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As the TekBots® program expands into senior and graduate level classes at 

Oregon State University, so does the need arise for more complex learning platforms. 

These complex hardware platforms cannot be adequately tested in a manufacturing 

environment as we have done previously. Also, due to their complexity, these 

platforms require substantial collateral documentation to allow first-time users to 

quickly become productive learners. 

This thesis details the development of a post-manufacturing test suite, known 

as OMICRON, to comprehensively test an FPGA learning platform. It also documents 

the development of a user guide for the board that explains user accessible features as 

well as providing the necessary startup information so students can quickly become 

acquainted with the new learning platform. 

While developing OMICRON, a new feature surfaced that provides a cycle-

accurate hardware testbench debugger for testing student component modules that are 

implemented within the FPGA. This functionality serves a practical as well as an 

educational use by enabling test generation for detecting logic errors at a hardware 

level. 



 

 

Students can probe their own designs from an intuitive low-level command 

line interface once the designs have been loaded into the FPGA. The debugger can 

also be used to probe external circuits connected to the FPGA. 

In addition to simple probes, the hardware debugger is able to output testbench 

bit vectors in a continuous flow, and simultaneously receive cycle-accurate vector 

results. These test vectors can either be manually constructed, or extracted from 

simulation software. This thesis shall also demonstrate this unique test flow. 

 



 

 

 
 
 
 
 
 
 
 
 
 
 

©Copyright by Gerald Lai  
August 25, 2006  

All Rights Reserved



 

 

Development Test Suite for FPGA TekBot Learning Platform 
 
 

by 
 

Gerald Lai 
 
 
 
 
 
 
 
 

A THESIS 
 

submitted to 
 

Oregon State University 
 
 
 
 
 
 
 
 
 

in partial fulfillment of 
the requirements for the  

degree of 
 
 

Master of Science 
 
 
 
 
 

Presented August 25, 2006 
Commencement June 2007 



 

 

Master of Science thesis of Gerald Lai presented on August 25, 2006 
 
 
 
 
 
APPROVED: 
 
 
 
 
Major Professor, representing Electrical and Computer Engineering 
 
 
 
 
 
Director of the School of Electrical Engineering and Computer Science 
 
 
 
 
 
Dean of the Graduate School 
 
 
 
 
 
 
 
 
 
 
I understand that my thesis will become part of the permanent collection of Oregon 
State University libraries.  My signature below authorizes release of my thesis to any 
reader upon request. 
 
 
 

Gerald Lai, Author 



 
TABLE OF CONTENTS 

 
                Page 

1 TEKBOTS PROGRAM AT OREGON STATE UNIVERSITY ...............................1 

1.1 TekBots – An engineering initiative ....................................................................1 

1.2 Summary of common terms .................................................................................3 

1.3 Goals of the TekBots program .............................................................................4 

2 PLATFORM FOR LEARNING..................................................................................9 

2.1 The Platform for LearningTM concept ..................................................................9 

2.2 Learning platforms .............................................................................................12 

2.2.1 Integration of educational strategies ..........................................................13 

2.2.2 Attributes of effective learning platforms ..................................................14 

3 FPGA LEARNING PLATFORM..............................................................................19 

3.1 Introduction of a new FPGA-based learning platform.......................................19 

3.2 Features of FPGA learning platform..................................................................20 

3.3 Advantages of FPGA learning platform ............................................................24 

4 FPGA BOARD TEST ENVIRONMENT .................................................................27 

4.1 FPGA core in a self-testable system ..................................................................27 

4.2 Development test suite for FPGA board ............................................................28 

4.2.1 OMICRON development test suite implementation ..................................29 

4.2.2 How OMICRON performs tests on FPGA board ......................................37 

4.2.3 OMICRON modes of operation .................................................................41 

4.3 Post-manufacturing requirements and test flow using OMICRON ...................44 

 



 

 

TABLE OF CONTENTS (Continued) 
 

              Page 

5 OMICRON CYCLE-ACCURATE TESTBENCH DEBUGGER.............................47 

5.1 Description of OMICRON testbench debugger.................................................47 

5.2 Testbench debugger implementation .................................................................49 

5.3 Module debugging using OMICRON................................................................51 

5.3.1 Using command line interface....................................................................51 

5.3.2 Using testbench vectors..............................................................................53 

5.4 Comparison with work by Niggemeyer et. al. ...................................................68 

6 CONCLUSION..........................................................................................................71 

Bibliography .................................................................................................................73 

Appendix.......................................................................................................................77 

USER GUIDE FOR FPGA LEARNING PLATFORM ..........................................78 

 



 

 

LIST OF FIGURES  
 

Figure                                                                                                                      Page 

1. FPGA learning platform board .................................................................................21 

2. Structure of OMICRON............................................................................................30 

3. PicoBlaze microcontroller core.................................................................................32 

4. OMICRON data output register................................................................................33 

5. 8-bit walking-ones/zeroes example...........................................................................40 

6. OMICRON terminal menu hierarchy .......................................................................42 

7. OMICRON non-terminal options .............................................................................43 

8. Testbench debugger operation ..................................................................................48 

9. OMICRON testbench output register .......................................................................50 

10. OMICRON testbench menu commands .................................................................51 

11. Status of testbench debugger ..................................................................................52 

12. Tested module example ..........................................................................................54 

13. Testbench vector test flow ......................................................................................55 

14. DO file (testmodule.do) to create vectors and generate waveform .....................56 

15. ModelSim waveform of original simulation...........................................................57 

16. ModelSim extracted list window ............................................................................58 

17. LST file (omi_vector.lst) of extracted vectors...................................................58 



 

 

LIST OF FIGURES (Continued) 
 

Figure                                                                                                                      Page 

18. VHDL file (omi_vector0.vhd) of ROM implementation.....................................60 

19. Synthesize ROM implementation with OMICRON...............................................61 

20. Saved testbench debugger output (debug.tb) ........................................................63 

21. LST file (debug.lst) of testbench debugger output .................................................64 

22. DO file (tb_wave.do) to generate waveform of testbench debugger signals ........65 

23. VHDL file (omicron.vhd) of OMICRON mock system to view waveform .........66 

24. ModelSim waveform of mock system vs. original simulation (bottom) ................67 

25. HP83000 IC tester base...........................................................................................69 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

LIST OF TABLES  
 

Table                                                                                                                        Page 

1. Educational strategies that enhance engineering education [2] ..................................9 

2. Platforms to teach digital logic fault detection ........................................................70 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 



Development Test Suite for FPGA TekBot Learning Platform 
 

1 TEKBOTS PROGRAM AT OREGON STATE UNIVERSITY 

1.1 TekBots – An engineering initiative 

In what began as a simple class-based project at Oregon State University (OSU), the 

TekBots program [1] has grown and matured into an innovative, and effective, means of 

educating upcoming student engineers. Under the TekBots program, Electrical and 

Computer Engineering (ECE) students keep their TekBot throughout their years in 

college, and continue to build on them as they take additional classes. When 

complemented with the traditional in-class methods of learning, the TekBots program 

helps to capture the essence of education. For instance, intangible qualities such as a 

student's commitment and tenacity to excel in her or his school assignments are evident 

in the work of a student's TekBot. 

TekBots are learning platforms that students build to reinforce engineering concepts 

they learn in class. Specifically, a TekBot for an ECE student currently takes the form of 

an electronic robot. Since the TekBots stay with the students throughout the curriculum, 

this encourages personal ownership and attachment of the students for their TekBots. 

This fact alone yields many advantages. Once students are passionate about the work that 

is required to build a TekBot, they work harder, learn better, and interact more with peers 

[2, 3]. When students are engaged in the multitude of learning activities the TekBots 

program has to offer, they begin to work more intensely on their projects, and are able to 

learn and absorb more of the lecture material. 

The class project that eventually led to the creation of the TekBots program was 

influenced by a program to teach ECE topics in context at Carnegie Mellon University 

(CMU) [4, 5, 6]. The goal that Carley et. al. was trying to achieve was to teach ECE 

courses to first semester freshmen without relying on an extensive background in 

mathematics or physics. This was done by taking a behavioral, or top down, modeling 

approach for the devices that were taught in class. For example, the behavior of nonlinear 

electronic devices was characterized using piecewise linear modeling techniques. By 

learning these simplified behavioral models for nonlinear devices such as diodes and 
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transistors, rather than complex nonlinear equations, they believed that students may 

actually develop a better insight into the operation of electronic circuits. 

The CMU program focused its effort of contextual teaching around a small 

programmable robot. This idea was adopted at OSU as a practical laboratory tryout for a 

class project in a freshman-level ECE course. While working on the project, students 

found the hands-on experience of physically building an extensible electronic robot to be 

fun and fulfilling. The extensibility of the robot meant that more circuit boards were 

allowed to be stacked on top of the original circuit board base. This continued to engage 

students in improving the functionality of the robot well beyond what was intended for 

the project in the first place. 

From the enthusiasm the students showed, OSU faculty recognized that they had 

stumbled upon an opportunity to integrate the dynamic learning environment, which was 

observed in the laboratory, to the entire curriculum. The next major step was to take the 

approach of incorporating the project into the existing syllabi such that it would tie 

together the subjects being taught into a coherent whole. This would involve having a 

project that evolves with the students as they progress through the curriculum. 

At the same time, a proposal to Tektronix was secured for a grant of USD$500k that 

would allow OSU to continue its pursuit in creating a learning platform based curriculum 

for ECE students. This was the birth of the TekBots program at OSU in which the 

original robot project was given the catchy name "TekBot". The grant from Tektronix 

was the boost that allowed additional grants and parts donations to be subsequently 

leveraged towards the improvement of the program. 

So far, the TekBots program has already been implemented for many engineering 

classes at OSU since 2002, including five Electrical & Computer Engineering classes, 

two College of Engineering courses, and one Mechanical Engineering class. It has also 

been adopted by other universities, such as Texas A&M, the University of Nebraska, and 

the Fukuoka Institute of Technology in Japan. 
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With the help of the learning platform, the TekBots program incorporates real-world 

instances to help students develop competencies in innovation, community, design, 

troubleshooting, and professionalism [2, 3, 7]. This adaptability of the Platform for 

LearningTM concept makes it a powerful catalyst that could reinvent not only engineering 

education as a whole, but also education for other disciplines besides engineering. 

Chapter 2 of this thesis shall expound the concept and ideals for effective learning 

platforms in more detail. 
 

1.2 Summary of common terms 

Before proceeding further, common terms used throughout this thesis will be defined 

to prevent misinterpretations. A brief description for each of the terms is given below: 

Platform for LearningTM concept: This concept refers to the educational strategy that 

is comprised of ideals to teach students effectively in a dynamic learning environment. It 

is also known as the Platform for LearningTM model. 

Learning platform: A learning platform is an object used to implement the 

educational strategy of the Platform for LearningTM concept. Sometimes, it can also be 

referred to as a platform for learning. Depending on the context, this is not to be 

confused with the actual concept that is a proper noun. Students usually begin with a bare 

bones learning platform. As they progress through their curriculum (e.g., a 4-year college 

program), they continue to build on it. The platform can be a physical or virtual object. 

TekBots® program: The TekBots program is an engineering educational initiative 

that uses learning platforms as well as other proven learning methods to attain the goals 

of the program. 

TekBot: A TekBot is one of the learning platforms presently used at OSU. It consists 

of electronic circuitry mounted on a sheet metal base with motors attached to wheels. 

This type of TekBot is loosely referred to as a robot. ECE students use this platform to 

apply and validate the knowledge they have acquired in class. 
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TekBots: The word "TekBots" has different interpretations depending on the context. 

It can be used to indicate more than one TekBot. It is also used to refer to the TekBots 

program that was created at OSU. One of the most common misinterpretations is to use 

"TekBots" to refer to a robotics program. The TekBots program at OSU is not a robotics 

educational program. However, the robot learning platform is (correctly) referred to as a 

robotics platform. 
 

1.3 Goals of the TekBots program 

The TekBots program is directed towards a central set of objectives. Listed below are 

the main goals for the TekBots program and how they are reached. For each goal, it is 

clear to see how the use of a learning platform is vital. 
 

(a)  Improved learning 

The TekBots program aims to improve learning by adopting several proven teaching 

strategies. The most obvious strategy, given a physical learning platform, is to increase 

the retention of knowledge in students by adopting a hands-on learning style. By having 

students apply concepts learned in class towards building physical robots, the class 

knowledge is then "converted" into a more useful and concrete form. The physical robot 

becomes the result of the application of that knowledge. As long as the student 

remembers how the robot was constructed, the concepts acquired in class that were used 

to build the robot can be recalled in a natural manner. 

The learning platform also enhances learning by giving purpose to what students have 

learned in every class. For example, freshmen ECE students are usually taught how to 

read voltage drops across resistors in a passive resistor-only circuit. A learning platform 

at this stage may be a simple flashlight made from an ultra-bright light-emitting diode 

(LED), a switch, a battery, and some odd valued resistors in order to test the student's 

knowledge of creating a resistor network with the right Thevenin resistance. The product 

of this simple project is a cheap flashlight that students can take home. A small 
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competition can even be held to see which student can achieve the lowest cost with the 

brightest flashlight that lasts the longest, given that the students are to purchase each of 

the odd valued resistors for a certain price. 

By giving theoretical concepts a practical home, student intuition is also improved 

tremendously. Practical demonstrations give students a better insight and "feel" into 

engineering concepts. As a follow-up from the previous example, students who proceed 

on to learn about capacitors can modify their flashlight resistor-only circuit to include 

capacitors, more resistors, and an extra LED. From this, a blinker circuit can be 

constructed to alternately blink 2 LEDs one at a time. This can be useful to demonstrate 

the concept of a time constant by having students tweak RC values to affect the rate of 

the blinker. 

Another learning strategy used is just-in-time learning [2, 8]. Students are led through 

a problem to a place where no obvious solution can be obtained with their present level of 

knowledge. At that point, a new solution method or approach is introduced. This gives 

students new ways to overcome the problem. 

Some of the old methods of teaching may lack appeal to the younger generation of 

upcoming students that were raised in the age of media globalization and the Internet. 

The old tried-and-true ways of teaching engineering subjects have encouraged a staunch 

tradition to continue teaching new students using methods that have been around for a 

long time. This presents challenges in attracting and retaining engineering students who 

often lose interest in engineering because of the slow build-up to the upper-level courses 

where they finally learn and apply discipline-specific knowledge [3]. 

One of the main reasons for the lack of interest is that these new students that are 

introduced to engineering concepts are given very little guidance in terms of the direction 

they are heading in with the knowledge they are attempting to learn. The build-up of 

knowledge in lower-level courses offers no end in sight. Many do not persevere to the 

upper-level courses when "things start to get interesting". This is because topics are 
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usually taught in isolation, perhaps for the unspoken reason to ease the topic separation 

process for the sake of exam coverage. 

Topics taught in isolation form islands of knowledge in a student's understanding that 

are not very useful on their own and degrade quickly over time. The TekBots program 

enhances learning by linking islands of knowledge together through the use of a learning 

platform. This linking occurs within a class and also between classes in a curriculum. 
 

(b)  Produce work-ready graduates 

When students are immersed in fun real-world projects complete with real problems, 

they end up gaining useful practical experience. There are a host of skills learned in the 

context of a real project that are directly applicable in the real world but are not taught in 

traditional curriculums. For example, a real-world project can teach students how to 

troubleshoot a malfunctioning system, how to choose the correct capacitor for a circuit, 

or how to setup an oscilloscope in delayed sweep mode. These skills set them apart from 

students who come from a traditional lecture-homework-test-based education system.  

TekBots program projects make use of contemporary tools and practices that mimic 

established design flow processes often found in the engineering industry. Crippled 

simulators and stripped-down tools are not part of the curriculum. An atmosphere of the 

real engineering world is kept intact by having students use the tools they will use after 

leaving the university. 

When working in a real-world setting, students are exposed to interaction within a 

community of learners. The mutual benefits that are generated within the community 

foster a warm and welcoming environment where students can learn and experiment at 

their own pace, and be encouraged along the way. The community of learners also serves 

an indirect purpose of teaching students the life-long communication and cooperation 

skills. Studies have shown that cooperative learning tends to stimulate academic diversity 

and personal growth [9]. This would result in work-ready graduates who are more likely 

to succeed because of social interaction within the community of learners as well as the 

community at the work place. In contrast, graduates who are unprepared often find 
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themselves rushing to acquire skills in the competitive work-place environment without 

realizing how vital it is to have community support. 

It is important to point out that not all graduates go out to find jobs. Some may choose 

to remain in academia. Nonetheless, the experience that the TekBots program offers still 

applies in producing graduates who are ready to join and support the academic research 

community. 
 

