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optimal closed cycles in typical wind conditions using a point mass model.  The 

algorithm is shown to be robust to a poor initial guess, with computational 
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 A receding horizon optimal controller strategy is investigated for the problem 

of autonomous soaring.  An efficient Riccatti recursion algorithm is used to determine 

the next step in the Newton Iteration of the Non-Linear optimization problem.  A real 
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point mass model, resulting in repeatable trajectories with significant altitude gain.  

Sensitivity to errors including wind model errors is investigated.  The real time 

algorithm was found to be insensitive to reasonable errors. 
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GENERAL INTRODUCTION 
 

 

Large birds commonly use wind currents as a free energy source to remain 

aloft without expending energy through flapping.  Columns of rising air called 

thermals routinely found in the lower atmosphere provide an excellent energy source.  

Altitude or potential energy can be increased simply by flying circles in the thermal as 

long as possible.  Flight paths tend to be relatively static with nearly constant airspeed, 

bank, and pitch angles.  For this reason, this type of soaring is called “Static Soaring.”  

“Semi Dynamic” soaring trajectories can be more efficient by extracting energy from 

the vertical wind source as in “Static Soaring,” and from the change in wind velocity 

over the flight path.  Airspeed, bank, and pitch angles oscillate over the flight path.  

Although significant technological challenges must be solved, unmanned air vehicles 

could also benefit greatly from this free energy source.   

One strategy for optimally extracting energy from wind structures involves 

determination of optimal repeatable trajectories for a range of scenarios off line.  After 

the UAV identifies a suitable wind structure, an optimal closed cycle is selected by 

interpolation of the available solutions.  The UAV can then execute the trajectory or 

use it to initialize an onboard optimization algorithm to refine the trajectory in flight.  

This strategy requires significant pre-flight work to build an extensive library of 

optimal closed trajectories, and large data storage space on the aircraft.  With the 

dynamic nature of winds, the online algorithm must be able to update the trajectory 

more often than once a cycle. This work assumes the UAV has some knowledge of 

local wind structures.   

The first work of this dissertation investigates the feasibility of gaining energy 

in thermals with a small UAV by simple static soaring.  A six degree of freedom 

model with first order aerodynamics is used.  A multiple input multiple output 

nonlinear suboptimal controller is developed for use with the 6DOF model.  A typical 

scenario is investigated and the glider successfully gains altitude by static soaring. 

In the second work of this dissertation a robust optimization algorithm is 

developed and used to determine optimal closed trajectories.  The tool allows new 
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scenarios to be investigated where the optimal solution and a good initial guess is 

unknown.  Several common scenarios are investigated and performance of the 

algorithm with a direct shooting algorithm is compared.  The solver is shown to be 

robust to initial guess while performing nearly as fast as direct shooting alone. 

The third work in this dissertation investigates a new onboard strategy for the 

problem of autonomous soaring.  A receding horizon optimal control algorithm is 

extended to the soaring problem.  The main strategic difference is that a closed 

optimal solution is not required in the optimization problem.  Initial states and controls 

are known and the algorithm selects the controls which result in the maximal energy 

gain over a fixed prediction horizon.  This problem is relaxed from the closed cycle 

formulation, and can be solved efficiently for online use.  Fast update rates are 

achieved resulting in a controller that is robust to un-modeled disturbances and 

modeling errors.  Several common scenarios are investigated and the algorithm is 

shown to perform exceptionally well. 
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ABSTRACT 

 Extracting energy from thermal wind conditions with a small autonomous air 

vehicle is considered.  A non-linear model predictive controller is developed that 

embeds a standard glider model and tracks roll, pitch, and yaw angles.  Given 

knowledge of the local wind structure, the flight control system increases the potential 

energy of the aircraft through autonomous soaring.  A typical energy extracting 

trajectory is investigated through simulation.  
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INTRODUCTION 

icro air robots are small, autonomous, intelligent aircraft designed to focus on 

a specific task.  The range of applications envisioned for future micro air 

robots in both the civilian and military sectors is truly staggering.  Micro air robots 

promise to change the world around us by providing unparalleled situation awareness 

and data gathering opportunities in a wide variety of scenarios.  Micro air robots may 

be used by environmentalists for detailed wildlife monitoring and surveying tasks.  

Micro air robots could fly through factory smokestack emissions to measure released 

chemical concentrations. With gradient sensors and flight control system feedback, 

micro air robots could map the size and shape of hazardous clouds and provide real 

time tracking of their location.  Forestry management could be aided by sending micro 

air robots into remote areas of a forest that are difficult to access to gather important 

forest health and growth data.  Other applications include monitoring concentrations 

of chemical spills and measuring ammonia concentration in agriculture, to name just a 

couple.  

 Micro air robots could be used to assess situations too dangerous for direct 

human intervention.  For example, after a natural or man made disaster micro air 

robots could maneuver through damaged buildings looking for survivors.  Fighting 

forest fires could be enhanced by detailed information on the progress of a fire 

obtained by micro air robots.  Other micro air robot applications include situations 

where explosive devices are planted in structures and determining the health and 

location of hostages. 

 In urban areas, micro air robots can be used by law enforcement for pursuing 

criminals in a safe yet close manner.  Micro air robots could provide flexible traffic 

monitoring.  In rural areas, micro air robots could be employed to efficiently monitor 

large expanses of land for applications such as border patrol and power line 

inspection.  Swarms of micro air robots could be used in search and rescue missions to 

rapidly search a large area.  

 A plethora of military applications exist for micro air robots.  Perhaps the most 

obvious application is reconnaissance.  Current operational concepts suggests that 

M 
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reconnaissance micro air robots have a range capability of about 10 km, endurance of 

up to an hour, speeds of 10 to 20 m/s, and be capable of real time day/night imagery.  

Micro air robots with these performance characteristics could look over the next hill in 

combat situations and also perform targeting missions.  More aggressive micro air 

robots could tag targets to aid weapons with improved target recognition in the 

terminal guidance phase.  Groups of micro air robots could be used to seed a future 

battlefield with sensors.  Groups of micro air robots could also be used to form a 

communication network where each individual micro air robot acts as a relay.    

 The potential of micro air robots is astonishing, yet significant technical 

obstacles must be overcome to realize this potential.  The Achilles heel of micro air 

robots is power required for mobility.  Micro air robots consume a significant amount 

of power just to remain aloft.  When considering practical micro air robot 

configurations that carry sensors, power requirement problems become more acute.  

These power requirements curtail the feasibility of micro air robots for many of the 

amazing potential missions mentioned above.  To remedy this situation, many research 

groups are actively engaged in research and development on small, low weight, high 

power output propulsion technologies.  An alternate and complementary concept for 

powering micro air robots is to harvest energy from the environments in which they 

fly.  In straight and level aircraft flight, atmospheric wind updrafts rotate the relative 

aerodynamic velocity vector downward, causing drag to point aft and slightly upward 

and lift to point up and slightly forward.  When the atmospheric wind updraft is 

sufficiently large, straight and level flight and even climbing flight is possible without 

power.  Conventional sailplane soaring is founded on this type of atmospheric wind 

energy extraction.  The research detailed in this paper develops a nonlinear model 

predictive control law that tracks energy harvesting trajectories autonomously.  

Performance of the control law is investigated through dynamic simulation of an 

exemplar micro air glider. 
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GLIDER MATHEMATICAL MODEL 

 The glider is modeled as a rigid body, and undergoes three-dimensional motion 

described by three inertial position coordinates and three Euler angles.  Hence, 12 state 

variables are required to describe motion of the glider at a given instance in time.  The 

glider mathematical model is developed for a general fixed wing air vehicle.  

However, the configuration used in the results section employs a polyhedral main 

wing with no flaps, and a v-tail with standard trailing edge flaps.  

 In the equations that follow the ground frame is assumed to be a satisfactory 

reference frame.  The body frame is defined by the standard aerospace rotation 

sequence, where the matrix [ ]IBT  relates the body frame to the Inertial frame given in 

Equation (1). 

 
B B B B B B B B B B B B

B B B B B B B B B B B B

B B B B B

B I

c c s s c c s c s c s s

T s c c c s s s c s s s c

s s c c c

ψ θ φ θ ψ φ ψ φ θ ψ φ ψ

ψ θ ψ φ ψ θ φ φ θ ψ φ ψ

θ φ θ θ φ

⎡ ⎤− +
⎢ ⎥

⎡ ⎤ = + −⎢ ⎥⎣ ⎦
⎢ ⎥−⎣ ⎦

 (1) 

 The common shorthand for trigonometric functions is used throughout the 

paper (sin(b) = sb).  The kinematic translational and rotational differential equations of 

motion are given by Equations (2) and (3). 

 B I

x u
y T v
z w

⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪⎡ ⎤=⎨ ⎬ ⎨ ⎬⎣ ⎦
⎪ ⎪ ⎪ ⎪
⎩ ⎭ ⎩ ⎭

�
�
�

 (2) 

 [ ]
0

0

1

B B B

B B

B B B B

RM

s c c c p
c s q K

rt s t c

φ θ φ θ

φ φ

θ φ θ φ

ψ
θ ω
φ

⎡ ⎤⎧ ⎫ ⎧ ⎫
⎢ ⎥⎪ ⎪ ⎪ ⎪= − =⎨ ⎬ ⎨ ⎬⎢ ⎥

⎪ ⎪ ⎪ ⎪⎢ ⎥
⎩ ⎭ ⎩ ⎭⎣ ⎦

�
K�

�
 (3) 

 The velocity (u,v,w) and angular velocity (p,q,r) states are defined in the body 

reference frame.  The dynamic differential equations of motion are written with 

respect to the body reference frame and are given by Equations (4) and (5). 

 
0

0 (1/ ) (1/ )
0

A C

A C

A C

u r q u U U
v r p v m V m V
w q p w W W

−⎧ ⎫ ⎡ ⎤ ⎧ ⎫ ⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥= − + +⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥−⎩ ⎭ ⎣ ⎦ ⎩ ⎭ ⎩ ⎭ ⎩ ⎭

�
�
�

 (4) 
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�
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 The vector {XA YA ZA} is the aerodynamic forces acting on the airplane, 

excluding the effects of the control inputs.  The vector {XC YC ZC} is the aerodynamic 

forces acting on the airplane due to wing flap deflections.  These are modeled as the 

following lumped parameter effects: 

 2

( ( / ) )
( ( / 2 ) ( / 2 ) )

( ( / ) )

A xo xa xq

A yo yb yp yr

A zo za zq

X C C c V C q
Y PV C C b V C p b V C r
Z C C c V C q

α
β

α

⎧ ⎫+ +⎧ ⎫
⎪ ⎪⎪ ⎪ = + + +⎨ ⎬ ⎨ ⎬

⎪ ⎪ ⎪ ⎪+ +⎩ ⎭ ⎩ ⎭

 (6) 

 2

( )
( )

( )

c xde e xdal al xdar ar

c ydal al ydar ar

c zde e zdal al zdar ar

X C C C
Y PV C C
Z C C C

δ δ δ
δ δ

δ δ δ

+ +⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪= +⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪+ +⎩ ⎭ ⎩ ⎭

 (7) 

It will be useful to note that the forces due to wing flap deflections, for most model 

gliders, are small in comparison to the forces due to other aerodynamic effects.  

Similarly, the aerodynamic moments are modeled as follows:  

 2

( / 2)( ( / 2 ) ( / 2 ) )
( ( / ) )

( / 2)( ( / 2 ) ( / 2 ) )

A lo lb lp lr

A mo ma mq AERO

A no nb zp nr

L b C C b V C p b V C r
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N b C C b V C p b V C r

β
α

β

⎧ ⎫+ + +⎧ ⎫
⎪ ⎪⎪ ⎪ = + + = Μ⎨ ⎬ ⎨ ⎬

⎪ ⎪ ⎪ ⎪+ + +⎩ ⎭ ⎩ ⎭

K
 (8) 

 [ ]2 2
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δ δ

⎧ ⎫ ⎧ ⎫ ⎡ ⎤ ⎧ ⎫
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K
 (9) 

where the following parameters from Equations (8) through (9) are defined as: 

 ( )2 2 2 2( ) ( ) ( )u v wV u W v W w W= − + − + −  (10) 

 tan(( ) ( ))w ua w W u Wα = − −  (11) 

 2tan(( ) )va v W Vβ = −  (12) 

 ( )1 2P Sρ=  (13) 

The glider model uses three independent control surfaces elevator, aileron, and flaps.  

