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The purpose of study was to investigate college algebra students’ understanding
of function concepts. In addition, their solution strategies and algebraic thinking and
reasoning were explored. Twenty-four volunteer students from one college algebra
recitation class participated in the study to access their understanding of functions. Five
out of 24 volunteer students were selected to participate in problem-solving interview
sessions to provide a rich description of their understandings of functions and their
algebraic thinking and reasoning,.

A Function Understanding Questionnaire was administered to gather these
college students’ understandings of functions after they completed the college algebra
course. The questionnaire consisted of four questions asking students to identify their
understanding of: (1) the definition of function, (2) multiple representations of
functions, (3) the use of functions in doing mathematics, and (4) the use of functions in
the real-world situations. Formal interviews prior to, during, and after instruction on
functions with the five students were conducted, and their work on homework
problems, quizzes and tests were explored to clarify these college students’
understanding of functions and to explore their solution strategies and algebraic
thinking and reasoning while solving problems.

Overall, instruction supported students’ understanding of functions. The
students’ definitions of a function improved toward a more formal definition. In

addition, students had a better understanding of multiple representations, function



transformations, and the application of functions to new mathematical situations and to
real-world situations after completing the course.

Algebraic reasoning includes the ability to approach and solve mathematical
problems in multiple ways. The students in this study were able to use different
methods to solve mathematical problems when they were encouraged to do so.
However, the instruction did not encourage this activity. Perhaps for this reason, their
algebraic thinking and reasoning abilities did not seem to progress as much.

In concert with the recommendation of the several mathematics education
organizations, more research needs to deal with the development of algebraic thinking
and reasoning. In addition, research involving the communication of mathematical ideas
and connection of mathematical understanding, thinking, and reasoning to other
mathematics disciplines, to different subject areas, and to real-world situations are

recommended.



College Algebra Students’ Understanding and
Algebraic Thinking and Reasoning with Functions.

By
Lakana Nilklad

A DISSERTATION
Submitted to

Oregon State University

in partial fulfill of

the requirements for the
degree of

Doctor of Philosophy

Presented April 5, 2004

Commencement June 2004



Doctor of Philosophy dissertation of Lakana Nilklad

presented on April 5, 2004

APPROVED:

Major Professor, representing Mathematics Education

T ~

Chair of the f)epartment of Science and Mathematics Education

M//VLM

T
Dean of the(Gra&i{ate School

I understand that my dissertation will become part of the permanent collection of
Oregon State University libraries. My signature below authorized release of my

dissertation to any reader upon request.

Lakana Nilklad, Author



ACKNOWLEDGEMENTS

I would like to express my appreciation to several people who have provided
help, support, and endless encouragement throughout this study. I am perpetually
grateful to my major advisor, Dr. Margaret Niess, for her wisdom, guidance,
patience, and belief in me. Without her assistance I would not have achieved this
success.

Special thanks are also extended to my other committee, Dr. Dianne
Erickson, Dr. Barbara Edwards, Dr. Larry Flick, and Dr. Bruce Cobentz who have
given me valuable advice and support. Also, I would like to thanks Dr. Norman
Lederman, Dr. Larry Enoch, and Dr. Edith Gummer for their instruction and
direction.

In addition, my deepest appreciation goes to the faculty, staff, and fellow
graduate students in both the Department of Science and Mathematics Education
and the Department of Mathematics. Appreciation is also extended to the instructor,
the Graduate Teaching Assistant, and the College Algebra students who were
involved in this study. Without them this study would have been impossible.

I express gratefulness to my family and friends for their support and
encouragement throughout my life. My special appreciation goes to two of my best
friends, Mary Skoda and Brian Sullivan, who gave me endless help, support, and
encouragement.

Finally, acknowledgement is made to the Royal Thai Government for
providing me the opportunity and scholarship for my studies at Oregon State

University.



TABLE OF CONTENTS

CHAPTER L. THEPROBLEM .............ooiiiinin,

Statement of the Problem .........................

Significance of the Study .........................
CHAPTER II: REVIEW OF THE LITERATURE ........
Introduction ...

Development of Function Understanding .......

............................

............................

............................

............................

..............................

.............................

Students’ Mathematical and Algebraic Reasoning ........................

SUMMATY. ...
CHAPTER III: MATERIALS AND METHODS .........
The Participants ..........c.cocooiiiiiiiiinenn.

The Instructor Staffs ...............cooviiin.
The InStructor ....o.ovviiee i,

The Graduate Teaching Assistant ..........
Student Participants ...................oo.l

Data Collection Instruments .......................

Background Information Questionnaire ...

Function Understanding Questionnaire ...

..............................

..............................

..............................

...............................

..............................

.............................

.............................

.............................

..............................

..............................

Thinking and Reasoning Interview Problems ..........................

Classroom Observations .............ooovven.
The Researcher ...,

Researcher's Fieldnotes and Journals......

Data Analysis .........ooovvviiiiiiiiiiis

Summary........ooooiii

CHAPTER IV: RESULTS ...,

COUTSE OV VIEW .ttt ettt et et ee et e e e e e anaaas

.............................

..............................

.............................

..............................

Research Question 1: Understanding of Functions ........................

Instructional Episodes .................c..oonnin

Episode 1: Function Definition .............

Episode 2: Multiple Representations ......

Episode 3: Transformations of Functions

...............................

...............................

..............................

...............................

43
44
44
48
48
45

52
54



TABLE OF CONTENTS (Continued)

Episode 4: One-to-One and Inverse Functions .........................

Student Profiles Concerning Understanding of Functions ................

Kyle
Questionnaire: College Students’ Understanding of Functions ..........
Analysis of Students’ Understanding of Functions ........................

Research Question 2: Solution Strategies and algebraic Thinking and
ReEaSONING ...

Instructional Episodes ...........ocoieiiiiiiiiiii

Episode 1: Identifying Functions ...............ccooeiiis
Episode 2: Multiple Representations ..............ccocovviiiininnai
Episode 3: Transformations of Functions .............................
Episode 4: One-to-One and Inverse Functions ........................
Episode 5: Applications to Real-World Situations ...................

Summary of the Instructor and GTA’s Approaches to the
Problems . .o.voii i,

Student Profiles: Solution Strategies and Algebraic Thinking and

REASONING . ..voviiiiii e
AIY Lo
RO ot e e e
50 110 V2 R
Lindsey .o
Kyle oo

Analysis of Student Profiles: Solution Strategies and Algebraic

Thinking and Reasoning ...

CHAPTER IV CONCLUSION AND DISCUSSION

College Students’ Understanding of Functions ............................

Solution Strategies and Algebraic Thinking and Reasoning ..............

Limitations of the Study ..o

Implications for College Level Algebra Curriculum and Instruction ...

60

63
82
93
103

112
119
122

122

122
121
123
125
128

135

136
136
146
161
176
187

199
203
203
206
210
211



TABLE OF CONTENTS (Continued)

Recommendations for Future Research ......................o
REFERENCES. . ... it e e e
APPENDIX A: Letter to Students ........cooouviiiiiii i i
APPENDIX B: Instructor and Graduate Teaching Assistance Consent Form ......
APPENDIX C: Students Interview Protocol (Pre-Instructional Interview) .........
APPENDIX D: Student Interview Protocol (During Instructional Interview) ......
APPENDIX E: Student Interview Protocol (Post-Instructional Interview) .........
APPENDIX F: Function Understanding Questionnaire ........................oo.e.
APPENDIX G: Pre- Instructional Interview Problems ..........................o
APPENDIX H: Instructional Interview Problems ......................cn
APPENDIX I: Post-Instructional Interview Problem ..........................



LIST OF FIGURES

Figure

1. Graphs of questionnaire used in Tall and Bakar’s study ...........................
2. Graph of speed vs. time of tWO Cars ......oevvvrviiiiiiii
3. Instructor’s example of a table representation of a function ........................
4. A tabular representation of a non-function created by the instructor .............
5. Table representation of a function in midterm exam .................c.oeenennnnin
6a. An arrow diagram defining a function ................ocooiiiiiiii
6b. An arrow diagram defining a non-function .....................

7. A graph and a table of a function y =2x—1 displayed by the instructor .........

8. The example of finding zeros of a function using symbolic manipulation and

graphical repreSentation ............cooevereiiriiiiii i

9. The horizontal transformation of y = x*, two units to the left and two units

tothe rIght «.ooeoe

10. The vertical transformation of y = x>, up and down 3 units ......................

11. Summary of horizontal and vertical transformation presented by the

111530 ¢ (0110 GNP
12. An example of the use of the vertical line test for a function .....................

13. Instructor’s example of a function that was not one-to-one ......................
14. Graph of y = x’ that is a one-to-one function ...............cooeeveervenninniennn.

15. Pre-instructional interview graphs for the popcorn problem .....................
16. Graphical representation for Instructional Interview No. 2 .......................
17. Graphical representation for Instructional Interview No. 3a ......................
18. Graphical representation for Instructional Interview No.3b .....................
19 Amy’s examples of one-to-one and not one-to-one functions .....................

20. Kyle’s example of a function .............ooooiiiiiii

21. A quadratic function used for discussing vertical and horizontal

LT E AN 10 5o 4F: 15 Lo o P

22. An absolute value function used for discussing vertical and horizontal

LR Ry 10 50 4T: 18 o) o AP

54

55
56



LIST OF FIGURES (Continued)

Figure Page
23. A graph used for a ball thrown example problem ..., 132
24. Graphical representation of eating popcorn over time ..................cceoeevnnne 137
25. Graphs of popcorn remaining over a period of time ...................ccooinnn 148
26. Ross’s diagonal line showing the car average speeds ...............cooeeiin 153

27. Emma’s graph for the lawn-mowing situation ................cccooeeieieninninn 164



LIST OF TABLES

Table Page
1: Categories Of X-INEICEPL ......ooutitirt it 22

2: Student responses to the first qQUeStIon ................ooooiiiiiiiiiii i 114
3. Student responses to the second question ..................oooiiiii. 115
4. Student responses to the third question ..................oooi 117
5. Student responses to the fourth question ...................ooiii 118

6. Kyle’s table representing information for Pre-Instructional Interview No. 4 .. 189



COLLEGE STUDENTS’ UNDERSTANDING AND ALGEBRAIC THINKING
AND REASONING WITH FUNTIONS

CHAPTER1

THE PROBLEM

Traditionally, algebra has served as a gatekeeper (Kaput, 1995; Kieran, 1989;
NCTM, 1989) restricting access to further study in mathematics at the college level (i.e.
discrete mathematics, calculus, linear algebra). Also, algebra provides a wide range of
real world situations and careers because many of its concepts directly support higher-
level mathematics courses (McGrone, 1985). Entry to many professional fields requires
algebraic knowledge. Employees must be able to apply algebraic concepts as tools for
translating problems or situations to mathematical models (Herscovics, 1989).
Therefore, algebra provides a foundation for study in many mathematical and scientific
disciplines such as engineering, computer science, and other science major areas.
Recognition of the use of algebraic ideas along with the thinking and reasoning
processes needed for considering their applications has stimulated an interest in
assuring that all students have access to the powerful ideas of algebra.

In the 1980’s many mathematics educators and teachers claimed that the
teaching and learning of algebra did not support students’ understanding of algebraic
concepts (Kieran, 1989). They indicated that algebraic teaching and learning was
focused on symbolic manipulation and calculation including simplification of algebraic
expressions, solving equations and inequalities, and using algebraic rules without regard
to making any connections to other mathematical knowledge and students’ sense-
making of their real world. As a result in 1989, several organizations including the
National Research Council [NRC] and the National Council of Teachers of
Mathematics [NCTM] called for a reform in the algebra curriculum to enhance an
emphasis on algebraic thinking and reasoning within a functional approach to algebra.

By 1994, the NCTM’s Algebra Working Group recommended another change

in the algebra curriculum, a change to promote learning for understanding through the



development of algebraic thinking and reasoning across the grade levels. These reform
efforts proposed to encourage more students to achieve success with algebra by
decreasing the emphasis on symbolic manipulation and computation while promoting a
better understanding of algebraic concepts, emphasizing algebraic thinking, and
reasoning (Lacanpagne, Blair, & Kaput, 1995; NCTM, 1991, 2000). The proposed
reconstruction of the mathematics curriculum, to provide greater support for the
development of algebraic thinking and reasoning, required students to have earlier
access to a variety of tools for representing algebraic ideas and an opportunity to apply
those ideas in many contexts as their skills and understandings grew (Kaput, 1995).

With the NCTM recommendations (2000) in the Principles and Standards for
School Mathematics, an algebra-for-all curriculum focused on students at all grade
levels and development of their algebraic thinking and reasoning. In these standards, it
was stated that algebraic instructional programs should enable all students to
“understand patterns, relations, and functions and represent and analyze mathematical
situations and structures using algebraic symbols” (p. 296). Additionally, the NCTM
Standards (2000) proposed a reasoning standard in the school mathematics curriculum
as:

Reasoning and proof should be a consistent part of students’ mathematical

experiences in pre-kindergarten through grade 12. Instructional programs from

pre-kindergarten through grade 12 should enable students to

e  recognize reasoning and proof as fundamental aspects of
mathematics;
. make and investigate mathematical conjectures;

° develop and evaluate mathematical arguments and proofs;

. select and use various types of reasoning and methods of proof. ( p.
56)

Application of this reasoning to all mathematical concepts and understanding including
algebra proposed to support students in understanding mathematical concepts,
recognizing connections and relationships between concepts, and applying this
understanding to new problems and daily situations.

At the college level, the American Mathematical Association of Two-Year

Colleges [AMATYC] (1995) recommended three standard categories in the Crossroads



in Mathematics: Standards for Introductory College Mathematics before Calculus:
intellectual development, content, and pedagogy. Intellectual development addressed
reasoning indicating that students are expected to expand their thinking and reasoning
skills while they develop convincing arguments and explore the meaning and role of
mathematical identities provided in multiple representations (i.e. graphical, numerical
(tabular), symbolic). The content standard emphasized algebraic symbolism, stressing
that students are expected to develop algebraic thinking and reasoning by translating
problem situations into symbolic representations and use those representations to solve
problems.

For years the algebra curriculum has been debated. Mathematics educators and
researchers have focused on a central topic (NCTM, 1989) and all have agreed that
function concepts are “gatekeepers” to the majority of college mathematics (Kaput,
1995; Kieran, 1989). The NCTM (1989) called for the inclusion of function-related
activities as early as fourth grade, continuing to a higher-level mathematics curriculum.
The NRC (1989) stated in Everybody Counts “if undergraduate mathematics does
nothing else, it should help students develop function sense” (p. 51). The AMATYC
(1995) claimed that students at the college level needed to demonstrate understanding
of the concepts of functions using multiple representations including numerical
(tabular), graphical, symbolic, and verbal.

Although functions are central concepts in algebra, many research studies of
high school and college levels have shown that these concepts are some of the most
difficult for students to understand. For example, many students have difficulty
translating functions among different representations (Sierpinska, 1992) as well as
applying basic algebraic concepts at different levels (Leinhardt, Zaslavsky, & Stein,
1990). In addition to the students’ difficulties identified by several researchers, many
educators also indicated that teaching and learning algebraic concepts in a traditional
method that emphasized computational skills does not support students in
understanding those concepts. Therefore, the shift from an emphasis on computational

skills to an emphasis on thinking and reasoning skills was considered a key aspect of



the current curriculum reform of all branches of mathematics education including
algebra (NCTM, 2000).

The importance of fostering algebraic thinking and reasoning has been widely
documented (Kaput, 1995; NCTM 2000). Yet, a shortage of research exists that focuses
on the role of these thinking and reasoning processes. This specific area of thinking and
reasoning, algebraic thinking and reasoning, is defined similarly. Langrall and Swafford
(1997) described algebraic thinking and reasoning as “the ability to operate on an
unknown quantity as if the quantity is known” (p. 2). Driscoll (1999) provided a
definition for this view of algebraic thinking and reasoning as “the capacity to represent
quantitative situations so that relations among variables become apparent” (p. 1).
Whereas, Herbert and Brown (1997) described algebraic thinking and reasoning as

follows:

the use of mathematical symbols and tools to analyze different situations by (a)
extracting information from a situation, (b) representing that information
mathematically in words, diagrams, tables, graphs, and equations, and (c)
interpreting and applying mathematical findings such as solving for an
unknown, testing conjectures, and identifying functional relationships to the
same situation and to new, related situations. (p. 340)

The study of functions in algebra is an area where algebraic thinking and
reasoning is critical because the importance of translation among representations is an
essential basis for several mathematical topics. For example, with respect to a linear
function, students are expected to connect a graphical representation, a numerical
(tabular) representation and a symbolic representation of the function. Numerous
student misconceptions of functions have been documented. For instance, students hold
misconceptions that functions are only linear, or that they are only continuous, (Becker,
1991; Slavit, 1994), students thought that a point or points on the Cartesian coordinate
system were not functions. Several students accepted only one-to-one functions as
functions and refused to recognize many-to-one representations as functions. They also
did not consider constant functions and piecewise-defined functions as functions.

(Vinner, 1983, 1992; Selden & Selden, 1992).



In order to develop the algebra curriculum and instructional strategies, students’
development of algebraic concepts and misconceptions must be considered. For
example, if all the examples that teachers use in discussing functions are only linear,
students may incorrectly equate the concept of functions with linear functions. As
Noddings (1990) noted, “In order to teach well, we need to know what our students are
thinking, how they produce the chain of little marks we see on their papers, and what
they can do (or want to do) with the material we present to them” (p.15). To support
students’ progress in studying algebra, an investigation must consider how they
understand algebraic concepts by including their thinking and reasoning with particular

algebraic concepts such as functions.

Statement of the Problem

Function concepts are both focal points and unifying ideas in the study of
advanced mathematics. It is important for students to thoroughly understand functions
before they begin calculus and higher-level mathematics courses. Nevertheless, studies
of the teaching and learning of functions in both national and international contexts
have indicated that the general level of students’ understanding of functions is not high.
The report on the students’ performance on algebra and functions in the 1996 NAEP

assessment indicated that students

Although there was some progress in 1996 in exceeding the 1990 and 1992
performance levels, many students still do not perform well on the [algebraic]
topics the usually receive the most emphasis in algebra courses. (Blume &
Heckman, 2000, p. 298)

A comparison of this assessment result with the earlier NAEP assessments indicated
that students’ understanding of the function concepts and their ability to apply the
concepts had not significantly progressed over time (Carpenter, Coburn, Reys, &
Wilson, 1975, Carpenter, Corbit, Kepner, Lindquist, & Reys, 1980; Carpenter,
Lindquist, Mathews & Silver, 1983). In addition, the results of the Second International
Mathematics Study [SIMS] also suggested that students had limited understanding of



function concepts (McKnight et al., 1985). Besides these reports, many research studies
have indicated that students have difficulties in understanding functions (Bergeron &
Herscovics, 1982; Even, 1990, 1992; Sierpinska, 1992; Vinner, 1983) including
difficulties in making connections among different representations (i.e. connection
among formulas or symbols, graphs, diagrams, and word descriptions of relationships),
difficulties in making a translation between representations, difficulties in interpreting
graphs of functions, and difficulties in manipulating symbols related to functions
(Carlson, 1997, Sierpinska, 1992; Zaslavsky, 1997).

To understand the functions, students need to connect the concepts of functions
that they have. Tall (1992) indicated key aspects of functional understanding not only
include a basic understanding of functions (each value of x corresponds to precisely one
value of y) but also an understanding of:

o variable relationships (functions vs. relations, dependent and

independent variables)

. functional representations (i.e. graphical, tabular, and symbolic)

. functional manipulation or procedures (i.e. function operation, function
composition)

o functional process (input and output process).

To assess students’ understanding about functions, all aspects related to understanding
characteristics described above must be considered.

The literature related to the teaching and learning of algebra has implied that
students leave algebra courses with an inadequate understanding of functions (Beckers,
1991; Selden & Selden, 1992; Slavit, 1994, Vinner, 1983). Furthermore, Hauger (1995)
claimed that those students encountering difficulty with calculus do so because of their
lack of knowledge of functions. Students’ lack of functional knowledge and their
misconceptions caused them difficulty in forming and manipulating relationships
between quantities. In addition, a lack of an ability to translate a function among its
various representations also created students’ difficulties in understanding functions.
Confronted with this evidence, mathematics teachers should frequently ask themselves

“What 1s causing the problems?” In most cases, discussions around this question



eventually lead to discussions around others: What should students know and be able to
do in algebra and what is the best way to instill this algebraic knowledge?

A number of researchers in the area of mathematics education have been
interested in the teaching and learning of several algebraic topics such as equations,
inequalities, and algebraic word problems. They have also indicated an interest in topics
related to the understanding of functions at the secondary and college levels. Studies
conducted in countries such as Australia, England, Israel, and the United States used
questionnaires to gather information on function conceptions and misconceptions, as
well as in-depth interviews to identify students’ misconceptions about functions.
Ongoing research of students’ understanding of function concepts and investigations of
what students are thinking while attempting particular algebraic problems (i.e. problems
involving function concepts) and how they develop their thinking in ways that enhance
students’ understanding of functions (Haimes, 1996; Noddings, 1990) are needed. And
yet it is students’ understanding of algebraic concepts such as functions that keeps them
from continued learning in mathematics. This research is important in addressing
knowledge of functions as a gatekeeper to advanced mathematics.

Several studies have indicated students’ difficulties and misconceptions about
functions (Barnes, 1988; Carlson, 1997; Demarois & McGowen, 1996). Their lack of
adequate knowledge and understanding of functions causes them difficulties in higher-
level mathematics courses. However, knowing only students’ difficulties and
misconceptions about functions does not provide the reasons for their misconceptions.
To understand how students have constructed or developed those misconceptions,
understanding what is constructed in their heads or what they are thinking while
attempting the problems is essential, particularly with functions requiring translation
among representations. Identifying how students reason about functions requires more
than an analysis of the algorithms they use for solving the problems. This information
does not show students’ thinking and reasoning processes. In order to facilitate
students’ learning in more empowering ways, it is essential to understand their thoughts
(Steffe, 1991). One of the methods to help understand the processes students use in
thinking and reasoning is a thinking aloud strategy; this strategy was called thinkback



by Lochhead (2001). Asking students to think out loud as they solve mathematical
function problems offers a means of getting at their thinking and reasoning processes.
Even though several researchers in the last two decades have emphasized the
importance of thinking and reasoning processes in mathematics classrooms (House,
1999; Russell, 1999), there is little information involving students’ mathematical
thinking and reasoning at the college level, particularly related to students’ algebraic
thinking and reasoming. Thus, this study was conducted to explore college students’
thinking and reasoning as they learn about functions. More specifically this study
investigates how the students used their understanding to extract information from a
situation, represent that information in multiple forms, and interpret and apply the
findings to new situations. The college level is the focus for the study because function
concepts are essential for more advanced college mathematics courses at this level. The

specific research questions addressed in this study are:

1. What is college algebra students’ understanding of functions?
2. What solution strategies and thinking and reasoning processes do college
algebra students use as they attempt mathematical problems involving

functions?

Significance of the Study

Mathematical reasoning is an ongoing focal point for teaching and learning
mathematics in all grade levels. NCTM (2000) has provided content and process
recommendations for teaching and learning school mathematics in its publication
Principles and Standards for School Mathematics. In this recommendation, algebra,
including functions, 1s one of the five main content standards, and reasoning is one of
the five process standards. Reasoning in mathematics, including algebraic reasoning, is
an important skill needed in mathematics, particularly from pre-kindergarten through
college levels. Additionally, it has been claimed that the ability to reason is essential to

understanding mathematics in all grade levels (NCTM, 2000).



Without adequate information about how students construct and understand
meaning for particular algebraic concepts, function concepts in this individual study,
mathematics educators and teachers have difficulty designing effective instructional
tasks to support and develop students’ knowledge and understanding of those concepts.
Algebraic thinking and reasoning suggests an individual’s engagement in making sense
of some facets of algebraic ideas. Specifically, knowing what concepts of functions
students possess, what they are thinking while working on problems associated with
functions, what successful and unsuccessful strategies they attempt function problems,
and what their reasons are for using such strategies provides teachers with important
guidelines for developing instructional practices. This knowledge enables them to
develop alternative ways of teaching to help students challenge their misconceptions of

functions.
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CHAPTER I

REVIEW OF THE LITERATURE

Introduction

The goal of reforming algebra in school mathematics at all grades, from pre-
kindergarten through college levels, has been a major challenge in the algebra
curriculum for years (Kieran & Wagner, 1989). Within the algebra curriculum, over the
past century the content of algebra has changed little, while teaching and learning
processes have gradually changed from teacher-centered to student-centered and from
symbolic and artificial problems to real world situation problems. During the 50 years
before the NCTM’s recommendations (1989), the teaching of algebra in various schools
was almost uniform. That is, algebra was traditionally taught through expression
simplification and word problems, where the actual problems seldom changed over the
years. In addition, the problems lacked real-life applications, were arbitrary, and
artificial. However, the main purpose of algebra instruction has changed from
computational skills to the development of algebraic conceptual understanding and
thinking and reasoning skills regarding NCTM’s recommendations.

Kieran (1992) distinguished two approaches for teaching and learning algebra:
procedural and structural. Kieran stated that “Procedural refers to arithmetic operations
carried out on numbers to yield numbers.... structural, on the other hand, refers to a
different set of operations that are carried out, not on numbers, but on algebraic
expressions” (p. 392). Traditionally, the procedural approach to algebra is presented by
providing a few examples and exercises that can be solved by substitution of an
algebraic expression or by using arithmetic techniques. However, this deception is
dropped when expressions are to be simplified and equations are to be solved by
structural approaches (Kieran, 1992).

Focusing on mathematical understanding, Skemp (1987) defined and described

two types of understandings: instrumental understanding and relational understanding.
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He described instrumental understanding as an understanding of the processes required
to solve a particular problem. The processes might be simple algorithmic applications,
without a clear concept of why the applications work. Relational understanding,
according to Skemp, incorporated a deeper understanding of solution processes and
relationships of the relevant concepts. In 1987, Skemp revised his definitions of
understandings to include a new type of understanding he named formal understanding.
Formal understanding was defined as “the ability to connect mathematical symbolism
and notation with relevant mathematical ideas and to combine these ideas into chains of
logical reasoning” (p. 166). In addition Skemp indicated that “To understand something
means to assimilate it into an appropriate schema” (p.29). Schema, for Skemp, was a
group of connected concepts, each of which were formed by abstracting invariant
propetties from other concepts. To develop ability in mathematical thinking and
reasoning, the three types of understanding, instructional, relational, and formal, are
necessary.

Pirie and Kieran (1989) described mathematical understanding as follows:

Mathematical understanding can be characterized as leveled but nonlinear as
recursive phenomenon and recursion is seen to occur when thinking moves
between levels of sophistication.. .. Indeed each level of understanding
contained within succeeding levels. Any particular level is dependent on the
forms and processes within and further, is constrained by those without. (p. 8)

Pirie and Kieran (1994) also stated “mathematical understanding is a process, grounded
with a person, within a topic, within a particular environment” (p. 39).

Knowing how to calculate numbers does not lead anyone to understand
mathematics. In this similar view, Kaput (1995) stated that calculation skills in
mathematics study are insufficient; in addition, students must be able to reason
effectively. Algebra is considered one strand of the mathematics that facilitates
reasoning about relationships within problematic situations. Kaput also recommended
that algebra should be re-conceptualized as a strand woven through many grade levels,
serving as a sense-making tool in elementary through higher levels. In the Curriculum

and Evaluation Standards for School Mathematics, NCTM (1989) recommended that
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experiences with patterns and relationships provide a basis for algebraic concepts in
elementary school level and can be extended to focus on analyses, representations, and
generalizations of functional relationships in a secondary school level. Agreeing with
this idea, Philips (1995) stated that, as students learn relationships among the quantities
in patterns, they gradually construct knowledge about important mathematical concepts,
such as functions, learn to reason, and communicate about the important content and
processes of algebra.

The purpose of this chapter is to provide a review of research concerning
students’ understanding of function concepts, their difficulties and misconceptions in
learning function concepts in algebra classrooms, as well as to provide views of
students’ algebraic thinking and reasoning strategies. Since formal algebra has been
taught from secondary school through college levels, most of the studies related to
functions reviewed in this section included both secondary and college levels. The main
concepts in the chapter are organized as follows:

e Development of function understanding;

¢ Difficulties and common misconceptions in learning function concepts;

o Students’ mathematical and algebraic reasoning.

Development of Function Understanding

Function concepts are not new in learning mathematics as Markovit, Eylon,
Bruckheimer (1986) mention in Godfrey’s words written in 1912:

The fact is that we have been teaching functionality for years, whether we have
realized it or not. Every schoolboy now learns to plot graphs; this is nothing but
the study of functionality in its visible form. (p. 18)

Understanding of function concepts contains many aspects including being able
to apply the concept in fields other than mathematics and use the concepts in different
contexts within mathematics itself. Markovits, Eylon, Bruckheimer (1986) stated that
there were two states of understanding: passive, such as classifying and identifying;

active, such as doing something or giving examples. To understand how students
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understand function concepts, Markovits, Eylon, and Bruckheimer constructed

algebraic problems related to graphical and symbolic representations of functions and

gave these problems to 400 students in ninth- grade algebra classes after they had

studied the relevant concepts. Their study investigated students’:

()

@
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ability to classify relations into functions and nonfunctions. The findings
showed that students correctly distinguished relations and functions.
However, some difficulty was experienced when the relations were
given in a symbolic representation, particularly when the relation was a
constant function or a piecewise-defined function. About half of the
students reasoned the correspondence was not a function because “every
preimage has more than one image” (p. 20). From these reasons students
seemed not to realize that different constraints of a correspondence
applied to different parts of a function domain.

ability to give an example of a relation that is a function and one that 1s
not. The researchers said that the students performed the problems
reasonably well. About half of the students gave examples graphically.
Some students had difficulty with many-to-one and one-to many
relationships.

ability to identify preimages, images and (preimage, image) pairs for a
given function. The findings indicated that students understood that
points on a curve of a graphical representation represented (preimage,
image) pairs of the function and points not on the curve did not. In the
symbolic representation, most of the students used the correct procedure
to identify a preimage by checking whether the number belonged to the
domain. To identify if a given number was an image of a function, few
students used the three steps correctly: checking if the number belonged
to the range, calculating the preimage, and checking if this preimage
belonged to the domain. About half of the students only checked whether

the number belonged to the range.



(4)

©)

(6)

)

®)

14

ability to find the image for a given preimage and vice-versa. The
findings indicated that more than half of the students did not realize that
when the function was given in graphical form, preimages were located
on the x-axis and images on the y-axis. However, when the function was
given in a symbolic form, the students were able to find the image for a
given preimage, but they had some difficulties with the reverse.
appreciation that the same function can be represented in several forms
and the ability to identify identical functions. The students understood
that a function could be represented in several forms, and most of them
used symbolic and graphical forms to represent a given function. Some
difficulties occurred when they were asked to identify functions identical
to a given function.

ability to transfer from one representation to another. The finding
showed that students lacked this ability. Less than a third of the students
answered the problems correctly. The findings also showed that when
the function was familiar, students had more difficulty in transforming a
graphical form to a symbolic form than from symbolic to graphical.
ability to identify functions satisfying given constraints. The finding
showed that students had difficulty in understanding that the set of
images of a function could be a subset of the preimages.

ability to give examples of function satisfying some given constraints.
The finding showed that with a graphical form, most of the students gave
a correct function, while from a symbolic form, correct answers were

provided only if the constraints allowed familiar functions.

Breidenbach, Dubinsky, Hawks, and Nichols (1992) revealed that college

students, even those who took an adequate number of mathematics courses including

the calculus sequence, did not have a strong understanding of function concepts. They

observed 62 college students, mainly sophomores and juniors preparing to be high

school, middle school and elementary school teachers. They investigated students’

understanding of functions in the discrete mathematics course from three situations. The
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first situation was called an ordinary school environment. The students were asked to
respond to the question, “What is a function?” then they were asked to give examples of
a function. The students were asked to respond to the same question, “What is a
function?” then to give three different types of examples within a computer
environment. The third situation, an instructional treatment, included computer
experiences, small group problem-solving, and discussions addressing functions. The
researchers interpreted students’ understanding of functions in three categories:
prefunction, action, and process. They defined prefunction when a student did not
demonstrate a concept of function. They said students had a process concept of
functions if they were able to “think about the transformation as a complete activity
beginning with objects of some kinds, doing something to these objects, and obtaining
new objects as a result of what they have done” (p. 251).

The results of this study indicated that most of the students had a prefunction
concept at the beginning of the course. After some time in the general computer
environment, they progressed from prefunction through action to process function
concepts. The researchers claimed that the instructional treatment had helped students

construct an understanding of function concepts.

Difficulties and Misconceptions in Learning Function Concepts

Of all algebraic content taught in the mathematics classroom, functions are
considered to be one of the most important topics, a topic that permeates every branch
of mathematics and occupies a core position in the development of mathematics
understanding. However, research indicates that students have a low understanding of
the concepts of functions.

Numerous recommendations concerning mathematics understanding have been
based on the difficulties students encounter while learning and solving problems
involving mathematical function concepts. Several mathematics education committees
such as the National Committee on Mathematical Requirements of the Mathematics

Association of America have recommended a study of functions to begin in secondary
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school mathematics (Cooney & Wilson, 1993). The Curriculum and Evaluation
Standards for School Mathematics (NCTM, 1989) also called for the inclusion of
function-related activities starting as early as elementary school. In addition, many
mathematics educators claimed that function concepts are important in modern
mathematics and essential for relating mathematics, science and technology (Leinhardt,
Zaslavsky, & Stein, 1990; Selden & Selden, 1992). Breidenbach et al. (1992) claimed
that an understanding of function concepts provided a necessary background enabling
students to better understand calculus and advanced mathematics.

Several research studies have responded to the calls for the algebraic curriculum
reforming. Many of those studies revealed common misconceptions and difficulties that
secondary and college students experienced in comprehending the concepts of
functions. Leinhardt et al. (1990) defined student misconceptions as “incorrect features
of student knowledge that are repeatable and explicit” (p. 30). They noted that
misconceptions about functions and graphs were often correlated to previous
mathematical conceptual learning. Consequently, they stated that “the function concepts
may be limited because of a lack of variety of instructional examples, or a translation
may be performed inaccurately because of confusion over symbolic notation” (p. 30).
This study considered the research related to studies of students’ misconception about
function because they wanted to help mathematics teachers and educators understand
students’ development process of function concepts. The students’ function
misconceptions and limited understanding of functions were related to their cognitive
process of learning function (Rho, 2000).

Several research studies have focused on determining common misconceptions
that students have about functions. In order to explain students’ understanding and
misconception of functions, Markovits et al. (1988) investigated ninth- and tenth-grade
students’ difficulties and misconceptions with linear functions. The findings indicated
that these students had difficulty with the terminology associated with functions (i.e.
preimage, image, domain, range, and image set). The students also had difficulties
distinguishing between the range and the image sets. Several students disregarded the

specified domain and range entirely and assumed the domain and range to be the whole
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set of real numbers. These students did not immediately understand the connection
between the components in the written definition (i.e. domain, range, and rule of
correspondence) and the corresponding components in the graphical representation.
Constant functions, functions represented by disconnected graphs, and piecewise-
defined functions were also not clearly understood. Many students did not think that
those types of functions were functions. In some cases, students’ difficulties related to
the misconception that all functions had to be linear, possibly because of the extended
time studying linear functions; and numerous students had a misunderstanding that
linearity was a property assumed by all functions.

Another study related to tenth- and eleventh-grade students’ conceptions of
functions was conducted by Vinner (1983). In this study all participants had previously
studied functions. The study indicated the function concept images held by the students

WwEre:

e A function had to be given by one rule. If two rules were given using two
disjoint domains, then there were two functions.
e A function could be given by several rules relating to disjoint domains,
provided these domains were intervals. However, a correspondence with one
~exception point was not considered a function.
e For every y in the range, the function had only one x in the domain
corresponding to that y.

e A function was only a one-to-one correspondence.

In addition to the studies investigating types of misconceptions of functions,
studies involving students’ understanding of functions were conducted. For example,
Carlson (1997) designed a study to guide mathematics teachers and curriculum
developers by providing insights on how high ability college algebra students
developed their understanding of the main aspects of the concepts of functions. The
subjects of this study consisted of 30 students who had just completed a Function-
Integrated College Algebra course with an “A” grade. A 25-problem written exam,

covering many concepts of functions, taught in the college algebra course, was
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developed for measuring students’ understandings of functions. The follow-up
interview questions were designed to determine how students gained specific function
knowledge.

Of all students, five of them who performed at different levels on the written
exam were scheduled for follow-up interviews. They were asked to verbally describe
their written responses, and provide clarification and justification for their solution
strategies. Both quantitative and qualitative results were provided. The researcher
concluded that high-performing college algebra students had limited understanding of
the function concepts. They had little understanding of function language and were
unable to use function notations to represent real world relationships. During the
interviews, the students could not express a quantity as a function of another and were
unable to verbalize the meaning of f{x + a) when a function f(x) was given. Although
these students were able to algebraically evaluate functions for specific inputs, construct
graphs of simple algebra functions, and interpret points on a graph, they demonstrated
an inability to interpret graphical function information for intervals of the domain.

Furthermore, the analysis of the interview results showed that these students
viewed the evaluation of a function as nothing more than a set of memorized steps.
They did not view a function more generally as processes; rather they viewed them as a
sequence of procedural operations to be completed. They did not understand graphical
solution(s) to the equation f{x) = g(x), nor algebraically constructing an equation by
equating the expressions for the two functions. From the analysis, the researcher

summarized that these students did not:

o understand the language of functions

e know how to represent real world relationships using algebraic and graphic
function representations

e know how to interpret graphical information for intervals of the domain

e know how to interpret graphical information representing “rate of change”

e understand the general nature of a function. (They mistakenly thought all
functions must be definable by a single algebraic formula)

e understand the role of the independent and dependent variable in an
algebraic function representation

« distinguish between “solutions of an equation” and “roots of the
function.” (Carlson, 1997, p. 56)
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The researcher claimed that even the most able students, at the completion of college
algebra, still had many misconceptions and were unable to access much of the
information explicitly taught during the course.

Tall and Bakar (1992) explored students’ visual images about functions. The
researchers used the term “mental prototype” to describe the visual images that students
had about functions. The researchers investigated high school students’ understanding
of functions with a group of “A-level” mathematics students in England. The students

were asked to:

e explain what they thought a function was in a sentence and give a definition
of a function if possible.
¢ determine whether each given sketch represented a function, and if not, use a

diagram to demonstrate their reason.

These same tasks were also given to 109 first year university students (the level of

outstanding was not provided), in addition to the following task:

e Determining if the given symbolic expressions or procedures represent y as a

function of x.

The results showed that none of the high school students gave satisfactory

definitions, but all gave explanations, including the following:

o A function is like an equation which has variable inputs, processes the
inputted number and give an output;

e A “machine” that will put out a number from another number that is put in;

e An expression that gives a range of answers with different value of x;

o A form of equation describing a curve/path on a graph;

o A way of describing a curve on a Cartesian graph in terms of x and y
coordinates;

e An order which plots a curve or straight line on a graph;

¢ A mathematical command which can change a variable into a different
value;

e A set of instructions that you can put numbers through;

e A process that numbers go through, treating them all the same to get an
answer;

e A process which can be performed on any number and is represented in
algebraic form using x as a variable;

e A series of calculations to determine a final answer, to which you have
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submitted a digit;
e A term which will produce a sequence of numbers, when a random set of
numbers is fed into the term. (Tall & Bakar, 1992, p. 40-41)

Figure 1 shows the graphs used in the questionnaire that were presented.

e e

4]

Figure 1. Graphs in questionnaire used in Tall and Bakar’s study.

The results indicated that all of the high school students and 97% of the university
students believed graph (a) was a function. About half of high school and university
students answered the rest correctly except graph (b), in which about 91% of the
university students gave a correct answer. When functions were presented symbolically,
the university students were asked to state which of a number of symbolic expressions
or procedures could represent y as a function of x. The results showed that 38 of the 109
students explicitly mentioned, at least once in their responses, that for each x there must
be one y and almost half of the students stated that a constant such as y = 4 was not a
function.

In Vinner’s (1983) study, students who thought of functions as involving a
single formula considered a piecewise-defined function as several different functions
rather than as one function. The difficulties the students faced also seemed to be the
“strangeness” of the expressions and the fact that the presentations did not fit the
students’ mental prototypes. Comparing student performance on the equation y = 4 and
the graph of y = constant, the researchers found 28% of the students responded

correctly in the affirmative to both questions; 41% of the students responded negatively
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to both questions; 29% of the students stated that the graph corresponded to a function
but the symbolic representation did not.

Another study related community college students’ understandings of function
concepts was conducted by DeMarois and McGowen (1996). The purpose of this study
was to explore students’ understandings of the definition of a function and the
notational aspect of the function concepts. Written questions focused on students’
interpretation of function notations, were used as a pretest and a posttest. In the pretest,
none of the questions on functions was included, because it was assumed the students
had not previously experienced the function concepts. The posttest focused on students’
interpretations of function notations. The results indicated that students had little
understanding of symbolic function notations. A large percentage of students were able
to identify f{x) as a function notation, while only a small percentage of the students
were able to distinguish between af{b) and bf{a) function notations.

Investigations of function concepts have also focused on specific aspects of
functions. The concept of the x-intercept could be considered as one of the common
misconceptions or misunderstandings in learning about functions. Moschkovic (1999)
conducted a specific study to investigate first year algebra students’ (ninth and tenth
graders) use of the x-intercept in equations of the form of y =mx + b.

The study focused on mathematical processes, rather than on results or answers
and supported group-work, as well as encouraged students to discuss their ideas with
others. In addition to videotape recording of discussions, written assessments (a pretest
and a posttest) were also used to explore the students’ use of the x-intercept in the linear
function. A 30-item written assessment asked students to predict what would happen to
the line y = x graph on a coordinate grid, if the equation was changed or what they
would do to a line (y = x) to graph a second line on a coordinate grid.

The responses on the pretest showed that 13 out of 18 students used the x-
intercept when working with equations in the form y = mx + b. Twelve students used
the x-intercept in place of b and five students used it in the place of m in the equation
they generated. Six of the students described lines as moving left to right (or right to

left) along the x-axis as a result of changing the value of b in an equation. Responses
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involving the use of the x-intercept were coded as graphical and algebraic uses.
Algebraic uses of the x-intercept were coded as use of the x-intercept either for

parameter m or for parameter b. The categories of the x-intercept used are described in

Table 1:

Table 1
Categories of the x-intercept (Moschkovic, 1999, p. 177)

Categories Description
x graphical intercept A student described a line as moving ‘left or right’ or
‘on the x-axis’ as a result of a change in b in an
equation.
x-intercept for b A student used the x-intercept of a line for b in an

equation or responded that the number b in an equation
corresponded to the x-intercept of a line.

x-intercept for m A student used the x-intercept for m in an equation or
responded that the number m in an equation
corresponded to the x-intercept of a line.