(c)  Create innovative students 

The TekBots program sees innovation as something that needs to be nurtured 

steadily. It is a worthy investment because even though innovation takes time to build, it 

is a trait that is hard to relinquish once the student has earned it. 

Current teaching methods that churn students through the cycle of lectures, 

assignments and exams only measure the retention level of students for the knowledge 

they have acquired throughout the duration of the class. These teaching methods deal 

mostly with the quantitative aspects of education (i.e., assignment and test scores) in the 

hopes that the qualitative aspects will improve. This passive education approach of 

ignoring the qualitative aspects, such as innovation, creativity, craftiness, maturity, and 

professionalism, creates an environment that is detrimental to these intangible traits. 

When it comes to students flexing their innovative skills at problem-solving, the 

exercises offered on paper are often found to be boring, contrived, and sanitized with no 

loose ends or real constraints, and typically have only one correct solution [2]. If students 

find that they keep arriving at the same solutions as their peers for the problems presented 

in class, they will be discouraged from looking for other better solutions and begin to take 

the problem-solving process for granted. 

Instead, students should be allowed the freedom of multiple solution paths to a given 

open-ended problem, much like how it would be in a real-world situation. This vital 

factor does not stifle growth and would encourage the students' capacity for innovation. 
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To nurture innovation, first, students are inspired at the freshman level. They are 

introduced to great work that has been done in the past by engineers, and shown what 

heights can be achieved by good innovation. From the beginning, students should be 

provided with easy avenues accessible for academic development. New students need to 

be shown creative possibilities in a direct manner to give them that extra push to explore 

an innovative solution. This is different from spoon-feeding students into performing the 

same solution task repeatedly term after term. 

Innovation is fueled by the flexibility of the learning platform. For this reason, a 

TekBot is modular and is composed of replaceable modules. These modules function a 

lot like LEGO [10] building blocks that could be put together. Parts of the robot circuitry 

can be customized, within reasonable constraints, by students any way they wish. In fact, 

similar work has been done before by Jadud with LEGOBots at Indiana University [11]. 

He has proposed TeamStorms as a way to teach robotics by making use of the LEGO 

Mindstorms Robotics Invention System [12]. According to Jadud, the problem-solving 

process should allow room for creativity, and be fun, open-ended and challenging at the 

same time. 
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2 PLATFORM FOR LEARNING 

2.1 The Platform for LearningTM concept 

The Platform for LearningTM concept described in the previous chapter defines how 

the TekBots program is executed. It is an educational strategy that strives to bring 

together other effective and successful educational strategies into one combined package. 

It anchors its own educational strategy plan in an omnipresent learning platform to bring 

out the best practices in a dynamic learning environment. The general underlying idea of 

having a student apply what she or he has learned in class to a platform, and then having 

that platform relate back to the student as they both evolve, is key to the TekBots 

program at OSU. An electronic robot acts as the learning platform for the ECE program 

at OSU, and the TekBots program acts as the vehicle that carries out the educational 

strategy outlined by the Platform for LearningTM concept. 
 

 

Educational 
Strategy 

Description Impact 

Active/cooperative 
learning 

Instructional activities engage 
students in doing and thinking 
instead of passive listening. 

Improved retention. 
Higher academic achievement. 
Improved individual accountability. 
Improved small-group skills. 
Enhanced creative thinking. 

Technology 
enhancement 

Computing resources introduced into 
classroom to enhance learning by 
using software tools. 

Increased comfort level using 
computers as tools. 

Mundane tasks reduced to allow focus 
on higher-order thinking. 

Just-in-time learning Theoretical concepts introduced 
when students’ experiences create 
a demand for them. 

Improved academic performance. 
Life-long learning skill development. 
Theory and practice kept in context. 

Curriculum 
integration 

Learning activities restructured to 
build contextual connections 
between topics. 

Enhanced ability to transfer 
knowledge to new situations. 

Better program retention because of 
material relevance. 

Better recall of material. 

 

Table 1: Educational strategies that enhance engineering education [2] 
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By definition, a platform for learning is a common unifying object or experience that 

weaves together the various classes in a curriculum [2]. It is a concrete yet dynamic 

system that is built upon as students progress through the curriculum. This helps students 

to better grasp the connection between concepts presented in a variety of classes and gain 

a much richer understanding of a discipline as a whole [7]. 

The Platform for LearningTM concept also applies effectively to other fields of study 

besides engineering. For other fields of study, a learning platform can be something that 

is non-physical. For example, a business student may use a business plan as a learning 

platform. That business plan would be modified and adapted accordingly to the syllabus 

that is currently being taught. A computer science student, on the other hand, may start 

with a basic shell program that would eventually be built into a full-fledged OS 

(Operating System). 

The ideals of the Platform for LearningTM model advocate a fresh perspective in 

education organization. This is to incorporate the learning platform into the entire 

curriculum in order to energize and consolidate the engineering topics that are taught in 

class and in laboratory work. By using a common learning platform throughout a degree 

program, the integration of knowledge is enhanced. The platform also provides the 

conceptual "glue" between lecture topics [2]. 

In a practical sense, the syllabi for the entire curriculum are tweaked slightly in such a 

way as to arrange the engineering topics to provide a coherent flow between the core 

courses and the learning platform activities. When topics are introduced to students in an 

incremental logical manner, the students are able to get more out of the entire experience. 

When that experience is coupled with a valuable platform that is used to experiment and 

demonstrate the concepts that are learned in class, this will solidify the students' 

understanding and increase retention of knowledge. 

As mentioned in the previous chapter, the TekBots program capitalizes on the 

Platform for LearningTM concept by introducing a robot as the learning platform that ties 

experiences together from various different areas in engineering such as electronics, 
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mechanics, communications, systems programming, and testing. The robot motivates 

lecture topics and meshes them with laboratory experiences. This expands the learning 

opportunities and effectiveness in multiple dimensions by providing a context for 

learning that connects the knowledge among classes, develops innovative abilities, and 

enhances troubleshooting skills [2]. 

One goal is to have students realize that even though there exists a hierarchy of 

knowledge which stems from basic fundamentals, the application of engineering 

knowledge is inevitably interrelated and interwoven with other disciplines of knowledge. 

The transition of engineering education to embrace a transdisciplinary model that 

integrates the use of the tools, techniques, and methods from various disciplines is vital 

for its future welfare. 

At the moment, educational programs face many difficulties because of the rapid 

change of technology in today's environment [13]. According to Ertas et. al., the 

transdisciplinary model does not mean that the traditional engineering disciplines must 

be completely disassembled. It does mean, however, that the areas of knowledge 

typically included in each of the disciplines will be presented within the transdisciplinary 

structure, and that the boundaries between the knowledge areas will be much more 

porous. 

While there is a need to push forward in the multi-discipline direction, studies have 

shown other directions of adapting learning effectiveness that we also need to centralize 

our efforts on. For instance, one area of study focuses on a learner-centered approach to 

education which states that knowledge must be actively constructed by learners and not 

passively transmitted by teachers [14]. Catalano et. al. proposed using visual tools in a 

learner-centered environment to assist students in "seeing" how information can be 

connected, and to teach them to use these tools independently themselves [15]. This was 

accomplished in a group-learning setting that provided a non-threatening "no risk" 

mechanism for indirect dialogue between teachers and students. 
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There has also been a lot of research in the area of cooperative learning. Clark found 

that when a multimedia group project format was evaluated against the traditional 

lecture/homework format, student satisfaction increased while student learning either 

remained constant or may have increased slightly [16]. Even though Clark's study seems 

to suggest that the effect of cooperation on student learning may be less than significant, 

it should be noted that the improvement in student satisfaction would highly be in favor 

of motivating students who find certain subjects rather technical, dry, and boring [17]. 

What we notice from most of these engineering education studies is that the different 

adaptations of engineering education seem to converge at a proactive and synergistic 

effort to enrich learning. This convergence point is what the Platform for LearningTM is 

attempting to characterize. So far, we realize that we have to merge both traditional and 

modern education methods in order to produce a more wholesome and beneficial 

education experience. The Platform for LearningTM model puts forth the notion of a 

learning platform to deal with that merger. 
 

2.2 Learning platforms 

A learning platform is an object or experience, based on the Platform for LearningTM 

model, that is introduced into an entire curriculum to unify the various classes and 

knowledge of a discipline. It gives practical application to the knowledge that students 

acquire in-class to consolidate concepts in the students' understanding. 

What is different about the learning platform as compared to a standard laboratory 

exercise is that it assimilates and executes effective educational strategies to provide 

students with concrete experience. These strategies were derived from numerous research 

studies on academic education [8, 9, 11, 13-18] in addition to the discoveries made by 

OSU faculty while working on the TekBots program [2, 3, 7]. 

In section 2.2.1, we shall provide the general context of how a learning platform 

integrates the current educational strategies that have been presented in the previous 

section 2.1. Then, in section 2.2.2, we shall introduce the attributes of effective learning 
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platforms. Through these attributes, the Platform for LearningTM concept defines its 

ideals to teach students effectively in a dynamic learning environment. 
 

2.2.1 Integration of educational strategies 

Conceptually, the learning platform itself is learner-centered in the general context of 

its use. It has to be able to get students actively involved in knowledge construction. The 

main idea is to allow students to be in control of their lessons. Concepts that need to be 

taught should never be forced upon students. Instead, the concepts should be presented in 

small digestible amounts that would allow students to attain the next-in-line design goal 

of the platform's current project. In other words, information should be provided to 

students just-in-time for their needs and does not need to be complete. This will give 

students enough of an incentive to make a continual effort of applying concepts to the 

learning platform to reinforce what they have learned. 

As the construction of knowledge unfolds as a result of the students' own efforts, the 

experience they receive will increase their retention of knowledge and further engage 

them in the learning activity. To get students actively involved in knowledge 

construction, learning activities should focus around a set of intrinsically motivating 

problems that are situated in real-world tasks [14]. 

The platform itself is taught in a cooperative learning environment that employs a 

proactive learning style. Learning should take place in a collaborative environment that 

involves social interaction and negotiation [14]. This would help create the atmosphere of 

a large engineering team where students can engage in formulating and evaluating 

problems, conjectures, arguments, and explanations, just as professional engineers do in 

the workplace [2]. 

Finally, the platform takes on a transdisciplinary teaching approach. For instance, the 

project assignment structure that is presented in each class would encourage students to 

ask questions, to cross disciplines in seeking information, and to be creative in defining a 

problem and developing solution alternatives [18]. In addition, concepts and knowledge 
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from traditionally non-engineering areas, such as business, economics, human relations, 

etc., will be included in the learning mix much more naturally. Thus, the engineers 

produced by the transdisciplinary educational process will be well-rounded and capable 

of dealing with complex problems which involve many issues that span the educational 

spectrum [13]. 
 

2.2.2 Attributes of effective learning platforms  

Listed below are the attributes which define an effective learning platform that is 

conducive towards enhancing learning. 
 

(1)  Inspires exploration and innovation 

An effective learning platform is able to inspire students to explore different design 

decisions when solving an engineering problem. This can be achieved by providing 

students with a strong background and understanding of the fundamentals required to 

analyze and construct a solution method. The platform should then stimulate students into 

thinking outside the box and beyond the given problem at hand. 

The platform is also able to inspire innovation. The learning platform encourages 

students to begin the journey of exploration on their own. For example, early projects of 

the platform provide small but exciting hurdles of problems for new students to 

accomplish in order to engage the students and boost their confidence. 
 

(2)  Puts theory into practice 

The learning platform represents a practical implementation of theoretical knowledge. 

It should challenge students to tasks that involve practical usage of the knowledge they 

have learned so far in the curriculum. 

As students continue to work on the learning platform, they can begin to appreciate 

how the knowledge components learned in class can come together to help them achieve 

goals of their project. This subtly strings together the class syllabus into an 
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interconnected web of knowledge that is much more useful than the knowledge derived 

from fragmented topics taught in isolation. According to Hadjerrouit, the process of 

constructing interrelated knowledge requires higher order thinking skills, such as analysis 

and design skills [14]. With the help of an effective learning platform, students are able to 

cultivate those skills. 
 

(3)  Keeps focus on core topics of a class 

The learning platform needs to be faithful to the course syllabus and not stray from 

what is intended to be taught. When implementing a platform for learning, we also need 

to reduce the amount of redundant work that students have to do. Redundant activities are 

those that take away the focus from the core topics of the current class. For example, too 

much soldering work can really dampen the objectives of an electronics project. Instead, 

a prefabricated circuit board can ease the work of the students and free them to 

concentrate on higher level tasks such as design and testing. 
 

(4)  Deepens understanding 

When students face minor problems while working on a learning platform project, 

they are required to study the subject in more detail in order to rectify those problems. 

The platform acts as a feedback mechanism that informs the student just how much 

understanding is required for the project. This will deepen a student's understanding of 

the discipline. 

Students begin to appreciate the deviation of practical implementations from ideal 

theory when they perceive results based on first-hand experience. Paper assignments 

rarely encourage students to think about real-world improvisations and their implications. 

With a learning platform, students have an authoritative practical reference that 

supplements other references such as textbooks, lectures, and online material. 
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(5)  Reusable in other classes to leverage scaffolding of knowledge 

The continuous development of the learning platform in future classes encourages 

students to find solutions to a given problem using a new set of tools and knowledge that 

has bearings on past knowledge. Experience and knowledge gained from one project can 

be reused to form a knowledge scaffold from topic to topic or from class to class. Once a 

strong base is built, incorporating new knowledge onto an existing scaffold is easier. 
 

(6)  Flexible, expandable, and does not limit extensibility 

It is absolutely essential for any learning platform to be flexible in terms of use and 

expandable in terms of functionality. These two criterions provide avenues for innovation 

and variations of design solutions that cannot otherwise be achieved by a strictly 

specialized platform or exercise. 

With overly specialized platforms, students are limited in terms of the number of 

goals that can be achieved. Specialized hardware that only serves one purpose is an 

educational dead end. For example, a microcontroller circuit board that has every 

imaginable support part wired to the microcontroller itself leaves very few input/output 

ports for expansion by students. This will limit the extensibility of the learning platform 

by fixing the number of solution sets that is determined by the hardware. On the other 

hand, a more flexible platform can incorporate concept applications from future classes 

as it is reused to leverage scaffolding of knowledge. 

A learning platform should be treated as an ongoing system that gives students the 

freedom to breed new ideas. It should be composed of configurable parts that students 

can fully customize. The building blocks of the platform must be understood by the 

students and be easy to form into something useful [2]. A sufficiently flexible platform 

would allow multiple solution paths to a given open-ended problem. The vast freedom of 

solutions closely resembles the real-world environment and encourages student creativity. 
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(7)  Hands-on wherever possible 

Students can gain a better "feel" of acquired knowledge when they apply in-class 

concepts to the platform using a hands-on learning style as a way of involving more 

human senses. From a psychological perspective, students have a higher likelihood of 

absorbing knowledge when more human senses are involved in the learning process. For 

example, a powerful way to teach new students about signal frequency is to show them 

what the signal looks like when measured by an oscilloscope, and what the signal sounds 

like when it is fed into a speaker. This provides visual and auditory stimuli that will 

increase retention of knowledge. 

When students engage in hands-on work, the amount of material retained and the 

ability to integrate that knowledge is greatly improved when the course material relates to 

personal experience [2]. Studies have shown that students with practical experience 

scored better in the final exam than those without practical experience [17]. 
 

(8)  Fun to use 

An effective learning platform is fun to use. Fun instills in students the motivation to 

learn and explore, as opposed to making them feel as though they are relearning the 

wheel. The platform needs to be structured so that it makes learning the basics fun, 

exciting and engaging. 
 

(9)  Portable 

A learning platform needs to be compact and lightweight. It should be portable so that 

students can quickly access the platform conveniently when a design inspiration strikes. 

Students can also bring it around to impress friends, demonstrate to family, and prove to 

future employers of their engineering skills. 
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(10)  Inexpensive to purchase 

Affordability is necessary for the purpose of education. When a learning platform is 

sufficiently low in price, every student is able to afford one. This encourages personal 

ownership of the learning platform and avoids congested sharing of a common platform. 

If the platform is physical in nature, the parts that build the platform need to be easily 

reproduced for production and restoration purposes. Also, cheap replacement parts ease 

the burden on students who accidentally destroy them. 
 

(11)  Useful in a community of learners 

A platform for learning enriches the learning experience for the entire community of 

learners that include students, parents, teachers, schoolchildren, enthusiasts and 

employers alike. Members of the community learn from each other, derive pleasure from 

the work being done, and give support back in return. 