Wind is modeled in two parts, horizontal wind acts in the x-y plane and thermal wind 

acts in the vertical direction.  Horizontal wind is described in Equation (14). 
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 w
w

w

cu
V

sv
β

β
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=⎨ ⎬ ⎨ ⎬

⎩ ⎭ ⎩ ⎭
 (14) 

where Vw is the average wind velocity, and the angle β determines the direction of the 

general wind.  The thermal wind is described in Equation (15). 

 ( ) { }2 2
2cos : 0, 3

2
fD

ww M D e D r
r
π⎛ ⎞= >⎜ ⎟

⎝ ⎠
 (15) 

where D is the distance from the thermal center, r is the thermal radius, f is the decay 

rate, and M is the maximum value of the thermal occurring at the thermal center.  The 

condition described constrains the thermal to within three times the radius squared.  

Wind velocity is determined for the mass center of the glider.  The thermal described 

by Equation (15) is characterized by a small area of sink surrounding the thermal core.  

An example thermal profile is depicted in Figure 1-1 for the parameters in Table 1-1.   

 

 

Figure 1-1:  Thermal Velocity Profile 

Body frame wind is required for the aerodynamic forces: 

 
w

T

B I w

w

u
W T v

w

⎧ ⎫
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⎪ ⎪
⎩ ⎭

K
 (16)
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NON-LINEAR MODEL PREDICTIVE CONTROL LAW 

 For simplicity, a control affine non-linear system is considered. 

 ( ) ( )x f x b x u= +�  (17) 

Assuming the functions f(x) and b(x) are sufficiently smooth, each output can be 

approximated by a Taylor series polynomial of order iR . 

 
2 2

2( ) ( )
2 !

i i

i

R R

i R
i

dy d y d yy t y t
dt dt R dt

τ ττ τ+ = + + + +"  (18) 

The control input does not appear for the first ρι terms in the Taylor series polynomial.  

Derivatives of the control up to order i iR ρ−  appear in the expansion.  This is written 

compactly as: 

 ( )i i iy t τ+ ≅ Τ Υ  (19) 

 
2

1
2! !

iR

i
iR

τ ττ
⎡ ⎤
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⎣ ⎦

"  (20) 
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�
#  (21) 

Consider the entire output vector, approximated by a Taylor series up to order iR  

(possibly different orders for each output). 

 

1 1

2 2

0

( )

0

T

M M

t τ
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⎢ ⎥ ⎪ ⎪Τ Υ⎪ ⎪⎢ ⎥Υ + = = Τ Υ⎨ ⎬⎢ ⎥ ⎪ ⎪⎢ ⎥ ⎪ ⎪Τ Υ⎣ ⎦ ⎩ ⎭

% #
 (22) 

Note: the matrix containing Ti is [M x TT], where M is the number of outputs and TT is 

the sum of the expansion orders.  The desired trajectory is approximated in the same 

manner.   

 ( )D T Dt τΥ + = Τ Υ  (23) 

Expanding the inputs in a similar manner we have: 
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 ( )i s iu t Uτ+ ≅ Τ  (24) 

 

( )
( )

( )

i

i

i

s
i
s

u t
u t

U

d u t
dt

⎧ ⎫
⎪ ⎪
⎪ ⎪⎪ ⎪≡ ⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

�
#  (25) 

The inputs are approximated by an sth order Taylor polynomial, where s is Ri – ri.  

Each Ri is selected such that s for each output is equal.  This converts the optimal 

control problem, which in general is solved with calculus of variations, into a discrete 

parameter optimization problem. 

 In model predictive control we seek to minimize a cost function over a finite 

horizon, the cost function is selected as follows. 

 
2

1

( ) ( )
T

T

T

J e t Qe t dτ τ τ= + +∫  (26) 

where Q is a diagonal, positive definite weighting matrix [M x M]. 

 

1

2

( ) 0
( )

( )

0 ( )M

q
q

Q

q

τ
τ

τ

τ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

%
 (27) 

The cost function can be approximated using the Taylor series approximations. 

 
2

1

( ) ( )
T

T
D T T D

T

J Q dτ≅ Υ −Υ Τ Τ Υ −Υ∫  (28) 

The only components that depend on τ are T and Q.  

 ( ) ( )T
D DJ ≅ Υ −Υ Π Υ −Υ  (29) 

 
2

1

1 1 1

2 2 2

3

0

0

T

T T

T
T
M M

q
q

d

q

τ

⎡ ⎤Τ Τ
⎢ ⎥Τ Τ⎢ ⎥Π =
⎢ ⎥
⎢ ⎥

Τ Τ⎢ ⎥⎣ ⎦

∫ %
 (30) 

Each qiTTT is a square block matrix [Ri x Ri].  This integral is easily determined in 

closed form.   The necessary conditions for optimality are 
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 0J
u
∂

=
∂

 (31) 

Application of the necessary condition yields 

 [ ]( ) 0T
D

J
u u
∂ ∂Υ

= − Υ −Υ Π =
∂ ∂

 (32) 

This condition is an M*s row vector.  The structure of Yi for a control affine system 

follows. 

 

0

1

1
1

1
1 1 1

( 1) ( 1) 1
1 1 1

( )

( )

( ) ( ) ( )

( , ) ( ) ( )

( , ,..., / ) ( ) ( )

i

i

i

i

i

M
i i i Mi

M
i M i i M

s s s M s
i R M M i i M

x

x

x x u x u

x u x u x u

x u d u dt x u x u

ρ

ρ

ρ

α

α

α β β

α β β

α β β

−

+ −

− −
− −

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪+ + +Υ = ⎨ ⎬
⎪ ⎪+ + +⎪ ⎪
⎪ ⎪
⎪ ⎪

+ + +⎪ ⎪⎩ ⎭

#

"
� �"

#
"

 (33) 

The structure for dY/du takes on a convenient form. 

 1

1

1

0 0 0 0

0 0 0 0

0 0 0 0
0 0

i
M

i i

Mi R i R
i i

M

Y
u

u u

β β

α αβ β

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

∂ ⎢ ⎥=
⎢ ⎥∂
⎢ ⎥
⎢ ⎥
⎢ ⎥∂ ∂
⎢ ⎥
∂ ∂⎢ ⎥⎣ ⎦

" " "
# % # " # % #

" " "
# # # " # # #

"
% " %

" " "

 (34) 

The first ρi rows of this matrix are zero.  For convenience we define Πi as the ith block 

of the Π matrix. 

 
2

1

T
T

i i i i
T

q dτΠ = Τ Τ∫  (35) 

Combining these definitions with the necessary condition for optimality results in the 

Equation (36). 

 [ ]
10

0
0

i
T

D

M M

u

u

Π ∂Υ ∂⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥Υ −Υ =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥Π ∂Υ ∂⎣ ⎦ ⎣ ⎦

% #  (36) 
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An equivalent expression is found by eliminating the columns of Π that multiply the 

zero rows of iY u∂ ∂ . 

 (:, 1: )iR i i endρΠ = Π +  (37) 

 
1 0

0

R

R

MR

Π⎡ ⎤
⎢ ⎥Π = ⎢ ⎥
⎢ ⎥Π⎣ ⎦

%  (38) 

Eliminating the zero rows of dYR/du we get the following. 

 [ ]
1 1( 1: ,:)

( 1: ,:)

i

R

M M i

u R
d

u R

ρ

ρ

∂Υ ∂ +⎡ ⎤
⎢ ⎥Υ = ⎢ ⎥
⎢ ⎥∂Υ ∂ +⎣ ⎦

#  (39) 

With our selection of Ri such that s for each output is equal, dYR is a square s*M 

block lower triangular matrix.  Also, ΠR is an s*M square matrix.  The equivalent 

optimal condition is then expressed as follows. 

 [ ] [ ]0T
D R RdΥ −Υ Π Υ =  (40) 

where dYR
-1 exists, we have the following condition.    

 [ ] [ ]0T
D RΥ −Υ Π =  (41) 

Due to the block structure of ΠR this condition can be expanded.  

 ( ) ( ) [ ]1 1 1 | | 0T T
D R MD M MR

⎡ ⎤Υ −Υ Π Υ −Υ Π =⎣ ⎦"  (42) 

These conditions are similar to the single input single output case, in that we have M 

equations similar to the SISO form.  Note, that unlike the SISO case, Yi contains each 

of the controls U1 – UM.   With a little work, we can solve for the control parameters.  

First split the ΠiR matrix to be conformal with (YiD – Yi)T. 

 1

2

iR
iR

iR

Π⎡ ⎤
Π = ⎢ ⎥Π⎣ ⎦

 (43) 

The split is made such that ΠiR1 is [1:ρi,(ρi+1):Ri] and ΠiR2 is an (πi+1):Ri square 

matrix.  The error vector is split up similarly. 

 (1: )iDU iD iρΥ = Υ  (44) 

 ( 1: )iDL iD i iRρΥ = Υ +  (45) 
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 (1: )iU i iρΥ = Υ  (46) 

 ( 1: )iL i i iRρΥ = Υ +  (47) 

Writing our necessary conditions with these definitions we have 

 1 2 1 2iDU iR iDL iR iU iR iL iRΥ Π +Υ Π = Υ Π +Υ Π  (48) 

Solve for YiL to get:  

 1
2 1( )T

iL iR iR iDU iU iDL
−Υ = Π Π Υ −Υ +Υ  (49) 

If we are interested only in the current control input, the first component of YiL can be 

extracted.  We will have M equations for M unknowns.  Combining these equations 

and solving for the control input, we get the following equations. 

 

1
1 1

1

M

M
M M

B
β β

β β

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

"
# % #

"
 (50) 

 
11 M

T

MA ρ ρα α⎡ ⎤= ⎣ ⎦"  (51) 

 [ ]1
1 (1) (1) T

DL DL MDLΥ = Υ Υ"  (52) 

 [ ]1
T

DU DU MDUΥ = Υ Υ"  (53) 

 [ ]1
T

U U MUΥ = Υ Υ"  (54) 

 [ ]1( ) ( ) T
MC u t u t= "  (55) 

 1
2 1(1,:)T

i iR iRK −= Π Π  (56) 

 

1

2

0

0

T

M

K
K

K

K

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

%
 (57) 

Using this notation, our control law is: 

 ( )1 ( )T DU U DLC B K A−= Υ −Υ +Υ −  (58) 

If the B matrix is singular, in some cases the Moore-Penrose pseudo inverse may be 

used.   
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Autonomous Glider Control Law 

 An angle tracking controller for the glider system described is considered. 

 [ ]h ψ θ φ=  (59) 

While it is desirable to control heading and pitch angles directly, the roll angle is also 

included to fully specify the trajectory.  The relative degree of each output is 2, 

therefore two derivatives of the output are required for control affine predictive 

control.  The first derivative of the output is given in Equation (3), the second 

derivative follows: 

 RM RMh K Kω ω= +�� � �  (60) 

The derivative of angular velocity is given by Equation (5), and K’RM is not shown for 

simplicity.  The full control vector is found in the derivative of angular velocity.  Since 

only the current control input is desired Equation (15) is YL from the control law 

development. 

 [ ][ ] [ ][ ] [ ]1 ( )L RM RM w AERO C cK K Sω ω δ−⎡ ⎤Υ = − Ι Ι −Μ − Μ⎣ ⎦
G K�  (61) 

or: 

 ( )T T
L DU U DLΥ = Υ −Υ Κ +Υ  (62) 

Solving for the control vector gives the following control law: 

     [ ][ ] [ ][ ] ( )( )( )11 T T T
c c AERO RM DL DU U RMM S M Kωδ ω ω−−⎡ ⎤= Ι − + Ι Υ + Υ −Υ Κ −Κ⎣ ⎦
K K �  (63) 

Two matrix inverses are required in the control law and fortunately one is easily 

determined in closed form: 

 [ ] 1
0 1

0
0

RM

s
K s c c

c c s

θ

φ θ φ

θ φ φ

−

⎡ ⎤−
⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦

 (64) 

The matrix Mc contains the systems control moment coefficients and may be singular.  

In this case the pseudo inverse may be used to find the least magnitude best fit 

solution.   
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EXAMPLE RESULTS 

 The simulation is exercised with physical parameters depicted in Table 1-2, 

aerodynamic parameters in Table 1-3, and wind model parameters in Table 1-1.  

Controller parameters are shown in Table 1-4.  In order to increase the potential 

energy of the glider, a circle at the core of the thermal is tracked.  Initially the glider is 

directed to the tangent of the circle, when it enters the desired circle it is directed 

around the circle in a smooth trajectory according to Equations (65) and (66). 

 ( )1tan ,D Dy Dxϕ −=  (65) 

 D xy dcV rϕ =�  (66) 

where Dy and Dx are the y and x components of the difference vector between the 

current airplane position and the center of the thermal, rdc is the radius of the desired 

circle at the core of the thermal, and Vxy is the velocity of the glider in the x-y plane.  