The results revealed that 14 students (72%) showed at least one instance of any
use of the x-intercept (graphical and algebraic) and 10 students (55%) showed two or
more instances of any use of the x-intercept. Students’ answers and explanations for the
written assessments showed that students used this conceptual understanding in
different settings. The students’ explanations showed that their responses involving the
use of the x-intercept were not due to carelessness, but reflected an underlying
conception. The response on the posttest showed that the use of the x-intercept was
robust, because students continued using the x-intercept even after participating in the
discussion sessions. An analysis of the videotapes showed that the use of the x-intercept
was refined in the following ways:

e Students moved from using the x-intercept for b when m =1 to using the x-

coordinate of the x-intercept as b in the equation, to using the opposite of the
x-coordinate of the x-intercept as b.
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e Students came to use the x-intercept only in the contexts in which it was
applicable. For example using the opposite of the x-coordinate of the x-
intercept for b only when m = 1.

e Most of the students refined their description of lines so that they focused on

vertical, rather than horizontal, translation as a result of changing b.
(Moschkovic, 1999, p. 178-179)

The two case studies discussed in this study showed that students’ use of the x-
intercept was context dependence. Using the opposite of the x-intercept was productive
for generating the algebraic y-intercept when m = 1, while it was not applicable when
m = 2. This study also illustrated that students’ use of the x-intercept was part of the
process of making sense of the connections between the two representations: symbolic
and graphical.

The above studies demonstrate that both secondary school and college students
in general have not succeeded in developing a good understanding of functions. The
studies indicated a number of students at these levels had similar misconceptions about
functions such as: a function represented by a disconnected graph was not a function; a
function had to be one-to-one (students thought that neither constant nor piecewise-
defined functions were functions), and that all functions were linear. Some studies
indicated that secondary school students experienced difficulties with: terminology
associated with functions, definitions of functions (the students were given more than
one definition of functions), function notations, and function representations. For the
specific content of functions, a study by Moschkovic (1999) showed that secondary
students’ use of the x-intercept was a robust conception because the form of the

function students often used, y = mx + b, does not address the x-intercept.

Students’ Algebraic Reasoning and Solution Strategies

‘“Mathematical reasoning must stand at the center of mathematics learning”
(Russell, 1999). And mathematics teachers should know that students learn
mathematics from reasoning to developing sense-making and justification at elementary

school level, using thinking and reasoning to make conjectures and apply inductive and
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deductive reasoning at middle school level, and using thinking and reasoning form,
validate, and prove mathematical assertion at high school level (NCTM, 1989). In
addition, NCTM (2000) stated that teaching and learning at all grades should enable
students to select and use various types of reasoning to develop their mathematical
concepts.

As stated earlier teaching and learning of algebra in the schools did not
significantly change until the NCTM’s recommendation in The Standards and
Evaluation for School Mathematics (NCTM, 1989). The standards called for students to
justify their answers and solutions, to make and evaluate mathematical conjectures, to
use counter examples efficiently, to draw conclusion from deductive and inductive
reasoning. For a specific branch of mathematics, algebra, algebraic reasoning includes
“engaging in these activities with planned or unplanned use of, or conclusion about,
properties of, uses of, and operations on algebraic entities (variable, equation,
function)” (Zbiek, 1998, p. 35). Following the NCTM’s recommendation, the algebraic
curriculum shifted directions. In the past, algebra evoked an emphasis on computational
skills such as solving equations and inequalities. However, this perspective began to
change after the publication of Curriculum and Evaluation Standards for School
Mathematics (NCTM, 1989). Moreover, Principles and Standards for School
Mathematics (NCTM, 2000) challenged that algebraic thinking and reasoning is
important at all grade levels. In order to develop the role of algebra in the mathematics
curriculum, the Mathematical Science Education Board [MSEB] and the NCTM co-
sponsored a national symposium “The Nature and Role of Algebra in the K-14
Curriculum” (NCR, 1998). The primary goals were to (a) promote an informed
dialogue on issues concerning the K-14 algebra curriculum, (b) provide examples of
students’ algebraic thinking and reasoning to synthesize research and to consider how
these factors impact algebra in school mathematics, and (c) provide a forum for those
mvolved in algebra-related curriculum projects at elementary school through
postsecondary school levels to share their visions of curricula, teaching, and

assessment.
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Algebraic reasoning has frequently been referred to as an important form of
mathematical reasoning. A few research studies were conducted with the concepts of
functions in general and some others investigated more specific students’ concepts. For
example: McDermott, Rosenquits, and van Zee (1987) conducted a study related to
college physics and mathematics students that involved making connections between
velocity and position represented as graphs. The researchers reported on one particular
task that asked students to use the graph of the position of two different objects (A and
B) to decide which one was moving faster. Students responded that B was moving
faster than A, because on the graph B was higher than A. However, in actuality object
A was moving faster than B throughout the entire time since graph A had a greater
slope than the graph of B. Another study presented by Clement (1989) was conducted
with college mathematics major students. They were presented a graph of the velocity

of two moving cars. The students were given graph of speed vs. time for two cars
(Figure 2).

CarA

Speed

CarB

t=0hr. t=1hr.

Time in Hours

Figure 2. Graph of speed vs. time of two cars.

The findings of this study indicated that the students were able to read the speed
of the cars at the specific time, but when they were asked to describe the relationship
between the cars’ positions at t = 1 hour, the students stated that Car B was passing Car

A or that the cars were next to one another at that certain time. In other words, students
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used the fact that these two cars were at the same points on the velocity graph to
conclude that the cars were at the same position.

It is also suggested that multiple representations provide an environment for
students to understand mathematical and algebraic concepts. Therefore, it 1s necessary
to understand how students connect and use these representations. Ozgun-Koca (1998)
conducted a study designed to investigate students’ thinking and their preferences while
choosing a type of representation for solving mathematical problems and to help
teachers see some effects of students’ thinking and reasoning processes when they were
dealing with mathematical representations. Fourteen freshman college students in a
remedial mathematics class were observed. One of the observations was set for students
to work in groups with four activities. For the first part, students were presented a
problem with no suggestion related to the representations. The purpose of this part was
to see which type of representations students would choose to solve the problem. For
the second part, the same problem was presented graphically to students and they were
asked questions related to the graphical representation. The third part of the activity was
the same for a tabular representation. In the final part, the problem was represented in
symbolic form.

When asked about their preferences of function representations, students had
reasons for using each representation. For example, to reach the only exact answer, the
symbolic representation made them comfortable and confident. However, there was a
student who was comfortable with having many possible answers, he stated that
“[tables] show you many possible solutions [Italic added] to one problem that helps you
graph the problem” (Ozgun-Koca, 1998, p. 12). Since tables showed information in a
more organized way, some of the students selected tables as their choice of
representations. The common reason for using graphical representations was the visual
benefit, since graphs made 1t possible for them to see how functions behaved.

Multiple reasons affect students when selecting and using particular
mathematical representations. To enable students to experience different representations

and use the representation that is the most meaningful for them, teachers need to
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provide an environment with multiple representations instead of favoring a particular
representation (Eisenberg, 1992).

Heid, Hollebrands, and Iseri (2002) conducted a study focused on a seventh-
grade student, Kevin, working on a problem involving functions in technological
environment. The functional problem that Kevin dealt with was more difficult than any
other problems that he experienced in his mathematics class. Kevin was asked to
construct functions that met five constraints (see Appendix I). First, he needed to
construct a function that met the first constraint, then to modify the function so that it
met the first two constraints, and so on. Working on this problem, Kevin was allowed to
use a computer algebra system (CAS). The results of this study indicated that Kevin
was able to work on the problem that he had not previously encountered. He was able to
examine the conclusions that he had reached with the CAS. Generally, he used his
understanding of the concepts of functions such as zeros of a function, a non-negative
function and a domain of a function. In addition, Kevin was able to broaden his
thinking and reasoning about functions through his use of the technology. He connected
the graphical and symbolic representations through the use of technology tool.
Ultimately, his thinking about the mathematics was supported by the technology in that
he was able to use the technology to clarify and understand the ideas through a variety
of mathematical representations to interpret and solve problems.

Zbiek (1998) explored the solution strategies used by 13 preservice secondary
school mathematics teachers to develop and validate functions to real-world situations.
The study indicated that at the beginning of the class (first three weeks of the 15-week
course), the preservice teachers used previously proposed models of real-world |
situations and computing tools, such as curve fitting, function graphers, and symbolic
manipulators, to expand their understanding of functions. They also created and
manipulated multiple representations of functions to answer real-words phenomenal
problems. During the last four weeks of the course, the preservice teachers collected
data, created function models by using computer tools, and discussed the real-world

possibility. The study indicated that students’ solution strategies used to solve problems
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differed with respect to the relative influence of mathematical ideas and real-world

knowledge.

Summary

The NCTM's visualization of learning mathematics has shifted toward
investigating, conjecturing, formulating, representing, reasoning, and applying a variety
of strategies to solutions of problems (NCTM, 1995, 2000). With respect to learning
mathematics for understanding including algebra, mathematics educators and teachers
now endorse an emphasis on students’ constructing mathematical knowledge and
mathematical thinking and reasoning. It is recommended that learning mathematics
requires constructions; therefore, mathematics teachers need to accept the responsibility
for establishing an environment in their classrooms to support students’ learning.

As indicated in several studies at the secondary school level (Markovists et al.,
1988; Vinner, 1983) and college level (Breidenbach et al., 1992; Carlson, 1997,
DeMarois & McGowen, 1996; Tall & Bakar, 1992), students at both secondary school
and college levels had difficulties in understanding function concepts and held function
misconceptions. Several studies specified similar misconceptions among secondary
school and college students, including preservice teachers, but rarely mentioned their
thinking and reasoning processes related to these misconceptions. Even though there
were some studies (Heid et al., 2002, Zbiek, 1998) discussing secondary school
students’ ability in selecting solution strategies and thinking and reasoning
algebraically, more information is needed, particularly at the college level. Therefore, a
vision of how college students think and reason algebraically needs to be investigated
using several data sources to confirm or disconfirm the findings.

By providing opportunities and environments in which students can share their
thoughts, such as asking questions in assignments about their rationale for their
answers, asking them to speak aloud to demonstrate their thoughts as they are working
on the problems, teachers can learn more about their thinking and reasoning, and their

ways of understandings. These activities will empower teachers and educators to
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improve mathematics education in the future. In order to understand how students think
and reason algebraically, a qualitative research case study is needed to obtain an in-
depth understanding of students’ cognitive thinking and reasoning processes. Classroom
observations and interviews of students asking them to express their thinking verbally
will provide in-depth understanding of the influence of instruction on students’

algebraic thinking and reasoning.
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MATERIALS AND METHODS

Based on the trends and direction of the research in the past two decades on the
teaching and learning of algebra in addressing the function domain, an important shift
has occurred from verifying students’ difficulties and misconceptions to considering
their solution strategies and their thinking and reasoning as they work on the problems.
In recognition of this shift, this study proposes to describe the nature of college
students’ understanding of function and their thinking and reasoning strategies and
processes as they work with function problems. In particular, this study considers two

research questions:

1. What is college algebra students’ understanding of functions?
2. What solution strategies and thinking and reasoning processes do college
algebra students use as they attempt mathematical problems involving

functions?

This chapter presents the methodology used to conduct this study with college
students enrolled in the College Algebra course at a northwest public university. The
College Algebra course was selected for this study because the fundamental
mathematical function concepts were taught in this course. Case study analysis of the
verbal data collected through a Function Understanding Questionnaire, thinking and
reasoning interview problems, and classroom observations conducted as the students
participated in the instruction of function concepts were used. To answer the first
question, the participants were asked to complete a Function Understanding
Questionnaire illustrating their thinking and understanding about functions at the end of
the instruction. College students’ understanding of functions and abilities to work with
functions, to characterize real world functional relationships, to operate with particular

types of functional representations, and to translate among different representations of
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the same function were considered. To answer the second question, a subset of the
students participated in thinking and reasoning problem-solving and interviews
conducted every two weeks during the instruction of functions Winter term, 2003.
Students’ responses on interview problems allowed a comparison of their reasoning and
thinking throughout the instruction. The interview data allowed the researcher to
examine students’ insights more carefully. Examining students’ words and their
responses supported the development of the students’ reasoning and thinking as they
developed their responses to mathematical function situations. Classroom observations
provided additional information in explaining how students selected their solution

strategies and their thinking and reasoning about specific problems.

Participants

Participants for this study were college students enrolled in a college algebra
course in winter term of year 2003. Enrollment in this course implied that the student
had achieved some minimum level of proficiency in manipulating prerequisite algebraic
concepts through college level or an equivalent high school preparation. The topics
covered in this course were intended to provide the students with the mathematical

background needed to pursue higher levels of college mathematics courses.

Instructional Staffs

The instructional staff for this course included one instructor and one graduate
teaching assistant [GTA.]. Both volunteers were experienced in teaching and assisting

students learn mathematics at the college level, particularly in teaching college algebra.

The Instructor

The instructor for the course had a strong background in mathematics. She

earned a Bachelors of Arts Degree in December 1999 with two majors: Mathematics
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and History. She earned a Master of Science degree in mathematics in June 2002 at the
university where the study took place.

When she started college she planned to study mathematics but she had no idea
what she wanted to do after graduation. After a couple years of college, she added a
history major to her degree and started thinking about teaching. Originally she
considered pursuing a Master of Arts in Teaching (MAT), but changed her mind
because with that degree she was likely restricted to teaching at the high school level;
she wanted to teach at the college level also. Instead she began her master’s degree.
While studying for the master’s degree, she taught part-time at a nearby community
college. This experience indicated that college level teaching was what she wanted to
do.

Her experience with algebra began when she was in middle school. She took
two years of algebra in eighth and ninth grades (home schooled). She never took
college algebra. However, as a graduate student, she was able to be a graduate teaching
assistant [GTA] for College Algebra course for five terms (2000-2002). After her
graduation, she Was hired as an instructor in the Mathematics Department. Winter term
was her second term of teaching college algebra as an instructor. She also taught two
other college mathematics courses including finite mathematics and calculus for a
business major. She had also worked with college algebra students in a mathematics lab

class at the community college since January, 2001.

The Graduate Teaching Assistant

A graduate student assisting in this class was currently studying mathematics
and had experience in teaching college algebra before participating in this study. She
earned a Bachelors of Science degree in Mathematics in June 1999 at a university in
Turkey and a Master of Science degree in Mathematics in June 2001 from another
university in the northwestern United States.

During her Master’s degree program, she was a graduate teaching assistant in

Discrete Mathematics for four terms. At that point she became interested in teaching.
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She was originally planning to get a doctorate, but she wanted to learn more about
Mathematics Education. So, she participated in a program that resulted in a Teaching
Certificate in June 2002. While in this program, she was an instructor at the university
and taught Intermediate Algebra. As a part of Teaching Certificate program, she taught
at middle school and high school levels. While teaching at high school, she realized that
teaching at the college level was more interesting and she decided to get a doctorate in
Mathematics Education. As a doctoral student at the university where the study was
conducted, she served as a graduate teaching assistant for mathematics classes. She also
had experience in teaching college algebra before participating in this study. Prior to the
study, she was a GTA for College Algebra course twice.

The responsibilities for the GTA were determined by the instructor. During the
recitation period, the GTA reviewed the content taught in the lecture class the previous
week, answered the students’ questions within the lecture content (if any), directed
students in lab project activities that related to some topics in the lecture class, gave
students quizzes (depending on the assignment of the instructor), and graded students’
homework and lab activity assignments. All tests (midterm and final tests) were
constructed by the instructors from all sections of College Algebra and were computer

graded with an answer key prepared by the instructors.

Student Participants

After the instructor and the GTA had been identified for this study, the specific
class from which to select student participants was identified. The researcher introduced
herself and presented a description of the study to all of the GTA’s recitation classes
during Winter term, 2003, describing the data to be collected and expectation of
students who volunteered.

Subjects participating were drawn from volunteer students enrolled in the
College Algebra course (MTH 111) of the volunteer instructor. Students who registered

for the College Algebra Mathematics Excel class were excluded from the study because
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this course provided additional assistance in learning and solving mathematical
problems involving function concepts. A Biographical Background Information
Questionnaire provided students’ information involving their history of mathematics
courses taken at high school and college before taking the College Algebra course, their
achievement, their proposed future mathematics courses, and their intended major.
From the pool of volunteers, 10 students planning to take mathematics courses
beyond College Algebra were contacted and scheduled for participating in a one-hour
interview. The interview was used to identify five students with the ability to
demonstrate, verbalize, and explain their problem-solving strategies and their thinking
and reasoning while working on mathematical problems. The students were asked to
talk about their background, and their future plans including their plans for taking
higher mathematics courses. They were also asked to participate in a think-aloud
protocol while solving an algebraic problem. Each student was asked to describe his /
her thoughts about how to complete the problem. The researcher selected only five
students because the limitation of time needed for the in depth interviews that occurred

every two weeks during the 10 weeks instruction of functions.

Data Collection Instruments

Many students are able to repeat verbatim equivalent definitions of a function
without the slightest understanding of what the definitions represent (Walton, 1988).
This conflict between students’ words and actions required an investigation that used
multiple data sources. To obtain a more complete understanding of students’
understanding of functions, their thinking and reasoning processes, and their solution
strategies as they solved the function problems, data were gathered from the
Background Information Questionnaire, a Function Understanding Questionnaire,
thinking and reasoning interview problems, classroom observation notes, the

researcher's journal, and fieldnotes from classroom observations and interviews.
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Background Information Questionnaire

Prior to the instruction on function concepts, the Background Information
Questionnaire was administered to all volunteer students (24 out of 30 students in the
recitation that the researcher observed) in the recitation class selected for this study (see
Appendix A). The Background Information Questionnaire gathered self-reported
biographical and background information of the volunteer students. The data included
mathematics courses taken in high school and college before this course with
achievement in these experiences, proposed future mathematics courses, intended

major, and college grade level.

Function Understanding Questionnaire

To answer the first research question, all volunteer (n = 24) students in the
recitation section of the GTA who agreed to participate in the study completed the
Function Understanding Questionnaire (see Appendix E) after the studying a function
unit. The questionnaire was used to develop a broad description of college students’
understanding of functions. Before completing this questionnaire, all participant
students were told that the questions were intentionally vague with many different ways
to respond with no right or wrong answers; their answers were not used in determining
their course grade.

Validity of this questionnaire was established by a panel of five experts prior to
its use. The panel members determined whether the questionnaire focused on the
understanding of students’ understanding of functions and its applications, ensured that
students were encouraged to describe their full understanding of functions, and assured
that it assessed students’ understanding with respect to the concepts of functions. The
questionnaire was given to the panel members to review the appropriateness of the
questions. The questions, with 80% agreement of the panel members, were

administered at the end of the instruction.
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Reliability for this questionnaire was established by administering the
questionnaire to 20 volunteer college algebra students who were not subjects in the
study. This administration determined whether the questions were understandable and

students responses were consistent.

Thinking and Reasoning Interview Problems

A major goal of the study was to examine college algebra students’ thoughts,
thinking and reasoning processes, and solution strategies used as they worked on
problems related to mathematical functions. The instruction on functions quite possibly
influenced their thinking, solution strategies, and reasoning; therefore the researcher
observed the instruction in both lecture and recitation classes and she interviewed the
selected participants during and after instruction of functions. The five selected students
participated in a one-hour problem-solving interview every two weeks. They were
asked to solve mathematical problems related to functions with respect to the concepts
of functions taught within the previous two weeks. A think-aloud protocol was used
with each problem. Each participant was asked to verbalize his / her thoughts while
working on the problems. The interview problems assessed students’ thoughts, their
solution strategies, and their reasoning as they solved each problem.

A panel of five experts was asked to validate the problems. This panel consisted
of five professors: two mathematics educators, one mathematician, and two instructors.
From this panel of five, the mathematician and two instructors had previously taught the
college algebra course. The panel was given the set of problems and a set of objectives
and expectations for the problems. Using a scale of 1 to 3, each panel member
completed a Table of Specifications to describe the level at which the problem met the
stated objectives for this study. A rating of 1 indicated the problem was not appropriate
for the study while a rating of 2 indicated the problem was appropriate but needed to be
revised; a rating of 3 indicated the problem was appropriate as written. The comments
and suggestions for improvement and the results from the Table of Specifications

helped the researcher modify the problems. Each problem used in this study achieved at
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least expert agreement of 80%. In other words, 4 of 5 experts agreed that each problem
used in the study was appropriate.

The interview procedures and a set of prospective problems were piloted and
audiotaped with approximately 40 students enrolled in the college algebra course the
term prior to the study. Some of these students participated in the pilot study of
Function Understanding Questionnaire. The pilot study was conducted to ensure that
the students participating in the study were familiar with the mathematical tools needed
to solve the problems and to determine the length of the interview. Additionally the
pilot study was used to develop the researcher’s probing protocol strategies as students
attempted the problems. As the volunteers worked on the problems, they were asked to
clarify the wording of the problems and their understanding of the problems. This
method helped in presenting problems that encouraged students to think aloud.

Thinking and reasoning interview problems were used prior to, during, and at
the end of the instruction on function concepts. The five selected students were
scheduled for one-hour to work on problems to demonstrate their thinking and
reasoning by responding to directed questions and mathematical function problems
every other week during the instruction of College Algebra. Three types of interviews
were conducted, each at a specific time during the term: (1) a pre-instruction problem-
solving and interview, (2) an interview during instruction, and (3) a post-instruction,
problem-solving interview. All interviews and problem-solving activities were
videotape and audiotape recorded.

The main goal of the pre-instruction interview was to allow the participants to
become comfortable with the recording equipment, to encourage them to speak aloud,
and to familiarize them with the data collection process and the researcher. In the first
interview, the participants were asked some questions related to their mathematical
background information as well as provided an opportunity to describe their
understanding of mathematical concepts and ideas obtaining from the class prior to the
unit on functions. The interviews began by allowing students to describe their
understanding of algebraic concepts in solving four algebraic problems. During the

interview, the participants were asked to read each problem aloud and solve the
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problem by verbalizing their thinking and reasoning while attempting the problem. The
participants were allowed to use any tools they wanted in working on mathematical
problems. They were also encouraged to talk about their learning activities, homework
assignments, as well as to ask the researcher questions. The videotapes focused on the
participants’ written work and visual movements.

During the function unit, the participants were interviewed and asked to work on
function problems using the think-aloud strategy. These interview problems made it
possible to focus attention on the participants’ thinking and reasoning processes rather
than just on correct and incorrect answers they produced. During these interviews, the
participants were asked to read the problem aloud before solving the problem and to
verbalize their solution method and their thinking and reasoning while attempting to
solve the problems. Again participants were allowed to use typical tools for working
with these problems (graphing calculators and graph paper). The video recorder focused
on the participant’s written work to show the physical manifestation of their thoughts
and process. While each participant was working, the researcher asked relevant
questions to probe and clarify the student’s thinking and reasoning and to test emerging
hypotheses.

In order to improve the quality of the participants’ reports of their thinking,
three methods to limit major distortions in their thought processes were addressed. First,
the researcher urged the students to think aloud (stating everything that happened in
their head) rather than to reflect on their thought processes. Second, since some students
used more nonverbal representations than others, the researcher encouraged the drawing
of diagrams or translations of images to language. Finally, the researcher used probing
questions to encourage a sufficient amount of verbalization and clarification of thoughts
(Ericsson & Simon, 1993).

The post-instructional interview was conducted after the function unit in the
College Algebra was taught. During this time, the researcher, as an interviewer,
continued to probe the student to explain his / her statements at all steps if they were not
clear during the problem-solving process. Moreover, this interview provided an

opportunity for the researcher to clarify her understanding of the participants’ solution
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strategies. Thus, the goal of the post-instruction interview was to provide the researcher
an opportunity to ask the participants to clarify or explain their knowledge and
understanding, solution strategies, and thinking and reasoning of functions at any steps

not sufficiently verbalized or written during the problem-solving process.

Classroom Observations

Classroom observations were used to gather data on the sequence of topics and
instruction in the course. The lectures were for 250-300 students and the recitation class
consisted of 30 35 students. Alternatively, the data were used to describe and 1dentify
activities and the interaction students had in the instruction about functions. The
classroom observations verified the focus of the instruction and the resources the
students received. These data were considered in conjunction with student interviews to
assist in interpretation of the students’ reasons or explanations to the problems.
Additionally, the classroom observations provided the researcher information to guide
the ongoing interviews with students. The researcher also examined all course material
provided to students in either lecture or recitation to understand how it influenced the
students’ development of their understanding of functions.

To minimize the influence of the observer in the classroom, the researcher
attended lecture and recitation classes prior to the instruction on the function units.
Observation data were collected with handwritten notes and through audiotapes
recorded during the instruction. The handwritten notes of each class utilized an
anecdotal record technique with a focus on key concepts and instructional methods used
to guide students in learning about functions. All classroom observational data were
transcribed and used for the ongoing development of the interview protocol.

Materials such as textbooks, graphing calculators and activities provided
resources and references for students in this course. These course materials were
examined for a potential role in the development of students’ understanding of function
concepts and solution strategies, algebraic thinking and reasoning processes.

The researcher used specific questions to guide her observations. For example:
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e What did the instructor and students do during the class?

e What topics were taught? How was the material presented?

e What examples were used?
In this study, the researcher was interested in strategies that the instructor used for
teaching the function concepts and how students reacted to the instructor during the

class. The researcher asked structured focus questions. For example:

e What teaching strategies were used in the class?

e How did the instructor interact with students during the class?

More specifically, the observation in the recitation class focused on the five students
participating in the interview session to see their behaviors in the class. In the recitation

the researcher asked guided questions, for example:

e How did these students respond to the GTA?

e How did these students attend to the class instruction?

In general, observations of the classroom behavior of the students and the
instructors provided the researcher with additional information pertaining to the
participants' opportunity to learn and think about algebraic concepts, concepts of
functions in this particular case, and the interpretation of “algebraic reasoning,” which
included their ability to extract, represent, interpret information, and even to develop

confidence in symbolic generalizations

The Researcher

The primary instrument for gathering and analyzing data was the researcher
(Merriam, 1998). Data were collected and analyzed from the perspective of the
researcher; thus, the researcher’s perspective, background, and experience provided a
framework from which the study was conducted. The researcher first encountered a
formal algebra course in middle school; functions were also addressed at high school
and college levels. After earning her Bachelor’s and Master’s degrees in mathematics

education, she taught secondary school mathematics in Thailand from seventh to
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twelfth grades for seven years before pursuing a Ph.D. in Mathematics Education.
Moreover, the researcher had experience as a GTA in the college algebra course at the
university where the study was conducted for three years and was an instructor for the

course in the study for two terms.

Researcher’s Fieldnotes and Journals

For this study, fieldnotes consisted of videotaped records of the thinking and
reasoning problem-solving and interviews, and were used to maintain a description of
the classroom observations as well as the interviews. In addition, written anecdotal
records of the class meetings, transcriptions of all videotapes and audiotapes, and a
written description of individual activities were recorded. The use of the videotapes and
audiotapes were beneficial in providing various reactions (i.e. talking, gesture, and eye
movement) and in providing guidance for the transcribed interviews, allowing the
chronological order of the students’ written solutions to complement their verbal
response. The video and audio recordings were supplemented by the researcher's
journal. This journal contained a written account of the researcher’s comments,

impressions and thoughts, reactions, and initial interpretation and working hypotheses.

Data Analysis

The purpose of this study was to gain an in-depth understanding of college level
students’ understanding of functions, their thinking and reasoning processes, and the
solution strategies they used in solving mathematical function problems. In order to
enhance the validity of the study findings, multiple data collection methods, including
classroom observations, participant interviews, fieldnotes, and researcher’s journal were
used to confirm or disconfirm observations and categorical development, and to look
for contradicted reasons.

To answer the first question, the data from the responses to the Function

Understanding Questionnaire of 24 volunteers were analyzed to determine how college
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algebra students described their understanding of function concepts. The students’
responses to each item in the questionnaire were considered. The responses were
categorized into four categories:

e  Prefunction (having a limited concept of functions)

e  Process (using a process of input/output)

. Correspondence (indicating a relationship between variables)

e  No concept (indicating no understanding of functions)

The first three categories were classified based on the study of Schwingendorf et al.
(1992). In addition, the interviews of the five selected students were used to clarify and
expand the information from the questionnaire that resulted in the identification in each
category.

To answer the second question, the results from all interviews of the five
students’ interview session as well as the information of the classroom observations
were described and analyzed. The students responses to the interview problems were
considered with respect to their problem solving approaches and reasoning while
solving the problems related to (1) classifying relations into functions and non-
functions, (2) representing a function in several forms, (3) transforming a function from
one representation to another, (4) applying a function understanding to unfamiliar
symbolic problems and to real-world problems, (5) giving examples of functions
satisfying some given constraints, and (6) identifying a function satisfying a given
constraint (Markovit et al., 1986).

More specifically on algebraic thinking and reasoning, the students’ responses
were analyzed with respect to their ability to use mathematical symbols and tools to
analyze mathematical problem situations by (1) extracting information, (2) representing
information using multiple forms, and (3) interpreting and applying mathematical ideas
to a new situation. The case study analysis assisted in creating categories and refining
detailed descriptions of the categories of the solution strategies used by students and
their thinking and reasoning processes in solving mathematical function problems. Each
student’s solution strategies and his / her thinking and reasoning processes were

determined and noted whether they used patterns for each problem, or changed their
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strategies from one problem to another. Each individual’s solution strategies and
thinking and reasoning processes were compared, looking for similarities and
dissimilarities. Besides identifying the solution strategies students used, their thinking
and reasoning processes in solving mathematical function problems, this study also
provided information involving these students’ thinking before, during, and after
instruction on functions. This description helped to frame the effect of instruction on

their thinking and reasoning strategies.

Summary

This descriptive analysis was conducted to provide portraits of the students’
understanding of functions, solution strategies, and processes of thinking and reasoning
as they attempted algebraic problems involving function concepts. The data collection
consisted of assessing the participants’ (1) understanding of functions by analyzing
their responses to the Function Understanding Questionnaire and (2) solution strategies
in solving function problems by collecting verbal data through the administration of
ongoing interviews before, during and after the instruction of the function unit. In
addition, the verbal data were organized to support a comparison of the patterns of
thinking and reasoning processes across various students, as well as student's thinking

and reasoning before, during and after the instruction.
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CHAPTER 1V

RESULTS

This chapter presents a picture of college algebra students’” knowledge and
understanding of functions, solution strategies, and algebraic thinking and reasoning as
they attempt mathematical function problems. The overview of the course and the
format of the instruction on functions in the College Algebra class, both in lecture and
recitation, where this study was conducted are presented. In addition, the profiles of the
students are presented. The data present the knowledge of functions the students gained
in this class. The instructional profiles provide a context supporting the results of this
study. Also, a comparison of the students’ function knowledge and understanding,
solution strategies, and algebraic thinking and reasoning is presented. Finally, the
results include college students’ understanding of function concepts, solution strategies,
and thinking and reasoning processes as they attempt mathematical problems involving
functions. The main data sources of this study were from written responses to the
Function Understanding Questionnaires administered to all volunteers at the end of the
instruction and verbal responses to thinking and reasoning problem-solving interviews
of five selected volunteer students. The five students who participated in the problem-

solving interviews were assigned pseudonyms to protect their anonymity.

Course Overview

The College Algebra curriculum taught in this class considered equations and
inequalities, their graphs, techniques for solving equations and inequalities, functions
including specific functions, such as linear, quadratic, exponential, and logarithmic
functions, their graphs, domains and ranges, their inverse, and applications of functions.
The instruction of functions began in the fifth week of the ten-week course. Before the
instruction on functions, students studied equations, inequalities, and their graphs. The

content taught in this class addressed linear equations and inequalities, equations of
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circles in forms of x* + y? =#? and (x - k)’ +(y — k)’ = r*. The content also included

absolute value equations and inequalities, as well as polynomial, quadratic, rational, and
radical equations. Prior to enrolling in the College Algebra course, the students were
expected to have a minimum level of proficiency in manipulating prerequisite algebraic
concepts through college level or an equivalent high school preparation.

The material used in this course included, the textbook, College Algebra and
Trigonometry (Dwyer & Gruenwald, 2000), the Study Guide (Fein & Lee, 2000), and a
graphing calculator. The instruction and homework assigned to students were organized
based on the textbook and the Study Guide. The instruction consisted of three 50-minute
lectures and one 50-minute recitation class each week in the ten-week course. The
lectures were on Mondays, Wednesdays, and Fridays (9:00 - 9:50 a.m.) and the
recitations were on Tuesdays (10:00 — 10:50 a.m.). The lecture class was a large group
of about 250 students. The recitation class was a small group of 30 students.

The students were not required to bring their textbook to the lecture and
recitation classes, but they were required to bring their Study Guide to the recitation
class. The examples demonstrated in the class were from both the textbook used for this
class and some other different college algebra books. The lecture instructor used her
graphing calculator to demonstrate problem-solving methods in almost all her lectures
depending on the content taught each day. The graphing calculator was used more often
for numeric calculations, plotting graphs of functions, and finding zeros of a function.
The figures from the graphing calculator were displayed through an overhead projector.

The large group of 250 students used a lecture instructional style. Even though
the lecture instructor always gave students opportunities to ask her questions, the size of
the class restricted the number of opportunities for students to ask questions. Only
students who sat in the first three rows of the lecture class were able to ask the
instructor questions. Before starting a new lesson, the instructor typically asked whether
the students had questions from the previous lecture or from the units that had been
taught, and then told the students what she planned to teach for that day. At the end of
each lecture the instructor recommended that the students work on the homework

assignments listed in the Study Guide. Although these homework assignments were not
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collected and graded, the questions provided practice for the quizzes, midterm and final
examinations. One feature consistent throughout the instruction was the instructor's
inspection of students’ understanding of the concepts taught each day by asking them
questions. Because of the size of the class, the instructor did not identify specific
students to answer her questions. Typically there were no responses from the students
resulting in the instructor answering the questions. Therefore, whether the students
understood the lesson was not determined.

The recitation class was taught by the Graduate Teaching Assistance [GTA].
The general format for the recitation included answering students’ questions related to
the content taught by the instructor, demonstrating how to solve homework or quiz
problems (based on students requested), and working on a lab project. The homework
problems of each section were indicated in the Study Guide. The recitation included five
lab projects and five quizzes. Fifty percent of the problems on each quiz were from the
problems assigned for homework; the other half of the quiz was constructed by the
lecture instructor and was similar to the homework assignments. Two of the five lab
projects related to concepts of functions: quadratic functions and function
transformations.

In the recitation class, the GTA never used a graphing calculator while she
demonstrated examples. She always approached the problem using symbolic
manipulation. For example, she showed how to find zeroes of a function (y = f(x) ) or
the x-intercept by setting f(x) =0 and solving for x. Some students argued that they
could graph the function f(x) and find the zeroes of a function by using their graphing
calculator. She agreed and said, “You can do it that way too.” However, she did not
show any examples using a graphing calculator to find the zeros of a function.

In general, the GTA did not teach new concepts in her recitation class. She
started her class by asking students whether they had questions involving the content
they had learned from their lecture class and whether they had questions from doing the
homework assignment. The students seldom had questions from the lecture; they had
more questions involving the problems in their homework assignments. The GTA used

the blackboard to demonstrate the homework problem situations. After finishing the
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problems, the GTA assigned a lab project. The students worked individually for 10
minutes, and then were allowed to work in pairs or groups of three or four. The students
selected their own partners. While the students worked on the assignment, the GTA
walked around the classroom giving help if needed. The students might turn in their lab
assignment at the end of recitation class or they might turn it in at the beginning of the
next recitation class. Late homework was not accepted unless an acceptable reason was
given.

The GTA’s instruction was directed by the students’ questions; sometimes the
students did not ask questions related to the concepts they had learned from the lecture
prior to the recitation class. Most of their questions came from homework and lab
project problems. Lab projects were assigned every other week. In one of the recitation
classes, the students learned more about function transformations because the lab
project related to this concept was assigned to them one day after they learned this

concept from the lecture class. In addition, the quadratic function lab, the students also
learned about transforming functions from y = ax’ +bx+c to y =a(x—h)’ + k) from

the quadratic equation unit prior to the function unit

Besides attending the lecture and recitation classes, all students had the
opportunity to get help from the instructor and the GTA during their office hours or by
appointment. In addition, the students could get help on their mathematics problems
from mathematics tutors in Math Learning Center (MLC) provided by the Mathematics
Department from Monday to Thursday (9 a.m. - 8 p.m.) and Friday
(9 am. - 5 p.m.). The five students selected to participate in the problem-solving
interviews claimed that they never asked for help from the tutors in the Math Learning
Center.

The assessment of the course included the five lab projects (assigned every other
week), five quizzes (given every other week), one midterm, and one final exam. The lab
projects and the quizzes were constructed by the instructor and were graded by the
GTA. The instructor constructed the midterm and final exams and the solutions. These

exams used a computer program provided by the computing center at the university.
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Research Question 1: Understanding of Functions

The first research question of this study focused on identifying college algebra
students’ understandings of functions. To answer this question, the instruction on
functions, student interviews, and student responses to the Function Understanding
Questionnaire were considered.

The instruction on functions was over the fifth week through the tenth week of a
ten-week term and was followed by a review session for the entire course so that
students were prepared for their final exam. The content of functions included linear
functions (slope of a line, identifying a linear function given a slope and a y-intercept,
or given two points), multiple representations of functions, domain and range of
functions, quadratic functions, one-to-one functions, composition of functions, inverse
functions, exponential functions, and logarithmic functions. The function instruction

consisted of 14 lectures (each 50-minute) and 10 recitation classes (each 50-minute).

Instructional Episodes

Episode One: The Definition of Functions

Prior to providing a formal definition of functions, the instructor introduced the
function unit by writing “A function shows a relationship (correspondence) between
two sets of objects.” She provided an example of a table that represented a function

using temperature data (see Figure 3).

Date High Temp
Jan 1% 39°F
Feb ISS‘t 42°F
Mar 1’ 48°F
Apr 1 56°F

Figure 3. The instructor’s example of a table representation of a function.

During this first lecture on functions, the instructor provided a formal definition of

functions: “A function from a set D to a set R is a correspondence that assigns to each
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element of D exactly one element of R.” In explaining this definition, the instructor

said:

If I put one value [input] for x, I must get only one value for y. If I have more
than one y as the output, it’s not a function. For being a function, each input has
exactly one output.

The instructor gave this verbal explanation; she did not draw any pictures or
diagrams. Instead, she returned to the previous example, the temperature, to check if
this example followed the definition. At this time she described and wrote the domain
and range of the function on the overhead: “Domain is all the possible input values (x).
Range is all the possible output values (y).”

The instructor described a second example of a function in a table form and
asked students to determine whether it was a function. She also asked them to identify

their reasoning in their responses.

Instructor: Consider this table; is it a function? [Writing the table showed in
Figure 4]
Students: No. Because for input 4, there are two outputs —2 and 2.

D 4 1 0 1 4
R -2 -2 0 1 2

Figure 4. A tabular representation of a non-function created by the instructor.

One of the students stated “an input of 1 also gave two outputs: — 2 and 1.” Everyone
in the class agreed that it was not a function. The instructor further clarified the idea: “If
we found one input that gives two different outputs, we say it’s not a function.”

In this same lecture, the instructor also provided an example in the form of

graphical and symbolic representations.

Instructor:  x* +x—y=0.Is y a function of x?

Students: [No response]
Instructor: Is there exactly one y value for each x value?
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The instructor rewrote the equation y in terms of x. However, she did not say why she

made this change and the students did not ask for the reason.

Instructor: We will solve for y. [Writing y = x* + x, she did not write down
every step of the reasoning.] Look! [Pointing to the equation] If
you plug x into the equation and get y more than once, then it’s
not a function.

She did not insert numbers for x into the equation nor look at the outputs to show it was
a function. However, she indicated through this example that a function could be
determined using a vertical line test. As the first lecture, this discussion was the first
time that she talked about the vertical line test. She then defined an equation as “a
function if no vertical line crosses the graph more than once.” She used the same

equation displaying that it was a function using the vertical line test. She described:

I will draw the graph of this equation [demonstrating a graph of y = x* + x on

the overhead]. There is no vertical line that crosses the graph more than once
[drawing the vertical lines all over the graph that she had drawn previously].
Therefore, it 1s a function.

Following this explanation, one of the students asked “Is it not a function if a [vertical]
line crossed the graph more than once?” The instructor said, “Right,” then the instructor
drew a graph of a circle on the overhead without showing a symbolic representation.
She showed that this graph was not a function because many vertical lines crossed the
graph more than once.

The instructor demonstrated one more example of an equation using its
symbolic form ( * ~x*> = 0) to consider whether it represented a function. She

displayed the process on the overhead, explaining:

From y® —x* =0, I will solve for y. So y* = x*> and y =++x’ . Any time that
we see = sign; we have no need to graph it. It’s so obvious that there are two y
values for one x value. Plug in one x we will get two y values. For example

x=1:y= i\/—l7 =+41=21. Whenx = 1, y=1 or —1. Therefore, it’s not a
function.
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In summary, the instructor stated, “If the case is not obvious, then graph it and use the
vertical line test.” None of the students asked for further explanation. The instructor did
not describe the domain and range of the function in the definition of a function.
However, the definition of a function in the textbook included a reference to both

domain and range.

A function from a set D to a set R is a correspondence or rule that assigns to

each element x of D exactly on element y of R. The set D is called the domain of

the function and the elements x of D are the input values. The elements y of R

that correspond to the input values are the output values. The set of all possible

output values is called the range of the function. (p. 227)

The instructor did not suggest or direct the students to read this definition or any other
content in the textbook.

In the following recitation class, the GTA did not refer to the definition of
functions that was taught in the previous lecture class of that week. The students did not
have any questions related to the function definition and the vertical line test. In
addition, the GTA did not challenge students’ understanding.

The homework assignment assessed students’ understanding of a function
definition through 16 problems. Five of the 16 problems required the students to
determine whether the tabular, symbolic, and graphical representations defined a
function.

One week after the students had been introduced to the function definition, they
took the midterm examination with 20 problems. One of these problems asked students
to determine whether a tabular representation defined a function. When the midterm
was returned, one of the students asked the recitation GTA for an explanation of why

the data in the table (see Figure 5) represented a function.

Figure 5. Table representation of function in midterm exam.



The GTA explained using an arrow diagram that each input had only one output. She
also stated “For different inputs if we have the same output, it is okay.” She gave
examples in the form of an arrow diagram showing function and non-function (see

Figure 6a and 6b).

Figure 6b. An arrow diagram indicating a non-function.

When the students took the final examination, none of the 25 problems assessed
students’ understanding of the definition of a function and no problems asked the

students to identify whether a function was represented.

Episode Two: Multiple Representations of Functions

The instructor introduced multiple representations of functions to her students
after presenting the definition of functions. She stated, “A function can be shown in
many different forms such as an equation, a table, or a graph.” Again, she showed the

students the information in Figure 3 and said, “These tables represent functions.”

52
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The instructor showed how a function could be transformed from one representation to

another using her graphing calculator with the display on the overhead.

A function f(x)=x’can be transformed to a graph. It is easy if you do it by a
graphing calculator. I input y = x*and a graph of a parabola will show up. We
can also change from an equation to a table. For example, y =2x -1, I input this

function to the calculator and make a table [pressing a table bottom on the
calculator] and a table will show up [displaying the table on the overhead as

shown in Figure 7].
19 X y
5 3 7
-2 -5
) -1 3
Y 0 -1
-5 1 1
2 3
- 10} 3 5

Figure 7. A graph and a table of a function y =2x—1 displayed by the instructor.

The instructor described the advantage of the transformation from one representation to

another.

If we want to know if this equation [writing y = x* ] is a function or not, we may
graph it and use the vertical line test. We know that if it passes the vertical line
test, then it 1s a function.