Learning platforms show inherent qualities in students who build them. These 

qualities capture the attention of other members in the community who, in turn, act as 

catalysts for the student's learning experience. This would reduce the burden on teachers 

by relinquishing the cultivation of student-learning morale to the community. Others can 

then help teach and motivate the students in their own ways. For instance, students who 

perform well would elicit praises from amazed parents. This will boost confidence and 

motivation. 

The platforms also remain useful long after the lessons are over. They can be used to 

show creation and achievement. For example, employers tend to look for students who 

are passionate about interesting projects they have worked on in the past. To those 

employers, a learning platform that has accompanied a student throughout the entire 

curriculum represents many qualities, among which are the student's tenacity and 

dedication to an ongoing project. These are highly prized qualities valued in the job 

world. 
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3 FPGA LEARNING PLATFORM 

3.1 Introduction of a new FPGA-based learning platform 

An FPGA (Field Programmable Gate Array)-based learning platform that 

encompasses the attributes described in Chapter 2.2.2 is being introduced to 

undergraduate students. This platform is intended for an upper-level SoC (System-on-

Chip) design course. The objectives of this course are to teach students about the 

organization of VLSI (Very Large-Scale Integration) systems, and to bring them through 

the design flow of building a chip. This exposes students to the different types of 

constraints involved, such as area and timing issues, which they need to consider. The 

FPGA provides programmable logic hardware for the learning platform to facilitate the 

course's objectives. 

Currently, the teaching method used for this course is to have students develop virtual 

prototypes of their VLSI systems. Unfortunately, virtual prototypes only provide students 

with a feel of their designs from the perspective of the CAD (Computer-Aided Design) 

tools they use. There is no hardware realization to give students a practical use for their 

work of designing, simulating, and synthesizing the entire system. 

The new platform can provide practical experience by allowing each student to 

program an FPGA circuit board with her or his design. Students can then see their work 

in action as the designs perform actual tasks while operating on the FPGA learning 

platform.  
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3.2 Features of FPGA learning platform 

The FPGA learning platform is an electronic circuit board that is centered around an 

FPGA chip that utilizes a set of software tools. The hardware is designed to give students 

as much freedom of expansion as possible while providing some common components on 

the main board for students to quickly get started. The philosophy of this approach is to 

provide a bare bones system that students can fully customize as they see fit, and to avoid 

giving students every bell and whistle. This adheres to the ideals for effective learning 

platforms outlined by the Platform for LearningTM concept. 

If students require more functionality from the FPGA board, they can make use of a 

daughterboard that plugs on top of the main board. The daughterboard is a bare prototype 

PCB (Printed Circuit Board) that connects to the user I/O of the main board. Once 

connected, added components on the daughterboard essentially extend the circuitry of the 

main board. This motivates students to innovate their own designs on the daughterboard 

while driving them to do the significant work of adding components. 

Xilinx®, the company that produces the FPGA, provides a free set of industry-grade 

software tools to be used with the FPGA. The software tools are bundled as a graphical 

IDE (Integrated Development Environment) known as Xilinx ISETM. The main tool of 

ISE is the Project Navigator. It houses all the other tools, and is used to structure the 

hierarchy of an FPGA design. The navigator also allows design constraints to be set. 

From the navigator, the PACE tool can be loaded to assign package pins that connect 

core I/O to external I/O. Then, the design is synthesized using the XST tool. Finally, the 

FPGA can be configured by programming the synthesized design with the iMPACT tool. 
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Listed below are the hardware features of the FPGA board: 
 

(A)  FPGA as main processor 

The FPGA chip used is the Xilinx Spartan-3 XC3S200 [19]. This chip provides a 

large 200K-gate design capacity, and is optimized for Xilinx RISC (Reduced Instruction 

Set Computer)-based cores such as the PicoBlaze microcontroller [20] and the 

MicroBlaze microprocessor [21] cores. Programming is achieved by downloading the 

configuration bitstream into the FPGA using JTAG (Joint Test Action Group) boundary 

scan. 
 

 

Fig. 1: FPGA learning platform board 
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(B)  Flash PROM (Programmable Read-Only Memory) 

A Xilinx XCF01S [22] flash PROM with a 1Mbit density is provided as a means to 

store a non-volatile configuration bitstream for the FPGA. Upon power up, the PROM 

will automatically program the FPGA with the bitstream. It will also appear as part of the 

JTAG scan chain for the FPGA board. 
 

(C)  Power regulators 

The board supports 4 different voltage regulators with ratings of 1.2V, 2.5V, 3.3V, 

and 5.0V [23]. They supply power to the main board components and daughterboard 

expansion. 
 

(D)  Oscillators 

A crystal oscillator drives the main clock signal for the FPGA chip that runs at 

100MHz. Another oscillator [24] is provided for custom use. The output signal of the 

oscillator can be controlled by a jumper setting to produce 3 different frequencies from 

607kHz to 6.07MHz. 
 

(E)  IR (InfraRed) transceiver 

The board is equipped with an IR transmitter and an IR receiver. The IR transmitter is 

an IR LED pointing off the side of the board. The IR receiver is a miniature Vishay 

TSOP32138 [25] that is located on the same side of the board. The receiver is receptive 

towards IR signals with a carrier frequency of 38kHz. This frequency can be generated 

by dividing a 607kHz frequency (generated by the auxiliary oscillator) by 16. 
 

(F)  User I/O 

The board has 84 user I/O pins located on the side. 64 are allocated for signal I/O, 12 

are ground and power connections, and 4 are unconnected. 
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(G)  LEDs (Light-Emitting Diodes) and pushbuttons 

There are 8 LEDs and 4 pushbuttons on the board. 
 

(H)  LCD (Liquid Crystal Display) interface 

The board provides 14 signal lines to interface with a 16x2 LCD that is provided with 

the learning platform. The interface could be extended to other types of LCDs with the 

common Hitachi HD44780 instruction set [26]. 10 of the 14 signal lines can also be used 

as general I/O. 
 

(I)  Serial port 

A serial port allows serial communication using the RS232 protocol. The most 

common use of this type of communication is to send and receive data from a computer. 
 

(J)  PS/2 port 

A PS/2 port is provided to enable interfacing with a keyboard, mouse, or any 

compliant devices. It supports both 3.3V and 5.0V operation. 
 

(K)  SDRAM (Synchronous Dynamic Random Access Memory) 

The SDRAM chip on board is a single Micron MT48LC4M16A2 [27] with a capacity 

of 64M bits. This type of memory is volatile. 
 

(L)  EEPROM (Electrically Erasable Programmable Read-Only Memory) 

The EEPROM chip on board is an Atmel AT45DB161B [28] with a capacity of 16M 

bits. This type of memory is non-volatile. Data is sent and retrieved from the EEPROM 

via SPI (Serial Peripheral Interface). 
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3.3 Advantages of FPGA learning platform 

The advantages of using this FPGA platform corresponds to the attributes of effective 

learning platforms described in Chapter 2.2.2. Listed below are the advantages of using 

this platform: 
 

(1)  Can be used to teach a variety of topics 

The FPGA board gives students great flexibility for systems design. It can be used to 

teach a wide variety of engineering topics. Some examples are provided below: 

v Basic digital hardware 
• Combinatorial logic 
• Sequential logic 
§ Mealy and Moore state machines 

• Logic fault detection 
§ Stuck-at fault 
§ Functional fault 

v Core integration techniques 
• Microcontroller design 
§ 3-stage pipeline implementation 
§ PicoBlaze soft core with internal memory 

• Microprocessor design 
§ 5-stage pipeline implementation 
§ Superscalar implementation 
§ Data bus construction 
§ MicroBlaze soft core running uCLinux OS 

v Mixed signal processing 
• DSP (Digital Signal Processing) 
§ Digital multiplier for image processing 
§ FIR (Finite Impulse Response) filtering 

• Analog / digital interaction 
§ Signal generation and integration 
§ Phase-locked loop 
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(2)  Reusable to leverage scaffolding of knowledge 

The FPGA board is great for linking together knowledge from previous classes. For 

example, the knowledge of how to use a microcontroller learned in a previous class can 

be reused to implement a soft core into the FPGA device. This allows the FPGA learning 

platform to build nicely upon the existing body of knowledge. 
 

(3)  Affordable to students 

The FPGA platform will be available as an inexpensive alternative to available FPGA 

boards. Boards sold by commercial manufacturers are usually expensive, and their design 

specifics are often proprietary. Also, they usually leave few FPGA I/O ports for 

expansion, and incorporate too many advanced features that serve applications too 

specific for educational purposes. 
 

(4)  Speedy design and testing for a low cost 

In order to implement a hardware realization of an ASIC (Application-Specific 

Integrated Circuit) design, a fabrication process is needed to create the chip. This process 

requires a lot of time (i.e., approximately 6 months or more) and money (i.e., in the order 

of thousands of US dollars). The FPGA, on the other hand, provides a hardware 

programmable chip that has already been fabricated. The implementation of hardware on 

an FPGA equates to the programming of the chip. This allows fast development 

turnaround time in the order of seconds. In addition, the cost of an FPGA chip is 

relatively low (i.e., below USD$10 when purchased in quantities of 100). 
 

(5)  Portable 

With FPGA learning platforms, students can quickly implement and test their designs 

without requiring specialized development equipment. The software that is used to 

program the FPGA is free. Thus, students can use their platforms anywhere at anytime. 

The software tools are also widely adopted in industry, allowing the platform to be 

utilized in the commercial work environment. 
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(6)  Hands-on to demonstrate details of concepts 

The type of hands-on work involved with the FPGA learning platform requires 

students to dive into the intricacies of low-level hardware design. As such, the 

complexity of the FPGA device makes it inappropriate for use at introductory level 

courses [29]. With the FPGA, students can observe how "software" interacts with 

"hardware" at the device level. In the process of learning, they would also be exposed to 

the use of CAD tools, and HDLs (Hardware Design Languages) employed in industry. 
 

(7)  Very extensible 

The FPGA learning platform is also very powerful in terms of expandability. Modern 

FPGA devices provide for large design capacity that is well within the boundaries of 

educational use. Often, students assume they must work with only one processor core. 

With an FPGA, this restriction has been loosened to expose students to multi-core 

applications on a chip. The end result would be the creation of more elaborate embedded 

systems that extend the functionality of the learning platform. 
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4 FPGA BOARD TEST ENVIRONMENT 

4.1 FPGA core in a self-testable system 

The flexibility of the FPGA platform introduced in the previous chapter allows for a 

different approach to be taken for testing the new board. The main processor of the FPGA 

board is "brainless" to begin with. The brains of the FPGA can then be configured with 

an intelligent core to test the on-board peripherals in order to produce a self-testable 

system. The board is able to test itself without requiring an additional tester built onto it. 

The self-test is achieved by employing the FPGA, the central part of the entire system to 

be tested, as the core component that facilitates the testing of the rest of the system. This 

method of testing is an alternative for exhaustive test methods that flood the board with 

test signals using a bed-of-nails type of setup. 

An FPGA is inherently different from a microprocessor when used as the core 

component for a self-testable system. A microprocessor has a permanent core that only 

provides functionality general enough to cover a set of basic operations. An FPGA, 

however, can have its core optimized for application-specific tests. It can be customized 

for accuracy to implement timing-critical tests because of its logic-level architecture. It 

also allows multi-core implementations to be embedded on-chip, reducing its dependency 

on off-chip systems. For instance, an SPI core can be implemented seamlessly into the 

FPGA for components that require the interface. Conventional ASICs do not allow such 

pliability. 

The on-board flash PROM that holds the bitstream configuration for the FPGA chip 

is initially empty. This is where the implemented core that performs the tests of the 

FPGA board components is stored. Whenever the board is powered up, the PROM will 

program the FPGA chip with the stored bitstream. This effectively provides the illusion 

that the FPGA device was tailored with a permanent core for testing purposes, and that 

the FPGA has "brains" by default. 
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In the learning environment, the content of a configured PROM is not intrusive. It 

does not get in the way of the students' FPGA designs. When students wish to implement 

their designs, they can bypass the PROM in the scan chain to program the FPGA directly. 

However, this type of programming is volatile. After a power reset, the FPGA board is 

flashed anew with the test suite. Students are, of course, given the choice of making their 

designs permanent by overwriting the PROM. 
 

4.2 Development test suite for FPGA board 

A major part of the work involved in this thesis is the development of the FPGA core 

that is used to test the FPGA board. This specialized core is able to test a variety of on-

board components as well as student component modules and circuit designs. It has two 

objectives, which are to 

Ø facilitate the development of the FPGA board while it is being manufactured. 

Ø assist students with testing their FPGA designs in the learning environment using 

a cycle-accurate hardware testbench debugger (see Chapter 5). 

The core provides a composition of tools to perform these objectives seamlessly. 

These tools are collectively known as the "development test suite". In particular, the 

development test suite for the FPGA learning platform is given the name "OMICRON". 

The primary emphasis of the manufacturing tests conducted by OMICRON is mainly 

to verify solder connections of board components and traces that connect them together. 

As it is, the FPGA board has very few macro components. Most of the components 

connected to the FPGA are either interface ports or the user I/O. Available macro 

components such as the IR transceiver, SDRAM and EEPROM are tested for their basic 

functionalities. 

The conducted tests are simple and quick. There is no need for elaborate tests that 

have results that are hard to decipher. We only need to know whether or not a problem 

exists with one of the board components. After that, further work to troubleshoot the 

exact problem is relatively straightforward. 
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OMICRON assumes a fully functional FPGA chip (and flash PROM) whereby each 

of the components connected to the FPGA is systematically tested. This is a reasonable 

assumption made in order to manage and contain the complexity of the test suite. 

Assuming otherwise would entail testing the core exhaustively, which is beyond the 

scope of objectives for this test suite. 

In section 4.2.1, we shall explain the structure of OMICRON and how it is built 

internally to provide the test suite. Next, in section 4.2.2, we shall describe how 

OMICRON performs tests on the various peripherals on-board. Then, in section 4.2.3, the 

two different modes of operation for OMICRON are presented. 
 

4.2.1 OMICRON development test suite implementation 

The development test suite core, OMICRON, is essentially a large state machine 

implemented in the FPGA. It is implemented around the popular Xilinx PicoBlaze 

microcontroller core [20]. The hardware of OMICRON running within the FPGA is 

composed of the PicoBlaze core, instruction and data-type ROMs, output registers, an 

input MUX (multiplexer), and supplemental core modules. The software of OMICRON 

manages the hardware by supplying PicoBlaze with instructions to control the entire state 

machine. OMICRON is written entirely in VHDL (for the hardware) and PicoBlaze 

assembly (for the software). 
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Shown below is a block diagram of OMICRON's datapath layout: 
 

 
 

 

 

 

 

 
 
 
 

Fig. 2: Structure of OMICRON 
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Listed below are detailed descriptions of each part of the structure: 
 

(1)  PicoBlaze microcontroller core 

PicoBlaze is an 8-bit microcontroller intended for use in Spartan-3 FPGA devices. It 

was chosen for its simple architecture which makes it a good candidate for applications 

requiring a complex, but non-time critical, state machine. The core is totally embedded 

within the target FPGA and requires no external support. It is supplied as a synthesizable 

VHDL macro that is handled by place-and-route tools to merge with the logic of a design. 

The PicoBlaze core is optimized for low deployment cost and efficiency on Xilinx 

FPGAs. It only occupies 5% of the XC3S200 device capacity. Its small size allows other 

large designs to co-exist alongside it, which is ideal for the purpose of a testbench (more 

in Chapter 5). The performance of PicoBlaze is respectable at approximately 43 to 66 

MIPS (Millions of Instructions Per Second) even with such size constraints [30]. 

All instructions under all conditions will execute in 2 clock cycles. The constant 

execution rate is of great value when determining the execution time of a program [30]. 

There are 57 types of instructions in the instruction set. CALL and RETURN instructions 

support a stack depth of 31 levels. 

Internally, the PicoBlaze microcontroller provides 16 x 8-bit registers with 64 bytes 

of scratch-pad memory. It also provides abundant flexible I/O. From this, its basic 

functionality is easily extended and enhanced by connecting additional logic to the 

microcontroller's input and output ports. 
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Shown below is a diagram of PicoBlaze and its interface I/O: 
 

 
 

As seen from the figure above, each PicoBlaze instruction is 18 bits long, and is 

addressed by 10 bits for a maximum of 1024 instructions in a single 18kbit ROM. Its 

input and output ports are 8 bits each, and are addressed by an 8-bit port_id to allow 256 

locations of inputs and outputs. Read and write strobes are provided to inform an external 

module when a read or write operation is performed. A level-triggered interrupt pin is 

also provided. 
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Fig. 3: PicoBlaze microcontroller core 
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(2)  Microcontroller I/O 

Due to the addressable nature of the I/O, special care is taken to create output 

registers that only capture PicoBlaze's output based on the port_id address. Shown below 

is the construction of a data output register: 
 

 
 

In a data output register, the port_id signal is checked to determine when it is 

appropriate to capture the incoming byte. An extra precaution is taken by only allowing a 

byte to be captured when there is a write strobe indicating a write operation. This is 

analogous to the operation of a data bus. The data bus is indicated by the out_port signal 

in Figure 2. 

