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Abstract approved:

A need has existed for an in-depth structural analysis of pen-

stock bifurcations because they form an integral part of hydroelectric

power plants. Their geometrical complexity has prevented classical

structural analysis from providing an accurate and overall picture of

the stresses in the structure.

Digital computers and the development of finite element methods

have provided an alternative to past methods of analysis. A finite

element solution is developed and described which treats the structure

as a continuous entity. The basic finite element is a flat plate element

which superimposes bending action and membrane action. It is clas-

sified as a mixed formulation and is derived from Reissner's principle.

Convergence of the solution, with decreasing element size, is dis-

cussed.

Verification of the basic formulation is established by comparing



results for several simple structures for which classical solutions are

available. Verification of the finite element model for penstock bifur-

cations is established by comparison with experimental data obtained

from a prototype bifurcation.

Application of the finite element solution is made to a penstock

bifurcation which is currently being designed for the Lost Creek pro-

ject on the Rogue River in southern Oregon. Results of this analysis

are presented and discussed.

The computer program was developed so that it can be applied

to most symmetrical penstock bifurcations. Included in the Appen-

dices are a user's manual, program description, and program listing.
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STRUCTURAL ANALYSIS OF SYMMETRICAL PENSTOCK
BIFURCATIONS BY THE FINITE ELEMENT METHOD

I. INTRODUCTION

For many years penstock bifurcations have been designed by

various governmental agencies and private companies engaged in

hydroelectric power generation. Their function, generally, is to

divert the kinetic energy of water from one penstock into two genera-

tors. As a result of these efforts, methods of analysis have been

developed and are continually being improved (22). These analyses

have been adequate in the sense that they have provided a design basis

for many successful penstock bifurcations. Only a relatively few

structural failures have been noted and some were due to inferior

materials and fabrication methods.

Until recent years, however, analyses have provided stresses

only in certain parts of the structure and have not provided an overall

picture. Furthermore, the results have been based on extensive

assumptions that have been cause for concern among engineers. The

digital computer, combined with the advent of certain matrix methods,

has provided an alternative approach. This approach could conceiv-

ably result in a substantial improvement by yielding an overall stress

analysis without the need for extensive simplifying assumptions.

Consequently, the U.S. Army Corps of Engineers, Portland
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District, initiated an investigation of the true structural behavior of

penstock bifurcations. The immediate objective was to apply the

results to the Lost Creek Reservoir project on the Rogue River. The

overall objective was to provide a capability for analyzing stress in

other symmetrical penstock bifurcations of the same general con-

figuration.

1.1 Statement and. Scope of the Problem

Early work of mathematicians and engineers has provided the

classical methods and useful solutions to simplified, typical situations

which the practicing engineer still uses today, but which sometimes do

not permit an extension to real engineering situations. Owing to its

complex geometry, the symmetrical penstock bifurcation, as shown in

Figure 1.1, is a difficult structure to analyze even under such simple

loading conditions as uniform internal pressure.

The need for the reinforcing girders is best understood with the

aid of Figure 1. 2. The effect of the crotch girder is to provide reac-

tion Rv due to the discontinuity in hoop stresses all along the inter-

section a-b. The ring girders have a similar effect along intersec-

tion a-c except their behavior is complicated by a lack of symmetry.

Therefore, it must be assumed that they provide vertical reactions,

horizontal reactions, and bending moment reactions along a-c.

Heretofore, it has been necessary to make simplifying



Ring girder

Cylindrical shell

Conical shell

Crotch girder

Figure 1.1. Typical penstock bifurcation.



Rv (provided by crotch girder)

Section A-A

Figure 1.2. Illustration of crotch girder function.
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assumptions in order to accomplish a tractable analysis via the afore-

mentioned classical methods. Specifically, these assumptions are as

follows:

(1) The effect of the shells on the girders is a linearly varying

plane stress load.

(2) The bending rigidity of the shells is neglected.

(3) The girders behave as beams as opposed to plates.

It may be that under certain low pressure and small diameter applica-

tions these assumptions are reasonable but the engineer can seldom

say when this is so. The shell - girder- interaction is basic to the be-

havior of the structure and as the above assumptions compromise this

interaction, the end product, a rational design basis, would likewise

be compromised.

The primary objective of this presentation is to obtain stresses,

strains, and displacements throughout the structure while subjected to

uniform internal pressure. The interaction problem will be circum-

vented by viewing the entire structure as a continuous entity as

opposed to disregarding the shell except as a load transferring mecha-

nism and analyzing the girders as if they were a three-dimensional

space frame composed of curved beams.

Two load conditions will be studied; hydrostatic test condition

and operating condition. In the former, bulkheads are applied to the

bifurcation inlet and outlet apertures and in the latter no bulkheads are
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assumed. The internal design pressure is a statically equivalent

pressure that takes into account the static head, the effect of water

hammer and a factor of safety.

The effect of concrete encasement will not be considered be-

cause present design conditions assume all the load to be taken by the

bifurcation disregarding its interaction with encasement.

1. 2 Method of Solution

Certainly it is possible with more ingenious analytical

approaches to overcome the necessity for the aforementioned assump-

tions. The procedure of this presentation, however, will be to use

the approximate numerical approach of the finite element method (28).

By dividing the entire structure into a large number of elements, each

element can legitimately be treated with the simplified theories of

plane stress and/or plate bending, provided the boundary conditions

around each element and around the structure are satisfied. Thus

the approach is not to abandon simplified methods, but to be more

efficient in applying them. This is the central idea behind any numeri-

cal approximation, and as long as the desired result is insight rather

than numbers, the idea is valid.

The structure is thought of as being composed of four sub-

structures for purposes of explanation. The crotch girder, the ring

girder, the cylindrical shell, and the conical shell. Two planes of
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symmetry are evident from geometry and the symmetry of uniform

internal pressure as shown in Figure 1.3, Because of these condi-

tions the crotch girder is subjected to plane stress loads only. The

ring girder is more complicated in that it must be assumed to contain

plate bending moments as well as plane stress components. Both the

cylindrical and conical shells must be assumed to contain bending

stresses along with membrane stresses for a completely general

solution.

In order to model such varied stress conditions, it would appear

that several different finite element types are required. This, how-

ever, immediately leads to difficulties unless the elements have the

same number and types of degrees of freedom per node. Further, it

is particularly important to insure interelement displacement com-

patibility and this may not be provided by some otherwise possible

combinations. Alf inconsistent displacement functions are involved,

then the displacements will be continuous at the nodes but not along

the element edges. Despite these difficulties, some results have been

achieved with elements of mixed degrees of freedom (5).

An alternative approach, and the one used here, is to select a

finite element that will model, in its most sophisticated state, the

shell stress condition (bending and plane stress) and degenerate to

model the more simple plane stress condition found in the crotch

girder. This is a difficult proposition with a plate bending element



Ring girder Crotch girder

z

Cylinder

Cone

Note: x-y plane and x-z plane are planes of symmetry

Figure 1.3. Global coordinate system.
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based on the pure displacement formulation such as found in (1, 2, 3)

because this element invariably contains rotation as a degree of free-

dom. ,',Since a plane stress element does not contain a rotational

degree of freedom, it may be difficult to combine it with a plate bend-

ing element based on the displacement method. Therefore, while

there are many adequate shell finite elements based on the pure dis -

placement formulation, they are not easily adapted when there is need

to combine them with plane stress elements as in this analysis.

Recently, the development of the finite element method has pro-

duced the mixed methods (10,11,19). Unlike the displacement formula-

tions which yield elements containing only displacements and their

derivatives as unknowns, the mixed methods result in elements which

contain displacements, stresses and/or stress resultants as unknowns.

The mixed methods are all derivable from Reissner's variational

principle (21) or a modification of it. In fact, all finite element

methods, whether they be displacement, mixed or equilibrium methods

are derivable from a variational statement. This point of view is very

well presented in (17).

The displacement method traces back to the minimum potential

energy theorem, the mixed method to Reissner's principle, and the

equilibrium method to the minimum complementary energy theorem.

It should be added that Reissner's variational principle can be derived

by applying appropriate conditions of constraint to either the potential
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energy or complementary energy theorems (26). Thus, the variational

theorems of minimum potential energy and minimum complementary

energy are fundamental in the finite element method.

The basic formulation used in this presentation is due to

L.R. Herrmann (12) and is a mixed method. The primary reason for

this choice is that it has the ability to model the stresses occurring in

intersecting shells and easily combines with plane stress elements

without violating displacement compatibility. No rotational degrees

of freedom exist in the formulation.

The structure is analyzed in the following manner:

(1) The crotch girder is represented as a series of plane stress

elements and the ring girder, cylindrical shell-and conical

shell are represented as a series of flat-plate elements.

(2) The bending and membrane characteristics of a plate ele-

ment is expressed by combining a plate-bending element

with a plane stress element.

(3) The compatible response of adjacent elements is assured.
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II. VARIATIONAL PRINCIPLE

The purpose of this chapter is to present a generalized varia-

tional principle and the sequence of specialization that leads to the

particular variational principle used. In this manner the validity of

the principle is presented and at the same time sufficient information

is given to establish convergence of the method.

2.1 Discussion of Basic Theorems

The theorem of minimum potential energy states the stationary

condition of the potential energy functional IIP which is defined

(23) as

= STSW(E..)dV nicra.u.dV - SSTk aukdS.
3

V V ST

(2. 1)

The indices i, j, and k take on values 1, 2, and 3. The strain

energy density function W(E..) is assumed to be positive definite.
iJ

The prescribed body forces .F.a and the prescribed surface forces

Tk on the portion of surface ST where they act are assumed to be

conservative forces. The strains E.. are related to the displace-

ment components ui in the volume, V, according to the expan-

sion



1
E = (11 ) in V.

13 2 i, 3 3, 1

12

(2. 2)

Finally, the displacement components uk on, the boundary are to

satisfy the prescribed boundary displacement components uk on the

surface, Su,

a
uk

k
on Su. (2. 3)

The variation of the functional IIp set equal to zero, leads to the

Euler equations,

and

where o..

a
o- + F . = 0 (equilibrium).

J 1

a
CF.. V.

13 J

(2. 4)

(natural boundary conditions) (2. 5)

are the stresses and v.
1 / are direction cosines of

the outward surface normal. Equations (2. 2) and (2.3) can be re-

moved as subsidiary conditions and placed in the framework of the

variational statement. This is done by introducing as Lagrange

multipliers Cr.. and Tk and rewriting Equation (2. 1) as

1
"TheThe term v is also used to designate Poisson's ratio and

should not be confused with it.



dniW(e .) V sysFa..dv _1(u. .+.. )]cr..dV
ij ij 2 1, j j,

V V V

SS TkukdS - rlc(uk k-ua)T d

ST
Su

13

(2. 6)

The generalized variational principle (26) states the stationary condi-

tion of II The independent quantities subject to variation now in-

clude the Lagrange multipliers. Setting the variation of H
G

equal

to zero will now include Equations (2. 2) and (2.3) along with Equations

(2.4) and (2.5) as Euler equations. The fact that the Euler equations

are the governing equations of an elastic body verifies the generalized

principle and the principle of minimum potential energy. Alterna-

tively, the proof can be found by deriving the principles from the

principle of virtual work as in (23).

2.2 Hellinger-Reissner Principle

Using the appropriate stress-strain relationship, the strain

energy W(E..) can be written in terms of stresses. The comple-
ij

mentary energy is defined as

B(cr..) = E - W(o-..) (2.7)
13 13 13

Using Equation (2. 2) the functional HG may be rewritten as



+ cr.. - F. u.1dV
ij 1 1

a
- Tku dS - ,,ci(uk-uk)TkdS.

ST Su

14

(2. 8)

The Hellinger-Reissner principle states the stationary property of the

functional in Equation (2.8). While the principle of minimum potential

energy has greater significance in the finite element analysis of plane

stress or plane strain problems, this principle has its merit in the

finite element analysis of plates and shells (17).

The classical plate bending formulation makes the assumption

that lines perpendicular to the middle surface remain straight and

perpendicular to the deformed middle surface. Figure 2.1 shows the

coordinate system for a, plate. This premise, referred to as the

Kirckhoff hypothesis, leads to the following relationship between the

transverse displacement w and the in-plane displacements u.:

u. =
1

-zw,. i = 1,2
1

= 3
(2. 9)

Substituting this equation into Equation 2. 2) the strains are written as

E =
1)

-zw,. i, j = 1,2

0 i or j = 3
(2.10)



Note that the transverse shear strains are zero under the Kirckhoff

hypothesis. The stress resultants which participate in the comple-

mentary energy function, now written in terms of the resultants as

B(M..), are defined as
13

M..
13

h/2

J j = 1,2
-h/2

i or j = 3

15

(2.11)

The minus sign is a matter of choice and in this manner it leads to a

positive relationship between curvature w, and moment M...
13

The prescribed stress resultants on the boundary are defined as

h/2
Ma Mn = S' T

azdz (2. 12)
- h/2 1

h/2
Mnt = Taz

2
(2.13)a

- h/2

oa h/2
T

3
adz

- h/2
(2. 14)

Substituting Equations (2. 9) through (2.14) into Equation (2. 8) and

integrating on dz, the II functional may be written for plates as



IIR = -pwidA - (Manw,
n

+Mantw,t -Qan w)d.i
1.3

A CT

- ..c[M (w, n-wa, )+Mnt w, t t-wa, ) n(w-wa)Jdi,
Cu

i,j = 1, 2

16

(2.15)

The sign convention for the displacements and stress resultants are

shown in Figure 2. 2.

2.3 Discussion of Convergence

The variational formulations offer more elegant and concise

procedures for deriving finite element analysis techniques than do less

rigorous formulations. One of the advantages is that they permit

statements to be made regarding convergence to exact solutions with

vanishing element size as in references (14) and (15). Convergence

of the finite element method depends on two requirements; 1) the

elements are connected in such a way that no discontinuities of de-

formation occur, and 2) the elements are in equilibrium subject to the

external loads and, the forces they exert on each other. Generally,

one of these requirements is stated explicitly and the other follows

implicitly according to the mechanics of the particular method being

used. For example, in the direct-stiffness method, continuity of

deformation is explicitly required by choosing appropriate deformation
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y, v
Z, w

Middle surface

Figure Z. 1. Coordinate system.

p x, y)

Z, w

Load and deflection notation

M Mn nt

Mxy

Moment notation
z

17

x, u

Shear notation

Figure 2. 2. Sign convention for plate.

x
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functions for each element while the equilibrium requirement is

implicit in the finite element solution process.

The finite element process begins by dividing the plate into a

finite number of elements as shown in Figure 2. 3a. It is then assumed

that if II
e represents the contribution of a typical element to II

that

ne

This is generally true if no infinite values of the first integral in

Equation (2.15) occur on the element interfaces. Thus, in the varia-

tional approach to finite element analysis, the compatibility condition

is defined by the requirement that the variational functional be defin-

able on the element interface (17). As a result, for different varia-

tional functionals, different compatibility conditions will occur.

Infinite values or delta functions will occur when a discontinuous

function is differentiated. Therefore, since only the second term of

the first integral in Equation (2.15) involves differentiation, it alone

will be considered. For convenience, this term is rewritten, choosing

the local n-t coordinate system at an interelement boundary, as

M w, +2M w, +
n nn nt nt

A

w,t )dA

The question now is under what conditions for the above integral will
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Figure 2. 3a. Discretized plate.

b

a

b

Figure 2. 3b. Adjacent elements.
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the functional II be definable. There is more than one solution

and each leads to an entirely different finite element formulation (17).

Since a smooth function for w within any individual element is a

natural occurrence in the finite element method, only a differentiation

in the normal direction, n, may yield a delta function. But the

functional IIR will still be definable if the normal moment Mn is

continuous. Therefore, one set of conditions that will satisfy the

continuity requirement is to choose interpolating functions for

and Mn that are continuous across interelement boundaries. Thus,

these variables become the primary variables in the formulation and

their continuity satisfies explicitly the requirements of continuity of

displacement and equilibrium of normal moment.

The equilibrium requirements of the other stress resultants

contained in IIR
are satisfied implicitly and, of course, approxi-

mately in the finite element solution process. Because of the allow-

ance of discontinuity in normal slope w,n we may add a subsidiary

constraint equation to the formulation of the form

w, I = -w, I

n.
A B

(2.16)

These slopes are evaluated at a common interface a-b between two

elements A and. B as shown in Figure 2.3b. The minus sign is a

consequence of the opposite orientations of the local normal directions
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for two such elements. This constraint equation can be incorporated

in the framework of the functional nR
through the use of a

Lagrange multiplier X . Equation (2. 16) can be rewritten as

skw, dt r Kw, ndtl 0

a n I

A a
(2. 17)

The Lagrange multipliers are to be treated as additional variables.

When all the interelement boundaries have been considered, the

integral II
R

over the entire plate area is equal to the sum of the

integrals Ile over each elemental area. That is, Equation (2.15)

becomes

n =
1.3

-pw1dA + J Mnw,
n
di

m Am m

(maw, +ma aw)cu
n n nt t

CT
m

a
[Mn

(w,
n

-w,n )+Mnt(w,
t
-w,a

t
)-Q

n
(w-wa)

Cu
m

(2. 18)

By taking the variation of IIR
with respect to w and X it can

be shown that the Lagrange multiplier k is equal to M. Thus

Mn has replaced k in the second integral of Equation (2.18).
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This line integral is to be evaluated around each element m. Now

that the constraint Equation (2. 16) is incorporated, normal slope

compatibility will be satisfied implicitly, analogous to the element

equilibrium requirement for the direct-stiffness method. This

analogy and other similarities has lead R.E. Jones in reference (15)

to term the variational approach as a generalized direct-stiffness

method. Indeed, the final system of simultaneous algebraic equations

are assembled and solved using the same algorithms that are used for

the direct-stiffness method.