The instructor did not give many examples of the multiple representations of
functions in the class. In addition, the GTA did not discuss multiple representations in
her recitation class. However, the instructor and the GTA used multiple representations,
especially graphical and symbolic, demonstrating problem-solving methods for many
example problems in other sections. For example, the lecture instructor used a graphical
and symbolic representation to demonstrate how to find zeros of a function (see Figure

8).
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Example: Find zeros of the function f(x)=x* —4
Solution: To find the zero we set f(x) =0 and solve for x.

f(x)=0
x*—4=0
(x+2)(x-2)=0
x=-2,x=2

We can solve for the zeros of the function using its graph [the instructor
graphed this function using her calculator and displayed the graph on the
overhead]

From the graph, we see that the zeros of the function are —2 and 2, which
correspond to the x-intercept of the graph

Figure 8. The example of finding zeros of a function using symbolic manipulation and

graphical representation.

The graphical representation was used more often in presenting a function
transformation section. The problems for the homework assignment asked students to
determine whether the data in tabular and graphical forms represented a function. None
of them asked students to transform one form to another. Nevertheless, the students
were allowed to use all representations to help them solve all problems in other

sections.
Episode Three: Transformations of Functions

Transformations of functions were introduced through two types of

transformations: horizontal and vertical. The instructor provided an example of

horizontal transformation using the quadratic function, y = x° . She showed the graphs



55

from her calculator on the overhead. She did not show the symbolic form of each

equation but she demonstrated the example graphically (see Figure 9).

Figure 9. The horizontal transformation of y = x?, two units to the left and two units to

the right.

If the graph moves to the right two units, all points on the graph y = x> will
move. For example, (0,0) moves to (2,0). x =2, y =0; therefore, y = (x— 2)%.
If the graph moves to the left two units, (0,0) moves to (—2,0). When x=-2,
y =0; therefore, y = (x — (-2))* = (x +2)°.

After discussing this example, the instructor wrote the formal notation of a horizontal

transformation of the function f(x) on the overhead “ f(x) moves 4 units =»

f(x—-h)>
Since the students had no questions, the instructor used the same function to
discuss a vertical transformation. She used the calculator display to describe this

transformation (see Figure 10).

Let’s see how to get the new function f(x) if it moves up 3 units. (0,0) moves
to (0,3); x=0 and y = 3. I will try, y =(0+3)*> =9. This doesn’t work. I

try y = (x—3)> =(0-3)> =9. This doesn’t work either. Therefore, the vertical
move, adding the number inside the parenthesis doesn’t work. Let’s try

y =x*+3=0%+3=3. That works. So if the graph moves down 3 units, (0,0)
moves to (0,—3). The functionis y = x> —3 [showing that this function is
correct by checking: 0% —~3=-3].
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Figure 10. The vertical transformation of y = x*, up and down 3 units.

Since students did not have questions, the instructor continued by illustrating a

combination of vertical and horizontal transformations.

From f(x) = 3x?, there is a new function g(x) = 3(x+2)* —10 . We can see how
it moves [writing her summary as shown in Figure 11].

g(x)=3(x+2)*-10

|

Move horizontally

Move vertically

Figure 11. Summary of horizontal and vertical transformation presented by the

instructor.

The instructor concluded, “From the formula [the symbolic representation], we can
make a rough sketch of its graph and from the graph, we can think about the formula.”
A transformation lab project supported the lecture on function transformations.
The GTA provided the students an opportunity to ask her questions related to the
transformations. Since there were no questions, students worked on the lab individually
for about 10 minutes, and then they were allowed to discuss and compare their work in
groups of three or four. While the students were working on the lab, the GTA walked
around the classroom watching and listening to their discussion. If the students had

questions, they raised their hands, and the GTA provided some help. The GTA did not
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directly answer students’ questions. Instead, she asked students questions making them
think and discuss their answer. Many students demonstrated that they understood the
major concept of transformations. They correctly worked on the lab by themselves,
although a few students needed some assistance either from the GTA or other students
in their group.

The homework problems supported the students’ understanding of graphing
transformations. They were asked to determine how a function was transformed to
another. One of the 20 problems on the midterm assessed students’ understandings of
the vertical and horizontal transformation of the function graphs. There were no

problems in the final examination that dealt with transformations of functions.

Episode Four: One-to-One and Inverse Functions

The instructor approached the topic of one-to-one and inverse functions

explaining “For functions f(x) and g(x),if go f(x)=x and f o g(x) = x, then fand
g are inverse.” She provided the notation for the inverse, “ f ' = f inverse” and also

stated and wrote. “If f = g™ andg = £, then they are inverses of each other.” The

instructor emphasized that, “Only functions that are one-to-one have an inverse.” After
mentioning one-to-one functions, the instructor introduced the horizontal line test. She
reviewed how to determine a function stating “Each input has exactly one output; and

when you graph it, make sure that each vertical line crosses the graph once.” She

showed the example of y = x*, drew the graph by hand on the overhead, and then drew

vertical lines that were similar to Figure 12 indicating that y = x> was a function.
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-
N

Figure 12. An example of the use of the vertical line test for a function.

The instructor related the basic idea of a function to a one-to-one function. She

stated, “a one-to-one function is a function where each output corresponds to only one

input.” She clarified her description by using the graph y = x” similar to the graph in

Figure 13.
4 /
N
j output
output ]
7 > ]
input v input
1 2

Figure 13. Instructor’s example of a function that was not one-to-one.

One of the students argued “If there is a power on x, then it is not a one-to-one
function.” As a counterexample to the student’s conjecture, with the function y = x°,

the instructor provided a symbolic representation showing that there was a power on x,
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and then showed its graph on the overhead showing that the student’s conjecture was

incorrect (see Figure 14).

¥ =x°

Figure 14. Graph of y = x’ that is a one-to-one function.

After showing this example, the instructor summarized, “A function is one-to-one if and
only if no horizontal line crosses the graph more than once.” She recommended that if
students wanted to determine a one-to-one function, they should draw a graph and use
the horizontal line test. She stated, “If it is one-to-one, then it has an inverse and its
inverse is a function.”

In the recitation class, the GTA did not discuss the concepts of a one-to-one
function and the function inverses and the students did not ask questions about either
topic. There were 14 problems in a homework assignment related to determining a one-
to-one function and finding function inverses. Six of the problems asked for only
determining whether a function was one-to-one. Eight of the problems asked students to
find the inverse if it was a one-to-one function. From the homework assignment, the
students were expected to have experience working with several types of problems
including application problems. One of the four problems on the quiz asked students to
determine whether a given function (in a symbolical representation) was one-to-one.
None of the problems on the midterm assessed students’ knowledge of one-to-one and
inverse functions; however, there were two problems in the final exam that asked them

to find the inverse of functions.
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Student Profiles Concerning Understanding of Functions

This section presents each student’s understanding of functions as they
progressed through the instruction. Five students participated in problem-solving
interview sessions. They had various levels of mathematical knowledge, understanding,
and problem-solving abilities. However, all of them had studied algebra and functions

in high school.

Amy

Amy was majoring in zoology. She was a freshman, taking College Algebra as a
requirement. This College Algebra course was her first college mathematics class. After
taking College Algebra, she was required to take two additional mathematics courses
(Elementary Functions and Differential Calculus) for her major. In high school, she
took Prealgebra, Algebra I, Geometry, Algebra II, and Functions, Statistics and
Trigonometry (a one-year course). She said that she did very well in high school
mathematics. She always earned A’s and B’s except her last term of Function, Statistics
and Trigonometry where she said that she had a conflict with her mathematics teacher.

Amy said she loved algebra because she could understand it well. She claimed
that she understood how to deal with everything with algebraic problems. However,
algebra was not her most favorite subject: “My most favorite is trigonometry because it
is fun. I love trigonometry, cosine, secant, and cosecant, that kind of stuff. I love all
that. Algebra is second.” She was confident in her mathematics ability indicating that
this College Algebra class was easy for her. She stated that she wished she had started
with the Elementary Functions instead of College Algebra because of the easiness of
the course.

When asked how she studied the material, Amy said she came to every class,
both lecture and recitation, and did all the suggested homework problems. She never
went to her instructor or GTA office to ask for help and she never asked for help from

any tutors at the Math Learning Center. Most of the time she studied by herself. If she
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had any questions or did not understand some ideas, she asked questions in the

recitation class.

Amy’s Understanding of Functions Prior to Instruction

Even though Amy had studied algebra and functions in high school, she was
unable to distinguish functions from equations at the beginning of the course. When

asked if she could describe a function, she indicated, “A function is an equation.” With
this conceptual understanding, Amy indicated that a circle represented as x* + y* =1
was a function. She said, “ I know that this is a function. It’s familiar to me.” However,
she was not able to explain why she thought x> + y* =1 was a function.

Amy indicated a limited knowledge of multiple representations of functions
prior to instruction. Her idea of functional representations related to symbolic and
graphical representations. Initially, Amy said that a function could be presented as an
equation of a line, a parabola (a quadratic equation) and a circle suggesting that she was
more familiar with symbolic representations than any other representations. With
probing, she was able to relate various representations by transforming one
representation to another. When asked if given an equation, such as an equation of a
line, whether she could graph this equation. She said that she could graph it by finding
and connecting two points for the coordinates (x,y). When asked if the equation of the
line and the graph of that line represented the same information, she agreed that they
did. Despite questioning about other representations besides graphical, verbal, and
symbolic representations, Amy said she believed that it had other representations but
she could not recall them at this time.

Amy showed she was able to change a symbolic representation to a graphical
representation [a graph of a circle]. The interviewer did not have an opportunity to
investigate if she was able to change a graphical representation to a symbolic
representation.

Amy was also asked to match the graphs in Figure 15 with a specific situation.
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Situation: The kettle heats before the corn begins to pop. The corn starts to pop
and continues popping until almost all the corn has popped. The
amount of unpopped corn in the kettle is the dependent variable.

Graphs:
A B C D
Time Time Time Time
E F G
Time Time Time

Figure 15. Pre-instruction interview graphs for the popcorn problem.

In attempting the problem, she deleted irrelevant graphs by describing the situation in
her own words; then she connected her understanding to the correct graphical

representation.

The kettle heats before the corn begins to pop. The corn starts to pop and
continues popping until almost all the corn has popped. The amount of
unpopped corn in the Kettle is the dependent variable. So, it’s gonna heat up
until popcorn started popping and the amount of unpopped popcorn is gonna get
less as the time passes. So there is a lot of unpopped popcorn at the beginning. It
means the amount of unpoped popcorn will be high and has the same amount for
awhile during the kettle is heated at the beginning and less at the end. It can’t be
“A” because graph A shows that the amount of unpopped popcorn becomes
larger instead of getting less at the end. It can’t be B, C, D, E, and F either
because the amount of unpopped popcorn should be at the same level while the
kettle heats up. So it’s gonna be G.

Amy’s Understanding of Functions During Instruction

During the period of instruction, two problem-solving interviews related to
function concepts were conducted. The first interview was completed in the sixth week

of the term (two weeks after the instruction of functions) and the second interview was
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completed in the eighth week of the term (four weeks after the instruction of functions).
Amy demonstrated an improvement of her understanding of functions as she worked on

the problems over the two interview periods.
Instructional Interview One

In the first interview, Amy was asked to solve four problems (Instructional
Interview Problem No. 1, 2, 3, and 4) related to multiple representations and real world
situations. As she worked on the problems, Amy demonstrated a tentative
understanding of functions related to working with radical equations and functions in

the first interview. This incomplete understanding was evident when she attempted to "
determine whether the equation x” + y*> =1 was a function (Instructional Interview

Problem No. 1c).

A:  To determine if x* + y* =1 is a function, I may need to make a leaf-

plot. [What she called the leaf-plot was the same as a numerical
representation but the information was vertically presented as a table.]
Would you please show me how you will do that?

A: I will plug numbers for x in the equation to see the value of y. OK.

1 +0=1.So when x =1,y = 0. And 2° + something here = 1. Hmm...
2%+ Not 1, not 2 but let’s see 2> +y* =1 [writing the equation on a

paper]. So y*> = -3 and /y* = +/=3. It’s a square root of —3. No it can’t
be this. It must be a negative of square root of 3 [— V3 ]-

[l

y
0

W [N || X

4

[Amy developed this table beginning with x values and then identifying
the corresponding y values. ]

It How did you get that?
A: I moved the negative out.
I Why?

A: Because you can’t have a square root of negative numbers.
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Amy correctly interpreted the information from the graphical representation as

shown in Figure 16.

Speed

Car A

CarB

t=0hr t=1hr

Time in Hours

Figure 16. Graphical representation for Instructional Interview Problem No. 2.

!—4

Can you describe the graph?

A: OK. They [Car A and Car B] start traveling at the same point. Car A
goes faster than Car B and keeps going faster until t = 1 hour. They have
the same speed. So Car A is gonna be ahead of Car B because it goes
faster from the beginning.

What does it mean at the point t = 1 hour?

A: That point means they are going at the same speed but they are not at the
same position.

:—4

Amy was also able to transform a graphical representation to a numerical
(tabular) representation and a graphical representation to a symbolic representation

referring to the graph in Figure 17.

IA
+ 500~
400} S
200 -~
100
/O
1 § L 1 i L1 o
100 200 300 400 500 600 700 X

Figure 17. Graphical representation for Instructional Interview Problem No. 3a.

A: To represent this information in another way, I will make a table like
[writing out this numerical representation of the data she extracted from
the graph shown in Figure 17].
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x [0 |50 | 100150200 400 | 500|600
y |50 |75 |2001200 200|200 | 250 ]300

=

Any other representations that you can think about?

A: Maybe I can make an equation.

Would you please show how?

A: I’m not sure that there are two equations or three equations. OK. This is
one line [pointing to the line in Figure 17 that started with x = 0], and
these are two different lines because they have different slopes. So there
are three equations. To find the equation of the line, I need a slope. The

75-50 25 1

=" =" Then my equation
50-0 50 2 yel

=

first line here has a slope =

18y =mx +b, whichisy=%x+50.

L: Would you please give me more explanation of how you got this
equation?

A: OK. I get slope m =—;~ and b is the y-intercept, which equals 50. I plug

these numbers into the slope-intercept form, y = mx + 5 . Then I get the

equation.

How about the other two lines?

A: This line here [pointing at the horizontal line in Figure 17] has the same
y so the equation is y = 200 . And the last one here, I need a slope.

300-250 _ 50 1 . Umm... [pausing for awhile].

600-500 100 2
So what 1s the equation?
A: This confuses me. I don’t have a y-intercept. So I guess the y-intercept

o

Again the slope=

=

equals zero. Then the last equation is y = %x .

Noting that the graph did not cross the y-axis, Amy did not attempt to extend the
graph and check if the graph passed the origin of the Cartesian coordinate system. She
summarized the problem and assumed that the y-intercept was zero. As a result, she
made a correct identification, but the identification was correct for the wrong reason.
Her response did not rely on symbolically determining the function because at this point
her understanding of finding a linear function was limited to the point-slope form.

Amy had a partial understanding of transforming functional representations. She

was able to make a symbolic representation corresponding to each piece of a graph.
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However, when asked to write the collective symbolic representation of this
information in function notation [a piecewise-defined function notation], she was
unable to perform the task. The instruction to this point, at most, provided two
examples of piecewise-defined functions; both of these functions were given in a

. . :Ex +2,x<-3 .
symbolic representation [ f(x) =< 3 ] showing how to graph and evaluate

3—x%,x>-3
specific values, such as f(2), £(0), f(—4). Amy may not have had enough instructional
support to develop symbolic representations from graphs of piecewise-defined
functions.
Amy was able to describe how she constructed a symbolic representation for a

linear function when some properties were given.

I: One of your homework problems asked you to find an equation of the

line with slope = % and a y-intercept = 2. Would you please show or tell

me how you find it?
A: I used a slope-intercept formula: y = mx +bwhere mis aslope and bis a

y-intercept. So the equationis y = %x +2.

Amy’s homework problems showed that she was able to find linear equations using
different forms, using two points on the line and using the point-slope form. However,
she did not demonstrate an understanding of finding a linear equation using a point-
slope form to find a linear equation in the Interview Problem No. 3a.

Amy indicated that she was able to transform a symbolic representation to a
graphical representation, and she also demonstrating algebraic reasoning from a
symbolic representation to a graph when she worked on the Ball Dropped Problem

(Instructional Interview Problem No. 4).

A ball dropped from the top of a tall building has height from the ground

represented by s = -16¢> + 145 feet after t seconds...OK. I know that is a graph
of a parabola, which is upside down [opened downward]. So let’s see. I will put

this equation into my calculator to see if it is correct. OK. y, = —16x* +145.
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When solving function problems used in the first interview during the
instruction of functions, Amy was able to make connections among the representations

and function concepts. For example, she connected:

e a graphical representation with the vertical line test for determining a
function. Amy explained that to identify a function, she could use the
vertical line test with a graph of the relation. She indicated if the vertical
line hit the graph more than once, then the relation was not a function.

o the concept of a function, its graph, a horizontal line test, a one-to-one
function, and an inverse of function. In describing her understanding of a
one-to-one function, she used the horizontal test, indicating that if the graph
of a function passed the horizontal line test, it was a one-to-one function.
Amy also understood that if it was a one-to-one function, then it had an
inverse.

Amy identified applications for graphical representations in real situations. With

the Piecewise-Defined Function Problem, she was able to construct a real situation that

corresponded to the graph provided in the problem (see Figure 18).

Y .

—>x

Figure 18. Graphical representation for Instructional Interview Problem No. 3b.

From this graph, it shows something starts here; they don’t know the exact point
[because there is a white circle at the beginning point] but around zero and then
starts to go and stop at this point. Ah...And then starts to go and then stop, starts
to go and stop again and keeps going and going. They don’t know exactly what
the starting point is. And the last one keeps going straight. So something starts
and then stops at the certain time like umm. I don’t know. Umm... It’s like a
plane ticket. Like paying one price you can go from one spot to another and pay
another price to go from another spot to another, and so on.
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When asked about the line with the arrow, Amy said, “After that point [pointing at the
most right-hand side of the arrow], y will be the same whatever x is.” She did not
consider an explanation for a real situation that would explain this particular point.
Amy was also able to apply her understanding of functions (i.e. the one-to-one
functions and the inverse functions) when she worked with real situation problems. For
example, when working with the Ball Dropped Problem (Instructional Interview
Problem No. 4), she identified that the function of a dropped ball was one-to-one even
though the symbolic representation of the function was a parabola, which in the general
case was not one-to-one. Amy’s algebraic reasoning with this problem was correct. Her
explanation was that the ball was being dropped; therefore, it was only moving in one
direction downwards. This decision helped her conclude the correct answer that the

function had an inverse.

Instructional Interview Two

When solving function problems used in the second interview four weeks after
the instruction of functions began, Amy’s understanding had improved. When working
on the quadratic functions in the Interview Problems No. 5 and No. 6, Amy correctly
described the variables in the quadratic symbolic representations. She described that the
variable a told her if a parabola [a quadratic graph] was opened upward where a 1s
positive or downward where a 1s negative). Variables 4 and k told her if the graph
moved to the right (4 is positive) or the left (4 is negative) and moved up (% is positive)
or moved down (k is negative) respectively. She described those variables correctly;
however, it is hard to conclude that she had instrumental or relational understanding
among these variables. When asked how she knew these ideas, she said she learned it

from one of the labs in her recitation class. The translation between the two forms of the
quadratics function ( y = ax® + bx+c¢ and y = a(x —h)* + k ) was not considered much

in the lecture and recitation classes.
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Amy used her number sense to identify the domain of a function. For example,

when she worked on the Equivalent Problem (Instructional Interview Problem No. 8),

x* -4 x* -4

given f(x)= , Amy stated that the functions f(x) = and
x+2 x+2

g(x) = x —2 were not the same because the domain of f(x) could be all real numbers

except —2. She said that when x = -2, the function f{x) had zero as a denominator;

division by zero was undefined, but the domain of g(x) could be all real numbers.

Amy’s Post-Instruction Understanding of Functions

Following the instruction of functions, Amy possibly shifted her understanding
of functions. Her response to the question “In your opinion, what is a function?” was
expanded from “a function is an equation” to “a function is an equation where its graph
passes the vertical line test.” Her explanation also included a concept of a one-to-one
function. Besides stating “A one-to-one function is a function that passes the horizontal
line test,” Amy expanded on her explanation of what she meant by passing the
horizontal line test: “When you draw horizontal lines on the graph of a function, there is
no line that hits the graph more than once.” Additionally, she provided examples of

what she meant as shown in Figure 19.

Figure 19. Amy’s examples of one-to-one (left) and not one-to-one functions (right).
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This line is a one-to-one function because when I draw horizontal lines, there is
no line that hits the graph more than once. But this parabola is not a one-to-one
function because it does not pass the horizontal line test.

Amy was able to tell if a function had an inverse and was able to show how to find an
inverse function. She stated that a function had an inverse if it was one-to one because
after reversing the domain and range, it was still a function.

Amy indicated that the function concepts taught in this course were easy for her
to understand. She claimed that she knew more about functions than she had known
prior to and during the instruction. Prior to instruction, most of her understanding relied
on her recall of mathematics from high school. At the end of the ninth week when the
instruction on functions was completed, she was able to relate her understanding
obtained from the class for solving new problems involving function concepts. When
she was asked to solve the Construction Function Problem (Post-instructional Interview
Problem), she solved this problem using some concepts of functions, including an
undefined function, zeros of a function, a nonnegative function, and a function that

contained a certain point.

OK. The function 1s undefined at —3, which means the function has to be a
fraction and at the bottom of the fraction [denominator] has to be 0 when
x =-3, and on the graph it has to stop at x =-3 so that would be x + 3. Next the

. 1 . 1 .
function has a zero atE , so it means wheny =0, x = 5 Next the function

contains the point (4,7), so when x= 4, y has to be 7. A function is always
nonnegative, so y will never be less than zero. [She wrote y > 0.] OK. The top

. . 1
part of the function has to be something that when x = 5 y has to be zero. So on

1. . 1
top, x has to be Py in order to get y = 0. [She set an equation x = Py then worked

backward to get the equation, she multiplied both sides by 2, then subtracted 1.
Her final expression was 2x —1.] So the top part of the function is 2x —1. Let me

check x = % , then y = 0. It works. And the function has to be nonnegative. So

you can put the absolute value sign for the whole thing because no matter what
[x] you have, except at —3, you always have positive numbers if you take the
absolute value for the whole thing.



71

However, Amy demonstrated a misunderstanding about domain and range of this
function at this time. She incorrectly claimed that the lowest domain corresponding to

the lowest range.

A: The function is always nonnegative and the function’s domain 1s
[-5, ), so -5 is the lowest for x that we get. So that means when

y =0, x has to be 5. Wait when y = 0, x has to be —:12 too.

It Why do you think when y = 0, x has to be -5?

A: Because the lowest y is 0 and the lowest x 1s —5.

At the end of the instruction, Amy was able to explain her opinion of a
mathematical function more accurately and in more than one way. Amy provided a
function description more precisely than what she gave at the beginning of the course:
“When you put in one input in the equation, you will get only one output. If there 1s

more than one output, it is not a function.” When asked if she could give examples of
functions, she not only provided a mathematical function, (“ y = x*is a function because

when you graph it, it is a parabola and it passes the vertical line test.”) but also a real
situation example: “A person and date of birth is a function because each person has
only one date of birth, which means one input and one output.”

During the post-instructional interview, Amy concentrated on two types of
representations: verbal and symbolic. The representations that she used for solving each
problem in the interview consistently led her to a correct solution. The verbal
representation that Amy used was the description or explanation of the information
given in the Function Construction Problem (Post-instructional Interview Problem).
Saying “the function is undefined at —3,” Amy clarified her thought by using a symbolic

representation in the process of constructing the function based on the constraints given.

For the constraint of “the function is undefined at —3,” this function has to be a
rational function and its denominator has to be x+3. So it must be something on
the top [numerator] and x+3 at the bottom [denominator] like this

].

[writing
x+3
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Even though this problem did not encourage a particular representation, Amy
worked on the problem addressing two types of representations: verbal and symbolic.
She focused on verbal and symbolic representations after instruction, and the
interviewer did not probe her to use other representations. Furthermore, the instructor
focused on symbolic manipulation in solving problems during the last two weeks of the
term, perhaps influencing Amy’s choice of representations.

On another level, Amy viewed functions as sets of procedures. Amy correctly
identified a function with the vertical line test, a graph of a function with the horizontal
line test, and a function and its inverse. In addition, Amy expanded function 1deas while
attempting to solve the Function Construction Problem (Post-instructional Interview
Problem). She connected the concept of undefined [from a problem constraint: A

function is undefined at —3], the zeroes of a function [from a problem constraint: A
function has a zero at %], and a nonnegative function [from a problem constraint: A
function is always nonnegative]. From these connections, Amy immediately stated that
the function was a rational function that had x - % as the numerator and x+3 as the

denominator. In addition, she quickly claimed that this function was an absolute value
function because it was always nonnegative. Amy’s understanding of the domain and
range of a function did not support her in finishing the construction of the function
needed in the Post-instructional Interview Problem. She was unable to construct the part

of the function that had [-5,0) as the domain. Since the lecture instructor discussed a
domain of radical functions in class, the interview probed Amy by asking her whether
she could find the domain of these functions: f(x)=+/x+2 and f(x)=+x-3.Amy

responded correctly that the domain was “negative 2 to positive infinity” and “3 to
positive infinity” respectively. However, when she was asked to construct a function
that had a domain from negative 5 to positive infinity, she did not think about a radical
function that she had experienced in class. Given a radical function, Amy was able to
find its domain but not vice versa, suggesting that she was unable to think in the

opposite direction for this situation. Looking back to what had been taught in class, the
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interviewer found that the examples related to constructing functions when domains
were provided were not discussed. Even though there were exercise problems in their
textbook, those problems were not assigned as homework.

After instruction, when the researcher asked Amy to apply her knowledge and
understanding of functions, she described real world problems such as the population

growth and decay problems as well as the money investment problems. She also stated,

I can use function knowledge to find how much money I will earn if I deposit a
certain amount of money in my account in a certain period of time. Or I can find
how long I should deposit money in my account if I need a certain amount of
money. Also I can find the number of population in a certain year by using the
formula.

Amy did not show her work on these types of problems, but she did refer to situations
that the instructor provided in the class. Consequently, it is questionable whether she
was able to extend her understating beyond what she studied in class or whether she

remembered doing application problems that were taught or demonstrated in the class.

Ross

Ross majored in Exercise and Sport Science; he was a freshman taking College
Algebra as a requirement for his major. The College Algebra course was his second
college mathematics class. He took Intermediate Algebra as his first college
mathematics course, but he thought that wasted his money because it was too easy for
him. He said, “It is a good refresher but I think I can do College Algebra without taking
that class.” After taking College Algebra, he is required to take one more mathematics
course (Elementary Functions) for his major. Ross was home-schooled from second to
ninth grade. In high school, he took Algebra I, Algebra II, Geometry and Trigonometry.
Ross said that he really liked mathematics, and because of this College Algebra class,
he wondered if he should change his major to mathematics. With respect to the amount
of time he spent on this class, he said, “I spend the most of my time on the difficult

classes. [ don’t spend lots of my time on mathematics [College Algebra] at all because
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it is very easy.” Ross said that he was very confident about his mathematics ability. On
the other hand, he was asked the same question near the end of the term, he said “No.
I’m not confident in this class just because I haven’t done the homework assignments
but I know I can review it very easy. I think I am good at math.” When asked how he
studied the material, he said he read the content before coming to the class. He never
went to his instructor or the GTA office to ask for help, and he never asked for help
from any tutors at the Math Learning Center. In fact, most of the time he studied by
himself. If there were any questions or any parts of the content that he could not
understand, then he asked his GTA in the recitation class.

As with Amy, Ross often participated in the class by sitting in the front row in
both lecture and recitation classes, by answering questions, and by presenting his ideas
if asked. When he was asked to rank the difficulty of this class from 1 to 10 (1 is very
hard and 10 is very easy), he said that for him this class was right in the middle: “I think
it’s not hard. But it’s not like you can pass without looking over your notes and doing

exercises. I know if I spend enough time studying it, I will get a good grade.”

Ross’s Understanding of Functions Prior to Instruction

Prior to the instruction on functions in this College Algebra course, Ross
claimed some knowledge about functions. He stated that “To me a function is like a
relationship between two things like x and y.” When asked if he could give examples of
the functions, he indicated his familiarity with linear functions by providing examples

of linear functions.

Would you please give an example of functions?

Ithink y =x+3 or y =2x—1are functions.

How do you know they are functions?

I remember that each of these is an equation of a line and a line is a
function.

Do you have any different reason that indicates these are functions?
No.
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Even though Ross had studied functions in high school, he indicated a limited
knowledge and understanding of multiple representations with respect to functions. He

asked for an explanation. The researcher described multiple representations as:

Same data or information can be represented in different forms. Those forms are
called multiple representations. For example, I can represent the number of
students enrolled in Collage Algebra distinguishing their major by using a table,
pie graph or bar graph.

Ross represented a function as “a relationship of x and y in an equation,” indicating that
he had an idea of symbolic representations. Further conversation guided him to describe

more about multiple representations.

I: You said that a function could be represented as an equation of x and y.
If you have an equation indicating their relationship, what can you do
with the equation in order to clarify their relationship in another form?

R: I can graph it.

I: Anything else that you can do?

R: No.

I: Can you find a value of y i1f I give a value of x?

R: Yes, I can.

I: How?

R: I plug the number for x in the equation and calculate a value for y.

I: Would you please tell me again, what can you do if you have an
equation indicating the relationship between x and y?

R: I can graph the equation and I can find the value of y related to the value

of x.
This conversation suggested that Ross had some ideas about changing a function
representation from one form to another.

Ross’s Understanding of Functions During Instruction

During the instruction of function, Ross’s knowledge and understanding of
functions was investigated through two interviews conducted after the second week and

fourth week of the instruction of functions.
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Instructional Interview One

In the first interview, Ross demonstrated a misunderstanding about functions
when he was asked if a graph of a single point represented a function (Instructional
Problem 1 Part A, question c). His misunderstanding was that a function had to have

“an ongoing line.”

R: Umm. This graph showed a dot. It is not a function. I think a function is
gonna have an ongoing line but this is just a dot.

What do you mean by “an ongoing line?”’

A line that passes through a dot in this case.

What criteria do you use for determining if these graphs represent graphs
of functions?

Well, I just check how many outputs for one input.

How about this graph [pointing to a graph of a dot]? Can you apply your
criteria to this problem?

There is only one input and one output. I’'m not positive but I don’t think
it is a function because there is no ongoing line.

~

However, in a later problem in the interview, he was asked to determine if a graph of
three points on the Cartesian coordinate system represented a graph of a function (Pre-
Instruction Problem 1 Part A, question i). Ross recalled that his instructor showed an
example of three numbers from one set corresponding to three different numbers in the
other set. This recollection helped him to connect his thoughts to the graph of three
points. Eventually, he stated that the graph of three points represented a graph of a
function.

Besides developing his knowledge and understanding of functions, Ross also
demonstrated his understanding of one-to-one and inverse functions during the first
interview. Ross indicated that a one-to-one function was a relation between inputs and
outputs and that each input had only one output and each output had only one input. His
statement was similar to the explanation in the textbook and the one that the instructor
gave in class: “If a function is one-to-one, then for each y-value, there will be only one

x-value.” Ross’s understanding encouraged him to check a one-to-one function using
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the horizontal line test. He indicated a function was one-to-one if a horizontal line
crossed the graph of a function no more than once.
Ross was able to tell if a function had an inverse. When he was asked to talk

about what he knew about inverses of functions, Ross said,

Not all functions have inverses; only a one-to-one function has an inverse
because when the inputs and outputs are switched, each input still has only one
output.

He also gave two examples showing that a one-to-one function had an inverse. On the

other hand, if a function was not a one-to-one function, it had no inverse.

I can give examples like {(1,2),(3,4),(5,6)} , this function has an inverse because
after I switch domain and range, {(2,1),(4,3),(6,5)}, and it still is a function. But
if T have {(2,1),(3,2),(4,2)}, after I switch domain and range, {(1,2,),(2,3),(2,4)},
this is not a function.

Even though the example that Ross gave to indicate his understanding of one-to-one
functions was simple, it differed from the ones given in class. The examples given in
class were in a graphical representation and were related to the horizontal line test
explanation.

Ross used four different representations when working on function problems
during the first interview: verbal, numerical (tabular), graphical, and symbolic
(equations). He showed that he was most comfortable with numerical representations.
Each time he was asked to determine if a graph represented a function, he checked the
inputs and outputs of the graph. When he saw the graph of a circle, he realized that he

could use the vertical line test to determine if it was a graph of a function.

R: This is a graph of a semi-circle on the x-axis. I would say it is a function.
The reason is the same as the previous problems. There is one output for
every input. The next one is also a graph of a semi-circle, but it is on the
y-axis so it is not a function because there are two outputs for one input.
And this is a graph of a circle. It is not a function. I checked by using the
vertical line test. There is more than one output for every input.

I: Do you use a different strategy to determine a function?
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R: Yes. I was never aware of that [the vertical line test] until I saw the
graph of a circle.

Working on the Car Problem (Instructional Interview Problem No. 2), Ross
interpreted a verbal representation for Car A and Car B traveling as described in the

graph showed in Figure 16.

From this graph, Car A is faster than Car B because it shows that the line of Car
A is going higher than Car B’s. Car B is barely going up at the beginning but
when the graph shows up further, it shows that Car A’s speed doesn’t go up
much because the line is curving back. It doesn’t have much incline and Car
B...umm... It’s inclining and getting steeper. It shows that Car B goes faster as
the graph goes up and Car A is getting slower because the incline is not as steep
as the incline of Car B.

From his graphical transcription in Interview Problem No. 2, Ross seemed to possess
conceptual understanding of graphical representations. He stated, “Car B goes faster as
the graph goes up.” He did not indicate that he compared the speed of Car B to that of
Car A or to the speed of Car B itself at the previous time interval. Similarly, he stated
the speed of Car A was slower.

Ross showed that he was able to connect with his different understandings about
functions such as the concepts of functions, their graphs, the vertical and the horizontal
line test, one-to-one functions, and inverses of functions. Ross showed he understood
the use of the horizontal line test to examine if a function had an inverse by connecting

his knowledge of the horizontal line test with a one-to-one function. He said,

I can check if a function has an inverse or not by using the horizontal line. If no
horizontal line crosses the graph of a function more than once, then it is a one-
to-one function. And because it is a one-to-one function, then the function has
an inverse.

Ross was not able to apply his understanding of a graphical representation to a
real situation at the first interview during the instruction. For the Instructional Interview
Problem No.3b, he was not able to describe a real situation that corresponded to the

graph in the problem. Additionally, when working Instructional Interview Problem No.
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4, he was unable to identify that the function of a ball dropped was a one-to-one
function because he considered only the graph of the function from the initial functional
representation (a parabola opened downwards). He said it was not a one-to-one function

because it failed the horizontal line test; therefore, this function did not have an inverse.

R: I will put this function in my calculator to see what the graph looks like
[putting the function y, = —16x* +145 into his calculator].

R: It’s a parabola opened downwards. So it does represent a function
because there is no vertical line that crosses the graph more than once.
And I will say it doesn’t have an inverse because if you use the
horizontal line test, it crosses the graph twice at some points. It’s
supposed to cross the graph once then it will have an inverse.

I: You said that the graph that you got from this function

[y, = —16x* +145] has no inverse. If you think about the situation that

the ball was dropped from the tall building, do you think the graph of the
ball dropped still looks like what you have now?
R: Yes.

This lack of connection to the real situation of this problem led him to the incorrect
notion that the Ball Dropped function did not have an inverse since he thought that a

ball dropped function was not a one-to-one function.

Instructional Interview Two

At the second interview session, Ross was asked to work on problems using
symbolic and graphical representations of the quadratic function. He demonstrated his
understanding of the relationship between these two representations and of variables in

the quadratic standard form (Instructional Interview Problem No. 5).

a indicates what direction the parabola faces. If it’s positive, it faces up

and if 1t’s negative it faces down... 4 1s going to indicate how many places that
the vertex shifts to the right or to the left...[£] tells me how many places that the
vertex shifts up or down.

As with Problem No. 5, Ross described his understanding of quadratic function when

solving Problem No. 6.
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Umm... I’ll start with a. It’s gonna be negative because it’s facing downwards.
Umm... A is going to be negative too in this standard form because it is on the
left of y-axis. So I just guess like—1.—2,-3,—4, and—5 . I guess like -5 and the

vertex is positive on y-axis because it is in the positive area of y-axis [Quadrant
2]. So kis gonna be... let’s say 1. So, I can’t remember a bigger number makes
it wider or fraction makes it smaller. I’'m pretty sure that fractions make 1t
smaller but I can check on this by using my calculator [using his calculator to
check the impact of a on the width of a parabola].

After trying several values for @, Ross realized that the smaller the absolute value of a,
the wider the parabola was.

When working on the Salary Problem (Instructional Interview Problem No. 7),
Ross recognized that if the number of years [/V] in the salary function of A [salary =
30000 + 2500N] and that of B [salary = 30000 + 1800N] were the same, it was
impossible for B to earn more money than A unless B worked longer. With this
understanding, he recognized two different ideas: the number of years N was different
or N was the same. These two different ideas suggested that Ross connected the context
to a real situation where the person who worked longer possibly earned more than the
one who worked fewer years.

When working on the Equivalent Function Problem (Instructional Interview

Problem No. 8), Ross simplified a function and incorporated the domain constraints. He

2

knew that the expression ai
x+2

could be simplified to x —2 . However, to determine if

X

f(x)=

2
and g(x) = x —2 were the same, he correctly made a decision to check
X+
their domains. He recognized the importance of checking the domains of the functions

when considering whether they were the same.
Ross’s Post-Instruction Understanding of Functions

Following the instruction on functions, Ross showed that he had developed his
knowledge and understanding of functions. His concept of functions changed from “a

function is a relationship between two sets of numbers or objects” to “a function 1s a
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relationship or correspondence between two sets of numbers or objects, each element in
the first set corresponds to only one element of the second set.” His statement was
similar to one of the definitions provided in class by the instructor, which stated that “A
function is a correspondence between sets of objects named a set D and a set R, to each
element of a set D that corresponds to exactly one element of a set R.” With regard to
determining a function, he seemed to be more comfortable checking inputs and outputs
than in using any other approaches. When asked how he could determine a function,
Ross stated that he checked inputs and outputs to see if for each input, there was only
one output. When asked if he could use other methods, he said he could use the vertical
line test with a graphical representation.

After instruction with functions, Ross used verbal and symbolic representations
more often than graphical and numerical (tabular) representations. Ross did not use the
numerical (tabular) and graphical representations during the process of constructing the
function to check if his function worked with the given constraints. The reasons for not
using these two representations might be that (1) at the end of the instruction, the
instructor often used symbolical manipulation strategies to demonstrate example
problems given in the class or (2) the instructor never demonstrated that they could
check their work using the numerical (tabular) or graphical representations. The
interviewer did not challenge him to use these two representations as he worked on the
problems.

Ross used several function concepts as he solved a problem after the instruction
(Post-Instruction Interview Problem). He constructed a single function using concepts
of undefined functions, zeros of a function, nonnegative functions, function domains
and a function containing a particular point. While attempting the Function
Construction Problem (Post-Instructional Problem), Ross described his understanding

of the concepts and connected those concepts to produce the function.

I: From the problem constraints, would you please give me a function that
you will construct?
R: From all these fives constraints [see Post-Instruction Interview Problem,

Appendix I], my function will be a fraction [a rational function]. The



82

i . 1 iy -
function will have x — 5 for the numerator because that will give a zero

when x = —;— . And x+3 will be the denominator and that will make a

function undefined at x = -3. A function is always nonnegative so I think
I can either square the function or use the absolute value sign. And I
have to think about how to make the domain start from —5 to infinity and
when x = 4, I need y = 7. That is what I can think of right now but I have
to check again to see if all these constraints work for my function.

Ross’s responses to the Function Understanding Questionnaire indicated that he
was able to apply his knowledge and understanding of functions to some types of real
world situation problems such as population growth, growth rate, compound interest,

and other types of business profits.

I can use what I know about functions to solve problems like population growth
rate, compound interest, compound continuous interest, and the maximum profit
from business. These kinds of problems she [the instructor] showed us in the
class. I’'m positive that I can do these problems if I see them again.

The application problems that Ross referred to were similar to the problems that the

instructor demonstrated in the class and that existed in the textbook.
Emma

Emma majored in Exercise and Sport Science. She was a freshman in her first
term in this university. She transferred from one of the universities in the southern part
of the U.S. She took the course because it was a major requirement and her first college
mathematics class. After taking College Algebra, she was required to take one more
mathematics course (Elementary Functions) for her major. In high school, she took
Geometry, Advanced Algebra, Precalculus I, and Precalculus II. But she dropped
Precalculus II before completing it. No reason was provided.

Most of the time Emma participated in the recitation class by sitting in the back
of the class and at about the middle in the lecture class. She was quiet and seldom asked

or answered any questions posed in the recitation class. Emma said she always studied
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by herself and before going to the lecture so she knew what she needed to pay attention
to. If she got to the point that she could not understand, she waited until the instructor
discussed it in the lecture class and then she reviewed it after the class. She always did
her homework assignments. She thought the way she studied was helpful for her. She
never went to see her instructor or her GTA during their office hours. She never went to
the Math Learning Center that provided help for students who needed it. She said, I
never ask for help from other people in doing math. I usually study by myself.”

At the end of the instruction, Emma was asked to rank the difficulty of the
College Algebra course from 1 to 10 (1 means very hard and 10 means very easy) she
responded with an 8 indicating the ease of the class. She said that she was familiar with
most of the content of this course and also felt that most of the topics in this class she

had learned previously.

Emma’s Understanding of Functions Prior to Instruction

Prior to the instruction on functions, Emma had learned some concepts of
functions. When asked what she knew about functions, Emma said “It is a relationship
between x and y; that’s what I can think about it right now.” Further conversation led to
a more thorough understanding of her knowledge. Emma thought a function only

related to two sets of numbers.

It Would you please tell me what x and y represent in a function?

E: Umm... two groups of numbers, I guess.

I: So do you think a function is only involving the relationship of
numbers?

E: I think it is.
When she was asked to give some examples of functions, Emma explained

x +y =10, x and y are related, like when x = 1 then y = 9; when x =2, then
y=28; and when x =5, then y =5 and so on.

Even though Emma had studied functions before taking this College Algebra

course, she had a limited understanding of functions. Initially, at the beginning of this



84

interview she demonstrated a limited knowledge of multiple representations of

functions. When asked how a function could be represented, she stated

E: A function can be represented as a diagram [an arrow diagram] from the
first group of numbers to the second group of numbers.”

I Are there any other forms that a function can be represented?

E: Umm... I think there are but I can’t remember.

Her answers were based on what she remembered from her previous knowledge
obtaining from high school. The interviewer continued the conversation probing her as

follow:

[

Recently, you gave an example of a function. Do you remember what
you said?

I'said x + y=10.

What do you call that form?

Um... Equation

So do you think besides a diagram what form that a function can be
represented?

E: An equation.

While Emma did not explicitly describe a function, it was difficult to say whether she
was able to distinguish the difference between a function and an equation. She was
correct in stating that a function x + y = 10 was an equation. Still, she did not say that
all equations represented functions. Emma did not recognize the phrase symbolic
representation as a type of multiple representations of functions. When asked 1f she
ever heard this terminology, she said “No or maybe; I cannot remember 1f I have heard

it.” The interview probed further about multiple representations.

I: Suppose you have an equation. What can you do with this equation?

