oscillation except for one, which relied on SOI (as modulated by R1) for thaw-freeze 

events in the spring.  

Oscillation schemes showed geographic cohesion for each climate variable to 

varying degrees, as illustrated by differences among groups of years across all FIA plots 

(Fig. 4). Some oscillation schemes with relatively low A-values from the MRPP (which 

was a test of segregation in time) still showed marked cohesion across space for the given 

years (e.g. spring thaw-freeze). The directional effect of El Niño and La Niña events can 

be reversed depending on decadal-scale phases of the climate system (e.g. see fall freeze-

thaw, spring thaw-freeze, and winter minimum temperatures for the best examples). The 

past three decades (denoted as R+ in Fig. 4) are linked to an increase in directional 

deviation and variation for some oscillation phases and climate variables. For example, 

thaw-freeze events in the spring are more pronounced than for R-; however, this effect is 

only seen during years not affected by ENSO events (Table 5, Fig. 4). Another example 

is summer vapor pressure deficit. The strongest positive deviations (or greater vapor 

pressure deficits) are seen for recent years where PDO and AMO are positive and not 

affected by TNI events. Also, variation across space in summer vapor pressure deficit is 

the highest among all oscillatory phases for recent years where PDO and AMO are 

positive. Increased variability in anomalies can also be seen for other variables where R1 

is positive (e.g. seasonality of precipitation, spring thaw-freeze, and winter minimum 

temperature). 

Species’ analysis. Seedlings and adult trees only partially overlap in their plot 

occurrences (Fig. 5). To examine whether it is necessary to filter out poorly fitting 

models to ascertain our conclusions, we first report results for the binomial probability 

test. The probability that the observed numbers of winning models based on means was 

due to chance alone was very small for all models and climate variables (Table 8). Also, 
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the converse was true for the probability that extremes would be selected over means. 

There is a high probability that the observed number of extremes would be selected by 

random chance alone for every climate variable assuming all variables have equal chance 

to be chosen (e.g. p-values would be virtually identical to 1-p for ps reported in Table 8). 

Consequently, we filter out poorly-performing models in reporting our results to 

safeguard against the possibility that extremes are selected by random chance alone. 

Although the AUC itself is assurance where an AUC of 0.5 or lower is model fit no better 

achieved by chance, we opt for a conservative cut-off in the AUC (0.75) and examine 

only the best-performing models. We assume that the null model where all predictors 

have an equal chance of being chosen does not apply especially for models with fits 

greater than or equal to an AUC of 0.75. 

 Extremes explained more variability than means across life stages for 27% of a 

model pool where poorly fitting models were filtered out (Table 7). We rejected the null 

hypothesis that the proportional selection of the long-term climatic mean is independent 

of life stage for a model pool where poor fitting models were filtered out (p=0.054, from 

Fischer’s Exact Test). (This result was corroborated by the same test across all models, 

p=0.004.)  Models for large trees more often showed extremes explaining more 

variability than means. However, long-term means were still the most frequently selected 

for both life stages.  

The number of species represented among best-fitting models was greatest across 

life stages for seasonality of precipitation, summer vapor pressure deficit, and spring 

thaw-freeze (Fig. 6). When median AUCs in model fits for top-performing models were 

visually compared among life stages, model fits for seedlings outperformed adults for 

growing season length, winter minimum temperature, and summer vapor pressure deficit. 

Whereas, adult models outperformed seedlings models with respect to summer minimum 

temperature, spring thaw-freeze, fall freeze-thaw, and seasonality of precipitation.  Of the 

extremes, fall and spring freeze-thaw (for both life stages), seasonality of precipitation 

(for large trees), and winter minimum temperature (for large tree) were represented in 
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greatest proportion for the best-performing models showing more variability explained by 

extremes (Fig. 6).  

DISCUSSION 

A climate extreme defined according to climate oscillations can explain more 

variability than a climate mean for tree species in the Pacific coastal United States; 

however, this circumstance occurred for a minority of the best-performing models with 

good fits across species and life stages (27%). This result corroborates decades of studies 

demonstrating the predictive power of climate means while offering an important caveat. 

Although climate means carry substantial predictive capacity, extremes can carry more 

predictive power in approximately one-quarter of circumstances for the study species, 

climate variables, and time period we examine. 

  Interestingly, seedling niches did not show greater sensitivity to extremes 

compared to adults; this was expressed by means winning over extremes more often for 

niches of seedlings compared to adults. The reason for this is unclear. We discuss various 

possible explanations.  