On the input side, a multiplexer is responsible for selecting which input byte to read. 

The selection is determined by the port_id signal. With the exception of the UART 

(Universal Asynchronous Receiver-Transmitter) modules, the read strobe is not utilized 
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by OMICRON. This is because most of the incoming bytes originate from non-queued 

sources. 

In Figure 2, output registers are used for control signals of the datapath. It is also used 

to send data to various peripherals. For the sake of keeping the figure concise, not all 

peripherals are listed. Likewise, the list of connected peripherals on the input side is 

shortened as indicated by the triple dots. 
 

(3)  Instruction ROMs 

An assembler is provided with the PicoBlaze source files to compile assembly 

programs into synthesizable VHDL ROM modules. Each ROM module is allows 1024 x 

18-bit instructions to be stored. 

Unfortunately, OMICRON requires more than 1024 assembly instructions for its 

operation. For this reason, two extra instruction ROMs were created to supplement the 

main program ROM. The entire OMICRON program is partitioned into three instruction 

ROMs as follows: 

§ Main program ROM 

The main ROM contains the root program execution for OMICRON. This 

includes code for the menu interface as well as the handling of RS232 terminal 

and non-terminal modes. This also includes a majority of the code for testing on-

board devices (known as "devtests" or device tests). Devtests for the LEDs, 

pushbuttons, LCD, serial port, SDRAM, and EEPROM are found in this ROM. 

§ Auxiliary program ROM 

The auxiliary ROM contains subroutines to construct and display strings on the 

RS232 terminal or the LCD. It also contains various subroutines for LCD 

operations such as displaying characters and clearing the display. 
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§ Testbench program ROM 

The testbench ROM contains subroutines that define the operations of the cycle-

accurate hardware testbench debugger. It also provides code space for custom 

subroutines that build upon OMICRON's existing subroutines using the PicoBlaze 

instruction set. Devtests for the user I/O, PS/2 port, and IR transreceiver are found 

in this ROM. 

OMICRON extends the number of program instructions beyond 1024 by means of a 

soft switch [31] to switch seamlessly between the three instruction ROMs while the root 

program is still in execution. The outputs from the three ROMs are fed into a multiplexer. 

One of the outputs is then selected as the current instruction by a control signal 

originating from a data output register. 
 

(4)  Data ROM 

OMICRON utilizes a single 2048-byte ROM as its data ROM. The data ROM is used 

to provide OMICRON with its vocabulary of words. The words were compressed by 

hand and stored as most-used syllables to save on storage space. This allows OMICRON 

to efficiently generate over 140 English words from only 256 bytes used. The remaining 

1792 bytes are left for future use by students. 

A Perl script was written to generate data ROM modules as synthesizable VHDL 

macros. The script data2rom.pl takes a text file as an input and parses its content by 

performing an ASCII (American Standard Code for Information Interchange) to hex 

conversion. The result is filled into the form file dataROM_form.vhd to generate the 

macro. 
 

(5)  Testbench vector ROMs (optional) 

Optional testbench vector ROMs can be plugged into OMICRON as a source of test 

vectors for the hardware testbench debugger. A more detailed explanation is provided in 

Chapter 5. 
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(6)  UART modules 

UART transmit and receive modules provided with the PicoBlaze package [32] are 

used to facilitate RS232 communications for the serial port. They provide the 

functionality of a simple UART transmitter and receiver with these fixed characteristics: 

o 1 start bit 

o 8 data bits (least significant bit first) 

o No parity 

o 1 stop bit 

This pair of macros are highly optimized for Xilinx FPGAs. Both the macros occupy 

approximately 2% of the XC3S200 device capacity. 
 

(7)  SPI core 

An SPI core is required to provide the interface between OMICRON and the 

EEPROM. The core will operate as the master in SPI mode 3 whereby the data is ordered 

most significant bit first. The main clock of 100MHz is divided down by 8 to produce a 

12.5MHz SPI clock that is well within the requirements of the EEPROM. 
 

(8)  Clock divider (not shown in Figure 2) 

The signal from the auxiliary oscillator is fed through a clock divider to produce a 

38kHz frequency signal. This is required as a carrier frequency for testing the IR 

transceiver. The 38kHz signal is achieved by dividing a 607kHz clock signal generated 

by the oscillator by 16. 
 

(9)  Testbench output registers 

These registers facilitate the output functionality of the hardware debugger. A more 

detailed explanation is provided in Chapter 5. 
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4.2.2 How OMICRON performs tests on FPGA board 

Theoretically, module testing involves the application of test vectors to a tested 

component in order to induce an observable result. That result is then used to assess 

whether or not the test was successful. In a self-testable system, the core (assumed to be 

fully functional) is responsible for testing the components around it. However, for that 

core to receive the results of its tests, some sort of result feedback mechanism must be 

employed. 

In the case of the FPGA board, most of its components provide some means of 

feeding signals back into OMICRON. For instance, the user I/O pins can be connected in 

pairs to form feedback loops. On the other hand, the IR transceiver can be used to send 

and then receive an IR signal. Some components require human feedback for test 

confirmation. For example, a pushbutton test relies on the user to push the button and 

visually confirm an actuated result. 

In the list below, we shall describe the methods used by OMICRON to test each 

peripheral of the FPGA board. The entire implementation that was laid out in the 

previous section 4.2.1 enables OMICRON to probe traces and to execute test algorithms 

on components that are external to the FPGA. 
 

(1)  Serial port test 

The transmit and receive capabilities of the serial port is tested by means of a serial 

communication between OMICRON and a computer running an RS232-capable terminal. 

To test the transmission of data, a simple ASCII string is sent to the terminal by 

OMICRON. The user would have to visually confirm that the string was successfully 

sent, indicating that the TX (transmit) trace is good. 

To test the receiving of data, OMICRON will continously listen for any incoming 

serial transmission from the computer. In this test, anything that is typed on the keyboard 

will be sent via the terminal to OMICRON. Incoming bytes will be displayed on the LCD 

as they are received, indicating that the RX (receive) trace is good. During this time also, 
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LEDs would alternately flash as an additional indicator, providing backup for a faulty 

LCD. 

Of course, if commands can be issued and information can be received via the 

terminal in the first place, then the serial port is in full working order. 
 

(2)  LCD test 

To test the LCD, a range of ASCII characters is displayed for every character of every 

line on the LCD. This will test the integrity of the LCD interface traces. Block characters 

can also be displayed to detect dead pixels on the LCD. Visual confirmation of the test is 

required by the user. At any time, the LCD can be cleared for a new test. 

The serial port data receive test can also be used to test the LCD. Characters sent 

from the keyboard are displayed on the LCD, allowing the user to enter custom messages. 
 

(3)  LEDs test 

A binary counter is activated on LEDs to flash them in an incremental manner. Visual 

confirmation is required by the user. 

The serial port data receive test can also be used to test LEDs. The LEDs will toggle 

flash whenever a byte is received from the keyboard. 
 

(4)  Pushbuttons test 

Pushbuttons will be tested for button push events. Whenever a push is made, a 

message to indicate which button was pushed will either appear on the terminal or the 

LCD, depending on the mode of operation (see next section 4.2.3). LEDs will also toggle 

accordingly. Visual confirmation is required by the user. 
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(5)  IR transceiver test 

The IR transceiver is tested by first transmitting a signal via the transmitter, and then 

receiving it with the receiver. This action forms a feedback mechanism between the two 

devices that allows OMICRON to test both devices simultaneously. OMICRON is able to 

determine the success of this test on its own. User feedback is not required. 

A valid IR signal is distinguised from other signals, which exist naturally in the 

environment, by its carrier frequency. The 38kHz carrier signal provided by the clock 

divider (see previous section 4.2.1) is used to modulate a valid signal. This signal is 

continously pulsed in bursts of 16 periods with a 37.5% duty cycle. On the receiver side, 

the incoming signal is verified at critical points to ensure that the original signal is 

correctly received. 

It is advisable to avoid testing the IR transceiver under direct exposure of fluorescent 

light that can drown the signal. It is also advisable to provide a reflective surface, such as 

a sheet of paper, to reflect the IR signal back to the receiver. 
 

(6)  User I/O test 

The 64 general I/O pins available on-board are grouped into 2 virtual ports of 32 pins 

each. These virtual ports are physically connected together in pin-wise pairs to form 

feedback loops to the FPGA. 

To test the user I/O, each virtual port takes its turn to become an input and an output. 

While one virtual port acts an input with pull-ups activated, the other port act as an output 

that drives the former input port low. When the entire input port is detected as being 

driven low, the test is successful for one way. Then, the virtual ports interchange their 

input/output roles and this process is repeated again. OMICRON reports that the whole 

test passes only when it is successful for both ways. 
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(7)  PS/2 port test 

This test is similar to the user I/O test except that it only involves 2 pins. First, the 

clock and data lines are physically connected together to form a feedback loop. Then, 

with pull-ups activated, each line takes its turn to become an input and an output. The 

current line acting as an output will try to drive the input line with a low signal, and vice 

versa. If low signals are detected both ways, the test is successful. 
 

(8)  SDRAM test 

The process of testing the SDRAM involves writing some data to a memory address 

location, and then immediately reading the data back from the same address location. If 

the data sent and received do not match, OMICRON will report the failure by displaying 

data value and address location where it failed. This process is repeated until the end of 

every test stage. 

There are two stages for the SDRAM test. The first stage is to test the data bus. This 

is achieved by first fixing the memory address location to 0. Then, the data lines are 

tested with walking-ones and walking-zeroes configurations. With these configurations, it 

is easy to point out which data bus lines are faulty once errors do occur. 
 

 
 

The second stage is to test the address bus. For this stage, an exhaustive test is 

performed on every memory address location with pseudo-random data values. It is 

important to cover every address location to confirm the operation of all memory cells. 

00000001 
00000010 
00000100 
00001000 
00010000 
00100000 
01000000 
10000000 

 

Fig. 5: 8-bit walking-ones/zeroes example 

11111110 
11111101 
11111011 
11110111 
11101111 
11011111 
10111111 
01111111 
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(9)  EEPROM test 

The testing process for the EEPROM is the same as for the SDRAM. It uses the same 

SDRAM first stage to test the data bus. However, it uses a different approach to test the 

address bus. Unlike the SDRAM, exhaustive testing for every address location is not 

recommended for the non-volatile EEPROM due to its limited number of allowable 

rewrites. Instead, walking-ones and walking-zeroes configurations are used in place of 

the SDRAM exhaustive approach to select the address locations. Those locations are then 

tested with pseudo-random data. 
 

4.2.3 OMICRON modes of operation 

Tests performed by OMICRON are manually executed by the user. Once a test is 

performed, OMICRON will return the results of the test to the user and await further 

instructions. OMICRON offers two modes of operation to interact with the user: 
 

(1)  Terminal (TERM) mode 

For this mode, a serial cable connection between the FPGA board and a computer is 

required. Communication is established to OMICRON by opening a serial link using an 

RS232-capable terminal on the computer. The communication setting of the serial link is 

configured at a baud rate of 38400. 

Once communication is established, the user is provided with a CLI (Command Line 

Interface) to issue commands to OMICRON and receive results on the terminal. On the 

CLI, a menu interface is provided to organize the various test commands. At any point, 

the user can view the current menu and its list of commands by issuing a question mark 

"?" as the command. To go back a menu level, a "G" command can be issued. 
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With the exception of the TESTBENCH menu, all tests are executed with one-letter 

commands for simplicity. From the figure above, the alphabet indicated before each test 

is the CLI command for that particular test. For example, to test the SDRAM, a user 

currently in the TOP menu would perform this series of keystrokes: 

(i) Type "M" and hit <Enter> to get into the MEMORY menu 

(ii) Type "S" and hit <Enter> to start the SDRAM test 

The TERM mode is the preferred mode of operation because OMICRON can be more 

verbose with the results it reports back to the user. However, if the serial port of the 

FPGA board fails for any reason, OMICRON cannot proceed with using serial 

communications for user interaction. Should this occur, OMICRON has the capability to 

fall back on a bare-bones mode for interaction. 

TOP MENU 
 
   L: LED TEST 
   B: BUTTON TEST 
   U: USER I/O TEST 
   P: PS/2 TEST 
   I: IR TEST 
 
   D: DISPLAY MENU 
 
       C: CLEAR LCD 
       A: LCD ASCII 
       B: LCD BLOCKS 
       I: SERIAL INPUT 
       O: SERIAL OUTPUT 
 
   M: MEMORY MENU 
 
       S: SDRAM TEST 
       E: EEPROM TEST 
 
   T: TESTBENCH MENU 
 
       V: LOAD VECTORS 
       F: LOAD CUSTOM 
       A: AND R 
       O: OR R 
       X: XOR R 
       S: STATUS 
       R: PORT TO R 
       N: SET NEXT OUTPUT 
       C: CLK OUTPUT 

Fig. 6: OMICRON terminal menu hierarchy 
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(2)  Non-terminal (NOTERM) mode 

This is a stripped-down interactive mode where an LCD is used as the main display 

for test results and the pushbuttons are used to select test options. It should be noted that, 

even in this mode, OMICRON will still try to send verbose results via serial 

communication. Hence, NOTERM mode can in fact co-exist with TERM mode. 

By default, OMICRON starts in TERM mode. In order to switch to NOTERM mode, 

the user just has to press the pushbuttons 3 times (any button will do). Once in NOTERM 

mode, the two pushbuttons closest to the LEDs are used to move backwards and forward 

through the available options that are presented on the LCD. The pushbutton that is 

furthest away from the LEDs is used to select or end the current option. Shown below are 

the options for NOTERM mode: 
 

 
 

In the figure above, the binary codes indicate how four LEDs are lighted for their 

respective options. For example, when the option "LCD BLOCKS" is selected, the 3 

LEDs closest to the pushbuttons are turned on. This enables the LEDs to be used as a 

secondary display in the event that the LCD display is faulty. The other four LEDs are 

used to indicate results of the pushbutton test, and to also indicate test success or failure. 

0000  ENTER TERM MODE 
0001  LED TEST 
0010  BUTTON TEST 
0011  USER I/O TEST 
0100  PS/2 TEST 
0101  IR TEST 
0110  LCD ASCII 
0111  LCD BLOCKS 
1000  SERIAL INPUT 
1001  SERIAL OUTPUT 
1010  SDRAM TEST 
1011  EEPROM TEST 
 

Fig. 7: OMICRON non-terminal options 
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The "CLEAR LCD" command is not included in this mode because the LCD will be 

cleared automatically as it is used. In addition, the entire TESTBENCH menu is removed 

because NOTERM mode is too restrictive to support it. 
 

4.3 Post-manufacturing requirements and test flow using OMICRON 

Naturally, the development test suite is intended for users who require the FPGA 

board to be tested. These users fall either into the category of learners or manufacturers. 

Learners, such as students and educators, expand the use of the board in an educational 

context. Thus, they require an informative and detailed yet concise user guide that 

documents all the aspects of the learning platform explained in this thesis, including the 

development test suite itself. An initial version of this user guide is provided in the 

Appendix. 

Manufacturers, on the other hand, are mainly interested in the peripheral testing 

aspect of the test suite. The information they require would be strictly on the test flow for 

the FPGA board. For this purpose, a step-by-step instructional guide is provided to 

facilitate the deployment of the development test suite in the manufacturing environment. 

This guide is briefly described at the end of this section. 

Before manufacturing test work can begin, certain post-manufacturing requirements 

need to be fulfilled. The following are equipment requirements for a single test station: 

v A computer equipped with both parallel and serial ports is required. On this 

computer, the Xilinx iMPACT tool and an RS232-capable terminal program are 

required to be installed. The parallel port is used to program new FPGA boards 

that come off the assembly line via a programming dongle. The serial port is used 

to access OMICRON in terminal mode using a serial cable. 

v An LCD with at least 2 lines of 16 characters is needed for testing the LCD 

interface and for accessing OMICRON in non-terminal mode. 

v A user I/O feedback connector is required to provide feedback connections for the 

user I/O test. The connector should plug and disconnect easily to speed up testing. 
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v A loopback wire is required to connect the data and clock lines of the PS/2 port 

for testing. 

v A sheet of paper is used to reflect an IR signal back into the receiver for the IR 

transceiver test. 

On the manufacturing floor, lightly skilled technicians are responsible for testing 

newly assembled boards. They are required to possess computer skills and a basic 

understanding of electronics. 