E: What can I do with the equation?

I: I mean can you change the equation to another form that represents the
same data?

E: I see. I think I can graph it. Umm... I think I can make a table too.

This conversation showed that she had some familiarity with at least three types of

representations: graphical, tabular, and symbolic (she referred to as an equation).
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Emma’s Understanding of Functions During Instruction

During the instruction of functions, Emma’s knowledge and understanding of
functions was investigated through two interviews conducted two and four weeks after

the instruction on functions began.

Instructional Interview One

Working on the problems during this first interview, Emma showed that she had
some knowledge and understanding of functions. For example, when she was asked to
determine whether the relations written in different representations including graphical,
numerical (tabular), and symbolic representations were functions, she did most of the
problems correctly except when she considered whether a graph of a single point was a

function (Pre-instructional Problem No. 1A, question ¢ and i). She said that,

I’m not sure about this one because it is a point. What should I do with this?
Let’s see. I would say it is not a function because it’s just a point. It does not
look like a graph to me. I’m not sure because we never had an example of a

function of just one point.

Similarly, when working with the graph of three points (Pre-Instructional Interview
Problem 1A, question i), Emma also stated that it was not a function. Emma did not
think the graph of points was a function because “It has only three points; there is not
even a line.” However, Emma was not able to correct herself with the case of the graph
of a point or three points even though the interviewer encouraged her to use different
approaches to consider the graphs such as the vertical line test (her typical method) and
checking inputs and outputs.

Emma said that y = 4 was a function but it was not a function of y in terms of x.

When asked about her understanding of a function of y in terms of x, she explained,

A function of y in terms of x is a function that shows terms of x and y in the
equation. Therefore, y = 4 was not a function of y in terms of x because all y
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values are always 4. It doesn’t depend on x. No matter what x is, the y value is
gonna be 4.

During this interview, Emma described further understandings of functions
including a concept of a one-to-one function and a concept of an inverse of a function.
When asked about her understanding of a one-to-one function, Emma initially thought
of a function as passing the horizontal line test. When probed, Emma described that a
function that passed the horizontal line test indicated one output corresponding to only
one input. Emma understood that a function had an inverse if it was a one-to-one
function. When asked how “a function has an inverse if and only if it is a one-to-one”
worked, she explained that if it is a one-to-one function then when its domain and range
are switched, the result was still a function.

Working on the problems in the first interview during the instruction of
functions, Emma dealt with four representations: verbal, numerical (tabular), graphical,
and symbolic. When determining a function, she only used the vertical line test. To
investigate her understanding of this concept, the interviewer asked her to clarify how
the vertical line test worked. Emma stated that the vertical line test would tell the

number of outputs for a particular input. She provided her reason and examples:

If a vertical line hits a graph of an equation twice, there are two outputs for that
one input and this graph is not a graph of a function. If all vertical lines hit the
graph at only one point, there is only one output for one input and this graph is a
graph of a function.

Working on the Car Problem (Instructional Interview Problem No. 2), Emma
showed that she understood the graphical representation of the cars’ speeds. She
described the information using a graphical representation (see Figure 16). She

transformed the information from a graphical to a verbal representation correctly.

From the graph, I know that they [Car A and Car B] start traveling at the same
point. And Car A travels faster than Car B because its graph is above the graph
of Car B all the time until they got to time at 1 hour. At t =1 hour they have the
same speed because their graphs intersect each other at that point. After

t =1 hour, Car B travels faster than Car A because its graph is above the graph
of Car A.
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Emma related her understanding of function concepts when solving function
problems during the first instructional interview. She demonstrated her understanding
of the graphical representation and the vertical line test. Emma understood how to relate
the vertical line test concept to the graphical representation and the definition of
function. By using the vertical line test and determining if the graph passed the test, she
knew that it was a graph of a function because there was only one output for each input.
Emma indicated her understanding of the use of the horizontal line test to examine if a

function has an inverse.

A function has an inverse if it is a one-to-one function. And a function is one-to-
one if it passes the horizontal line test.

When working on the Instructional Interview Problem No. 3b, Emma was the
only one of all the interviewed students who called this function a step function. When
asked how she knew about this function (since the instructor never talked about this
type of function in class), she said she remembered it from her mathematics classes in
high school.

With the Ball Dropped Problem (Instructional Interview Problem No. 4), Emma,
described her understanding of a graphical representation to a real situation, indicating
that a ball was dropped from the tall building so it traveled one way from top to bottom.

This understanding led her to answer the question correctly.

E: I remember this kind of question. The ball drops from the building, and

it is a function. OK I can check it. I need to graph it. I put in —16x ?
145. Oh I have a strange window right now, so I need to change it. Let’s
see [setting Xmin = 0]

I: Why do you make Xmin = 0?

E: Umm.. Because you can’t have negative of time and the graph is in
terms of time [putting in Xmax = 10; Ymin = 0 and Ymax = 150].

I: Is it a function?

E: Yes because it passes the vertical line test. And yes, it has an inverse

because it is a one-to-one function because it passes the horizontal line
test.
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Emma demonstrated how she symbolically worked with the square root of an
algebraic equation when she attempted to find an inverse of the function. With the Ball
Dropped Problem, Emma’s understanding of inverse functions with real situations
guided her to the two correct solutions. Emma believed this function had an inverse
because the function was one-to-one and demonstrated her familiarity with symbolic

manipulation.

E: I need to find the inverse of s = —16¢* +145 . Therefore, I need to
switch s and t. That will be ¢ = —16s? +145, then ¢ —145 =—16s, and

_ 2
! 145 165 . So I have L +E=s2

“16 -16 -16 ~16 ' 16
because negative is canceled out so I have positive 145 over 16. And I

145 . .
need to put a square root —tlg + Te = \/s_2 =s. So s inverse 18

(e . : / 145
[writing in symbolic notation] s~ (¢) = % + To

I: Generally, when we take a square root like x* = 4, what is x?

E: x==x2.

I: In this situation when you take square root of s>, how come you do not
use £ ?

E: No we don’t because we can’t have negative for time and height. So we
don’t use the negative value.

then I divide by -16:

Emma showed that she understood how to solve the symbolic representation problem
related to taking a square root. She indicated that she had more than an algorithmic
understanding of finding an inverse of function. She understood when a quadratic

function had two real solutions and when it had only one real solution.

Instructional Interview Two

Emma showed progress with her knowledge and understanding of function

concepts during the second interview. She was asked to work on the problems using

symbolic and graphical representations of the quadratic function in Instructional
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Interview Problem No. 5. In particular she talked about variables represented in the

quadratic standard form as follows:

So this is a graph of a parabola and I know from the equation that a has to be
negative because the parabola is opened down. The vertex of a parabola is (4, k)
so A has to be positive because a x value for the vertex is in positive area
[Quadrant 4]. Umm... k is a y value on the vertex, it should be negative number.

She also considered the values of variables g, # and k in Instructional Interview

Problem No. 6.

E:

[Reading the problem]: “Give a reasonable symbolic representation for
g(x) in the form g(x) = a(x—h)* + k . Explain why your representation
is reasonable.” So, the original is just y = x , and it is a parabola and
umm... [ know from the last problem that a flipped over parabola [open
downward] a has to be a negative number and the smaller |a| umm... the
wider a parabola is. So for this one, let’s see. [ will say a = -5 again,
just for starting out with. And then my vertex is ...Let’s see. Umm... x

corresponds to the x value and the x value goes much further along the
x-axis than the y-value goes along the y-axis. In this case, ll try s = —4

and k = 1 [putting y, = —.5(x—4)* +1 in her calculator and graphing it].

Working on the Salary Problem (Instructional Interview Problem No. 7), Emma

interpreted her thinking in two different possible ways; A and B might either work in

the same numbers of years or different numbers of years.

E:

There are four different groups and N represents the number of years
since the date of contract. Each salary represents the salary that will be
earned during the given years. OK. B will never earn more per year than
A because they both have the same starting money [$30,000] and A
always earns more per year than B. So 1t is not possible for B to earn
more.

Is there any case that B can earn more than A?

The only way B would earn more was if he were employed for more
years than A. Umm... that is the only one possible case otherwise he will
never earn more than A.

For the last question in this problem (Will D ever catch up C?), Emma used her

graphing calculator comparing the graphical representation of the salary of C and D to
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see their intersection point. She was able to explain when D earned more money than C

from the graph.

I: Can you tell when D is gonna catch C?

E: Yes I can

I: How can you find? Would you please show me?

E: I’m gonna calculate [using a function menu in the graphing calculator]
and find the intersection; first curve, second curve, and they intersect at
(10, 42000), so that would mean at the 10th year they would earn the

same amount of money and after that D would have a higher salary than
C.

Working on the Salary Problem, Emma used the real situation to guide her in setting the
calculator window for the number of years and amount of money, which in the real
situation would never be negative numbers. Also she found the intersection of two
linear equations, in this case the intersection of the salary equation of A and B, using

her graphing calculator rather than completing the symbolic manipulation.
Emma’s Post-Instruction Understanding of Functions

At the end of the College Algebra course, Emma’s concept of function had
developed from the notion that a relation of two sets of numbers written in terms of
variables x and y to a relationship of two sets of numbers or objects, each element in the
first set related to only one element of the second set. When asked how she could
determine a function, Emma stated that she could either (1) use the vertical line test
with the graphical representation to see if any vertical line crossed the graph more than
once or (2) check the inputs and outputs to see if each input had only one output.

From the researcher’s examination of her homework, quizzes, and midterm
exams, the researcher concluded that Emma was able to connect her knowledge and
understanding of functions obtained from the class to solve similar problems, new
problems, or real world problems related to function concepts. Her responses to the
Function Understanding Questionnaire revealed that she had gained confidence in her

ability to work on mathematical function problems. Also, when asked to distinguish a
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relation and a function, Emma said she could use either numerical inputs and outputs or
the graphical representation of that relation with the vertical line test depending on
which one she felt was easier for her.

After the instruction of functions, Emma used two types of representations:
verbal and symbolic more often than graphical and numerical (tabular). She used a
verbal representation to explain the information of the constraints in the Function
Construction Problem (Post-Instructional Interview Problem) verbally clarifying the
constraint statements and writing symbolic representations in the process of

constructing a function. For example:

The function is undefined at —3 means umm... if x = —3 we cannot match that x
with a y value. The function is undefined if it is a fraction and the denominator
equals zero. That would be x + 3 at the bottom of the fraction.

Emma knew how to find the zeros of a function. She set the equation equal to zero; then

she solved for the x value(s). For this problem she identified the function had a zero
1

at—.
2

That would mean y = 0 when x =% , so that would be x — % . And that would be

the numerator.

Emma did not use either numerical (tabular) or graphical representations during
the process of constructing the function for checking if her function worked for each
given constraint. She checked if the function passed each constraint of the problem by
entering the numbers into the function.

Attempting the problem after the instruction of functions, Emma connected
several function concepts to solve this problem given at the end of the instruction
interview (Post-Instructional Interview Problem). She connected the conceptions of an
undefined function, zeros of a function, a nonnegative function, a function domain, and
a function containing a particular point to form a single function required in the
problem. She described her understanding of the problem constraints before she started

solving the problem.
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The function is undefined at —3 and has a zero at% . So this function is in the

form of a fraction. The top part [numerator] gives the zero and the bottom part
[denominator] gives an undefined value. The function is nonnegative so umm. ..
it is an absolute value function, I guess. The function has a domain from -5 to
infinity so x values can’t be any numbers but —5 to infinity. The last one, the
function contains point (4,7) so when x = 4, the y value is 7.

The problem used for the interview at the end of the instruction on functions
was not a real world situation problem. However, the interviewer investigated whether
Emma was able to apply her knowledge of functions to a real world situation by
examining her homework assignment and quizzes. The evidence indicated that she
correctly solved the application problems. The application problems assigned for
homework related to the population growth and compound interest. In addition, Emma
indicated that she was able to apply her function knowledge and understanding to the
real situations in her response to the Function Understanding Questionnaire. She
claimed that she was able to use functions for some real world situations such as
population growth and decay, and the investment rates (compound and continuously

compounded interests).

Now I think I can solve problems like population growth and decay, the bank
accounting like compound interest and continuously compounded interest, and
the maximum profit and the minimum cost of a business.

The application problems that Emma claimed she was able to solve were the same type
of problems that were demonstrated in class and in the textbook as examples. Her work
on the homework assignments and quizzes also indicated that she was able to apply her
understanding of functions to those real world situations. When asked to give examples
of applying functions to the real situations, Emma gave only the examples that were

discussed 1 class.
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Lindsey

Lindsey majored in Exercise and Sport Science. She was a freshman taking
College Algebra as a requirement. She also was required to take one additional
mathematics course. She said that she did not like mathematics. The College Algebra
course that she was enrolled in this winter term was her first college mathematics class.
In high school, she took Integrated Mathematics for three years; therefore she had some
experiences with algebra, geometry, and trigonometry. In her senior year she took
precalculus for one semester. Lindsey neither liked nor enjoyed mathematics classes;
however, she did earn good grades in her high school mathematics classes. When asked
about her favorite mathematics class, Lindsey said that she did not like trigonometry at
all, was not a fan of geometry, and disliked algebra the least. She felt more confident
working with algebra problems than others types of mathematics problems.

When asked how she studied the material, Lindsey said she reviewed the lecture
notes when she worked on the homework problems and checked her solutions with the
solutions at the back of her textbook. She did not ask for individual help from her
instructor or the GTA or tutors at the Math Learning Center. However, she did ask her
GTA questions sometimes in the recitation classes. Most of the time she studied by
herself. Lindsey stated that if she did not understand the content she probably would ask
for a tutor.

Typically, Lindsey sat in the middle of the class during the recitation, asking
some questions but rarely presenting any ideas if asked in class. When asked to rank the
difficulty of this class from 1 to 10, where 1 1s very hard and 10 is very easy, she

selected 7 to indicate this class is not too difficult for her.

Lindsey’s Understanding of Functions Prior to Instruction

Lindsey had studied algebra and functions in high school. She described her

understanding: “A function is a relationship between two numbers.” She focused on

two sets of numbers represented by x and y rather than two sets of objects in a general
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case because the examples she had seen most often in class were related to sets of
numbers. When asked to give some examples of functions, she provided a relation of
positive integers ({(1,2),(2,4),(3,6),(4,8)}). When asked why she thought this was a
function, she reasoned, “each x had only one y.” Initially, she did not give any examples
in the form of equations or symbolic representations. When asked whether she thought
some equations were functions, she agreed that some equations were functions;
however, she said not sure which statement between “Not all equations are function”
and “Not all functions are equations” was true. In fact, both of them were correct. When

asked for examples of an equation as a function, she wrote y = 2x + 1. She explained

that the equation she gave was a line and she remembered that a graph of lines other
than vertical lines, were functions. She was unable to provide more information about
lines versus vertical lines. What she said was what she remembered from her high
school mathematics class. Her comment about her understanding of function prior to
the instruction appeared to be instrumental with little connection of one concept to
another.

Lindsey had some knowledge about multiple representations of functions prior
to instruction. She correctly worked on problems (Pre-Instructional Interview Problem
No. 1 and No. 3) using different representations, including verbal and graphical
representations. Lindsey said that she remembered a function could be represented as an

equation, a graph, and a table.
Lindsey’s Understanding of Functions During Instruction
Lindsey solved mathematical function problems in interviews twice during the

instruction of functions. The first interview took place two weeks after the instruction

began and the second interview took place two weeks after the first interview.
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Instructional Interview One

In the first interview, Lindsey was asked to solve four problems (Instructional

Interview Problem No. 1, 2, 3 and 4) involving multiple representations and real world

situations. As she worked on the problems, Lindsey demonstrated that her

understanding was more procedural than conceptual; she was able to tell how and what

the solution was, however, she was unable to explain the reasoning behind her answer.

She also showed her procedural knowledge of how to solve a radical and constant

function.

L:

For y = 4, I will say this is a constant function. All y values are 4 no
matter what x value is. And its graph is a horizontal line like this
(drawing a Cartesian coordinate system and a horizontal line at y = 4).
For x> + y* =1 (writing an equation), I have to subtract x* from both
sides.

Why do you have to do that?

To rewrite the equation y in terms of x so I can know 1f 1t 1s a function.

[Her strategy was: y* = —x” +1, 4/y* =4/-x" +1 —x*+1]Iwill

graph this to see its graph [drawing the graph as it appeared n her
calculator].It is a semicircle on the x-axis so it is a function because it
passes the vertical line test.

Lindsey followed the symbolic manipulation process rewriting the equation y in terms

of x but she did not think of negative value when she took the square root of real

number. With probing, she recognized that she did not perfectly follow the algorithm

for taking the square root of real numbers:

When you take a square root of a real number, for example x* = 4 , what
will you get for x?
Plus or minus 2. Oh, yeah same as this problem. [ have two y values

y =+v—x" +1. So this would not be a function because there are two y

values for one x. For example, if x equals 2, y would be plus or minus the
square root of two squared plus one that gives me plus or minus square

root of 5 [writing £~/2° +1 =i'x/§].
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At this time Lindsey did not determine a function by using its graph. Instead she gave

an example showing that there were two y values for one x; therefore it was not a

function.

Lindsey was able to use different representations when working on function

problems during this interview. These problems included verbal, tabular (numerical),

graphical, and symbolic representation (equations). She was able to verbally interpret

the information from the graphical representation when she worked on Instructional

Interview Problem No. 2 (see Figure 16).

L:

I’'m looking at the graph at t = 1 hour. It looks like Car A and Car B are
going at the same speed. Because umm... they [graphs of Car A and Car
B] intersect at t = 1 hour. But it doesn’t say anything about the position.
Is there any information from the problem that tells you about their
position?

Umm (pausing)

The interviewer encouraged her to think out loud interpreting her idea.

Can you tell me about the speed of these two cars before one hour?
Umm... Before one hour, Car A was going faster than Car B but Car B
increased its speed more than Car A did. Umm...Car A was faster at the
whole time before one hour. That would tell me that Car A was in front
of Car B. So even though they had the same speed at t = 1 hour, Car A
was in front of Car B because Car A got more distance. I mean Car A
went faster than Car B at that amount of time.

Lindsey correctly responded to the problem by talking about the acceleration of

the cars, even though this information was not directly provided. The question was

“What is the relationship between the acceleration of Car A and that of Car B?”

Lindsey’s response was:

It looks like Car B has a higher acceleration than Car A. The graph shows that
Car A moves almost steadily. Look at this line (pointing to graph of Car B), it’s
getting steeper than that line [the graph that represented the speed of Car A). So
Car B has a bigger acceleration than Car A has.

When determining a function from a graphical representation, Lindsey

constantly used the vertical line test.
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Umm... If T use the vertical line test to determine a function, it works except a
point right here (pointing at the dark and white points in Figure 17). But I
remember that one [kind of point] includes the value at that point and the other
doesn’t. So either way the vertical line test still works. So 1t 1s function because
no vertical line hits two points on the graph.

Lindsey demonstrated an ability to transform a graphical representation to a
numerical (tabular) representation. She also seemed to understand transforming a
graphical representation to a symbolic representation referring to the graph in Figure 17
(Instructional Interview Problem No. 3a). However, she was not able to complete
writing the symbolic representation for this problem. One of the reasons might be that

there was not much discussion in class about how to write a piecewise-defined function

if the graph was given.
L: To represent this information in another way, I can write it as a table like
this:
X y
0 40
50 50
100 not sure
200 200
300 200
400 200
500 250
600 300
I: Any other representations that you can think about?
L: Maybe I can write 1t as an equation like y =1......... because the graph

breaks apart so each part has a different equation.
I: Would you please show me how to find the equation for each piece?
L: I’ll try. From the graph I think there are three equations. To find an
equation of the line, I need a slope. The first line here (pointing at the
line on the most left hand of Figure 17) has a

slope=50_40=E=1.Thenmyequationis y=mx+b, whichis
50-0 50 5
1
=—x+40.
Y75

I: What are m and 5?
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L: m is a slope of the first line, which is %and my b is the y-intercept,
which is 50. y = mx + b is the slope-intercept formula of a linear
equation.

I: How about another two lines?

L: This line here [pointing at the horizontal line in Figure 14] has the same
y all the way through until x = 400 so the equation is y =200. And the

last one here, I need a slope again. So slope = 300-250
600-500
50 1
= —=— Umm...(pause
100 2 (pause)
I: So what is the equation?
L: I can’t use the slope-intercept formula because I don’t have the y-

intercept. Umm... I will use a slope and a point. I can’t remember what
it’s called. But I know how to doit. Tuse y —y, =m(x—x,); x;, and y,
is a point that the line passes through. So I pick (600, 300) as the point.
I Why do you pick this point?
L: I can pick any point that this line passes through, but this point is

obviously on this line. I put in y — 300 = %(x —600), and then I rewrite

: 1
the equation y = %x -300+300 = Ex

I: Can you write the equation represented by this graph?
1 x+40
5
L: That would be y =200
1
—X
12

Lindsey showed her procedural understanding finding a linear equation using

the point-slope form. However, she did not specify the domain for each equation. After

—;—x+40;0 <x <100

she was asked, she wrote the equation as: y =<200;100 < x <400

%x;400 <x <750

Lindsey was the only one of the five students who was able to write the symbolic

representation for the graph of Problem No. 3a correctly.
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Lindsey provided a real situation represented by the graph of Interview Problem
No. 3b (see Figure 18).

Umm... this is like the entrance price to a park with a certain number of
customers. I say the age is on the x-axis and price is on the y-axis. You pay a
different price depending on your age. For example, three dollars for people
who are 10 years old or under, $5 for people who are older than 10 years old to
15 years old, and so on.

Lindsey did not talk about the line with the arrow in the graph for this problem;
therefore the interviewer asked how she thought about that line. She explained, “This
line means people over this age pay the same price.”

In this interview Lindsey did not have a chance to show that she correctly found
a linear equation if two points were given. However, her homework showed that her
procedures and solution were correct.

When solving function problems in the first interview, Lindsey changed from
one representation to another and connected her understanding of function concepts.
She was also able to apply her knowledge and understanding of functions (i.e. one-to-
one functions and inverse of functions) when she worked with real situation problems.
For example, when working with the Ball Dropped Problem (Instructional Interview
Problem No. 4), she justified that the function of the dropped ball was a one-to-one
function, even though the symbolic representation of the function was a parabola. She
explained that in this situation where the ball was dropped from the building, its graph
was only half of a parabola upside down. Her understanding suggested that the function

had an inverse.

Instructional Interview Two

The second interview took place four weeks after the instruction of functions.
Lindsey demonstrated her developing understanding of representations and function
concepts that guided her solution to problems. When working on the Quadratic

Standard Form Problem and Quadratics Standard Form with Reference Graph Problem
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(Instructional Interview Problem No. 5 and No. 6), Lindsey correctly described her

understanding of variables a, &, and % in quadratic, symbolic representations. Her

understanding was the same as other students.

I know that a parabola faces up if a is a positive number and faces down ifa is a
negative number. Umm... the vertex of the parabola moves to the right and up if
both 4 and k are positive numbers. The vertex moves left and down if both 4 and
k are negative numbers. The vertex moves left and up if 4 is a negative number
and k is a positive number. The vertex moves right and down if % is a positive
number and £ is a negative number.

Lindsey showed that sometimes she did not connect the problem to a real world

situation. However, with some assistance, she expanded her understanding. In the

Salary Problem (Instructional Interview Problem No. 7), she responded to the first part

of the problem as follows

L:

A’s salary is 30000 plus 2500 times number of years that he have
worked and B’s is 30000 plus 1800 times the number of years he have
worked too. So it doesn’t appear that B will ever earn more than A
because they both have the same amount of money to start with and A
earns more per year. So B will never earn more than A.

Is there any chance that B will earn more than A?

Umm... I don’t think so. N is number of years that they work and they
are the same, right? [Lindsey considered only the case that A and B have
worked for the same number of years.]

What if the numbers of years is different?

If they start working at different times... Oh yeah, if B works longer
than A, then B possibly earns more.

Lindsey worked on application problems including the real world situation

problems in the textbook that had been suggested by the instructor. After working on

each problem by herself, she checked the solutions with the answers provided at the

back of the textbook. Most of the time she got the right answers. If her solutions were

not the same as those provided, she asked her GTA in the recitation class.

Lindsey was able to solve a system of two equations. However, her initial

acceptance was incorrect sometimes. As she worked on the Instruction Interview
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xt -4
x+2

Problem No. 8, which asked her to determine whether f(x) = and

g(x) = x — 2 were the same, she stated they were the same after finishing reading the

2 —
x —4 could be simplified to (x+2)(x=2) _ x—
x+2 x+2

2.

problem. Her reason was that

When she was asked to show how they were the same, she found that they were

different because f(x)had a domain restriction [ x cannot be —2] while the domain of

g(x) could be all real numbers.

Lindsey’s Post-Instruction Understanding of Functions

Lindsey showed that she had some understanding about functions from her high
school mathematics class. Following the instruction of functions, she showed that her
understanding of functional concepts had expanded. She claimed that most of the
function concepts taught in this class were similar to her high school mathematics
courses except there were more application problems.

Lindsey stated that the function concepts taught in this College Algebra course
were not too difficult because most of the content she had learned in high school.
However, she claimed that she had learned the concepts better than in high school,
particularly applying function concepts to real situations. At the end of the instruction
on functions, she used her knowledge and understanding of functions to solve the Post-
instruction Interview Problem. In response to the Construction Function Problem (Post-
Instructional Interview Problem), she used her conceptual understanding of functions
including an undefined function, zeroes of a function, a nonnegative function, and a
function that contained a certain point. She verbally described each constraint required

for constructing a function in this problem.

L: The first constraint, function is undefined at —3, implies that the function
has to be a fraction and it 1s undefined.
I: Why do you think it is a fraction?
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L: I remember from the class that if the function is in a form of a fraction
[a rational function], the function will be undefined at x, which makes
the denominator equal to zero.

Lindsey continued describing each constraint of a function given in this problem.

A function is undefined at —3, which means at x = —3 the denominator equals
zero. So there 1s no y value when x = -3.

She continued with the other constraints

: 1 .
Next a function has a zero at 5 This means when x = % ,y=0 and zeros of a

function can be found by setting the numerator equal to zero and then solving
for x. “The function is always nonnegative” means the y values never be any
negative numbers and the graph of this function will be above the x- axis. “The
domain of a function is -5 to positive infinity” means x values start from —5 and
gets bigger with no limit. The last one is “the function that contains the point
(4,7).” This means whenx =4,y =17.

Not surprisingly, at the end of the instruction, Lindsey showed that she had
more confidence when she worked with mathematical function problems than prior to
instruction. She said that she did more types of mathematical function problems than
she had ever done in high school. Lindsey responded to the Function Understanding
Questionnaire administered at the end of the instruction revealing her conceptual
understanding of mathematical functions was more accurate than originally in the first
interview during the instruction of function. At the end of the instruction of function

Lindsey stated:

A function is a relationship between two sets of numbers. This relationship can
be shown in either an equation or table. Umm...it can be shown as a graph too.
We can check a function by using the vertical line test or by looking at the
inputs and outputs.

When she was asked to give examples of a function, she gave a simple linear function.

y = x is a function. I can check inputs and outputs. There is one y for every x. I
can also check by drawing a graph and then using the vertical line test.
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When asked how she applied her knowledge of functions to the real situations, Lindsey
said that she could apply mathematical function knowledge to solve real world
problems such as the investment problems and population growth and decay problems.
She did not show her work on a real world situation problem during this interview, but
she showed her work on the application problems in the textbook that were assigned.
She claimed that she worked on the problems by herself and she did the problems

correctly.

Kyle

Kyle, a senior who was majoring in Liberal Studies and Social Science took
College Algebra because it was a core course for his major. Before taking this College
Algebra class, he took two mathematics classes: Introduction to Contemporary
Mathematics and Mathematics for Management, Life, and Social Sciences. This
College Algebra course was his last mathematics class for his degree. He took Algebra
I, Algebra II, and Geometry in high school. He had studied functions in high school but
believed that it did not include logarithmic functions. He said he did not hate
mathematics. However, this term he enrolled in many classes required for his major, so
this College Algebra class was not his priority. He said that he spent less time studying
for this class. He believed that if he knew mathematics, he would know how to solve
and get an answer for a problem. He said he liked mathematics but he just did not have
much time to study and do homework. He said this was his last year so he spent more
time on the classes that related to his degree than this class. He believed if he
understood mathematics, it was easy for him to get an “A” grade. He felt this would be
the first mathematics class that he would not do well in. When asked how he studied
mathematics, he stated that if he did not understand it or had some problems, he usually
figured 1t out on his own. He had never asked for help from his instructor or GTA. He
went to the Math Learning Center (MLC) one time when we worked on the first lab
homework because he did not know how to solve equations using his calculator. That

was the only time that he got help from MLC. Most of the time he studied on his own.
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He claimed that he did not feel comfortable with this class, as he did not spend much
time on it. He spent about one or two hours per week doing homework. He was sure
that if he studied more he probably would rate this class easy, but he only studied about
one or two hours a week. Consequently, he ranked the difficulty of this class at about 6
(1 represented the most difficulty and 10 represented the easiest). He stated that this
class seemed more time consuming; the concepts were not very hard but needed a lot of

practice.
Kyle’s Understanding of Functions Prior to Instruction

Before taking this College Algebra class, Kyle had studied algebra and functions
in high school. He had a partial knowledge of functions. Prior to the instruction of
functions in this class, he addressed a function as two sets of numbers. He stated, “A
function is a relationship between two sets of numbers,” and he provided an example of

a function using an arrow diagram. At that time he did not discuss one-to-one functions.

Figure 20. Kyle’s example of a function.

Kyle did have an understanding of multiple representations of functions. He said
that a function could be presented as a diagram, ordered pairs, and an equation. He also
confirmed that a function could be changed from one representation to another. He
changed the function represented in his arrow diagram (Figure 20) to a numerical
representation (a set of order pairs, {(1,2),(2,4),(3,6)}).

Kyle demonstrated his understanding of a transformation among multiple
representations by correctly matching the graphs in Figure 15 corresponding to a

specific situation. For example a situation provided in the problem was:
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A balloon was blown up in class and then let go. It flew around the room. The
amount of air in the balloon is the dependent variable.
He described his understanding of the situation as the following:

Umm... the amount of air is on the y-axis. It’s blown up so it means air is
increasing and then starts decreasing because it flew around the room. The y-
axis represents the amount of air; this will start with none at the beginning
because there is no air in the balloon and as blowing it up and letting it go, so
the air 1s decreasing again.

Kyle’s Understanding of Functions During Instruction

Kyle participated in two interviews conducted in the sixth and eighth weeks

during the instruction of functions.

Instructional Interview One

In the first interview, Kyle was asked to solve four multiple representations and
real world situation problems (Instructional Interview Problem No. 1, 2, 3 and 4). While
working on the problems, Kyle demonstrated a partial understanding of functions. He
had a limited understanding of determining a function by either using the vertical line
test or checking inputs and outputs. He could not explain how the vertical line test
worked. He knew that if he had a graphical representation, then the vertical line test
worked for verifying whether it was a function. He correctly worked on algebraic

symbolic manipulation. He completely demonstrated the symbolic manipulation of y in
terms of x for the equation x° + y* =1, which few students could do.

Kyle precisely used four different representations when working on function
problems during this interview: verbal, tabular (numerical), graphical, and symbolic
(equations). He was able to verbally interpret the information from the graphical
representation. He correctly described the graphical representation provided in the

Instructional Interview Problem No. 2 (see Figure 16).
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This graph shows the relationship between the speed of two cars and time. Car
A and Car B start traveling from time = 0. Car A goes faster than Car B. But Car
B speeds up more because this line [pointing to the graph of Car B] has more
incline. At t =1 hour, they have the same speed because their graphs intersected
here [pointing at the intersection point]. After one hour Car B goes faster than
Car A.

Even though he correctly transformed the graph to a verbal representation, he could not
relate a conceptual idea of speed, time, and position of the cars. He stated that these two
cars were at the same position at t = 1 hour. His reason was: “They intersected at the
same point; that should mean they are at the same point at that time.”

Kyle sometimes gave quick responses to a problem. At the beginning he said
that the graphical representation provided in Instructional Interview Problem No. 3a
(see Figure 17) was not a function because it failed the vertical line test. He said that
when x = 100, there were two outputs. When asked to state the outputs at x = 100, he

realized that he was wrong.

I was wrong. There is only one output when x = 100, that is 200 because the
white dot does not include the value at the edge. Therefore, this graph represents
a function.

Kyle stated that this information could be represented in a linear form y = mx +5 . He

demonstrated a procedural understanding in his use of an algorithm to find the linear

form of the first line.

To write a linear formula, I need to find a slope. I need two points for a slope. I

say points (0, 50) and (50, 75). Slope, m, is Ymh 2 = % The y-intercept is

x,—x 50

50. Therefore, the linear formulaisy = %x +50.

Kyle had a misconception that lines with the same slope had the same equation.

While trying to construct an equation for the third line of the graph, he found its slope

was % . (He used (400,200) and (600, 300) as the two points.) He said that “The slope is
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the same as the first line, so they are the same function.” His knowledge of finding a
linear function was limited to the point-slope form. When asked to prove that the first
line and the third line were the same, he extended the graph of the third line until it
intersected the y-axis. It intersected the y-axis at the (0,0) point. Therefore, he

concluded that the y-intercept b = 0. The equation of this line was y = %x, which

differed from the first line. When he was asked about what he knew from his
explanation, he said that two lines with the same slope did not mean that they were the
same line and recognized that the lines with the same slope would be parallel.

Kyle was able to make a symbolic representation corresponding to each piece of
a graph. However when asked to write the symbolic representation of this information
in function notation [a piecewise-defined function notation], he was unable to complete
the task. He was not the only student who was unable to do this task. A lack of this
ability might be that he did not have much experience with this kind of problem.

Kyle was unable to identify applications for graphical representations in a real
situation. He could not construct or think about any real situation that could be
represented by the graph provided in the Instructional Interview Problem No.3b. (see
Figure 18). He was sure that this graph represented a function and this information
could be represented in a symbolic form similar to the Problem 3a. But he could not
write a piecewise defined function notation.

Kyle transformed a symbolic representation to a graph representation using a
graphic calculator when he worked on the Ball Dropped Problem (Instructional

Interview Problem No. 4).

A ball dropped from the top of a tall building has height from the ground
represented by s = -16¢> + 145 feet after t second. Umm... I will check if it is a
function by graphing it [entering the equation y =—16x” +145 into his
calculator]. It is a graph of a parabola facing down. So it is a function.

Kyle thought that the horizontal line test was used for testing a one-to-one
function. After receiving a probe from the interviewer, he understood that if a function

passed the horizontal line test, it could be implied that a function had an inverse.
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How can I know if it has an inverse?

How do you check whether it is a function?

I use the vertical line test.

Is there any test that you can use with a function?

I can use the horizontal line test. But that checks a one-to-one function,
doesn’t it?

So is this a one-to-one function?

No.

Why not?

Because it doesn’t pass the horizontal line test.

Tell me one more time what do you know about this equation.

I know that it is a function and it is not a one-to-one function.
Does it tell you anything about an inverse?

Umm... I think it does not have an inverse.

Why?

Because it is not a one-to-one function. When I switch x and y for
finding its inverse, it is not a function.

Kyle demonstrated that he was able to apply the horizontal line test to determine

the inverse of a function. However, he was unable to relate the problem context to a real

situation. While working on the Ball Dropped Problem (Instructional Interview

Problem No. 4), he did not recognize that the graph of a ball dropped was a one-to-one

function because it was half of a parabola graph starting from the top and dropping to

the ground. Without a connection between the problem context and a real situation, he

made mistakenly claimed that this function had no inverse.

Basically, Kyle applied the following function concepts that were covered in the

lecture class when he solved the problems.

The vertical line test: He used the vertical line test for determining a
function.

The definition of a function (provided by the instructor): He used a
function definition, a correspondence that assigns to each element of set D
exactly one element of set R, to determine a function when the relation
was represented by a table.

The horizontal line test: He used the horizontal line test to determine a
one-to-one function. He also applied the horizontal line test to determine

whether a function had an inverse.
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Instructional Interview Two

When solving function problems in the second interview (two weeks later),
Kyle’s understanding of functions had improved. While working on the problems
involving quadratic functions (Instructional Interview Problem No. 5 and No. 6), he
reasonably selected numbers for each variable, a, A, and £, to construct a symbolic
representation that matched with the graphical representation provided in the problems.
Even though he described the effect of those variables correctly, he seemed to have
memorized their effects from the class, rather than understanding the relationships
among these variables.

During the second interview, Kyle seldom used a graphing calculator or any
other tools to help solve the problems. He responded to the application problem, the
Salary Problem (Instructional Interview Problem No. 7), using logical reasoning and
symbolic manipulation. To solve part a, b, and ¢ of the Salary Problem, he responded
using the symbolic representation. His responses were correct.

When asked whether he did any application problems in the textbook, he said
that he did not do all of the homework assignments because they were not graded. He
did some assignments when he studied for quizzes. He did not work on the application
problems often, especially the problems related to functions.

Kyle responded to Instructional Interview Problem No. 8, considering whether

function f(x)and g(x)were the same, without thinking about their domains. When

asked when these functions were the same, he said, “When I put the same value of x in

each function, I get the same value of y.”
Kyle’s Post-Instruction Understanding of Functions
By the end of instruction, Kyle had gain confidence about his knowledge and

understanding of function concepts. He explained his conceptual understanding of a

mathematical function.
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A function is a relation between two things, I say x and y, that one x relates to
one y. When you draw its graph and use the vertical line test, it passes the test. I
mean each vertical line crosses the graph only one point.

His understanding of functions included a concept of a one-to-one function. He stated:

A one-to-one function is a function that has only one output for one input and
one input for one output. A one-to-one function can be checked by using the
horizontal line test.

When asked for further explanation of how the horizontal line test worked, Kyle

responded:

To check a one-to-one function by using the horizontal line test, you need to
draw a graph of an equation. Then draw horizontal lines and check how many
points that each line crosses the graph. For being a one-to-one function, there is
no horizontal line that crosses the graph more than one point.

To examine if he understood a one-to-one function, Kyle was asked to give examples of
both a one-to-one function and a function that was not one-to-one. As he explained, he
used symbolic and graphical representations.

An example of a one-to-one function is like umm... y = x . Its graph is a line

like this [using his hand makes a diagonal from top right to bottom left]. The
horizontal lines will cross this graph at only one point. An example of a function

that is not a one-to-one is y = x>. Its graph is a parabola opened upward. It does

not pass the horizontal line test because the horizontal lines cross the graph at
more than one point.

Kyle related the concept of a one-to-one function to an inverse of a function. He stated
that if a function was one-to-one then it had an inverse. But when asked how he
checked whether a function given in symbolic form had an inverse, he was unable to
respond without assistance.

Kyle said that he had learned some function concepts taught in this class in high
school. He said that he could recall some but not until he heard the instructor talk about

it in class. He said the functions taught in this class were not difficult but they were not
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easy either. Sometimes he felt he was behind the class because he missed some lecture
classes.

At the end of the instruction on functions, Kyle was asked to solve the
Construction Function Problem (Post-instructional Interview Problem). His
understanding of the concept of functions, including an undefined function, zeroes of a
function, a nonnegative function, and a function that contained a certain point, were
connected and used for solving this problem.

During the post-instructional interview, Kyle used two types of representations:
verbal and symbolic more than any other representations. Prior to instruction on
functions, he used a verbal and symbolic representation more often and during
instruction, he used all four common representations (verbal, graphical, numerical
(tabular) and symbolic). Kyle verbalized his understanding of an undefined function

constraint.

The function is undefined at —3. This means that when x = -3, we cannot find
the value of y. And I remember that it happens when it is divided by zero.

) ) ) ) 1
He described the second constraint; the function with a zero at Py means “the value of y

1 . ) )
equals zero when x = Py .” He initially was unclear about the meaning of “nonnegative”

in the third constraint. He clarified the word “nonnegative” as “positive. But when he
was probed by asking him whether zero (0) was negative or positive, he said “neither.”

Kyle restated that nonnegative included positive and zero. Kyle’s explanation of the last
two constraints where the function’s domain was [— 5,0) and the function containing
the point (4,7), was that the x values in this function included —5 and larger numbers

and when x was 4 and y was 7.
Kyle connected the concepts of undefined, zeroes of a function, a nonnegative

function, and a function containing a specific point. With these connections, he

) ) ) ) 1
correctly stated that this function was a rational function that had x — Py as the

numerator and x + 3 as the denominator. Kyle had a limited idea of a nonnegative
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function. He thought that this function was only an absolute value function because it

was always a nonnegative function. He did not consider a quadratic function such as
y = (x—h)* that also provided a nonnegative function.

After instruction, Kyle did not have a chance to work on any real world
problems. The post-interview problem was not a real world problem. However, he
responded to the question “How are mathematical functions useful in thinking about
real world situations?” so that he could use mathematical functions knowledge in
funding the best option for money investment or buying mobile phone service. His
examples of using mathematical function knowledge differed from the ones that the
instructor discussed in class. When asked about the application problems presented in
the classroom, he remembered that the instructor gave examples related to interest rates
of banking including compounding and continuously compounding interest rates. His
homework assignments related to the application problems indicated that he did not

work on the application problems provided in the textbook.

Questionnaire: College Algebra Students’ Understanding of Functions

Twenty-four volunteers including the five students described in the profiles
participated in a Function Understanding Questionnaire at the end of the instruction on
functions. The questionnaire was designed to gather data to answer the first research
question: What is college algebra students’ understanding of functions? The
questionnaire was administered to the students in the last recitation class of the winter
term, 2003. The students were asked to respond in writing to four open-ended questions
related to their understanding of mathematical functions.

The first question asked the students to describe their understanding of the
concept of mathematical functions. They were allowed to use diagrams, pictures, or
examples to clarify their thoughts. Similar to the study conducted by Schwingendorf et
al. (1992), the students’ responses were classified into four categories: prefunction,
process, correspondence, and no concept. If students indicated a limited concept of

functions such as identifying a function is an equation, they were classified in the
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“prefunction” category. They were placed in the “process” category if they indicated a
use of a process of getting an output from entering an input. If students indicated a
relationship between two variables, they were grouped in the “correspondence”
category. Finally, if students indicated no understanding of functions, they were placed
in a “no concept” group. The students’ responses are shown in Table 2.

None of the students used any diagrams, or pictures to clarify their thoughts.
They described their thoughts with words. The results indicated that of all students, the
majority of the students, including the five interviewed students, described their
understanding of mathematical function as a correspondence or a relationship. They
described a function as a relationship between two variables or two sets of objects that
each element of one set was assigned to only one element of the second set. This
definition was similar to the one that the instructor defined it in class, which was “A
function from a set D to a set R is a correspondence that assigns to each element of D
exactly one element of R.” 11 o 24students some, including Amy and Lindsey,
identified a function as an equation that passed the vertical line test. Eight students
described a mathematical function as an equation that helped them find an answer to
mathematical application problems.

Four students had a procedural understanding and were placed in the “process”
category. They described a function as a process a process for obtaining. They said that
a mathematical function was like a machine that performs an operation on a number to
give a result or a machine that whenever one put in an input and an output will result.

Fight students did not have a fully developed idea of functions. They were
categorized in the “prefunction” group. The students in this group stated that a function
was an equation. This statement is correct sometimes; however, whether these students
knew that not all equations were functions is unknown.