Studies have shown that tree seedlings are more vulnerable than adults to climate 

fluctuations. For example, some seedlings can have greater moisture requirements and 

sensitivity in growth rate to climate fluctuations (Ibanez et al. 2009, Tanaka et al. 2008, 

Chaubert-Periera 2009). To be more sensitive to climate extremes, the fundamental 

climate niche for seedlings with respect to the climate mean should be narrower 

compared to an adult niche (Jackson et al. 2009). Realized seedling niches evident from 

our study area differed from adults slightly in shape (Fig. 7), and similar patterns are 

corroborated in other temperate regions (e.g. Lenoir et al. 2009). However, realized 

seedling niches found across tree species were not notably narrower than adult niches 

across models (e.g. to the degree conceptualized foe the fundamental niche by Jackson et 

al. 2009). Despite the fact that the traits of the seedling life stage and aspects of its 

realized niche with respect to a climate mean can differ from adults, this difference did 

not translate to a stronger relationship to extremes for our study region and time period.  



100 
 

 
 

Since seedlings are smaller than adults, microhabitat can offer shelter that may 

subsidize some physiological draw-backs. The distribution of the saguaro cactus 

exemplifies this with respect to low temperature tolerance. Winter freezing has been 

proposed as a limit to the distribution of the saguaro (Shreve 1911). However, winter 

freezing was shown to differentially affect (and kill) adults compared to juveniles 

because juveniles were sheltered by rocks and nurse plants (Niering et al. 1963). It is 

reasonable to suspect that similar processes associated with microhabitat protection may 

afford tree seedling niches greater immunity to some extremes. However, species’ niches 

at the landscape scale of study are not amenable to in situ experimentation, and testing 

such a hypothesis is still a major research challenge. 

To better understand the situation where adult niches related to extremes and 

seedling niches did not, we visually explored modeled results where the long-term mean 

for a seedling niche was selected while an extreme was selected for the adult niche (Fig. 

8). This was the case for five species where model fits for both seedling and adults were 

greater than or equal to an AUC of 0.75 for the same climate variable. After first force-

fitting the adult data to the long-term mean to compare with seedling niches, and noting 

very little differences (Fig. 7), we turned to the best two-predictor models for the adult 

trees.  

We show response surfaces of probability of occurrence for adult trees versus the 

long-term mean and the extreme (Fig. 8). The extremes modify relationships with the 

long-term means. In every case, an increase in probability of absence (that would 

otherwise not be detectable from a single-variable model) occurs with respect to the long-

term mean at certain levels of the extreme. For example, absences occurred with negative 

deviations in the SI index where precipitation became less seasonal than the norm for 

three species, Abies amabalis, Thuja plicata, and Tsuga heterophylla. Also, Calocedrus 

decurrens occurs where negative deviations in spring thaw-freeze are strongest, or freeze-

thaw events are least severe (with respect to the x-axis), and absences tend to occur where 

deviations are weakest. Finally, Lithocarpus densiflorus, which is most often found in 

areas with long growing seasons, is absent for smallest negative deviations from growing 
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season length. Occurrence is associated with both a long growing season and the 

strongest negative deviations in growing season length for P-A-1622, which also happens 

to be the strongest negative deviations for the century (see Fig. 4).  

The modeling method we use, NPMR, can capture interactions that occur at any 

temporal and spatial scale in the data. So, if a climate extreme influenced probability of 

occurrence for a certain climate interval and portion of a species’ range, it can be 

captured and visualized. However, the strongest models in species occurrence given 

climate likely involve more than one climate variable due to interactions. The inclusion 

of different climate variables together as means and extremes in the process of building 

niche models is an intriguing topic of future research.  

The most compelling explanation for seedlings showing more immunity to 

climate extremes compared to adults is that the adult niche has a longer “memory” to 

climatic events. Each extreme has a unique temporal and spatial expression. Vulnerability 

to extremes depends both on the degree of the extreme along with its spatial and temporal 

expression relative to a tree’s distribution and phenology. Thus, a longer time period of 

life allows for greater chance that a climate extreme could influence a species’ niche and 

spatial distribution across the landscape.   

Climate considerations. Our freeze-thaw indices contribute to a growing body of 

work that examines the ecological influence of freeze-thaw events at different temporal 

scales (e.g. occurring across days to weeks to months)(e.g. Neilson and Wullstein 1983, 

Jentsch 2007, Gu et al. 2008). We developed indices to measure transitions of anomalous 

freeze to anomalous thaw (in the fall) or vice versa (in the spring) at a monthly time step. 

We demonstrate that the indices are ecologically meaningful. We provide evidence for 

the influence of freeze-thaw events across tree species’ niches and ranges in the Pacific 

coastal United States. For example, extremes in either spring thaw-freeze and fall freeze-

thaw explained more variability than means for twelve species (where only best-fitting 

models were considered).    
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CONCLUSIONS  

Tree species’ niches not only appear to respond to climate extremes defined by 

climate oscillations, but extremes can be a dominant explanatory factor for some species. 