The time allocated for running through the whole test suite to test a single FPGA 

board is approximated at 4 minutes. This includes the time to flash the PROM, assemble 

connectors and issue test commands as well as making quick troubleshooting decisions. 

The technicians will be briefed on how to test new boards with OMICRON. Listed 

below is an introduction outline of the instructional guide on how to work the 

development test suite: 

Before testing, make sure: 

A1. Board power adaptor is connected to power source. 

Serial cable is connected to serial port. 

Programming dongle is connected to parallel port. 

A2. Computer is booted up. 

A3. Xilinx iMPACT tool is running with boundary scan chain detected. 

To detect scan chain, perform steps A1 & A2 before clicking on "Next" twice 

in iMPACT. The same scan chain can be reused over and over again. 

For each device on scan chain, select omicron.mcs as file to be programmed. 

A4. Terminal program is running on serial port at 38400 baud rate, configured 

with 8 data bits, no parity, 1 stop bit. 
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When a new board is received: 

B1. Set board down with pushbuttons pointing upwards from the table. 

B2. Connect power adaptor to power input. 

Connect serial cable to serial port. 

Connect programming dongle to programming input. 

Connect LCD. 

Connect feedback connector to user I/O. 

Connect loopback wire to PS/2 port. 

Make sure jumpers are connected on PROM configuration pins. 

B3. Power up board. 

B4. Program PROM using iMPACT with omicron.mcs bitstream. The PROM is 

the first scan chain device. 

Once the PROM has been successfully programmed, the technician can proceed to 

perform tests on the FPGA board using OMICRON. The results of each test is recorded 

and notes are made if necessary. 

If the serial port test fails, the technician is instructed to switch OMICRON over to 

non-terminal mode. This allows the test flow to proceed without using the terminal 

program. If the LCD does not work in non-terminal mode, the technician is instructed to 

rely on LEDs as indicators. These alternative methods for using OMICRON effectively 

remove test flow hindrances even when the two primary displays are faulty. 
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5 OMICRON CYCLE-ACCURATE TESTBENCH DEBUGGER 

5.1 Description of OMICRON testbench debugger 

In the process of developing the test suite, OMICRON was expanded to include a 

cycle-accurate hardware testbench debugger. This debugger functions as a general-

purpose digital hardware tester that can assist students in testing designs for the FPGA 

learning platform. 

The testbench debugger is able to test modules implemented within the FPGA as well 

as circuits on a daughterboard connected to the FPGA. The flexibility of the FPGA helps 

to provide a conducive test environment where signals of a tested module can be easily 

accessed and probed by the tester. 

Test results derived by the debugger are directly extracted from hardware. This makes 

the testbench debugger a valuable tool to supplement available software simulations in 

order to verify the functionalities of synthesized modules. The debugger can also provide 

test simulations for physical circuits connected to the user I/O that cannot otherwise be 

achieved with software simulators. Besides testing, the debugger can be used as a 

learning tool to teach basic digital logic. In section 5.4, we compare the testbench 

debugger with an alternative platform to teach students about logic fault detection. 
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A test operation is performed by connecting input and output test signals from the 

debugger to the output and input ports of a module, respectively, as shown below: 
 

 
 

Before an FPGA module can be tested, it must be included as a component to be 

synthesized with the OMICRON core. To do this, the student is responsible for hooking 

up the necessary test signals to the I/O of the module. It is important to note that the 

module I/O is not only limited to its main input and output ports. The FPGA freely allows 

internal signals of the module to be accessed for testing. If the tested component is 

external to the FPGA, then the internal test signals are assigned to the appropriate user 

I/O pins. Test vectors are then applied to the inputs of the tested module while the 

returned output signals are simultaneously captured. In section 5.3, we shall describe 

ways of applying these test vectors. 

The debugger builds upon existing OMICRON subroutines that allow students to 

interact with it and receive test results via a serial terminal. The presence of terminal 

interaction, however, does not allow timing-critical tests to be performed, since 

OMICRON will also be responsible for handling terminal subroutines in addition to the 

actual test subroutines. The multi-tasking work causes OMICRON be inconsistent in 

delivering test vectors. Hence, the debugger can only guarantee cycle accuracy in terms 

 
 
 
 
 

TESTED 
MODULE 

 
 
 
 
 

Fig. 8: Testbench debugger operation 
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of timing the test vectors. For most sequential-logic systems, cycle-accurate test vectors 

are sufficient for functional testing. 
 

5.2 Testbench debugger implementation  

The OMICRON testbench debugger provides, by default, eight 8-bit ports to test a 

component. Four of the ports act as test input ports (labeled I1 to I4) while the other four 

act as test output ports (labeled O1 to O4). Vital to the debugger's user interactivity are 

four 8-bit intermediate vectors, known as next output signals (labeled N1 to N4). In 

addition, an 8-bit temporary register "R" is provided. 

The input ports are responsible for capturing the output signals of the tested module. 

The output ports are responsible for supplying the tested module with input signals in 

order to excite the module. The next output signals are used as placeholders to decide 

what the follow-up output port signals are going to assume on the next "clock" operation. 

Lastly, the R register is used to perform logic operations on the existing vectors recorded 

by the debugger in order to provide new values for next output signals. 

As shown in Figure 2, the test input ports are implemented as inputs into the input 

MUX that is fed into the PicoBlaze core. In the upper right corner of the same figure, 

four data output registers are allocated for the next output signals. The outputs of those 

registers are fed as inputs to four testbench output registers. This setup allows the next 

output registers to be configured an arbitrary amount of times before finally having their 

outputs committed as testbench outputs. As soon as the next output signals are 

committed, all test output signals are changed (or "clocked") simultaneously. 
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Shown below is the construction of a testbench output register: 
 

 
 

In a testbench output register, the tb_strobe signal is controlled by the debugger to 

reject or allow the incoming signal to be latched at the output. This ensures simultaneous 

clocking of the test output registers. 

In the testbench debugging mode, an 18kbit ROM is used to supply the debugger with 

testbench vectors. This vector ROM is connected as an input to OMICRON. As test 

vectors are read from the ROM, they are redirected as next outputs to be committed to the 

testbench output registers. The generation and usage of this vector ROM is elaborated in 

section 5.3.2. 

 

 

 
D                Q 
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Fig. 9: OMICRON testbench output register 
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5.3 Module debugging using OMICRON 

Once a module is connected to the test I/O of the hardware debugger, it is ready for 

testing. Testing is achieved by first accessing OMICRON in terminal mode. In the 

command line interface of the terminal, the commands to issue and manipulate test 

vectors can be found in the TESTBENCH menu. These commands are explained in 

section 5.3.1. From the same menu, a command can be issued to start the testbench 

debugging mode where test vectors are applied continuously as test outputs. A unique test 

flow associated with this mode is decribed in section 5.3.2. 
 

5.3.1 Using command line interface 

When the TESTBENCH menu is accessed, the following command options are 

offered: 
 

 
 

All of these options revolve around the STATUS command. This is the command 

where OMICRON displays the status of every test I/O port, including the current values 

for the next output signals. 

 

 

 

 

T: TESTBENCH MENU 
 
    V: LOAD VECTORS 
    F: LOAD CUSTOM 
    A: AND R 
    O: OR R 
    X: XOR R 
    S: STATUS 
    R: PORT TO R 
    N: SET NEXT OUTPUT 
    C: CLK OUTPUT 

Fig. 10: OMICRON testbench menu commands 
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When the STATUS command is issued, an output like this is produced: 
 

 
 

From the example above, we can see that the two output ports of the tested module 

connected to I1 and I2 are currently holding the same byte value of "DE" (in hex). The 

next output signals are currently set to values that are ready to be committed as testbench 

outputs. For instance, when the outputs are "clocked" with the CLK OUTPUT command, 

only the first output (O1) changes its value from "02" to "03". The other outputs (O2 to 

O4) induce no change from the committed next outputs (N2 to N4). 

A next output can be manually set with the SET NEXT OUTPUT command by either 

specifying a new value for it (e.g., issuing "N3 9A") or setting it to be equal to the R 

register content (e.g., issuing "N3" without a hex value). 

The contents of the R register can be changed with the PORT TO R command (e.g., 

"R 5B"). The value of any port can also be copied to the R register with the same 

command. For example, to copy the fourth debugger input to the R register, an "R I4" 

command is issued. After that, the contents of the register can be modified with any of 

the logic operation commands. For example, with the status as shown in Figure 11, 

issuing an XOR command "X 60" on the R register changes its contents from "F5" to 

"95". 

Fig. 11: Status of testbench debugger 

+++++++++++++++++++++++++++++++++++++++++ 
I1 : DE [11011110]  
I2 : DE [11011110]  
I3 : 76 [01110110]  
I4 : 14 [00010100]  
 
O1 : 02 [00000010] <- N1 : 03 [00000011]  
O2 : DA [11011010] <- N2 : DA [11011010]  
O3 : 56 [01010110] <- N3 : 56 [01010110]  
O4 : 9D [10011101] <- N4 : 9D [10011101]  
 
 R : F5 [11110101]  
========================================= 
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The LOAD CUSTOM command executes a custom subroutine defined in the 

testbench program ROM. Students can customize this subroutine to perform other 

functions that build upon existing OMICRON capabilities. 

Finally, the LOAD VECTORS command begins the testbench debugging mode. The 

entire use of this mode is expounded in the next section 5.3.2. 
 

5.3.2 Using testbench vectors 

Using the CLI to manipulate test vectors and step through an entire test sequence is 

useful for small test cases. However, to be effective in producing elaborate functional 

simulations, a large quantity of vectors need to be utilized to test a module. 

For this purpose, the debugger supports a testbench mode in which vectors are 

continuously applied to the test outputs in order to collect a range of results, much like 

how a software testbench works. These results can then be converted into a form that can 

be displayed as a graphical waveform by simulation software. 

In this section, we shall define the test flow of using testbench vectors to test a 

module by walking through an example. The test flow was designed to be used in 

conjunction with the ModelSim® simulation software by Mentor Graphics® [33]. 
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We begin with a module that we wish to test: 
 

 
 

The figure above shows a Mealy sequential-logic system that has three 8-bit input 

signals (A, B, and C) with a clock input (clk) and a control signal (load). There is a single 

8-bit output (Y). 

A bitwise-OR operation is performed on both A and B inputs and their OR-gate output 

or_sig is fed into a MUX. The load signal is then used as a synchronous control to 

enable or disable the register from latching on to or_sig. Finally, the output of the 

register is bitwise-ANDed with the C input to produce output Y. 

The signal names that are not in the square brackets are the original signal names 

given to the module. The original signals will be assigned to corresponding testbench I/O 

signals (with names in the square brackets). Testbench outputs are connected to module 

inputs, and vice versa. For testbench output tb_out1, only two of its eight bits were used. 

Fig. 12: Tested module example 
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Y 
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C [tb_out4] 
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[tb_in1] 

B 
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Once we are certain of how we would test our given module, we are ready to begin 

the test flow of employing vectors for the testbench. The progression of the flow is shown 

in the figure below: 
 

 
 

 

 

 

 

Testbench vectors construction 

Fig. 13: Testbench vector test flow 

Extract vectors into LST file 

LST file à ROM implementation 
(lst2rom.pl) 

Synthesize ROM with OMICRON 

Execute vectors in OMICRON 

OMICRON results à LST & DO files 
(tb2lst_do.pl) 

View waveform of generated DO file 
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(1)  Testbench vectors construction 

Before we can use test bit-vectors for our testbench, we need to construct them first. 

ModelSim offers a comprehensive scripting language to describe vectors that are used for 

simulations within its environment. 

Presumably, we would have loaded a design of the module given in Figure 12 into the 

ModelSim environment. Then, we would perform a simulation test on the design using 

vectors scripted in a macro DO file. Shown below is the macro script that we use to test 

our module: 
 

 
 

In the DO file above, we define some input signals to test the module over four clock 

cycles. When we execute the DO file within ModelSim, a graphical waveform of the 

simulation is generated as shown on the next page. 

view signals 
 
view wave 
add wave: /testmodule/* 
 
force -freeze /testmodule/clk 0 0, 1 {50 ns} -r 100 
force -freeze /testmodule/load 1 0 
force -freeze /testmodule/A 00000000 0 
force -freeze /testmodule/B 00000000 0 
force -freeze /testmodule/C 00000000 0 
run 100 
 
force -freeze /testmodule/A 01010110 0 
force -freeze /testmodule/B 01110010 0 
force -freeze /testmodule/C 11010101 0 
run 100 
 
force -freeze /testmodule/A 11011010 0 
force -freeze /testmodule/B 01010110 0 
force -freeze /testmodule/C 10011101 0 
run 100 
 
force -freeze /testmodule/A 11110000 0 
force -freeze /testmodule/B 00001110 0 
force -freeze /testmodule/C 00111111 0 
run 100 

Fig. 14: DO file (testmodule.do) to create vectors and generate waveform 
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Signals shown in a waveform can easily be viewed and distinguished, which makes 

this graphical representation of signals ideal in a test environment. Once we have a 

waveform of the original simulation for comparison, we can extract the vectors for use in 

OMICRON. 
 

(2)  Extract vectors into LST file 

The waveform shows how vectors of the module signals change over time. These 

signals can be extracted and stored as arrays of vectors that are arranged according to 

time. To do this in ModelSim, we simply drag and drop input signals from the "signal" 

window into the "list" window so that they are arranged as shown in the figure on the 

next page. 

Fig. 15: ModelSim waveform of original simulation 
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From the figure above, 12 rows of vectors were extracted from the original simulation 

that was performed on the tested module. Out of the 12 rows, 3 of them are deltas which 

indicate several vector changes have taken place within a single time slot. 

The extracted vectors are saved into the tabular LST file omi_vector.lst: 
 

 

 

 

 

         ns       /testmodule/load   /testmodule/clk   /testmodule/a   /testmodule/b                 
          delta                                                                 /testmodule/c        
          0  +0                  1                 0        00000000        00000000 00000000  
         50  +0                  1                 1        00000000        00000000 00000000  
        100  +0                  1                 0        00000000        00000000 00000000  
        100  +1                  1                 0        01010110        01110010 11010101  
        150  +0                  1                 1        01010110        01110010 11010101  
        200  +0                  1                 0        01010110        01110010 11010101  
        200  +1                  1                 0        11011010        01010110 10011101  
        250  +0                  1                 1        11011010        01010110 10011101  
        300  +0                  1                 0        11011010        01010110 10011101  
        300  +1                  1                 0        11110000        00001110 00111111  
        350  +0                  1                 1        11110000        00001110 00111111  
        400  +0                  1                 0        11110000        00001110 00111111 
 

Fig. 17: LST file (omi_vector.lst) of extracted vectors 

Fig. 16: ModelSim extracted list window 
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(3)  LST file to ROM implementation using lst2rom.pl Perl script 

For OMICRON to use extracted vectors, the LST file must be converted to a ROM 

implementation that is used as a repository for the test vectors. This is achieved by 

running the lst2rom.pl Perl script with omi_vector.lst as the input file. The script 

then uses a VHDL form file vectorROM_form.vhd to generate an FPGA-synthesizable 

macro as shown in Figure 18 on the next page. 

During conversion, the script parses the rows of vectors of the LST file into word 

lengths of 32 bits to match 32 bits of the testbench output. The most significant vector 

byte is assigned to tb_out1. This is followed by the second byte being assigned to 

tb_out2 and so on. 

If the number of vector bits per row is less than 32, "0" bits are padded on the left to 

fill the gap. In the case of omi_vector.lst, six "0" bits were added on the left, fixing the 

six significant bits of tb_out1 as zeroes. If there is more than 32 bits per row, the script 

fails with an error. 

When delta rows exist, the script would only parse the last delta row with the latest 

vectors. Delta cycles are not used by the testbench debugger because the test outputs need 

to be simultaneously clocked (see section 5.2). This effectively reduces the number of 

testbench vector rows of omi_vector.lst down to 9. 

The script marks the end of the list of vectors with a "1" bit. In Figure 18, 

"INITP_00" has a "1" on the ninth bit from the right to indicate nine stored vectors. 