Finally, 1 of the 24 volunteer students did not have any concept of functions. He

expressed his idea in words that mathematical functions did not mean much to him.
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Table 2

Student responses to the first question

Question 1: In your opinion, what does a mathematical function mean to you?
Describe your understanding of mathematical functions. You may use
diagrams, picture, or examples to clarify your thoughts.

Categories of Response | Percent of Students Examples of Responses
Prefunction 33% - A function is an equation.
(8 students) - A function is an equation with
two variables x and y.
Process 17% - A mathematical function is like
(4 students) machine that we put a number in

then we get another number out.
- A function is a tool to calculate
an output. If we know x then we
can find y.
- A mathematical function is a
way to manipulate number.

Correspondence 46% - A mathematical function is a

(11 students) relationship between two
variables that one element of one
set was assigned to only one
element of the second set.(Emma
and Ross were included)

- A function 1s a relationship
between x and y and every x has
only one y, or it passes the
vertical line test. (Kyle was
included)

- A function is and equation that
passes the vertical line test (4my
was included.)

- A relationship of two numbers or
objects (x and y) 1s a function 1f
every x has only one y, and to
check a function, using the
vertical line test.(Lindsey was
included.)

- Not all equations are functions.
Equations that pass the vertical
line test are functions.

No Concept 4% - A mathematical function means
(1 student) nothing to me.
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The second question asked the students to describe their understanding of
multiple representations for functions. They were also asked to give examples of the

different representations. Table 3 presents a summary of the students’ responses.

Table 3

Student responses to the second question

Question 2: Can a mathematical function be represented in multiple ways? If so, give
examples of each type of the mathematical function representations

Categories of Responses | Percent of Students Examples of Responses
Multiple representations 79% - Table, graph, equation (Kyle was
(without examples) (19 students) included.)

- A function can be represented in
different ways such as graphs,
tables, and equations (Amy,
Emma, Lindsey, and Ross were

included).
Multiple representations 4% - A function can be represented in
(with only examples of a (1 student) multiple ways depending on the
symbolic representation) variables. For example: D = r1,
D
—=r,and —=t¢.
t r
Multiple representations 8% - I learned that a function can be
(without reasonable (2 students) represented in many different
reasoning and examples) ways.

- A function can be represented in
many different ways.

One representation (an 8% - A function can be represented in

equation) (2 students) one way that is an equation. For
example: y = x.

- A function may be represented

by y=x".

The results indicated that the majority of the students (19 of 24) agreed that a
function could be represent in different ways, including tables, graphs, and equations.
(The majority of the students used a term “equation” instead of “symbolic
representation.) However, none of these students provided examples of the different

types of representations. The five interviewed students’ responses were in this category
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and provided written responses to the questionnaire that a function could be represented
in different forms including a table, a graph, and an equation.

Two students admitted there were many different ways to represent a function.
One of them stated that he knew there were different ways to represent a function
because he learned it in class, both of these students did not state types of

representations and did not provide any examples.

One student said that there were multiple ways to represent a function but he
misunderstood the forms of representations. He described that the representation of the
function depended on variables; the example he gave was an equation that represented

the same relationship among three variables [D = rt, b =r, b =t].
t r

Two students incorrectly identified that there was only one way to represent a
function. They misunderstood an equation was the only way that a function could be
represented.

From the classroom observation, the researcher noticed that the instructor did
not provide examples that used more than two mathematical representations to display
the same data. She also did not spend time translating one representation to another.

The third question asked the students to describe the usefulness of functions in
thinking about or doing mathematics and in particular algebra. They also were asked to
give examples and were allowed to use diagrams or pictures to clarify their examples.
The majority of the students in this study including Amy, Emma, Lindsey, Kyle, and
Ross identified that functions were useful for doing mathematics (see Table 4).

Most of the students responded that mathematical functions are useful in doing
mathematics. Twenty of 24 students indicated that mathematical functions were useful
in doing mathematics, helping them solve mathematical problems in a simple way. One
of the students in this group wrote, “If you look at a problem you may not see how it is
applied, but with a function you can graph it, which gives some visual pictures.” Two of
24 students agreed that functions are useful in seeing the relationship between groups of
objects. For example, one of the two students clarified, “With the functions you will be

able to see the relationship between things or numbers.” Two students agreed that
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functions helped in interpreting real-world situations in mathematics and provided an

actual visual of an equation and how to use the function further in a real life situation.

None of the students responded to this question by providing examples corresponding

to their thinking. In addition, none of the students used diagrams or pictures to clarify

their examples.

Table 4

Student responses to the third question

Question 3: In your opinion, how are mathematical functions useful in thinking about
or doing mathematics and in particular algebra? Give some examples.
You may use diagrams and picture to clarify your examples.

Categories of Responses | Percent of Students

Examples of Responses

Functions are useful 83%
(with relevant reasoning) (20 students)

- With some mathematical
problems you may not see how
it is applied, but with a
function you may graph it,
which gives some visual
pictures (Amy, Emma,
Lindsey, Kyle, and Ross were
included).

Functions are useful 13%
(without relevant (3 students)
reasoning)

- With functions you will be able
to see relationship between
things or numbers like if you
know x then you can find y.

- Functions are useful for solving
math problems. That what we
study for this class.

Functions are of no use 4%
(1 student)

- Functions confuse me.

As other students, the five students did not provide examples how functions are

useful in doing mathematics in their written questionnaire. However, while they were

interviewed, they claimed that they used multiple representations to help them solve

problems. For example, Amy, Emma, Lindsey, and Ross said that they changed

problem situations from words to an equation (symbolic representation), and then
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solved the equation. Kyle said that he could change a problem given in words to a table,
which helped him see the relationship among pieces of information in the problem.

For the fourth question the respondents were asked to state their opinions on
how mathematical functions are useful in thinking about real-world situations. The
majority of the students, including the five students, stated that they were able to apply
functions to real-world situations. The responses to this question are presented in Table

5.

Table 5

Student responses to the fourth question

Question 4: In your opinion, how are mathematical functions useful in thinking about
real world situations? Give some specific examples. You may use
diagrams and picture to clarify your examples.

Categories of Responses | Percent of Students Examples of Responses
Functions are useful for 79% - I can use mathematical functions
real situations (provided (19 students) solve real-world problems like
real situations) population growth, interest rate.

- I use functions to compare price
when I buy stuff in stores.

- It [a function] helps me solve
compounded interest problems
(Amy, Emma, Lindsey, Kyle,
and Ross were

included).
Functions are useful (did 8% - Mathematical functions are
not provide real (2 students) useful in a real life.
situations)
Functions are of no use 13% - I perceive them as uselessness
(3 students) and I don’t think that I’ve ever

used them to help me to solve
any of my life’s problems.

- I don’t think I can use them in
any real situations.

The results indicated that the majority of the students (19 of 24), including Amy,
Emma, Lindsey, Kyle, and Ross, confirmed that mathematical functions were useful in

real-world situations such as in business and accounting (compounded interest of an



119

investment, stock) and jobs in science areas (population growth and decay, relationship
among time distance, and velocity/speed). Some of this group also mentioned the
usefulness of functions in simple daily life, for example, comparing prices to determine
the better deal. Two of the 24 students said that mathematical functions were useful in
the real life situations; however, they did not give an example of the usefulness of these
functions. And three students said they had never seen mathematical functions related
to real-world situations and never thought that they could apply functions to solve their
real life problems.

Mainly, the students’ responses to the Function Understanding Questionnaire
described the development of an understanding about functions that were more
thoroughly described by the five students’ profiles. Most of the students illustrated their
understanding of a function definition towards correspondence level. The students who
understood a function as a correspondence also understood multiple representations of
functions indicating different types of representations. The students in this group
appreciated the usefulness of functions other mathematics disciplines and real-world
situations. Similarly, the one student who indicated that a mathematical function had no
meaning to him also indicated that a function could be represented in only a form of an
equation. He was the only student who thought that functions had no use. He, together
with two other students in the prefunction group, believed that functions could not be

applied to a real-world situation.

Analysis of Students’ Understanding of Functions

This section provides a summary and analysis of these college students’
knowledge and understanding of functions. The comparative analysis was based on the
24 students’ responses to the Function Understanding questionnaire and the multiple
interviews of the five students: Amy, Emma, Kyle, Lindsey, and Ross.

The students’ responses to the Function Understanding Questionnaire indicated
that after they had completed the College Algebra course, the majority of all volunteer

students had a more complete understanding of functions compared to the National
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Assessment of Education Progress [NEAP] report (Brown et al., 1988) and several
research studies conducted in the 1990s (Becker, 1991; Demarois & McGowen, 1996;
Selden & Selden, 1992). Most of the students in this study were able to classify
functions and equations. Their definition of functions represented a more formal
definition after instruction. Some students stated that functions were equations and this
statement was correct sometimes. Perhaps if the researcher had an opportunity to
question them further, these students may have recognized that all equations are not
functions. Only one of 24 students claimed that a mathematical function had no
meaning to him.

Besides the responses of the 24 students’ responses to the questionnaire, the
interviews with the five students more fully supported the development of the students’
understanding of functions. At the beginning of the course, Amy, Emma, Kyle,
Lindsey, and Ross had naive yet different levels of knowledge and understanding of
functions. Their knowledge of functions prior to the instruction was from their high
school mathematics courses especially from Algebra II and precalculus classes. But not
all of them took these classes. With this college level algebra course, their knowledge
and understanding of functions including the definition, the multiple representations of
functions, the use of the vertical and the horizontal line test, one-to-one functions, and
inverse of functions developed. All five students defined functions as the relationships
of two sets of objects in which the graph passed the vertical line test. They were able to
classify the given relations in multiple forms into functions and non-functions.
However, they had demonstrated some difficulty when working with symbolic
representations, particularly when the relationship was a circle. Kyle, Lindsey, and Ross
correctly identified that a symbolic representation of a circle was not a function, but
they spent more time on this question than on other questions. Amy and Emma
incorrectly responded to this question in the first during the instructional interviews
because of deficient knowledge of working with radical equations. These five students
had no difficulty with linear and constant functions, because they easily graphed and

used the vertical line test to determine whether they were functions.
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With respect to concepts of a one-to-one function and an inverse of a function,
all five students had the same idea that a function is one-to-one if each output (range)
corresponds to only one input (domain). They asserted that a one-to-one function could
be determined by using the horizontal line test. They also claimed that if a function was
one-to-one, then it had an inverse.

All five students understood that a function could be represented in different
forms. They were familiar with the common forms of representations: symbolical,
numerical (tabular), and graphical. None of them were familiar with the words
“multiple representations.” They demonstrated that they were able to transform one
representation to another. All five students had no difficulty changing graphical
representations (graphs of lines) to symbolic representations for linear equations. The
only difficulty they displayed was in transforming the graphical representation of a
piecewise-define function to the symbolic representation.

Although they all improved on their knowledge and understanding of functions,
they did have different levels of understanding. All of these students gave a correct
function (symbolic representation) of familiar functions that could be obtained from
each of those given constraints. For example for the constraint of “a function is always
nonnegative,” all of them provided an absolute value function. Amy, Emma and Kyle
had difficulty finding a function that had a domain from -5 to positive infinity. Amy
and Kyle were unable to define the function. Emma found one after some time. When
several constraints were given and they were asked to construct only one function based
on those constraints, not all of these five students were able to finish the problem. Amy,
Emma, and Kyle had difficulty working with the constraint that gave them a domain -5
to positive infinity. Amy and Kyle were unable to give a correct function to satisfy this
constraint, they were able to find a function that satisfied only four of the five given
constraints. Emma got a function with the domain constraint, but she could not connect
it to her previous function. Therefore, she created her function without the domain
constraint. Only Ross and Lindsey were able to complete the work on this problem.
Ross and Lindsey seemed to have enough knowledge and understanding of functions to

solve the problems beyond those in their homework assignment, those that were
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demonstrated as examples in classes, and those that were on their quizzes and

examinations.
Research Question 2: Solution Strategies and Algebraic Thinking and Reasoning

The second research question concerned solution strategies and algebraic
reasoning that College Algebra students used as they solved problems. The primary
source of data for responding to this question was the multiple interviews of the five
students as they demonstrated their solution methods and reasoning. Instructional
episodes provide examples, explanation, methods, and techniques that the instructor and
the GTA demonstrated in their respective classrooms in order to provide the context for

lecture and recitation.
Instructional Episodes: Solution Strategies and Thinking and Reasoning

Episode One: Identifying Functions

After introducing the definition of a function to the students in the class, the
lecture instructor provided them with examples of strategies to determine functions
given in tabular, graphical, and symbolic forms. For a numerical (tabular)
representation, the instructor suggested that students check “If each element of x 1s

assigned to exactly one element of y, then this [relationship] is a function.”

Instructor: Consider this table [showing a table on the overhead].
x |12 (3 |4
y |-212 [-2]2

Is it a function?

Students: Yes.

Instructor: Why do you think it is a function?
Student 1: Because each x has only one y.
Instructor: —2and 2 happen twice.

Student 1: It doesn’t matter. Each x must be matched with only one y.
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Instructor: Right. Now let’s see this table [showing a table on the
overhead].
X 1 2 13 1
y | =212 [-2] 2
Is this a function?
Student 2: No. Because when x equals 1, it was assigned to two different
y.
Instructor: Correct. Any questions? [There was no response from the
students. ]

To determine whether a graphical representation identified a function, the instructor

described the use of the vertical line test.

Instructor: Is this a function [showing a graph similar to the graph below on

the overhead]?
-

Students: No

Instructor: Why is it not a function?

Student 3: Because it does not pass the vertical line test.

Instructor: What does that mean?

Student 3: When you draw vertical lines, they cross the graph more than one
point, which means that x [input] has more than one y [output]

Instructor That’s correct. Any questions? [No responses. ]

The lecture instructor also presented a method to determine if a symbolic
representation identified a function by drawing a graph of an equation and then
applying the vertical line test. The instructor demonstrated one more example of an

equation in its symbolic form ( y*> —x*> = 0) to consider whether it represented a

function. Basically, the method she used was to re-write an equation of y in terms of x
and enter the expression of x variable to her graphing calculator. After obtaining a
graph, she applied the vertical line test. However, in this one example, the instructor

displayed the process on the overhead, explaining:
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From y®> —x? =0, Iwill solve fory. So y> = x* and y = +v/x* . Any time that
we see + sign; we have no need to graph it. It’s so obvious that there are two y
values for one x value. Plug in one x to this equation, we will get two y values.

For example, x=1:y = i\/l7 =441 =+1. Whenx = 1,y =1 or —1. Therefore,
it’s not a function.

The students did not seem to have any difficulty determining functions. Some
homework problems were related to determining functions, and none of the students
asked the GTA to discuss these problems. In addition, the GTA did not question the
students’ reasoning processes. However, when she reviewed for the first midterm, she

summarized that,

A relation is a function if each x. I mean each element of the first set 1s matched
with one y or one element of the second set.

This was the first time the GTA had used the word “relation” in the class, and no one
asked any questions related to what a relation was. The GTA continued summarizing
“If you want to know if a graph represented a function you may use the vertical line

test.” The GTA did not show any examples after the summary.

Episode Two: Multiple Representations

After introducing the idea that a function could be represented in different
forms, the lecture instructor provided examples of transforming a function from one
representation to another. All the examples displayed in the lecture class were
transformed from a symbolic to a graphical or to a tabular representation using a
graphing calculator. The instructor demonstrated some examples involving multiple
representations and those were presented in the instruction for the previous section on
understanding of functions.

The lecture instructor demonstrated several problems related to functions
represented in different forms in the previous lectures. For example, to determine
whether an equation identified a function, the instructor solved the problem by graphing

an equation and applied the vertical line test. In addition, while solving most of the



125

story problems in this class, the instructor transformed the problem situations given in

words to symbolic forms (equations) and solved for solutions from those equations.

Deposit $300 in 2002. How much will you have in 2005 with an annual interest
rate of 2% if the interest is compounded 6 times a year?

The instructor presented her solution method as follows:

Instructor:

Deposit $300 means the principle P equals $ 300 [writing

P =300]

Annual interest rate » equals 2%, so r equals .02 [writing
r=.02].

Interest is compounded 6 times a year, so n equals 6 [writing
n==6].

From 2002 to 2005 is three years, so ¢ equals 3 [writing ¢ = 3].
[She showed P =300, »=.02, n =6, t = 3 on the overhead.]

B=P1+)"
n

2

The formula for compounded interest is [writing

then entering the numbers to the equation]
B =300(1+ %)(6)(3) [using a calculator to calculate the solution].

B=318.52
In 2005 the balance will be $ 318.52.

The instructor did not engage the students as she presented this solution method.

The GTA did not directly discuss multiple representations of functions in her

class. However, she solved problems by transforming situations given in the problems

from a verbal to a symbolic form before she solved for solutions.

Suppose that the number of board feet of lumber in a ponderosa pine varies
directly as the cubes of its circumference at waist height. If a ponderosas pine
with a circumference of 100 inches yields 1500 board feet lumber, how much
can be obtained from one with a circumference of 120 inches?

The GTA presented her solution method as follows:

GTA: Let B represent the number of board feet of lumber
and C represent the circumference
What is the relationship between B and C?
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Ross: B =kC’
GTA: Yes. Therefore, B = kC’
We need to find a constant value . [entering the number into the

equation]. What do we know about B and C?
Ross: B=1500 and C = 100.

GTA: So, the equation is 1500 = k£ (100)°
0015 = k [asking student to calculate the k value].
What will we do next? [No responses. |

Therefore, this function is represented by B = .0015C"
We look for B when C = 120 inches [entering 120 for C in the equation].

B =.0015(120)>= 2592 [asking students to calculate the solution using
their calculators].

When the GTA provided this example on the board, she challenged the students’
thinking by asking some questions. Ross was the only student who responded to her
questions. Sometimes there were no responses; the GTA reacted to her own questions.
Even though the assessment, including suggested homework problems, quizzes,
midterms, and final examinations, did not request that they needed to transform one
form of representation to another, the students were allowed to use all representations as
needed. The students typically solved many problems by converting a verbal to a

symbolic representation or converting from a symbolic to a graphical representation.

Episode Three: Transformations of Functions

The instructor provided a few examples of function transformation after

introducing concepts of horizontal and vertical transformations.

Instructor: What is the relationship between these two graphs? [showing the
graph of f{x) and g(x) graphing by her calculator on the overhead,
which were similar to the graph shown in Figure 21].

Student 1: The graph of g(x) moves from the graph of f{x) to the right 2

units.
Instructor: If an equation for f{x) is y = x* +1, what is the equation for g(x)?
Student 1:  Umm... it should be y = (x—2)* +1
Instructor: Yes, because it moves to the right 2 units so f(x) is changed

to f(x—2). Any questions? [No responses.]
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W

Figure 21. A quadratic function used for discussing vertical and horizontal
transformations.

Since there were no questions, the instructor showed another example (see Figure 22).
Basically, there was only one student who responded to the instructor’s questions while

she demonstrated the example.

Instructor: What is the relationship between f(x) and h(x)?
Students 1:  A(x) shifts downward for about 3 units and shifts to the right for
about 1 unit form f{x).

Instructor: Okay, let’s say f(x) = |x| and A(x) moves downward 3 units and
to the right 1 unit from f{x), what 1s the equation for A(x)?

Student 1: h(x) = |x - 1| -3

Instructor: Correct. Any questions?

1 P f®)

h(x)

Figure 22. An absolute value function used for discussing vertical and horizontal
transformation.

Although there were no questions, the lack of questions did not necessarily mean that
all of the students understood the concept of transformation of functions. The instructor
never discussed a real-world situation that related to the transformation concept.
However, two problems in the suggested homework of this section asked the students to

apply the concept to real-world situations. There was one problem concerning the
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vertical and horizontal transformation in final examination, but it was a symbolic
representation transformation.

In the recitation, the students were assigned to work on a lab relating to the
transformation of functions. The problems in the lab merely related to a symbolic
transformation. Although there were two application problems (real-world situation
problems) involving the transformation concept in the suggested homework, none of the
students asked their GTA for the discussion of these two problems during their
recitation class.

The GTA approached the lab by reviewing two types of transformations:

horizontal and vertical. She described the transformations as:

No matter what the graph of f{x) looks like, if f{x) changes to f(x—35), the
graph of f(x—35) will move or shift from the graph of f{x) to the right 5 units. If

f{x) changes to f{x+5), the graph of f{x+5) will moves from the graph of f{x) to
the left for 5 units. However, if f{x) changes to f{x) + 5, the graph of f{x) will
move upward for 5 units, and if it changes to f(x)—5, the graph of f{x) moves

downward 5 units.
After summarizing the transformations, the GTA let the students work on the lab and
provided some help if needed. The GTA helped students by clarifying the problem,
probing or questioning to make students think and obtain the answer by themselves.
Many students had difficulty with the horizontal transformation. They misunderstood,

thinking that f(x+ /) always meant 4 was positive.

Episode Four: One-to-One and Inverse Functions

After presenting the students with the definition and explanation of an inverse
function, the lecture instructor demonstrated how to determine whether a function had a

function inverse by checking a one-to-one function using the horizontal line test.

Let’s see if this function is a one-to-one function [showing an
equation y = x” — x —4]. I will draw the graph of this equation [drawing the
graph by using her calculator and showing the graph on the overhead]
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1a

From the graph, I will check for a one-to-one function using the horizontal line
test.

The instructor drew horizontal lines over the graph and stated that this function was not

a one-to-one function because it did not pass the horizontal line test.

This function is not a one-to-one function because there are some horizontal
lines that cross the graph more than one point.

After introducing the horizontal line test as well as a one-to-one function and

making sure that the students had no questions involving these concepts, the lecture
instructor provided an example of finding an inverse of a function f(x) =+/2x+5 . The

instructor displayed her process for solving this problem.

First I will ask myself “Is this a one-to-one?” If yes, I will find an inverse; if no,
an inverse doesn’t exist. Let’s go ahead and graph it. I will use the horizontal
line test [drawing vertical lines over the graph of the function]. It passes, so it is
one-to-one. Then, I will find the inverse. First, [ replace f(x) withy;

soy =+/2x+5 . Second, I switch x and y, sox = /2y + 5. This step also means

we switch the domain and range of this function. Third, I solve fory. I will
square both sides of the equation, first. What T haveisx> =2y +5, and then I

x* =5

subtract 5 from both sides and divide both sides by 2. So I have y = . The

2

last step: I replace y with 7' (x). Therefore, f-'(x)= al >

After demonstrating the process of finding the inverse of this function, the

lecture instructor warned the students that they had to consider the domain of the
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inverse function because it was to become the range of the original function. She

showed how to find the domain of the inverse by using the original graph.

From the graph of the function f(x), we know that the range is from 0 to

positive infinity. We also know that the domain of the inverse is the range

of f(x); therefore, the domain of the inverse is 0 to positive infinity. My final
2

answeris f'(x)= , x> 0. The answer [for the inverse of the function]

has to include the domain of the inverse.

After providing the students opportunities to ask her questions, the lecture
instructor moved on to the next example where the domain of the inverse was all real
numbers. While demonstrating the example, the instructor did not ask the students any
questions on how the problem was solved, so the students did not have a chance to
indicate their understanding. They listened to the instructor and were given a chance to
ask questions at the end of this example.

—x+3

Find the mverse of ffor f(x) = . I will check for a one-to-one function.

What kind of function is it? [She did not wait for students to answer; she drew a
graph]. It is a linear function. Therefore, it’s one-to-one. I will find finverse. I

: : -x+3 ) . :
will replace f(x) withy:y = XT+ Switch x and y, this gives me an inverse.

Then I write y in terms of x.

[She wrote on the overhead x = — y+3
4x=—-y+3
4x—-3=-y
y=—4x+3
(%) =—4x+3]

Then she continued to explain the check of the domain.

Last thing, I will check the domain. From the graph, the range of f(x) is
negative infinity to positive infinity [writing (—c0,0) ], so this 1s the domain of
/7' (x). There is no restriction on the domain of the inverse; therefore, I can
write 7' (x) = —4x+3.
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The instructor and the GTA did not give examples of real-world problems that
included one-to-one or inverse functions. They also did not provide examples of how to
use the one-to-one and inverse function concepts to solve real-world problems. There
were several real-world situation problems related to one-to-one and inverse function
concepts in the textbook used for this course; nevertheless, those problems were not
suggested in this section. There were no real-world situation problems that related to

inverse functions.
Episode V: Applications to Real-World Situations

Not many applications or real-world problems were demonstrated in the lecture
class. In addition the GTA rarely discussed those types of problems unless the students
asked for them. When approaching the application problems, the instructor read the
problem situation, interpreted information, constructed the relevant information
symbolically, and then solved for the solution. Sometimes, the instructor encouraged
students’ thinking by asking questions. When there were no responses, the instructor
continued showing her solution method. The following example shows how the

instructor approached and solved a real-world problem.

A computer purchased for $2,500 in 1992 is worth $1,500 in 1995. Assuming
linear depreciation estimate the value of the computer in 1997.

After the instructor posed the problem on the overhead and read the problem, she

approached and solved the problem as follows:

Instructor: To solve this problem we need a linear equation.
Instead of using big numbers, we reduce it to small numbers. The
year of 1992 is represented by ¢ = 0 and 1995 is represented by ¢
= 3. Now, we have two points: (0, 2500) and (3, 1500). With
these two points we can find the slope of this linear equation
1500-2500 —1000
3-0 3
calculator to get the last number]. We can use one of these two
points to find the linear equation. The better choice is (0, 2500)
because the number is smaller. Enter those numbers into linear

[writing m = =-333.3, and using her
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equation y — 2500 = —333.3(¢ — 0) [writing the final equation,
y =-333.3¢t+2500] . Any question? [No response.}

Use this equation to predict the price in 1997, which means
t =5 [writing y =-333.3(5)+ 2500 =$833.5]. Any question? [No
response. |

In this example, the instructor did not clarify what ¢ represented and why she reduced
the big number of years to smaller numbers. In addition, the instructor did not refer to a
point-slope formula of a linear function. Since the students had no questions, the
researcher wondered how many students followed that approach and understood why
their instructor had used such a strategy. All the way through obtaining the solution, the
instructor described what needed to be done; the students were asked whether they had
questions twice.

Besides approaching real-world problems using symbolic manipulations skills,

the instructor solved some problems using a graphing calculator.

A ball is thrown into the air from the top of the building with an initial velocity
of 96 feet/second. Its height (in feet) after t seconds is s(¢) = —16¢” +96¢ + 256.
When is the ball at its maximum height?

The instructor solved this problem using her graphing calculator. She demonstrated her
calculator screen on the overhead. She entered the ball’s height function to the

calculator in order to get its graph. The graph was similar to the one in Figure 23.

3
400

38

Figure 23. The graph used for a ball thrown example problem.
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From the graph, the instructor looked for the highest point of the graph.

Instructor:

Instructor:
Students:

Instructor:

My graph looks like this [showing the graph on the overhead].
My maximum point is (3, 400) [using her calculator to find
maximum point]. Which one is the answer? [Some students said
3 was the answer. On the other hand, some other students said
400 was the answer.]

Check back. What is the question?

When is the ball at its maximum height? So the answer must be
3.

Yes. If the question is what is the maximum height? Then the
answer 1s 400 feet.

Working on the next example, the instructor engaged students with more

questions in thinking through the problem.

How long will it take for money to triple in an account paying 5% interest
compounded annually?

The instructor provided the formula of compound interest without asking students any

questions. She approached the problem as follows:

Instructor:

Students:

Instructor:
Student 1:
Instructor:

Student 1:

Instructor:

The formula for compound interest is B = P(1+ 1)”’ [showing the
n

formula on the overhead]. What do we know from the problem?
No responses.

Any ideas for B [Balance] and P [Principal]?

Set a variable for P and multiply that variable by 3 for B.

Yes. Any questions up to this point? [No responses.] We need to
triple the initial deposit so we multiple by 3.

Let P = initial deposit, B = 3P [writing on the overhead and
speak out at the same time]. Any ideas for # and r?

n = 1 because it is compounded annually, and » = 5%. [Same
student responded to her question. ]

Good. So we have 3P = P(1 +$)“ [writing on the overhead].

Make it simple, so 3P = P(1.05)" and divide both sides by P [the
instructor did not ask students for a method to solve this problem
and wrote 3 = (1.05)' on the overhead]. Any questions up to this

point? [No responses.] We want the value of z, which is in the
power place, so we need to use either log or natural log [In]. I
will use natural log.
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From this step, the instructor did not ask students to suggest a process for solving this

problem. She solved the problem completely.

Instructor:  In(3) =1In(1.05)". Use log properties, so In(3) = #(In(1.05))
L) ~22.5 [using a calculator]. So it will take about 22.5
In(1.05)

years to triple the initial deposit. Any questions about this
problem? [No responses. ]

The GTA approached problems similarly to the instructor. She sometimes asked

students for more suggested strategies. In a recitation some students asked her to show

how to solve an investment problem. The GTA approached the problem as follows:

An investor deposits $500 into a saving account on January 1, 2000. Her only
transaction is a deposit of $200 on January 1, 2002. The balance in the account
as of January 1, 2005 is $1000. Assuming the bank pays interest compounded
annually and that the interest rate has been constant, compute the interest rate.

GTA: What is the formula for compounded interest?
Student 1: B=P(+ l)”’ [the GTA wrote the formula on the backboard]
n

GTA: What is B, P, r, and ¢ [No responses.] B is balance, P is initial
amount, 7 is rate, and ¢ is time in year. How many times the
money were deposited?

Student 2: Two times.

GTA: How many years had the first deposit been done before the
second deposit?

Student 2: Two years.

GTA: Let’s say B, =500(1+7)*. The second deposit was in 2002 and at
that time the money from the first deposit plus interest was there,
and it was deposited until 2005. That would be three more years.
So the balance in 2005 is B, = (200+500(1+7)*(1+7)* =1000
Do you think it is too complicated?

Students: Yes

GTA: Do you have any suggestion for a different method?

Students 3:  1did the first deposit for 5 years and the second deposit for 3
years, the sum is 1000.

GTA: So you have B =500(1+7)’ +200(1+2)’ =1000

Students 3:  Yes.

GTA: Are you comfortable with this equation?

Students: Yes.
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GTA: Okay, we will use this equation. Next, we graph this equation and
trace for y = 1000, the answer will be x, which represents interest
rate. [She did not show a graph and did not give student a
solution. ]

The GTA did not give an explanation of the similarity or difference of her equation

with the one suggested by the student.

Summary of the Instructor and GTA’s Approaches to the Problems

Basically, the lecture instructor and the GTA’s demonstrated only one approach
for each problem solution. They did not show alternative ways to solve the problems in
order to get the correct answer. In addition, they did not direct students to check
whether the problem solutions were correct. The instructor and the GTA never showed
students a method that could be used for solving some problems but that was not good
for solving others. Most of the time the instructors explained how to solve the problems.
They described what they did while they were working on those problems on the
overhead or blackboard and did not include much student involvement in the solution.

The lecture instructor always used a graphing calculator for graphing and
evaluating numeric expressions in her class, whereas, the GTA never used the device in
her recitation class. The GTA sketched graphs of function on the blackboard by hand,
and she asked students who had calculators to do numeric calculations if needed.

The instructor and the GTA sometimes encouraged students’ thinking and
reasoning by asking them questions. Unfortunately, few students responded to those
questions. With such little interaction, it was difficult to determine the students’

development of thinking and reasoning through the instruction.
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Student Profiles: Solution Strategies and Thinking and Reasoning

Amy

Basically, Amy extracted and represented information from each problem
situation, interpreted a solution, and applied the solution strategies to a problemin a
new situation. For some problems, she used various strategies to approach the
problems. Amy worked on each problem with confidence. Sometimes she used a
method that gave her a correct answer quickly. At other times, the method she used at
first did not work. She was able to change to a new strategy and completely explain her
solution strategy as well as her thinking and reasoning processes. Her favorite strategy
for determining a function in a symbolic representation was to enter numbers in the
equation and check its inputs and outputs. Amy said that she chose either this strategy
or graphing and using the vertical line test strategy to determine if that equation was a
function. When asked why she selected only those two approaches, Amy said that those

methods just came to her mind when she saw the equations.
Amy’s Solution Strategy and Algebraic Thinking and Reasoning Prior to Instruction

Prior to instruction, Amy was able to describe her solution strategies and
thinking and reasoning processes when working with mathematical problems. She was
confident in her mathematical ability. When she solved each problem, she read the
problem, described her method for approaching the problem, and answered the
questions quickly. She did not draw any pictures or diagrams for the problems unless
she was asked to do so. She used a graphing calculator to evaluate numerical
expression. Amy extracted information from the graphical representation such as the
dependent and independent variables represented on the xy-axis and the changes in the
graph, and transformed the graphical representation to a verbal representation and vice
versa. In addition to working with those two representations, Amy was able to analyze
and interpret the information provided as a graphical representation (Pre-Instructional

Interview Problem No.1, see Figure 24).
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George’s Sister George’s Dad

Amount Amount
of of
Popcorn Popcorn

Amount
of
Popcorn

Time Time
Time

Figure 24. Graphical representation of eating popcorn over time.

From the graph, I believe George ate consistently over the period of time
because his graph showed as a graph of a linear equation. And George’s sister
ate at a different speed. She might eat fast sometimes. There was sometime she
slowed down, sometimes she stopped eating and then speeded up again. She
didn’t eat consistently because there is a straight line like this [circling the point
that shows a straight line]. She didn’t finish her popcorn because the y-axis
showed that her popcorn was not at zero. For George’s dad, he started eating
steadily and then stopped for a certain amount of time and then started eating
again until he finished his popcorn. Because of this straight line [pointing at the
horizontal straight line on the graph] it means he didn’t eat any because the
amount of popcorn was still the same.

Besides working with those two representations, Amy relied on her
mathematical knowledge of percent with the information provided in the problem

situation.

I don’t agree because you do 20% off and then do another 10% off so that like,
let’s say you have a $100 item and get 20% off of it which means you pay $80
and after that you get 10% off which means $70; never mind. I do agree with
them. [She incorrectly calculated the value without the use of a calculator and
paused for a few seconds.] Oh! No, I'm wrong. 10% of $80 is $8 so 80 minus 8
equals 72 instead of $70 and the total of 30% off is $70.

Amy responded to the problem quickly. At first glance she concluded that 10% of $80
was $10. However, as she talked, she soon realized that 10% of $80 was not $10, but in

fact it was 10
100

¢ $80 or $8.

In some cases, Amy focused her thinking on specific points that kept her from
completing a strategy leading to a solution. She believed that, the Population Growth
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Problem (Pre-Instruction Interview Problem No. 4) did not give her enough information

to find the solution.

I don’t know who is right; I just don’t know. I don’t have enough information to
say who is right because you don’t know who lives where when the population
had been growing and they both can be right. Town A might have grown 3000
in one year then stopped when Town B could have grown steadily to 3000 in
five years then stopped. They both could be right. They both could have grown
in population at the same time or they both could have gotten the same amount
of population growth at different times. Umm... So they both could be right. I
don’t know. I don’t have enough information.

She stated that these two towns might increase the amount of population differently in
each year; on the other hand, they might have the same increase in population in the
same year. With this understanding, Amy had incorrectly concluded that there was
insufficient information for finding the solution; this conclusion halted further
consideration of the problem. Her response suggested that she was unable to relate the

difference between the actual amount and the percentage of change.

Amy’s Solution Strategies and Algebraic Thinking and Reasoning During Instruction

Amy demonstrated her ability to solve mathematical function problems while
working on the problems during the instruction interviews. Classroom and recitation
observations, homework, and quizzes were used to add to the description of the

strategies she considered and used most.

Instructional Interview One

As she did prior to instruction on functions, Amy immediately responded to the
problems when she finished reading them. She used a verbal explanation rather than
drawing a picture or diagram to describe her solution strategies and reasoning. Amy
used different strategies to identify functions. In some cases, she used the vertical line

test while for others she looked at the numerical inputs and outputs. For all graphical
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representation problems, she used the vertical line test to determine if the graph was a

function.

A: I will use the vertical line test to determine each graph. As it [each
vertical line] goes along, each x has only one y. So yes, this [(a)] 1s a
function.

L Would you please tell me more what you mean, “Each x has one y?”

A: There is no vertical line that hits the graph more than once. So it means

each input x had only one output y. If there is a [vertical] line that hits
the graph more than once, it means there is more than one output for that
one input and that 1s not a function.

On the other hand, when the problems used a numerical (tabular) representation,
Amy looked at the input and output values. She checked if there were any pairs that had
the same x but different y values; if she identified a pair that had the same x but
different y, she indicated that it was not a function. With the symbolic representations
(equations), her initial strategy was typically a guess and check approach (entering

numbers for the variable in the equation to see if any input had more than one output).

She identified y = x” as a function by calculating numbers in her head for x in the

equation.
A: y = x*is a function.
I: How do you know that?
A: I just plug numbers in my head; like I plug x =2 or x = 3. You can see it

never has the same y with a different x. So 1t 1s a function because there
is one x for one y.

When the symbolic representation was easy to graph, Amy graphed the equation and

used the vertical line test.

For y = 4, yes this is a function. Because when you draw a graph, itis a
horizontal line. Each x has only one y and y = 4.

With all three questions that used symbolic representations, Amy first tried entering
numbers for the variables to determine if these were functions. However, if this effort

did not work, she tried drawing the graph and using the vertical line test.
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Amy’s response to the Car Problem (Instructional Interview Problem No. 2)
revealed that she was able to extract information from the given graphical
representation and represent that information in her own words; however, her limited
background knowledge on motion restricted her work on this problem. She stated that
Car A and Car B had the same speed at t = 1 hour because their graphs intersected at
that time. At the beginning she was unable to connect the relationship between the
speed and the distance of the two cars. She incorrectly concluded that they were also at
the same position. However, after thinking about the graph in Figure 16, Amy was able

to describe it correctly.

>

At t =1 hour, they are at the same spot [drawing a dotted line att =1

hour to the intersection point].

What does it mean by the same spot?

They are going at the same speed at 1 hour because the lines cross and at

that point t = 1 hour. So they have the same speed.

What does the question ask you?

The position. So this is speed [pointing at the vertical axis]; this is the

time [pointing at the horizontal axis]. And they go the same direction. I

don’t understand.

I: Can you describe the graph to me like when they start and how they go?
Which car goes faster?

A: OK. They start at the same point and Car A goes faster than Car B. Car

A still goes faster until t = 1 hour they have the same speed. So Car A is

gonna be ahead of Car B because it goes faster from the beginning.

What does it mean at the point t = 1 hour?

A: That point means they are going at the same speed but not the same

position. So Car A is going to be further than Car B.

2—1

Amy was able to make connections between mathematical concepts. For
example, in the Car Problem (Instructional Interview Problem No. 2), she related the
speed and the acceleration of the cars correctly responding that Car B had a greater
acceleration than Car A because its graph had a steeper slope than that of Car A. She
correctly stated that Car B would be able to catch Car A at some time after t = 1 hour
because the speed of Car A seemed to level off and Car B speeded up after one hour.

Amy’s ability to connect and apply her understanding of functions to real

situations also developed during instruction. This development was evident as she
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worked with the Ball Dropped Problem (Instructional Interview Problem No. 4).
Although the symbolic representation of this problem was a parabola, Amy understood
the context that time and distance would never be negative numbers. Therefore, she set
the calculator widow for Xmin and Ymin at zero and showed how to find the function’s

mverse correctly.

A ball is dropped from the building, so x and y have never been negative
numbers because x represents time and y represents height. So the graph is one
way down [half of a parabola]. Then it does have an inverse because it passes
the horizontal line test.

Instructional Interview Two

Amy’s responses to the two problems related to the graphical representations
(Instructional Interview Problem No 5 and No. 6) revealed that she was in some way
able to connect a quadratic function to its graphical and symbolic representations. Amy

was able to construct and provide a reasonable symbolic representation of a quadratic
function [ y = a(x — k)* + k] from information given in the form of the graphical

representation.

A: a tells me how the graph looks [open upwards or open downwards], (h,k)
1s the vertex of it; 4 tell how many spaces it moves to the left or right,
and £ tell how many spaces it moves up or down.

Would you please tell me more about the effect of @, # and k?

A: a tells how it opens, like if @ is positive then it opens upwards and if it 1s
negative, then it opens downwards. # is positive; it moves to the right
and when it is negative, it moves to the left. For £, if 1t is positive it
moves up and if it is negative, it moves down.

=

Amy related information provided in the Instructional Interview Problem No. 6
to the graph that she needed to find the symbolic representation. From the reference

graph [ f(x) = x*], she said she needed a negative number to make a parabola open

downward (identified from the class). By entering several numbers for checking the

impact of the variable @ in her calculator, she knew that if she used a negative number
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between —1 and 0 for the variable, a would made a parabola graph opening downward

and wider than a = *1 for the graph of g(x) . She also memorized (demonstrating an

instructional understanding) that she needed a negative number for / and a positive

number for & to be the vertex of g(x) . She stated that:

g(x) is wider than f(x) and it’s upside down, so a for g(x) hasto be a
negative number and the number for a has to be smaller than 1 [she meant
|al < 1], and the vertex 1s right here [pointing the 2 quadrant], so % 1s negative

and £ 1s positive.

When she was asked about her understanding of quadratic functions, Amy explained
that the standard form of this function [ y = a(x - k)* + k] gave the information how the

graph opened upward or downward depending on whether a was a negative or positive
number and where the vertex (A,k) was. She explained that she knew about the effects
of these variables from a lab in the Study Guide. This lab asked students to describe the

effect of the coefficient a on the general shape of a parabola y = a(x —4)> +2 witha =

11

-2,-1, 33 1, 2. Amy also remembered the effects of /4 and & from the example

given in class. She seemed to remember what she did with the variable in a quadratic
function rather than showing understanding of how they worked. Furthermore, the
instruction on quadratic functions did not emphasize the translation between
y=ax’+bx+c toy=a(x-h)’ +k . Thus, it was reasonable that Amy could not
transform one form to the other.

When working on the Salary Problem (Instructional Interview Problem
No. 7), Amy viewed the problem from a symbolic representation rather than thinking
about the context or a real situation. In this problem, she entered a number for N in each
function to see how much money each person could earn with the same number of years

after the date of the contract.

A: Let N=100. That 1s a good number for N.
I: What 1s N?
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A: N is the number of years. Oh! Then 100 is not a good number because
you can’t work 100 years. OK. Let’s go with 5; then 5 is a good number
for N.

At this point she recognized she was wrong in calling N a constant. She said, “N is the
number of years and can be changed. Then N is not a constant. N is a variable.” After
entering some numbers for N in the functions of A and B, she wanted to use a different

strategy.

A: Let’s think another way.

I: Which way?
A: I’'m gonna graph it to see if B earns more than A.
I: How do you know if B earns more than A?

A: Graph of B will be higher than graph of A.

This evidence showed that Amy was able to extract and interpret information from the
graphical representation. From the graphs, she was able to clarify her thinking and
reasoning that B would not earn more than A because the graph of B never went higher.
As the time passed, they went apart from each other meaning that A earned much more
than B as the number of years became longer.

Similarly, her initial response to the Equivalent Function Problem (Instructional

Interview Problem No. 8), was to enter numbers for the variable x to see if the solution

2
-4 . }

a 5 and g(x) = x —2 was the same rather than considering the domains of

X+

for f(x)=

the functions f(x)and g(x) . After obtaining the same solution from entering two

numbers for x, Amy assumed that the functions were the same. The researcher asked

her to try x =—2. When entering —2 for x in the function f{x) and g(x), she found that

these two functions had different values, and she also demonstrated that she initially
0 .
thoughta = 0. However, she was able to reconstruct a correct understanding of the

meaning of “undefined.”
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— 2_
((22))—24:%=0and for g(x) =—2-2 = —4
-2)+

I: Are you sure that% =07?