2. 4 L. R. Herrmann's Formulation for Plates

The modified Reissner functional II in Equation (2. 18) is

similar to a version of the energy functional proposed by L. R.

Herrmann (11). To obtain this version, Equation (2.18) is integrated

by parts using Green's Theorem, 2/

(Q,n-P, t )dA f Pdn f Qdt.
A

The second term of the first integral in Equation 2.18) ex-

panded in the local n-t coordinate system becomes

2 /TheThe functions Q and P are used here temporarily and are
not to be confused with shear Qn or subsequent terms.



ssm..w,..dA
13 1,

m w, +2M w, + Mw,)dA.ss
n nn n nt t tt

A Am

If in Green's Theorem the functions Q and. P, defined as

Q Mnw,n + m w,
nt t

P = -(Mtw,t+Mntw,n)

are substituted and the indicated differentiations are carried out, a

substitute expression can be found for this second term. This sub-

stitute expression is

ff ..w,..dA = - STM.
1

.w,.dA +j,1

Am m

w,t+Mntw,n)dn
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+ (Mn w, w, +Mntw,
t
)dt. (2.19)

But since do is everywhere perpendicular to the boundary C ,

the first portion of the line integral vanishes. Further, by specifying

the displacement function w to be linear within each element and

the moments M.. as constants within each element, the terms

w,.., M.. . and Q will vanish. Therefore, rewriting Equation
13 13,3

(2. 19) under these conditions, the following relationship is obtained:



Mnw, n
dt = Mntw,t dt

m m
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(2. 20)

This relationship may now be used in Equation (2.18) to form the fol-

lowing functional where dt has replaced d/ .

A

/SI -13(Mii)-pwklA - S MSntw,tdt
m m m

[(Man -Mn
)w,

n n
+ (Ma

t
-Mnt )w,

t n- Qawkit

m

(vi wa wa
n n nt t

(2. 21)

In going from Equation (2.18) to Equation (2. 21), the transverse dis-

placement boundary requirement is removed from the variational

statement, but it will, of course, be an added requirement in the

formulation. L. R. Herrmann makes use of Equation (2. 21) with the

added stipulation that the prescribed normal moment boundary re-

quirement be satisfied; that is, this requirement is removed from the

variational statement as was the transverse displacement boundary

condition. Subsequently, in the formation of the linear algebraic

equations that result from MI = 0, these boundary conditions will be
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included by merely specifying the prescribed value in place of a cor-

responding algebraic equation and corresponding unknown. This is

possible because the unknowns are the transverse displacements at

each corner of an element and the normal moment at each side of an

element.

The boundary condition that is not explicitly satisfied is the

twisting moment at each element side. Since there does not exist an

unknown variable for twisting moment, a prescribed value can not be

input into the solution process.

If the above considerations are accepted, then the functional

which is attributed to L.R. Herrmann (11) becomes

nH -B(M. ) -pw1dA - Mntw,tdt

m Am m

- J Qawdt - J Mnwa,ndt

T
Cu

Tri

(2.22)

An alternate method is to choose a linear moment field. While

this approach would be expected to furnish better results particularly

as far as moments are concerned, it would require the solution of a

substantially larger system of equations (18).
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III. FINITE ELEMENT FORMULATION

As stated at the end of Chapter I, the basic finite element used

in this study is a flat element combining plate bending components

with plane stress components. This combination is an uncoupled

superposition of both of these components and therefore disregards

the natural coupling occurring due to curvature of the structure sur-

face. Thus, the crotch girder and ring girder are approximated more

accurately than the cone and cylinder portions of the penstock bifurca-

tion.

To formulate such an element, the functional HP in Equation

(2. 1) and IIH in Equation (2.23) are added to form a combined

functional II Thus,

= +
S P H

(3.1)

where the variational statement, 6I1 = 0, will be used to select the

approximate solution from a family of trial solutions. This method is

connected closely with the Ritz technique (4). However, the basic

idea of the Ritz technique is altered in the finite element method since

the process is facilitated by representing the structure as a series of

elements and applying the Ritz technique individually to each element

instead of to the entire structure.

The variational statement may be written



811e = 611e + 6n
H
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(3. 2)

where the superscript indicates the contribution to each functional

from a single element. The variation bile set equal to zero forms

the plane stress matrix equations for the element and the variation
one set equal to zero forms the plate bending matrix equations for

the element.

3.1 Plane Stress Matrix Equations

Equation (2.1) may be written in matrix form for an individual

flat element as

cr

STP-2 E x E Yxy1
xy dV - X

v
SST ifa Fa

y
i

e
V

o-xy V

Sy LT: Tyai ivui

Se

(3. 3)

The term y introduced here is the shear strain which is equal to

twice the tensor quantity E... Admissible forms for the inplane

element displacements u and v are now chosen so that displace-

ment continuity is maintained across element boundaries. Therefore,

assume as trial functions
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u = al + a x a3y

and (3.4)

v=a4+ax+a.
6y

Let u, and v. refer to the x and y displacements, respec-

tively, of any corner node i of the element as shown in Figure 3.1.

Using the displacement boundary conditions for u at each corner,

the following matrix expression is obtained:

u2

u3

1

1

1

xl

x2

x3

yl

y2

y3

1

aaa
3

2

y, v

(xrY

X, U

Figure 3.1. Plane stress element.

u
3

(3. 5)

X3



The constants

al

a2

a3

1

2A

are obtained by inversion as

x - x
y2 y3 Y.3 yl Y2

u

x2 - x, u
3

x2y - x3y2 x3y - x y3 x y - x2y1

3 2 xl x3 1
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(3. 6)

where A is the area of the triangular element. Since the constants

a, are seen to depend on the coordinates and displacements at each

corner, the displacements in Equation (3.4) will be continuous across

any interelement boundary. Rewriting Equation (3. 6) as

a.
1

a2

a3

1

a
1

[b

c

l

1

bb2

c
2

a
3

bb3

c3

uluu2

u3

E: Er

ul
u

2

u3

(3. 7)
2A

and substituting into the first of Equations 3.4 , the displacement

becomes

where

u =
2A 1u1+ N2u2+ N3u3)

=a +b x+c y
1

N2 = a2 + b2x + c2y

N3 = a3 + b3x + c3y.

Similarly, the displacement v may be written

(3. 8)
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(3. 9)

Using the strain- displacement relationship of Equation (2. 2), the

strains can be found from the displacements described in Equations

(3. 8) and (3. 9) as

1
U.

v.

(3.10)

where the displacement vector on the right side stands for the vector

of six inplane displacements for an element. Equation (3. 10) can be

written in a simplified form as

u.

v.
(3.11)

The stress-strain relationship for an isotropic material with Young's

modulus LE and Poisson's ratio v is

Cr
X

Cry

0 X]

E

1-v 2

1 V 0 E

X

D

EE

1 0

1 _ v
0

2 _ Yxy Yxy

(3. 12)

Substituting. Equation 3. 11) into Equation (3.12), the stresses become



u.
= [15] [X]

vi
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(3.13)

If Equations (3. 8), (3. 9), (3. 11) and (3. 13) are substituted into

Equation (3. 3), the contribution to the total potential energy of one

element becomes

nP SST [u.v.jr-A,T,D,[A, 1 dV

V
e

V.
1

i!xFyi
N2 N3 0

0 0 0 N N2 N3

0 0
1.1 1 a a

V

3

k=1 seTk

LTa Taxk ykj

v.
1

dV

(3. 14)

0 0 Q N1 N2 N3 vi

0 0 ui
dS

The sum on the last term arises because the prescribed surface

forces could conceivably differ on each of the three element edges.

Next, the variational statement

one = 0

is applied with respect to each displacement to form the matrix

equations. For each displacement, it yields a corresponding linear
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algebraic equation and since there are six displacements, six simul-

taneous equations

where

is the element

are the load

develop.

Ka i Kb

K K
b c

K,

Ti-
b

K
c

stiffness

1
X. hAF

1 3

1
Y hAF

i 3

components

e

In matrix

ui

vi

7.z- [Kr =

matrix and

a 1
+xi 2

a
+ -1 hi

Yi 2

shown in

form, these equations become

X.
(3.15)11

Y.

hAEATITE5riil

Taxi

Ta
Yi

Figure 3.1. It has been assumed in

taking the variations and in the subsequent integrations that the

material properties, material thickness, body force components, and

surface force components are constants for the element.

The body force components are included only for generality and

will not be used in the analysis of the penstock bifurcation because the

weight is assumed negligible in comparison with the applied load.

The inclusion of the surface force components, however, is necessary

for the hydrostatic test case where the tensioning effect of the
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bulkheads is produced by applying inpiane loads on the bulkhead

boundaries. Otherwise, for the large majority of elements, the load

components X. and Y. will be zero. It is interesting to note that

the variational process yields the 1/3 and 1/2 factors for the load

components that would be expected for equivalent static loading.

3. 2 Plate Bending Matrix Equations

The trial functions used in conjunction with the Ritz process for

plate bending elements are, as stated in Section 2. 4, a transverse

displacement function w that is linear in x and y and con-

stants for the moments M , M , and. M within each element.
x y xy

The linear variations of w is expressed as a function of the node

values w as in the treatment of the inpiane displacements in Sec-

tion 3.1. The element values of M , M , and M are expressed
x y xy

in terms of the values of the normal moment Mn. at the element
1

sides (see Figure 3.2 for a typical plate element).

The family of trial functions described in this manner satisfies

the admissibility requirements established in Section 2.3 and insures

the existence of the functional II
H

in Equation (2.22).

Equation (2.22) may be written for an individual plate element as



Eh 2 x 2 y x -vM
y x M

y
12 1 2 1ne M +M 2 2

+(l+v)M

Ae

a
- Mntw,

t
dt - Qawdt - Mn

w,
n
dt

T
Cu

dA
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(3. 16)

Next, all the variables must be written in terms of the unknowns w.
1

and M .n.
1

Figure 3.2. Plate bending element.
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The transverse displacement may be written in matrix form as

d

w= L1 x yi d2

3

(3.17)

The constants d, are then expressed in terms of the corner point

displacements w. as

d
2

= [7

wl

] w2
d

3
w

3

(3.18)

where [T] is defined in Equation (3. 7). Substituting Equation (3.18)

into Equation (3. 17), the transverse displacement becomes

W = Ll x 2

w
3

(3. 19)

The Cartesian components of the moments within the element

are expressed as

gl

g2g3

Since the constants g. are to be expressed in terms of the normal

moments at the element's three sides, the following relationship is
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Mn

Mn

cos
2(3

2 1
cos 132

cos2133

2sin p

sin 2 pi

2 2sin (33

2 sin 13 cos 13
1

2 sin p
2

cos pz

2 sin 133 cos p
3

M

Y

Mx
xl.

=7.-[1:3]

Cx

xy

Inverting this expression, the constant moments become

where

M Mx n

M = [13]
2

xy
Mn3

[T-3] = [f3]

The tangential slope w, and the twisting moment Mnt
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(3.20)

(3.21)

must also be expressed in terms of the unknowns. The tangential

slope can be written in terms of the Cartesian components of slope as

w, t

t

2
w,

t
3

--sin 13 cos

- sin 132 cos R2

- sin (33 cos R3

(3. 22)

Using Equations (3.17) and (3. 18), the slopes w,x and w, can be

written
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(3. 23)

Substituting Equation (3. 23) into Equation (3. 22), the tangential slopes

are appropriately expressed in terms of unknown displacements as

where

Pi

w, t
2

w,
t

3

= - T

= [13]

sin P.

wl

w2

w3

+ T3
3 3

..p

3.24)

For the twisting moments, the following relationships are

needed:

-sin (3
1
cos p

I
sin 13

1
pcos cos 01

1

Mnt2 -sin (3
2
cos p

2
sin 13

2
cos p cos 2p2

-sin (33cos (33 sin (33cos (33 cos 2(33
nt

3

Mxy

(3. 25)

Substituting Equation (3. 21) into Equation (3. 25), the twisting moments

are expressed in terms of the unknowns as
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(3.26)

Substituting Equations (3.19), (3. 20), (3. 24), and (3.25) into

Equation (3.16), the contribution of one element to the energy func-

tional II be comes

A

x yJ [7] w2
e

w

w3

n
1

12
Eh3

[(17..-
2 L11 B1

1
Mnn2

MMn3I

Mn1

Mn3

1 1 21jj 13

1

1.1:1( k2
1Ck

M
Cc

M2

Mn

nli

3

"P

n3

Pkk

1\4

)3

n1

Mnz

M

dA

n3

n

23]
2M/

Mn
1

n3

1

w2 dt.

w3

For clarity the last two integrals of Equation (3.16) have been

(3.27)
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omitted from Equation (3. 27). They represent the prescribed bound-

ary conditions for shear and normal slope, respectively, and are not

needed in the formulation because no such boundary conditions are

specified on the structure to be analyzed. However, they will again

be included in the final algebraic equations below for the sake of

generality.

The functional 1Ie in Equation (3.27) is now completely ex-

pressed in terms of the six unknown nodal values w. and Mil.,
i

analogous. to Equation (3. 14). The variational statement 51Ie = 0

can now be applied with respect to each unknown for the element and

six simultaneous linear algebraic equations will result. The indicated

integrations are in some cases detailed and are excluded. It again

will be mentioned that the material properties, plate thickness, and

applied load are assumed constant for each element but can be varied

from element to element. The six equations in matrix form are

G H

[7'4-HIO

Mn

w

L.

1
)0-ib (3. 28)

where

12A
[B 73 +73 T3 +2(1+v)5,3i B- v(31i 132j +-B2i.T31j )]

ij Eh 3 li j 2i. 2j

H.. = 1-ki . (/ is triangle side length)ij ki
k=1



The terms

j = 1,2,3

1 a
Q and L. are the contributions of the natural

2 ni

boundary conditions represented by the last two line integrals in

Equation (3.16) . In the analysis of the penstock bifurcation, these

terms will be set equal to zero for every element.

3.3 Shell Element Matrix Equations

Equations (3.15) and (3.28) may now be combined to form an

element that can be used to model shell behavior as well as plate

bending and plane stress behavior. The variational statement

611
e = 0 yields the matrix equations for a shell element (see Figure

3. 3) as,

Ka

Kb

0

0

3. 29)

This set of twelve equations is the contribution of one triangular ele

ment to the total set of simultaneous equations for the structure.
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Figure 3.3. Shell element.

The K.. coefficients can be termed stiffness coefficients, the

G.. coefficients can be termed flexibility coefficients and the H..
13 13

coefficients can be termed coupling coefficients. Because of this

mixture in the coefficient matrix, the method is often termed a mixed

method.

For an element located on the crotch girder, a plane stress

member, the coefficients G.. and H.. are set equal to zero so

that plane stress conditions are modeled. The ring girder, cylindri-

cal shell and conical shell will involve all coefficients. If the ring

girder does not show significant out-of-plane bending after one

analysis, then subsequent analyses can exclude the G., and. H..
3.3
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coefficients from ring girder elements as in the crotch girder ele-

ments and derive the benefits of a reduced number of equations without

loss of accuracy. In this way the ring girder would be treated as a

plane stress member.

The triangular element obtained in the foregoing fashion has 12

degrees of freedom. Four of these triangular elements can be com-

bined to form a quadrilateral element with 16 degrees of freedom.

First, however, the triangular element coefficient matrices must be

referenced to a global coordinate system x, y, z as shown in Fig-

ure 3.4. Note that the local system, x, y, z is selected so that the

element lies in the x-y plane and the x axis is collinear with the

external side of the triangle. To facilitate the rotation of the coeffi-

cient matrix, it must be rearranged to correspond to the unknown

vector which is regrouped. so that u., v.: and w, for a single node

are together. Thus, Equation (3.29) can be rewritten as

[EU = {p} (3.30)

where [E] is the rearranged element matrix in the local system

corresponding to the unknown vector {4} and load vector {P}

which are defined as
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Figure 3.4. Local and global coordinate system.



Permutating the rows and columns of the element matrix is

accomplished by premultiplying and postmultiplying the original

12 x 12 element matrix of Equation (3. 29) by the appropriate 12 x 12

elementary matrices. An elementary matrix is simply an identity

matrix whose rows or columns have been permutated in the same

desired fashion (7).

The orthogonal rotation matrix [R] relating the local un-

knowns to the system unknowns for an element is given by the equa-

tion

1

u. u.
3 3

v. 7=.- [R.] Tr,
J 31

.......

w w.
J J

where the bar quantities represent the system unknowns. The nine

coefficients R.. are the direction cosines for the two coordinate
13

systems and are given in Appendix A. The triangular element rota-

tion matrix [B.] is written as

so that

1

[R]
1

[IQ
1

{I)} - [g.] {70}

44

(3. 31)



and

{p} =

45

(3.32)

Substituting Equations (3. 31) and (3. 32) into Equation (3. 30), the fol-

lowing expression is obtained:

[E]1111{71)} = [1]{is} . (3.33)

Premultiplying Equation (3.33) by [R] 1, the transformed system

for a triangular shell element becomes

[E] 5}= [TD] (3.34)

where, since the inverse of an orthogonal matrix [R] equals its

transpose,

[E] = [a] [E]ril

Equation (3.34) thus represents the contribution of one triangular

shell element, as referenced in the global system, to the total sys-

tem of equations.

3.4 Quadrilateral Shell Element

..F1n order to reduce the required input without a corresponding

loss of accuracy-1° it is advisable to combine four triangular shell ele-

ments into one quadrilateral element as shown in Figure 3.5. The

coordinates of the center node are computed as the average of the four



corner point coordinates.