This heading angle mapping results in a smooth transition into the thermal, where the 

desired circle is quickly converged upon. 

 For the numerical example considered here, two known thermals exist in the 

immediate area, the glider first engages the close thermal until it reaches an altitude of 

200 m, when it is directed toward the second known thermal.  

 The airplane begins aligned with the II axis, with a pitch angle of 0 degrees, an 

IB velocity of 12.60 m/s, a KB velocity of -0.25 m/s, at an altitude of 40 m.  The 

position of the glider mass center in the x-y plane is depicted in Figure 1-2 where the 

contour lines show the thermal magnitude.  The 3 dimensional flight path is shown in 

Figure 1-3.  The corresponding altitude and control deflection history is shown in 

Figures 1-4 and 1-5.  The glider completes 31 circles in the first thermal where it 

reaches 200 m of altitude.  The glider then heads toward the second thermal, losing 40 

m of altitude in the process, and begins climbing the second thermal.  The 

corresponding attitude history is shown in Figures 1-6 through 1-8.  Desired heading is 

shown as the dashed line in Figure 1-6.  Body frame velocities are depicted in Figures 

1-9 through 1-11. 

 As the glider reaches the core of the first thermal characterized by a positive 

vertical airflow, altitude of the glider levels off and begins to increase.  A nearly 
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constant rate of increase in altitude of 0.5 m/s is reached.  After approximately 3 1/2 

minutes of flight time, the gliders target altitude of 200 m is achieved.  The glider 

achieves a constant rate of altitude increase in the second thermal of 0.25 m/s, a net 

altitude increase of 140 m. is achieved in the duration of the simulation.  

 While optimal energy extraction trajectories were not explored in this work, a 

simple trade study of bank angles pitch angles, and radius of the desired circle can 

provide insight into improving our soaring tactics.  The first trade study was 

conducted on the first thermal from Table 1-1, where the glider is directed into the 

thermal for a duration of 6 minutes, where it reaches a steady state rate of altitude 

gain.  The three parameters, desired radius, prescribed bank angle and pitch angle 

were varied and climb rates recorded.  The results are shown in Table 1-5.   

 Another trade study involving glider mass and wing area was conducted.  A 

simulation of 2 minutes was conducted where the final potential energy was recorded.  

Results are shown in Table 1-6. 
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Figure 1-2:  Glider Position and Thermal Profile Contour 
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Figure 1-3:  Glider Position Time History 
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Figure 1-4:  Glider Altitude and Thermal Velocity History 
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Figure 1-5:  Control Flap Deflection 
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Figure 1-6:  Desired and Actual Heading Angle 
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Figure 1-7:  Pitch Angle Time History 
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Figure 1-8:  Glider Bank Angle 
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Figure 1-9:  Glider Body Frame x Velocity 
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Figure 1-10:  Glider Body Frame y Velocity 
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Figure 1-11:  Glider Body Frame z Velocity 

 

Table 1-1:  Wind Model Parameters 

General Wind Magnitude (m/s) 0.0 

General Wind Direction (deg.) -17.00 

1st Thermal Magnitude (m/s) 2.50 

1st Thermal Radius (m) 180.0 

1st Thermal Decay Factor -0.005 

1st Thermal x Inertial Position (m) 340.0 

1st Thermal y Inertial Position (m) 250.0 

2nd Thermal Magnitude (m/s) 2.50 

2nd Thermal Radius (m) 180.0 

2nd Thermal Decay Factor -0.005 

2nd Thermal x Inertial Position (m) 340.0 

2nd Thermal y Inertial Position (m) 250.0 
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Table 1-2:  Glider Physical Parameters 

Mass (Kg) 0.9015148 
Inertia, Ixx (Kg m^2) 0.074240596 
Inertia, Iyy (Kg m^2) 0.039028809 
Inertia, Izz (Kg m^2) 0.11019321 
Main Wing Span (m) 0.9144 
T-Tail Span (m) 0.5300 
T-Tail Chord (m) 0.1255 

 

Table 1-3:  Glider Aerodynamic Parameters 

Main Wing Airfoil RG-15 
Main Wing Flaps Trailing Edge Individual Control 
T-Tail Airfoil NACA 0009 
T-Tail Flaps Trailing Edge Elevator Only 

 

Table 1-4:  Controller Parameters 

Psi Error Weighting 1.0 
Theta Error Weighting 2.0 
Phi Error Weighting 3.0 
Expansion Order 5 
Prediction Times 0.0s – 5.0s 
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Table 1-5:  Trade Study Results 

Bank Angle Deg. Pitch Angle Deg. Tracked Radius (m) Rate of Climb (m/s) 
10 -7 28.6 0.06783 
15 -7 28.6 0.34458 
20 -7 28.6 0.37809 
25 -7 28.6 0.31413 
15 -7 25 0.34069 
15 -7 22 0.31777 
15 -7 33 0.32600 
15 -7 40 0.28118 
10 -5 28.6 0.08516 
15 -5 28.6 0.17000 
20 -5 28.6 0.11213 
25 -5 28.6 -0.00837 
15 -5 25 0.10694 
15 -5 22 0.03236 
15 -5 33 0.21902 
15 -5 40 0.25142 
5 -5 67 0.25507 
15 -5 100 0.22027 
10 -9 28.6 -0.22117 
15 -9 28.6 0.27955 
20 -9 28.6 0.42190 
25 -9 28.6 0.42545 
15 -9 25 0.34337 
15 -9 22 0.37935 
15 -9 33 0.18301 
15 -9 40 0.0481 

 

Table 1-6:  Physical Properties Trade Study 

Glider Mass (Kg) Wing Area (m^2) Final PE 
0.9515148 0.4044 568 
1.1339809 0.4044 240 
1.3607771 0.4044 -397 
0.6803886 0.4044 767 
0.2267962 0.4044 398 
0.9515148 0.5055 928 
0.9515148 0.38 472 
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CONCLUSIONS 

 A multiple input multiple output model predictive controller was developed 

with the purpose of enabling autonomous aircraft energy extraction from atmospheric 

winds.  The flight control law requires that external information is provided on the 

local wind structure and full state feedback has been assumed.  Numerical results 

exercising this control law show an aircraft altitude gain in two thermals of known 

location and size.  Climb rates of ½ m/s and ¼ m/s were achieved in the subsequent 

thermals.  Controller parameters were varied to study the effects of bank angle, pitch 

angle and desired radius in a thermal.  It was found that for smaller thermals more 

aggressive bank angles still resulted in impressive climb rates.  A trade study 

involving glider mass and wing area showed increased system mass will result in 

decreased potential energy gain unless wing area is also increased. 
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ABSTRACT 

 Determination of optimal trajectories for nonlinear dynamic systems is 

considered.  Standard gradient based methods are fast, but fail for cases where a good 
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robust trajectory optimization solver.  Example results to substantiate this claim are 

shown for an autonomous soaring trajectory optimization problem. 
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NOMENCLATURE 

xK  =   continuous time state vector 
uK  =   continuous time control vector 

sφ  =   initial and final state vector penalty function 

uφ  =   initial and final control vector penalty function 
J  =   scalar cost function to minimize 
f
K

 =   continuous time system governing dynamic equations 

min max,u uK K  =   control vector bounds 

ft  =   optimization problem final time 

min max,f ft t  =   final time bounds 

min max,x xK K  =   state vector bounds 

ixK  =   thi  discrete state vector 

iuK  =   thi  discrete control vector 
G
K

 =   discrete time system governing dynamic equations 
jA  =   parameter matrix of the thj  control approximation 
t+  =   discrete system time step 
kvK  =   vector of unknown parameters at the thk  iteration 
min max,v vK K  =   simple bounds on unknown parameters 

iparticle  =   thi  vector of optimization parameters for particle swarm 
  optimization algorithm 

ipbest  =   vector of optimization parameters with the lowest cost in the 
  history of iparticle  

ilbest  =   vector of optimization parameters with the lowest cost of the 
  neighbors to iparticle  
gbest  =   vector of optimization parameters with the lowest cost in the 
  history of all particles 

iV  =   velocity of the solution trajectory for iparticle  

wI  =   inertia weight for particle swarm optimization algorithm 

1 2,c c  =   acceleration parameters for particle swarm optimization  
  algorithm 

()r  =   random number function 

#[ ]⋅  =   projection onto simple bounds 

PSON  = number of particle swarm optimization iterations to be 
executed 

%T  =   percentage of the total solution space 
k  =   solution iteration index 

kα  =   line search parameter for the thk  iteration 
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kd
K

 =   search direction for the thk  iteration 
∇  =   gradient operator 

*v  =   optimal vector of parameters 
I  =  set of optimization parameters with inactive bound 

constraints 
lA  =   set of optimization parameters with active lower bound  

  constraints 
uA  =   set of optimization parameters with active upper bound  

  constraints 
kg  =   gradient of cost function at the thk  iteration 

cgN  =   number of gradient algorithm iterations to be executed 
D =   positive definite diagonal scaling matrix 

kI
⋅  =   dot product over the parameters in the set kI  

kμ  =   scalar parameter to compute the thk  conjugate direction 
kd�  =   unaltered gradient search direction at the thk  iteration 

β  =   Armijo line search rule parameter 

kJ  =   cost at iteration k 

0PGJ  =   cost at the first evaluation of algorithm DS 
, ,x y z  =   inertial frame position vector components of the glider mass 

  center 
, ,pm pm pmψ θ φ  =   glider heading, pitch and bank angles 

, ,x y zW W W  =   wind velocity components represented in the inertial frame 

pmV  =   glider airspeed magnitude 

LC  =   glider lift coefficient 

doC  =   glider parasitic drag coefficient 
k  =   glider induced drag coefficient 
S  =   glider wing area 
ρ  =   density of air 
g  =   gravitational acceleration constant 
m  =   glider mass 

,D L  =   glider drag and lift forces 

thw  =   thermal wind velocity at the current position 

peakw  =   wind velocity at the core of the thermal 

1 2 3 4, , ,k k k k  =   thermal model shape parameters 

2r  =   thermal outer radius 
r  =   distance from the current position to the thermal core 

Dw  =   thermal model downdraft velocity 

ew  =   environmental sink velocity 
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effw  =   effective wind velocity at the current glider location 

hgw  =   horizontal wind velocity 

gw  =   average slope of the horizontal wind gradient 
h  =   current height of glider 

minh  =   altitude the horizontal wind gradient begins 

maxh  =   altitude the horizontal wind gradient ends 
A  =   horizontal wind shape parameter 

minhw  =   minimum horizontal wind velocity 
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INTRODUCTION 

The majority of numerical trajectory algorithms are based on gradient 

information [1].  These methods are able to handle complex problems and tend to 

rapidly converge near a local minimum.  However convergence may be slow or even 

fail for problems with many local minima, singular minima or where good initial 

guesses are not known.  Alternatively, swarm intelligence based optimization methods 

exhibit a high level of success on various difficult optimization problems [8].  

Computationally these methods are not competitive with local search techniques for 

trajectory optimization problems.  However they exhibit significantly different failure 

modes.  A method composed of a local search and a swarm based algorithm is 

presented as a technique for difficult trajectory optimization problems.  

 Many variants of local optimization techniques exist; the most popular 

methods can be categorized as direct or indirect.  Betts gives an overview of some of 

these methods in [1].  He concludes that indirect methods suffer from three major 

drawbacks including the requirement of analytic expressions for the necessary 

conditions which is problem dependant and can be a difficult task, a surprisingly small 

region of convergence, and if path inequalities are required the sequence of 

constrained and unconstrained subarcs must be guessed prior to solving.  Direct 

methods do not suffer from any of these problems, however they do require reasonable 

initial guesses, only approximations of local minima are guaranteed, and convergence 

can be slow for some problems.  Often direct methods are chosen for difficult 

optimization problems. 

Numerous methods for converting a continuous optimal control problem into a 

discrete parameter optimization problem are summarized by Hull [2].  The resulting 

nonlinear programming problem (NLP) can then be solved by an existing nonlinear 

programming code.   

Swarm intelligence techniques make up a fundamentally different approach to 

optimization problems.  Typically swarm solvers are modeled after swarm behavior in 

nature, such as bird flocking, fish schooling, and ant colonies.  Populations of 

solutions interact locally to decide which direction to move in.  Computation per 
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iteration is usually very small because cost information is shared and gradient 

information is not required.  Typically many iterations are required for convergence, 

and in general swarm techniques are not competitive with local search methods when 

applied to trajectory optimization problems.  Often referred to as global optimization 

techniques, swarm solvers are robust to a poor initial guess of the solution. 