Additionally, seedlings niches may not be as sensitive to climate extremes as previously 

thought. A possible explanation is that the adult niche has a greater chance of being 

affected by climate extremes because of a longer life span. Our results bear on the 

interpretation of projections of species’ occurrence given climate change. Currently, 

species’ projections are made using climate model forecasts. However, climate science 

does not yet understand decadal to century scale climate variation; nor can climate 

models replicate decadal to century scale climate variation (Warren Washington, personal 

communication). Hence, we face a grand challenge in forecasting tree species’ 

occurrence. If some tree species are affected by extremes modulated by decadal-scale 

climate variation, and we are shy in understanding how decadal-scale climate variation 

will unfold, then we should make and use tree species’ predictions in future climates with 

caution.  
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FIGURES 

Figure 1. Map of Forest Inventory and Analysis plot locations used in model building 
from across Oregon, California, and Washington (N=2500). 
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Figure 2. Different grouping variables representing decadal scale oscillation schemes are 
shown. Different schemes are developed through group intersection (e.g. PDOAMO from 
PDO and AMO). Each decadal-scale scheme was treated either as unique groups through 
time (hence the label ‘gr,’ right) or simply as different phases having the same category 
(e.g. PDO and AMO; top). Each color represents a unique category or group within a 
grouping variable. Colors do not correspond across groups. Time is represented on the x-
axis.  
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Figure 3. Winning oscillation schemes are shown (corresponding to Table 5). Colors 
schemes for each bar are not shared among bars. Color meanings are shown above. 
P=PDO, A=AMO, R=R1 (see Tables 3 and 4 for definitions). 
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Figure 4. Quantiles for anomalies averaged within phases (or groups) within winning 
oscillation schemes. The winning scheme for each climate variable (x-axis) is identified 
at the top of each graph. Each code on left side indicates a particular time period or 
recurrent phase within the winning oscillation scheme. Quantiles are shown for FIA plot 
locations contributing to model building (N=2500). Results for all phases within each 
oscillation scheme unique to a climate variable are shown (see Table 5 and Fig. 3). The 
open circle represents the median, dark circles are first and third quartiles, and hatch 
marks define the bounds of 2.5 and 97.5%. 
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Figure 5. Plot counts across Oregon, California, and Washington by life stage and 
species. Columns separate plot groups (labeled above). PSME and PIPO are given 
different axes due to their dominance. Counts span the time period from 2000 to 2007.  
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Figure 6. Box-plots of model fits for single-predictor models by climate variables and 
life stage. Only models with a model fit or AUC greater than or equal to 0.75 are 
included. AUC ranges from 0 to 1 where 0.5 and below represents a model no better 
achieved from random chance alone. Pie charts below each box-plot represent the 
proportion of models with the best predictor as either a mean (grey) or an extreme 
(white). The number of models corresponding to each box-plot are shown across the top. 
Seedling models are denoted with ‘SD’ and adult models are denoted with ‘LG.’ 
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Figure 7. Predicted values for adult (blue solid line) and seedling (red dashed line) 
probability of occurrence relative to the four climate variables with the highest 
proportional representation of extremes: TMINwin, TFspr, FTfall, and SI (see Fig. 6).  
Presence/absence data were force-fitted to long-term means, and the species where 
seedling and adults models had AUCs greater than or equal to 0.75 were plotted here. 
One species and climate variable is an exception to this, LIDE for GSL (top left). This 
was included to complement data presented in Fig. 8. Probability of occurrence data were 
first standardized by their maximum values to compensate for different probabilities of 
detection (or FIA plot sizes) for seedling and adults.  

  

 

 

 

 

 

 



110 
 

 
 

Figure 8.  Multi-factor response surfaces are shown as bird’s eye views of species’ 
probability of occurrence versus a long-term mean and an extreme. Predicted values are 
shown for five species based on the criteria that a long-term term mean for a seedling 
niche was selected while an extreme was selected for the adult niche. Also, model fits 
were greater than or equal to an AUC of 0.75. All surfaces are adult responses. In each 
case except for ABAM, the best two-predictor model for the adults was the extreme and 
the long-term mean. For ABAM, the best three-predictor models contained the mean. 
Below is the two-predictor model for ABAM that includes the mean. The top row 
consists of response surfaces based on the same x and y as labelled, and default settings 
were used in NPMR to avoid extrapolating in areas of little data. Grey areas denote where 
no predictions were made. To view adult and seedling responses for these five species 
when forced to the long-term mean alone see Figure 7.  The model fits (as AUCs) for 
species from left-to-right and top-to-bottom are equal to 0.88, 0.84, 0.88, 0.87, and 0.88. 
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TABLES 

Table 1. Twenty-two species were studied. Species codes, and Latin and common names 
are shown. 