A: Oh wait, it [% ] is undefined because it has zero at the bottom

[denominator]; we can’t divide any number by zero, and g(x) = —4.
[ f(x)was undefined and g(x)=—-4].

In this process, Amy reconstructed her understanding of undefined with assistance from
the interviewer. When asked what she meant by “undefined,” her explanation was “It

[ /(x)] has no solution.”

Amy’s Post-Instruction Solution Strategies and Algebraic Thinking and Reasoning

By the end of the instruction, Amy had begun working on problems more
carefully. She slowly read the given information and clarified each part of the
information rather than looking at the whole problem as she did earlier. She was able to
identify the portion of the information that related to what she needed to identify in a
problem solution. Working on the Post-Instructional Interview Problem, Amy was able
to extract information from each constraint, represent it symbolically, and make a
connection with other function concepts she understood. From the first constraint, the
function undefined at -3, Amy knew immediately that she needed to construct a
function in the form of a fraction [a rational function] that had x + 3 as its denominator;
her reason was that the function was undefined if it was divided by zero and x +3 was

zero when x = —3. She also understood the meaning of a “zero of a function,” describing

. . 1 : 1
her understanding as the “function has a zero at—, so it means when y = 0, x =5 .’ For

the second constraint, when the zero of function was— % , Amy justified her thinking.
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. . . 1
So on top, x has to be % in order to get y = 0 [setting an equation x = — then

working backward to get the equation, and multiplying both sides by 2, then
subtracting both sides by 1 to get a final equation of y = 2x —1].

. 1.
So the top part of the function is 2x—1. Let me check [entering x = Py into the

equation y = 2x —1]. I get y = 0. It works.

For the third constraint, the function was always nonnegative; Amy verbalized her

thinking and reasoning:

The function has to be nonnegative. So you can put the absolute value for the
whole thing because no matter what [x] you have except —3, you always have
positive numbers if you find the value of the numbers in this absolute value.

Amy continued working on the fourth constraint as follows:

A:

I:

A:

lan!

Next, its domain is from —5 to infinity. OK, this is from -5, but you can’t
have —3. I don’t understand how it can’t be undefined at —3.
OK. If I change this domain to[-5,-3) W (—3,), does that make sense?

Yeah, that makes more sense. Then yes, that would work. Right now
what I have is x can be any numbers except —3. What should I put in to
get x to start from —5. Umm... I can’t put -5 or 5 into this because zero

wouldn’t be at% . I should do something with 5.

Why?
Because I will get x =5 1f I do something with x + 5, which is the same

as when T have x — —;- ,lget x= % [pausing for awhile]. I am confused.

I’'m gonna work on the last condition then I will get back to this.

Amy worked on the last constraint of this problem [a function contains point (4,7)]

demonstrating that she understood and knew how to check if a specific point was

contained in a function.

A:

OK. The last constraint when x =4 then y has to be 7. So if x =4, 2
times 4 minus 1 is 7, and 4 plus 3 is 7. 7 divided by 7 is 1. But this
somehow has to be 7. So 7 divided by 7 is 1. I need 7. 14 divided by 7 1s
2. So I need the top to be 49 because 49 divided by 7 1s 7. 7 times 7 1s 49
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(2x-1)

,s0ifx=-31t’s
x+3

so I square it. That would work. So I have

undefined, and if x = % , it’s zero. And the function’s always

nonnegative and when x = 4, y = 7. Wow! That works.

How about it’s domain?

A: The domain is from —5 to infinity. What should I do for this? Right now
x can be any number except —3. I can’t change anything from this {the
function that she had constructed so far] otherwise it won’t work. I can’t
do it. OK. I give up.

p—

The interviewer probed her thinking about the domain of some functions such
as f(x)= 1 , f(x)= Jx ,and f(x) =+/x—1. Amy was able to indicate those functions’
x

domain; however, she was unable to work on the domain constraint of the function in
the Post-Instructional Interview Problem. After trying to deal with this constraint, she
said, “I give up.” This evidence suggested that she did not have an understanding of
radical functions to help her find the function when its domain was given. However, she
was able to find a domain of a radical function if a symbolic representation was

provided.

Ross

From the beginning through the end of the College Algebra course, Ross was
able to clarify his solution strategies and algebraic reasoning processes. As the
instruction continued, he had more confidence in solving functional problems. He used
more than one approach to solve problems and interpret his thinking. For example, in
determining a function, Ross used the numerical inputs and outputs, checking with a
numerical representation, the vertical line test with a graphical representation, and the
graph and the vertical line test with the a symbolic representation. Basically, he used his
graphing calculator to draw graph of functions. He was able to identify, gather, and
represent information from each problem situation, and interpret a solution and apply

his solution to new problems. Before being taught the concepts of functions, Ross was
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able to gather information from the graphs and correctly interpret the information using
verbal, symbolical, and graphical or numerical (tabular) representations. He was able to
extract information describing the situation and matched the description to its graph. In
an attempt to solve the problems, Ross also was able to relate his reasoning and solution

strategies showing how he obtained the correct solution.

Ross’s Solution Strategies and Algebraic Thinking and Reasoning Prior to Instruction

Before concepts of functions were taught in the College Algebra class, Ross was
asked to solve two graphical and verbal representation problems and two problems
related to general algebraic problem solving. These problems helped to clarify his
ability in explaining and clarifying his solution strategies and thinking and reasoning
processes. Ross worked carefully when dealing with the problems. He read each
problem slowly at least two times to make sure that he gathered the relevant
information. During this interview, Ross demonstrated his ability in extracting
information from graphical representations and transforming those types of
representations to a verbal representation and vice versa. He correctly transformed each
graphical representation in Figure 25 to a verbal representation. For example, he

transformed the graphical representation of George’s sister eating popcorn as:

For the graph of George’s sister, it looks like she ate her popcorn very fast at the
start and then she slowed down and then fast again and slows down because the
line goes down at a steeper angle and then it seems to spread out. For me it
indicates that she must be slowing down her eating of popcorn and the line is
steep again. It appears to me that George ate his popcorn a lot faster than his
sister does and he finished his popcorn before the end of the movie. And his
sister did not finish her popcorn at the end of the movie.
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George George’s Sister
Amofunt Am&unt
o
Popcomn Popcorn
Time Time
George’s Dad George’s Mom
Amount Amount
of of
Popcorn Popcorn
Time Time

Figure 25. Graphs of popcorn remaining over a period of time.

Ross also described his reasoning before he matched the scenarios represented
in words with their graphs. The balloon situation that Ross was asked to match to the
seven potential graphs is shown in Figure 15. He attempted the problem by reading the
problem slowly and clarifying his thinking and reasoning for each part.

[Ross read the situation: A balloon was blown up in class and then let go. It flew
around the room. The amount of air in the balloon is the dependent variable.]
Umm... so the y-axis is gonna be the amount of air. And the balloon is empty to
begin with because at the beginning there is no air in the balloon. It needs to be
started from the bottom and then it fills up with air. So the graph needs to go up
and the air is gonna be released and then the graph needs to go down. Umm...
so I think graph C indicates this one because it starts from empty and then it
goes up and then goes down.

Besides transforming and matching graphical to verbal representations, Ross
described how he solved algebraic problems using his knowledge of computation with
percents. As well as with some of the information provided in the problem situation. He
mentally solved the problem by selecting a number, which was easy to covert to

percents without using any tools (i.e. pencil and paper, calculator).
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R: No. I don’t agree that they are the same. Because umm... for example, I

am thinking of $100 to start with.

L: Why do you pick $100?

R: Because $100 is easy to work with percent. So 20% off of $100 means
whatever the item is, it will cost $80. I will show two scenarios. First,
from $100, 20% off that money will give you $80 and 10% off of $80
will give you $72. Second, 30% off of $100 will give you $70. So the
20% off and the 10% off of $100 after a 20% discount would cost more
than taking 30% off at one time.

I: If you are a customer which scenario will you pick?

R: I will pick the second one; taking 30% off at one time.

Ross’s Solution Strategies and Algebraic Thinking and Reasoning During Instruction

Ross's strategies for solving mathematical function problems were observed
during two instructional interviews. In addition to the interviews, his solution strategies
and algebraic thinking and reasoning processes were investigated through various data
sources, such as lecture and recitation classroom observations, his homework, and his

quizzes.

Instructional Interview One

Ross used two different approaches, determining inputs and outputs and the
vertical line test to identify functions embedded in three representations (graphical,
numerical (tabular), and symbolic). With graphical representation problems, Ross
checked inputs and outputs to identify whether each graph represented a function.
When he saw the graph of a circle, he switched his method to the vertical line test to
determine if the graph represented a function.

R: This is a graph of a circle. It is not a function. I will check by using the
vertical line test. There is more than one output for every input.

I: This time you used the vertical line test to determine if the graph
represents a function instead of checking its input and output.
R: Right. I am never aware of that [using the vertical line test to identify a

function] until I see the graph of a circle.
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Ross seemed comfortable determining a function using the vertical line test because

after using the vertical line test the first time (with the graph of a circle), he continued

using it with the rest of the graphical representation problems. However, he did not use

the vertical line test when he determined if the graph of a point (Pre-Instruction

Interview Problem 1, question ¢) was a function. He said he did not apply the vertical

line test to this problem because there was no line or curve on the graph. He was not

sure if it was a function. When he was asked to identify if a graph of three points (Pre-

Instruction Interview Problem 1(i)) was a function, he extended his thinking and

reasoning about this problem to answer that the graph of a point represented a function.

This is a graph of three points. It doesn’t have a line between points. Perhaps it
is a function. Perhaps it is the same as the graph of a point. Umm... I can
remember an example from the class. She [the instructor] gave an example of
three numbers and that would be the domain and then there were three outputs,
probably like three points right here. I remember that a function can be anything
when you put in one input x and there is only one output y. I will say this is a
function and I want to change my answer of the graph of a point too. I will say it
is a graph of a function because it has only one output for one input.

Working with problems that provided the information in a numerical (tabular)

representation, Ross looked at the input and output values (Function Multiple

Representation Problem Part B) to determine if it was a function.

R:

I’'m checking if the table below represents a function. And [ am trying to
explain my reasoning. Umm... so if I put in 2 only 333.8 comes out.
And every one of these only has one output for every one input. Umm...
so that would be function. And if one more data point (8, 430.6) is added
to the table, will this...umm... I don’t think that gives me enough
information. There is no x that corresponds... oh never mind [realizing
that he read the information incorrectly] that is 8 then comma. OK. If I
plug 8 in I would get 430.6 out. Yes, it is a function.

Would you please tell me why it is a function?

Even though it already has 430.6 for the y output, it has a different x. I
don’t know if [ am saying it correctly. The thing that you’re gonna be
concerned with... umm... If there are two outputs for... umm...each x
input that would not be a function. This table still has one output for
each x input. So it is a function still.
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When the symbolic representation (an equation) was presented, Ross’s strategy for

identifying a function was to draw a graph and then use the vertical line test.

For y =4, so I graph y =4 that would imply that when x =0, y = 4 [graphing it
by hand]. Because y = 4 would be a straight line across the y-axis at 4
horizontally and when you draw the vertical line for every x there would be
only one output for each x input.

If the given equation was not in the form expressed in terms of x, Ross attempted the

problem by trying to simplify that equation.

R:

=

i

For x*> + y* =1. Umm... I will rewrite the equation so I can tell if it is a
function. I try to get y at one side; first I will use the whole equation
x* +y? =1, and I’m gonna subtract x” from both sides, that will be
2 2
yi==x"+1
Why do you want y to be alone?
That is how I can check it by graphing in a calculator. So I take a square

root of both sides: 4/y* = - x* +1. So I’m gonna have

y =*y—x* +1 [remembering that when taking a square root, he will get
both positive and negative value].

Um... Is it all right if I use my calculator?

Go ahead.

Um... To me, it doesn’t look like a function but I’m not sure so I’'m
gonna plug it in to see if its graph passes the vertical line test. So I put

iny, =v—x> +1. And I’'m gonna go with y, = —J—x” +1. The graphs
are like a circle and we know that a circle is not a function because we
can check by using the vertical line test and we can see that there are two
points for every x. So it is not a function. Oh! Yes, it’s not necessary to
graph it. This equation was not a function by looking at the symbolic
representation, which was obvious that there were several inputs for x
that gave two output y values, positive and negative values.

Ross extracted information from a graphical representation and transformed a

graphical representation to a verbal representation when working on the Car Problem

(Instructional Interview Problem No. 2); however, he was unable to describe the

relationships among the speed, time and position of the cars.
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It shows that early on Car A travels faster than Car B and then it slows
down gradually where Car B shows that it’s start out very slow and then
it accelerates faster and faster as the graph grows up.

At each single time, how are their speeds?

Um... from this graph Car A is faster than Car B because it shows in the
line of Car A is going higher than Car B’s. Car B is barely going up at all
in the beginning but when the graph shows up further it shows Car A’s
incline and Car B umm... its incline gets steeper. It shows that Car B
goes faster as the graph goes up and Car A is getting slower because the
incline is not as steep as the incline of Car B.

Ross indicated that the graph of Car B was steeper than that of Car A; therefore, Car B

was faster than Car A. In fact, the rate of change of Car B was greater than that of Car

A; however, Car A still was faster than Car B until one hour when they had the same

speed. And after one hour Car B was faster than Car A. Even though he described the

graphical representation correctly, he had two misunderstandings about an average

speed of these two cars. First, he misunderstood that the diagonal line connecting the

starting point and the point at a time equal to 1 hour represented the average speed (see

Figure 26). Second, he misunderstood that the same average speed made the cars be at

the same position. This idea guided him to an incorrect answer that those two cars were

at the same position at ¢ equal one hour.

—

(o

So what would you answer for the first question?

It’s um... they are at the same place, same position... umm... because
the cars ... umm... I don’t know. There is no information to determine
that. Wait! You can clearly see that Car A goes a lot faster; let’s say right
here is 10 minutes [marking a dot for showing 10 minutes after the
starting point on the x-axis]. Umm... Car B would barely be moving at
all. How can I explain this? [He read the problem again then he drew the
line connecting the origin and the intersection point (see Figure 21).] OK
this line shows the average speed of Car A and Car B, I guess. And I see
that the averages of both cars have to be the same.

Why?

Umm.. Because both of these lines eventually intersect at the same point
right here at t = 1. So they both have the same average speed at that
point. So, both cars have the same average speed and they are at the
same position.
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Car A

Speed

CarB

t=0hr. t=1hr.

Time in Hours

Figure 26. Ross’s diagonal line showing the cars’ average speeds.

When asked what he meant by “average speed,” Ross described it as an average of the

speeds of the two cars by adding the speed of the two cars and dividing by two.

Ross demonstrated his understanding and ability to transform among the

functional representations. For example, as he worked with the Piecewise Graphical

Problem (Instructional Interview Problem No. 3a) he transformed a graphical

representation to a numerical (tabular) representation.

R:

I:

From the graph, I can make a table to represent the information. Do you
want me to make a table for this?

Yes, please.

So when x = 0, y looks more like 50. Actually, it’s in the middle between
0 and 100. Well, when x = 50, y is about 75; when x = 100,

y =200 and I use the top line because the bottom line doesn’t include

x = 100 because there is an open dot at the end of the line. When x = 200,
y =200; x =400, y =200; x = 500 y grows up to 250; x = 600, y =300
[making a table].

x | 0 |50 100|200 | 400 | 500 | 600
y | 50| 75| 200|200 | 200 | 250 | 300

Ross also was able to transform a numerical (tabular) representation to a symbolic

representation.

!—1

As you just have finished representing the information in a table, can
you represent the same information in another form?

I should be able to make an equation.

Can you show me how to do that?
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Yeah, they’ve got two lines; no I guess it would be three lines. I need to
make an equation for each line. I don’t know if I can do it. I’ll try my
best. I need two points in order to make a linear equation. Umm... What
am I doing?

You want to find the equation of a line, don’t you?

Right. A slope! Yes, I need a slope. I need to use my table. When x =0,
y=150and x =50, y =75. Then I would go with rise over run
[remembering this formula from high school; the instructor never used

them in the class]. So Yrmh 752 . So that would be a slope. The

X 7 X
equation is y = %x + b, and b will be 50.

What is b?

b is 50 because it starts at 50 points on the y-axis.

What does b represent?

Umm. .. the origin. No, that is the y-intercept. So this is an equation for

the first part [writing y = %x +50]. For the second part, umm...

y = 200 when x equals 200 and then I think it would show like

100 < x £ 400.

How about the first part? That equation will be used when x equals
what?

When x greater than or equal to zero because I don’t see a round dot on
that line and x is less than 100 [writing 0 <x <100 ].

Ross attempted the third part of the function using the same strategy as he did

for the first part of the equation. He computed a slope, but he could not finish finding

the equation because of his limited knowledge of finding a linear function using the

point-slope form [ y — y, = m(x — x,) ] even though he had studied it in class.

R:

!—1

The third part, umm. .. first I need to find a slope, so I will do that in
terms of y, —y, again. For the point (600, 300) and (500, 250). So

300-250 _ 50 _ l So slope equals%. Soy= —;—x and it starts at

600-500 100 2

200.

Why do you think it starts at 200?

Umm ... no. It doesn’t cross the y-axis at all. So I don’t know how to find
b.

Even with assistance, Ross could not remember finding a linear equation using the

point-slope approach. Therefore, the interviewer assumed that he had three linear
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equations for each line in the graph and asked him to write a function notation including
the three linear equations. Ross did not know how to write a piecewise-defined function

notation.

I: Let’s assume you got the third piece. This equation will be used when x
equals what?

R: The third part is used when x is greater than 400.

I Can you represent all three parts in a function notation?

R: I can’t remember it.

Even though the interviewer probed Ross, he still could not write the notation of the
piecewise-defined function including these three pieces of linear equations.

Basically, Ross showed that he was more comfortable working on functional
problems using symbolic representations. He was uncomfortable with connecting the
problem to real situations. However, he developed his ability connecting his
understanding of functions with real situations during instruction while he worked with
the Ball Dropped Problem (Instructional Interview Problem No. 4). With this problem,

he was unable to relate the problem situation to the real situation. He said that the
function for the Ball Dropped Problem [ f(¢) = —16¢> +145] did not have an inverse

because its graph was a parabola upside down and it was not a one-to-one function.
However, if he related this problem to a real-world situation, he would have known that
the graph of the ball movement was a semi-parabola upside down and the function
would be one-to-one. Two weeks later, Ross was able to apply the problem to a real
situation when he worked with the Salary Problem by relating the problem context to
the fact that groups of people might work the same or different length of years.

Instructional Interview Two

By the second interview, Ross’ responses to graphical representation problems
(Instructional Interview Problem No. 5 and Instructional Interview Problem No. 6),
revealed that he was able to connect a quadratic function and its graphical and symbolic

representations. Ross constructed and clarified his reason for selecting a symbolic
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representation of a quadratic function [ y = a(x — h)* + k] from the information given in

the form of a graphical representation.

a indicates what direction the parabola faces, if it’s positive, it faces up

and if it’s negative it faces down. And this is facing up so you can assume

that a is positive. And a also tells how big the parabola is. Umm... I don’t know
exactly how big it is. I’m gonna guess something like 2.The 4 is going to
indicate how many places that the vertex shifts to the right or to the left. And it
is on the right, so % is gonna be a positive number in this standard from. We can
guess somewhere around 2 or 3. And £ is gonna show me how many places that
the vertex will be along the y-axis. It [k] tells me how many places that the
vertex shifts up or down from (0,0), and it’s negative. So it’s gonna be under the
zero. I guess it’s —1.

When working with the Instructional Interview Problem No. 6, Ross did not
relate a reference graph f(x)to the graph g(x)requiring a symbolic representation. He
worked to find a reasonable symbolic representation in the same way he did in the
Instructional Interview Problem No. 5, which considered the variables a, 4 and %,

respectively.

First a is gonna be negative because it’s facing downwards. Umm... 4 is going
to be negative in this standard form because it is on the left side. So I just guess
like —5. And the vertex is positive on the y-axis because it is in the positive area,
above the x-axis. So k is gonna be 1 or 2. Let’s say 1. So, I can’t remember
whether a bigger number makes it wider or a fraction makes it smaller. I'm
pretty sure that a smaller number makes it smaller but I can check this with my
calculator.

He was unable to remember the effect of the size of @ on the width of a parabola. After
he checked with his calculator, he knew that the smaller the absolute value of a, the
wider the parabola.

Ross showed that he could solve the Salary Problem (Instructional Interview
Problem No. 7) using different approaches. The approach that he used more often was
to use a graphing calculator to graph each salary function to see if they had any
intersection points, or to enter the number of years (V) to check which person earned

more money for that particular number of years. He considered two different ideas in
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the process of finding a solution. He considered whether the number of years (V) was

equal or different for each person. To answer the first question of this problem, he

considered the salary functions and compared their slope and y-intercept. He compared

the fixed amount of money earned by A and B [y-intercept] and unfixed money as

depending on numbers of years [slope].

R:

[

B will never earn more than A because I can see that term with the
variable N of A [2500N] is larger than that of B [1800/N]. So the money
of A will increase more than the money of B. And the constant amount
of money of A is larger than that of B. There is no potential at all if NV 1s
the same for both groups.

You said if N was the same, what if the number N 1s different?

If N is different, let’s say B works longer than A like 5 years and A
works only 1 year. Then B will earn more than A.

To answer the question whether D earned more money than C, Ross considered two

parts of the salary equations. Ross used a mental reasoning process to explain his

thinking,

There are two different parts. C has a higher constant [27000] but D has higher
money increasing for each year [2100N]. When the number of years N increases,
D is gonna have more amount of money than C. Eventually D will catch up to

C.

When asked if he could find when D earned more than C, Ross transformed a symbolic

representation to a graphical representation using his graphing calculator. He also

showed his knowledge of the slope-intersection form of a linear function and set an

appropriate window for the graphing calculator to match a real situation.

[

[

[

Can you find when D will earn more than C?

I think I can find it by using their graphs.

How?

I'will set y, =27000+1500N for Cand y, =21000+2100N for D.
Then I graph these functions. Umm...you know what? I can change
these functions around. I can change the function to

¥, =1500x + 27000.

Why do you do that?

I can change it to a linear function form. I can make it in the form of
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y = mx + b [putting the function of y, and y, in his calculator]. The

graph does not show up. So I have to make a new window. My Xmin =0
and Xmax = 12, Ymin = 30000 and Ymax = 50000

I: Why do you select this window?

R: Because each point on the x-axis will never be a negative number.

I: Why?

R: Because the x-axis represents the number of years after the date of the

contract, which will not be a negative number and I think D will earn
more money than C sometimes in the future. If it takes longer than 12
years, I will change my Xmax. The y-axis represents the amount of
money, which I think should be more than 30000 when D earned more
than C [setting a new window, graphing the two functions and explaining
the graph].

R: You may not see the graphs very well. But it looks like at the 10™ year
they cross each other. And after the 10" year, D will earn more money

than C.
I: What does it mean at the point that the graphs cross each other?
R: It means at that point they earn the same amount of money.

Ross incorrectly attempted the Equivalent Function Problem (Instructional
Interview Problem No. 8) by looking at the initial feature. He was able to correct

himself at the end.

2
R: Yes. They [ f(x) = x —4
x+2
umm. . .basically g(x) is a simplification of f{x). If you change f{x) and
g(x) to y and put any number for x then y is gonna be equal for both
functions. For example if the input for x equals 1 in both equations, the
answer will be the same for y. Oh! Except...
Except what?
R: I’m wrong. They are not the same. Because umm. .. The function
2
flx) = N 24 . There is a term in the denominator x + 2, when x = -2
X
would be undefined but there isn’t any number to make g(x) undefined.
So they aren’t the same and that is my reason they are not the same.

and g(x) = x — 2 ] are the same because

—

X

Ross’s Post-Instruction Solution Strategies and Algebraic Thinking and Reasoning

At the end of the instruction on functions, Ross was asked to solve one problem

involving function concepts. He worked on the problem carefully. He read the problems
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slowly and most of the time he read the problems twice. Working on the Function
Construction Problem (Post-Instructional Interview), he read the given constraints and
verbalized them one by one. Ross was able to gather information given in the Post-
Instruction Interview Problem. He symbolically represented each constraint of the
problem and used the variety of concepts related to functions for finding the problem

solution. He clarified each piece of the constraints that related to the solution that he

was asked to find.

The function is undefined at —3, which means we don’t want —3. So when
= -3 the denominator would be undefined, that would be x + 3 at the bottom

of the fraction. The function has a zero at—;- , S0 X — % on will be at the top of

: i i : 1 .
a fraction because it makes this function be zero when x = 5 . The function 18

always nonnegative so all of these terms have to be squared [squaring for the

(x+3)° )

numerator: y =

Ross connected the undefined constraint to the domain constraint identifying that it was

impossible to have a function’s domain from —5 to positive infinity.

R: The function domain is — 5 to infinity. Umm...wait this doesn’t make
sense because it’s undefined at -3 but —5 to positive infinity includes -3
but x can’t be —3.

I: What do you think its domain should be?

R: It should be -5 to positive infinity except —3.

The interviewer changed the function domain to —5 to positive infinity except —3

[[-5, —3)uU(-3,0) ] and asked Ross to continue working on the problem.

1
R: Umm... OK. x— Y over x + 3 and I want to have another term to get x

from —5. OK x is gonna be a square root because x is from —5. Umm... x
equals negative 5 [writing x = —5]. So it has to be x + 5. OK. This term
has to be a square root because the number under the square root sign
cannot be a negative number.
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I With the term of v x + 5, can x be —5 or not?
R: Yes, it can be 5.

What will you do with this term?

R: I will combine all parts together.

—

Even though Ross knew how to find the expression indicating the x value from -5 to

infinity, he had difficulty putting this expression into the function he had created.

o)

Initially, he combined all parts that he had as y = ————*—=and attempted the

(x+3)2\/;-—§

problem using a guess and check method to see where he should have added the

expression vx + 5 into the function that he created previously.

L What happens if x = -5?

R: Umm. x equals —5, Oh, right it’s gonna make this zero and that would
make this [a function] undefined at —5.

I. Do you say the domain includes —5?

R: Right, so I’ve got to change that. It gonna be plus 6.

I. So if you usev x + 6, so what can x be?

R: x can be any number greater than or equal to —6.

I: So it still does not start from —5, is that right?

R: Wait, if I change this [ v x + 5] to be in the numerator part; that will work

I: Why do you think you should enter this term to the numerator?

R: Because if I put it into the numerator so x can be —5 and greater than—35.

(x-1/2)*Vx+5
(x+3)°

that we’re looking for. And the last one, the function contains the point

“4,7.

So now what I have is . So, I think this 1is the function

Ross attempted the last constraint by using the symbolic representation of the function

and numerical calculation by entering 4 for the value of x in the function that he created

previously.
I: What does it mean that the function contains (4, 7).
R: Umm... well this means when x = 4, y 1s gonna be 7. So I’'m gonna plug

in x = 4 to see what happens. Square root of 4 plus 5 is 3 and 4 minus 1
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is 3.5. Then 4 plus 3 is 7. So I have (357): ) _ 33'975 . This is not gonna

work [making a calculation using his calculator].

What do you mean it doesn’t work?

R: It’s not equal to 7. I need to do something. I will multiply this number by
something.

I: So what are you gonna multiply by?

]

36.75 x= % Then solve for x

R: 36.75 over 49, I’'m gonna set the equation

[writing x = 7 . P __ 9l - 28 and checking his calculation using
1 3675 3 3

his calculator].

R: So I need to put this whole thing in parenthesis and multiply by 2?8 and

_2_8\/x+5(x—1/2)2

G +3) > . That’s the
X+

that is the answer right there, y =

answer.

While solving the Function Construction Problem, Ross always checked his
understanding and his work by re-reading the given constraints that helped him

determine if he had correct information and if he had correctly understood the problem.

Emma

Emma worked slowly on each problem. When she finished reading each
problem direction or situation, she paused, and thought about the information for a few
seconds. She then described her thinking and gave her reasoning for what she had done.
She read some parts of the problems twice if she was not sure that she had all the
information she needed for finding the solutions. Emma used different strategies to
determine a function. She used the vertical line test, checked numerical inputs and
outputs, drew the graph and then used the vertical line test if the relations were given in
the form of a graph, table, and symbol respectively. She used her graphing calculator to

draw graphs of functions and calculate numerical expression.
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Emma’s Solution Strategies and Algebraic Thinking and Reasoning Prior to Instruction

Emma solved four mathematical problems related to multiple representations
and algebraic problem-solving before the concepts of functions had been taught.
Working on these problems, Emma communicated her thinking and reasoning and
solution strategies while solving the problems. Emma approached the problems by
slowly reading each problem and clarifying her solution strategies including her
thinking and reasoning. She gathered information from the problems and verbalized the
information using her own words before describing her solution strategies and
reasoning used for solving the problems.

Emma transformed a graph to a verbal representation (Pre-Instructional
Interview Problem No. 1), solved algebraic problems (Pre-Instruction Interview
Problem No. 2 and No. 4), and matched the verbal and graphical scenarios (Pre-
Instructional Interview Problem No. 3). Emma translated a graphical representation into

a verbal representation (see Figure 25).

Let’s see George’s Mom. She didn’t start eating the same time as others [pause]
because the graph of the amount of popcorn doesn’t start until [pause] it didn’t
intersect with the y-axis and that made me think that. Why do I think that?
Umm... Because [pause] It’s hard to explain. I don’t know why just because the
line showed that it didn’t start from zero. There was a gap that made me think
she didn’t do anything during that time. And when she started eating, she ate at
a consistent rate because it showed a straight line going down and then she just
stopped eating because the straight line showed popcorn stayed at the same
amount. She didn’t finish hers.

With Pre-Instruction Interview Problem No. 3, Emma clarified her reasoning as to why
each scenario’s graph should match the verbal scenarios given in the problem. For

example, she depicted the roller coaster situation (see Figure 15).

[Emma reading the situation: We rode the roller coaster steadily to the top, then
went faster and faster as we went down the other side. The speed of the roller
coaster is the dependent variable.] The speed of the roller coaster is a dependent
variable of the graph, that is, the variable on the vertical axis. So he went at the
steady rate to the top, the speed should be on the y-axis. OK and then they went
faster and faster down to the other side [pause a few seconds]. I’ m thinking
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about the graph that should be beginning with the speed at the consistent rate so
the line should be horizontal. Umm.. And then after that, the speed of the roller
coaster is supposed to be faster and faster down to the other side. This should be
a line where the slope is in a positive direction. Because it said the speed was
faster and faster. Let’s see, umm... The slope is rise over run and should be
[pause] Umm... I think it 1s A.

When a scenario and a graph did not seem to match or seem to make sense, Emma drew

the graph for the scenario herself. For example, she described her thinking and

reasoning of this scenario:

At the beginning of spring, the grass grew slowly and I seldom had to mow the
lawn. By midsummer it was really growing, so I mowed twice a week. In fall, I
only mowed once in a while. The number of lawn mowing to dates is the
dependent variable.

From this situation, she described her thoughts and reasons as:

E:

e

Umm... so the number of lawn mowing 1s on y-axis. The y value should
be fairly low at the beginning of the graph because he did not mow very
much and then at the middle of the graph it should be fairly high because
they have to mow more often. Then it should be lower than before they
have to mow once in awhile. So the graph of once in-a-while has to be
low. Let’s see [pause] Umm... no the graph was looking like exactly the
same as I was thinking. Umm. .. the one that looks closest 1s an “E” but
1t doesn’t look like 1t has to be E.

So if you think these graphs do not make sense, you may draw a graph
by your own.

On my own? Do you think I should?

Yes if you think these graphs do not match with the scenario.

OK. If I have to pick one, I decide to say C but I don’t like it at all.

So you can draw your own graph.

OK. I have time on the horizontal axis and number of mowing on y-axis.
The graph should be low at the beginning and then it seems like it should
have a little consistent rate and then by midsummer it was growing a lot
and I would think that transition would have [pause] then would have
been a transition period that can be noticed that it was growing slow and
then growing fast so I should have a line that had slope up in a positive
direction and then it should level out during midsummer and then
[pause] in Fall only mow once-in-a-while and I think 1t should be a
downward transition into the Fall and then in the Fall, it should level out
again. And this is my graph (see Figure 27).
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Figure27. Emma’s graph for the lawn-mowing situation.

Based on the scenario, Emma verbally described how the grass grew and the
number of mowing times correctly. However, the graph that she drew for the scenario
related to how the grass was growing rather than to the number of mowings. For
example, she said “[the grass is] growing fast so I should have a line that has a slope
going up in a positive direction.” She drew the line with a positive slope showing how
the grass was growing, not the number of mowings to dates. Emma used the graph to
describe her thinking of the number of mowings and how the grass was growing within
the same graph.

Prior to the instruction on functions, Emma also solved an algebraic problem
using her knowledge of percents related to information provided in the problem (Pre-
Instructional Interview Problem No. 2). Using pencil and paper she explained and

showed her work for obtaining the solution.

E: I do not agree with the manager because 10% discount should come
After what price the item is. It has 20% discount to start with, then you
take 10% off from 80% this left. So that would be [pause]

I You may write it down if you want to show if it is the same.

E: OK. Let’s see. It starts at 80% of the original cost and then 10% off of
$80, which is 8, and so the total price you need to pay is 80 subtracts 8
which gives you 72%. So the total discount here is... Let’s see 28% that
is my answer. They are different.

I This means that you do not agree with the interviewer.

E: No.

I Do you think one is better, between getting 30% discount the first time
and getting 20% off and then an additional 10% off?

E: Getting 30% discount at one time would be better for the person who

buys things.
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Emma mentally responded to the Population Growth Problem (Pre-Instructional
Interview Problem No. 4) without writing any mathematical symbols, expressions, or
equations. She described her reasoning verbally. Her logic in approaching this problem

was reasonable and correct.

E: Town A starts at 5000 and grows up to 8000 so it’s increasing by 3000
and Town B starts at 6000 and goes up to 9000, and that’s increasing by
3000 as well. Umm... Brian claimed that they increased by the same
amount. He was right because they both just grew by 3000 people. Linda
claimed that Town A had grown more and she also was right because
Town A grew by a greater percentage than Town B did.

It How do you know that Town A grew by a higher percentage than Town
B did?

E: Umm. . .because they both grew by the same number and Town A
started out with less people and so if they both grow by the same amount
it’s gonna be a higher percentage for Town A just because they’re
originally small. So it just makes sense to me like this.

Emma’s Solution Strategies and Algebraic Thinking and Reasoning During Instruction

To investigate her solution strategies and algebraic thinking and reasoning,
multiple data sources were included classroom (lecture and recitation) observations,
homework, quizzes, and interview problems to identify her solution strategies. Her
reasoning for using those strategies was investigated through two interviews conducted

during the instruction of functions.

Instructional Interview One

In the first interview Emma was asked to solve four problems related to
functions. The first problem asked Emma to determine if the relations were functions.
The relations were given in the form of a graph, a table, and a mathematical symbol.
Emma used the vertical line test to determine if the graphs represented functions. She

stated:
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I would say it [a graph of a relation] is a function if it passes the vertical line
test. I mean if a line doesn’t intersect the graph or I can draw any lines, those
lines wouldn’t intersect the graph more than one point. I would say it is not a
function if it fails the vertical line test.

When asked to determine if some information provided in a tabular
representation was a function, Emma converted it into a graph using the table data. She
stated, “For every x there would be one y so it is a function.” Yet, even though she
thought about the graphical representation, she did not use the vertical line test to check
if it was a function, instead she checked the inputs and outputs. When determining
whether an equation was a function, Emma graphed the equation and considered its
graph. However, she did not use the vertical line test but she stated 1t was a function

because it had one output for every input.

I just graph this [ y = x*]. It would be a parabola and I know that it’s a function

because there is one y value for every x and I know this is a function of y in
terms of x because the value of y depends on x. And this 1s [y = 4], its graph
would be a horizontal line and that is a function because there is one y value for
every x value.

At the beginning of the first interview, Emma could not symbolically solve for y
in the equation of a circlex’ + y> =1. She realized that she needed to rewrite this
equation in order to make a graph in her calculator. However, her procedure was
incorrect. She was able to check that her procedure for taking a square root did not
work but she could not correct herself. Her approach of checking her thinking by taking

the square root and by testing some values caused her to use a different strategy.

E:  Forx’+y® =1, want to put this equation into my calculator so I can
see what its graph looks like.
I How do you do that?

E: Let me think about this. I can’t put inx” + y*> =1, so I would take the

square root of both sides [writing /x> + y* = V1 ]- So that would be

x+y=1.So then I can say y = 1-x. I don’t know if it’s right.
I: Do you think it is right?
E: I don’t know, but if I can do that it seems too easy.
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I Let see if you have 4> +3? what is that equal to?
E: It would be 16 + 9 = 25 and the square root of 25 is 5. I will check with

V42 +3% =425 then 4 + 3 = 5. No, that doesn’t work. Big mistake, so
I can’t do that.

After she realized that her method of taking the square roots did not work, she tried

making a table.

I: How can you solve for y?
E: I’m not sure. Let’s see. I’m not sure about this one. I’m going to pick

some point to see what x and y look like. Whenx = -2, so (—2)2 +y2 =
1,4+y = L,y ? = 3. That is not possible because it’s negative. I will try
x=1.Let’sseelz+yz=1,1+y2 =1,y2=0,soy=0.AndthenifI
try x=0then0’ + y* =1,y* =1,and y = 1.

y2 equals 1, so what is y?

y would be 1 because 1 ’ equals 1.
Are you sure?

Yes, V=1 [checking V1 by using her calculator]. I’m trying to graph
but I don’t know how it works. Hopefully this works [drawing the graph
by hand]. Umm... that should be a function because it has one y for
every x.

What does the graph look like?

E: It looks like a half circle [a semicircle along the x-axis]. So it is a
function.

—

In fact, she had studied the equations including circle equations and their graphs in the
first week of this course, but she could not remember that x* + y*> =1was an equation
of a circle. Even though she could not take square root of a two-variable equation, she
had a definite strategy (using specific values to test if it was true with those values). Her
lack of knowledge of calculating a square root led her to an incorrect answer, and she

said that x* + y* =1 was a function.

In addition to the Multiple Representation Problem (Instructional Interview
Problem No. 1), Emma worked on three other problems in the first interview during the
instruction of functions. She extracted information and transformed a graphical

representation to a verbal representation when working on the Car Problem
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(Instructional Interview Problem No. 2). She was able to relate the information to a

graph that showed the relationship between the time, speed, and distance.

E:

I:

E:

The graph shows that at the beginning Car A goes faster than Car B. But
after one hour Car B goes faster than Car A. They are tricky. Ah...Itry to
think... I think Car A would be ahead of Car B at t =1 hour.

Why?

Because it’s been going faster the whole time. That would mean it would
cover more distance in the same amount of time. At t =1 hour they have
the same speed or velocity because they [the graph of Car A and that of
Car B] intersect at t = 1 hour. The next question asks about the
relationship of the acceleration of Car A and Car B att = 1 hour. Ah.. So
the acceleration of Car A 1s slower at one hour than the acceleration of
Car B because Car B has a steeper slope and its speed is increasing
quicker than Car A.

So its slope tells you how it speeds up?

Yes, slope does. The steeper slope, the faster it is.

In the third problem, the Piecewise-Defined Function problem (see Figure 17),

Emma was asked to determine if the graphical representation was a function. She used

the vertical line test to check if it was a function. She stated:

I think it is a function because it passes the vertical line test. At these points
[pointing at the dark and white dots at x = 100], one is counted and the other 1s
not. I don’t know for sure which one is counted but they are not counted at the
same time, so it passes the vertical line test.

When asked how she could represent this data differently, Emma said she could

represent it as an equation (symbolic representation).

E:

—

E:

There are three pieces of linear equations here.
Can you describe what each piece looks like?
Well, let’s see. It would deal with x values which are less than 100 and

umm...I can estimate, that looks like about % of 100. x would be 0.

Then y, let’s see... that would be 33. And then this would be x =50 and
y umm...about 66. Then I need to find its slope. That would be

66 —33 divided by 50—0, which 1s 50 and that 1s .66 [using her
calculator]. So

y = .66x, plus the y-intercept, which is 33 [writing y = .66x + 33].

So that 1s the first piece.
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When will we use this piece?

When x 1s less than 100.

Do you include negative numbers too because you said when x 1s less
than 100?

From the graph, it looks like they start from zero. So this will be used
when x is greater than or equal to zero and x 1s less than 100.

For the second piece, Emma knew that the y values for the horizontal line were for a

particular interval of x values.

And then the second piece is y = 200 when x is greater than or equal to 100 and
less than or equal to 400.

To find the linear equation for the third piece, Emma attempted the problem in the same

way that she did for the first piece. However, she did not finish finding the equation of

the third line using the point-slope form. She visually estimated the figure of the lines

and declared that the first and third lines were the same line and should have had the

same equations.

E:

And I need to find another two points in order to find the slope of the
third piece. That looks like 300 for y and 600 for x, and x = 700. I
would say y = 350 [writing (700, 350) and (600, 300)]. I am going to

find the slope right now. m ~350-300 . They look like the same line as

700 - 600
the first line. If they are the same then they will have the same equation
as the first one that I found.
Are they exactly the same?
From the graph, they look the same but from the number I got they are
different. But maybe the number I got is not right. So I would say they
are the same equations.

Emma was not confident when asked to write the piecewise-defined function notation

Can you write it in the form of function notation?
y=.66x+33,0<x<100U x > 400
y =200,100 < x <400

I don’t know for sure that I could write it that way but 1t works [seeming
like she still did not clearly know how to write a piecewise defined
function].

That would be f(x) = {
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Emma also was able to transform the graphical representation to a numerical (tabular)

representation.
I: Are there other different forms of representations that this information
can be presented?
E: Another form? I could make a table of points. That is the only way that I
can think right now.
I: Can you show me how the table looks?

E: Umm... that looks like:

x |0 |50 | 100 | 200 | 300 | 400 | 500 | 600 | 700
y |33 |66 [200]200]200]200250]300] 350

In Instruction Interview Problem 3b, Emma said that she remembered this type of
function, called a step function, but she could not provide any real situations that could
be represented by this graph.

At the end of the first interview, Emma had developed her understanding of
solving a problem symbolically using the square root and relating it to a real situation.
This was evident as she worked with the Ball Dropped Problem (Instructional Interview
Problem No. 4, see her work in the instructional interview of understanding of functions

section).

Instructional Interview Two

Emma’s responses to Instructional Interview Problem No. 5 and Instructional
Interview Problem No. 6 revealed that she could connect a quadratic function with its
graphical and symbolic representations. Emma constructed and clarified her reason for

selecting real numbers for variables a, &, and & in symbolic representation of a quadratic
function [ y = a(x — k)* + k] from the information given in Instructional Interview

Problem No. 5.

E: This is a graph of a parabola and I know from the equation that a has to
be positive because the parabola opened up [writing a positive sign
above the variable a]. Umm...the vertex is (A, k). So A has to be positive.

L: Why do you think % has to be positive?
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171

Because the value for % is in the positive area [Quadrant 4] on this

graph. Umm. .. so let’s see I would say that a = 4 and then I’m gonna
guess that 2 =2 and k is the y value on the vertex, I would say k= —1.
And then I will put it in my calculator to see what I will get [entering

y, =—4(x—2)* =1 into her calculator and graphing it].
How was it?
It looks not so close. Let’s see what happens if I change a to 6.