13, 14, 15

16

1,2,3

5, 6,

12

9,10,11

Note: Numbers correspond to
unknowns at each node

Figure 3. 5. Quadrilateral element.
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A 16-degree-of-freedom quadrilateral element matrix is formed

by first appropriately combining the four 12-degree-of-freedom tri-

angular element matrices into a 23-degree-of-freedom element

matrix (one degree of freedom for each unknown). Then through a

process commonly known as static condensation (27) the internal

seven unknowns are eliminated, resulting in a 16-degree-of-freedom

quadrilateral element matrix.

The algorithm used to combine the four triangular element

matrices was proposed in reference (24) and explained further in

reference (16). Code numbers for each triangular element consisting

of 12 entries, one for each element unknown are developed as shown

in Table 1. These code numbers are the same for every quadrilateral
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element in the system and are therefore generated only once in the

computer program. After four triangular element matrices are gen-

erated for an individual quadrilateral element, they are used in con-

junction with the FORTRAN statements in Table 2 to generate the

23 x 23 element matrix previously mentioned. If the load matrices
/

{P} for each of the triangular elements are similarly superimposed,

the 23 equations may be written

where

and

{4)1}

{PI

[E1] {4)t} = {P'} (3. 35)

external unknowns {4a ' }

internal unknowns

external "load's" {P '}

internal 'goads" PI}

Partitioning Equation (3.35) into two equations, the following is

obtained:



Table 1. Tezcan code numbers.
Displacement or Moment Numbers

Element 1 2 3 4 5 6 7 8 9 10 11 12

No.
u

1
V1

w
1

Mnl
u2 v2

w2 Mn u3 V3 w3 Mn
2 3

1 1 2 3 4 5 6 7 21 17 18 19 20
2 5 6 7 8 9 10 11 22 17 18 19 21
3 9 10 11 12 13 14 15 23 17 18 19 22
4 13 14 15 16 1 2 3 20 17 18 19 23

Table 2. Tezcan code number algorithm.

DO 150 L = 1,4
DO 150 J 1,12
KA = ICODE (L, J)
DO 150 N = J, 12
KB = ICODE (L,N)

150 TQEM (KA, KB) = TQEM (KA, KB) + TEMT (J, N)

TQEM 23 x 23 temporary quadrilateral element matrix.
TEMT 12 x 12 transferred triangular element matrix of the

form in Equation (3.34).
ICODE 4 x 12 matrix of the code numbers in Table 1.
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(3.36)

Taking the bottom equation of Equation (3. 36) and solving for {4);3}

{(Pi')} =[E1313]-1( {P13}-[Eipa] {(0a})

The internal unknowns {4)713}

(3.37)

are eliminated by substituting Equation

(3.37) into the top equation of Equation (3. 36). Thus

where

[E
*]

{$a} =

{4):} = {(1)I }

{p} = {P;.} [E'ab b

{E*} = [Elaa ] [E'ab

P }

[Eba]

(3.38)

Inversion of the 7 x 7 matrix [Ebb] and multiplication of the indi-

cated matrices of Equation (3. 38) should be carried out in double

precision. In the mixed method, the coefficient matrices can contain

elements which differ widely in order of magnitude and result in ill-

conditioned arrays.

3.5 System Equations and Solution Process

*
As the element matrices LE ] are generated, they are
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appropriately superimposed into a system matrix [S]. This super-

imposition is accomplished in a manner similar to that in which the

four triangular element matrices were combined into one quadrilateral

element matrix. The code numbers this time, however, contain 16

entries corresponding to the 16 unknowns for each element.

A structural system that contains a large number of elements

must necessarily involve a good deal of tedious input data preparation.

This includes a code number for each element. In order to reduce

preliminary work of this nature, a subroutine was written to generate

the code numbers for each quadrilateral element. The information

used by the subroutine is input information that ordinarily would be

included for any matrix analysis of structures; the nodal point coordi-

nates and the element connectivity. The latter includes for every

element number the corresponding nodal point numbers.

When the system matrix [s] and system load vector {V}

are generated using the code numbers and algorithm indicated in Table

2, the total system of simultaneous algebraic equations in the un-

knowns {4,} is represented as

[s]{,1} = {v} (3. 39)

The primary concern in the solution of this system is the condi-

tioning of the system matrix. It is a symmetric matrix as a conse-

quence of the symmetry of the triangular element matrix in Equation
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(3. 29) which is a result of conservation of energy. In addition, it is

also a banded matrix where the band width is dependent on the direc-

tion of numbering the node points. ;,They should be numbered in such

a way as to minimize the difference between the largest and smallest

nodal point number for any element. This is true in the mixed method

just as in the more common displacement formulations. The band-

width in this method is increased because of the existence of side

nodal points which must also be numbered. Nevertheless, the system

matrix is banded and advantage is taken thereof along with the sym-

metry when storing the coefficients in computer storage.

The solution process, contained in a single subroutine, is

Gaussian elimination. The input system matrix is in the packed form;

having a width of half the band-width plus one for diagonal terms and

a length equal to the number of system unknowns. The band-width is

automatically computed prior to solving the system as it is required

input to the solution subroutine along with the system load vector. It

is of course desirable to carry out the solution process in double pre-

cision especially in the mixed method for reasons mentioned in Sec-

tion 3. 4. This consideration must, however, be weighed with program

size, desired accuracy and available computer storage.
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IV. THE FINITE ELEMENT MODEL

The purpose of this chapter is to describe the finite element

model and to describe its basic strengths and weaknesses. When

interpreting results from the symmetrical penstock bifurcation

model, a certain amount of judgement must be applied and it is hoped

that this chapter will help cultivate that judgement. In order to

accomplish this, two approaches to verifying the finite element model

are taken. First, verification of the basic finite element is sought by

comparing its results with those of known classical solutions. Sec-

ond, verification of the symmetrical penstock bifurcation finite ele-

ment solution is sought by comparing its results with experimental

data from a hydrostatic test of a prototype penstock bifurcation.

4. 1 Comparison with Classical Solutions

The basic finite element formulation of this investigation was

applied to four different types of structures so that a feeling could be

gained as to the behavior and validity of the formulation. The struc-

tures are relatively simple structures for which classical solutions

are available. Even though the resulting finite element models are

quite simple when compared to the complex model of the bifurcation,

this type of verification has become traditional in finite element work.

Because the ring girder of the penstock bifurcation could
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possibly contain flat plate bending, it is of interest to know how well

the basic formulation approximates a flat plate structure. The thin,

uniformly loaded, rectangular plate shown in Figure 4. 1 is a good

choice for comparison among classical plates because of its varied

boundary conditions. A six by six element model was selected and

the results are shown in Figures 4. 2, 4.3, 4. 4, and 4. 5. It is seen

that there is excellent agreement with the exact solution for the

moments but that the displacements in Figure 4. 5 are somewhat off

on the high side. In general, however, the agreement is good.

Reference (11) analyzed the same structure with an eight by eight ele-

ment model of the same formulation and shows very similar results.

The verification of the finite element formulation for the flat plate

demonstrates its usefulness for what it was basically intended;

analyze thin flat plates. It is of course another matter to use the flat

plate element to model curved surfaces or shells.

The first shell structure to be considered in demonstrating the

applicability of the formulation to curved surfaces is the open-ended

cylinder. The cylinder is subjected to internal pressure and because

the walls are unrestrained at the ends no moment should develop.

Six elements were used to model a 90 degree portion of the wall as

shown in Figure 4. 6. The results for the membrane stress are shown

in Figure 4.7 where it is seen that the agreement with the exact value

is excellent. More interesting, however, are the moment results
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Figure 4.1. Thin rectangular plate modeled by a 6x 6 finite
element mesh.
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Figure 4.2. Moment (x component) in rectangular plate.
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Figure 4.3. Moment (y component) in rectangular plate.
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Figure 4.4. Twisting moment in rectangular plate.
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Figure 4. 5. Transverse deflection in rectangular plate.
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Figure 4. 6. Finite element model of cylinder with unrestrained
ends.
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Figure 4.8. Comparison of side point moment values with
element moment values.
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shown in Figure 4.8. Here, the finite element results are shown in

two forms; the side point moment values and the element moment

values (moments at center of the element). The side point values are

completely erroneous while the element moment values correctly

show zero moment. The side point values reflect the slope discon-

tinuity between elements and are naturally yielding moments that

might be expected for an "equivalent folded plate structure." In the

smooth shell, there are no such slope discontinuities and therefore

the side point moment data should be ignored in favor of the element

moment values.

The third structure to be analyzed is a circular cylindrical

shell with both ends completely restrained against rotation and dis-

placement. Under a uniform internal pressure the restrained ends

will cause a vertical moment at the base of the cylinder to be devel-

oped. Characteristically this moment will be maximum at the base

and will eventually decay to zero at some point above the base, pro-

vided the cylinder is sufficiently long. It is of interest to know how

well the finite element formulation models this behavior because the

penstock bifurcation contains a similar shell configuration with bound-

ary conditions developing moment. The finite element model takes

advantage of three planes of symmetry for the cylinder as shown in

Figure 4.9. This figure shows six elements of 15 degrees each in the

direction of curvature. A second model, not shown, with 12 elements
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Figure 4.9. Finite element model of cylinder with restrained
ends.
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of 7.5 degrees each was also prepared because the first model proved

very coarse. The results for both membrane hoop force and vertical

moment are shown in Figures 4.10 and 4.11, respectively. The hoop

force is on the high side near the base but achieves reasonably good

accuracy with distance from the base. In Figure 4.11 it is seen that

the six-element model yields moment which does not agree well with

the exact results. A significant improvement is achieved with the

12 element model. Thus it is concluded that the results are very de-

pendent on the number of elements in the direction of curvature.,(

The fourth structure is a spherical cap subjected to uniform

internal pressure. It is included in this investigation because it is a

doubly-curved shell and would seem a more difficult test for the

formulation than the previous cylindrical shell. Two conditions are

studied: the first has the outer edge of the shell restrained against

vertical displacement only and the second has the outer edge com-

pletely restrained. Figure 4.12 shows the model configuration of

seven elements in the meridian direction and six elements in the hoop

direction. A second model was constructed with 13 elements in the

meridian direction and six elements in the hoop direction. The

results are shown in Figures 4.13 through 4.16.

From the results it can be seen that the second model with

nearly twice the number of elements yielded little additional accuracy.

It may be that the spherical cap's curvature was sufficiently mild to
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Figure 4.12. Finite element model of spherical cap.
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justify the smaller model only. The agreement is generally better for

the hoop stresses than for the meridian stresses. The hoop stresses,

at most points, are primarily due to membrane action whereas the

larger meridian stresses are primarily due to bending action. It

would seem, therefore, that the formulation will model membrane

action better than bending action. Also it appears that the bending

stresses, where agreement is poor, are on the small side.

4.2 Approximation of Curved Surfaces with
Flat Plate Elements

As previously stated the basic unit of the finite element model

used in this investigation is a flat plate element in which membrane

action is superimposed on bending action. In the shell structures the

flat plate representations resemble folded plate structures as can be

seen in Figures 4. 6, 4.9, and 4.12. The resulting slope discontin-

uities along the line of curvature will give rise to side point bending

moments in the model where in the shell there are, in fact, none.

This undesirable effect is inherent in this formulation and cannot be

altered. It can be minimized by using a large number of elements in

the direction of curvature so that the slope discontinuities are made

less severe.

It has been noted, however, in (12) and at least partially

demonstrated in Figure 4.8 that the quadrilateral element moments
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(as opposed to the side point moments) give more reasonable results

despite the fact that they are computed from the side point values.

They are computed as follows: first, Equation (3.21) is used to

obtain the rectangular cartesian components of the moment in a tri-

angular element from the side point moments; second, the values for

each of the four triangles making up a quadrilateral are referenced to

a common set of axes for the quadrilateral; third, the four sets of

values are then averaged to obtain the rectangular cartesian compo-

nents of the moment within the quadrilateral.

The quadrilateral element moments then are to be treated as

reasonable data while the side point values in the direction of curva-

ture are to be treated as ficticious values and ignored. In addition, it

has been shown (13) that the quadrilateral element moment data is

adversely affected when the subtended angles of the elements in the

direction of curvature are unequal. Thus it is advisable when devel-

oping the finite element model for the penstock bifurcation to make

the elements uniform in the direction of curvature for the cylinder and

cone.

Further comments on the appropriateness of modeling curved

surfaces with flat plate elements can be found in (6,. 9).

4.3 The Symmetrical Penstock Bifurcation Model

The symmetrical penstock bifurcation has two planes of
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symmetry and these are used to advantage in the basic structure

shown in Figure 1.3. It is this configuration that is discretized into,

flat plate elements resulting in the model shown in Figure 4.17.

The boundary conditions for the side points and corner points

of the flat plate edges which lie in the x-y and x-z planes are

dictated by symmetry; that is, the rotation of the side points are zero

and the displacements perpendicular to the planes of symmetry are

constrained to zero.

There are two load configurations studied in this investigation.

They are the hydrostatic test condition and the operating load condi-

tion. Each requires a different set of boundary conditions along the

inlet edge of the cylinder and the outlet edge of the cone.

The hydrostatic test configuration assumes the existence of

bulkheads which constrain the displacements to zero in the plane of

the inlet face and the outlet face; that is, the bulkheads are assumed

infinitely rigid in their own plane. Displacements are allowed, per-

pendicular to the planes in anticipation of the tensioning effect which

is produced by equivalent static loads applied at the boundary nodes in

the direction of these displacements. The infinitely rigid bulkheads

are an idealization since in actual test conditions the bulkheads will

most likely be hemispherical and will have a finite stiffness. Their

stiffness cannot be determined in advance so the idealization is thought

reasonable.
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Crotch girder

Figure 4.17. Finite element model of a symmetrical penstock
bifurcation.
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The operating load configuration assumes that no bulkheads

exist and that displacements are constrained to zero in the direction

of the longitudinal axes of symmetry for the cylinder and cone. Dis-

placements are allowed in planes perpendicular to these axes.

For both load configurations the displacement boundary condi-

tions on the inlet face of the cylinder coincide with the global refer-

ence system, thus there is no difficulty programming them. This is

also true of the displacement boundary conditions mentioned previ-

ously.

The displacement boundary conditions for the cone outlet face,

however, do not coincide with the global directions and therefore their

inclusion requires more programming effort. There are two

approaches to this problem (8). The first and more exact is to

modify the method of generating the system of equations in terms of

global unknowns to include some equations which are written for

constraint-oriented axes. The second method is to remove the actual

support and attach a ficticious axial member having an extremely

large cross-sectional area so that its longitudinal axis is collinear

with the constrained displacement. The opposite end of this member

is restrained against displacement and therefore its boundary condi-

tions can be conveniently cast in the global system. This method has

the advantage of being more easily programmed. Even though more

members are added to the structural system with one additional
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unknown per member, the programming effort was significantly re-

duced and, for this reason, it is the method selected for the bifurca-

tion model. Figure 4.18 illustrates the idealization of the boundary

conditions on the outlet face of the cone.

4.4 Comparison with Experimental Data

Once verification of finite element formulations is achieved by

comparisons with classical solutions it is assumed that the formula-

tions can be applied to the analysis of more complex structures which

defy classical methods. A need does exist, however, for experimen-

tal data to substantiate the use of finite element formulations for solv-

ing complex structures. In addition, such experimental investigations

should be coordinated with the finite element investigation so that sub-

sequent comparison of results will be meaningful. The experimental

effort described herein was unfortunately not coordinated in this man-

ner but it does offer valuable information where very little heretofore

existed.

A symmetrical bifurcation prototype was constructed for the

Snettisham project in southeastern Alaska. Its configuration and

specific dimensions are shown in Figure 4.19. Hemispherical bulk-

heads were installed and the structure as shown in Figure 4.20, was

hydrostatically tested in the shop at 900 psi internal pressure and was

instrumented with 24 linear strain gages and 56 rosette strain ga,ges.
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Figure 4.18. Cone outlet face boundary conditions as they are
modeled.
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Figure 4. 20. Snettisham prototype bifurcation as tested in the shop.
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The instrumentation was placed on the inside surface as well as the

outside surface and arranged to measure bending stresses at isolated

locations in the cone and cylinder and plane stresses in the ring girder

and crotch girder.

A finite element model consisting of 116 elements was generated

for the Snettisham configuration. This model is shown in Figure

4.17. The plane stress results for the crotch girder are shown in

Figure 4.21 where the finite element principle stresses are shown

along with the experimental stresses. The stresses along the hori-

zontal line of symmetry are the more important data because they are

maximum, as expected, at this location. It can be seen that finite

element stresses agree very well with the experimental stresses both

in magnitude and from a behavior point of view. To emphasize this,

the finite element and experimental data are plotted at this location in

Figure 4.22. A primary, observation is that the maximum measured

stress occurs just to the left of the cone attachment line. The finite

element stress also shows this behavior but only in an approximate

manner. The traditional analysis of penstock bifurcations (22) pre-

dicts the maximum stress to be on the inside edge as if the crotch

girder were a curved beam in bending. While this may be true in

other penstock bifurcations, the data clearly shows the Snettisham

crotch girder behaves as a stretched plate instead.

The finite element model predicted the stress in the tie rod
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very well. The measured value was 5400 psi and the predicted value

was 5457 psi.

Stresses in the ring girder are compared in Figure 4.23. Here

the finite element stresses are plotted for each of the four triangles

in a quadrilateral element because the elements are very coarse in

comparison to the crotch girder elements. In this way the stress

distribution or behavior can better be seen across the two rows of

elements. The agreement is good but the finite element values are

on the low side. This is probably attributable to the coarse mesh for

the ring girder but it is doubtful that a finer mesh is warranted be-

cause the overall behavior is modeled and, the maximum stresses in

the crotch girder were predicted with sufficient accuracy. In addition,

the computed stresses shown are plane stresses only and the ring

girder does contain some bending stress. The maximum computed

bending stress is about 2 ksi and that appears at the top near the inter-

section with the tie rod. This stress could account for some of the

difference in Figure 4.23. Elsewhere in the ring girder, the bending

stress varies from the maximum of 2 ksi to less than 1 ksi near the

horizontal line of symmetry.