A specific example of a swarm based technique is particle swarm optimization 

(PSO).  Introduced by Eberhart and Kennedy [3], PSO is modeled after the social 

behavior of bird flocking or fish schooling, this solver is very robust to local minima 

and is often referred to as a global solver.  In it’s original form, global or even local 

convergence cannot be guaranteed for PSO [4].  Bergh [4,5] identified and addressed 

this issue with a simple modification to PSO resulting in a guaranteed locally 

convergent method.  Many difficult problems have been successfully solved by PSO 

methods and an overview and discussion of applications can be found in [6]. 

Several strategies to combine global and local search strategies have been 

proposed.  A typical design strategy attempts to maximize the ability to find a global 

minimum while minimizing the number of iterations required.  A method combining 

genetic algorithms and Quasi-Newton local search was proposed by Renders and 

Flasse [7].  Applied to a system identification problem, one of the resulting 

combination methods was shown to perform well.  A general methodology for 

combining global and local direct search algorithms was described by Syrjakow and 

Szczerbicka [8].  Multiple minima were successfully investigated on a well known 

function.   

 A combination method is proposed in this work, which takes advantage of the 

efficiency of a local gradient method and the global search strategy of a swarm 

method.  A strategy for combining these methods is investigated and compared with 

direct shooting.  The example scenario considered investigates paths of maximal 

altitude gain for a micro air robot in naturally occurring wind structures.  Soaring in a 

single small thermal is considered, the hybrid algorithm is found to be marginally 

slower than direct shooting.  When a horizontal wind gradient is added, the direct 

shooting method fails to converge but the hybrid method converges. 
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OPTIMIZATION PROBLEM DEFINITION 

 The optimization problem considered in this work is to determine the control 

history uK , initial conditions 0( )x tK , and final time ft  which minimize the scalar cost 

function given by Equation (67), subject to the dynamic system given by Equation 

(68), and the inequality constraints given in Equations (69) through (71). 

Table 2-1:  Optimization Problem 1 (OP1) 

 
Minimize: 

 ( ) ( )0 0( , ) ( ), ( ) ( ), ( )s f u fJ x u x t x t u t u tφ φ= +K K K K K K  (67) 
 
Subject to: 

 ( , )x f x u=
KK K K�  (68) 

 min maxu u u≤ ≤K K K  (69) 
 min maxf f ft t t≤ ≤  (70) 
 min 0 max( )x x t x≤ ≤K K K  (71) 
 

 

Non-Linear inequality constraints on the state vector are dealt with by defining a new 

state as the integral of the constraint violation squared.  The final values of the 

extended states are penalized with a quadratic function in the cost.  Problem 1 differs 

from a standard optimal control problem in that the initial conditions are unknown, 

and the initial and final states and controls are nonlinearly coupled in the cost function.  

Investigation into closed trajectories with unknown initial states would be one 

example.  The states and controls in Problem 1 are continuous in time; typically the 

calculus of variations is employed to solve this type of problem. 

 



 36

CONVERSION TO PARAMETER OPTIMIZATION PROBLEM 

 For implementation with the solution methods considered in this work, 

Problem 1 is converted to a discrete parameter optimization problem given by 

Problem 2.   

Table 2-2:  Optimization Problem 2 (OP2) 

 
Minimize: 

 1 1 1( , ) ( , ) ( , )s L u LJ X U x x u uφ φ+= +
K K K K K K  (72) 

 
Subject to: 

 1 ( , ( )) 1i i i i jx x G x u A i L+ = + =K K K K …  (73) 
 min max 1iu u u i L≤ ≤ =K K K …  (74) 
 min maxf f ft t t≤ ≤  (75) 
 1min 1 1maxx x x≤ ≤K K K  (76) 
 

 

where ixK and ( )iu AK  are the ith discrete state and control vectors, and 

( , ( ))i i jG x u AK K depends on the explicit integration method chosen.  Fixed step 4th order 

explicit Runge Kutta is chosen for this work.  In OP2 the first subscript denotes the 

discrete node index, the second subscript denotes the vector component index, and 

hats are employed over all vector values to reduce confusion. 

The control is parameterized as a continuous function of the coefficient matrix A and 

time.  The optimization problem is now to determine the discrete control parameters 

and initial states of Problem 2.  Fitness or cost of a particle is evaluated by forward 

propagation of the system states according to Equation (73), followed by evaluation of 

the cost given by Equation (72).  The control parameters A, initial state vector 1xK , and 

final time ft make up the unknown parameters OP2. 

 Choice of the control function is highly problem dependant; options may 

include polynomials, sine and cosine functions or a combination of both.  For the 

example investigated in this work, the controls are approximated by a fixed number of 
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low order polynomials valid over a discrete time segment.  Continuity between 

polynomials is enforced in closed form.  An example of control parameterization is 

shown in Figure 2-1. 

 

iu

time1t ft
 

Figure 2-1:  Multiple Low Order Polynomial Control Parameterization 

In this example the control is split into four 3rd order polynomials shown in Equation  

(77), continuity in the control and derivative of control is strictly enforced at each 

node resulting in a first order continuous control approximation. 
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where τ is a normalized time parameter, Equation (77) is valid over the time range 

indicated.  The coefficients of the polynomial ja  can be represented as control and 

control derivatives at the discrete time points. 

 

1
,1

1
,2

2
,3

2
,4

1 0 0 0
0 1 0 0
1 1 1 1
0 1 2 3

j
i i
j

i i
j

i i
j

i i

a u
a u
a u
a u

⎧ ⎫ ⎧ ⎫⎡ ⎤
⎪ ⎪ ⎪ ⎪⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥ =⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎣ ⎦ ⎩ ⎭⎩ ⎭

�

�

 (78) 

Control, and control rate at the discrete points now become our control parameters, 

and first order continuity is achieved. 

 Explicit discretization of the governing dynamic equations allows the state 

vector time history to be determined by directly solving Equation (73), given the 

control parameters, initial state vector, and final time.  The optimization problem OP2 

can be described by Equations (79) and (80). 
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Table 2-3:  Optimization Problem 3 (OP3) 

 
Minimize: 

 ( ( ), ) ( ( ), )vJ X v v X v vφ=
K KK K K K  (79) 

 
Subject to: 

 min maxv v v≤ ≤K K K  (80) 
 

 

where v  is a vector containing the unknown controls, initial state vector, and final 

time.  The optimal control problem (OP3) is to determine the unknown parameter 

vector v , in the region defined by Equation (80), which minimizes the nonlinear cost 

function given by Equation (79). 
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PARTICLE SWARM OPTIMIZATION 

 Designed by Eberhart and Kennedy [3], particle swarm optimization (PSO) is a 

relatively new technique based on the social behavior of bird flocking or fish 

schooling.  Characterized by a simple structure, and few tuning parameters PSO has 

been used to effectively solve many difficult optimization problems [6]. 

 The algorithm begins with a fixed number of possible solution vectors, or 

particles randomly initialized within the solution space.  Each particle keeps track of 

it’s best location (personal best) as measured by the cost to be minimized, also the best 

particle in the neighborhood of each particle is recorded (local best).  An iteration 

consists of updating each particle by a combination of it’s personal best, local best, 

and a record of the last update direction (velocity) according to Equations (81) through 

(83). 

    , , 1 , , 2 , ,( ) ( )( ) ( )i j w i j i j i j i j i jV I V c r pbest particle c r lbest particle= ∗ + ∗ ∗ − + ∗ ∗ −i i  (81) 

 , , , #i j i j i jV particle V⎡ ⎤= +⎣ ⎦  (82) 

 1i i iparticle particle V+ = +  (83) 

where 1c  and 2c are positive constants usually called acceleration coefficients, ()r  

generates random numbers in the range [0,1], wI  is the inertia weight, iV  is the 

velocity of iparticle , and #[ ]⋅  denotes projection onto simple bounds defined in 

Equation (84).   

 [ ]#

   
   

   

l l

l u

u u

b for z b
z z for b z b

b for z b

≤⎧ ⎫
⎪ ⎪= ≤ ≤⎨ ⎬
⎪ ⎪≥⎩ ⎭

 (84) 

The best particle that iparticle  has achieved so far is denoted ipbest , the best particle 

in each particles neighborhood is denoted ilbest .  Typically both acceleration 

coefficients are set to 2.0, and the inertia weight is varied linearly from 1.2 to 0.4 [4].  

The neighborhood of each particle is usually selected as a fixed value denoting the 

level of interaction between particles.  For a neighborhood of 2 each particle is only 
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attracted to the best of a single neighbor to the left and right as determined by the 

particle index. 

 Selecting a small neighborhood allows a more thorough search of the solution 

space, while usually requiring more iterations.  The global best version of the PSO 

algorithm (GBest) increases the neighborhood of each particle to the total number of 

particles.  The GBest algorithm is a special case of the local best (LBest) algorithm 

described above.  The LBest PSO algorithm is outlined in Table 2-2.  

 

Table 2-4:  Particle Swarm Optimization Algorithm (PSO) 

 
Given: PSON , %T ,k, kvK  
Initialize: all pi randomly in region %T of total feasible region 

 
 For PSON  
 

For all pi 
calculate fitness of pi 
If fitness of pi is less than pbesti 

update pbesti 
For all  j in the Neighborhood of particle i 

If fitness of pbestj is less than lbesti 
update lbesti 

End 
End 

 
For all pi 

update velocity of pi according to Equations (81)  
and (82) 
update pi according to Equation (83) 

End 
 

If convergence criterion is met  
return optimal solution 

 
1k k= +  

 End 
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As the algorithm progresses the particles “fly” through the solution domain as dictated 

by the velocity.  The global best particle attracts each particle causing a swarming 

effect.  As the method progresses the particles converge on an optimum.  

 Convergence can be achieved numerous ways depending on the problem, for 

example if the global optimal cost is known, the algorithm should terminate when this 

cost is achieved.  Alternatively the algorithm can be run for a specified number of 

iterations, taking the final global best particle as the optimal.  For most problems the 

particles will begin to converge on an optimal solution and the algorithm should 

terminate when the error term, or distance from the global best particle falls below a 

specified value. 

 PSO has many desirable properties including the ability to handle poor initial 

guesses, a relatively simple structure, few tuning parameters, and the possibility of 

achieving globally optimal solutions.  PSO does not easily stick at local minima as 

most gradient methods do.  The stochastic nature of PSO makes the decision of how to 

parameterize the control much more limited especially in optimal control problems.  

Often the control is parameterized into a number of discrete points applied at specific 

time instances; continuity between points is often implied.  While most gradient 

methods easily handle implied control continuity, stochastic algorithms do not. 



 42

DIRECT SHOOTING 

 Direct shooting is a common method for solving optimization problems of the 

Problem 2 form [1,2].  The cost function, or fitness of a solution is evaluated in the 

same way as for PSO, forward propagation of the system states according to Equation 

(73), followed by evaluation of the cost given by Equation (72).  The system cost is 

then minimized by using a gradient method such as Newton’s method, or an 

approximate Newton method.  Gradients can be evaluated numerically by finite 

difference approximation of the cost function, or analytically by solving for the co-

states with the adjoint equations [1].  Many Newton based techniques are available for 

solving problems of the form Problem 2, a diagonally scaled conjugate direction 

method was selected for this application due to the low computation per iteration, and 

robust behavior on difficult problems.  Simple bounds are treated by a projection 

method as proposed in [11].  A diagonally scaled version of the conjugate projected 

direction method developed by Schwartz [10] is used in this work.  The algorithm is 

briefly described below, readers are referred to [10] for a complete development. 

 Gradient methods are iterative; they require an initial guess of the solution 

parameters which are updated by new parameters with a lower cost.  New parameters 

are identified by using gradients to search in the direction of decreasing cost.  

Successive updates of the solution parameters eventually result in a local minimum 

provided that each iteration sufficiently decreases the cost.  Projected gradient 

methods can be described by Equation (85). 

 1

#
( , )k k k k k k kv v d v dα α+ ⎡ ⎤= = + ⋅⎣ ⎦

K KK K K  (85) 

where vK  is the vector of unknown parameters, d
K

is the search direction, α is a line 

search parameter, the superscript k  denotes the thk  iteration, and #[ ]⋅ denotes 

projection onto the simple bounds defined in Equation (84).  The line search parameter 

is selected to insure that the cost is sufficiently reduced in each iteration.  The 

necessary conditions for a minimum of Problem 2 are given in Equation (86). 
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where the superscript *  denotes the optimal values of the unknown parameters, 

subscript I denotes the set of parameters with inactive bound constraints, subscript lA  

denotes the set of parameters with active lower bound constraints, and subscript uA  

denotes the set of parameters with active upper bound constraints.  A direct shooting 

projected gradient algorithm is described in Table 2-4 [10].  