Each ROM can hold 512 cycles of testbench output vectors. Should the input LST file 

contain more than 512 effective vector rows, additional ROMs are generated by the script 

to hold more vectors (e.g., omi_vector1.vhd, omi_vector2.vhd, etc.). 
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-- 
-- Definition of a single port ROM for OMICRON testbench vectors defined by omi_vector.lst 
-- 
-- Generated by lst2rom.pl [8/7/2006 0:32] 
-- 
-- Standard IEEE libraries 
-- 
library ieee; 
use ieee.std_logic_1164.all; 
use ieee.std_logic_arith.all; 
use ieee.std_logic_unsigned.all; 
-- 
-- The Unisim Library is used to define Xilinx primitives. It is also used during 
-- simulation. The source can be viewed at %XILINX%\vhdl\src\unisims\unisim_VCOMP.vhd 
-- 
library unisim; 
use unisim.vcomponents.all; 
-- 
-- 
entity omi_vector0 is 
  port( 
        address : in  std_logic_vector(8 downto 0); 
        data    : out std_logic_vector(35 downto 0); 
        clk     : in  std_logic 
      ); 
end entity omi_vector0; 
-- 
architecture low_level_definition of omi_vector0 is 
-- 
-- Attributes to define ROM contents during implementation synthesis. 
-- The information is repeated in the generic map for functional simulation 
-- 
 
[attributes removed to keep file short] 
 
-- 
begin 
  -- Instantiate the Xilinx primitive for a block RAM. 
  ram_512_x_36: RAMB16_S36 
  --synthesis translate_off 
  -- INIT values repeated to define contents for functional simulation. 
  generic map( INIT       => X"000000000", 
               SRVAL      => X"000000000", 
               WRITE_MODE => "WRITE_FIRST", 
               INIT_00    => X"03F00E3F02F00E3F03DA569D02DA569D035672D5025672D50300000002000000", 
               INIT_01    => X"0000000000000000000000000000000000000000000000000000000002F00E3F", 
 
               [...] 
 
               INIT_3F    => X"0000000000000000000000000000000000000000000000000000000000000000", 
               INITP_00   => X"0000000000000000000000000000000000000000000000000000000100000000", 
 
               [...] 
 
               INITP_07   => X"0000000000000000000000000000000000000000000000000000000000000000" 
             ) 
  --synthesis translate_on 
  port map( DO   => data(31 downto 0), 
            DOP  => data(35 downto 32), 
            ADDR => address, 
            CLK  => clk, 
            DI   => X"00000000", 
            DIP  => X"0", 
            EN   => '1', 
            SSR  => '0', 
            WE   => '0' 
          ); 
-- 
end architecture low_level_definition; 
 

Fig. 18: VHDL file (omi_vector0.vhd) of ROM implementation 
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 (4)  Synthesize ROM with OMICRON 

The ROM implementation omi_vector0.vhd is included as a component of the 

OMICRON system. Once it is synthesized and implemented into the FPGA, OMICRON 

is able to access the vectors for testbench debugging. Figure 19 shows the Xilinx ISE 

window where omi_vector0.vhd is included in OMICRON. 

At this time, we include the tested module into OMICRON and implement it as 

was shown in Figure 12. 
 

 

Currently, OMICRON supports up to a maximum of 128 vector ROMs to be chained 

together, thus providing as much as 65536 cycles of testbench vectors. 

Fig. 19: Synthesize ROM implementation with OMICRON 
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(5)  Execute vectors in OMICRON 

As mentioned in section 5.3.1, testbench debugging is started with the LOAD 

VECTORS command. As soon as the testbench starts, vectors incrementally read from 

ROM are continuously sent to the testbench outputs to test the implemented module. 

This is done by first assigning newly read vectors as next outputs. Then, a STATUS 

command is performed to display the values of the test signals. Finally, a CLK OUTPUT 

command is issued to commit the current next outputs before reading in a new set of next 

outputs. 

The results generated by the testbench debugger are saved from the terminal into the 

file debug.tb as shown in Figure 20 on the next page. These results resemble the output 

of many STATUS commands (see section 5.3.1). Each status block represents one 

testbench vector cycle and is numbered beginning from "00000". 



63 
 

 
 

00000 
+++++++++++++++++++++++++++++++++++++++++ 
I1 : 00 [00000000]  
I2 : 00 [00000000]  
I3 : 00 [00000000]  
I4 : 00 [00000000]  
 
O1 : 00 [00000000] <- N1 : 02 [00000010]  
O2 : 00 [00000000] <- N2 : 00 [00000000]  
O3 : 00 [00000000] <- N3 : 00 [00000000]  
O4 : 00 [00000000] <- N4 : 00 [00000000]  
 
 R : 00 [00000000]  
========================================= 
 
00001 
+++++++++++++++++++++++++++++++++++++++++ 
I1 : 00 [00000000]  
I2 : 00 [00000000]  
I3 : 00 [00000000]  
I4 : 00 [00000000]  
 
O1 : 02 [00000010] <- N1 : 03 [00000011]  
O2 : 00 [00000000] <- N2 : 00 [00000000]  
O3 : 00 [00000000] <- N3 : 00 [00000000]  
O4 : 00 [00000000] <- N4 : 00 [00000000]  
 
 R : 00 [00000000]  
========================================= 
 
00002 
+++++++++++++++++++++++++++++++++++++++++ 
I1 : 00 [00000000]  
I2 : 00 [00000000]  
I3 : 00 [00000000]  
I4 : 00 [00000000]  
 
O1 : 03 [00000011] <- N1 : 02 [00000010]  
O2 : 00 [00000000] <- N2 : 56 [01010110]  
O3 : 00 [00000000] <- N3 : 72 [01110010]  
O4 : 00 [00000000] <- N4 : D5 [11010101]  
 
 R : 00 [00000000]  
========================================= 
 
00003 
+++++++++++++++++++++++++++++++++++++++++ 
I1 : 76 [01110110]  
I2 : 76 [01110110]  
I3 : 00 [00000000]  
I4 : 00 [00000000]  
 
O1 : 02 [00000010] <- N1 : 03 [00000011]  
O2 : 56 [01010110] <- N2 : 56 [01010110]  
O3 : 72 [01110010] <- N3 : 72 [01110010]  
O4 : D5 [11010101] <- N4 : D5 [11010101]  
 
 R : 00 [00000000]  
========================================= 
 
00004 
+++++++++++++++++++++++++++++++++++++++++ 
I1 : 76 [01110110]  
I2 : 76 [01110110]  
I3 : 76 [01110110]  
I4 : 54 [01010100]  
 
O1 : 03 [00000011] <- N1 : 02 [00000010]  
O2 : 56 [01010110] <- N2 : DA [11011010]  
O3 : 72 [01110010] <- N3 : 56 [01010110]  
O4 : D5 [11010101] <- N4 : 9D [10011101]  
 
 R : 00 [00000000]  
========================================= 

Fig. 20: Saved testbench debugger output (debug.tb) 

00005 
+++++++++++++++++++++++++++++++++++++++++ 
I1 : DE [11011110]  
I2 : DE [11011110]  
I3 : 76 [01110110]  
I4 : 14 [00010100]  
 
O1 : 02 [00000010] <- N1 : 03 [00000011]  
O2 : DA [11011010] <- N2 : DA [11011010]  
O3 : 56 [01010110] <- N3 : 56 [01010110]  
O4 : 9D [10011101] <- N4 : 9D [10011101]  
 
 R : 00 [00000000]  
========================================= 
 
00006 
+++++++++++++++++++++++++++++++++++++++++ 
I1 : DE [11011110]  
I2 : DE [11011110]  
I3 : DE [11011110]  
I4 : 9C [10011100]  
 
O1 : 03 [00000011] <- N1 : 02 [00000010]  
O2 : DA [11011010] <- N2 : F0 [11110000]  
O3 : 56 [01010110] <- N3 : 0E [00001110]  
O4 : 9D [10011101] <- N4 : 3F [00111111]  
 
 R : 00 [00000000]  
========================================= 
 
00007 
+++++++++++++++++++++++++++++++++++++++++ 
I1 : FE [11111110]  
I2 : FE [11111110]  
I3 : DE [11011110]  
I4 : 1E [00011110]  
 
O1 : 02 [00000010] <- N1 : 03 [00000011]  
O2 : F0 [11110000] <- N2 : F0 [11110000]  
O3 : 0E [00001110] <- N3 : 0E [00001110]  
O4 : 3F [00111111] <- N4 : 3F [00111111]  
 
 R : 00 [00000000]  
========================================= 
 
00008 
+++++++++++++++++++++++++++++++++++++++++ 
I1 : FE [11111110]  
I2 : FE [11111110]  
I3 : FE [11111110]  
I4 : 3E [00111110]  
 
O1 : 03 [00000011] <- N1 : 02 [00000010]  
O2 : F0 [11110000] <- N2 : F0 [11110000]  
O3 : 0E [00001110] <- N3 : 0E [00001110]  
O4 : 3F [00111111] <- N4 : 3F [00111111]  
 
 R : 00 [00000000]  
========================================= 
 
00009 
+++++++++++++++++++++++++++++++++++++++++ 
I1 : FE [11111110]  
I2 : FE [11111110]  
I3 : FE [11111110]  
I4 : 3E [00111110]  
 
O1 : 02 [00000010] <- N1 : 02 [00000010]  
O2 : F0 [11110000] <- N2 : F0 [11110000]  
O3 : 0E [00001110] <- N3 : 0E [00001110]  
O4 : 3F [00111111] <- N4 : 3F [00111111]  
 
 R : 00 [00000000]  
========================================= 



64 
 

 

(6)  OMICRON results to LST & DO files using tb2lst_do.pl Perl script 

At this point, the hardware testbench is completed. The results from OMICRON can 

be converted back into vectors that can be read by simulation software. This is achieved 

by using the tb2lst_do.pl script to convert the text TB file debug.tb into two formats: 

(i) LST file debug.lst 

This is the same format used by ModelSim and other CAD tools to store bit 

vectors of signals. 
 

 
 

(ii) Macro DO file tb_wave.do 

The DO file tb_wave.do allows ModelSim to generate a waveform of the 

testbench debugger signals by means of an OMICRON mock system. The mock 

system is an empty shell that is used for the purpose of holding and reassigning 

signals. 

         ns       /omicron/tb_out1 
          delta            /omicron/tb_out2 
                                    /omicron/tb_out3 
                                             /omicron/tb_out4 
                                                       /omicron/tb_in1 
                                                                /omicron/tb_in2 
                                                                         /omicron/tb_in3 
                                                                                  /omicron/tb_in4 
          0  +0           00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000  
         10  +0           00000010 00000000 00000000 00000000 00000000 00000000 00000000 00000000  
         20  +0           00000011 00000000 00000000 00000000 00000000 00000000 00000000 00000000  
         30  +0           00000010 01010110 01110010 11010101 01110110 01110110 00000000 00000000  
         40  +0           00000011 01010110 01110010 11010101 01110110 01110110 01110110 01010100  
         50  +0           00000010 11011010 01010110 10011101 11011110 11011110 01110110 00010100  
         60  +0           00000011 11011010 01010110 10011101 11011110 11011110 11011110 10011100  
         70  +0           00000010 11110000 00001110 00111111 11111110 11111110 11011110 00011110  
         80  +0           00000011 11110000 00001110 00111111 11111110 11111110 11111110 00111110  
         90  +0           00000010 11110000 00001110 00111111 11111110 11111110 11111110 00111110 

Fig. 21: LST file (debug.lst) of testbench debugger output 
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Since the script is not able to recognize how the original signals of the tested module 

were assigned to the testbench signals, the mock system allows the original signals to be 

extracted from the testbench signals for the purpose of viewing their waveforms. 

view signals 
view wave 
add wave: /omicron/* 
 
force -freeze /omicron/tb_out1 00000000 0 
force -freeze /omicron/tb_out2 00000000 0 
force -freeze /omicron/tb_out3 00000000 0 
force -freeze /omicron/tb_out4 00000000 0 
force -freeze /omicron/tb_in1  00000000 0 
force -freeze /omicron/tb_in2  00000000 0 
force -freeze /omicron/tb_in3  00000000 0 
force -freeze /omicron/tb_in4  00000000 0 
run 10 
 
force -freeze /omicron/tb_out1 00000010 0 
force -freeze /omicron/tb_out2 00000000 0 
force -freeze /omicron/tb_out3 00000000 0 
force -freeze /omicron/tb_out4 00000000 0 
force -freeze /omicron/tb_in1  00000000 0 
force -freeze /omicron/tb_in2  00000000 0 
force -freeze /omicron/tb_in3  00000000 0 
force -freeze /omicron/tb_in4  00000000 0 
run 10 
 
force -freeze /omicron/tb_out1 00000011 0 
force -freeze /omicron/tb_out2 00000000 0 
force -freeze /omicron/tb_out3 00000000 0 
force -freeze /omicron/tb_out4 00000000 0 
force -freeze /omicron/tb_in1  00000000 0 
force -freeze /omicron/tb_in2  00000000 0 
force -freeze /omicron/tb_in3  00000000 0 
force -freeze /omicron/tb_in4  00000000 0 
run 10 
 
force -freeze /omicron/tb_out1 00000010 0 
force -freeze /omicron/tb_out2 01010110 0 
force -freeze /omicron/tb_out3 01110010 0 
force -freeze /omicron/tb_out4 11010101 0 
force -freeze /omicron/tb_in1  01110110 0 
force -freeze /omicron/tb_in2  01110110 0 
force -freeze /omicron/tb_in3  00000000 0 
force -freeze /omicron/tb_in4  00000000 0 
run 10 
 
force -freeze /omicron/tb_out1 00000011 0 
force -freeze /omicron/tb_out2 01010110 0 
force -freeze /omicron/tb_out3 01110010 0 
force -freeze /omicron/tb_out4 11010101 0 
force -freeze /omicron/tb_in1  01110110 0 
force -freeze /omicron/tb_in2  01110110 0 
force -freeze /omicron/tb_in3  01110110 0 
force -freeze /omicron/tb_in4  01010100 0 
run 10 

Fig. 22: DO file (tb_wave.do) to generate waveform of testbench debugger signals 

force -freeze /omicron/tb_out1 00000010 0 
force -freeze /omicron/tb_out2 11011010 0 
force -freeze /omicron/tb_out3 01010110 0 
force -freeze /omicron/tb_out4 10011101 0 
force -freeze /omicron/tb_in1  11011110 0 
force -freeze /omicron/tb_in2  11011110 0 
force -freeze /omicron/tb_in3  01110110 0 
force -freeze /omicron/tb_in4  00010100 0 
run 10 
 
force -freeze /omicron/tb_out1 00000011 0 
force -freeze /omicron/tb_out2 11011010 0 
force -freeze /omicron/tb_out3 01010110 0 
force -freeze /omicron/tb_out4 10011101 0 
force -freeze /omicron/tb_in1  11011110 0 
force -freeze /omicron/tb_in2  11011110 0 
force -freeze /omicron/tb_in3  11011110 0 
force -freeze /omicron/tb_in4  10011100 0 
run 10 
 
force -freeze /omicron/tb_out1 00000010 0 
force -freeze /omicron/tb_out2 11110000 0 
force -freeze /omicron/tb_out3 00001110 0 
force -freeze /omicron/tb_out4 00111111 0 
force -freeze /omicron/tb_in1  11111110 0 
force -freeze /omicron/tb_in2  11111110 0 
force -freeze /omicron/tb_in3  11011110 0 
force -freeze /omicron/tb_in4  00011110 0 
run 10 
 
force -freeze /omicron/tb_out1 00000011 0 
force -freeze /omicron/tb_out2 11110000 0 
force -freeze /omicron/tb_out3 00001110 0 
force -freeze /omicron/tb_out4 00111111 0 
force -freeze /omicron/tb_in1  11111110 0 
force -freeze /omicron/tb_in2  11111110 0 
force -freeze /omicron/tb_in3  11111110 0 
force -freeze /omicron/tb_in4  00111110 0 
run 10 
 
force -freeze /omicron/tb_out1 00000010 0 
force -freeze /omicron/tb_out2 11110000 0 
force -freeze /omicron/tb_out3 00001110 0 
force -freeze /omicron/tb_out4 00111111 0 
force -freeze /omicron/tb_in1  11111110 0 
force -freeze /omicron/tb_in2  11111110 0 
force -freeze /omicron/tb_in3  11111110 0 
force -freeze /omicron/tb_in4  00111110 0 
run 10 
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In omicron.vhd, the original signals were redefined and connected to their 

corresponding testbench I/O in order to compare how the tested module functioned in 

hardware as compared to the software simulation. 