 

 

 

 

 

 

Code Latin name Common name 
ABAM Abies amabilis Pacific silver fir 
ABCO Abies concolor white fir 
ABGR Abies grandis grand fir 
ABLA Abies lasiocarpa subalpine fir 
ABMA Abies magnifica California red fir 
ACMA Acer macrophyllum bigleaf maple 
ARME Arbutus menziesii Pacific madrone 
CADE Calocedrus decurrens incense cedar 
CHCH Castanopsis chrysophylla golden chinkapin 
JUOC Juniperus occidentalis western juniper 
LIDE Lithocarpus densiflorus tanoak 
PICO Pinus contorta lodgepole pine 
PILA Pinus lambertiana sugar pine 
PIMO Pinus monticola western white pine 
PIPO Pinus ponderosa ponderosa pine 
PSME Pseudotsuga menziesii Douglas fir 
QUCH Quercus chrysolepis canyon live oak 
QUKE Quercus kelloggii California black oak 
THPL Thuja plicata western red cedar 
TSHE Tsuga heterophylla western hemlock 
TSME Tsuga mertensiana mountain hemlock 
UMCA Umbellularia californica California laurel 



112 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Seven climate variables were derived. Derivations and justifications for variables are shown.  
 
  Derivation Justification 

Growing 
Season 
Length 
(GSL) 

Number of months in a year where the mean monthly 
minimum temperature exceeds 5oC. 

Growing season length affects growth, 
reproduction, dormancy, and the timing of 
budburst, budset, flowering, and seedset 
(Kozlowski et al. 1991). Growing season length 
affects the supply of energy for metabolism and 
photosynthesis (Larcher 2003). Longer growing 
seasons may lead to more growth or competitive 
ability without drought (Myneni et al. 1997, Zhao 
and Runing 2010, Loehle 1998). Rapid change in 
length of growing season can foster range 
expansion for species with suited phenologies 
(Holmgren et al. 2006). 

Winter 
Minimum 
Temperature 
(TMINwin) 

Mean minimum monthly temperature averaged across 
November, December, and January for a year. 

Cold temperatures can cause tissue damage and 
mortality from ice nucleation, cell membrane 
rupture, and cellular dehydration (Woodward 
1987, Raison et al. 1979, Becwar and Burke 1982, 
Levitt 1980). 

Summer 
Minimum 
Temperature 
(TMINsum) 

Mean minimum monthly temperature averaged across 
June, July, and August for a year. 

Plants are more sensitive to detrimental effects of 
cold temperatures during the the growing season  
(Lyons et al. 1979). Photo-inhibition and oxidation 
caused by low summer temperatures combined 
with high light intensity can kill seedlings 
(Germino and Smith 1999, Ball et al. 1991). 
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Table 2 Continued. 

Name  Derivation Justification 

Spring 
Thaw-
Freeze 
(TFspr) 

The rate of change was calculated among monthly 
maximum temperature anomalies for two monthly 
transitions: March to April, and April to May. 
Anomalies were calculated as deviations from the long-
term mean for that month (reference period of 108 
years). The April anomaly was subtracted from the 
March anomaly, and the May anomaly was subtracted 
from the April anomaly. The minimum rate of change 
was chosen among the two transitions to get the 
maximum drop from warm anomaly to cold anomaly for 
the season. This was then multiplied by negative one so 
that the degree of spring thaw-freeze would increase 
with the index value. 

Late spring frost preceded by early warming 
sensitizes plant tissues to the negative effects of 
cold temperatures (see above) (Gu et al. 2008, 
Augspurger 2009, Neilson and Wullstein 1983, Zon 
1904). Plant species differentially utilize nitrogen 
pulses associated with freeze-thaw cycles 
(Bilbrough and Caldwell 1997). Freeze-thaw events 
cause xylem embolism, which can impair 
physiological processes and lead to hydraulic 
failure (Sperry and Sullivan 1992). 

Fall Freeze-
Thaw 
(FTfall) 

Same as above except the monthly transitions were: 
September to October, and October to November. The 
most positive rate of change was chosen among the two 
transitions for fall to get the maximum jump from cold 
anomaly to warm anomaly for the season. 

Cold acclimation occurs in the fall and is induced 
by cool non-freezing temperatures (Levitt 1980). 
Late warming events can interfere with cold 
acclimation and sensitize plants to the detrimental 
effects of cold temperatures occurring in winter. 
Freeze-thaw events also cause xylem embolism 
(Sperry and Sullivan 1992). 
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Table 2 Continued. 

Name  Derivation Justification 

Summer 
Vapor 
Pressure 
Deficit 
(VPDsum) 

The mean monthly VPD was averaged for June, July, 
and August. Mean monthly VPD was derived as VPD = 
es - e, where es is the mean monthly saturation vapor 
pressure and e is the mean monthly vapor pressure. 
Both es and e were based on mean monthly 
temperatures (dew point and air) (Murray 1967). We 
used the sine form weighted mean daily air temperature 
to derive monthly mean air temperature. This allows for 
accurate estimation of mean monthly temperature from 
mean monthly minimums and maximums (Goeckede, 
personal communication, Thornton et al. 1997). Grids 
of dew point temperature (Ts) supplied from PRISM are 
based on hourly measurements over a 24 hour period 
and did not require a transformation.                                  