 

Table 2-5:  Direct Shooting Algorithm (DS) 

 
Given: cgN , k, kvK  
 

For cgN  

Step 1: Compute gradient ( )k kg J v= ∇ K   
Identify Active and Inactive Constraint set  
( , , and k k k

l uA A I ) 
 If Convergence Criterion is Met 

  stop  
 

Step 2: Calculate the search direction kd
K

 
 

Step 3: Calculate the distance α  to move along kd
K

 
 update 1

#

k k kv v dα+ ⎡ ⎤= +⎣ ⎦
KK K  

 update iteration index 1k k= +  
End 
 

 

where cgN  is the number of gradient steps to be taken. 

 The search direction in algorithm DS can be selected as the steepest descent 

direction, Newton or Quasi-Newton direction, or conjugate gradient direction.  The 

conjugate gradient direction is described by Equations (87) through (89). 
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where the matrix D is a diagonal positive definite scaling matrix, kI
⋅  denotes a dot 

product operation over the set of inactive constraints, and kI
⋅  denotes the 2-norm 

operation over the set of inactive constraints.  The condition in Equation (89) insures 

that k

k

I
d  is bounded below by 1 k

k

I
gσ  and bounded above by 2 k

k

I
gσ , and that 

kd  does not become orthogonal to kg .   

 In step 3 the first k
aα  which satisfies a modified Armijo rule given in Equation 

(90) is accepted.  

 { }( ( , )) ( ) , , ( , )
kk

k k k k k k k k k k k k

AI
J v d J v Dg d Dg v v dα η α α− ≤ − −

K KK K K K K K  (90) 

where k m
aα β= , and m is the smallest integer such that Equation (90) is satisfied.  

 A cubic polynomial interpolate of ( )J α  between 0 and aα is then minimized.  

Convergence of algorithm DS is met when Equations (86) are approximately satisfied.  

Development and comparison with other Newton like methods can be found in [10]. 
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HYBRID SOLVER 

 A hybrid solver composed of PSO and DS optimization strategies is proposed 

as a fast and more robust method than either technique individually.  The solution 

quality and convergence rate of DS may vary significantly with initial guess, on the 

other hand, PSO is robust to initial guess but exhibits a slow convergence rate.  

Careful combination of these methods results in a robust algorithm that performs 

nearly as fast as algorithm DS alone.  Success of the combination solver design lies in 

the careful balance between convergence speed and solution space coverage.  The 

following flow diagram shows the structure of the hybrid method. 
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Figure 2-2:  Structure of Hybrid Optimal Search Method (HS) 

 

 Algorithm HS does not require an initial guess of the solution, however 

performance can be significantly increased if the initial search is limited to a subset of 

the feasible parameter space.  Function “Initialize PSO” in Figure 2-2 accepts a vector 

of parameters, and a percentage of the search space to cover.  The particles are then 

randomly initialized within a fixed region equal to the desired percentage of the total 

feasible space, centered about a “best guess” vector of parameters.  A hybrid algorithm 

is described in Table 2-6. 
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Table 2-6:  Hybrid Optimal Search Algorithm (HS) 

 
Given: Initial guess 0vK , %T , 0k =  
For HSN  
 

Step 1:  Perform Algorithm %( , , , )k
PSOPSO N T k vK  

          update kv gbest=K   
 

Step 2:  Perform Algorithm ( , , )k
PGDS N k vK  

Decision 1: 
If algorithm cost is sufficiently high 

update %T  
update PSON  
return to Step 1 

Else  
return to Step 2 
 

End 
 

 

where HSN  is the number of total iterations, PSON is the number of PSO iterations, 

PGN  is the number of gradient steps to be taken, and %T  is the size of the search 

region to be explored by PSO in percentage of the total feasible space.  Search space 

coverage by algorithm PSO is updated based on performance of algorithm DS, 

Equation (91). 

 
0% %

k
PG

J
JT T= ⋅  (91) 

where kJ  is the current cost, and 
0PGJ  is the cost at the first evaluation of algorithm 

DS. The number of PSO iterations ( PSON ) can also be updated at step 2. 
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GLIDER MODEL 

 The glider is modeled as a 3 degree of freedom (DOF) point mass described by 

three inertial position coordinates.  Forces acting on the mass include aerodynamic lift 

drag, and gravity.  Control surfaces are taken to be bank angle and lift coefficient.  In 

the equations that follow the ground frame is assumed to be a satisfactory reference 

frame.   
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where, x y and z are the position vector components described in the inertial frame.  

The common shorthand for trigonometric functions is used throughout the paper 

( sin sθθ = ).  Forces and angles are described by Equations (93) through (97). 

 21
2 pm LL SV Cρ=  (93) 

 ( )2 21
2 pm do LD SV C kCρ= +  (94) 

 2 2 2 2( ) ( ) ( )pm x y zV x W y W z W= − + − + −� � �  (95) 

 sin ( )
pm z pmW z Vθ = − �  (96) 

 tan ( ) ( )
pm y xy W x Wψ = − −� �  (97) 

where xW , yW  and zW  are wind velocities described in the inertial frame.  Model 

parameters are selected to represent the performance of a typical micro air robot with a 

small payload, and are given in Table 2-7. 

Table 2-7:  Glider Model Parameters 

Mass (kg) 1.55 
Aerodynamic Area (m2) 0.3406
Max Lift to Drag 38 
Profile Drag Coefficient 0.010
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WIND STRUCTURE MODELS 

 The basic scenario investigated in this work involves thermals and wind 

gradients.  Optimal trajectories in wind gradients alone are classified as dynamic 

soaring, and have been investigated by numerous authors including Sachs, Zhao, and 

Lissaman [12,13,14].  Static and semi-dynamic soaring in stationary thermals has been 

studied by Wharington [15].  Wharington argues that many local minima exist in static 

soaring, and shows that, under certain conditions, maneuvers classified as semi-

dynamic result in larger altitude gain per cycle than the typical static trajectories. 

 A thermal model developed by Allen [16] is used in this investigation.  It is 

designed based on balloon and surface measurements made at Desert Rock, Nevada.  

The general shape is described in Figure 2-3. 

 

 

Figure 2-3:  Thermal Model Shape 

 The lift distribution is a revolved trapezoid given by Equation (98). 
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where 1k  through 4k  are shape parameters, r  is the distance from the thermal core, 

2r is the thermal outer radius, Dw  is the downdraft velocity, and peakw  is the velocity at 

the center of the thermal.  Downdraft wind velocity is determined by Equations (99) 

and (100). 
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where h is the altitude in the thermal and ih  is the height of the thermal.  

Environmental sink is determined by enforcing conservation of air mass in the 

surrounding area, the transition between the thermal and surrounding sink is smoothed 

according to Equation (101). 

 (1 )eff th e peak ew w w w w= − +  (101) 

where the environmental sink is ew , and thw  is the vertical wind velocity.  Typical 

values of peak velocity, outer radius, and thermal height are given in [16].   

 A wind gradient model developed by Zhao [13] is used in this study.  The 

general form allows linear, exponential and logarithmic gradient profiles to be 

modeled.  Horizontal wind is given as a function of altitude by Equation (102). 

 2
min min min

max min

1( ) ( )hg g h
Aw w A h h h h w

h h
⎡ ⎤−

= − + − +⎢ ⎥−⎣ ⎦
 (102) 

Where gw  is the average slope, minh  is the height the gradient begins, maxh is the 

height the gradient ends, minhw  is the minimum horizontal wind velocity, and A  is the 

shape parameter in the range 0 to 2.  The gradient profile is shown for different values 

of A in Figure 2-4. 
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Figure 2-4:  Wind Gradient Profile 
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COMPARISON RESULTS 

 The first scenario considered consists of a single thermal located at the origin 

as shown in Figure 2-5.  Wind model values are given in Table 2-8.  

Table 2-8:  Thermal Model Parameters 

Peak Velocity (m/s) 1.55 
Outer Radius (m) 41.2 
k1 1.93 
k2 2.63 
k3 -0.015 
k4 -0.050 
k5 0.0015 
Environmental Sink (m/s) -0.10 

 

 

Figure 2-5:  Thermal Model Profile 

 

 A closed trajectory with maximal altitude gain and zero speed loss is sought 

subject to the bounds given in Equations (103) through (105). 
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Control Bounds: 
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Initial State Vector Bounds: 
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Path Constraints: 

 3.0 30.0wV≤ ≤  (105) 

where wV  is the glider air speed.  Initial heading angle, pitch angle, velocity, and 

position along the y axis are sought in the optimization problem.  Initial altitude and x 

position are given as 50 and 0 meters respectively. 

 Both search algorithms are exercised on this scenario resulting in two similar 

locally optimal trajectories shown in Figures 2-6 through 2-9.  Initial runs indicated 

that a constant maximum lift coefficient was always optimal in this scenario.  For the 

first scenario, lift coefficient is represented by a constant value and bank angle is split 

into fifteen polynomials.  Bank angle and bank rate at the initial time are constrained 

to be equal to the bank angle and bank rate at the final time. 
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Figure 2-6:  Single Thermal Scenario Optimal Closed Trajectory 
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Figure 2-7:  HS Solution Altitude and Wind Velocity Time History  
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Figure 2-8:  DS Solution Altitude and Wind Velocity Time History 
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Figure 2-9:  Single Thermal Scenario Bank Angle Time History 

Solution time between the methods is very similar.  However the hybrid solver finds a 

better solution in this case.  Performance of the two algorithms is compared in Table 

2-9. 
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Table 2-9:  Method Performance Comparison 

Method Solution Time (s) Altitude Gain (m) 
HS 27 8.6 
DS 26 7.5 

 

Both methods are initialized with the same values.  Parameters used in algorithm HS 

are shown in Table 2-10. 

Table 2-10:  HS Algorithm Parameters 

Initialization Percentage %T  5.0%
Initial Number of PSO PSON  40 
Number of DS PGN  20 
Number of Subsequent PSO PSON 30 

 

Values in Table 2-10 were selected based on extensive experimentation, general 

selection guidelines are discussed in the conclusions chapter.  

 The second scenario involves a single thermal and a horizontal wind gradient, 

wind model values are given in Table 2-7 and 2-8.  Typically the formation of 

thermals is significantly degraded as the horizontal wind increases beyond some level.  

Allen [16] uses 12.87 m/s as an upper limit to the formation of thermals.  We limit our 

investigation to horizontal winds below this threshold.  Horizontal wind gradient 

model parameters are given in Table 2-11. 

Table 2-11:  Wind Gradient Model Parameters 

Minimum Height (m) 40.0
Maximum Height (m) 70.0
Maximum Wind Velocity (m/s) 9.0
Minimum Wind Velocity (m/s) 4.0
Shape Parameter A 1.0
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 Initial altitude and x position are given as 50 and 0 meters respectively.  Bank 

angle is represented with 15 polynomials, and lift coefficient is represented by 10 

polynomials.  The total number of unknown parameters is 55. 

 The addition of a horizontal wind gradient causes problems for convergence 

with algorithm DS for some initial guess’, however algorithm HS seems to be robust 

to this addition.  An example of this difficulty is demonstrated with this scenario.  

Both algorithms are initialized with the same values, DS fails to converge while HS 

converges in a reasonable time.  The resulting trajectory is shown in Figures 2-11 

through 2-14. 

 

Figure 2-10:  Thermal and Wind Gradient Scenario Optimal Trajectory 
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Figure 2-11:  Thermal and Wind Gradient Scenario Altitude Time History 
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Figure 2-12:  Thermal and Wind Gradient Scenario Bank Angle Time History 
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Figure 2-13:  Thermal and Wind Gradient Scenario Lift Coefficient Time History 

 

Interestingly, the addition of a wind gradient results in a larger altitude gain, however 

it is unknown if either trajectory is globally optimal.  Performance of both algorithms 

is compared in Table 2-10. 

Table 2-12:  Thermal and Wind Gradient Scenario Algorithm Performance 

Method Solution Time (s) Altitude Gain (m) 
HS 57.8 9.9 
DS Failure NA 

 

 The addition of a wind gradient seems to increase the frequency of failed 

convergence for algorithm DS, yet convergence for algorithm HS is only slowed.  This 

may be important when determining an initialization scheme for DS, care must be 

taken to insure initial guesses are robust to seemingly small changes in the problem.   

 The optimal trajectory in this scenario takes the form of a figure eight centered 

on the thermal from the top view.  The bank schedule required in this scenario is 

different in magnitude and form from the single thermal scenario, and results in a 

larger altitude gain. 
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CONCLUSIONS 

 Performance of algorithm HS depends heavily on the size of the initial search 

space, and number of initial PSO iterations.  A small search space coverage greatly 

enhanced convergence speed where the initial guess was reasonable.  Similarly, a 

small search space coverage required fewer PSO iterations to reduce the cost 

significantly.  Where the initial guess was poor a larger search space and more PSO 

iterations were required.  Parameters specific to PSO and DS were selected to 

optimize performance of each individual algorithm.  The number of neighbors in PSO 

was selected at a moderate level, to insure the algorithm would thoroughly explore the 

desired search region.  Values used in this work are given in Table 2-10. 