Emma did not remember that the size of variable a would effect the shape of a parabola.

What do you expect to see in the graph when a = 6?
I want to see if it’s wider. I’m putting these graphs on the same axes to

see how it changes [entering y, = 6(x —2)® —1,then graphing it]. So it
looks like my second graph is skinnier instead of getting wider. But I’'m

looking for the number that makes the graph wider. So let’s try 1
because a big number makes it skinnier, so a smaller number would

make it wider [entering y, = —1(x —2)* —1, then graphing it]. That’s
closer.

What happened when you changed a?
The width of the graph is changed. a = 1 makes it wider than a =4 or 6.

So I’'m saying .5 [entering y, = —.5(x —2)* —1, then graphing it].
Umm. .. that looks pretty good. So my last equation that I came up with
isy=-5(x-2)"-1.

When working with a quadratic function (Instructional Interview Problem No.

6), Emma related the graph of g(x) to the reference graph f(x) and found the symbolic

representation for g(x) quicker than when she worked on the Instructional Interview No.

5. She related her understanding of Problem No.5 to Problem No. 6. Obviously, one of

her reasoning approaches was graphing a function, which was much easier with the

graphing calculator. So she was able to do more trial and error to check if she was

thinking correctly.

E:

The original graphisy = x , and it is a parabola and umm... [ know
from the last problem that the flipped over parabola... a has to be a

negative number and the smaller |a| umm. .. the wider a parabola is. So
for this one, let’s see. I will say a = — 5 just for starting out with. And
then my vertex is ... let’s see... PlltryA= -6 and k= 1.

How did you consider those the numbers for /# and £?
Umm... & corresponds to the x value and the x value umm... is
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much further from the origin than the y-value in this case [putting in
y, ==.5(x—6)* +1and graphing it]. That looks pretty close to me.

I: Do you want to adjust anything?

E: Umm....it looks good. I will say g(x) = —.5(x —6)* +1. Let me check the
graph of f(x) [entering y, = x*, then graphing it]. Their widths are
almost the same. I need to make g(x) wider. I will change a to
—.25 [entering y, = —.25(x - 6)* +1, then graphing it].

I: How was it?

E: This is much better. So I think g(x) =—.25(x —6)* +1 is good for g(x).

Emma attempted the Salary Problem (Instructional Interview Problem No. 7),
without changing a symbolic representation given in the problem to another
representation. She stated the answer and described her method and reason for her

answer.

Will B ever earn more per year than A? No, they won’t because they both have
the same starting money and A always earns more per year than B. So it is not
possible for B to earn more.

When asked if it was possible that B can earn more than A, she stated:

The only way B would earn more was if they were employed for more years
than A. Umm... that is the only one possible case otherwise he will never earn
more than A.

As with the other questions (b and ¢), Emma provided her solutions using two different
ideas: (1) the same number of years and (2) a different numbers of years. When
attempting the last question of this problem, Emma used her graphing calculator. She
showed that she was familiar with changing the graphic window to make the graph

easier to interpret.

E: Will D ever catch up C? I think I may have to graph this to find out
because C starts out with more money but he earns less per year.

I: So what will you graph?

E: First, ’'m gonna graph C’s salary to see what it looks like. I put in
y, = 27000+ 1500x and then graph. I need to change my window. I
change Xmin to zero because it’s never going to be negative number and
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I put Xmax as 50 years. And scale for 5 years interval and Ymin they’re
never gonna have negative salary so Ymin = 0 then Ymax = 100000, I
put scale for 10000. Then see what it looks like. It is a line going up.
Then [putin y, =21000+2100x and it looks like D will eventually
catch C because the two lines umm... intersect and after that...Oh yeah
both lines have a constant slope and D has the steeper slope. So
eventually it’s gonna hit the line of C. D will eventually have a higher

salary.

She was asked to find when D would earn more than C, Emma used her graphing

calculator to find the intersection point rather than solving using symbolic

manipulation.
I: Can you tell when D is gonna catch C?
E: Yes I can.
I: How can you find it? Would you please show me?
E: I’'m gonna go to calculate [using a function menu in the graphing

calculator] and find the intersection; they intersect at (10, 42000), so that
would mean at the 10th year they would earn the same amount of money
and after that D would have a higher salary.

It seemed like she knew how to find the solution using symbolic manipulation. When
asked if she could solve this problem without using her graphing calculator, she said
she would set the salary function of C to that of D and solve for the x variable. However

she did not illustrate this symbolic procedure.

Emma’s Post-Instruction Solution Strategies and Algebraic Thinking and Reasoning

At the end of the instruction on functions, Emma continued working with the
problems in the same manner as in the beginning. She read the problem and interpreted
her thoughts slowly. Working on the Function Construction Problem (Post-Instructional
Interview), she read the problem and the given constraints all at once and then
verbalized each constraint one by one. Emma gathered information from each
constraint, verbalized each constraint based on her understanding, and then represented

them symbolically.
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The function is undefined at — 3 that means ah... if it’s divided by something
and the denominator can’t be zero. So this would be something divided by

x + 3. When x =-3 that would be undefined because the denominator would be
ZEero.

Emma showed that she understood and knew how to find the zeros of a function.

I: When you were asked to find a zero of the function, what would you do?
E: Umm... I set the equation equal to O then solve for x.

I: What part of the function will you set equal to 0?

E: The top part [numerator].

I: The function has a zero at% , that [—;— ] is the x or the y value?

E: OK. That would be y=0 and x = % . So this would be x — % . This would

1
x —

be the numerator [writing 2 ]
x+3

Working with the third constraint, the function is always nonnegative, Emma thought

about an absolute value function.

The function is always nonnegative, so I’ll just put the absolute value sign

1
x ———

around that. Then I would have y = 2 .
x+3

Emma thought beyond the problems demonstrated in the class and textbook. She could
create a function that had a domain from —5 to positive infinity. The example problems
used in class required students to find the domain by giving the symbolic representation
of functions. Emma showed that she was able to think beyond what she was taught.
However, she did not know how to relate that function to the function that she had

previously constructed even though the interviewer probed her.

E: The function’s domain is [-5,0) Umm... [long pause]

I. What kind of function will give you a domain from negative 5 to
infinity?
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E: Let’s see. If I have a function from negative 5 to infinity umm. .. maybe

vx+5 . That would work because x+5 has to be greater than or equal to
0, the x greater than or equal to negative 5. But I have no idea how to

1
x ——
combine these two functions together [——‘,3)‘— andV¥+91.
X+

How many arithmetic operations have you learned so far?

I believe there are addition, subtraction, multiplication, and division.
Can you apply one of those to this function?

Let’s see... umm... it’s undefined at -3, that is still undefined at -3; it

has zero at é— ;if Iputx = —12— that would give y =0, and it’s always

nonnegative. So this absolute value would work. If I add this v x + 5 it
would not have zero at % any more because I add this. So if I um...

[long pause]

I: What are you thinking?

E: I’m thinking that I don’t know what to do. May I go for the last
constraint?

I: Yes

E: The function contains the point (4,7). So this means when I put in 4 for
x, I would get 7 out for y. If I put 4 for x, that would be 3.5 divided by 7,
which is .5 that was not what I need. If I multiply that by 14 then I get 7
[checking by using her calculator; .5 x 14 = 7]. Umm... so this function

1
x —_——
would be g e14. With this function, I should get 7 when I put 4 for
x+

X.

As some of the other students thought, Emma thought of a radical function when she

was asked to identify a function with a domain from -5 to infinity

Let’s see [checking by putting in 4 for x in her last function]. Yeah. Except its
domain from —5 to infinity which I don’t know how to do, it is undefined at -3,

has zero at % , the function is always nonnegative and contains point (4,7).
Umm... I know that +/x + 5 has a domain from -5 to infinity, but I really don’t

know how to combine this term to the function [constructed earlier]. I have to
make the function have a domain from negative 5 to infinity.
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Emma always checked to be sure her constructed function met all constraints of the
problem and used that technique for looking at her progress on the problem. Yet, she

still could not solve for the function domain constraint.

Lindsey

Lindsey’s approach to solving problems included extracting and representing
information from each problem situation, interpreting a method she used for a solution,
and applying the strategies to a new problem. To determine a function she used the
vertical line test if a graphical representation was given, and checked inputs and outputs
if the numerical representation was given. When a symbolic representation was given,
she either checked inputs and outputs or drew a graph and then used the vertical line
test depending on her familiarity with the equations. With some assistance, she was able
to relate this context to a real world situation and responded to the question correctly.
She used her graphing calculator to plot graphs of functions and calculate numerical
expressions. At the end of the instruction on functions, Lindsey had developed her
algebraic thinking and reasoning processes. She was better able to extract information
from a situation, represent that information in different ways, interpret the findings or
solutions and apply the findings to a new situation. With her improved knowledge and
thinking and reasoning skills she was easily able to choose appropriate strategies to
solve the mathematical function problems provided in the textbook as well as the

problems on the quizzes and exams.

Lindsey’s Solution Strategy and Algebraic Thinking and Reasoning Prior to Instruction

Prior to instruction on functions, Lindsey comfortably solved mathematical
problems. She thought the problems were not difficult and she enjoyed solving them.
When she solved each problem, she read the problem, described her method for solving

the problem, and answered the questions. Most of the time she mentally solved the
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problem. She seldom wrote anything on the paper. She did not draw any pictures or
diagrams to help her solve the problems. Working on the first and third interview
problems, Lindsey gathered information from graphical representations and
transformed the graphical representations to verbal representations and vice versa. In
addition to working with those two representations, Lindsey was able to analyze and
interpret the information provided as a graphical representation in Pre-instructional

Interview Problem No.1 (see Figure 25).

From the graph below, the y-axis is the amount of popcorn and the x-axis 1s the
time. I think George eats popcorm at the steady rate and finishes the popcom
pretty quickly because the amount of popcorn goes to zero when not much time
passes like he finishes his popcorn at about half of the time. I mean he finishes
his popcorn at about halfway through the movie showing compared to the
graphs of other people.

Lindsey correctly described the popcomn graph of other people. For example she
correctly talked about the graph of George’s sister.

For George’s sister’s graph, the amount of popcomn still is on the y-axis and time
is on x-axis, but her graph is a straight line. It’s not steady decreasing because
it’s a curvy line. She doesn’t eat a lot all the time. She eats it pretty fast
sometimes because the graph looks steep and then she slows down a little bit
and then eats it pretty fast again and then slow down and she’s never finished
her popcorn because the graph never hits zero.

Besides interpreting a graphical representation verbally, Lindsey was able to
transform a verbal description to a graphical representation. She was asked to match
verbal to graphical representations. On each problem, she considered the problem
sentence by sentence, converting the information to a potential graph. She tried to

exclude a graph that did not relate to the situation (see Figure 15):

It said we rode the roller coaster steadily to the top. So I look at all these graphs,
a couple of these shows they rode steadily [Graph A and Graph G] and it went
faster and faster to the other side, so umm... A doesn’t work [crossing out A]
because it is a horizontal line so this means the roller coaster did not change its
speed. First it steadily goes to the top [repeating the first statement again]. B
goes steadily but it doesn’t go down to the other side. OK. Let’s see. The speed
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is on the y-axis [writing “speed” on the y-axis of graph A which did not mean
that she picked A] and then it’s going to get higher and higher when the time has
gone because it’s going up. So it couldn’t be A or C because C’s speed is less
and less instead of more and more. D’s speed gets less and less. Graph E goes
back and forth and then starts decreasing. E goes up gradually and then levels
off. G stays the same and then goes lower, so it has to be B.

She worked on this problem looking for possible graphs by excluding them with the
new information from the next sentence she read. Limited time kept the interviewer
from investigating whether she could transform the data between other representations.
Lindsey also worked on another mathematical problem (prior to Instruction
Interview Problem No. 2) using her knowledge of percent with the information

provided in the problem situation.

L: An employee’s gonna get 20% discount on everything and an additional
10% off on a clearance sale. He said that this discount would make a
total of 30% on the clearance sale. I don’t agree because at first they
have to take 20% off and then take 10% off of that. It does not add up to

30%.
L Will it be more or less than 30%?
L: Let me see [doing a calculation on a piece of paper]. So they just had

like x dollars and then took 20% off so I subtract 20% from 100%, so
I’m gonna multiply by .80 for getting the amount of money after 20% is
dropped and that is .80x then they would take a 10% off of that, so I
multiply by .90 which is .72x and then if they take 30% off it will be
.70x. So 30% off would be more than 20% off and an additional 10% off
of that.

In her solution, Lindsey used a variable x to represent a general sale price. When asked
why she picked x for the sale price, Lindsey said that she could use this form to find the
amount of money she needed to pay if she knew the sale price. Otherwise, she
recognized a need to calculate the solution every time the sale price changed.

As she worked on the Population Growth Problem (Pre-instruction Interview
Problem No. 4), she considered two different points of views. However, she could not

finish calculating the rate of growth.

L: They are saying that in 1980 Town A has 5000 people and in 1990,
Town A has 8000 people [writing 1980=»5000 and 1990=»8000 on a
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piece of paper]. The difference is 3000 people and then the same thing
for town B, start with 6000 people and then in 1990 1s 9000 people. So
they gain 3000 [writing 1980=»6000 and 1990=»9000]. But umm... it
looks like they have increased the same amount of people [pause].

I: So whom do you agree with?

L: Umm... I guess they gain the same amount, so I believe Brian was right.

I: Do you think Linda was wrong?

L: I’m thinking why she thinks Town A has grown more. Umm... maybe
it tarts it out with few people [5000] and so these few people have to
grow more to get up to 3000 more rather than 6000 grow to get up to
3000 more.

I So you think Linda’s claim was also right?

L: Yes, she could be right.

I: Can you prove that she was right?

L: I don’t know how to do it with math. I’m just thinking [pause]. I think

Brian was right because they grow at the same amount. But Linda
probably looks at it differently but really they gain the same amount. But
their rate may be different. But I cannot remember how to find the rate
of growth of this population.

Lindsey’s Solution Strategies and Algebraic Thinking and Reasoning During

Instruction

Lindsey demonstrated her ability to solve mathematical function problems while
participating in two instruction interviews. Several data sources, including classroom
and recitation observations, homework, and quizzes, were considered to develop a

further description of her solution strategies and algebraic thinking and reasoning.

Instructional Interview One

Lindsey spent a few seconds thinking about the information she had from a
problem situation before responding to the problem. She typically used a verbal
explanation rather than drawing a picture or diagram to describe her thinking and
solution strategies. Lindsey used different methods including the vertical line test and
checking the numerical inputs and outputs to determine a function. For graphical

representation problems, she used the vertical line test to determine if the graph was a
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function. For a numerical (tabular) representation, she determined whether it was a
function by checking numerical inputs and outputs. For the symbolic representation
problems, she drew a graph using her graphing calculator to draw graphs of some

functions and then used the vertical line test.

L: I will use the vertical line test to determine these graphs.

I How do you explain whether it is a function?

L: It 1s a function if no vertical lines intersect the graph more than one
point. Otherwise, it is not a function.

What does the intersected point mean?

It is the value of x that matches with the value of y. One intersected point
from a vertical means there is one y value for that x value. And two
intersected points mean there are two y values for that x values. In this
case it is not a function.

ooy

With her understanding and reasoning, Lindsey correctly responded to the first
part of the interview problems, which asked her to determine if the given graphs
represented functions. Lindsey had difficulty determining whether a graph of a dot and
a graph of three dots were functions. She said she had never seen any examples in class
like these before. She responded to the problems by stating that they were not functions
because there were no lines, and she did not think that the vertical line test could be
applied to these problems. With the symbolic representations (equations), her strategy
was either drawing a graph and using the vertical line test or recalling factual

knowledge.

L: y = x”is a function. [She did not use her graphing calculator to draw a
graph of this function.]

L: How do you know that?

L: I remember that a graph of this equation is a parabola facing upwards

and if I think of using the vertical line test with this graph, each [vertical]
line crosses the graph at only one point. So it is a function because there
is one x for one y. Same as y = 4, when you draw a graph, it is a

horizontal line. So each vertical line crosses the graph only once. This
means each x has only one y. So it is a function.

Lindsey was able to connect her knowledge of mathematics and physics. For

example in the Car Problem (Instructional Interview Problem No. 2), she related the
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speed and the acceleration of the cars, correctly responding that Car B had a higher
acceleration than Car A because its graph had a steeper slope than that of Car A.

In this interview, Lindsey connected and applied her understanding to real
situations but not without some assistance. As she worked with the Ball Dropped

Problem (Instructional Interview Problem No. 4), she demonstrated her understanding
that s(¢) = —16¢> + 145 was a function because its graph was a parabola opens up and it

passes the vertical line test. However, she explained that it did not have an inverse
because it was not a one-to-one function (failing the horizontal line test). In a general
case, her conceptual idea of a one-to-one function and the horizontal line test were
correct. On the other hand, in this situation, she did not consider relating the context of
this problem to a real situation. If she did, she would have recognized that this function

had an inverse.

L: I will graph this equation to see if it is a function or not [entering
y, =—16t> +145]. It’s a parabola facing down so it’s a function because
it passes the vertical line test. But it’s not a one-to-one function. So it has
no inverse.

L: Why do you think it is not a one-to-one function?

L: Because it does not pass the horizontal line test. When I draw a

horizontal line, it intersects the graph twice. This means there has two x
values for one y value. It’s not a one-to-one.

The interviewer encouraged her to think about this real situation by asking her to

explain the graph in some detail.

I In this situation would you please tell me what the xy-axis represents?

L: The x-axis represents time after the ball dropped from the building
and the y-axis represents the ball’s height from the ground.

When you graph the function, what size of a window did you use?

I set Xmin = —10, Xmax =25, Ymin = —10, and Ymax =150.

Is there anything not appropriate for using this window?

Umm... [pausing]

What is the difference between a ball being thrown up and then dropping
to the ground and the ball dropped from the building to the ground?

Oh, I see. The ball dropped from the building should go from the top to
the ground and the ball that is thrown up should go up and then down. So
I should set my window for Xmin and Ymin from O [changing the

&
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calculator window to Xmin = 0 and Ymin = 0 and graphing it again]. It
is a half of a parabola facing down. It’s a one-to-one function. So it has
an inverse.

Lindsey showed her understanding and a symbolic manipulative process of

finding a function inverse based on this real situation:

To find the inverse, I need to switch x and y. In this case it’s s and ¢. So I have
t =—16s> +145, and then solve for s. I minus 145 from both sides [writing

. : . t- ~16s”
t—145 = -16s”] and divide both sides by —16 [writing ! 125 = 112 SO
and I need to take a square root of both sides to get s [writing

t—145
-16

=+/5” ]. I don’t think I need a negative value because it involves

—145

time and height. So I have = s. This would be an inverse of this

function.

Instructional Interview Two

Lindsey demonstrated that she was able to create a quadratic function
corresponding to the given graph as she worked on Instructional Interview Problems No
5 and No. 6. She also showed that she was familiar with using a graphing calculator by

adjusting the window of her calculator to match that graph.

Since this parabola faces up so a is a positive number. I don’t know what it
is. Let’s say 1 for now. The vertex has been moved to the right and down so
h 1s a positive number and & is a negative number. Let’s say the equation
isy =1(x—5)* = 2. Let’s see how this graph looks [entering the equation
into her calculator]. The graph is not quite the same as this picture [the given
graph]. Let’s see. My calculator window i1s standard window and the graph
looks too small. I will change the window to Xmin =—5, Xmax = 15 and
Ymin =-5, Ymax = 40 [graphing the graph after changing the window]. It
looks pretty close to this graph [the given graph].

When asked why she adjusted the window of her calculator instead of adjusting

the quadratic equation, Lindsey explained,
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I think all [a, A and k] are in the right position. But it looks a little bit
different than I thought because my window differs from the given graph.
And after I changed the window my graph looks the same as this one [the

given graph].

Working on Instructional Interview Problem No. 6, Lindsey entered the function
f(x) = x* into her calculator to see the width of the parabola when a = 1 so she could
estimate the a variable for the function g(x) . Lindsey remembered the effects of a, A

and k from her class and from the Interview Problem No. 5 that she needed a negative

number between —1 and 0 to make the parabola wider and open downward.

A negative number makes a parabola face down and the decimal number less
than 1 makes 1t wider.

She also remembered that she needed a negative number for # and a positive number

for k to be the vertex of g(x) . She stated that:

g(x) is wider than f(x) and it faces down, so a for g(x) needs to be a
negative number and the number for a need to be a decimal between —1 and 0
because a =1 or —1 gives the width of the graph about this [pointing to the given
f(x) graph]. The vertex is in the second quadrant, so I need a negative number

for A and a positive number for £.

When working on the Instructional Interview Problem No. 7, Lindsey solved for
the year that D could earn more than C. Lindsey was able to solve the problem from

their graphs.

L: To find when D will catch up C, I will use their graphs and look at the
intersection point if these graphs [entering two functions:
¥y, =27000+1500x and y, =21000+2100x ]. Umm... then for
window, I make my Xmax = 100 and my Y is big, very big. Umm... It
must be more than one of these [27000 or 21000], I think 40000 would
be nice and big enough.

I: Why do you think Y is very big?

L: Because a fixed amount of money starts from 27000 for C and
21000 for D and they earn more every year so the amount of money is
getting bigger and bigger [setting her window as
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Xmin= —10; Xmax = 100, Ymin = —10 and Ymax = 40000; however,
she could not see the graph well enough, so she tried to adjust her
window to Xmin = —10; Xmax = 50; Ymin = 10; Ymax = 50000]. This
looks much better. Then I just calculate the intercept. And it said

x =10 and y = 42000 [finding an intercept with the calculator].

Why did you change your Xmax to 50?

Because I just think that no one can work for 100 years.

If I want to set Xmin = 0, does this work?

Yes, because no one works less than zero years.

Besides solving the question graphically to find the intersection point, Lindsey also

used symbolic manipulation.

I: Is there another way to find out when D is gonna catch up C?

L: Umm... I would set the salary [function] of C and D to equal each other
and then solve for N.

L Please show me how you would solve it.

L: I'set 27000 + 1500N = 21000 + 2100N and get a term with N to one side
and a term that has only number to the other side by subtracting 21000
and 1500N from both sides [writing 6000= 600N ]. Then I divide both

6000 600N

sides by 600 [writing——— = ———— , therefore, 10 = N].
y 600 [writing = 5 = 600 N

Lindsey understood algebraic simplification. She was asked to determine 1f

x> -4

fx)=

5 and g(x) = x — 2 in the Equivalent Function Problem (Instructional
X+

Interview Problem No. 8) were the same. Initially, she thought they were the same

because she simplified = 4_(G-2)(x+2) _
x+2 x+2

(x —2). When she was asked to prove
that this was true for every x value, she chose several numbers for x and entered those
valuesto f(x) and g(x) . She found that these functions were not the same when

x =—2. Her explanation was:

f(x) and g(x) are not the same because f(x)has a domain restriction. I mean
for the function f(x), x cannot be —2. If x = -2, the function is undefined
because the denominator equals zero. x values for g(x) can be any real numbers.
There 1s no restriction for the domain of g(x).
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Lindsey’s Post-Instruction Solution Strategies and Algebraic Thinking and Reasoning

Lindsey worked on the post-instruction interview in the same manner as in
previous interviews. She read the problems carefully, stated the information that she
understood, and described her ideas about how to solve the problems. Working on the
Function Instruction Problem (Post-instruction Interview Problem), she identified the
portion of the information that related to a function that she needed to create. She
extracted information from each constraint, represented it symbolically, and made a
connection with other function concepts she had learned. From the first constraint, the
function undefined at —3, Lindsey stated that she needed a function in the form of a
fraction [a rational function], and a function was undefined if the denominator equaled

zero. She said that “If x = -3, then x + 3 = 0. Therefore, the denominator of this function
) ) ) 1 . o
is x+3.” For the second constraint, the function zero was — 5 Lindsey justified her

thinking and reasoning as:

1 ..
The numerator has to be zero when x = — because the zero of a function is the
2
) ) 1
value of x when we set the numerator = 0 [setting an equation x = — then
2
.1 ) ) 1
subtracting 5 from both sides]. So the numerator 1s x — 5

X ——

After working on the first two constraints, Lindsey got g
X+

as a part of the function.

For the third constraint, the function was always nonnegative, Lindsey verbalized her

thinking and reasoning:

The function has to be nonnegative. So I can put the absolute value for the
1

xX——

whole thing [writing 2

] because no matter what x is, [ always have

positive numbers for y.
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Lindsey forgot to exclude —3 from the values of x that made the function nonnegative.

However, the interviewer probed her to rethink her solution.

I: Can x be any number to make this function nonnegative?
L: Any numbers. Umm.. .but —3 because at x = —3 the function is undefined.

Lindsey continued working as follows:

L: A function has domain from —5 to positive infinity. What I have now
works for these three constraints. I’d better not change what I have but I
need something to make the domain of the function start from —5. For
some reason, I should have x + 5. Then when I solve for x, 1 will get

x =-5. Iremember what it is. It is/x+5 .
I: Why do you think itisvx+5 ?
L: I remember how to find the domain of this type of function. The number

under the square root cannot be a negative number. So x + 5 has to be
greater than or equal to zero [writingx+52> 0] thenx > 5.

I: What will you do with this expression?
ot
L: I will combine it to the first part that I have [ g ]-
x+

I: How can you do that?

At this step, Lindsey began using a guess-and-check method.

1
x —_——
[ g ]. I don’t think the addition and subtraction would work because the
X+

zero of the function may be changed. I think either multiplication or division.
Umm... I will try adding, subtracting, multiplying, or dividing to the first part

1
x ——
will work. I will try multiplication [writing g e J/x+5]. Iam going to
X+

.. 1 )
check whether a function is undefined at —3, has a zero atE , and has a domain
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1
x ——
from -5 [entering the function y = § e vx+5 1into her calculator, then
X+

looking at the tabular representation menu]. Yes! This function works for all
these constraints. Now I have only one constraint. If x = 4 then y has to be 7.
From the table, when x =4, y = 1.5 but I need y to be 7. [ know that I cannot
add or subtract any numbers because that will not work for the first four
constraints. I will try to do multiplication again. So 1.5 times x equals 7
[writing 1.5x = 7, then solving for x] then x = 4.6666.... So I will multiply

1
4.666...to the whole thing [writing 4.666... e § e Vx+5]. So my final
x+
_1
function is y =4.666... g o Jx+5.
x+

Lindsey was another student who was able to provide a function that satisfied all the

five constraints.

Kyle

Kyle worked on the mathematical function problems used in this study in the
same manner through all the problems. He extracted and represented information from
each problem situation, interpreted a solution, and applied the appropriate solution
strategies to a new problem. With instruction, Kyle improved his thinking and
reasoning processes. At the end of the course, Kyle had developed his algebraic
thinking and reasoning ability. He was able to extract information from a situation,
represent that information in multiple ways, interpret the findings or solutions, and
apply the findings to new situations. He improved his thinking and reasoning skills and
was able to solve mathematical function problems in the textbook for this class as well

as the problems on the quizzes and exams.
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Kyle’s Solution Strategies and Algebraic Thinking and Reasoning Prior to Instruction

Prior to the instruction on functions, Kyle described his solution strategies and
his thinking and reasoning when working with mathematics problems. He read each
problem to obtain information and decided on a method to solve the problem. He
typically did not use tools such as scratch paper to help him solve the problems;
however, he sometimes used a calculator. He did not draw any pictures or diagrams. He
gathered information from graphical representations (i.e. the dependent and
independent variables represented on the Cartesian coordinate system) and transformed
a graph to a verbal representation, and vice versa. In addition to working with those two
representations, Kyle was able to analyze and interpret the information provided as a

graph. For example, he transformed a verbal representation to a graph (see Figure 25):

Look at George’s graph. It looks like he steadily eats his popcorn. He eats faster
than any other people because his time shows that he spends shorter time to
finish his popcorn than his sister, his mom, and his dad. Actually, I don’t think
his mom eats all of her popcorn because the graph shows that her amount of
popcorn is not zero. For his sister, she eats at different rate; sometimes she eats
fast, sometimes she eats slowly. Her graph varies. She doesn’t eat the whole
popcorn in her bowl. She has some popcorn left over because her graph shows
that she has still has some amount of popcorn left. George’s dad, he starts eating
at the constant rate because of the straight line. Umm. .. it looks like he stops
eating right there or takes a break, or maybe the intermission of the movie
[laughing] and then he starts eating at the constant rate again until he finishes his
popcorn.

Besides working with those representations, Kyle worked on an algebraic
problem related to his background knowledge of percent calculation (Pre-Instruction
Interview Problem No. 2.). Looking at the information provided, he initially thought
that it was true to say, “having a 20% clearance sale and getting an additional 10% off
makes a total discount of 30%.” After he checked himself, he found that his initial

thinking was incorrect.

It looks like it’s true but we can check it. Let’s say he buys a $60 sweater and
there is 20% off. Then 60 times .20 [using a calculator], which means $12 and
then 10% off because she is an employee; $48 times .10 it means she has
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another $4.80 off so she has $16.80 for her total discount. And 30% off of $60
should be 60 times .30. Oh! No. They are not the same. It’s $18 for 30% off at
one time.

Kyle made a table for the information he found for the Pre-instruction Interview
No. 4. He said that the table helped him see the information easier than the words in the

problem (see Table 7).

Table 6
Kyle’s table representing information for Pre-Instruction Interview Problem
No. 4
Town A Town B
1980 5000 6000
1990 8000 9000

Kyle described his thinking and reasoning:

Looking at the table, I can definitely say that umm... they are both increasing by
3000 people. I guess Brian was right because both towns are increasing by 3000
people.

In some cases, Kyle focused his thinking on one specific point, ignoring all

others. Getting one answer for the problem, he did not think whether there was a

different answer for a different circumstance.

I would say that Linda was absolutely wrong because both towns were
increasing by the same amount of people but she said Town A had grown more.
So she is definitely wrong and Brian was definitely right.

Thinking of the obvious feature of information (the differences between S000 and 8000
and between 6000 and 8000), Kyle had concluded incorrectly that only Brian was
correct. His conclusion about Linda stopped him from further consideration of the
problem. His response suggested that he did not relate the difference between the actual

amount and the percent change.
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Kyle’s Solution Strategies and Algebraic Thinking and Reasoning During Instruction

While working on the problems during the instruction interviews, Kyle
demonstrated his ability to solve mathematical function problems. Information from
classroom and recitation observations, homework assignments, and quizzes were used
for clarifying the description of the strategies and algebraic thinking and reasoning he

used as solving the problems.

Instructional Interview One

Kyle approached the first problem assigned in the first interview by reading the
problem at a normal speed. He used different methods, relying on the function
representations given in the problems for determining a function. He used the vertical
line test when he determined whether a graphical representation represented a function.
He checked numerical inputs and outputs when a numerical (tabular) representation was
given. He drew a graph using his graphing calculator and then used the vertical line test

when a symbolic representation was provided.

I’m gonna run the vertical line test on each graph and if it doesn’t intersect the
graph more than one point, it means there is no more than one output for each
input so it is a function. Therefore, graph (a) represents a function. For graph (b)
if I draw vertical lines, the lines intersect the graph two points so this means
there are two outputs for one input so it is not a function.

When he worked on problem (c), a graph of a point, he stated that he did not understand
what the point represented. However, he continued using the vertical line test method.
He correctly identified the graph of a point as a function. Working with the graph of
three points, Kyle changed his method to checking inputs and outputs because the graph
did not have a connection line between points. He said, “This is a weird graph.” He had
never seen this type of graph before, but with respect to the input / output approach, he
said it was a function because there was one output for each input. Working on a

numerical representation, he stated that the table represented a function.
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I think it is a function because there is no repeating value for x.

What do you mean by repeating value?

I mean each x didn’t have different values for f{x) or y. There is no
repeated x value for different y values. That is what [ mean. For
example, if x =2; y =333.8 and x =2; y = 377.3, this x is repeated with
different y outputs. In this case it is not a function.

Kyle drew a graph using a graphing calculator and then used the vertical line test to

determine if a symbolic form represented a function. He easily and quickly graphed the

equation if it was given in the form of y in terms of x (i.e. y = x”or y = 4). He seemed to

have difficulty when an equation was not written in the y equals form.

K:

s

Lo

I do not know how to graph this (x* + y* =1) in my calculator. Umm...
let me think [pause]. Yeah. I remember. I need to solve for y.

How can you solve for y?

I subtract x* from both sides and then take a square root. And I
remember that the number under a square root cannot be a negative

number. [writing y* = —x> +1, y =+v—x> +1].
Why do you have two values for y?
I remember from my class that taking a square root of a positive number,

like x* = 4, Twill get two values, 2 . One is positive and the other is

negative. So Iput y, =v—x>+1 and y, = —v-x’ +1 into my

calculator. [looking at the graph in the calculator]. It’s a circle, so it’s not
a function because if I draw a vertical line, it intersects the graph two
points.

After seeing the graph, he realized that the symbolic manipulation that he worked

through was reasonable to conclude that this equation was not a function. He stated that,

Actually, I don’t think I need to graph it because it obviously shows

that y = #4/—x” +1. There are two y values, one negative and one positive for
one X input. So it is not a function.

Kyle responded to the second question of the Instruction Interview Problem

(Car Problem). He stated that Car A and Car B had the same speed at t = 1 hour because

they were at the same point. However, his response was not what the question
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requested. Therefore, the interviewer probed by asking him to describe the information

he got from the graph. He described:

From the graph, Car A and Car B start traveling from time = 0. Car A goes
faster than Car B. But it seems like Car B is speeding up faster than Car A
because the graph of Car B is steeper than the graph of Car A. Att =1 hour they
have the same speed. After 1 hour, Car B goes faster and faster while Car A
goes at almost the same speed.

Even though Kyle described the graph correctly, he incorrectly responded to the
question. He stated that Car A and Car B were at the same position. He explained that
they were at the same point, which should mean they were at the same position. He
correctly answered the second part of this problem that Car A and Car B had the same
speed because their graphs intersected at the same point. He neither realized that he
gave the same response to two different questions nor recognized that he changed the
information represented on the y-axis. He sometimes considered the y-axis as speed, but
at other times, he considered it as the cars’ positions.

Kyle connected mathematics and physics concepts providing the correct answer
to the third question. He related the speed and the acceleration of the cars and correctly
identified that Car B had a greater acceleration than Car A because its graph had a
steeper slope than that of Car A.

Kyle transformed the information represented by a graph to a symbolic form. He
constructed three linear equations corresponding to each line in the graph of Instruction
Interview Problem No.3a (see Figure 18). He showed his procedure for finding the
equations. Working on the third part of this problem, Kyle incorrectly concluded that
the first and the third lines had the same equation; in other words, they were the same
line because they had the same slope. When he was asked to show that they were the

same, he used the y = mx + b formula.

Umm...y=mx+b.The slopeis%,so y=%x+b.1don’thaveb for the y-

intercept. I will draw this line further to find the y-intercept [extending the most
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right line until it intersected the y-axis]. The y-intercept is zero. So the equation

1Sy = %x +0= %x . It is not the same as the first line.

Kyle did not use the point-slope form to find a symbolic representation of the third line.
When asked whether he could find a symbolic form of a linear function if two points
were given, he said he could not remember how to do it. He was not sure that he had
learned about this in class. He was probably absent from the class when this concept
was taught. Looking at his homework, the interviewer found that he had not done this
exercise yet. There was no evidence showing that he was able to find a linear function
using the point-slope form.

While working on the application problem (Instructional Interview Problem No.
4), Kyle was not able to apply the problem context to a real situation. As he worked
with this problem, he drew the graph of the ball dropped function (using a graphing
calculator). Seeing a parabola, he stated that it was a function because it passed the
vertical line test. However, he did not connect the problem situation to a real world
situation. Thus, he concluded that this function had no inverse because it was not a one-

to-one function (did not pass the horizontal line test).

Instructional Interview Two

Kyle responded to the two problems related to the graphical representation

(Instructional Interview Problem No 5 and No. 6) without first using a description of
variables a, &, and k in a quadratic function [ y = a(x — #)* + k]. When asked, he did

describe the variables.

K: A parabola is opened upwards and it’s not too wide or narrow so I ‘m
gonna try a = 2. Well, I think that the distance from the y-axis to the
vertex is about 2 and from the x-axis to the vertex is about 1. I’'m gonna
graph this function y = 2(x —2)* —1.

I. Would you please explain how do you get those numbers and what each
of those numbers represented?

K: I got 2 for a because the parabola is opened up. If it’s upside down, then
a will be a negative number. And the distance from the y-axis to the
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vertex 1s represented by A, which has two directions. If it goes to the
right, A is positive. If it goes to the left, / is negative. And the distance
from the x-axis to the vertex is represented by k. It’s positive if it goes up
and negative if it goes down. So I got 2 for a, 2 for A, and -1 for £.

After explaming how he got the numbers for each variable, he graphed the function

using his calculator.

K: That’s not the same as that graph (the given graph in the problem).
Umm... I may need to change a because it makes the graph wider.
I: What number will you select to make the graph wider?

K: I’m not sure. I can’t remember but I can try [putting y, =3(x —2)* -1
and y, = (x—2)* —1]. Now I know that the smaller a makes the graph
wider. a = 1 looks good to me. Let me try a smaller number than that.
Let’s say a = .5 [entering y =.5(x —2)* —1]. The graph crosses the y-
axis a little too high. Let’s try one more time; a = .75 [entering
y =.75(x —2)* —1]. I think this is the best.

Kyle connected the information of the graph of f(x) provided in the
Instructional Interview Problem No. 6 to the graph that he needed to find the symbolic

representation. From the reference graph [ f(x) = x*], he said:

This is y = x*> which means a = 1 and for the graph of g(x), it’s much wider so a
must be a number smaller than 1, and it’s upside down so a is a negative
number. Let’s try a=—.5. Umm... I think that # = -5 and &k = 1 because the

graph moves to the left more than moves up [entering y = —.5(x ~ (-5))*> +1] in

his calculator]. Umm... It should be wider and the graph should cross the y-axis
at about —5. So I will use a smaller number. Let’s try half of it. So a =—.25

[entering y = —.25(x — (=5))* +1]. That looks perfect.

Kyle did not remember the effect of size for a variable a in the symbolic representation
of a quadratic function. He used the guess and check method to find his solution.

When working on the Salary Problem (Instructional Interview Problem No. 7),
Kyle formed his response with symbolic representations. He initially thought about the
effect of the length of the date of contract.
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Will B ever earn more per year than A? Umm... It depends on how many years
from the date of contract. I mean if they both have the same amount of years
from the date of contract, I can tell that A will earn more because 2500
multiplies by the number of years plus the fixed salary, which is $30000, so A
will earn more than B which has the same fixed amount of money plus 2800
multiplies by the same number of years. If the number of years from the date of
contract of B 1s higher than that of A, then he probably earns more.

Kyle also focused on a symbolic representation for the last part of the problem.

K: Well, D’s salary is 21000+ 2100N and C’s 1s 27000+1500N which
means that D makes 600 dollars more per year of the bonus. (He referred
to the term with the variable N “bonus”). C makes $6000 more for the
fixed salary (the constant term) per year but they make $600 less time
the number of years. So it will take sometime for D to catch up to C.

I: Can you figure out how long it will take for D to catch up to C?
K: Oh yeah.
I: How long?

K: OK. They earn 6000 more for this (constant term) and 600 less for a
bonus. So 6000 is divided by 600 [entering 6600000

in his calculator]. That

would take them 10 years.

To find out whether two functions representing different forms of a symbolic

representation were equivalent, Kyle did not consider a domain for each function. He

x*~4

used a factoring method to check whether f(x) = and g(x)=x—2 were the

same. However, he initially thought that % is 0 was true.

x> ~4  (x+2)(x-2)
x+2 (x+2)
like terms getting x—2. Then they are equal to each other.

Yes, they are the same. They factor and then they cancel

When asked whether he could show that they were the same, he correctly
entered some positive integers in both functions; however, he did not use any negative

values.

I: Will you go with all real numbers?
K: It will take me years.
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I: Let me pick one number for you
K: What?
I: -2
2
K: (2;722 = % =0, and —2-2 =—4. Wow! They are not the same.
-2+

Although he incorrectly said—g- = 0, he knew that there was a number that made f{x) and

g(x) different. When challenged to think about zero divided zero, he recognized this

mistake.

I: Are you sure that% =07

K: Oh, zero can’t divide it. I can’t find f{x) when x = -2 but I can find g(x)
when x =—2. So they are not the same.

He challenged his own belief that these two functions were different for all negative

numbers. After trying a few values, he was convinced that only a value of -2 was a

problem.
K: Wait this doesn’t work for all negative numbers or just —2. Let me try
pa— 2 p— p—
x=3, (=3)" -4 2745 -5 and -3 -2 =-5. It works. So it’s just
-3+2 -1 -1
-2
I: Why do you think -2 don’t work?
K: Because zero can’t be a divisor so if x =-2, x + 2 will be zero, and
2
1) = 2" will be undefined.
x+2

Kyle’s Post-Instruction Solution Strategies and Algebraic Thinking and Reasoning

By the end of the instruction, Kyle’s conceptual knowledge of functions had
improved. He worked on the problems in the same manner as he did in the previous
interviews. He identified the portion of the information that related relevant information
to achieve the solution. In the Function Construction Problem (Post-Instructional

Interview Problem), he gathered information from each constraint, represented it
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symbolically, and made a connection with other function concepts. His first thought

about an undefined function was in the form of a fraction (a rational function).

Because 1t’s undefined at —3, so the function is a fraction and x + 3 1s at
the bottom. When I use -3 for x, it makes the denominator be 0 and then that 1s

3]'

undefined at x = -3 [writing

He continued working on the other constraints.

The function has a zero at% . Umm.... (pause). This means that when x = % ,

y = 0. It’s the same as x-1ntercept. And when we look for x-intercept we set the
top of a fraction equal to zero. I mean numerator. If I set the numerator equal to
zero and then solve for x, I will get a zero of a function or the x-intercept.

His process was to work backwards by setting x = % and making the equation equal to

.1 ) : 1
zero (subtracting 5 from both sides). He set the expression for the numerator as x — 5

1
X——
[writing 2 ].
x+3
K: Next a function 1s always nonnegative. I think it needs an absolute value
sign for this.
It What does nonnegative mean?
K: Positive, 1sn’t 1t?
I: How about 07 Is it negative or positive?
K: Neither.
It Do you think nonnegative mean positive?
K: I think positive or zero. But absolute value still works because ]0[ =0
1
x——
and absolute value of negative numbers is positive. So +§ works for
x

these three constraints.
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At that moment, Kyle considered only an absolute value function that gave a
nonnegative value. He was unable to find a part of a function that made the function
domain start at -5 and continue to positive infinity. After thinking about the problem

for a few minutes, he gave up and continued working on the last constraint.

A function contains (4,7). Let’s see, what happens if I put x = 4? 4 minus %

would be 3% or3.5.And4+3is7.So # = % It’s not 7. I need the result 7.

If I multiply this —;—by 2,1 get 1. Then I multiply this by 7 again; I get 7. What

1
x —_——
am I doing? Umm... From g , Imultiply it by 2 and 7 [writing
X+
1
x ——
g ¢ 2 ¢ 7]. Ithink this function passes all the constraints except that one [a
X+

function domain that is —5 to positive infinity].

Even though the interviewer encouraged and probed him to rethink the fourth

constraint, Kyle was unable to identify a function that satisfied that constraint.