Vapor pressure deficit largely drives plant 
transpiration. The control of transpiration in 
response to vapor pressure deficit differs by species 
(Oren et al 2002). Excessive transpiration during 
drought can lead to dehydration, hydraulic failure, 
and mortality depending on stomatal response 
(McDowell et al. 2008). However, efficiency of 
transpiration can endow competitive advantage 
(Bunce et al. 1977, Sperry et al. 2008). Low vapor 
pressure deficit and seasonal fog occur in our study 
region and can decouple tree hydration from soil 
water deficit by direct water uptake from leaf 
surfaces (Burgess and Dawson 2004).  
 

Seasonality 
of 
Precipitation 
(SI) 

The Seasonality Index measures the departure from 
uniform precipitation (Walsh and Lawler 1981). SI 
equals zero when there is uniform precipitation across 
12 months.                                                                          

Changes in the timing of precipitation alter 
germination, phenology (or timing of events like 
flowering), recruitment, and survival (Weltzin et al. 
2003, Penuelas et al. 2004, Kimball et al. 2010, 
Franks et al. 2007, Neilson and Wullstein 1986).  
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Table 3. Five indices of climatic oscillations were used to classify years into different groups. Groups contributed to 
‘climate schemes.’ The indices and their classification rules are described. The time period from 1976 until 2007 was 
also included to represent give account to anthropogenic climate change. 
 
Name Definition Classification Rules Data Source 

Pacific 
Decadal 
Oscillation 
(PDO) 

The leading principal component of monthly anomalies 
in sea surface temperatures above 20N in North Pacific 
Ocean (Zhang et al. 1997, Mantua et al. 1997). 

PDO: Years are considered positive 
PDO if the annual mean for the index 
is positive. The converse is true for 
negative. We defined intervals across 
years through dominant behavior of 
annual means. High frequency 
variation was minor and ignored.  

Joint Institute for 
the Study of the 
Atmosphere and 
the Ocean, 
Climate Impacts 
Group, University 
of Washington 

Atlantic 
Multi-
decadal 
Oscillation 
(AMO) 

Sea surface temperature anomalies in the Atlantic north 
of the equator. The index is normalized to unit standard 
deviation with monthly temporal resolution. The index 
was smoothed using a ten-year running mean following 
Enfield et al. (2001). 

AMO: Years are considered positive 
AMO if the annual mean for the 
index is positive. The converse is 
true for negative.  

National Oceanic 
and Atmospheric 
Association 

Trans-
Niño 
Index 
(TNI)  

The difference between normalized sea surface 
temperature anomalies among equatorial eastern and 
equatorial west-central Pacific.  The index discerns the 
type of El Niño or La Niña by measuring the gradient 
preceding or following an event. Prior to 1976, the TNI 
of "opposite sign" occurs 3 to 12 months after an event 
(defined by Niño 3.4 Index) and TNI of the same sign 
occurs before. This relationship is reversed after 1976 
(Trenberth and Stepaniak 2001). The index is 
normalized to unit standard deviation with monthly 
temporal resolution. 

TNI75: Extreme events had annual 
mean index values above 0.75oC or 
below -0.75oC.  

TNI4: Events had annual mean index 
values above 0.4oC or below -0.4oC. 

National Center 
for Atmospheric 
Research 
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Table 3 Continued.   

Name Definition Classification Rules Data Source 

Niño 3.4 
Index 
(N3.4) 

Sea surface temperature anomalies in the Niño 3.4 
region (central equatorial Pacific). The index is 
normalized to unit standard deviation with monthly 
temporal resolution.  

N3475: Extreme events had annual 
mean index values above 0.75oC or 
below -0.75oC.  

N344: Events had annual mean index 
values above 0.4oC or below -0.4oC. 

National Center 
for Atmospheric 
Research 

Southern 
Oscillation 
Index 
(SOI) 

The difference of monthly mean sea level pressure 
anomalies among Tahiti (in the central pacific) and 
Darwin (in Australia or eastern Pacific).The 
anomalies are normalized to their standard deviate 
with monthly temporal resolution. A low-pass filter 
is then used to calculate the index to increase the 
signal to noise ratio (Trenberth 1984). 

SOI75: Extreme events had annual 
mean index values above 0.75oC or 
below -0.75oC.  

SOI4: Events had annual mean index 
values above 0.4oC or below -0.4oC. 

National Center 
for Atmospheric 
Research 

R1 The time period from 1976 to 2007 representing 
occurrence of anthropogenic climate change. This is 
not a recognized climate oscillation but rather a 
unique temporal period to be given account. 

Not applicable as no index was used Not applicable 
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Table 4. Different oscillation schemes were tested and compared as temporal grouping variables. 
The schemes contained all combinations of different oscillations (see Table 3 for code 
definitions). All combinations containing ENSO indices shown were repeated for ENSO indices 
with a lower cut-off (plus or minus 0.4oC, Table 3). The codes in this table all represent ENSO 
indices with a cut-off of plus or minus 0.75oC. Hence, codes containing ENSO end in ‘75.’    