While a sufficient number of strain gages existed on the crotch

girder and ring girder, insufficient experimental data was available

on the shell portions of the bifurcation for an adequate comparison of

data. Principal stresses were measured at 14 locations on the shell
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Figure 4. 23. Comparison of stresses in the Snettisham ring girder.
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as shown in Figure 4.24. Also unavailable was the information as to

the strain gages' orientation thus precluding determination of the

principal directions.

To facilitate comparison of the available data an "envelope"

stress was computed. This "envelope" stress is a summation of the

computed principal membrane stress and the computed principal

bending stress without regard to their respective directions. The

finite element data, in this form, will naturally be larger than the

computed total principal stress and therefore is expected to be con-

servative in comparison with the experimental principal stress.

Membrane stress values are also plotted so that the bending stress

can be observed by noting the difference between the "envelope" stress

and membrane stress. Comparison of stresses for the cylindrical

shell are shown in Figure 4.25. The angle 0 is measured from the

horizontal plane of symmetry to top-center; that is, 0 equals zero

at points b and d and 0 equals 90 degress at points a and

c. The results for the cylinder show the actual and computed stresses

to be less than the stresses for an equivalently loaded thick-walled

cylinder. The hemispherical bulkhead constraint and the ring girder

constraint account for this behavior. But the finite element data, it

must be concluded, reflects a modeled bulkhead that is too stiff. If

the bulkhead, were correctly modeled, the envelope stress would be

conservative, as mentioned above, and it is not. However, it does
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All rosetts are equally spaced along shell curvatures

Figure 4.24. Strain gage rosette locations on Snettisham
penstock bifurcation.
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appear that the finite element data behaves more rationally than does

the experimental data. The effect of the ring girder constraint de-

creases from point b to point a, gradually allowing the mem-

brane stress to develop. This gradual increase is shown in the finite

element data.

The comparison of stresses for the cone along line c-d is

shown in Figure 4.26. The finite element "envelope" stress values

are conservative for the most part. However, for good agreement,

the curve of experimental values should be somewhere between the

"envelope" and membrane stress values.

Comparison of stresses for the cone along line c-e is shown

in Figure 4.27. The computed values here, except for the data at

4 feet, show better agreement than before. Again, however, where

the computed data does, not surround the experimental curve it is high

and therefore too conservative. The data at 4 feet was taken from an

unusually large element in the model and therefore is suspect.

The finite element model from which the above data has been

taken can be considered coarse with regard to the stresses near lines

c-d and c-e in the conical shell. As can be seen in Figure 4.17,

only four elements are used in the direction of curvature to model the

90 degree cylindrical surface and eight elements are used to model

the 180 degree cone surface. However, with respect to the crotch

girder stresses, the model is adequate.
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It was noticed that the triangular elements on the conical sur-

face near the crotch girder gave unusually high bending stresses but

accurate membrane stresses. The bending stress data for such ele-

ments, which are few in number, was ignored in favor of the bending

stress data for the quadrilateral elements.

The stresses in the cylinder were unconservative (too small)

due to the assumption of infinitely rigid bulkheads. This is also

likely to be true for the stresses near the outlet face of the cone,

although there is no experimental verification.
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V. FINITE ELEMENT STRESS ANALYSIS OF
LOST CREEK BIFURCATION.

As mentioned in the beginning of this dissertation, the results

of the computer program development are applied to the analysis of

the penstock bifurcation for the Lost Creek project. The proposed

design configuration for the structure is illustrated in Figure 5.1.

It is considerably larger than the Snettisham bifurcation (Figure 4. 19)

but the design load is considerably less; 220 psi internal pressure for

the operating load configuration and 330 psi for the hydrostatic test

configuration. The design differs noticeably in two respects. First,

the crotch girder, for all practical purposes, is entirely external and

second, the tie rod is much larger and placed differently.

Because the computer program was written to handle sym-

metrical bifurcations whose configurations are of the Lost Creek

format, no difficulty was experienced in generating the necessary

input data. A user's manual for the program, which describes all

necessary operations for generating the data, is included as Appendix

B. Appendix C describes the function of the primary subroutines and

Appendix D is a listing of the program. An 82-element model was

generated for the structure and is shown in Figure 5.2. The modulus

of elasticity of the steel was assumed to be 30 x 10 3 ksi and Poisson's

ratio was assumed to be 0.3.
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Figure 5.1. Lost Creek penstock bifurcation,



Cylinder
Crotch girder

92

Tie rod

Ring girder

Cone

Figure 5. 2. Lost Creek finite element model.
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Once the basic input data is generated, the computer program

can be used as a design tool by varying themember thicknesses and/or

the input geometry in a trial and error fashion. However, no attempt

will be made in this investigation to design the Lost Creek bifurcation

as this was not an objective of this investigation. An analysis of the

present design configuration is undertaken with the added goal of

analyzing the effect and structural participation of the tie rod. Two

basic configurations are therefore studied. The first contains the tie

rod (11 in. in diameter) and the second has a negligibly small tie rod

(.0001 in in diameter). Both of these structures are subjected to

the hydrostatic and operating load configurations.

An extensive amount of data is naturally obtained (see Appendix

B) from the computer output for each run. It is not possible to pre-

sent all the data and therefore the data to be discussed is limited to

stresses only. In order to present it clearly, it will be discussed in

two separate categories. First, the data pertaining to the stiffening

members, the crotch girder, the ring girder, and the tie rod, will be

presented. This data includes plane stress and axial stress. Second,

the data pertaining to the shell portions of the structure, the cylindri-

cal shell and the conical shell, will be presented. This information

includes membrane stress and bending stress data
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5.1 Analysis of the Stiffening Members in the
Prototype Configuration

With regard to the stiffening members the crotch girder con-

tains the largest stress and it exists, as expected on the inside edge

near the horizontal line of symmetry as shown in Figure 5.3. This

location is very different from the location of the largest stress for

the Snettisham configuration (see Figure 4. 22). Moreover, in the

Lost Creek configuration, the stresses decrease more rapidly from

the maximum on the inside edge of the crotch girder to the minimum

stress on the outside edge of the crotch girder along the horizontal

line of symmetry and are everywhere tensile. These differences are

due to the difference in the locations of the conical shell-crotch

girder attachement line or the "load line" for the crotch girder.

Figure 5.4 shows the finite element stresses in the crotch gir-

der for the operating load configuration. It is obvious that the hydro-

static load condition is more severe with regard to the crotch girder

stresses. Further comparison of Figures 5.3 and 5.4 reveals, how-

ever, that the 11 in. -diameter tie rod is more severely stressed in

the operating load configuration. This reflects the existence of the

bulkheads in the hydrostatic case which produce a constraining effect

on the structure similar to the tie rod. Since the bulkheads are

absent in the operating load configuration, the tie rod is allowed to

participate structurally to a greater extent, in spite of the reduced
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Figure 5.3. Principal stresses in crotch girder and tie rod for hydrostatic test condition.
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Figure 5.4. Principal stresses in crotch girder and tie rod for operating load condition.
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loading. This greater tie rod force is also evident in comparing the

principal stress directions at the, point where the tie rod attaches to

the crotch girder. The changes in principal directions are more

pronounced near the point of attachment in the operating load con-

figuration.

The stresses in the ring girder are shown for the hydrostatic

load configuration in Figure 5. 5 and the operating load configuration

in Figure 5.6. They are rather small in each case. Even though the

maximum stress occurs for the operating configuration, they are

slightly larger for the hydrostatic load configuration from an overall

point of view. The stress distribution along the horizontal plane of

symmetry is similar to that in the crotch girder except the magnitudes

are smaller, that is, the stresses vary from a maximum on the inside

edge to a minimum on the outside edge and are everywhere tensile.

This behavior is not duplicated on a cross-section near the top.

Instead, the stresses across the ring girder are fairly constant

(tensile) for the hydrostatic configuration. For the operating load

configuration they vary from a minimum on the inside edge to a maxi-

mum on, the outside edge; just the reverse of the stress distribution

along the horizontal plane of symmetry. This tendency is present in

the hydrostatic configuration but is only barely discernible.
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Figure 5.5. Principal stresses in ring girder for hydrostatic test configuration.
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Figure 5.6. Principal stresses in ring girder for operating condition.
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5.2 Analysis of the Stiffening Members Without
the Tie Rod

The study of the behavior of the stiffening members without the

tie rod was effected by assigning a rod diameter value of 0, 0001 in

in the input data and repeating the computer run for both loading

conditions. Figure 5.7 shows the stresses that result in the crotch

girder for the hydrostatic load configuration. < The maximum stress

occurs at the same location but is increased by about 25%. The stress

variation along the horizontal line of symmetry can be seen to be

more pronounced when compared with the data for the 11 in-diameter

tie rod (Figure 5.3). While the stress on the inside edge is greater

the stress on the outside edge is smaller. Also it can be seen that no

concentrated stresses are induced in the proximity of the tie rod

attachment point. The stress-flow bypasses this area exhibiting little

change in principal direction. The reduced magnitudes just to the

right of the attachment point reflect the tendency of the stress dis-

tribution across the crotch girder to gradually change to a maximum

stress on the outside edge and, a minimum stress on the inside edge.

This tendency is not fully developed at the top of the crotch girder in

the hydrostatic configuration. However, the data for the crotch girder

in the operating condition shown in Figure 5.8 better illustrates this

reversal in stress distribution. This behavior is the same as that

mentioned in Section 5.1 for the ring girder. Thus, without the tie
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Figure 5.7. Principal stresses in crotch girder and small tie rod for hydrostatic test condition.
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Figure 5.8. Principal stresses in crotch girder and small tie rod for operating condition.
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rod, the crotch girder participates structurally in the same manner

as the ring girder. In addition, it participates to a greater extent;

the stress levels being generally larger and the stress flow being less

disturbed.

It is also of interest in regard to Figure 5.8 that the maximum

stress in the crotch girder for the operating condition increases by

about 45% (compare with Figure 5. 4) due to the absence of the tie

rod. Nevertheless, the largest stress occurs for the hydrostatic case

as it did in the tie rod configuration.

The effect of the tie rod's absence on the ring girder is to in-

crease the stress levels everywhere in a fairly proportionate manner.

Figures 5.9 and 5.10 represent the data for the hydrostatic and

operating load configurations, respectively. When this data is com-

pared with that of the prototype data (Figures 5.5 and 5. 6), this pro-

portionate increase can be seen. In addition, the maximum stress is

increased by about 20% for the hydrostatic configuration and about

27% for the operating load configuration.

5.3 Analysis of the Shell Members in the
Prototype Configuration

The stress data for the cylindrical shell and conical shell is

presented in graphs as opposed to plotting stresses on the member

configuration as was done for the stiffening members. Such a



Stress scale

10 ksi

Figure 5.9. Principal stresses in ring girder as affected by small tie rod for hydrostatic condition.



Stress scale

10 ksi

Figure 5.10. Principal stresses in ring girder as affected by small tie rod for operating condition.
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procedure for the shell surfaces, though perhaps more revealing from

an overall standpoint, does not permit sufficient scale to emphasize

the relative amount of bending stress as compared to membrane

stress. The distinction between these two types of stress is ,para-

mount because the bending stresses in the shells have been heretofore

generally ignored in the analysis of penstock bifurcations.

A reference diagram for subsequent graphs is given in Figure

5.11. A preliminary survey of the shell stress data revealed the

locations which were most highly stressed and, based on that survey,

the sections shown in Figure 5.11 were chosen. In addition, the loca-

tions in the shell immediately adjacent to the girders are of interest

because they are likely to contain significant bending stresses. Un-

less otherwise noted in the graphs to follow, the membrane stress and

the total stress are both plotted. The bending stress is observed by

noting the difference between these two stresses. The total stress is

plotted for one surface, either inside or outside, whichever is more

severely stressed.

The data for the cylinder is shown in Figures 5. 12a and 5. 12b.

The angle 0 is referenced to point a and has a value of 90

degrees at point b. The hoop stresses in Figure 5. 12a are com-

pared with the hoop stress in a pressurized thick-walled cylinder.

The data for the hydrostatic case is similar to the data for the

Snettisham bifurcation (Figure 4. 25) in that they are both conservative
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when compared to the thick-walled cylinder, though the Lost Creek

data is less so. Again this must be attributed to the constraint of the

bulkhead attached to the cylinder in the hydrostatic configuration.

With the bulkhead removed (the operating configuration), the hoop

stresses are seen to approximate more closely the thick-walled

cylinder stress. The bending stresses, as expected, are very small

in the hoop direction.

Figure 5.11. Reference diagram for shell stresses.

The longitudinal stresses in the cylinder are shown in Figure

5. 12b as they vary along line a-b. The membrane stresses for the

hydrostatic condition approximates closely the longitudinal stresses

for a closed cylinder. In the operating condition these stresses, of
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course, drop off markedly because the cylinder is not closed at its

end. The bending stresses are more significant in the longitudinal

direction than in the hoop direction. They appear to increase from

point a to point b to a maximum at the top of the cylinder.

Nevertheless, the maximum stresses in the cylinder are in the hoop

direction as can be seen by comparing Figures 5. 12a and 5. 12b.

The stresses in the cone along lines c-d and d-e are

plotted in the same manner as the finite element data in Section 4.4.

That is, the principal membrane stress and the principal bending

stress are superimposed without regard to their respective directions.

The sum that results is termed the "envelope" stress. Plotted with

this stress is the maximum principal membrane stress. By noting

the difference between the two, the maximum principal bending stress

is observed. In this manner the bending stress along lines c-d and

d-e is emphasized. However the computed total stress (true

maximum stress) along these lines most probably lies between the

two data points at each station where data is plotted.

The stress data for Figure 5.13 was taken from the row of four

quadrilateral elements on the cone which border the ring girder (see

Figure 5. 2). The angle 0 is referenced to point c and has a

value of 90 degrees at point d. It can be seen that the principal

bending stress is considerable when compared to the principal mem-

brane stress, especially at the smaller angles. There is a reversal in
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the sign of the moment at about 70 degrees.

The data for the stresses along line d-e in Figure 5.14 was

taken from the quadrilateral elements on the cone nearest the crotch

girder. Triangular-element moment data was found suspect in the

experimental verification study of Section 4.4 and therefore this data

was purposely avoided. Because there are four triangular elements

bordering the girder the data plotted does not represent stresses in

the cone immediately adjacent to the crotch girder, but instead about

1,5 to 2 feet away. The bending stresses are significant in the region

of the tie rod, but drop off toward point e where a reversal in the

sign of the moment takes place. It is suspected, though no data is

available for support, that the moment in the cone closer to the crotch

girder is even larger than that shown. Combining this suspected

moment with the large membrane stresses (18-19 ksi in the hydro-

static configuration) computed for the triangular elements (triangular

element membrane stresses are believed reliable) a potentially

localized high stress could exist in the cone near the tie rod for the

hydrostatic configuration.

The hoop stresses in the cone along line f-g are plotted in

Figure 5. 15a. The angle 0 is referenced to point f and has a

value of 112.5 degrees at point g. This data and that of the following

graph were taken from the five quadrilateral elements, two rows out

from the ring girder (see Figure 5. 2). The membrane stresses in
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Figure 5. 15a for the hydrostatic case with 0 x 80 degrees is the highest

computed membrane stress in the structure. This is to be expected

because line f-g is near the largest circumference on the cone

which is sufficiently removed from the constraining ring girder. The

influence of the ring girder gradually diminishes as 0 is increased

from zero to 80 degrees allowing this hoop stress to gradually develop.

Fortunately, the accompanying bending stress is rather small up to

80 degrees. The bending stress thereafter increases before it under-

goes a reversal in sign. The dotted line is an extrapolation of the

bending stress which is only suspected as was discussed above in con-

nection with the stresses along line d. -e

bending stress variation in Figure 5. 15b reflects the ring

girder constraint. It is large near point f which is nearest the

ring girder. Thereafter, the moment decreases to its minimum

value at about 80 degrees as the line f-g diverges from the ring

girder. At angles greater than 80 degrees, the moment increases

and then reverses due to the proximity of the constraining crotch

girder. The stresses in, the longitudinal direction, however, are

smaller than the hoop stresses along line f-g.

Stress data for line h-j is taken from a row of quadrilateral

elements along top-center of the cone. The cone is approximately

10 feet long _at this location and this distance is measured from point

h to point j along the abscissa in the next two graphs. Figure
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5. 16a shows the hoop stresses as they are constrained by the girders

near point h and as they rapidly increase to their maximum value

at about 4 feet. This value is the same maximum stress discussed

for the stresses along line f-g (see Figure 5. 15a). Beyond the

4-foot station the hoop stresses for both load conditions decrease

gradually as the circumference of the cone decreases. The obvious

difference in behavior near point j is due to the constraining effect

of the bulkhead at the outlet face of the cone in the hydrostatic con-

figuration. The data for the operating configuration continues the

gradual decrease in hoop stress to the end of the cone. Bending

stresses along this line are fairly small and decrease to zero near

the end of the cone.

The longitudinal stresses along line h-j are shown in Figure

5. 16b. The membrane stresses behave similar to the membrane

stresses in the hoop direction although not as pronounced. The bend-

ing stresses are largest near the extremities of line h-j. This is

due to the ring girder constraint near point h and the bulkhead con-

straint near point j. It is also interesting to note that the longitudi-

nal stresses near point j are in compression for the operating con-

dition. This compression zone is localized and the stress magnitudes

are small. By comparing Figures 5. 16a and 5. 16b it is seen that the

hoop stresses are again the larger of the two stress components.
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5.4 Analysis of the Shell Members Without the Tie Rod

The stress magnitudes in the cylindrical shell are very similar

(in either loading condition), with or without the tie rod. It therefore

appears that the cylinder is sufficiently removed from the tie rod

that it is not influenced by the tie rod's size.