Analysis of Student Profiles: Solution Strategies
Algebraic Thinking and Reasoning

The purpose of this section 1is to analyze information from multiple data sources
including the classroom observations, interviews, students’ homework, quizzes, and
filednotes. The analysis is based on solution methods and reasoning in order to answer
the second research question. This section presents the strategies and techniques that the
students used for obtaining the solution to the problems. The problems used for
investigating students’ solution strategies and algebraic thinking and reasoning while

they worked with function problems consisted of 10 problems related to the main
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concepts of functions such as function definition, multiple representation, and
application problems.

The results from working on multiple representations problems revealed that
these five students had no difficulty determining graphical representations identifying

functions. They also used the same strategies of applying the vertical line test to all
graphs. The students reasoned, “[ y = x°] ... is a function because it passes the vertical

line test” and “it is a function because there is no [vertical] line that crosses the graph
more than once” The reason for not being a function was “... because the [vertical]
lines cross the graph more than once.” and ... because it does not pass the vertical line
test.” The students who incorrectly responded to the graphs of a point and three points
did not apply either the vertical line test or the input/output checking approaches to
those problems.

Similarly, all the students used the same strategy to determine whether the data
represented in a table defined a function. They provided the reason related to their
responses: “It is a function because there is only one output for each input” and “it is a
function because each input has exactly one output.” Some students identified the
number of times that each domain was listed, “... because there 1s no x (input) that has
been used more than once” or “... because there is no repeated x (domain) values.”

Relations in symbolic form were the most difficult for the students. They were
unable to immediately give their responses and reasoning. They needed more
information to consider whether the relations were functions, either graphing and
applying the vertical line test or entering numbers in the equation to check the
corresponding inputs and outputs. After either graphing each relation or entering some
numbers for x in the equation, they provided the same reason as they worked on the
graphical and tabular representations. The results from the multiple representation
problems indicated that the students had no difficulty determining functions given in
different forms of relations if they were familiar with those relations. This result
suggested that some students did not to think beyond what had been taught in class.

All the students used several approaches and reasoning strategies to obtain the

problem solutions. Some used similar strategies. Since the participants were asked to
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read the problems aloud before solving each problem, they all started attempting each
problem by reading the problem situation. The difference was how they read the
problem. Amy read problems fast, whereas Emma read slowly, Lindsey and Kyle read
at a normal speed, and Ross read faster than Emma but slower than normal speed. Ross
read each problem at least two times. All others read it once except when they were not
sure that they correctly interpreted the information from the problems. At the second
time of reading, they read only the sentences that confused them. When rereading the
problem, Amy read it slower than her first time. All participants made sure that they got
all information right by restating the relevant data sentence by sentence using their own
words. If there was something from their interpretation of what they read wrong or
unclear, they were probed by the interviewer.

All the students’ methods used to determine functions depended on the form of
the function. When relations were present graphically, they preferred to use the vertical
line test. If no vertical lines crossed the graphs more than once, they said those graphs
defined functions. When the data were presented in tables, they looked for
correspondence of the inputs and outputs. They stated that data in the table identified a
function because “every input has only one output.”

However, when the symbolic form was given, these five students used different
strategies depending on their familiarity with the relationship. Amy initially entered
numbers in the symbolic form of a quadratic function checking the corresponding
inputs and outputs, whereas she approached a linear constant function by graphing and
using the vertical line test. This process was easy for her. All other students (Emma,
Kyle, Lindsey, and Ross) determined whether the given symbolic representations
defined functions by graphing and using the vertical line test. During the interview, all
the students indicated their preference for the graphical representation in determining
functions.

The students had more success working on non-application problems (problems
given in a symbolic form). Not all of the students were able to relate a problem context
to a real situation the first time they worked with a real situation problem. Initially,

Ross and Kyle worked on a real-world problem (the Ball Dropped Problem) in the same
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manner as they worked on the algebraic symbolic representation. Without connecting
the problem situation to the real-world context, they provided an incorrect answer.
Amy, Emma, and Lindsey were able to make a connection, and they were successful
working on this problem. Through instruction, Ross and Kyle developed their sense of
working with the real-world situation problems. Two weeks after working on the Ball
Dropped Problem, they achieved correct solutions when they worked on other real-
world problems including the Salary problems and problems assigned for their
homework.

Lindsey and Emma indicated some flexibility when finding two given functions
that had the same values. They demonstrated that they could find these values using a
calculator or by solving an algebraic equation by hand. Other students did not show this
flexibility. For example, Ross only solved problems using a calculator. All the students
obtained the correct answer through their strategies.

Basically, the common approach used for solving each problem was making a
connection between a problem situation and examples that they had experienced. The
students used methods similar to those used by the lecture instructor and the GTA. For
example, in finding zeros of a function, if a function was simple (such as a linear
function or a quadratic function that were easy for them to factor), they used symbolic
manipulation to obtain the solution. However, if a problem was more complicated, they
used a graphing calculator to find the solution. All five students rarely checked their
answers after they finished working on each problem unless they were challenged. The
researcher noticed that both the lecture instructors and the GTA did not emphasize
checking problem solutions in class. All the students attempted the problems as much as
they could. If one strategy did not work, they tried another until they got a solution. All
of the students were successful solving the problems assigned in the interview sessions.
They got the correct solutions for those problems over 90% of the time after they solved
them using different approaches.

The use of graphing calculators supported the students’ confidence in doing
mathematics. All of the students in the class, including the five interview students, used

their graphing calculators as common tools to produce graphs and evaluate numerical
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expressions. The five interviewed students also used their graphing calculators for
alternative solution methods or a guide to develop a strategy for solving the problems.
For example, Amy used her graphing calculator to approach the Salary Problem after

she was not successful using symbolic manipulation to solve the equations.
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CHAPTER Y

DISCUSSION AND CONCLUSION

Current research on learning and teaching algebra has shifted the direction from
looking for students’ misconceptions to focusing on students’ strategies of problem
solving, and noting their understanding and their thinking and reasoning processes. This
study investigated college algebra students’ understanding, solution strategies, and
algebraic thinking and reasoning used as they solved mathematical function problems.
To address the first research question about college students’ understanding of
functions, a questionnaire was administered to 24 volunteer college algebra students
and interviews of five selected students were conducted to expand the description of
students’ knowledge and understanding. For the second research question, concerning
solution strategies and algebraic reasoning, the five students were interviewed and
observed as they approached and solved the problems. In addition, their thinking and
reasoning for using particular approaches were investigated. Classroom observations
were performed in order to describe the effect of instruction on their understanding of
functions and thinking and reasoning.

This chapter provides the conclusions and discussion of the main findings in two
areas: (1) students’ understanding of functions and (2) their solution strategies and
thinking and reasoning used while solving problems. Conclusions in response to the
two research questions were drawn from data collected through students’ interviews
and responses to the questionnaire. In addition to the discussion and conclusions, the
limitations of the study, implications, and recommendations for further research are

addressed.

College Students’ Understanding of Functions

The emphasis in the mathematics curriculum has shifted from memorization to
understanding concepts and relationships within mathematics and connections between

mathematics and other subjects American Mathematical Association of Two-Year
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Colleges [AMATYC], 1995; National Council of Teachers of Mathematics [NCTM],
2000). This suggestion has also been applied to the college algebra curriculum, where
the major topics include function concepts considered as the most important subject
matter in both lower-and higher-level undergraduate collegiate mathematics courses
(Selden & Selden, 1992, Romberg, Fennema, &, Carpenter 1993). Function concepts
are primary ideas in the study of many other mathematical areas, in particular in the
study of calculus concepts, such as limits, derivatives, and integration. The concepts of
functions are also used outside the mathematics field and in real-life situations, such as
bank accounting and the stock market. Because of the importance, the concepts of
functions are the specific mathematical topics investigated in this study. Particularly,
this study focuses on college level students’ understanding of functions, their problem-
solving strategies, and their algebraic thinking and reasoning processes.

How students connect their understanding of functions and how they use these
ideas to solve problems is important in determining how to help them grow in their
understanding. Hiebert and Carpenter (1992) classified mathematical knowledge and
understanding in two categories: procedural and conceptual. Procedural understanding
was defined as a sequence of actions or operations. Conceptual understanding was
defined as the network connection of knowledge structures. In solving x +5 =9, where
students typically leave the unknown on the left-hand side and swap the number to the
right-hand side, and change the sign, it 1s difficult to judge whether they have
procedural or conceptual understanding. On the other hand, students with a conceptual
understanding solve this problem in different ways depending on the relation they were
using. For instance, they solved the problem by adding the additive inverse of 5 to both
sides, subtracting 5 from both sides, or substituting numerical values for the unknown
until creating a true equation. In addition, they are able to discuss a rationale for their
actions.

Considering both procedural and conceptual understandings, this study
suggested that the students improved their procedural understanding of functions to a
more conceptual understanding. The students were able to describe their ideas of

functions including the definition of functions, multiple representations of functions, the
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usefulness of function concepts, and the application of function understanding to real-
world situations. The majority of the students demonstrated on their understanding of
function to the correspondence level, viewing a function as a relationship between to
sets of objects such that every element of the first set was matched with only one
element of the second set (Schwingendorf et al., 1992). Twenty-three of the 24
volunteer students in this study realized that the same function could be represented in
several forms. The most common forms that the students in this study considered were
graphical, numerical (tabular), and symbolic.

The research related to function concepts in secondary and college levels has
identified students’ misconceptions, difficulties, and lack of success in understanding
functions. For example, the students in Vinner and Dreyfus’s (1989) and Selden and
Selden’s (1992) study indicated that students had a limited understanding of functions.
The study conducted by Tall and Baker (1992), which assessed students’ ability to
identify functions given graphically and symbolically indicated that the students
perceived graphs to represent functions if they were smooth (either a straight line or
curve), not piecewise, and not constant. Most of the students in Tall and Baker’s study
did not consider the graph of a horizontal line to be a function. Slavit (1994) suggested
that students had misconceptions that functions were not constant, they were linear, and
they were continuous and smooth. Vinner (1983) and Selden and Selden (1992)
illustrated college students’ misconceptions about functions; they did not consider
constant functions as functions because constant functions were one-to-one and the
symbolic representation of constant functions did not contain an x-variable.

In this study, however, these college level students developed a broader
advanced understanding of functions through instruction. The interviews with the five
selected students indicated that the misconceptions found in the previous studies were
not found 1n this study. The students in this study correctly described and worked with
both piecewise-defined functions. Contrary to other studies (Sfard, 1992; Slvavit,
1994), the students in this study expanded their interpretation of functions to include
one-to-one and many-to-one. In fact the students seemed to have a good understanding

of one-to-one functions and inverse functions.
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The interviews of the five students indicated that the symbolic and graphical
forms were used more often than any other representations while these students solved
problems. When interpreting the information in the problems, they were able to change
from one representation to another, such as changing a verbal representation to a
graphical or to a symbolic representation. When solving word or application problems,
they changed the words represented in the problem situations to different types of
representations, such as, tabular, graphical, or symbolical.

The results of this study may have reflected the impact of NCTM (1989, 2000)
on algebra instruction. NCTM recommended a shift in the direction from memorizing
to understanding concepts. The information from the interviews of the five students and
the 24 students’ responses to the questionnaire indicated that the students had a better
understanding of functions than those students in prior studies. Students’
misconceptions and difficulties found in early 1990s studies did not appear in this
study. Thus, perhaps with the NCTM (1989), National Research Council [NCR] (1989)
and AMATYC (1995) calls for new directions in teaching and learning mathematics,
particular at high school levels, students have arrived in college with a better
understanding of functions. Generally, most of the students in this study were able to
identify the difference between equations and functions, were able to interpret
mathematical situations in different forms, and were able to apply their understanding

of those concepts to new situations including real-world situations.

Solution Strategies and Algebraic Thinking and Reasoning

For this study, algebraic thinking and reasoning refers to the ability to use
mathematical symbols and analyze situations by extracting and representing
information in words, diagrams, tables, graphs, and equations. Algebraic reasoning also
includes interpreting and applying mathematical solution methods to new, related
situations. Generally, the solution strategies in this study referred to the methods or

techniques used for obtaining the problem solutions.
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The results of this study indicated that students were adept at using a variety of
strategies for identifying functions depending on the given forms. For example, they
applied the vertical line test to determine whether a graphical representation identified a
function. However, their automatic use of these strategies appeared more procedural
than conceptual.

This study revealed that the students did not often solve functional problems in
multiple ways unless they were challenged to do so. The information from classroom
observations clarified that the students were neither instructed nor encouraged to use a
variety of approaches solving the problems. Most of the time, the instructors
demonstrated only one approach to solve each problem. The instructional strategies
used in both lecture and recitation classes were traditional — the students listened to the
instructors’ explanations or description of the content and watched how their instructors
solved the problems.

In order to support various methods, mathematics instructors need to consider
using different ways to solve mathematical problems. Mathematics instructors need to
help their students see that there is no one right method to solve mathematics problems
(NCTM, 2000). Mathematics instructors should use and demonstrate various efficient
methods for solving the problems. The classroom observations revealed that the
instructors used traditional methods. They described all information given in each
problem situation and how to get the solution. They did not focus on identifying more
efficient methods or improving these methods. As a result the students did not
experience a more rigorous process in solving the problems. Rather, they observed the
instructors as they guided the thinking and the solution to the problems. The NCTM
(2000) recommended that instructors’ actions in their classroom need to encourage
students to think, question, and solve problems, as well as discuss their 1deas, strategies,
and solutions. This questioning would include the search for more efficient solution
strategies.

In this study the instructor determined the solution path and focused on
completing particular methods for solving the problems. Furthermore, after obtaining

the problem solutions, the students who were interviewed rarely checked their solutions
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unless they were specifically challenged to do so. The classroom observations provided
a clearly noticeable reason; the instructors did not emphasize this process. In addition
the students were not guided to use a variety of approaches to solve the problems. The
NCTM (2000) recommended that mathematical instruction “should enable students to
apply and adapt a variety of appropriate strategies to solve problems” (p. 334). Students
should be encouraged to use their knowledge of strategies for identifying alternative
approaches. “If the first approach to a problem fails, they can consider a second or third.
If those approaches fail, they know how to reconsider the problem, break it down, and
look at it from different perspectives” (NCTM, 2000, p. 334). Follow the NCTM’s
recommendation supports that students need to understand the problem better and make
progress towards problem solutions.

The students enrolled in this college algebra course were required to use
graphing calculators; however, no specific types of calculators were recommended. The
students used a variety of graphing calculators. They were allowed to use any tools and
techniques for finding solutions to the problems. Both instructors and students often
used their calculators to identify graphical representations of functions and to find a
solutions. The five interviewed students illustrated that they were able to use graphing
calculators fluently. They easily graphed, looked at equations or tables, and solved the
problems. For example, to find the solution of the problem involving two functions
given in a symbolic form, the students used a graphical representation to identify of two
functions had the same value; they searched for the intersection points of the two
graphs. These results confirmed the study conducted by Even (1998), who investigated
prospective secondary mathematics teachers’ flexibility for working with multiple
representations of functions. The results of Even’s study also indicated that the students
were able to use graphical representation to find problem solutions.

Earlier studies, such as Goldenberg’s (1988), suggested that students lacked
skills using graphing calculators, and needed instruction on the calculators in order to
use them as learning tools. However, this study, particularly the information from the
interviews, indicated that the students showed that they were able to use graphing

calculator tools easily. They were skillful with these devices and were able to use them
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to identify solution as well as to talk about their solution. During the interview session,
Amy, Emma, Lindsey, Kyle, and Ross showed that they were confident using their
calculators for plotting graphs of functions and adjusting for an appropriate graphics
window. The use of graphing calculators aided them in understanding the multiple
representations of functions.

The results of this study supported AMATYC (1995) and NCTM (2000)
recommendations for increasing students’ understanding of functions through the use of
technology. Using technology in mathematics classroom enables students to investigate
many mathematics examples so that they are able to generate and test their conjectures
and understanding. AMATY C recommended graphing calculators as tools that provide
students with examples of functions in multiple representations. Graphing calculators
can support students in the investigation of a large number of functions in multiple
forms: graphical, tabular, and symbolic. With graphing calculators, students are able to
investigate and make connections between properties of functions, and these
connections help students develop their understanding of functions and multiple
representations (Janiver, 1987, NCTM, 1989). “With calculators and computers
students can examine more examples or representational forms than feasible by hand,
so they can make and explore conjectures easily” (NCTM, 2000, p. 25). Computers and
graphing calculators can generate precise values and graphs of functions. For example,

using graphing calculators, students can easily obtain a graph of a function such as
f(x)=3x" +5x+2. Heid et al. (2002) described the use of technology, a computer

algebra system [CAS] to support students’ understanding of functions. The use of this
technology allowed them to connect their understanding of functions through the use of
multiple representations and to reason algebraically among various representations. In
this study, graphing calculators were used as one of the problem solution tools for
evaluating expressions, checking solutions, and transforming one functional
representation to another. This study suggests that progress has been made in

integrating graphing calculators in algebra instruction.
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Limitations of the Study

As with any research study, the study had some limitations. The selection of
participants, the sample size, the data collection instruments and procedures, and the
limitation of the researcher all in some sense limited the results of this study.

One obvious limitation to the study was the selection of participants for the
study. The individual college students in this study volunteered to participate in the
study. They were not randomly selected. The students who volunteered might have had
different mathematical backgrounds, experiences, and ability from those college
students who did not volunteer.

This study is an in-depth description of a particular setting of a single college
algebra class at a university located in Northwest area. The results of this study may not
apply to another setting, different group of college students, or university.

Another limitation of the study involved the potential that the data collection
instruments acted as a treatment. As mentioned previously, the Problem-Solving
Interview Problems may have been influenced by the researcher’s beliefs and biases,
and may have been biased towards specific fields. For example, the Car Problem
favored students with a physical science background. A variety of problem situations
for the interview may have been biased toward specific student backgrounds. The
interviews may have provided additional instruction for the five students. Thus, the
results of this study may not have represented a typical understanding of functions of
college algebra students who had experienced only lecture and recitation instruction.

The researcher also was a limitation in this study. The researcher’s presence in
the lecture classroom for the entire College Algebra course observations may have had
a limited effect on student learning in the lecture class. While the students may not have
noticed the researcher in the class, her presence might have had an effect on the
instructor and the GTA’s instructional strategies. Since they knew the purposes of this
study, the way that they selected examples and questions posed to the students could
have been affected. In the recitation classroom, which contained 30 to 35 students, the

researcher’s presence might have had a more noticeable effect on students’ learning.
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Finally, a limitation was directly related to the researcher’s biases. The
researcher collected the data and analyzed the data herself. Her background, beliefs, and
experiences could have led to unintended biases in the development of the data
collection instrument, the data collection, and the data analysis. The use of various
techniques of data collection, examining and documenting all relevant data helped to
minimize the effect of the researcher and strengthened the results of the data analysis.
Another effort to minimize this limitation was the use of five mathematics educators to
assist in the development of the questions for the questionnaire and for the interviews.
In addition, multiple techniques were used in this study (observations, interviews,
fieldnotes, and researcher’s journal) to provide various ways of gathering the

information.

Implications for the College Level Algebra Curriculum and Instruction

The results of this study have implications specifically for college level
instruction on the concept of functions. This study highlighted college algebra students’
understanding of functions, their solution strategies, and algebraic thinking and
reasoning while they solved mathematical function problems. This information 1s useful
for developing the curriculum and instruction on understanding of functions, using
effective solution strategies, and developing algebraic reasoning,

The students relied on their calculators because they were required to have them
for this course and they were allowed to use them at any time. Conversely, examining
some students’ quizzes and homework assignment, it was noticeable that, sometimes,
they showed the correct problem solutions, but their procedures were incorrect. When
asked how they got these solutions, they said they used the graphing calculator.
Students can learn with appropriate uses of technologies (Dunham and Dick, 1994,
Rojano, 1996). However, technologies should not be used as a replacement for basic
understanding. All technologies, including graphing calculators, need to be used widely
and responsibly to enrich students’ learning of mathematics (NCTM, 2000).

Specifically, graphing calculators have been recommended to assist students in their
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development of an understanding of functions (AMATYC, 1995, NCTM, 1989, 2000);
still instruction and assessment must continue to emphasize symbolic manipulation
skills, as well as use of the technologies.

The students in this study were successful in identifying functions in multiple
representations. Instructors need to consider introducing function concepts using these
multiple representations. As students progress in their understanding of these concepts,
they need to be guided to connect the different representation both within mathematics
and outside mathematics (Eisenberg, 1992). The results of this study indicated that
students had little difficulty making connections between multiple representations
within mathematical areas. Eisenberg (1992) stated, “Having the skills to visualize the
graphs of functions is one important component in having a well-developed sense for
functions, but many students are reluctant to (or cannot) connect the graph of a function
with its analytic description” (p. 174). The incorporation of graphing tools in the
curriculum does support students’ visualization of functions because the graphing tools
help them understand more abstract views of functions. Amit (1991) stated that high
failure rates in beginning calculus could be avoided if students were supported in
internalizing the visual connotation of concepts. Students should be instructed to select,
apply, and translate among different mathematical representations to solve problems
because “different representations support different ways of thinking about and
manipulating mathematical objects. An object can be better understood when viewed
through multiple lenses” (NCTM, 2000, p. 360). As a result, the use of multiple
representations in different subject areas as well as in real-world situations needs to be
emphasized. Mathematics teachers and educators need to consider demonstrating the
importance of the use of multiple representations in mathematics, science, and other
areas as well as in real-world situations.

The use of real-world problems was recommended to help students make more
sense of abstract ideas (AMATYC, 1995, NCTM, 1989, 2000). In this study, the
instructor provided only a few examples and homework assignments that used real-
world situations. Providing students more experiences in using function concepts in

real-world situations needs to be considered in order to make functional concepts less
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abstract and to support the development of connections of mathematical ideas to areas

outside mathematics.

Recommendations for Future Studies

This study highlighted college algebra students’ understanding of functions, the
solution strategies they used, and their algebraic thinking and reasoning while they
worked on mathematical function problems. The results from this study suggested
related areas for further research.

First, the use of volunteers from different class sections and majors may produce
prevailing tendencies that were not apparent in this group of participants. Additionally,
a larger sample group or samples from a smaller lecture class may provide more
widespread understanding of college students’ understanding of functions. Testing a
larger sample and using a different group of students could confirm the findings of this
study. Studies with design similar to this study, but with larger sample size and/or
different group of population, could be conducted to confirm the findings that college
algebra students’ understanding of functions has developed since 1990s. Since this
study excluded students who enrolled College Algebra Excel Program, perhaps more
research using college algebra students from the Excel Program may provide more
information related to students’ understanding of functions, solution strategies, and
algebraic thinking and reasoning. The students in the Excel Program are encouraged to
solve mathematical problems related to the concepts learned in their college algebra
class by themselves within the groups of 3-5 students. The students in the class do not
receive additional instruction, but they are challenged to demonstrate their algebraic
thinking and reasoning. The results of such an investigation can provide a more
understanding about helping college level students’ algebraic thinking and reasoning.

Second, the Principles and Standards for School Mathematics (NCTM, 2000)
recommended algebraic thinking and reasoning be included in the mathematics
curriculum at all grade levels. In addition, Crossroads in Mathematics: Standard for

Introductory College Mathematics before Calculus (AMATYC, 1995) suggested
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teaching in the college level should enable students to expand their reasoning skills.
However, the results of this study indicated that the students at this college level did not
have a significant development in their algebraic thinking and reasoning. One obvious
effect on their development of algebraic thinking and reasoning skills was from the
instructional strategies. Consequently, more research on the instructional strategies
supporting students’ development of algebraic thinking and reasoning needs to be
conducted.

Third, this study was conducted from a single college algebra curriculum class.
The class was instructed guiding by the Study Guide constructed by two mathematics
professors and a textbook selected by the representatives of the mathematics department
of the university where this study was conducted. More research needs to investigate
students’ solution strategies and algebraic thinking and reasoning from different college
algebra curriculum in order to confirm or disconfirm the results of this study.

Fourth, the Principles and Standards for School Mathematics (NCTM, 2000)
recommended mathematics instruction should enable students to organize and
strengthen their mathematical thinking and reasoning through communication with their
peers, teachers, and others. Communication provides a means for students to express
their ideas and thinking (NCTM, 2000). The observation of this study showed that
students did have many chances to exchange their mathematical ideas with others.
Therefore, future research needs to effective strategies that provide and support students
in communicating their mathematical thinking coherently and clearly to others. A small
class of 25-30 students may be a good place to start by investigating specific
instructional strategies that support communication skills. College Algebra Excel
classes may be a good resource population for more research because they are small
classes containing 15-25 students and because they focus on communicating their
thinking.

Finally, the Principles and Standards for School Mathematics (NCTM, 2000)
and Crossroads in Mathematics: Standard for Introductory College Mathematics before
Calculus (AMATYC, 1995) recommended the connections of mathematical concepts

within the mathematical discipline and other disciplines. Besides connecting the
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concepts of functions to some real-world situations, this study showed that students
related the function concepts to other subject areas. Future studies should consider how
students connect function concepts to other mathematical disciplines, to other subject

areas, and to various real-world situations.
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APPENDIX A

LETTER TO STUDENTS

Dear Students,

My name is Lakana Nilklad and I am a doctoral student in the Department of
Science and Mathematics Education at Oregon State University. My doctoral research
involves college students’ algebraic thinking and reasoning. More specifically, the
purpose of this study is to explore college students’ knowledge and understanding of
functions by focusing on their solution strategies and their thinking and reasoning
processes as they solve function problems.

I am asking for your help in my investigation. If you volunteer to become
involved in this study, you will be asked to complete a questionnaire providing
information about your background of mathematics courses taken and knowledge of
function. Nine participants will be asked to participate in two task-based interviews:
pre-instructional interview and post-instructional interview. These two interviews will
be video- and audio-taped recorded.

The questionnaire will last no longer than 10 minutes and each interview will
last no longer than 60 minutes. In order to complete the pre- and post-instructional
interview, the nine participants will be asked to solve five function word problems
using a thinking aloud protocol. After solving the problems the participants will be
asked questions related to the strategies they used to solve the problems.

All information gathered from the questionnaires, interviews, and classroom
observations will be kept strictly confidential. In particular, responses given in the
questionnaires and the interviews will not be shared with your instructor or graduate
teaching assistant. The data will be coded to protect the participants; pseudonyms will
be used so that participants will not be identifiable in any publication of the results of
the study. All the information including audio- and video-tapes will be kept in a secure
place. These tapes will be destroyed after the research project has been completed.
None of this information will be made will affect your grade. The results from the study
will provide information to support recommendations to mathematics educators and
teachers in the redesign of instructional strategies and activities to enhance students’
understanding of algebraic concepts, algebraic thinking and reasoning in general, and
understanding of function concepts in a particular case.

Your participation in this project would be greatly appreciated. If you are
interested in participating in this study, please fill out the form attached to this letter and
return it to me at the end of this class. However, participating in this study, you must be
18 or older. Your prompt reply is greatly appreciated.
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Participation is voluntary. There will be no compensation given to subjects
participating in this study. You may refuse to participate or discontinue participation at
any time without any penalty. Questions concerning this research should be directed to
either:

Lakana Nilklad at (541) 753-6668 or nilkladl@ucs.orst.edu
Prof. Margaret Niess at: (541) 737-1818 or niessm@ucs.orst.edu

Questions concerning your rights as a human subject should be directed to the IRB
Coordinator, OSU Research Office, (541) 737-3437 or irb@orst.edu

Sincerely,

Lakana Nilklad
Researcher

Dr. Margaret Niess
Major Professor
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By signing this form below, I attest to the following:

. T agree to participate in the research study in the following ways (check one):

___providing the researcher with biographical information about myself and
completing Function Knowledge Questionnaire.

____providing the researcher with biographical information about myself,
completing Function Knowledge Questionnaire, and participating in the
interview part of the study.

. T'understand that participating in this study, I must be 18 or older and my
participation in this study is voluntary, and that I may withdraw at any time with no
penalty.

. During the interviews, I have the right to refuse to answer any question(s).

. The researcher has explained the purpose and procedures of this research study, and
I have been given an opportunity to obtain answers to my questions.

. Tunderstand that the researcher will keep my responses confidential and will
destroy all records upon the completion of the research.

. T understand that participation will not affect my grade in the class.

. T'understand that the audio and videotapes will be transcribed by either the student
researcher or by a paid transcriptionist.

. Tunderstand that the results of the function knowledge questionnaire and the video-
and audio-taped interviews will not be shared with my instructor, nor affect my
College Algebra course grade.

. Tunderstand that there will be no compensation, no foreseeable risks or direct
benefits given to subjects participating in this study.

My signature below indicates that I have read and that I understand the procedures
described above and give my informed and voluntary consent to participate in this
study. I understand that I will receive a signed copy of this consent form.

Name (printed)

Signature date



228

Biographical Information Questionnaire

Age Gender Major

Tama: _ Freshman __ Sophomore _ Junior __ Senior __ Graduate
My intended major is

Please list all previous and current mathematics courses that you have taken at high
school and / or college levels. If possible, please include the grade, which you earned
for that course:

Level Course QGrade Year Taken
(High School / College)

Please respond to the statements in the table below (check all apply)
I am taking the mathematics courses because I like mathematics.
___the course is required for my major.
__the course is an elective requirement.
___the course is a Baccalaureate Core
requirement.

Other mathematics course(s) that I plan to take 1s (are) 1.
2

3.
4.
5.
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Contact Information

Name: Telephone number:
E-mail address:
The best way to contact me isby =~ phone _ e-mail

The best times to contact me are

Day Time
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APPENDIX B

INSTRUCTOR AND GRADUATE TEACHING ASSISTANCE
CONSENT FORM

By signing this form below, I attest to the following:

1.

I agree to participate in the research study. The purpose of the research 1s to
examine the students’ thinking and reasoning processes, and solution strategies
college students use working on function problems and effects of instructional
strategies on their ability to think and reason while they work on the problems. My
participation will allow the researcher to observe instruction in my class for entire
course.

I understand that my participation in this study is voluntary, and that I may
withdraw participation at any time with no penalty.

[ understand that I may refuse to answer any question(s).

The researcher has explained the purpose and procedures of this research study,
and I have been given an opportunity to receive answers to my questions.

I understand that the audiotape will be transcribed by either the student researcher
or by a paid transcriptionist.

I understand that the researcher will keep my responses and the students' responses
confidential and will destroy all records at the completion of the research. The
only person who will have access to this information will be the researcher and the
major professor. No names will be used in any data summaries.

I understand that I will not receive any compensation, foreseeable risks or direct
benefits for my participation in this study.

Questions concerning this research should be directed to either:

Lakana Nillkad at (541) 753-6668 or nilkladl@ucs.orst.edu
Prof. Margaret Niess at: (541) 737-1818 or niessm@ucs.orst.edu

Questions concerning your rights as a human subject should be directed to the IRB
Coordinator, OSU Research Office, (541) 737-3437
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My signature below indicates that I have read and that [ understand the procedures
described above and give my informed and voluntary consent to participate in this
study. [ understand that I will receive a signed copy of this consent form.

Name (printed)

Signature date
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APPENDIX C
STUDENT INTERVIEW PROTOCOL
(PRE-INSTRUCTIOAL INTERVIEW)

I. Introduction: Put a student [S] at ease with questions:
1. Tell me about the mathematics courses you had in high school.

2. What other college mathematics courses have you taken including any courses
you are taking this term?

3. Have you studied algebra and / or functions previously?

4. Are you confident in your ability to succeed in this class?
Would you consider this course as hard, not too difficult, or easy?
Do you like or dislike taking this course?

5. Are there any questions you would like to ask me before we begin?

II. Explain the procedures to Students

In this experiment, I am interested in what you say to yourself while you solve
these problems. In order to do this, I am asking you to think aloud while you work on
the following problems. What I mean by “think aloud” is that I want you to say aloud
everything that you say to yourself silently while solving the problem. Just act as if you
are at home or your private place doing homework, speaking to yourself. I would like
you to read each problem aloud and think aloud constantly from the time you are
presented the problem until you have given your final response to the question. If you
are silent for any length of time, I will remind you to keep thinking aloud. You do not
need to plan what you will say or try to explain to me what you are saying. Just act as if
you are in the room speaking to yourself. Do you have any questions?

II1. Explain confidentiality

I want to assure you that the video- and audio-taped recording of this interview
will be destroyed at the end of the study. Your identity will be kept confidential and
your name will never be used. Also, comments made in this interview will not be
shared with your instructor.
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APPENDIX D
STUDENT INTERVIEW PROTOCOL
(DURING INSTRUCTIONAL INTERVIEW)

I. Introduction: Questions before Working on Problems:

The purpose of this component of the interview is to find out more about the
aspects of this class you found beneficial in learning function concepts.

1.

Describe learning activities you have done in order to meet the class
requirements:

a.

For this class, you are expected to read each subsection of a unit
prior to the lecture, review and work on suggested problems after the
class. In addition, the instructor has a timeline as to when homework
is to be completed and handed in. Do you to follow these
suggestions or do you have a different process for learning the
material?

Do you use you textbook, lecture notes, a study guide, or handouts
for studying for this class? If so, which and how?

Have you used any outside resources including tutors, textbooks
differ from the one required for this course, or some other materials
related to functions for each section of function unit?

When you do not understand a concept in class, do you ask for help? If

yes, whom do you ask? Describe particular times and the questions you
asked.

Which of these activities or material will be helpful in understanding
function concepts? Explain why each is or is not helpful.

- Lecture

- Lecture notes

- Study guide

- Recitation

- Textbook

- Supplemental material
- Solutions manual

- Working with others

- Homework problems
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II. Activities during instructional interview

At this time, we will do some activities similar to those we did before the study
of functions. I will give you five function problems. You need to think aloud while you
working on these problems. I will give you a practice problem to remind you of the
think aloud process; first read the question as it 1s written, then proceed to solve the
problem as if it was a homework problem, and think aloud. When you are finished, we
can discuss you think-aloud process. After our discussion, you will continue working on
the five problems in the same manner.

III. Explain confidentiality

Again, I want to assure you that the video- and audio-taped recording of this
interview will be destroyed at the end of the study. Your identity will be kept
confidential and your name will never be used. Also, comments made in this interview
will not be shared with your teacher.
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APPENDIX E
STUDENT INTERVIEW PROTOCOL
(POST-INSTRUCTIONAL INTERVIEW)

I. Introduction: Questions before Working on Problems:

The purpose of this component of the interview is to find out more about the
aspects of this class you found beneficial in learning function concepts.

II. Activities during instructional interview

At this time, we will do some activities similar to those we did before the study
of functions. I will give you five function problems. You need to think aloud while you
working on these problems. I will give you a practice problem to remind you of the
think aloud process; first read the question as it 1s written, then proceed to solve the
problem as if it was a homework problem, and think aloud. When you are finished, we
can discuss you think-aloud process. After our discussion, you will continue working on
the five problems in the same manner.

Again, ] want to assure you that the video- and audio-taped recording of this
interview will be destroyed at the end of the study. Your identity will be kept
confidential and your name will never be used. Also, comments made in this interview
will not be shared with your teacher.

III. Questions after Working on Problems
1. How do you perceive your knowledge and understanding of functions?
2. Describe what you learned about function concepts in this class? Can you tell
me any specifics?

3. What helped you learn about these function concepts the most?

4. The problems you just completed used everyday events. Did you find the
context of the problem helpful in solving the problem? How?

5. Describe your understanding of functions. Does your thought about functions
differ from the beginning of the course? What is the difference?
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APPENDIX F
FUNCTION UNDERSTANDING QUESTIONNAIRE

. In your opinion, what does a mathematical function mean to you? Describe your
understanding of mathematical functions. You may use diagrams, picture, or
examples to clarify your thoughts.

[Additional space was provided]

. Can mathematical functions be represented in multiple ways? If so, give
examples of each type of mathematical function representation.

[Additional space was provided]

. In your opinion, how are mathematical functions useful in thinking about or
doing mathematics and in particular algebra? Give some examples. You may
use diagrams and picture to clarify your examples.

[Additional space was provided]

. In your opinion, how are mathematical functions useful in thinking about real
world situations? Give some specific examples. You may use diagrams and
picture to clarify your examples.

[Additional space was provided]
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APPENDIX G
PRE-INSTRUCTIONAL INTERVIEW PROBLEMS

. George and his family were watching a movie and eating popcorn. Each family
member had a bowl with the same amount of popcorn. The graphs below all
show the amount of popcorn remaining in the person’s bowl over a period of
time. From each graph describe what may have happened and provide your
reasons (Blubaugh and Emmons, 1999).

George’s Sister
George
Amount

Amount 0

of Popcorn
Popcorn

Time
Time
George’s Dad George’s Mom

Amount Amount

0
Popcorn Po;?com
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2. An applicant for a position at the clothing store is told by interview that employees
receive a 10 % discount on all purchases, including sale items. The manager gives
and example the following scenario “Suppose that we’re having a 20% clearance
sale. Then we would get an additional 10 % off, for a total discount of 30%” Do you
agree with the manager? Why or why not? Explain you reasoning (Retrived
September, 12, 2002 from the World Wide Web:
http://www.mathcount.org/Problems/problems.html).

3. Match each of the following seven scenarios with the most appropriate graph given.
As you look at each graph from left to right, remember that time is advancing
(Blubaugh & Emmons, 1999).

1. We rode the roller coaster steadily to the top, then went faster and faster
as we went down the other side. The speed of the roller coaster is
dependent variable of the graph, that is, the variable on the vertical axis.

2. The kettle heats before the corn begins to pop. The corn starts to pop and
continues popping until almost all the corn has popped. The amount of
unpopped corn in the kettle is the dependent variable.

3. A balloon was blown up in class and then let go. It flew around the
room. The amount of air in the balloon is the dependent variable.

4. At the beginning of spring, the grass grew slowly and I seldom had to
mow the lawn. By midsummer it was really growing, so I mowed twice
a week. In fall, I only mow once in a while. The number of lawn mowing
to dates is the dependent variable.

5. Itumned the oven on. When it was hot, I put in the cake. The cake baked
for about thirty minutes. I turned the oven off and removed the cake. The
oven temperature is the dependent variable.

6. We bought a pair of rabbits last year. They have had several liters, and
we have so many rabbits that the pens are full. If more are born, we will
have to give some away or find room for the new ones. The number of
rabbits is the dependent variable.

7. 1 Put water in the ice-cube tray and placed it in the freezer. The
temperature of the water in the ice-cube tray is the dependent variable.

A B c D

7

Time Time Time Time

Time Time Time
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4. In 1980, the populations of Town A and Town B were 5,000 and 6,000,
respectively. In 1990 populations of Town A and Town B were 8,000 and 9,000,
respectively.

Brian claims that from 1980 to 1990 the populations of the two towns grew by the
same amount. Whereas, Linda claims that from 1980 to 1990 the population of
Town A had grown more.

Who was right? Use mathematics to explain how both might have justified their
claim (Retrieved and developed September 12, 2002 from World Wide Web:
http://www.mathcounts.org/Problems/problems.html).
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APPENDIX H
INSTRUCTIONAL INTERVIEW PROBLEMS
(a) From graphs below, identify those are function of y in term of x (Assume

that y is the vertical axis and x is the horizontal axis). Explain your reasoning
(Schwingendorf, Hawks, & Beineke, 1992).

Yes Reason:
No

Yes Reason:
No

Yes Reason:
No

Yes Reason:
No

Yes Reason:
No

Yes Reason
No
Yes Reason:

No

Yes Reason:
No

'

Yes Reason:
No

%
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b. 1) Does the table below represent a function? Explain your reasoning
(Developed from Larson, Hostetler, & Hodkins, 2000)..

X 2 3 4 5 6 7
f(x) 330.8 | 370.3 430.6 | 460.2 | 490.0 | 570.5

Response and Reasoning:

[Additional space was provided]

i1) From the table above if one more data point (8, 430.6) is added, will
this new set of data be a function? Explain your reasoning.
Response and Reasoning:

[Additional space was provided]

(c).  From the symbolic representation given below, identify if they are
function of y in term of x? Explain your reasoning.

@D y = x’
Response and Reasoning:

[Additional space was provided]

i) y = 4
Response and Reasoning :

[Additional space was provided]

(i) x*+y* =1
Response and Reasoning:

[Additional space was provided]



242

2. The given graph represents velocity vs. time for two cars. Assume that the cars
start from the same position and are traveling in the same direction (Carlson,
1998).

e
(]
8 Car A
7
CarB
I
t=0hr. t=1hr
Time in Hours
(a) What is the relationship between the position (location) of car A
and that of car B at t = 1 hr? Explain.
(b) What is the relationship between the velocity of car A and that of
car B at t=1 hr? Explain.
(c) What is the relationship between the acceleration of car A and that
of car B at t = 1 hr? Explain.
(d) How are the positions of the two cars related during the time

interval between t = 0.75 and t = 1 hr.? (That is, is one car pulling
away from the other?) Explain.
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(a) Does this graph represent a function of y in term of x? Why or why not?
Explain your reasoning (developed from Dwyer & Gruenwald, 2000).
e

* 500
400

" 300} /

100—/,0

I T { Lot
100 200 300 400 500 600 700

%

Is it possible to represent this information in another way?

[Additional space was provided]

(b) Provide a situation that can be represented by this graph.

Y5

. >

i
'

Does this graph represent a function of y in term of x? Why or why not? Explain
your reasoning. Is it possible to represent this information in another way?

[Additional space was provided]
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4. A ball dropped from the top of a tall building has height from the ground
represented by s = -16¢> + 145 feet after t seconds. Does this situation represent
s as a function of #? Explain your reasoning. Ifit is a function, does it have an
inverse? If yes, find its inverse. If no, explain why it does not have an inverse
(developed from Dwyer & Gruenwald, 2000).

[Additional space was provided]

5. This is the graph of a function y = a(x — h )* + k. Give the reasonable numbers
for a, h, and k. Explain your reasoning (Retrieved and developed October 24, 2002 from
the World wide Web http://www.heinemann.com/math/nature.cfm).

&

[Additional space was provided]
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Give a reasonable symbolic representation for g(x) in the form

g(x) = a(x - h)’ + k. Explain why your representation is reasonable (Retrieved
and developed October 24, 2002 from the World wide Web
http://www.heinemann.com/math/nature.cfm).

[Additional space was provided]

The following are formulas predicting future raises for four different employees.
N represents the number of years from the date of contract. Each salary
represents the salary that will be earned during the given years (Retrieved
September 12, 2002 from the World Wide Web:
http://mathforum.org/library/drmath/sets/college_modernalg.html)

A: salary = 30000 + 2500N
B: salary = 30000 + 1800N
C: salary = 27000 + 1500N
D: salary = 21000 + 2100N

(a) Will B ever earn more per year than A? Explain.
(b)  Will C ever catch up A? Explain.

(c) Who will be making the highest yearly salary?
(d)  Will D ever catch up C? Explain.

[Additional space was provided]
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Rational expressions are simplified by dividing out equal factors of the
numerator and denominator. For example,

x> -4 _ (x+2)(x-2) _
x+2 x+2

Fay =24

X+
reasoning (Developed from Dwyer & Gruenwald, 2000).

x — 2. However, if we define

and g(x) = x — 2, are f{x) and g(x) the same? Explain your
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APPENDIX 1

POST-INSTRUCTIONAL INTERVIEW PROBLEMS

Use the following constraints, one at a time, in the order given, to create a function that
meets all of the following constraints:

e The function 1s undefined at -3

e The function has a zero at 1/2

e The function is always nonnegative
e The function’s domain is [-5, <)

e The function contains the point (4,7)

Explain your reasoning (Heid, Hollebrands, & Iseri, 2002):