Code for oscillation 
scheme 

Oscillations involved (explicit definitions in 
Table 3) 

Decadal+ scale 
PDO Pacific Decadal Oscillation 
AMO Atlantic Multi-decadal Oscillation 
R1 Anthropogenic climate change  
PDOgr PDO as unique groups through time 
AMOgr AMO as unique groups through time 
PDOAMO PDO, AMO 
PDOAMOgr Intersection of PDO and AMO as unique groups 

through time 
AMOR AMO, R1 
PDOR PDO, R1 
PDOAMOR PDO, AMO,R1 
AMOgrR AMO as unique groups through time intersected 

with R1  
ENSO alone, strong events  
TNI75 Trans-Niño  
SOI75 Southern Oscillation Index 
N3475 Niño 3.4 
ENSO, strong events, together with decadal+ scale oscillations 
PTNI75 PDO, TNI75 
PSOI75 PDO, SOI75 
PN3475 PDO,  N34 
PRTNI75 PDO, R1, TNI75 
PRSOI75 PDO, R1, SOI75 
PRN3475 PDO, R1, N3475 
ATNI75 AMO, TNI75 
ASOI75 AMO, SOI75 
AN3475 AMO, N3475 
ARTNI75 AMO, R1, TNI75 
ARSOI75 AMO, R1, SOI75 
ARN3475 AMO, R1, N3475 
RTNI75 R1, TNI75 
RSOI75 R1, SOI75 
RN3475 R1, N3475 
PATNI75 PDO, AMO, TNI75 
PASOI75 PDO, AMO, SOI75 
PAN3475 PDO, AMO, N3475 
PARTNI75 PDO, AMO, R1, TNI75 
PARSOI75 PDO, AMO, R1, SOI75 
PARN3475 PDO, AMO, R1, N3475 
All schemes above were repeated for moderate ENSO events   
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Table 5. MRPP results for winning oscillation schemes by climate variable. A-values and P-
values are reported where A-values are the effect size or the degree of separation among groups. 
A=0 for random expectation and has an upper bound at 1, meaning that all values are identical 
within groups and different among groups. An A-value of 0.1 represents a strong degree of 
separation. Oscillation scheme codes are explained in Table 4. 

 

 

 

 

 

 

 

 

 

 

 

 

Climate variable 
Best 
oscillation 
scheme  

Oscillations involved A-value P-value 

GSL PAgr 
PDO and AMO phases as unique 
groups through time 0.12 <0.001 

TMINwin PARSOI4 PDO, AMO, R1, SOI4 0.21 <0.001 

TMINsum PAgr 
PDO and AMO phases as unique 
groups through time 0.24 <0.001 

TFspr RSOI4 R1, SOI4 0.02 0.021 
FTfall ARN344 AMO, R1, N344 0.05 0.001 
VPDsum PARTNI75 PDO, AMO, R1, TNI75  0.15 <0.001 
SI ARSOI75 PDO, AMO, SOI75 0.02 0.025 
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Table 6. Eigenvalues and variance explained by Principal Components Analysis (PCA) 
performed separately for three groups of variables: all climate extremes, all means combined 
with extremes, and all means. Values correspond to the first three principal components. The 
sample for each analysis represented FIA plots used in model building or forested land in 
Oregon, California, and Washington (N=2500). The PCA was based on a matrix of correlation 
coefficients among the data.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Axis Eigenvalue 
Variance 
explained, 
% 

Just extremes 
Axis 1 12.635 15.409 
Axis 2 9.285 11.323 
Axis 3 7.223 8.808 
Means and extremes 
Axis 1 13.835 15.544 
Axis 2 10.716 12.040 
Axis 3 8.046 9.040 
Just means 
Axis 1 3.523 50.325 
Axis 2 2.316 33.089 
Axis 3 0.645 9.221 
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Table 7. Two by two tables of count data for Fischer Exact Tests and their respective P-values. 
Numbers of species are counted with the best single predictor models choosing the long-term 
mean (mean+) versus an extreme (extreme+). Counts were made for all models (above) and 
again for a subset of models just with good fits (or AUCs greater than 0.75)(below). The starting 
pool for counting was 22 species’ models multiplied by seven climate variables and two life 
stages (bottom table). Fischer’s Exact Tests were performed separately on each two by two count 
table to yield individual P-values. 