-- 
-- This is a mock system to mimic the OMICRON testbench. 
-- A behavioral compile of this system is required to display the waveform 
-- defined by the ModelSim macro file tb_wave.do that is generated from 
-- the tb2lst_do.pl script. 
-- 
-- Additional signals can be defined and assigned to the existing inputs 
-- and outputs to make the output waveform clearer to understand from the 
-- perspective of the module that was tested by the testbench. 
-- 
 
library ieee; 
use ieee.std_logic_1164.all; 
 
entity omicron is 
  port( 
        tb_in1  : in     std_logic_vector(7 downto 0); 
        tb_in2  : in     std_logic_vector(7 downto 0); 
        tb_in3  : in     std_logic_vector(7 downto 0); 
        tb_in4  : in     std_logic_vector(7 downto 0); 
        tb_out1 : buffer std_logic_vector(7 downto 0); 
        tb_out2 : buffer std_logic_vector(7 downto 0); 
        tb_out3 : buffer std_logic_vector(7 downto 0); 
        tb_out4 : buffer std_logic_vector(7 downto 0) 
      ); 
end entity omicron; 
 
architecture mock of omicron is 
 
  ----------------------------- 
  -- define original signals -- 
  ----------------------------- 
  signal A      : std_logic_vector(7 downto 0); 
  signal B      : std_logic_vector(7 downto 0); 
  signal C      : std_logic_vector(7 downto 0); 
  signal load   : std_logic; 
  signal clk    : std_logic; 
  signal Y      : std_logic_vector(7 downto 0); 
  signal or_sig : std_logic_vector(7 downto 0); 
  signal reg_ns : std_logic_vector(7 downto 0); 
  signal reg_ps : std_logic_vector(7 downto 0); 
 
begin 
 
  ------------------------------------------------------------- 
  -- connect original signals to corresponding testbench I/O -- 
  ------------------------------------------------------------- 
  A <= tb_out2; 
  B <= tb_out3; 
  C <= tb_out4; 
  load <= tb_out1(1); 
  clk <= tb_out1(0); 
   
  Y <= tb_in4; 
  or_sig <= tb_in1; 
  reg_ns <= tb_in2; 
  reg_ps <= tb_in3; 
   
end architecture mock; 

Fig. 23: VHDL file (omicron.vhd) of OMICRON mock system to view waveform 
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(7)  View waveform of generated DO file 

The waveform of the hardware testbench results is compared to the original software 

simulation: 

 

The identical results of the original signals confirm that the operation of the tested 

module in hardware functions as it was simulated in ModelSim. Upon closer inspection, 

there are 3 minor differences to be noted: 

§ The hardware testbench results contain 2 extra cycles that are essentially the 

starting and ending cycles of the software simulation. This appears as a result of 

the debugger having to establish next output signals before committing those 

signals as outputs. 

Fig. 24: ModelSim waveform of mock system vs. original simulation (bottom) 
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§ The reg_ps signal of the software simulation begins as undefined. For the 

hardware testbench, it begins as zero. This is due to the FPGA hardware 

initialization of resetting signals to zeroes. 

§ The cycle time lengths for both waveforms are not the same. It does not matter for 

the hardware debugger since it can only guarantee cycle accuracy in terms of 

timing. The cycle length for the hardware simulation is fixed at 10ns by the 

tb2lst_do.pl script. 
 

5.4 Comparison with work by Niggemeyer et. al. 

In 2001, Niggemeyer et. al. presented a novel approach to education in manufacturing 

test and automatic test equipment [34]. This approach involved using an industry-class 

HP83000 IC tester to probe an FPGA chip that was configured to emulate various logic 

faults. The objective was to demonstrate fault detection techniques to graduate students. 

The approach that Niggemeyer et. al. took was restricted to testing digital circuits 

only. This makes an interesting comparison with the hardware testbench debugger 

provided by OMICRON. Since testing only involved digital circuits, the HP83000 tester 

that was capable of performing mixed-signal probes only utilized part of its capabilities. 

OMICRON, however, takes a different approach by integrating the tester within the 

FPGA itself thus making full use of the FPGA's digital architecture and avoiding an 

external tester altogether. The absence of an external tester makes the FPGA learning 

platform with OMICRON a more portable and inexpensive solution to the bulky FPGA-

and-IC tester combination. 
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Even though the OMICRON debugger only performs cycle-accurate tests, it can do a 

majority of digital logic fault tests (with the exception of testing timing-dependent faults). 

This renders the IC tester's capability to capture timing-accurate test results as non-vital 

for the objective it was set out to do. 

In the learning environment, the IC tester was housed in a laboratory where it was 

shared among students. This stifles the learning growth of students as they are not able to 

derive personal ownership from a single learning platform. Also, by isolating the 

platform, the involvement of the community of learners is severely reduced and this in 

turn diminishes the consolidation of the entire learning experience that is derived from 

the support of the community. 

Fig. 25: HP83000 IC tester base 
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The FPGA-and-IC tester combination was targeted for a specific use. As a result, the 

FPGA device could not be applied elsewhere as it was already fixed on a specialized load 

board. This eliminated the possibility of carrying the platform over to another class in 

order to continue building on the existing scaffold of knowledge. On the other hand, the 

FPGA learning platform aims to preserve flexibility and general usefulness for it to be 

reapplied in any practical environment. 

Shown below is a side-by-side comparison of the two platforms: 
 

 

 

Table 2: Platforms to teach digital logic fault detection 

 FPGA Learning Platform with 
OMICRON 

Niggemeyer et. al. 
FPGA + IC tester [34] 

FPGA device Xilinx XC3S200 Xilinx XC4005E 
FPGA capacity 200k gates 9k gates 

Logic tester OMICRON with 
Xilinx PicoBlaze core 

(implemented into FPGA) 

HP83000 mixed-signal 
IC tester 

(external of FPGA) 
Support 

equipment 
Computer, serial cable Mainframe, testhead, testhead 

manipulator, cooling unit, 
workstation 

I/O channels 64 64 
Operating 
frequency 

Cycle-accurate only 50MHz maximum 

Requires load 
board? 

No, all testing done within 
FPGA; external testing 

allowed via user I/O 

Yes, specialized load board for 
tester built around FPGA 
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6 CONCLUSION 

This thesis provides an introduction to a new learning platform that is composed of an 

FPGA development board and a set of free CAD tools. This FPGA platform is the latest 

in a series of learning platforms developed at OSU. The platform is to be integrated into 

the coursework for senior undergraduate and graduate students. It incorporates the 

attributes that allow it to be effective as a learning platform. 

These attributes were discovered, studied, and refined from the experience that was 

acquired from the history of the TekBots program. The first two chapters of this thesis 

define how these attributes can make an active change in the engineering learning 

environment. 

When students purchase the new FPGA board, they receive a powerful tool that is not 

a toned-down evaluation-type board. The price of the FPGA board is affordable and very 

reasonable considering the fact that it incorporates features only found on higher priced 

FPGA development systems. Currently, each board is priced at approximately USD$85. 

The FPGA board is more complex than any learning platform to date. Its main 

processor, the FPGA device, provides an unprecedented amount of flexibility. This 

allows an unconventional approach to be taken for testing newly assembled boards. In the 

fourth chapter of this thesis, we present a post-manufacturing test suite that relies on the 

FPGA as a tester core that is able to test the peripherals of the same board it is on. 

An interactive set of tests was developed for the suite. These tests allow a technician 

on the manufacturing floor to quickly and efficiently determine a defective board 

component. Once post-manufacturing tests were completed, the test suites will remain in 

the FPGA boards and are passed on to students. This allows students to test their boards 

using the same tests that were used in production. 

During the development of the test suite, an interesting feature was discovered and 

developed. This feature allows students to test their FPGA implementations as well as 

external circuit designs and compare them directly against an HDL simulation. The fifth 
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chapter of this thesis provides details for a walkthrough on the usage of the hardware 

testbench debugger. 

Currently, the hardware debugger that was developed can only perform cycle-

accurate testing. As a suggestion for future work, the debugger may be modified such that 

it can perform timing-accurate tests. This would involve making use of a specialized core 

that could queue test vectors in a FIFO (First-In, First-Out) buffer. With this, timing of 

the testbench operations can be streamlined to a constant delta that is small enough for 

practical use. 
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USER GUIDE FOR FPGA LEARNING PLATFORM 
 

Version 0.1 
 

This user guide provides detailed and concise information regarding the features of the 
FPGA learning platform so that users can quickly become productive with it. Hardware 
features of the FPGA development board as well as the usage of the software CAD tools 
are presented. 
 

The user guide also describes a development test suite, known as OMICRON, to test the 
peripherals of the FPGA board. In addition to testing on-board components, OMICRON 
can provide a hardware testbench debugger for the purpose of testing FPGA-
implemented modules and circuit designs. 
 
Requirements 
 

The following are required for development using the FPGA board: 
 

§ FPGA development board 
§ Computer 
§ with Xilinx ISETM (version 7.1i or later) installed 
§ with parallel port 
§ preferably running on Linux-type OS 
§ preferably with Internet access 

§ Power adaptor 
§ 5V supply with approximately 1.5A rating 

§ TekBots® Xilinx programming dongle (picture shown below) 
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FPGA development board 
 

In this section, hardware details of the FPGA development board are outlined. The 
various types of on-board components are described, and the URL links to their 
datasheets are provided. Pin assignments allow quick reference to see how the 
components are connected to the FPGA device. 
 

 

  
 

(A)  FPGA 
v Component: Xilinx Spartan-3 XC3S200 [U12] 
v Datasheet: http://www.xilinx.com/bvdocs/publications/ds099.pdf 
v Notes 
§ 200K-gate design capacity 
§ 246Kbit RAM capacity 

 
 

 
A 

 
B 

 
C 

 
D 

 
E 

 
F 

 
G 

 
H 

 
I 

 
J 

 
K 

 
L 

 
C 

http://www.xilinx.com/bvdocs/publications/ds099.pdf
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(B)  Flash PROM 
v Component: Xilinx XCF01S [U10] 
v Datasheet: http://www.xilinx.com/bvdocs/publications/ds123.pdf 
v Notes 
§ Non-volatile storage for FPGA configuration bitstream 
§ 1Mbit storage capacity 
§ Make sure all jumpers on J7 are connected before programming PROM 

 
(C)  Power regulators 
v Components: Texas Instruments TPS76801Q (PWP) & TPS76825 (D) 
v Datasheet: http://focus.ti.com/lit/ds/symlink/tps76801.pdf 
v Notes 
§ Main supply at 5.0V/1.5A 
§ Regulated by TPS76801Q 

• 1.2V/600mA supply [U2] 
o FPGA core power 

• 3.3V/600mA supply [U3] 
o Power for various on-board chips 
o FPGA I/O driver 

§ Regulated by TPS76825 
• 2.5V/100mA supply [U1] 

o FPGA PLL & programming power 
 

(D)  Oscillators 
v Component: Crystal oscillator [X1] 
v Notes 
§ 100MHz main clock for FPGA 

 
v Component: Linear LTC6900 [U6] 
v Datasheet: 

http://www.linear.com/pc/downloadDocument.do?navId=H0,C1,C1010,C1
096,P2186,D1631 

v Pin assignment 
 

LTC6900 FPGA 
5(OUT) P80 

http://www.xilinx.com/bvdocs/publications/ds123.pdf
http://focus.ti.com/lit/ds/symlink/tps76801.pdf
http://www.linear.com/pc/downloadDocument.do?navId=H0,C1,C1010,C1
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v Notes 
§ Auxiliary oscillator (optional clock source) 
§ Frequency settings determined by jumper [J16] 

 

Frequency Divider setting Pin 4 (DIV) connected to 
60.76kHz 100 3.3V 
607.6kHz 10 open 
6.07MHz 1 ground 

 
(E)  IR transceiver 
v Component: Fairchild QED123 [D12] 
v Datasheet: http://www.fairchildsemi.com/ds/QE%2FQED122.pdf 
v Pin assignment 
 

QED123 FPGA 
via gate of BSS138 FET P78 

 

v Notes 
§ IR transmitter with pull-down FET [Q5] 
§ BSS138 datasheet: http://www.fairchildsemi.com/ds/BS/BSS138.pdf 

 
v Component: Vishay TSOP32138 [U13] 
v Datasheet: http://www.vishay.com/docs/82229/82229.pdf 
v Pin assignment 
 

TSOP32138 FPGA 
1(Vo) P77 

 

v Notes 
§ IR receiver with 38kHz carrier frequency 
§ Carrier frequency may be generated by dividing 607.6kHz auxiliary oscillator 

signal by 16 
 
(F)  User I/O 
v Pin assignments (on next page) [J19,J20] 
v Notes 
§ 64 general I/O pins 
§ VCCO jumper selects 1.2V, 2.5V, or 3.3V 

http://www.fairchildsemi.com/ds/QE%2FQED122.pdf
http://www.fairchildsemi.com/ds/BS/BSS138.pdf
http://www.vishay.com/docs/82229/82229.pdf
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FPGA to User I/O 
Banks 1 and 2 Banks 3 and 4 

A1 ground ground 
A2 P133 P90 
A3 P138 P95 
A4 P141 P100 
A5 Bank 2 VCCO [J3] select 3.3V 
A6 P147 P107 
A7 P150 P111 
A8 P182 P115 
A9 P178 P119 
A10 ground ground 
A11 P171 P124 
A12 P167 P128 
A13 P162 unconnected 
A14 Bank 1 VCCO [J5] select 3.3V 
B1 P132 P87 
B2 P135 P93 
B3 P139 P96 
B4 P143 P101 
B5 P146 P106 
B6 P148 P108 
B7 P152 P113 
B8 P181 P116 
B9 P176 P120 
B10 P172 P123 
B11 P169 P125 
B12 P166 P130 
B13 P161 unconnected 
B14 P155 unconnected 
C1 Bank 2 VCCO [J3] select 3.3V 
C2 P137 P94 
C3 P140 P97 
C4 P144 P102 
C5 ground ground 
C6 P149 P109 
C7 P154 P114 
C8 P180 P117 
C9 P175 P122 
C10 Bank 1 VCCO [J5] select 3.3V 
C11 P168 P126 
C12 P165 P131 
C13 P156 unconnected 
C14 ground ground 
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(G)  LEDs and pushbuttons 
v Pin assignments 

 
v Notes 
§ LEDs are active high and pushbuttons are active low 

 
 (H)  LCD interface 
v Pin assignments [LCD1] 
 

LCD FPGA 
1(gnd) ground 
2(vcc) 5V 

3(contrast) 10kΩ pot. 
4(rs) P199 

5(r_wn) ground 
6(enable) P198 

7(d0) P197 
8(d1) P196 
9(d2) P194 
10(d3) P191 
11(d4) P190 
12(d5) P189 
13(d6) P187 
14(d7) P185 

 

v Notes 
§ Based on Hitachi HD44780 instruction set 
§ HD44780 datasheet: 

http://web.media.mit.edu/~ayah/documents/hd44780u.pdf 

LED FPGA 
D1 P76 
D2 P74 
D3 P72 
D4 P71 
D5 P68 
D6 P67 
D7 P65 
D8 P64 

 

Pushbutton FPGA 
S1 P86 
S2 P85 
S3 P83 
S4 P81 

 

http://web.media.mit.edu/~ayah/documents/hd44780u.pdf
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(I)  Serial port 
v Pin assignments [J1] 
 

Serial port FPGA 
3(TXD) P205 
2(RXD) P204 

 

v Notes 
§ DTR (pin 4) connected to DSR (pin 6) 
§ RTS (pin 7) connected to CTS (pin 8) 

 
(J)  PS/2 port 
v Pin assignments [J2] 
 

PS/2 port FPGA 
1(DATA) P184 
5(CLOCK) P183 

 

v Notes 
§ Jumper [J22] select voltage operation at 3.3V or 5.0V 

 
(K)  SDRAM 
v Component: Micron MT48LC4M16A2 [U4] 
v Datasheet: 

http://download.micron.com/pdf/datasheets/dram/sdram/64MSDRAM.pdf 
 

v Pin assignments (on next page) 
v Notes 
§ 64Mbit storage capacity of volatile memory 

 

http://download.micron.com/pdf/datasheets/dram/sdram/64MSDRAM.pdf
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 (L)  EEPROM 
v Component: Atmel AT45DB161B [U11] 
v Datasheet: 

http://www.atmel.com/dyn/resources/prod_documents/doc2224.pdf 
 

v Pin assignments 
 

EEPROM FPGA 
1(SI) P57 

2(SCLK) P58 
3(RESET_N) P61 
4(CS_N) P62 
8(SO) P63 

 

v Notes 
§ 16Mbit storage capacity of non-volatile memory 
§ Requires SPI 
§ Write protect WP_N enabled by jumper [J14] 

SDRAM FPGA 
2(DQ0) P2 
4(DQ1) P3 
5(DQ2) P4 
7(DQ3) P5 
8(DQ4) P7 
10(DQ5) P9 
11(DQ6) P10 
13(DQ7) P11 
42(DQ8) P21 
44(DQ9) P20 
45(DQ10) P19 
47(DQ11) P18 
48(DQ12) P16 
50(DQ13) P15 
51(DQ14) P13 
53(DQ15) P12 
23(A0) P45 
24(A1) P44 
25(A2) P43 

 

SDRAM FPGA 
26(A3) P42 
29(A4) P40 
30(A5) P39 
31(A6) P37 
32(A7) P36 
33(A8) P35 
34(A9) P34 
22(A10) P46 
35(A11) P33 
20(BA0) P50 
21(BA1) P48 
19(CS_N) P27 
18(RAS_N) P26 
17(CAS_N) P24 
16(WE_N) P22 
37(CLKE) P31 
38(CLK) P29 

15(DQM_L) P51 
39(DQM_H) P28 

 

http://www.atmel.com/dyn/resources/prod_documents/doc2224.pdf
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FPGA development using Xilinx ISETM 
 

The software used for FPGA development is Xilinx ISETM. ISE facilitates the 
development of FPGA designs by providing various CAD tools that are bundled within a 
graphical IDE. Shown below is a list of the tools and their descriptions: 
 

v Project Navigator 
§ Main tool of ISE 
§ Houses all other tools by arranging them in order of design flow 
§ Used to structure hierarchy of an FPGA design 
§ Displays design results and summary 
§ Displays RTL and Technology schematics 
§ Able to launch ModelSimTM for simulation 
§ Provides text editor to edit source files 

 

v PACE & Constraints Editor 
§ Assign package pins that connect core I/O to external I/O 
§ Allows area and timing constraints to be set 

 

v XST 
§ Used to synthesize FPGA design 
§ Floorplanner tool used to tweak synthesized designs 
§ XPower tool used to perform power analysis 

 

v iMPACT 
§ Generates PROM, ACE or JTAG file 
§ Used to program design into FPGA 
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Shell environment setup on Linux 
 

Before ISE can be used on a Linux workstation, the shell environment needs to be 
configured properly first. The main objective of this setup is to insert the windrvr6 
module into the Linux kernel. This module enables iMPACT to program the FPGA 
board via the parallel port. 