 

Table 2-13:  PSO Algorithm Parameters 

Number of Particles 25 
Number of Neighbors 8 

Inertia Weight Schedule 0.9-0.4 
Acceleration Parameters 1 2,C C  2.0, 2.0 

 

The hybrid solver was found to be marginally slower than direct shooting for 

the single small thermal soaring problem.  However a slightly better solution was 

found.  When a horizontal wind gradient is added, the direct shooting method fails to 

converge but the hybrid method converges. 
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NOMENCLATURE 

 
iuK  = ith control vector 

ixK  = ith state vector 

( )J uK  = scalar cost function 

L  = index of final state vector 

( )i ig xK  = penalty function on ith state vector 

( )i iq uK  = penalty function on ith control vector 

D  = diagonal positive definite penalty matrix 

( , )i iG x uK K  = discrete governing dynamic equations 

max min,u uK K  = upper and lower bounds on the control vector 

min max,χ χ  = simple bounds on nonlinear inequality function 

( )ixχ K  = ith nonlinear inequality function 

C  = control extraction matrix 

L  = Lagrangian function of the nonlinear optimization problem 

iH  = ith discrete Hamiltonian of the nonlinear optimization problem 

iP
K

 = ith vector of Lagrange multiplier for nonlinear optimization 

  problem 

#[ ]⋅  = projection onto simple bounds 

kα  = line search parameter 
ksK  = vector of unknown parameters at the kth iteration 
# ( )I uK  = indices of controls with active bound constraints 

ε  = soft boundary parameter for control inequality constraints 

∇L  = gradient of the Lagrangian 
2∇ L  = Hessian of the Lagrangian 

( )uδ K�L  = Lagrangian function of the quadratic programming problem 
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iH�  = ith discrete Hamiltonian of the quadratic programming 

problem 
k
iuδ K  = ith control vector variation at the kth iteration, k

i iu u−K K  

iλ
K

 = ith co-state vector of the quadratic programming problem 

BF  = interior point boundary function for state inequality constrains 

c  = scalar weight parameter for interior point boundary function 

, ,x y z  = position vector components of the glider expressed in the  

  inertial frame 

V  = glider airspeed magnitude 

, ,ψ θ φ  = glider path heading, pitch and bank angles 

, ,x y zW W W  = wind velocity components expressed in the inertial frame  

m  = mass of the glider 

g  = gravitational acceleration constant 

ρ  = density of air 

S  = glider model wing area 

LC  = glider model lift coefficient 

0DC  = glider model profile drag coefficient 

k  = glider model induced drag factor 

pht  = controller prediction horizon 

*V  = nominal airspeed 

, ,x y z  = non-dimensional position vector components of the glider   

mass expressed in the inertial frame 

τ  = non-dimensional time parameter 

V  = non-dimensional glider airspeed 

g  = non-dimensional gravitational acceleration constant 

cpD  = non-dimensional dynamic pressure coefficient 

spE  = non-dimensional specific wind relative energy 
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spE′  = non-dimensional specific wind relative energy rate 

, , zx y∂ ∂ ∂  = partial derivative with respect to x, y, and z 

gr  = distance of the glider from the thermal core 

,T Tx y  = location of the thermal core in the inertial frame 

Te  = thermal elliptical shape parameter 

Tw  = vertical wind velocity at the core of the thermal 

Tr  = radius of the thermal 

f  = thermal model decay shape parameter 

dw  = environmental sink wind velocity 

hgw  = horizontal wind velocity 

β  = slope of the wind gradient 

a  = horizontal wind gradient shape parameter 

minh  = minimum altitude of the wind gradient 

maxh  = maximum altitude of the wind gradient 

minhw  = minimum horizontal wind velocity 



 67

INTRODUCTION 

Micro air robots are small, autonomous, intelligent aircraft designed to focus 

on a   specific task.  The range of applications envisioned for future micro air robots in 

both the civilian and military sectors is truly staggering.  Micro air robots may be used 

by environmentalists for detailed wildlife monitoring and surveying tasks.  Micro air 

robots could fly through factory smokestack emissions to measure released chemical 

concentrations. With gradient sensors and flight control system feedback, micro air 

robots could map the size and shape of hazardous clouds and provide real time 

tracking of their location.  Forestry management could be aided by sending micro air 

robots into remote areas of a forest that are difficult to access to gather important 

forest health and growth data.  Other applications include monitoring concentrations 

of chemical spills and measuring ammonia concentration in agriculture, to name just a 

couple.  

The potential of micro air robots is astonishing, yet significant technical 

obstacles must be overcome to realize this potential.  The Achilles heel of micro air 

robots is power required for mobility.  Micro air robots consume a significant amount 

of power just to remain aloft.  When considering practical micro air robot 

configurations that carry sensors, power requirement problems become more acute.  

These power requirements curtail the feasibility of micro air robots for many of the 

potential missions mentioned above.  To remedy this situation, many research groups 

are actively engaged in research and development on small, low weight, high power 

output propulsion technologies.  An alternate and complementary concept for 

powering micro air robots is to harvest energy from the environments in which they 

fly.  In straight and level aircraft flight, atmospheric wind updrafts rotate the relative 

aerodynamic velocity vector downward, causing drag to point aft and slightly upward 

and lift to point up and slightly forward.  When the atmospheric wind updraft is 

sufficiently large, straight and level flight and even climbing flight is possible without 

power. 

Thermals, hill lift, and mountain waves are examples of naturally occurring 

wind structures with a large enough vertical velocity component to support static 
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soaring.  A typical static soaring strategy involves remaining in the vertical updraft as 

long as possible, for example constant circling in a thermal.  Trajectories tend to be 

relatively static, with a nearly constant bank angle, airspeed, and path pitch angle.  

Due to the simplicity of the trajectory, this mechanism can be very successful where 

the updraft region is large.  As the size of the updraft region decreases larger bank 

angles are required to remain in the updraft resulting in increased airspeed and greater 

energy loss’ due to large drag forces.  In this case semi-dynamic trajectories [1] have 

been shown to perform significantly better by using multiple energy gain mechanisms.  

Semi-dynamic soaring requires larger variations in airspeed, path pitch angle, and 

bank angle however energy gains are typically larger than with static soaring.   

 Several research groups have investigated optimal static and dynamic soaring 

trajectories.  Allen used a simplified airplane model and thermal measurements in a 

specific geographic region to estimate flight time gains assuming a soaring controller 

is available [2].  He found that endurance of a glider could be increased from 2 hrs. up 

to a maximum of 14 hrs. in the region investigated, while the average flight time gain 

over a year was found to be 8.6 hrs..  Wharington used a direct shooting method to 

find a closed cycle which results in the largest altitude gain where single and multiple 

small thermals are known to exist [1].  Wharington found that semi-dynamic soaring is 

optimal in small thermals. 

 Sachs investigated repeatable optimal dynamic soaring trajectories in the wind 

shear at a ridge [3].  He found several trajectories capable of sustaining flight in a 

realistic wind shear, and also presented minimum shear required to sustain flight.  

Lissaman further investigated the problem of dynamic-soaring at a ridge, and the 

oceanic boundary layer.  He developed simplified point mass equations, and derived 

general lower bounds for the wind shear required to sustain flight [4].  Zhao developed 

a simple wind gradient model capable of representing an exponential, logarithmic, or 

linear wind gradient [5].  He used direct collocation to investigate repeatable dynamic-

soaring trajectories including a minimum cycle time problem.  Zhao and Qi 

investigated the dynamic-soaring problem while minimizing the power required for 

maintaining flight [6].  Goto investigated dynamic-soaring trajectories in a linear wind 
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gradient using direct collocation [7].  He addressed the issue of control discontinuity 

inherent in the solution to discrete optimal control problems.   

 To estimate trajectories that maximize energy gain; trajectory optimization 

algorithms are typically employed.  Betts gives a summary of some common trajectory 

optimization methods in [8].  Most methods can be classified as either direct or 

indirect.  Indirect methods use the calculus of variations to derive the first order 

necessary conditions for an extremum. The result is a two point boundary value 

problem which is then solved for the optimal solution.  An example of an indirect 

solver using finite elements in time is by Warner and Hodges [9]. 

 Direct methods approach the trajectory optimization problem by first 

converting from continuous variables to discrete parameters.  Parameter optimization 

or nonlinear programming methods are then used to solve the discrete optimization 

problem.  Hull provides an overview of typical methods for this conversion [10].  

Many methods exist for solving the resulting parameter optimization problem 

Berteskas provides an introduction to standard nonlinear programming techniques in 

[11]. 

 Collocation is one common method of converting a continuous optimization 

problem into a discrete parameter optimization problem.  An implicit integration 

technique equivalent to Simpson’s 1/3 rule is used to represent the governing 

equations of motion.  Hargraves and Paris give a detailed overview of this collocation 

in [12].  Conway and Larson show how some of the control parameters can be 

removed in direct optimization resulting in a reduced problem which they show can be 

solved more efficiently.  An implicit Euler rule is used to represent the governing 

dynamics [13].   Solving an equivalent reduced order system is considered by Petit, et. 

al.  The reduced system is solved by collocation, and results indicate the solution 

speed can be increased [14].  A direct shooting method uses an explicit integration 

technique to represent the governing equations of motion.  Schwartz developed a 

direct shooting method for optimal control problems in [15]. 

Typically any of the above methods require significant computation, and are 

used for off line investigation.  There are many methods that make significant 

approximations to the problem which reduce computation time significantly.  
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Computational requirements and sub-optimality are balanced to obtain a desirable 

algorithm.  Slegers, Kyle, and Costello use a taylor series approximation of the system 

dynamics to predict the optimal control actuation.  Trajectory tracking of a flight 

vehicle was examined in [16].  A real time approach for trajectory optimization was 

developed by Yakimenko who approximates system dynamics with a single high order 

polynomial [17].  Flight tests were conducted for short term spatial maneuvers to 

validate the technique. 

The research detailed in this paper investigates a receding horizon control law 

for nonlinear trajectory optimization that maximizes glider energy gain over a fixed 

horizon.  An initial guess of the optimal trajectory is improved with several Newton 

iterations of a nonlinear optimization problem 20 times a second.  The glider then 

executes the resulting trajectory.  This is a unique approach to the autonomous soaring 

problem, and is shown to be capable of real time implementation.  An efficient direct 

trajectory optimization algorithm [11] is extended to handle simple bounds on the 

control and state vector, and nonlinear inequalities on the states.  Robustness to wind 

and model errors show this method has potential for real time application. 
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RECEDING HORIZON TRAJECTORY OPTIMIZATION 

 The optimization problem considered in this work is to determine the control 

history which minimizes the scalar cost function given by Equation (106), subject to 

the discrete dynamics given by Equation (107), the control inequality constraints given 

in Equation (108), and the nonlinear state inequality constraints given in Equation 

(109). 

Table 3-1:  Optimization Problem 1 (OP1) 

 
Minimize: 

 
1

1
0 0 2

1
( ) ( ) ( ) ( ) ( ) T

L

L L i i i i i i
i

J u g x q u g x q u u D u
−

=

Δ Δ= + + + +∑K K K K K K K  (106) 

 
Subject to: 

 1 ( , )    0 1i i ix G x u i L+ = = −K K K …  (107) 

 min max    0 1iu u u i L≤ ≤ = −K K K …  (108) 

 min max( )     1ix i Lχ χ χ≤ ≤ =K …  (109) 

 

 

where uΔK  is defined in Equation (110).   

 1i i iu u u −Δ = −K K K  (110) 

The initial state vector 0xK  and previous control vector 1u−

K  are given, and the discrete 

dynamic equations can be solved when the control sequence is given.  Problem OP1 

arises by converting a continuous optimization problem into a discrete parameter 

optimization problem using an explicit integration technique on the state equations.  A 

problem of this form is typically solved by a direct shooting method [10]. 

 The algorithm considered in this work restricts coupling in the cost function to 

the ith control and/or state vector.  Problem OP1 is converted to this form by 

appending the previous control to the state vector, as given in Equation (111). 
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i

x
x

u −

⎧ ⎫
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⎩ ⎭

K
K

K  (111) 

Now iuΔ K  can be written in terms of the ith state and control vectors given by Equation 

(112). 

 i i iu u CxΔ = −K K K  (112) 

Problem OP1 can then be written in the required form given in Table 3-2. 