 

 

 

 

 

 

   
 Mean+ Extreme+ P-value 

All best single predictor models 
Large trees 94 60  
Seedlings 118 36 0.004 
All best single predictor models with good fits  
Large trees 40 16  
Seedlings 43 6 0.054 
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Table 8. Input and results test the probability of a result as extreme as or more extreme 
than the number of long-term means chosen per climate variable and by life stage. 
‘Mean+’ represents number of species where the long-term mean was selected over an 
extreme. Left column shows ‘Mean+’ for all models where the total per climate variable 
is 22. P-values are the next column right. Numbers of predictors per climate variable are 
found in the right-most column.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Num species 
with Mean+ 

(from all 
species) 

P-value  # of 
preds 

Seedlings 
GSL 22 <0.0001 3 
TMINwin 17 <0.0001 7 
TMINsum 21 <0.0001 3 
TFspr 19 <0.0001 4 
FTfall 7 0.0234 7 
VPDsum 16 <0.0001 7 
SI 16 <0.0001 7 
Large trees 
GSL 19 <0.0001 9 
TMINwin 15 <0.0001 19 
TMINsum 17 <0.0001 9 
TFspr 14 <0.0001 7 
FTfall 5 0.0129 13 
VPDsum 15 <0.0001 19 
SI 9 <0.0001 13 
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Chapter 5. Conclusions 
 

This dissertation contributes to the study of ecological complexity by making 

methodological strides in analysis of patterns of species’ occurrence. Philosophers of 

science posit that understanding of complex phenomena comes through one of two ways. 

It can come through pattern analysis of emergent phenomena (von Hayek 1964). It may 

also come through detailed data acquisition and multi-scalar modeling of attributes of a 

system (which is unbounded)  and its interactions, feedbacks, and non-linear restructuring 

of relationships through time (von Hayek 1964, Taylor 2005). However, the latter 

approach may be impractical and exceedingly difficult if not impossible to achieve for 

some problems (von Hayek 1964, Taylor 2005). Species’ occurrence data are composed 

of individuals and populations that vary genetically, occur at different points in their life 

cycle, and are embedded within varied geographic, environmental, and biological 

contexts; in turn, a species and its constituent parts also contribute to those contexts. Tool 

development that can address this type of complexity is warranted in ecology. The work 

presented here helps to move us toward better recognition and characterization of 

complexity, specifically with respect to the species’ niche.  

I discuss the respective contribution of each chapter below. Future research 

directions that emerge from each chapter follow the conclusive summary for that chapter. 

Overall future research directions offered by the entire body of work are found at the end.  

Chapter 2 developed the first tools for multi-dimensional threshold analysis in 

state space. I derived threshold strength and diagonality, two indices of shape attributes, 

and showed they can be quantified from ecological response surfaces. I also 

demonstrated that these tools can allow us to ask questions about what drives thresholds 

including for species’ niche models. Also, for the purpose of threshold method 

development, different data mining methods were tested for their ability to retrieve the 

shape of a response surface. Non-parametric Multiplicative Regression (NPMR), a kernel 

regression technique designed to automatically accommodate interactions occurring at 

any scale, outperformed other methods. Results from Chapter 2 improved our ability to 
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retrieve the shape of ecological response surfaces and accept response surfaces as 

emergent snapshots of complex systems. Chapter 2 helped to answer the call for 

improvement in methods of shape detection in ecological responses (Oksanen and 

Minchin 2002, Soberón and Nakamura 2009). The need to understand model bias for data 

mining methods has also been identified but poorly explored (Elith and Graham 2009). 

Chapter 2 examined the cause and differential expression of model bias for common data 

mining methods. The bias manifested as geometric constraints imposed by the 

algorithms. 

Chapter 2 sets the stage for future tests of the performance of other data mining 

approaches. Techniques of particular interest include Multivariate Adaptive Regression 

Splines (MARS) and Boosted Regression Trees (BRT) as they perform well in tests of 

niche modeling using real ecological data (Elith et al. 2008, Elith et al 2006). Another 

enticing future topic would be the development of a roving window method that can 

measure threshold strength and diagonality at various scales within a response surface. 

Along this line, a title for a future publication could be, “The development of a threshold-

seeking automaton in multidimensional state space.” Another publication could also 

explore extension of the threshold strength and diagonality indices to more than three 

dimensions of state space (or n-dimensional state space). Given the inherent complexity 

of ecosystems, empirical characterization of thresholds in more than three dimensions is 

warranted (Limburg et al. 2002). Additionally, results not reported (but associated with 

analyses from Chapter 4) reveal that shapes of species’ occurrence relative to climate 

extremes exhibit what appear to be thresholds. Their measurement and study is warranted 

in a future paper. Finally, upon their application, tools from Chapter 2 can spur many 

different hypotheses for further testing depending on the system and scale of study.   

Chapter 3 addressed an important methodological challenge common in niche 

modeling: the effect of combining data collected by different methods (Barry and Elith 

2006, Elith et al. 2002).  The following question was asked, do data from two different 

collection methods or forest inventories yield the same niche models? Our conclusions 

revealed that there is a small effect of combining data from different forest inventories. 
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Further, the fit of all the models was notably high across data sets suggesting that tree 

species’ occurrence is strongly linked to climate in the Pacific coastal United States. 