A more noticeable effect on stress magnitude appears in the

cone. In some locations the stresses are actually smaller but for the

most part the cone membrane stresses have increased. Bending

stresses remained basically unchanged. This effect was more

noticeable in the operating condition than in the hydrostatic condition.

The largest increase in membrane stress occurred near the outlet

face of the cone and this was about a 10% increase.
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VI. SUMMARY AND CONCLUSIONS

This dissertation was initiated by a need for an in-depth investi-

gation into the structural behavior of symmetrical penstock bifurca-

tions. Heretofore, analyses generally had been based on classical

indeterminate methods of analysis where the structure was conven-

iently reduced to a tractable form. As a result of the inherent

assumptions of this procedure, the design basis was compromised and

a very conservative approach had to be taken.

The current level of development in structural analysis by

matrix methods using the digital computer offered an alternative

approach to analysis of these structures. The basic advantage of such

an approach is that the structure need not be reduced in form to such

a great extent. Thus the structure can be treated as a continuous

entity with the degree of continuity being limited only by the computers

capacity to solve simultaneous equations. The results of this approach

are a more accurate model of the structure and a more complete

picture of its structural behavior on which to base the design. This

is not to say that the resulting design will be less conservative but

that, whatever the degree of conservatism, it will be better realized.

6.1 Discussion of the Method of Solution

For about ten years the finite element method has been in a rapid
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state of development and as a consequence there are many different

types of elements available for use. In the selection of the basic ele-

ment used in this investigation, two considerations were most impor-

tant. First, the element must be capable of modeling the plane stress

situation in the crotch girder and the membrane and bending stress

occurring in, the ring girder and shell portions of the structure. A

single finite element formulation with the flexibility of modeling both

stress conditions would seem more advantageous than using two dif-

ferent finite elements. Second, the finite element formulation should

be capable of convergence with decreasing element size while contain-

ing a minimum number of unknowns. The geometry of the penstock

bifurcation is complex and a large number of elements would seem

necessary and therefore the basic element must contain as few un-

knowns as possible. The convergence requirement is best studied by

deriving the finite element formulation from a valid variational func-

tional such as the potential energy functional or the Hellinger-

Reissner functional. If the conditions on the variables of the finite

element formulation are sufficient to insure the existence of the func-

tional, then the compatibility requirement is satisfied and convergence

with vanishing element size is expected.

The finite element formulation chosen is a flat plate element

which superimposes plane stress action and bending action. It is de-

rived from the Hellinger-Reissner principle and is shown to satisfy the
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requirement of convergence. Its variables are, in the most general

case, the in-plane displacement, the transverse displacement, and

the normal moment. It is termed a mixed, method as opposed, for

example, to a pure displacement method. In addition, the finite ele-

ment formulation selected for use had been applied with good results

to an intersecting shell problem. Whereas the penstock bifurcation

partially resembles an intersecting shell, the formulation was thought

a good choice from this point of view also.

6. 2 Discussion of the Development of the Finite Element Model

After the basic finite element was selected, a finite element

model of the penstock bifurcation was constructed. Element matrices

for elements appearing on the crotch girder are formed by generating

only, those stiffness coefficients which correspond to in-plane dis-

placements. Elsewhere on the structure the element matrices are

formed by generating the coefficients corresponding to all the vari-

ables. No difficulty was experienced in compatibly connecting these

two elements together along their common boundary; the crotch

girder-cone attachement line. This is because they are basically the

same element with the same number and types of unknowns at corner

node points. Along the common boundary between the ring girder and

shell, three elements share the same side point node, commonly

called a branch point. Here it was necessary to assign two unknown
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moments to each branch point. The third moment was computed by

virtue of moment equilibrium of the branch point after solution of the

system of simultaneous equations yielded values for both of the other

moments. This equilibrium condition or constraint is applied at each

branch point.

Displacement boundary conditions for the finite element model

were dictated by symmetry and the type of loading condition selected.

Difficultywas experienced in applying the correct boundary conditions

to the outlet face of the cone. These boundary conditions are not ex-

pressible in terms of global coordinate directions as were all other

boundary conditions. Linear elements were added to the structure

along the outlet face of the cone to solve this problem. These ele-

ments were given an extremely large axial stiffness and were geo-

metrically oriented so that their axes were collinear with the direction

of the constrained displacement. The resulting displacements in these

directions were not zero but were several orders of magnitude less

than typical displacements in the structure and the desired effect was

achieved.

6. 3 Discussion of Verification of the Finite Element Model

Verification of the finite element formulation was sought by

comparing the finite element solutions of several simple structures

for which classical solutions were available. Very good agreement
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was achieved for membrane stresses in shells and bending moments

in flat plates. Bending moments in shells were found to be less

accurate and required a greater number of elements in the direction

of curvature for good accuracy. The side point moments in the direc-

tion of curvature were found unreliable and should be ignored in favor

of the moments computed for the center of the elements. The com-

promise in moment data was not unexpected because a flat plate ele-

ment is being used to model the behavior of a smooth shell. The

need here is for a curved shell element with a reasonably small

number of unknowns, but this is only in the developmental stage at

present.

In addition to the above verification, a finite element model for

a prototype penstock bifurcation was constructed and the results were

compared with experimental data obtained from a hydrostatic test of

that prototype structure. Very good agreement was achieved for

stresses in the crotch girder and tie rod. Moreover, the stress dis-

tribution along the critical section of the crotch girder was accurately

predicted and the crotch girder behaved as a stretched plate instead

of a curved beam as presumed by previous methods of analysis.

Elsewhere in the structure the finite element data was consistent from

a behavior standpoint but the accuracy was not as good as that achieved

in the crotch girder and tie rod. The difficulty could well have been

the very coarse model that was used, but experimental data was
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unfortunately too scarce to justify a second model with a greater num-

ber of elements. The agreement with the available experimental

data, on the whole, was good and served to verify the capability of the

finite element model to analyze reasonably well a symmetrical pen-

stock bifurcation.

Additional experimental verification of the basic formulation

used in this study may be found in a report (9) on an experimental

model study of structures similar to symmetrical penstock bifurca-

tions.

It was also found that the element moment data for the triangular

elements in the model was abnormally high and suspect. It is believed

the triangular elements are influenced by the side point moments to

too great an extent. It is therefore recommended that the triangular

element moment data be ignored along with the side point moment

data and that the use of triangular elements on the shell be kept to a

minimum.

6.4 Discussion and. Recommendations for the Lost
Creek Bifurcation

The data indicates that the structure as designed would not be

subject to failure under either the hydrostatic test condition or the

operating load condition. There is some evidence that a localized

elastic failure might occur between the top-center area of the cone



124

and the tie rod during hydrostatic testing. The data definitely shows

the stresses in this localized area of the structure to be maximum and

that they could equal 80% of yield stress (based on a yield stress of 30

ksi) which is the upper limit according to current design specification.

Elsewhere in the structure the stresses are much lower. The

maximum computed stress in the crotch girder is about 12 ksi for the

hydrostatic condition. The maximum computed tie rod stress is about

6.7 ksi and it occurs in the operating load configuration. The maxi-

mum stress in the ring girder is about 6.4 ksi and it too occurs in the

operating load configuration. The maximum stress in the cylindrical

shell is about 15 ksi in the hydrostatic configuration. Generally, the

data for the Lost Creek bifurcation indicates an under-stressed condi-

tion except for a localized area in the cone.

The results for the structure with the negligibly small tie rod

indicate that the 11 in. diameter tie rod affects the stresses in the

girders to a greater extent than in the shell where little significant

difference in stress level was indicated. The stress flow in the crotch

girder is substantially improved allowing the crotch girder to partici-

pate structurally in the manner in which it was intended. The results

indicate that the tie rod could be deleted or relocated to the weld

point between the girders where it would double as a weld post and

stiffening member. On the whole, the deletion of the tie rod does in-

crease the stresses in the structure but the maximum stresses in the

crotch girder and ring girder remain at a safe level.
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APPENDIX A

DERIVATION OF DIRECTION COSINES IN TERMS
OF GLOBAL COORDINATES

The 3 x 3 orthogonal rotation matrix ER] mentioned in Section

3.3 is composed of the nine direction cosines R relating the local

unknowns (u,v,w) to the global unknowns ( u, v, w) for a triangu-

lar element (see Figure A.1).

k

z, w

y, v

X, u (x1, yl' z 1)

Note: x and y axes are in plane of triangle

Figure A. 1. Global and local coordinate systems.
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In terms of the global coordinates of the three corner nodes the

side lengths

where

a. become

r 2 2 -- 2,1/2
= +

j
(z.-z.)

i+1 i = 1, 2

1 i = 3

Unit vectors and n3 which are collinear with the x axis and

side 3, respectively, are written as

n 1x = al -x
1

+ (y2 -y1) j/. + -z
1

) kJ

_ rn3 -a- {(x3 -x1)/. + (y3-y1) j (z -z
3

)Z]

nwhere i, j
n

, and k are unit vectors in the global system.

The direction cosines for the x axis, R11, R12, and R13,

are found by the following scalar products

X -
/S. A

-x

R, = -x = a 1

A n y2-y,1
R12 j x =

12 al

2-z1
R

1
= k x al
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The following scalar products will be of use in computing the remain-

ing direction cosines.

xl-
C1 = i n3 =

3

/.

n n z3 -z1
k n3 = a

3

The C. are direction cosines for an axis along side 3.

The angle 4; between sides 1 and 3 is defined by the vector

product

x A n3 = sin h z

where S is a unit vector along the axis. Therefore, the sine

of the angle 111 can be written as

sin = [(R12C1 -R13C2) 2+ (Ri3CI-R11

The direction cosines for the z axis, R31, R32, and R33, are

found by the following scalar products

R C -R/: ^ 12 3 13
R3 = z = sin 4,



n
R32 j z =

At
R3 = k z =

R C -R
13 1 1

C
3

sin 4,

C -R 12 C
1 2 1

sin 4,
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A unit vector y in the direction of the y axis is created by

performing the vector product z A. Then the direction cosines

for the y axis, R21, R22, and R3

following scalar products.

are found, as above, by the

A A
R21 i y R32R13 - R33R12

R22 =j.y=R R -R R13
3 1

R2
n n

= k y = R31R1 - R3
11
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APPENDIX B

USER'S MANUAL FOR GENERAL SYMMETRIC
PENSTOCK BIFURCATION PROGRAM

This appendix is included in order to encourage the use of the

developed computer program to analyze and design symmetrical pen-

stock bifurcations. While the subsequent descriptions are thought

sufficient by themselves to operate the computer program, users are

encouraged to read the dissertation to which this manual is appended

for general information.

Initially, generating input data for a preliminarily designed

bifurcation may be tedious. Thereafter, the design effort can be

greatly reduced by modifying member sizes and geometry with only

slight variations in the input data. Such a trial and error procedure

of analysis and design can result in an optimum final design in which

each component is stressed to the desired level.

B. 1 Program Capability

The FORTRAN IV program written for an IBM 360 computer

described herein computes principal membrane strains, principal

membrane stresses, principal bending moments, and displacements

for a symmetrical penstock bifurcation, subjected to internal hydro-

static pressure. Use of the program with other computers should be
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possible with additional setup effort. The structure may or may not

contain a tie rod and/or an internal crotch girder. The method of

analysis is the finite element method using a triangular plate element

based on a mixed formulation. The analysis is a static, linear elastic

analysis and does not include the effects of concrete encasement or

thermal loads. Two load configurations can be analyzed; the hydro-

static test configuration and the operating load configuration. The

test configuration assumes infinitely rigid bulkheads are placed over

the bifurcation apertures and the operating configuration assumes the

apertures free to deflect in the radial direction and that the bulkheads

do not exist. The program does not provide for unsymmetrical loads

in the operating configuration.

Present limitations on the finite element model's size are as

follows; 315 node points, 116'elernents, 47 constrained nodal points,

and 5 branch points. If the user wishes to increase these limits the

following named common areas must accordingly be changed in the

program; common Al, common A4, common Bl, common BCD, com-

mon C2, and common El. In addition the number of unknowns and the

band width, presently specified as 486 and 87 respectively, must also

be expanded. To accomplish this the following must be changed;

common Fl, common SLOW, the indices on both DO LOOPS in sub-

routine INTABC, and the dimension statement in subroutine SYMSOL.
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B. 2 Preparation of the Finite Element Mesh

After taking advantage of the bifurcations two planes of sym-

metry, only one-fourth of the structure (see Figure 1.3) is to be

discretized. Three shapes of elements are used to construct the

model; quadrilateral, triangular, and linear as shown in Figure B. 1.

The model shown in this figure is also shown in perspective in the

dissertation (see Figure 4. 17). The majority will be quadrilateral

elements as they are the most efficient; that is, the quadrilateral

element is sub-divided by the program into four triangles. Moreover,

the number of equations in the final system of simultaneous equations

associated with one quadrilateral is less than the number for four

triangles with no corresponding loss in accuracy. Since the system

of equations requires a large amount of core storage, the use of

quadrilaterals should be encouraged wherever possible.

In some areas of the structure the geometry is such that the use

of quadrilaterals may be impossible. Such areas sometimes may

occur along the conical shell at its intersection with the crotch girder.

When this happens the mesh generation can be expedited by using tri-

angular elements, but it should be mentioned that moment data is

suspect for these elements. In addition, the use of triangles is

advisable where the layers of quadrilateral elements need increasing

because the structure gradually widens; see, for example, Section
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Ring girder

Cylinder
Begin numbering nodes
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Cone attachment line

Crotch girder

Tie rod

Global axes

z

Section A-A

Figure B. 1. Example finite element mesh showing beginning of
node numbering scheme.
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A-A in Figure B. 1.

The linear elements are actually axial members and they are

provided for two reasons: First, in the event of an inside tie rod as

seen in. Section A -A. of Figure B. 1, a linear member will model the

axial stiffness of the tie rod. Second, the boundary conditions along

the outlet face of the cone are modeled by linear members having a

very large axial rigidity as shown in the Plan View of Figure B.1.

In the second instance, the linear elements can be termed fictious,

but nevertheless should be shown in the finite element mesh to facili

tate subsequent numbering and geometry definition. Their length is

not important as long as it is reasonably similar to adjacent quadri-

lateral element dimensions.

On the shell portions of the bifurcation, quadrilateral shell ele-

ments should be constructed so that each subtends the same angle in

the direction of curvature. That is, if four elements are to be used

over a 90° arc, each should subtend a 22.5° arc. This will allow for

easy data input, but moreover, there is evidence that the elements

will model more closely the actual shell behavior. This procedure,

however, must be abandoned in the area of the intersections with

stiffening girders where, as mentioned above, the complex geometry

prohibits uniform mesh development.

Numbering the node points should begin after the finite element

mesh has been decided upon. In general, two types of node points are
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assumed to exist for the elements; a corner point node at each corner

and a side point node at the half-way point along each side of the ele-

ment. Numbering of these nodes should begin where shown in Figure

B. 1 and proceed in the axial direction of the cylinder and then the

cone in a layered manner. When the ring girder is encountered, the

numbering proceeds up the side of the girder and continues again at

its base along the cone. Generally, the nodes of the crotch girder are

numbered from top to bottom and then along the cone again. But the

primary objective of the numbering scheme is to minimize the numeri

cal difference between node point numbers associated with the ele-

ments. This technique minimizes the computer storage requirement

for a given number of elements.

The numbering scheme should be sequential up to the largest

numbered node, and naturally no node points should remain without a

number. The elements of the crotch girder and linear elements do

not receive side point numbers because there is no moment, thus no

side point node, associated with these elements. Side point nodes will

occur where the crotch girder intersects the ring girder and cone,

but these nodes belong to the elements of the ring girder and cone

and not to the crotch girder elements.-/ Once the numbering has been

accomplished, it should be checked so that no points have been missed,

and no numbers have been repeated or left out and that no side point

numbers have been assigned to elements of the crotch girder or
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linear elements. An error at this point will nullify any further effort.

Next, all elements should be numbered sequentially and in a

layered manner following as closely as possible the scheme for num-

bering the nodes.

B.3 Sign Conventions

Global displacement and load components are positive when in

the direction of the positive global coordinates (x, y, z) shown in

Figure B. 1. Local displacement and load components are positive

when in the direction of the positive local coordinates. The local

coordinate systems for the various elements are shown in Figure B.2

as they relate to side one of the elements. Side one is defined by the

first two or three, as the case may be, nodal point numbers associ-

ated with the element (see Section B. 5. 7). Note that the quadrilateral

has a different local coordinate system for each corner point while

the triangle and linear elements have only one coordinate system per

element. Positive moments cause compressive stress on the top

surface of the element (see Section B. 5.7 for a definition of top sur-

face). The normal load on an element is positive when acting as a

pressure on, the bottom surface.

The above description of local coordinate systems is not neces-

sary for constructing the input data but only in interpreting the output

data.
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z, w y, v

z, w

Quadrilateral element

Note: x and y axes lie in,
plane of the element

x, u Side one

Triangular element

x, u

Linear element

Figure B. 2. Local coordinate systems.
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B. 4 Job Control for IBM 360-50

The following information is systems oriented and describes

IBM operating system job control cards placed atop the data deck.

Sequential read-write access devices used in the computer program

are listed and defined as to their size.