Table 3-2:  Optimization Problem 2 (OP2) 

 
Minimize: 

 
0 0

1
1 1
2 2

1

( ) ( ) ( )

          ( ) ( ) T T T T T

L L
L

i i i i i i i i i i
i

J u g x q u

g x q u u Du x C DCx x C Du
−

=

= + +

+ + + −∑

K K K

K K K K K K K K  (113)

 
Subject to: 

 1 ( , )    0 1i i ix G x u i L+ = = −K K K …  (114)

 min max    0 1iu u u i L≤ ≤ = −K K K …  (115)

 min max( )     1ix i Lχ χ χ≤ ≤ =K …  (116)

 

 

Although the size of the state vector is extended in OP2, the additional computation is 

minimal with careful implementation. 

 

Sequential Quadratic Programming Algorithm 

 Many solution techniques exist for OP2, an efficient sequential quadratic 

programming algorithm (SQP) is selected for this work.  A brief development can be 

found in [11].  Problem OP2 can be solved by finding a stationary point of the 

Lagrangian function given in Equations (117) through (119). 

 ( )
1

1 1
0

L
T

L i i i
i

g H P x
−

+ +
=

= + −∑
K KL  (117) 



 73

 ( )1

1 1
2 2( ) ( ) ( , )T T T T T

i

T
i i i i i i i i i i i i iH g x q u u Du x C DCx x C Du P G x u

+
= + + + − +

KKK K K K K K K K K K  (118) 

 ( )1 1
0 0 0 0 0 0 0 0 0 1 0 0 02 2( ) ( , )T T T T T TH q u u Du x C DCx x C Du P G x u= + + − +

KKK K K K K K K K K  (119) 

where iH  is the discrete Hamiltonian, and iP
K

 are the system co-states.  A stationary 

point of the Lagrangian is given in Equation (120). 

 0∇ =L  (120) 

where ∇  denotes the gradient.   

 An iteration of Newton’s method with simple bounds is given by Equation 

(121). 

 1

#

k k k ks s sδα+ ⎡ ⎤= +⎣ ⎦
K K K  (121) 

where ksK is the vector of unknown parameters which include the states, co-states, and 

controls at the thk  iteration, α  is a line search parameter, and #[ ]⋅  denotes a projection 

onto simple bounds.  The search direction ksδ K  can be found by minimizing the 

quadratic function given by Equation (122). 

 1
qp 2minimize F ( s) = ( ) ( ) ( ) ( ) ( )k k T T ks s s s D sδ δ δ δ+∇ +K K K K K K L L  (122) 

 

2

2
,

2
,

[ ( )] 0 0
0 [ ( )] 0

0 0 [ ( )]

k
A

k
i ik

k
i i

s
s

D

s

⎡ ⎤∇
⎢ ⎥∇⎢ ⎥= ⎢ ⎥
⎢ ⎥

∇⎢ ⎥⎣ ⎦

K "
K "

# # % #
K"

L
L

L

 (123) 

The subscript A  denotes the set of parameters with inactive bound constraints, and the 

i  indices span the parameters with active bound constraints.  In words, matrix kD  is 

the Hessian of the Lagrangian modified to be diagonal for parameters with active 

bound constraints.  This modification of the Hessian matrix is required to insure 

descent of the cost function for an iteration of the form in Equation (121), proof of this 

condition was introduced by Berteskas [11].  The set of inactive controls is defined by 

Equation (124). 
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Treatment of simple bounds in this way will be limited to the control variables, while 

bounds on the state will be addressed later. 

 For clarity, the structure of the gradient and Hessian of the Lagrangian function 

is given in Equations (126) and (127).  The order of the vector of unknown parameters 

is given in Equation (125). 

 0 1 1 1 2 1 1

Tk T T T T T T T T T
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where matrices iB  and iM  are appropriately modified such that Equation (127) is 

diagonal for controls with active bound constraints.  This amounts to setting to zero 

the columns of iB , iM , and off diagonal columns and rows of iR  for controls with 

active bound constraints. 

 The typical solution strategy involves solving for the state and co-state 

trajectories given a control history, this is done by selecting the states and co-states to 

satisfy the first order necessary conditions given by Equation (120).  The state 

trajectory is found by forward propagation of Equation (114) with known initial 

conditions, and the co-state trajectory is found by backward propagation of Equation 

(130). 
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Multiplying out Equation (122) and collecting terms results in the equivalent quadratic 

programming problem given by QP1. 

Table 3-3:  Quadratic Programming Problem 1 (QP1) 
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Problem QP1 is solved for uδ K , which is used in Equation (121) to find the exact 

Newton iteration for the original nonlinear programming problem OP2.  Efficient 

solution to a problem of the form QP1 can be found by a Riccatti recursion, a brief 

outline is given presently. 

System QP1 is solved by finding a stationary point of the Lagrangian given in 

Equation (133) and (134). 
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where iλ
K

 are the co-states of the quadratic program QP1.  A stationary point of QP1 is 

found by satisfying the quadratic program state equations given in Equation (135), the 

co-state equations given in Equation (136), and the stationary conditions given in 

Equation (137). 
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The set of Equations (135) through (137) represent the necessary conditions for a local 

minimum, and can be satisfied in closed form resulting in Equations (138) through 

(140).  
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Descent of the original cost function is guaranteed where the matrix 1( )T

i i i iR B S B++  is 

positive definite. If this is not the case, the matrix should be modified by adding a 

diagonal positive definite matrix such that 1( )T

i iM i i iR R B S B++ +  is positive definite 

[11].  The algorithm is summarized in Table 3-4. 

 

Table 3-4:  SQP Optimal Control Algorithm 

 
        Given: 0 ,x uK K  
 

For number of iterations 
Step 1: Forward propagate state equations, Equation(114)
. 

 
Step 2: Back Propagate for P

K
 using Equation (130) ,  

λ
K

using Equation (139),and 
S
K

using Equation (140). 
 

Step 3: Forward Propagate Newton control step uδ K using 
            Equations (138) and (132). 
 
Step 4: Update controls using Equation (121). 

update iteration index 
End 

 

 

The parameter kα  in Equation (121) is determined by line search defined in Equation 

(141).   

 k mα β=  (141) 

where 1β < , and 0,1,m = … .  The first m  which results in a reduced cost is accepted.  

Typically a line search technique requires sufficient cost reduction for acceptance to 

insure convergence in a finite number of steps.  In this case, any cost reduction is 

acceptable because full convergence is not expected but a small computation time per 

iteration is desired.   
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State Inequality Constraints 

 State inequality constraints (Equation (116)) are enforced using interior point 

boundary functions [11].  Boundary functions are appended to the cost function which 

penalizes the cost for infeasible states.  Typically boundary functions with 

singularities at the limits are used and initial feasible trajectories are required, however 

all further solutions then remain feasible.  In the problem considered in this work 

initial feasible trajectories are easily found, and feasible iterates are desirable.  Typical 

form of a boundary function is shown in Figure 3-1. 
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Figure 3-1:  Boundary Function for a Range of C Values 

 

where the boundary function is given by Equation (142). 

 min max( ) ( )BF c cχ χ χ χ= − + −  (142) 

Typically the scalar c is decreased as the optimal solution is approached, allowing the 

trajectory to approach the constraint more closely.  In this work, a small c  value is 

selected and increased if the bound is approached too closely.  Care must also be taken 

that the bounds are not violated due to system unknowns, state noise, or when stepping 

the prediction horizon forward in time.  If the bounds are violated at any point, they 

should be shifted and the parameter c  increased until the original bounds are again 

satisfied. 
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Receding Horizon Implementation 

The optimal control algorithm described in this work is applied in a receding 

horizon fashion.  Two algorithm iterations are conducted for each control update 

requiring an average of 0.0125 seconds per iteration for a prediction horizon of 10 

seconds.  Time per iteration varies due to line searching, however a line search was 

not required in most cases.  A fixed update rate of 0.05 seconds was selected for this 

work allowing a buffer of 0.025 seconds for line searching or other miscellaneous 

tasks. 

After updating the control, the initial state vector required for the control 

algorithm is approximated by projecting the model forward in time using the current 

control input.  The control trajectory from the previous iteration is used to start the 

next iteration as shown in Figure 3-2.  Robustness of this algorithm to modeling 

uncertainties and disturbances is investigated in the results section. 

 

 

 

Figure 3-2:  Control Trajectory Update 
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GLIDER MODEL 

 A point mass model is sufficient for this investigation.  In the equations that 

follow, the ground frame is assumed to be a satisfactory reference frame.  Glider 

inertial position is described in Equations (143) through (145). 

 ( )xx Vc c W zθ ψ= −�  (143) 

 ( )yy Vc s W zθ ψ= −�  (144) 

 ( , )zz Vs W x yθ= − −�  (145) 

where, V is the glider airspeed, θ  is the path pitch angle, and ψ  is the path heading 

measured from the positive x axis.  Wind is described in the inertial frame, xW is wind 

velocity in the negative x direction, yW  is the wind velocity in the negative y direction, 

and zW  is the wind velocity in the negative z direction.  The horizontal wind velocity 

varies with altitude, and vertical wind velocity varies with x, and y position.  Wind 

models are discussed in the following section.  The common shorthand for 

trigonometric functions is used throughout the paper ( sin( ) sθθ ≡ ).  Dynamic 

equations of motion are described in Equations (146) through (148). 

 D
x y zmV gs c c W s c W s Wθ ψ θ ψ θ θ= − − + + −� � � �  (146) 

 Ls
x ymVc s W c Wφ

θ ψ ψψ = − +� ��  (147) 

 Lc
x y zmV c g s c W s s W c Wφ

θ θ ψ θ ψ θθ = − − − −� � � �  (148) 

where φ  is the glider bank angle, and m  is the mass of the glider.  Lift and drag 

forces are given by Equations (149) through (151). 

 21
2 LL V SCρ=  (149) 

 21
2 DD V SCρ=  (150) 

 
0

2
D D LC C kC= +  (151) 

where LC  is the lift coefficient, 
0DC  is the profile drag coefficient, k  is the induced 

drag coefficient, ρ  is the air density, and S  is the wing area. 
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 The system model is normalized to enhance the numerical properties of the 

optimization algorithm.  Non-dimensional parameters are defined in Equations (152) 

through (154). 

 * * *
ph ph ph

x y zx y z
t V t V t V

= = =  (152) 

 *

VV
V

=  (153) 

 pht tτ=  (154) 

where pht  is the prediction horizon, *V  is a nominal airspeed, and τ  is the normalized 

time.  The resulting non-dimensional equations of motion are given in Equations (155) 

through (162). 

 ( )xx Vc c W zθ ψ′ = −  (155) 

 ( )yy Vc s W zθ ψ′ = −  (156) 

 ( , )zz Vs W x yθ′ = − −  (157) 

 2
cp d x y zV gs D C V c c W s c W s Wθ ψ θ ψ θ θ′ ′ ′ ′= − − + + −  (158) 

 ( )cp L y

s s c
c c V c VD VC W Wφ ψ ψ
θ θ θ

ψ ⎛ ⎞ ⎛ ⎞′ ′ ′= − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (159) 

 ( ) ( ) ( )cp L x y z
gc s c s s c
V V V VD VC c W W Wφ

ψ ψθ θ θ θθ ′ ′ ′ ′= − − − −  (160) 

 *
phg gt V=  (161) 

 *1
2( )

c mp phD SV tρ=  (162) 

where ( )′⋅  denotes differentiation with the normalized time variable τ .  The 

normalized air-relative specific energy is given in Equation (163). 

 21
2spE zg V= − +  (163) 

The energy rate is given in Equation (164). 
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where z xW∂ is the partial derivative of xW  with respect to z .  It is interesting to note 

that the thermal wind velocity directly increases the energy rate, and the drag force 

decreases the energy rate proportional to the cube of airspeed.  Other energy transfer 

mechanisms include individual gradients of wind velocity, and coupled terms relying 

on both horizontal and vertical winds and their gradients. 

 Glider model parameters are selected to represent the performance of a typical 

micro air robot with a small payload. 

Table 3-5:  Glider Model Parameters 

Mass (kg) 1.55 
Aerodynamic Area (m2) 0.3406 
Max Lift to Drag 38 
Profile Drag Coefficient 0.010 
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WIND STRUCTURE MODELS 

 The basic scenarios investigated in this work involve thermals and wind 

gradients.  Optimal trajectories in wind gradients alone are classified as dynamic 

soaring, and have been investigated by many authors including Sachs, Lissaman, 

Zhao, and Goto [3-7].  Static and semi-dynamic soaring in stationary thermals has 

been studied by Wharington [1].  Wharington found that many local minima exist in 

static soaring problem, and shows that, under certain conditions, maneuvers classified 

as semi-dynamic result in larger altitude gain per cycle than the typical static 

trajectories.  Wharington did not investigate the effects of wind shear. 