Also, results showed little evidence for changes in niche structure of species’ occurrence 

in relation to climate across two decades. Finally, results prompted further interpretive 

investigation associated with model selection in NPMR. It seemed that cross-validation 

was a more robust method of model selection compared to external validation for the 

large FIA data sets. 

The most immediately and intriguing future question emerging from Chapter 3 is 

how to measure temporal change over the past two decades given what we know about 

the effect of inventory type. One possible way would be to examine differences among 

geographic projections made from niche models (e.g. Chapter 3 but with more difference 

maps). Niche models are convenient in this context because climatic redundancy can 

dampen sampling differences. This assumes that tree species’ niches are not changing 

across two decades, which is a research question in its own right. Another possibility for 

trend monitoring in the future would be to use NPMR instead for direct spatial 

interpolation of species’ occurrence data, without reference to climate, then examine 

differences through time by subtracting spatially-interpolated maps. A comparison of 

niche modeling versus spatial interpolation in trend monitoring is a question worthy of 

pursuit. Tracking of species’ occurrence across the landscape through time is an 

important future step given that we are in the midst of a global, unplanned experiment of 

anthropogenic climate change. Forecasts reveal that biomes and plant species’ ranges are 

changing and will continue to change (e.g. Walther et al. 2002, Bachelet et al 2001). 

Improved methods for monitoring will establish a strong baseline for better 

understanding species’ responses through time. If we can harness the information in the 

FIA database despite political and financial setbacks that alter funds from year to year to 

affect sampling, we can explore questions associated with niche dynamics in the face of 

environmental change.  

Chapter 4 tested for empirical evidence to support a proposed hypothesis behind 

tree species’ distributions: tree species’ niches can respond more strongly to climate 
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extremes than to means, and this differs by life stage.  An unconventional way of 

characterizing climate interactions to quantify climate extremes was developed to test this 

hypothesis. The measurement and separation of the climate change signal among a 

backdrop of natural variability is an area of active research (Easterling et al. 2000, Wikle 

2003), and here, complex climate interactions among oscillations were characterized 

while keeping track of climate change effects. The approach accommodated temporal 

interactions at different scales. Additionally, two new indices of freeze-thaw events 

occurring in the spring and fall were developed for climate time series to quantify such 

events for the purpose of this study. A subset of species’ niche models was found to have 

more variability explained by extremes than means. However, seedling niches were not 

affected as often by climate extremes compared to adults. The reasons for juveniles being 

“less sensitive” are unclear. The most compelling explanation was that adult niches 

apparently had a longer “memory” to climatic events and thus a higher likelihood of 

being shaped by climate extremes. Finally, climate means still won over extremes for the 

majority of species, supporting the logic that has sustained niche modeling for decades. 

Overall, the results highlight a grand challenge in forecasting tree species’ occurrence. A 

subset of tree species are affected by extremes modulated by decadal-scale climate 

variation, yet long-term climate forecasts are made from models that cannot capture 

decadal-scale climate variation. Thus, the climate forecasts that many forest scientists and 

managers rely on to make ecological projections are missing an important piece of the 

puzzle.  

Chapter 4 inspires many future research questions. First, why are seedling niches 

on a whole less sensitive to climate extremes defined by climate oscillations? Second, do 

the patterns of winning oscillation schemes for the different climate variables hold for 

weather station data in addition to PRISM data? Third, what do multi-factor response 

surfaces look like for tree species’ occurrence as a function of climate extremes? Fourth, 

how can we better conceptualize, accommodate, quantify, and understand influential 

niche factors fluctuating in space and time?   
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   In grand summary, this dissertation developed tools to study methodological 

and ecological topics associated with species’ distribution patterns as complex systems in 

ecology. Particular emphasis was devoted to unconventional measurement of thresholds, 

climate interactions, climate extremes, data mining methods, species’ niches, and issues 

associated with large-scale biological data integration. The themes established from these 

works can be developed in many ways. For example, are ecological thresholds exhibited 

by species’ niches with respect to climate extremes? Is there commonality in processes 

that contribute to those thresholds? If thresholds occur for species’ niches, does mortality 

peak in correspondence to climate domains where thresholds occur? Also, do shape 

features of response surfaces in niche space change for different snapshots in time?  

These questions exemplify how the shapes of response surfaces can be better exploited to 

probe processes behind species’ niches while at the same time integrating the topics of 

thresholds and climate extremes. 

Understanding and describing the shape of multidimensional response surfaces 

has applications well beyond modeling the niche of a species. For example, response 

surfaces measured for any real data set can be compared to response surfaces produced 

by dynamical computer models. The comparison of shape can help verify that the 

emergent behavior of a computer model matches that of the natural system. 

Understanding the behavior of complex computer models is a topic of active research in 

the study and prediction of complex systems. This would be an intriguing research topic 

to bring to ecology and global change science.  
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