//JOBLIB DD DSN=LIBRARY,DISP=SHR
// EXEC PGM=FINITELE
//FTO6F001 DD SYSOUT=A
//FTO2F001 DD UNIT=SSYSQ, DISP=(NEW, DELETE),

SPA CE=(CYL, (5, 5))
//FTO3F001 DD UNIT=SSYSQ, DISP=(NEW, DELETE),

SPACE=(CYL, (5, 5))
//FT15F001 DD UNIT=SSYSQ, DISP =(NEW, DELETE),

SPACE=(CYL, (5, 5))
//FTI6F001 DD UNIT=SSYSQ, DISP= (NEW, DELETE),

SPACE=(CYL, (5, 5))
//FT 17F001 DD UNIT=SSYSQ, DISP=(NEW, DELETE),

SPACE=(CYL, (5,5))
//FT18F001 DD UNIT=SSYSQ, DISP=(NEW, DELETE),

SPACE=(CYL, (5, 5))
//FT21F001 DD UNIT=SSYSQ, DISP=(NEW, DELETE),

SPACE=(CYL, (5,5))
//FT22F001 DD UNIT=SSYSQ, DISP=(NEW, DELETE),

SPACE=(CYL, (5, 5))
//FTO5F001 DD *

Data

B. 5 Preparation of Input Data

The following describes the cards and sets of cards shown in

Figure B. 3 which form the necessary input data to the program All

integer data should be right adjusted in their respective columns.
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Branch point cards

Constraint cards

Connectivity cards
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Coordinate cards

Control card
\_. Material properties card

\...Tie rod diameter card

Geometry card.
Load configuration card

Figure 8.3.. Input data for the penstock bifurcation program.
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B.5.1 Load Configuration. Card (15)

Columns 1-5 Place a 1 for the hydrostatic test condition or

a zero (blank card) for the operating load

configuration.

B. 5.2 Geometry Card (8F8. 5)

Columns 1-8 Radius of the cylinder (feet).

9-16 Outlet radius of the cone (feet).

17-24 Angle change in flow direction (degrees).

25-32 Cone half-angle (degrees).

33-40 Crotch girder thickness (inches). Because the

crotch girder is bisected by a plane of sym-

metry, the program halves this value.

41-48 Ring girder thickness (inches).

49-56 Cylinder thickness (inches).

57-64 Cone thickness (inches).

B. 5.3 Tie Rod Diameter Card (F8.1)

Columns 1-8 The tie rod diameter (inches). If a tie rod

exists in the, finite element model and the user

does not wish it to participate structurally,

then the diameter may be made extremely
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small (. 0001). A. zero diameter should not be

used in this instance. If a tie rod does not

exist, the card is left blank.

B. 5.4 Material Properties Card (2X, E10.3, F10.3)

Columns 3-12 Modulus of elasticity for the steel (ksi).

13-22 Poisson's, ratio for the steel.

B. 5.5 Control Card (515)

Columns 1-5 Number of node points. (See Section B. 2. )

6 -10 Number of elements or connectivity cards.

(See Section B. 5.7. )

11-15 Number of constraint cards. (See Section

B. 5.8. )

16-20 Number of branch point cards. A. branch point

occurs only at side points along the intersection

between the ring girder and the shell. (See

Section. B. 5. 9. )

21-25 Number of coordinate cards. Note that this

number is considerably less than the number of

node points. (See Section B. 5.6. )



B. 5. 6 Coordinate Cards (18, 2F 10. 2, 3F5. 0)

This data set describes primarily the overall geometry of the

structure in terms of two coordinates for each corner node point of an

element. In addition the number of unknowns to be assigned various

nodes are described in this data seta Because of this, branch points

are also included in these cards even though, as side points, their

coordinates are of no interest and are not entered by the user.

The coordinates for each node point will be referenced to one

of the four sub-structure reference systems shown in Figure B.4

provided for convenient data input.. Numbers 1 through 4 are used to

to indicate the reference system for corner node points on the crotch

girder, ring girder, cylinder, and cone, respectively. The end nodes

for linear members which also occur on a boundary are assigned a

in the case of members along the outlet face of the cone and a 6 in the

case of a tie rod member. Numbers 5 and 6 do not represent addi-

tional reference systems but special cases of reference systems 4

and 1, respectively.

Coordinates for corner node points occurring along intersec-

tions involving the ring girder should be referenced to the ring girder

system (reference system 2). If the intersection involves the crotch

girder and does not involve the ring girder, the coordinates should be

referenced to the crotch girder system (reference system 1



Crotch girder coordinates: xcg
Ycg

Ring girder coordinates: -xrg yrg
Cylinder coordinates: -x 0cy cy
Cone coordinates: x 0co co

Figure B. 4. Sub-structure reference systems.
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In the case of a branch point card a 2 is placed in column 33

and all other columns are left blank.

Columns 1-8 Node number. (Number assigned to the node. )

9-18 The x coordinate-of the node (feet).

19-28 The y coordinate (feet) if the node is on the ring

girder or crotch girder. The angular coordi-

nate (degrees) if the node is on the cylinder or

cone.

33 This entry indicates the number of unknowns the

program will assign the node point. In the

finite element formulation used, this will pre-

dominantly mean 3 unknowns. However, a

should be assigned the following node points:

node points whose coordinates are cast in the

crotch girder reference system and branch

points.

38 Sub-structure cocirdinate reference system

number 1, 2,3, or 4. A 5 -is entered for the

node point on the- constrained end of a linear

element, and a 6 is entered for the constrained

node point on a tie rod element.

43 Most cards will not contain an entry here. Only

those corner point nodes on the inlet face of the
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cylinder and outlet face of the cone are of con-

cern. A 1 is entered for both the 0° and 90°

nodes on the cylinder and intermediate nodes

are assigned a 2. A. node located at 0 = 0°

(see Figure B. 4) on the outlet face of the cone is

referred to as a 0° node, etc. A. 3 is entered

for the 0° and 180° nodes on the cone and a

is assigned to the intermediate nodes. These

entries signify the location of tensioning loads

produced by bulkheads when the hydrostatic test

condition is specified. The loads are computed

automatically from internal pressure and

geometry.

B. 5. 7 Connectivity Cards (15, 5X, 815, 2110)

This data connects the element number with the node point num-

bers on the element's perimeter. The node points for a quadrilateral

and triangle are listed counterclockwise on the perimeter beginning

with a corner point node and ending with a side point node. The first

two or three nodes, as the case may be, define side one of the ele-

ment and the resulting output data will be referenced to a local

axis collinear with this side (see Figure B. 2). For example, the

stress in the x direction for the element will act, parallel to side
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one The "top surface" of the element is also defined as the surface

that is viewed when numbering counterclockwise (a positive moment

creates compression on the "ton surface"). For linear members the

smallest numbered node should be listed first. There must be a card

in this data set for every element. Each card, besides the above

information, contains an entry indicating to which part of the structure

the element belongs. The indicators are 1, 2, 3, and 4 and they

represent the crotch girder, ring girder, cylinder, and cone, respec-

tively. A 5 indicates a linear element along the outlet face of the cone

and a.6 indicates a tie rod element. These indicators are similar to

those in Section B. 5. 5 but here they refer to elements and not nodes.

Columns 1-5 Element number (number assigned to the

element).

13-15 Corner point node.

18-20 Side point, node only. Columns are left blank

if the element is on the crotch girder or is a

linear element because no side point should have

been assigned, to these elements.

23-25 Corner point node or end point node if element

is a linear element.

28-30 Side point node or blank.

33-35 Corner point node or blank.

38-40 Side point node or blank.
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43-45 Corner point node or blank.

48-50 Side point node or blank.

60 A. number 1 through 6 as indicated above.

70 Enter a 1 if the element is a triangle otherwise

leave blank.

B. 5. 8 The Constraint Cards (415)

These cards apply primarily to corner node points (as opposed

to side point nodes) on the boundaries of the finite element model. A

constraint is a "fixing against movement" of a displacement component

in one of the three global directions (x, y, z). The constraints are

dictated by symmetry of the structure along those boundaries that are

formed by intersections with the symmetrical x - y plane and

symmetrical x - z plane (see Figure B.4). For example, a corner

node point in the x - z plane cannot move in the y direction and

therefore is constrained in the y direction. In the same way a

corner node point in the x - y plane is constrained in

direction.

An exception to this procedure occurs for corner node points

on the crotch girder to which 2 unknowns have been assigned in col-

umn 33 of Section B. 5.6. Though these node points lie in the

plane they do not receive a constraint in the z direction. Those

node points which are also common to the x - plane are assigned
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a constraint in the y direction. This is a consequence of the crotch

girder being a plane stress component in the x - y plane.

In addition to boundary conditions resulting from symmetry,

constraints will exist because of load conditions along the inlet face of

the cylinder and outlet face of the cone. If the hydrostatic test con-

figuration is chosen in step B. 5.1 above, the user must constrain the

y and z displacements of corner node points along the inlet face

of the cylinder. In this manner he is consistent with assuming

infinitely rigid bulkheads welded to the structure. If the operating

configuration is chosen, only the x displacements must be con-

strained along the same boundary. Boundary conditions on the outlet

face of the cone are subject to the same considerations but they cannot

be case in terms of global directions (x, y, z). The linear elements

along the cone outlet face were developed to approximate these bound-

ary conditions (see Figure B. 1). The end nodes of these elements

must be completely fixed against displacement by the user by con-

straining them in all three directions; x, y, and This is all that

need be done regardless which of the two load configurations are

chosen. The user should note, however, that step B.5. 1 and this step

are related insofaras the boundary conditions along the cylinder inlet

face are concerned. That is,when the load configuration is changed

the constraints along the inlet face of the cylinder must be changed

accordingly.



151

The majority of cards will represent constraint conditions for

corner node points but the user must also generate a card for each of

the side points along the free edge of the ring girder. The purpose is

to constrain the moment at these side points to zero. These are the

only side points that are assigned constraints by the user. This is

done by entering a 1 in all three columns normally reserved for dis-

placement constraints. The user should note that this does not mean

the displacements are constrained along the free edge.

In the following columns a 1 is used when the constraint is de-

sired, otherwise the column is left blank.

Columns 3-5 Node point number.

10 x direction constraint. (1 or blank.)

15 y direction constraint. (1 or blank. )

20 z direction constraint. (1 or blank. )

B.5.9 Branch Point Cards (415)

These cards pertain to side points along the intersection of the

ring girder with the shell.

Columns 3-5 Side point number.

9-10 Adjacent cylinder element number.

14-15 Adjacent cone element number.

19-20 Adjacent ring girder element number.
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B.5.10 Pressure Card (F5.3)

Columns 1-5 Pressure (ksi).

B. 6 Checking Input Coordinates and Connectivity

It is important in a finite element investigation of this magni-

tude that the user have confidence in the accuracy of the input coordi-

nates (B. 5.5) and input connectivity (B. 5.6). The preferable way to

check this data is by plotting the finite element mesh using a mechani-

cal or electronic plotting device. The information needed from the

program will be contained in subroutine GLOCOR and may be

obtained on card output by removing the comment designation on the

appropriate statements. Specifically, the computed global coordinate

variables XBAR, YBAR, and ZBAR are written out on cards along

with the connectivity matrix ICONN. This information must then be

converted by an appropriate program so that a plotting device can

interpret and plot the finite element mesh. Development of the pro-

gram will depend in part on the type of plotting device used and there-

fore such a program is not included.

B. 7 Printed Information and Data

The input data is printed first. This includes the selected load

configuration, the dimensions and angles, the material properties,
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the control numbers, the element connectivity, the node point coordi-

nates, the constraint data, the branch points, and the internal pres-

sure.

Some useful computed information is printed out next. First,

the generated displacement or moment numbers for each node point

in the model are printed. For each corner node point there are three

possible displacements depending on the constraints. For a side

point node there is only one moment, and thus one number assigned

to it (if the side point is a branch point, two numbers are assigned).

Each number, whether a displacement or moment number, represents

one equation in the system. The largest number represents the num-

ber of simultaneous equations in the system..>''Secondly, the code

numbers for each element are printed. This information is generated

from the input connectivity and the displacement or moment numbers

and is used to assemble the system of simultaneous equations. ,Third,

the global coordinates for each node are printed. These coordinates

are referenced to the global system and are computed from the input

coordinates which are referenced to the four sub-structure reference

systems. -Finally, the maximum half-bandwidth for the system of

simultaneous equations is printed. In the FORTRAN program the

named common area SLOW must have dimensions equal to or exceed-

ing the product of the half-bandwidth and the largest displacement

number. Also, the named common area Fl must be dimensioned in



excess or equal to the largest displacement number.

The output data is printed next. First, for every node point

the global displacement components (UBAR, VBAR, WBAR) or side

point moments, as the case may be, are printed. The units are

inches for displacement and kip-inches per inch for side point

moments. In the finite element formulation, the side point moment

values in the direction of curvature of the shell are to be treated as

suspect as are the element moments for triangular elements. Side

point moment values on the ring girder and elsewhere should be rea

sonable data. When a side point node is also a branch point, two side

point moments will be printed. The first moment will be for the

cylinder (M
d.r) and the second moment will be for the cone

The side point moment in the ring girder (Mn3) at that branch point

can be computed by Mn3 -(Mnl-Mn2).

The next data printed is the corner point displacement compo-

nents referenced in the local coordinate systems (see Figure B. 2).

These components (u, v, w) are listed by element number. A quad-

rilateral element will have four sets of components, one, for each

corner point. A triangular element will have one set of components

as will a linear element. The units are inches.

The membrane strains, membrane stresses, and bending

moments for the center of each element are printed next. Listed for

each element are the rectangular cartesian components (as referenced
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in the local system with side one of the element collinear with the

axis) the maximum value, the minimum value, the maximum shear

strain, maximum shear stress, or maximum twisting moment, as the

case may be, and the angle between side one and the outward normal

of the face containing the maximum value. Bending stresses can be

computed by multiplying the bending moment by 61t2 where t is

the thickness of the element.
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APPENDIX C

DESCRIPTION OF COMPUTER PROGRAM

Eighteen subroutines comprise the body of the computer pro-

gram. They are controlled by call statements which comprise the

main program. Extensive use of common storage is made to transfer

information from one subroutine to another. Approximately 294,000

bytes of storage are required for the program in its present state, of

whiCh 180,000 are allotted to fast core and 114,000 are allotted to

slow core. The former amount comprises the system matrix and the

latter amount comprises the remainder of the program. Sharing the

storage of the program between fast and slow core in this manner

made it possible for the program to be run on a 200,000 byte fast core

partition set up for normal operation of a batch processing system.

A. brief description of the function of each subroutine is given

below.

1) Subroutine INPUT. This subroutine reads into storage the

input data according to control card information described in

Section B. 5.5. PIL'1)

2) Subroutine SUBCOD. This subroutine generates the 4 x 12

matrix of code numbers used subsequently to combine four

triangular elements into one quadrilateral element. tot.o

s\' 3) Subroutine GENCOD. This subroutine generates a code
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number for each element in the finite element model. These

are subsequently used to assemble the system matrix of

algebraic equations.
1)10

4) Subroutine GL00011.. This subroutine computes the global

coordinates for the node points whose coordinates were given

in terms of sub--structure reference systems.
f161

5) Subroutine INTABC. This subroutine initializes the system

matrix and system load vector to zero.

6) Subroutine QU.ASYA!' This subroutine computes the center

point of each quadrilateral element and thus begins the pro-

cedure for subdividing these elements.

7) Subroutine TRISYS. This is a- very large subroutine as it

performs many functions. Its overall function is to compute

triangular element matrices for each of the four triangles

composing a quadrilateral element and then use code numbers

to assemble the 23 x 23 quadrilateral element matrix and

associated load vector.

8) Subroutine QUASYB. This subroutine performs the static

9)

condensation process which reduces the 23 x 23 element

matrix to a 16 x 16 element matrix.
1,6c;

Subroutine SYMAG. This subroutine uses the code numbers

to assemble the element matrices into a system matrix and

system load vector.
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10) Subroutine MAINV2. This is a standard matrix inversion

subroutine. It is used to invert only small matrices such as

required by the static condensation process.

11) Subroutine REARR: This subroutine rearranges or permu-

tates triangular element matrices and their associated load

vectors prior to their synthesis into quadrilateral element

matrices.

12) Subroutine SYLMOD. This subroutine is used only in the

hydrostatic load configuration and it modifies the system

load vector to include the tensioning loads induced by the

bulkheads.

13) Subroutine BANWID. This subroutine computes the band

width of the system of simultaneous equations prior to the

solution process.

14) Subroutine SYMSOL: This is a standard subroutine used to

solve the system of simultaneous equations by Gaussian

elimination.

15) Subroutine STR,EMO. This subroutine uses the global dis-

placements and side point moments which are direct solutions

of the system of simultaneous equations and computes the

local displacements, stresses, and moments for the elements

in the finite element model.
71",

16) Subroutine ROTVA. This subroutine is used to rotate the
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reference system for each triangular element into a quadri-

lateral element reference system so that the correct average

of stresses and moments can be computed within each

quadrilateral element.
V\C717) Subroutine PRINC. This subroutine computes the principal

stresses, principal moments and the principal directions

for each element.

18) Subroutine OUTPUT. This subroutine controls the printing

out of input information and output data.