 A simple thermal model is sufficient for this investigation [18], given by 

Equations (165) and (166). 

 ( ) ( )2 22 ( ( )) ( ( )) /T T T Tgr e x x z y y z e= − + −  (165) 

 
2( )2 2cos( 2 )eT T
g

z g d
r fW w r r wπ= −  (166) 

where Tw  is the thermal wind velocity at the core, 2
Tr  is the thermal radius, and T Tx y  

define the location of the thermal, dw  is the surrounding downdraft, f  is the thermal 

decay parameter, and Te  allows elliptic thermals to be modeled.  An example thermal 

profile is shown Figure 3-3. 
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Figure 3-3:  Thermal Model Profile 

 

 A wind gradient model developed by Zhao [5] is used in this study.  The 

general form models linear, exponential and logarithmic gradient profiles.  Horizontal 

wind is given as a function of altitude by Equation (167). 

 2
min min min

max min

1( ) ( )hg h
aw a h h h h w

h h
β
⎡ ⎤−

= − + − +⎢ ⎥−⎣ ⎦
 (167) 

where β  is the average slope, minh  is the height the gradient begins, maxh is the height 

the gradient ends, minhw  is the minimum horizontal wind velocity, and a  is the shape 

parameter in the range 0 to 2.  The gradient profile is shown for different values of 

a in Figure 3-4. 
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Figure 3-4:  Wind Gradient Model Profile 
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EXAMPLE RESULTS  

 The first scenario considered involves a single thermal located at the origin, 

with wind model parameters given in Table 3-6.  A generic cost function is used 

which balances the potential and kinetic energy gains. 

 2 2
0 02( ) ( )kE

i p i ig E z z V V= − + −  (168) 

where 0 and oz V  are the initial position and airspeed, and the scalar constants 

,  and p kE E  specify the relative importance of  potential and kinetic energy gains.  

Also, the distance from the thermal core is lightly penalized to increase the robustness 

of the controller.  The bank angle trajectory initialized to zero, and the lift coefficient 

is initialized to maxLC . 

 The glider begins outside of the thermal heading directly to the thermal core.  

The resulting trajectory is shown in Figures 3-5 through 3-10. 

-30 -20 -10 0 10 20 30

-30

-20

-10

0

10

20

30

x position (m)

y 
po

si
tio

n 
(m

)

0

0

0

0

0

0

0

0

0

0

0

0

0.5

0.5

0.5

0.5

0.5

0.
5

1

1

1

1

1

1.5

1.5

1.5

2

2

 

Figure 3-5:  Single Thermal Scenario Trajectory 
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Figure 3-6:  Single Thermal Scenario Altitude and Thermal Velocity Time History 

 

A repeatable cycle with an average altitude gain of 1 m/s is achieved very quickly 

after the glider enters the thermal.  The trajectory is perfectly centered about the 

thermal core.   
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Figure 3-7:  Single Thermal Scenario Airspeed Time History 
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Figure 3-8:  Single Thermal Scenario Energy Gain Time History 
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Figure 3-9:  Single Thermal Scenario Bank Angle Time History 
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Figure 3-10:  Single Thermal Scenario Lift Coefficient Time History 

 

Airspeed in this case varies between 3 m/s and 15 m/s, very near the lower bound of 

2.5 m/s.  The maximum bank rate required in this example is 38 deg/s.   

 The second scenario investigated is a single oval shaped thermal with 

parameters given in Table 3-7.  A semi-dynamic trajectory is executed similar to the 

circular thermal, however the trajectory aligns itself with the thin axis of the thermal in 

this case.  Altitude gain for the oval thermal is nearly identical to the altitude gain in 

the circular thermal.  
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Figure 3-11:  Oval Thermal Scenario Trajectory 
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Figure 3-12:  Oval Thermal Scenario Altitude and Thermal Velocity Time History 
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 Finally a combination scenario with a single circular thermal and a horizontal 

wind gradient is investigated.  Wind structure parameters are given in Table 3-6 and 3-

8.    
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Figure 3-13:  Thermal and Wind Gradient Trajectory 
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Figure 3-14:  Thermal and Wind Gradient Scenario Altitude and Thermal Wind 
Velocity Time History 
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Figure 3-15:  Thermal and Wind Gradient Scenario Airspeed Time History 
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Figure 3-16:  Thermal and Wind Gradient Scenario Energy Gain Time History 

 

Initially a semi-dynamic trajectory is achieved at the center of the thermal, 

where the glider banks back and forth facing into the horizontal wind.  The bank 

trajectory in this case is slowly damped out until the glider is left hovering at the core 

of the thermal gaining nearly 2 meters of altitude each second. 

Table 3-6:  Round Thermal Model Parameters 

Thermal Radius (m) 30.0 
Core Velocity (m/s) 2.0 
Downdraft (m/s) -0.1 
Elliptic parameter e  1.0 
Decay Rate f  -0.0015

 

Table 3-7:  Oval Thermal Model Parameters 

Thermal Radius (m) 30.0 
Core Velocity (m/s) 2.0 
Downdraft (m/s) -0.1 
Elliptic parameter e  0.7 
Decay Rate f  -0.0015
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Table 3-8:  Horizontal Wind Gradient Model Parameters 

Minimum Height (m) -1.0 
Maximum Height (m) 100.0
Maximum Wind Velocity (m/s) 12.0
Minimum Wind Velocity (m/s) 0.0 
Shape Parameter A 1.0 

 

 The control algorithm runs significantly faster than real time in all scenarios 

investigated.  A prediction horizon of 10.0 seconds was used, although any prediction 

horizon longer than 9 seconds was also found to work well.  Two algorithm iterations 

were conducted for each control update requiring an average of 0.0125 seconds per 

iteration for a real time update rate of 0.05 seconds leaving a buffer of 0.025 seconds 

per iteration for other necessary tasks.  It was observed that the Newton step was used 

in nearly every case, however the line search strategy described previously is easily 

achieved within the buffer time.  All computation time measurements were made with 

the CPU time functionality in Fortran 95, on a laptop running an Intel Centrino Duo 

T2300 CPU. 
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SENSITIVITY INVESTIGATION 

 Performance of the receding horizon algorithm is excellent where the 

environment is known perfectly; unfortunately this is never the case especially where 

wind is concerned.  Performance in scenario 3 involving a single thermal and a wind 

gradient is investigated where various parameters are incorrectly known.  The 

controller is executed with parameters described in the previous section for scenario 

three.  The real glider path is determined with model parameters representing the “real 

world” scenario.  Parameters are given in Tables 3-9 through 3-12, the “real world” 

parameters are crowned with a ~.  It was necessary to increase the lower bound on 

airspeed from 2.5 m/s to 4.0 m/s to insure the lower bound on airspeed is enforced 

strictly.  A one-minute real time simulation is compared, and performance is measured 

in total altitude gain.  Altitude gain in the “perfect world” scenario is 73.9952 meters 

in 60 seconds. 

 Several significant parameters in the thermal model are investigated and results 

are given in Table 3-9. 

Table 3-9:  Thermal Parameter Sensitivity Investigation 

[Nominal Performance 73.9952 m] 

Thermal Location 
[Performance / Position Error]

Thermal Magnitude 

[Performance / T

T

w
w
�

] 

Thermal Radius 

[Performance / T

T

r
r
�

] 

 73.8573 m / 0.3 m 60.1629 m / 0.9 73.0033 m / 0.9 
72.9379 m / 1.5 m 38.3686 m / 0.75 70.1632 m / 0.75 
52.7159 m / 7.5 m 6.5348 m / 0.5 46.2809 m / 0.5 

18.6594 m / 15.0 m 86.3094 m / 1.1 74.6947 m / 1.1 
-34.9270 m / 30.0 m 104.0877 m / 1.25 75.3775 m / 1.25 

 

Error in the location of the thermal has a negligible effect on performance until it 

approaches 25% of the thermal radius.  Performance varies with the thermal 

magnitude error as expected.  The thermal radius is relatively insensitive to errors, as 

expected due to the tight pattern flown around the thermal core. 

 Several significant parameters in the wind gradient model are investigated and 

results are given in Table 3-10. 
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Table 3-10:  Wind Gradient Parameter Sensitivity Investigation 

[Nominal Performance 73.9952 m] 

Gradient Profile Parameter a 

[Performance/ 
a
a
�

] 
Minimum Velocity 

[Performance / min minV V−� ] 
Maximum Velocity 

[Performance / max maxV V−� ]

 58.6699 m / 0.0 m 42.0162 m / -10 m/s 56.2243 m / -10 
65.0532 m / 0.5 m 69.1021 m / -5 m/s 57.2663 m / -5 
77.0420 m / 1.5 m 58.6210 m / 5 m/s 74.4580 m / 5 
73.3062 m / 2.0 m -8.4857 m / 10 m/s 61.0661 m / 10 

 

Significant performance loss is found where the minimum velocity error is above 5 

m/s, otherwise errors in all of the wind gradient parameters have a minimal effect on 

performance of the controller. 

All performance parameters in the glider model are investigated and results are 

given in Table 3-11 and 3-12. 

Table 3-11:  Glider Aerodynamic Parameter Sensitivity Investigation 

[Nominal Performance 73.9952 m] 

Profile Drag Coefficient 

[Performance/ do

do

C
C

] 

Induced Drag Coefficient 

[Performance/ 
k
k

] 

46.6307  m / 5.0  36.0991 m / 2.0 
68.6396 m / 2.0 52.8589 m / 1.5 
76.1627 m / 0.5 89.3808 m / 0.5 
77.8955 m / 0.1 96.8201 m / 0.25 

 

Glider model aerodynamic parameters have a predictable effect on performance of the 

controller. 
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Table 3-12:  Glider Parameter Sensitivity Investigation 

[Nominal Performance 73.9952 m] 

Normalized g   

[Performance / 
g
g
�

] 

Normalized Dpc 

[Performance / pc

pc

D
D�

] 

58.3549  m / 1.25 81.0874  m / 1.5 
67.2711 m / 1.125 79.1965 m / 1.25 
81.1604 m / 0.75 60.2248 m / 0.8125 
78.4131 m / 0.5 57.9424 m / 0.75 

 

Glider model physical parameters have a predictable effect on performance of the 

controller.  
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CONCLUSIONS 

 An efficient optimal model predictive algorithm has been presented and 

extended to handle simple bounds on the control variables and nonlinear inequality 

constraints on the state variables.  The controller was exercised in a receding horizon 

formulation on the problem of autonomous soaring and performs faster than real time 

for this problem. 

 Significant altitude gain was achieved for several scenarios involving relatively 

small thermals and a stiff horizontal wind gradient.  Performance loss when 

parameters of the wind structures or glider model are in error was investigated.  The 

controller is shown to perform well when knowledge of the wind structures and glider 

model are reasonable. 
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4 GENERAL CONCLUSIONS 
 

 A multiple input multiple output model predictive controller was developed 

with the purpose of enabling autonomous aircraft energy extraction from atmospheric 

winds through static soaring.  The flight control law requires that external information 

is provided on the local wind structure and full state feedback has been assumed.  

Numerical results exercising this control law on a 6DOF model show an aircraft 

altitude gain in two thermals of known location and size.  Climb rates of ½ m/s and ¼ 

m/s were achieved in the subsequent thermals.  It was found that for smaller thermals 

more aggressive bank angles still resulted in impressive climb rates. 

 A hybrid solver was developed and shown to be robust to initial guess, while 

performing only slightly slower than direct shooting alone.  Optimal trajectories for 

typical soaring scenarios were investigated.  The importance of the robust solver is 

highlighted by investigating a small modification to a typical scenario, which results in 

convergence failure for the gradient method alone. 

 An efficient optimal model predictive control algorithm has been presented 

and extended to handle simple bounds on the control variables and nonlinear 

inequality constraints on the state variables.  The controller is exercised in a receding 

horizon formulation on the problem of autonomous soaring and performs faster than 

real time for this problem. 

 Significant altitude gain was achieved through “Semi-Dynamic Soaring” 

trajectories for several scenarios involving small thermals and a stiff horizontal wind 

gradient.  This new approach to the autonomous soaring problem performs 

exceptionally well in the scenarios investigated and offers several advantages 

including a fast update rate, and no requirements of prior knowledge of optimal 

trajectories in similar scenarios. 

Performance loss when parameters of the wind structures or glide model are in 

error was investigated.  The controller is shown to perform well when knowledge of 

the wind structures and glider model are reasonable. 
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