 

If a precompiled module (with filename windrvr6.ko) was not provided, follow these 
steps below to compile the module: 
 

Ø Download http://www.jungo.com/download/WD702LN.tgz into the home 
directory. 

Ø Perform the commands below. Replace <linux_dir> with the appropriate Linux 
directory name derived from the ls command. 

 
Ø When the commands above are successfully completed, there will be a module 

file windrvr6.ko in the directory ~/isesetup. 
 

If the precompiled module was provided, copy the module into the directory 
~/isesetup. 

 

Once the file windrvr6.ko is in directory ~/isesetup, perform the commands below 
once with root access: 
 

 
 

At this point, the module has been activated for the Linux kernel. You may begin to use 
iMPACT to program the FPGA board. The WinDriver directory may be safely deleted. 

 

More detailed information for the shell environment setup can be found at:  
http://www.gentoo-wiki.com/HOWTO_Xilinx 

$ cd ~/isesetup 
$ insmod windrvr6.ko 
$ mknod /dev/windrvr6 c $(grep windrvr6 /proc/devices | cut -f 1 -d " ") 0 
$ chmod a+rw /dev/windrvr6 

$ cd ~ 
$ mkdir isesetup 
$ mv WD702LN.tgz isesetup 
$ cd isesetup 
$ tar –zxvf WD702LN.tgz 
$ cd WinDriver 
$ make 
$ cd redist 
$ ls 
$ cp <linux_dir>/windrvr6.ko ~/isesetup 
$ cd ~/isesetup 

http://www.jungo.com/download/WD702LN.tgz
http://www.gentoo-wiki.com/HOWTO_Xilinx
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Composition of an FPGA design 
 

A basic FPGA design within the ISE environment is composed of 
 

§ HDL (e.g., VHDL, Verilog, etc.) source files that define the hardware 
implementation 

§ a user constraints file (e.g., top_level.ucf) file that defines pin assignments and 
design constraints 

 

As an example, given the following VHDL entity declaration: 
 

 
 

the corresponding module_top.ucf may look like this: 
 

 
 

The user constraints file is read on a line-by-line basis. More settings can be stacked on a 
line using the pipe “|” symbol. The comment leader “#” works till the end of the line. Any 
number of spaces and tabs may be used to separate words. 
 
 
 
 
 
 
 
 

entity module_top is 
  port( 
        signalA    : out  std_logic; 
        signalB    : in   std_logic; 
        databus    : out  std_logic_vector(3 downto 0) 
      ); 
end entity module_top; 

NET "signalA"        LOC = "P204";              # 1-bit signal 
NET "signalB"        LOC = "P183" | PULLUP;     # signal with pull-up enabled 
NET "databus<0>"     LOC = "P81"; 
NET "databus<1>"     LOC = "P83"; 
NET "databus<2>"     LOC = "P85"; 
NET "databus<3>"     LOC = "P86";                # 4-bit bus 
TIMESPEC TS01 = FROM : PADS : TO : RAMS : 10 ns; # timing constraint 
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Implementing a sample FPGA design (OMICRON) using ISE 
 

In order to describe how designs are implemented for the FPGA using ISE, a 
walkthrough of how to implement a sample design is presented. The sample design is the 
OMICRON development test suite. Details on the usage of OMICRON are provided after 
this walkthrough. 
 

v Create a project directory 
The first step to implementing an FPGA design is to create a project directory to 
store the design and work files that ISE uses. This is as simple as making an 
empty directory and placing the source files in there. Even though ISE provides 
the option of creating the project directory automatically, it is advisable to 
perform this step manually. 

 

 
 

Within the project directory, it is best to place the source files into a directory on 
its own. Create a directory called src to store all source files. 

 

 
 

v Create new project in ISE 
Once the source files are in place, start ISE with 

 

 
 

 
 
 
 
 

$ ise 

$ mkdir omicron 
$ cd omicron 

$ mkdir src 
$ cp ~/omicron_pkg/* src 
$ cd src 
$ ls 
 
bbfifo_16x8.vhd  OMI_AUX.VHD      OMI_MAIN.VHD  uart_tx.vhd   
kcpsm3.vhd       omicron_spi.vhd  OMI_TB.VHD      
kcuart_rx.vhd    omicron_top.vhd  system.ucf        
kcuart_tx.vhd    omi_data0.vhd    uart_rx.vhd   
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Once ISE is loaded, selecting File à New Project begins the project wizard. 
Enter the Project Name as “omicron”, which is the same name of the project 
directory. Make sure that the Project Location corresponds to the project directory 
that was made. Top-level module type is selected as “HDL”. 
 

 
 

Clicking Next brings up the Device and Design Flow options. Select them as 
shown in the figure below. After this, click Next three times until the wizard 
offers to Finish, thus skipping the next few windows. Review the summary and 
click on Finish to end the wizard. Source files will be added later. 
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v Add source files 
Once a new project is created, the Project Navigator window will look like this: 
 

 
 

Proceed to add source files to the project by right-clicking on the Module View 
(top left sub-window with highlighted item) and selecting Add Source. Then, 
navigate to the src directory and select all design files to be added. This can be 
achieved with <Ctrl + A>, or <Ctrl/Shift + Left mouse-click> combinations. 
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Click on Open. Then, for every prompt, confirm that the source files are “VHDL 
Design” files. 
 

 
 

Associate system.ucf with omicron_top. Once the design files are added to the 
project, the Project Navigator window will look like this: 
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v Synthesize & Implement 
The goal of synthesis and implementation is to generate a programming file, 
known as a configuration bitstream, which is downloaded into the FPGA. 
Synthesis involves compiling the HDL sources into a low-level form that can be 
translated and mapped into the actual FPGA hardware. 
 

To begin the implementation process, right-click on Generate Programming 
File in the Process View (bottom left sub-window with highlighted item) and 
click on Rerun. ISE will begin the entire design flow process from the top. 
During development, it is advisable to use Rerun instead of Run to ensure that 
design changes made anywhere in the flow are always committed. 
 

Errors and warnings can be viewed by clicking on their respective tabs in the 
Transcript View (bottommost sub-window). If an error is encountered, the design 
process will halt. Warnings do not halt the process. It is advisable to fix as many 
warnings as possible. For OMICRON, there are unavoidable warnings that can be 
safely ignored. 

 

v Programming the FPGA 
Once the design is successfully synthesized, a bitstream file omicron_top.bit 
will be generated. This is the file that needs to be downloaded into the FPGA. 
 

To achieve this, first make sure the programming dongle is connected to the 
FPGA board. Then, power up the board. Start iMPACT by right-clicking on 
Configure Device (iMPACT) and selecting Open Without Updating. Once 
loaded, iMPACT will bring up a wizard. Select Boundary-Scan Mode to 
configure the device and let it Automatically connect to cable and identify 
Boundary-Scan chain. 
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Two devices will be detected in the scan chain: (from TDI) the flash PROM 
xcf01s followed by the FPGA device xc3s200. For the PROM, click on Cancel 
(the PROM file can be generated later). For the FPGA, choose omicron_top.bit 
as the configuration file. The window will look like this: 
 

 
 

The FPGA is now ready to be programmed! Right click on the FPGA device and 
select Program. Then, click OK to begin programming. Once finished, iMPACT 
will state that the Programming Succeeded. 
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A bitstream that is downloaded into the FPGA is volatile. Upon a power cycle, the 
bitstream is destroyed and the FPGA needs to be programmed again. To make the 
configuration permanent, the bitstream can be stored in the PROM so that the 
PROM injects the FPGA with the bitstream when the board is powered up. 
 

Before a bitstream file is stored into the PROM, it needs to be converted into a 
PROM file. To generate a PROM file, go to Mode à File Mode. Then click on 
the PROM Formatter tab. Right-click in the window and select Launch 
Wizard. Enter the PROM File Name as “omicron_top”. Leave the other options 
as shown below. 
 

 
 

Click Next. 
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Click Add to select the PROM as xcf01s. Then, click Next twice. 
In the Add Device File window, click on Add File and select omicron_top.bit 
as the file to be converted. Click Finish and select Yes to generate the file now. 
The iMPACT window will then look like this: 
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At this point, the PROM file omicron_top.mcs has been generated. 
Switch back to Configuration Mode by selecting Mode à Configuration Mode. 
Right-click on the PROM and Assign New Configuration File as 
omicron_top.mcs. 
Finally, follow the same steps to program the FPGA in order to program the 
PROM. 

 

The provided walkthrough is by no means a complete guide. Many features of the tools 
are not explained, and the usage of a few tools (such as PACE and Floorplanner) have 
been left out. Please refer to the Xilinx documentation for more help on these tools. 
 

Also, do not be afraid to experiment with different options. If an irrecoverable mistake 
was made, simply create a new project directory by copying over the source files to a 
new directory. Then, the original directory may be safely deleted. 
 
Troubleshooting 
 

The following are viable solutions to common errors that may occur: 
 

v When programming the FPGA device, the following errors occur: 
ERROR:Bitstream:2 – The input file “…msk” does not exist. Please check that the 
specified location is correct and that the bitstream was successfully created. 
ERROR:iMPACT:123 – Mask file “…msk” is invalid. 
 

ü Make sure the Verify radio button is not selected before clicking on OK to 
program the FPGA. 

 

v When trying to program a device, iMPACT crashes quietly. Upon reloading 
iMPACT, the boundary scan chain cannot be detected because the parallel port is 
locked by the original iMPACT process. 
 

ü Run the commands below in a non-root shell to clean up the lock. Note that the 
directory where iMPACT resides may be different. 

 

 
 

 

$ cd /nfs/guille/a2/rh80apps/xilinx/8.1i/bin/lin 
$ impact -batch 
> setmode -bs 
> cleancablelock 
> setcable –p auto 
> quit 
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Testing the FPGA board with OMICRON 
 

OMICRON provides a test suite that comprehensively tests the FPGA development 
board. Once it is loaded into the FPGA, the board is able to perform self-tests to check 
the functionality of various on-board components. 

 
Test requirements 
 

These equipments are required for testing the FPGA board using OMICRON: 
 

§ Serial cable 
§ Computer 
§ with RS232-capable terminal program installed (e.g., minicom, 

HyperTerminal) 
§ able to perform communications via serial port 

§ LCD with 14-pin HD44780 interface 
§ at least 2 lines with 16 characters 

§ User I/O feedback connector 
§ provides feedback connections for user I/O test 

§ PS/2 port loopback wire 
§ connects data and clock lines to form feedback 
§ any hard breadboard-type wire will do 

§ Sheet of paper 
§ provides reflective surface for IR signal feedback 
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The peripheral tests 
 

Detailed below are the tests that OMICRON can perform: 
 

v Serial port test 
§ Uses serial communication to RS232-capable terminal 
§ Transmit test: ASCII string sent to terminal 
§ Receive test: Listen for serial transmission and display incoming bytes 
§ Bytes generated from keyboard 
§ LEDs flash alternately as additional indication 
 

v LCD test 
§ ASCII test: Display range of ASCII characters 
§ Block test: Display block characters (to detect dead pixels) 
§ Can use Serial port test to display custom message 

 

v LEDs test 
§ Test: Binary counter to flash LEDs 

 

v Pushbuttons test 
§ Test: Display which button pushed 
§ LEDs toggle accordingly also 

 

v IR transceiver test 
§ Test: Transmit IR signal in pulses of 16 periods with 37.5% duty cycle; then 

verify received signal at critical points 
§ Avoid testing under direct fluorescent light 
§ Use sheet of paper to reflect IR signal 

 

v User I/O test 
§ Group 64 I/O pins into 2 virtual ports of 32 pins 
§ Use feedback connector to connect both virtual ports in pin-wise pairs 
§ Test: Virtual ports take turns to be either input (with pull-up enabled) or 

output; output port attempts to drive input port low 
§ Successful drive to low both ways passes test 
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v PS/2 port test 
§ Test: Same as User I/O test except only 2 pins (data & clock) are 

bidirectionally tested 
 

v SDRAM test 
§ Write data and read it back for test verification 
§ If verification fails, display data value and address location 
§ Data bus test: Fix memory address at 0 

Data lines verified with walking-ones/zeroes 
§ Address bus test:  Exhaustive verification on every memory address location 

using pseudo-random data 
 

v EEPROM test 
§ Same Data bus test as in SDRAM test 
§ Address bus test:  Select memory address location with walking-ones/zeroes 

Data lines verified with pseudo-random data 
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Interactive modes of operation 
 

In order to perform peripheral tests on the FPGA board, test commands are issued by the 
user to OMICRON to be acted upon. Test results are then displayed either on the LCD or 
terminal screen depending on the type of operation mode. 
Two modes of operation are provided for the user to interact with OMICRON: 
 

Ø Terminal (TERM) mode 
§ Utilizes serial cable connection on terminal program for user interactivity 
§ Connect serial cable between serial ports of computer and FPGA board 
§ Set for following communication settings 

o 38400 baud rate 
o 8 data bits 
o No parity bit 
o 1 stop bit 

§ Menu-driven command line interface 
§ Terminal menu hierarchy: 

 
§ To view current menu and its commands, issue “?” as the command 
§ To go back a menu, issue “G” as the command 

TOP MENU 
 
   L: LED TEST 
   B: BUTTON TEST 
   U: USER I/O TEST 
   P: PS/2 TEST 
   I: IR TEST 
 
   D: DISPLAY MENU 
 
       C: CLEAR LCD 
       A: LCD ASCII 
       B: LCD BLOCKS 
       I: SERIAL INPUT 
       O: SERIAL OUTPUT 
 
   M: MEMORY MENU 
 
       S: SDRAM TEST 
       E: EEPROM TEST 
 
   T: TESTBENCH MENU 
 
       V: LOAD VECTORS 
       F: LOAD CUSTOM 
       A: AND R 
       O: OR R 
       X: XOR R 
       S: STATUS 
       R: PORT TO R 
       N: SET NEXT OUTPUT 
       C: CLK OUTPUT 
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Ø Non-terminal (NOTERM) mode 
§ Should serial port fail, OMICRON can fall back on NOTERM mode 
§ Restrictive interactivity – no TESTBENCH menu commands 

§ Access NOTERM mode by pressing pushbuttons 3 times 
§ Controlled by pushbuttons 
§ S4 to move option backwards 
§ S3 to move option forward 
§ S1 to select/cancel option 

§ Non-terminal options: 
 

 
 

§ LEDs indicate options when LCD is faulty 
§ D4-D1 light up according to binary codes shown above 
§ D8 lights up to show successful test 
§ D7 lights up to show failed test 

§ Can co-exist with TERM mode 
§ OMICRON continues to send verbose results via serial port 
 
 
 
 
 
 
 
 
 
 

0000  ENTER TERM MODE 
0001  LED TEST 
0010  BUTTON TEST 
0011  USER I/O TEST 
0100  PS/2 TEST 
0101  IR TEST 
0110  LCD ASCII 
0111  LCD BLOCKS 
1000  SERIAL INPUT 
1001  SERIAL OUTPUT 
1010  SDRAM TEST 
1011  EEPROM TEST 
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§ OMICRON operating in NOTERM mode: 
 

 
 

 