APPENDIX D: PROGRAM LISTING

C****************************************** ******* *** ***** * ******** *****
EXTERNAL EULMP
CALL ERRSET1208.2.2.0.EDUMP.2C9)
COMMON /Al/ CCOR(315.5)
COMMON /A3/ (CODE (4.12)
COMMON /A4/ ICONN(116.(C)
COMMON /A5/ QFMAA(16.16), CEMAB(16.7), CEPT3116.7),

ICEMT117.16). QEMT2116,16), CRA(16)
COMMON /46/ NEM(23,231
COMMON /47/ ORT(23)
COMMON /01E/ 1313,31. 8P)3). CP(3). A113.3), AJ(3.3). AK13,31, S1131
1. C0131. 0(3.3), 0I3.3), C(3,3),PT(3.31. 613,3),
2TEM(12,12).71(12), TEMPI12.12), 13PL(12)
COMMON /A9/ E.PR,CCN.P
COMMON /131/ MC00E111E0161
COMMON /B2/ PHIA(16).PHIT(7).CRET(7),PNIB(7)0111112),4(3.6),C(3,3)
I.CISP(7).SMOM(3).TES114,3).TEEP14.3).TEMO(4.31.1441P(12)
COMMON /83/ F(3,3). 1112,12)
COMMON /B4/ ,(2.X3.Y3.AREA
COMMON /86/ TEMT(12.1210PLT(12)
COMMON /87/ RCY.RCO,OET.GAM.AC.ICC,TRC.TCY.1.00.011.R
COMMON /89/ NP,NEeNCONP.NCEPTINNP
COMMON /8C0/ NNEVA(47,41. NCCCM(315.3). KNOM0(4.4)
COMMON /01/ ME
COMMON /C2/ 138AR1315). YRAPI315), ZBAR(315)
COMMON /C4/ CEM (16.16). CR(16)
COMMON /CUE/ LADCM
COMMON /01/ TH.X6ARR.YEARR.LEARR
COMMON /El/ 02E71116.31. 065111160), CEM01116.3)
COMMON /F1/ SYLYEC(486)
COMMON /111/ 011(4)
COMMON /11/ OT(16)
COMMON /L1/ NCASE
COMMON /Y2/ 8811)
COMMON /SLOW/ 8GR(486.E7)
OIMENSICN CEM0A17.16/tOEMEEI7.7).LRE(7)
COBBLE PRECISION F
ncluel_ PRECISION CEM88
coLEILE PRECISION 0EM8A
CALL (NPLT
CALL OLCCOR
CALL SUBCOO
CALL CENCOC I NP,NEINCONP,NCEPTI
CALL 1NTAEC
CU 25C P=1,1E
CALL CLASIA IM)
CALL TR(SYS(M)
N=7
IFII00NNIM,91.1) N=2
GALL cOLSYR (M.LN.\,CE=RF.CE=FA,CRF)
CALL SYNAGILN.M!

25G CuNTIELF
IFINCASE.LC.11 GC TC 150'
CC TC 2CC

15C CALL SYLMCC
2CC CONTINUE

CALL RAWAIG 1!,E.=51

CALL SYMSOL (MBI
REWIND 2
REWIND 3
1386(50 18
CC 3CC IL=1.NE
N=7
IFIICONNI1L.9).EQ.1) 6=2

300 CALL STREMO INOBPT.N.CEMBEICEMBA.CR8.(11
CALL COPIA
STOP
ENO

C ************ ******** *********** ****** * **** ******** *********** * * * ******
SUBROUTINE INPUT
COMMON /Al/ CCOR1315.5)
COMMON /A4/ ICONNI116.10)
COMMON /A9/ E.PR.CON.P
COMMON /B7/ RCY.RCO.BET.GAM.AC,TCGORGITCY.TC01,01TR
COMMON /89/ NP.NE.NCONP,NCEPT.NNP
COMMON /8CD/ IINOVA147,41, NODCM(315.3). KNOM014.4)
COMMON /L1/ NCASE
REAC(5.200)NCASE

2CC FORMAT (15)
READI5.253) RCYIRCOOFTIGAM. TCGJRG.ICY.TCO
BET=.01745328*BET
GAM=.C174328*GAM

253 FORMAT (eFe.5)
REAC(5.254) 011R
01TR=CITR*0.5

254 FORMAT(F8.11
AO=(RCY-RCO*CCS(GAM))/SINIGAP)
REA0(5.255) E,PR
CON= 11.-PRlt.5

255 FORMAT (2X,E10.3,F10.31
13540(5,271) NP.NE.NCCNP.NUIPT,NNP

211 FORMAT 15151
CO BOO 1=1.NP
DO ECO J=1,5

800 COOR)1,J) =C.0
OU 275 ( 1,NINP
REAC15.280) K. (CCOR(K.J1.0=1.51
IFICOORIK.4).E0.3.0R.CCOR(Re41.21.4)CC0R(K.2)=.0174532E*COCR(W,21

275 CONTINUE
250 FORMAT $18,2F1C.2,3F5.C!

CO 3CC
3C0 5280)5.305! 1.11CONNillji.j=1,10
305 FORMAT (150X.815.211C1

CO 334 1=10(CONP
334 2E8015.3351 16FEC5A11.01.0=1.41
335 FORMAT (4151

Cc 340 1=1.NUPiPT
REAC (5.741) (KNCPU(1.21, J=1.41

341 FORMAT (415!
=CAG(5.344) P

344 FORMAT (F5.3!
RETLRN

*****.***..************.**********************************************
SUF.PCUTINE SUFCLC
(.0mVPN /Ai/ ICNCE 14,121
CO 159 1=1,4

III J=1,12
190 ICnCHI,J)-

CI: 2CC 0.1.7
1=1



2C0 ICOOE(1,J1=J
DC 2C1 J=1.7
1=2

2C1 ICOCE)I.J( =J+4
CO 2C2 J=1,7
1=3

202 ICOCEII,J)=J+8
CO 2C3 J=1,3

2C3 10001(4.3)=1COCE(3.J.4)
00 205 1=1,4
ICOCEII.9)=17
ICOCE11.10)=18

205 ICOCE11.11I=19
(CODE 14,4) = 16
CO 207 J=1,3

2C7 ICCCE 14.3+4/ = 1000E 11,1)
DC 209 1=1,4

209 ICOCE 11.81= 20+1
ICCCE (4,8) = 2C
CO 211 1=1.4

211 !COPE II.121 = 1+19
RETURN
INC

C **************** ************* ****************************** ********** *
SUBROUTINE GENCCO I KR,KEiNCCNP,NCEPTI
CUPPON /01/ 0006131595/
COMMON /A4/ ICONN(116,10)
CCEMON /81/ NCODE1116.16/
COMMON /BCD/ KN054(47,4), NCOCM1315,3), KNCM014,41
COMMON /CUE/ LACCE
CO 27 I=1,NE
CO 23 J=1.16

23 NCOCEII,J1=0
DU 3C I=1. NP
CU 30 J=1,3

30 NOCOM(1,J)=G
8=C
CO 12 1=1, NP
CU 2 N=1,NGONP
IF (KNOVAIN.1).E6.11 GO TC 3
GC TG 2

3 CL 4 F=2,4.1
IF IKNOVAIN.M).E0.1) GC IC 4
8=8.1
J=M-1
NUDGMII,J)=K

4 CONTINUE
CU 70 12 -

2 CONTINUE
IF IGCGRIIT3/-2.l 7,8,9

J=1
CL. TO 11

6 J=2
CO Tr 11

ti ..1=

11 CU 31 0=1,3
K=6.1
NUCCY11,L)=K

31 CW,TINUE
1? CCNTINLE

LALem=K
OS 15 L=1.,45
N=C

IF11CONN(1,1C).tC.1) 61=3
IF IICCNNIL,101.NE.1) N1 =4
CO 14 LCUM=1,311
K=N*4
J=N*2
CO 13 1=1,3

13 NCOCE (1.1+K)=N000M(ICONNIL.1433.1)
IFICCORIICONNI1.31.43.GT.4/ GC TC 15
IFIICONN(L12+J).EC.03 GC TC 19
NCOCE (1,4+K)=NCDOMIICCNNIL.2+J).11

14 N=N+1
CO IC 15

19 1=0
J=0
NU=NL-1
CO 2C LCUM=1,NC
K=K+4
J=J+2
DO 2C 1=113

20 NCOCEILII+KI=NODOMIICCNNIL.1+J).13
15 CONTINUE

CC 18 /=1008PT
CO 18 K=2,4
IF (ICONN(1,1C).E0.1) 15=6
IF 11CONN11.101.N6.1/ 1N=E
CO 16 J=2.174,2
IF IICONNIKNCM011.101,J).EC.KNOMC11.111 GC TO 17

16 CONTINUE
17 L=J*2

M=6-1
18 NCODE(KNOM0(1,17),L)=1CCOMIKNCM011,1),M1

RETURN
END

C ************************ ********** ** ********* * ***** * **************** **

SUBROUTINE INTABC
COMMON /COE/ LADOM
COMMON /FI/ SYLVEC1486)
COMMON /S106/ SYMA(486,87)
DO IC 1=1.486

10 SYLVEC(1) = 0.0
CO 99 1=1,486
DO 99 3=1,87

99 SYMAII.J1 = 0.0
RETURN

ENV

SUERULTINE CLCCC6
CUMPON /01/ CCOR1315,51
CCMYCN /A4/ 1COhN1116,101
CO,MON /67/ RCY,RCC,BET,GAM,AC,TCG,TRC,TCY,TCC,C1TR
crmmnN /59/ 56,65,50066,N.CePT,NhP
061,605 /BCD/ KNOVA(47,41, K1006(315,31, KNOPC(4,4)
CLINCH /C2/ 50AR(315), Y8AR13151, 10381315)
COMRCN ill/ NCASE
TANC= SP,15E11/12.C*COS1 .5*(BET.GAN1)*CCS1.5*(BET-GAP111
F5= (ACY*TANCP*SIN(GAN))/SIN(eET1
ALPFA.13.1416/2.01-AIAN1TANCP1
CCAL=CCSIALPF)
SIAL=S1N1ALPFAI
CCHET.CCS181-T1
SI5ET.51NICET1
14750,105A0551



CO 55C 1=1.41)
0845(1)=0.0
YE45(1)=0.0

550 2EAR(1).0.0
CC 371 1.11 NP
IF (CC0511.1).NE.0) GC TC 510
IF ICCOR(I.2).NE.C) GC IC 500
IF(CC0511.4).E0.1 .15. C005(1.4).EC.61 GC TO 500
GO TO 371

5CC IF (COOR(1.4).EG.1 .0R. CCCR(1.4).E0.6/ GC TC 351
IF ICC0511.4).E0.2) GC IC 361
IF (CCCR(1.4).EU.3) GC TC 364
IF IC005(1.4).E0.4 .CR. CCC511,4/.EC.51 GC TC 369

351 X845(11.CC0511.1) FS
8817(1).0005(1.2)
ZBAR(I)=0.0
GO TO 371

361 XESAP(1). COAL*C00511.1)+FS
084411). COOR(1,2)
1845(I). -5IAL*CCO5(1.1)
GC IT 371

364 0548(I). COOR11.1)FS
0845(1)... 5CY*S1N(COCR(1.2))
2845(1). kCY*COS(CCC5(1.2))
DC TC 371

369 TA=TAGAM
RA.RCO
IF (CCOR(I.4).EC.4) GC IC 37C
IF (NCASE.E0.0 TA=C.0
IF INCASE.EC.1) 54.11CC/5.10
IF INCASE.80.1) C005(1.1)=40

370 COCO =cos(com(,2))
SIC[ .SINICCC5(1.21)
7E81 = 54.140-CCORII,111.74
TEM2 = 1010(I.1)
XCAR(I). TEM2 *CCEET-TEMI*SIBET6CCCC
0845(1). ICM1 *SICC
184541). TEM2 *S1801TEMI.CCOET.COCC

371 CONTINCE

IFfiCCNINAM,q).GT.4) GC TO 161
CO e J=1.8.2
1..10 s X845(1CCNNIN.J))
CY.CY 1 Y845(1CCNNIM.J))

R C2=CI nAR(ICONNIMIJ1)
Itl 06841. 108.25

01455. CY *.25
/FARR. 128.25
IF(ICCNN(P.9).EQ.1) GC IC II
IF(ICONN(M19).EC.2) GC TO 12
IFIICONN(M,91.EC.3) GC IC 13
IFI1CONNIM.91.80.41 GC TO 14
IFIICONNIM.9).EQ.51 GC TC 9
IF(ICONNIM.9).80.6) GC TO 15'

11 TP.TCG
GO IC 9

12 Th=TRG
GO TO 9

13 TH.TCY
GC TO

14 ni=Tco
GO TO 9

15 11-.1115
RETURN
ENO
.1.****************** ** ******* *** ************************** 44444SUPROLIINE TRISYS(M)
COMMON /43/ ICCDE 14,121
COMMON /44/ 1CONN(116.10)
COMMON /46/ TGEM(23.23)
COMMON /A7/ CRT(23)

'

COMMON /48/ 813.31, 08(3). CP13), 811313), 4.113,3). AK(3.3)11 S1(3)1. C013), 0313). C(3.3). 013,3)011301. M(3O).

CO 4CC 1.1040BPI
0841(1CONNIKNCMC(1,21.3)) = 084511C0441K4CMC(1.2).1)/

4C0 LHAR(ICENNIKNOM0(1.21.3)) = 288RIICCNN(KNOm0(1.2).1))
084R(IC044(0NOVOINCCPT,2),5)) = Y8AR(ICC46(K4CMOINCEPT.21.7))
/045(1CONNINNOM1INC141.21.5)) = 2114511CONNIKNCMOINC8P1,2).71)
CO 408 1.1.4P

4c8 m517.8 (7,11) 1.XBAR(1),YR4N(1),IRA5(1)
II FLRIA7(14.30.F12.4.eX0-12.4,80,612.4000141

CC 911 1=1,NE
3.( 41CLC

911 MR17E17.3211 JOICCN411.41, 4=1.8.2)
321 FORMAT (16(14.1X))

08 ICON
0OC

stpPutrIN CLASY4 (5)
004401 /44/ 1C1J451116o1C)
COMMON /1-7/ RCYOCC,DET,GAN.111,TCG.TRCOCY.I.C1.C/TR
COMMON /C2/ 0240(315). YBAP(315). 10461)15)
C)881 /91/ INOWARP.YRAM5.ZRAPR

CV. .

01.C.
IF (ICCNN(N,I1').C.C.1) CC 7C 101

2111(12.12/01) 12). 1E1,1'112.12), 581112)
COMMON /A9/ E.P5.CCN.P
COMMON /83/ F(3.3), 1112.12)
COMMON /84/ 02.03.73.458A
COMMON /86/ TEMT112.121.5PLTI121
COMMON /87/ RCY.5C0.8ET.GAM,ACITCG.T5G.TCY,T10.0115
COMMON /C2/ 084513151. YBAR(315). 2048(315)
COMMON /11/ TH.08455,08ARPIZ8AR5
COMMON /11/ NCASE
COMMON /02/ 88(3)
GOUt±LE P1E115105 F,BB,GET
CO 145 1=1,23
CiRT(1).C.0
CO 145 J=1,23

145 TCEPII,J)=0.0
CC 155 L=1,4
IF (L.EC.1) GC TO 1C
IF (1.FC.2) GC TO 2C
IF (1.10.3) GC TC 3C
IF IL.E1.4) GC IC 4C

10 xCAR1=xMARUCCNN(N.1))
50381=YeARCICCN,NIV,11)
ZvAR1=1,,4RITCCN4(1.111
)0032=Y83((0145(10,21)
YLAP,2=YPAR(IGCNNIY.3))
211Aq2=Z8 AC(ICONN(5.3))

!Iii4=R1t=.'')5)Cr IL 45
764,7=YEA1(IC14N(M.5))
ZVA23=ZHA,(ICLAn(fr,5))

Ti!JG 35



20

30

40

45
1

1

X3AR1=XFARTICONN(P,3)/
YbAR1=YEARTICORNIM.3))
ZBAR1=ZOARIICCNNIM*3))
XBAR2=XEAR(ICCNNIM,5))
YEAR2=YEAR(ICCNN(34w5))
U,AR2=ZBAKTICCNNI34,511
CO TO 45
XBARI=XEARIICCNNIM,5)1
YBAR1=YPARIICONN1h,511
ZHARI.LBAR(ICCNN1F.5))
XUAR2=XBARIICCNNTP17))
YHAR2=YEARIICONNT34,711
10792=1RARIICCNN(M,7))
GO TO 45
XBARI=XBARTICONNIM.711
YbARI=Y3ARTICONN(34,7)/
ZPARI=LBAKIICONNIM,7))
XBAR2=XBARIICONNIM.1T/
Y13712=YEARITCONN(34.1))
28792=ZBAR(ICONNI!'.1)/
71 = ((X137R2-X9791)*(XNAg2-XEARI)*(YPAR2-YEARI)*(YeAR2-YeARI)4.

(113712-/HARI)*(LHAR2-ZeARIII**.5
IF(ICCNN(M,9).G1.41 'GC TO 56
A2 . f(XSAAR-X0AR2)*IXBARR-XEAR2/..(YeARR-YBAR2)*IY0710-Y8AR2).,

1/BARR-IBAR2( *(28AHR-IEAR2))***5

52

53

B(2,2)=1.0
E(2,2)=C.0
813,1)=-8(10)
8(3,2)=CiC
61313)=8(1,1)
GO T0 49
ALPHA.1.57C79-BET
613,1)=5INIALPH71
B(3,2)=C.0
E13,31=COSiALPHA1
012,11.-811,234813,3)
812,21 =011,11/813,3)
H(2,3)=5(1,2T*8(3,3)
GO TO 49
11(2,1)=1.0
B12.2)=0.0
13(2,3) .C.0
013,1T=C.0
1313,2)=C.0
8(3,31=1.0

73-= 1128ARR-XBARIMMBARR-XBARI1 .1YEARR-YBARI)*(YBARR-YeARI).

1 ( nARR-ZBAR11*(ZUARR-ZeAR1))**.5
GO IC 56

55 Al = (IXEAR2-XCARI)*(XBAR2-XBA91)+IYBAR2-Y8AR1)*(Y3AR2-YBAR1)4-
1 (INAR2-215AR1)*(267R2-2d7R1))**.5
A2 = 115549,-XYq,R21*(),I3762-XRAR2) 41YEAR3-YBAR2141YPAg3-VIA9214

1 (2(37113-28782)*(287343-1E742)1"*.5
Ai = (IXBARI-XEAR3)*(XEAR1-XBAR3)4.1YEAR1-YeAR31*(YEARI-YBAR31+

1 12eARI-I3AR3)*(Z8ARI-7HAR3))**.5
56 1!11,11=1X87.22-XBAR11/71

811,2) =(YBAR2-V6A5I)/71
B11,3)=IZEAR2-1EAR1)/71
IF(ICCNN(P1)0).EC.1) GC TC 57
IFIICENNIM,9).GT.41 GC TO 54
C1.02ARR-N5A511/73
G2=1YGA33-1,5141)/A
C3=1261155-261t11/A3
CO TC 52

57 C1.1XUAR3-1n7R1//71
C2=1YEAR3-YBAR11/A3
C3=1ZPA53-ZbAR11/A3

56 51,151= (0,11,2).C3-h(1,3).Cil*(1411,2)*C3-6(1.3)502) (E211.3)*C1
-5)1,115031" 1P111314C1-P11,11.,C31 1R11,11*C2-R(1,21*C11
7Ii,(1,1)*C2-011.2)*C1))**.5
H11,1)*ClOill,2).C2.8110)*C3

B(3,1). (311.2)*C3-C(1,31*C21/SINSE
34(3,21= )011,?1.C1-M,1)*C1)/51/,51
6(3,?)= (1(1,)1502-81112),C11/511\51
1I7,1). 813,2)*811,3)7H(3,3)*E(1,2)
BI2,21= R(.3.3)*R11,1)-913.1)*2(1,3)
712,3)= 1-113.1)*ttf1,21-P(3,2)*PfltIl
GU TO 4S

54 IF IICHNO1Y,91.5u.5 .350. ACAFE.EC.C1 GC TG 51
IF 11045N1m,q).E6.5 .ANC. NCASF.EG.I1 CC TC 52
If 11CUNW,9/.1C.61 GC TT 53
4211E16,6/ *
FORMAT I, 'ERROR IN ICCAN FUR FLEt,ENT.,151

51 3412,11=C.0

49 CONTINUE
CO 59 1=1,3
CO 59 J=1,3

59 IFTAE51011,1/1.LE. .03500T 011,3T = 0.0
Al./U*12.
IFIICONN(Mv9).GT.4) GC TC 72
72=A2*12.
A3=73.12.
02=A1
X3=A3 *COSSI
13=43 *SIN151
AREA=1X2*Y3/2.0)
BP111*-Y3
8P(21=53
OP(31=0.
CP11)=1X3-X2)
CP121=-X3
CP(3)=X2
ETA=F*71./14.*AREA*11.-PR*PR/1
GU 50 1=1,3
CO 50 J=1,3
A411,J1=ETA * (8P11)*BP1J1*OP(1)*034131*GCN1
8,111,J1=ETA * 1BP11)*CP(J1*PRNAP1J1*GO111*CON)

50 AKII,J1=ETA * ICP111*CPIJI*NP11)*ePIJ1*CON)
51(1)=-1.
31121=102-321/012
IF IICLNN1M,71.5,F.01 4HITE11.91 5I121
CC 61 1=1,3
CO 61 3=1,3

61 F(I,J)=0.0
IF fICCNNIV01.6C.11 CC TC 72

. CH21=00551
CO(11=0.
CU12)=53/42
C.C1?)=-51t51
F(1,11=C.
F(1,2)=1.
F11,51=0.
F(2,1)=CC(21*CC(21
F(2,2)=51121*51(21
F12,2)=2.4C.C121*S112/
F(3,1)=C0121.00(3)
F(3,2)=51(3)*51131



F13.31=2.*C013/*5113/
CALL MAINV2 (F13.0:18,Co0Ell
ETAP= 12.4AREA/IP1711411471-0
00 6C 1=1,3
CO 6C J=1,3

61 0)1,1)=-E7AP*12.*110.PR/*F(311/4F13,J).F11.114F(1rJ).F(2.1)*F121J1
1 -PR*(F(2,1)*F(1,1).F(111)*F121J111
C11,1)=C.
C11,2)=C.
C(1,3)=-1.
C12,1)=-5112/*C0(2)
C12121=-0(2,11
C12031=2.*C012) *CC12/...1.0
013,11=-5113/*CC(3)

Ci3,23 =-D13.13
0130)=2.*C013/*C013/-1.0
CO 7C 1=1,3
CC 7C J=1,3

PT(1,1)=-881J/*S111//12.*AREAl+CP(J)*CCII//12.*AREA/
CII,J)=C.
CU 7C K=1,3

70 C11,JI= 011,..11.10(10(1*F(K,J1
CO 79 1=1,3
CO 79 J=1.3

79 911..1)= 1+Al*C11,11*PTII,JI.A2*C(201/*P7.127J/*A3*C13,11*P1131J
11/

72 CO 80 1=1,12
CO PC J =1.12

60 TEM(I,J)=C.0
IF11CONN(M,9).17.51 GC 70 83
AREA=1CCCCCC.
IFIICCNIs(M,9).EQ.6) AREA= 3.14159*TO*144/8.0
AXST= AREA*E/AI
7E1,11,11= AXS1
119(1,2)=-AXST
TEM12,I1= TEM11.2)
11912,21= AXS-1
12=11
GO IC SI

e3 CONTINUE
CO e5 1=1,3
CC P9 J=1,3
TEP11.J1=A111,J1
le'11,J.3/=AJ11,J1
TEM11.3,1)=AJ1J,11
TEM11+3,..1431=AK1(,11
IFIICONNIN.9).E0.11 GL TO P5
7M11.9,J+6)=9(1,J)
TEN11+6,J+91=H(J,11
T101(-1.g,j+9)=.6(1,j)

E9 CCNIINLE
CU 07 1=1.12

07 PL111=0.0
IF (IC('NNIM,9).LT.1) CO TL 99
CC e9 1=7,9

09 MAI/. 15AAREA/1.0
CO Se 1=1,12

SO RPL111=0.0
99 CALL 1FAAR ITeM,PL,TPL/

CC (CC 1=1.12
CO 1CC J=1.12

12C TI(,J)=C.0
CO 11C 1=1,3

C

00 IIC J=1,3
711...1)=8 ((,J)
T(1.4.J.4) =8 (11,3)

IIC 1.11+81J+8)=8 (11.1)
CO 12C 1=4,12,4
J=I

12C 711,1)=1.0
MRITE 121 X2013,Y3,AREA,F,T

CO 13C 1=1,12
CO 131 J=1,12
TEMPII,J)=C.0
CO 13C 1.1,12

130 TEMP11,J1=TEMP11,314.7EM11,104IIK,J)
CO 14C 1=1,12
DO 141 J=1,12
TEM1111.1/=C.0
DO 14C K=1,12

140 7EMIII,J)=7E1,711,J),IIK.IWUPPIK,J)
IFIICONNIMOLGT.4) GC TO 156
DU 142 1=1,12
RPL111)=0,0
CO 142 K=1,12

142 RPLIIII=RPLIII1+1.1K.11*RP1110
IF 1(CONN114,10).EQ.11 GC 70 156
CO 351 J=1,12
CO 55C N=J,12
KA=ICODEIL,J)
K8=1C00E(L,N)
IF (KA.LE.K131 GO TC 15C
NIEPP=KA
KA=KB
KLI=NTEMP

150 TOEMIKA,KE).TQEMIKAO(B/FTEKTIJ,N)
351 CONTINUE

CO 152 1=1,23
CO 152 J=1,23
TUEM1Js1/=I0EKII.J1

112 CONTINUE
CO 154 J=1,23
CO 153 1=1,12
IF IICOCEIL,K).NE.J/ CO TC 153
051 IJ/=1,111J/45911110

153 CONTINUE
1,4 CONTINUE
159 CONTINUE
151 RETURN

FNC

***********.44********************************************************
SUBRUTINE 0UAS/13 1F,L9.N.CENBE,CEMBA.0RP/
CCYMCN /A4/ ICCNN1116,IC/
CONMON /45/ QEMAA116,161e CEMA0116,71, CEMT3116.71,
1C&MT1(7,16), CEMT2116,10, CRA(16)
COMMON /AN/ T0E9123,231
COMMON /41/ 1.1.1123/
COMMON /C4/ 0FM (16,16), 011161
COMMON /II/ 011161
COMMON /22/ 90171
CIMENICN 0EFeeIN,h). CFeEAIN,16),CRITIN/
COUPLE PREF-1511:N CENBE,CET,B0
COLHLE PRECISION SEP .13E944, CEFAE,CEMPA,CEMTI,CEMT2.CFMT3
IFIICCUNIM,10).EG.1) GC VC 302
(F(ICONN)F,91.01.4) GC 10 3C3



CO 16C 1=1,16
CO 16C J=1,16

160 OEMAAII,J)=TCFM11,2)

CC 1/C 1=1,16 (MT 25C I=1,LN
CO I7C J=1,5 CO 25C J=I,LN

I10 OEMABII.J)=TQEM11,1,161 K=NCOCEIMIII
CO 180 I=1,N L=NCOCEIM,J)CO 180 J=1,16 IF 16.E0.0 .09. 1.80.0) GC IC 25C180 WEMBAII,J)=1QEM11+16,J1 IFIK.LE.0 GO TO 248CO 19C 1=10 TEMPO=K
CC 19C J=I,N

6=1_
190 QEMBE1111,1)=TQEM11.1.16,J+161 L=TEMPC

CALL MAINV2(CEM8B,N,EC,C.CETI 248 MPACK=L-K +1
CU 2I0 1=1IN

IF(ICCNN(M,IC).EC.1 .CR. ICCNK18,9).07.4) GC TO 303CO 21C J=1,16
SYMAIX.MPACK/=SYMAIK,MPACK/*QEM11,11QEMTIII.JI=C.0 GO TO 25C

DO 210 K=1,81 303 SYMAIK,PPACKI=SVMAIR,MPACKI.TERT(I.J/
210 (4681111,J1=QEMIIII,JI*QE8811(1,81*CEMBA(8,41 25C CONTINUE

CO 220 1=1,16
IFIICONNIM.9).GTV41 GC TO 243CU 220 J=1,16 IF (1CONN(M.10).E0.1) NL=12

cEMT211,J)=C.0 IF IICCAINIM,IC).NE.11 NL=16CO 22C K=1,N CO 24C I=1,LACCM
220 CEMT2( I,J)=0E87211.A+6EMAB11,81*CFMTIIK,J) DO 241 J=1,NL

CO 230 1=1,16 IFINCUDEIM,J).NE.I) GC TC 241CO 230 J=1,16
IFIICONNIM,10/v_EO.1) CRIJ)=RPLT(J1230 QEMII,J)= OEMAAII,J)-LEMT211,J1
SYLVEC(1)=SYLVECTI,1*ORIJ/

t \CO 233 1=1,16 241 CONTINUE '''' .-c .wyp, y
i,.,.233 ORAIII=011711/ 240 CONTINUE

2.-.A.C''''DO 235 1=1,1 243 RETURN
235 ORE11)=CRI11.16/ ENC

NRITE (3) CEMBA0CEMCB.CRF
C *********************** ****** ***************** ******* * ***** * *********CO 237 1=1,16 SUBROLTINE PAINV2 1A.K.O,M,CETERM/ C0409CC 237 J=I,N C MATRIX INVERSION KITH ACCCMPANYING SOLUTION CF LINEAR 00410QEMT111,J)=0.0 C EQUATIONS OF THE FORM AX = I. JCROCN'S METHOD 00411CO 231 K.I,N
LI A IS THE ARRAY TU BE INVERTEC. 00412237 QEMT111,J)=OEMT3111J1.0EMAEII,R)*QEM88IN,J) C B IS THE COLUMN OF CONSTANTS FOR LINEAR EQUATION SCLUTICN. 00413CO 24C 1=1.16
C N 15 THE CRCER CF A CC414QT111=0.0 C M IS THE INOICATCR FCR SPECIFYING INVERSION OR SOLLTICN 00415CL 239 X=I,N
C CF LINEAR EQUATIONS. 00416239 01111= QIIII*CEMT311,AI*CRBIK/
C M=C, INVERSION IS PERFORMED. 00417240 QR(1)=0RA11/-6T111 C M=1, SOLLITON CF LINEAR EOLATICNS IS PERFORMEC. 00418LN=16
C AT THE RETLRN TC THE CALLING PROGRAM, A INVERSE C0419GO TO 301
C IS STORED AT A AND X AT 8. 004203C2 LN=12
C NOTE.. IF USEC SOLELY FOR INVERSICN, THE CALL STATEMENT 00421CO TO 3C1
C MUST STILL CCNTAIN AN ENTRY CCRRESPCNCING TO R. 00422303 L',=7
C DOTER) IS THE LCCATION IN WHICH ThE CETERMINANT IS STCREC. CC423301 RETLNE.

OIMENSION IPIVOI(7), 415,N), 811,1/, INCEX17,2), PIVC717/ C0424F",C [UCCLE PRECISION A,LETERM,AMAX,SWAP,T,8
C .4,4,4**k.**..***0*4***4444,...ii,!*4************************************* Cr 2C J=1,NI 00426SUBROLTINE 55F00I10hh0 - 6t,,,, ,A* 20 IPIVCTIJI=C C0427CLeMON /04/ ICCKNIIIE,ICI, CO 55C I=1,N 00428COMMON /81/ MCCCEI116,1EI,"

C SEARCE FCR PIVOT ELEMENT C0429CurVON /86/TFmT112.121,RPLT112/ APAX.C.0 C043CCONRON /19/ NP,NE,NCONP.NCEPT,NNP / CO 105 J=1,N CC431CONMO /FCC/ KNCW(47,41, NCOCM(315,31, 600E014,41 If IIPIVOTIJI-II 60, 105, SC 00432CTMYON /C4 /'Cl) (16,161, 04116) 5O LO ICC R=I,N
CcMPO:, /C/TI LACOF , IF IIPIvOTIKI-II PC, 10O, 74C 00434CdEMON /Ft/ SYLvECI486I, HO IF ICABSIAMAXI-CAPSIAIJ,KIII 85.1C0,1C0
LEVEL, /STO,/ SyFAI4ME,tTli 65 160W=J 004160CLBLE PRLLISICN CEM ITCLtP.K 00437



AMAX=A(J,K) 00475 6 J=1
100 CONTINUE CC439 GO TC 9105 CONTINUE CC44C 7 3 =4IMIVOT(ICCLUMI=IPIVOT(ICOLUM/.1 CC441 9 A2(1,J1=1.0C INTERCHANGE. ROWS TC PIT PIVOT ELEMENT CN CIAGONAL C0442

1=1+1IF IIRCW-ICOLLN) 140, 260, 14C CC443 J=J+414C CONTINLE
IFIJ.E0.13IGC TO 5CO 2CC L=1,9 C0445 IF1J.EC.141GC TO 6S6AP.A111206,LI C0446 IFIJ.EQ.151G0 IC 7AtIRCK,LI=AIICOLUN,L) CC447 IFIJ.EC.161G0 TC 1C2CC AIICOLLP,L1=SMAP CC448 GC TO 9IFIMI 260, 260, 210 CC449 10 CC AI 1.1,12210 CO 25C L.1, M 00550 CU 11 J=1,12SwAP=8(1806,1) C0451 11 A1(1,J)=A2IJII)etiRcu,t)=aticeLuma) 00452 CO 12 1=1,12250 BIICOLLM,L)=SINAP 00453 CU 12 J=1,12260 INOEXI1,11=1RUN C0454 TEMPII,JI=C.0INCEXII,2)=ICCLLY C0455 CO 12 K=1,12PIVCTIII=ATICCILM,ICCLUM1 CC456 12 TEMPII,J)=TEMPII,J)+TEMII,KI*A21K,JIC CIVICS PIVOT ROI, BY PIVOT ELEMENT

AucoLum,lcuum).1.c
CC456
00459

CU 13 1=1,12
CO 13 J=1,12CO 35C L=1,N C0460 TERII,J).C.035C A(ICOLLM,L1=AIICCLUM,LI/PIVCTIII 00461 CO 13 K=1,12IF(M1 lee, 380, 360 00462 13 TEMII,J1=TEMII,3144111,KI*TEMPIK,JT360 CO 37C L=1,m 00463 CO 14 1=1,12310 611CCLUM,L)=BIICCLUM,L)/PIVC1(1) CC464 RPLI1T=C.0

C RECOCE NON - PIVOT PONS CC465 CC 14 K=1,123E0 CU 550 11.1,9 00466 14 RPLII)=RPLIII+5111,KI*P1(10IFILI-ICOLLMI 4CC, 55C, 4CC C0467 RETURN4CC 1.AIL1,1COLLMI 0C468 ENCA(L1,1CCOM1.C.0 CC469 C ********************* ***** ******** ******** * ** **** *** ****** **********CO 45C 1.1,N 0C47C SUBROUTINE SVLMCCAIL1,L)=AILI,L)-AI ICCLUM,L)*I 00471 COMMON /A1/ CCORI315,51IFIM/ 550, 550, 46C 00472 COMMON /49/ E,PR,CCN,P46C CO 5CC L=1,m C0473 COMMCN /67/ RCY,RCC,BET,GAM,AC,TCG,TRG,TCY,TCO,CITR5CC HIL1,L)=6111,L)-BI 1CCLUM,LI4T 00474 COMMON /89/ NP,NE,NCONP,NCEPT,NNP550 CONTINUE 00475 COMMON /BCC/ KNOVA147,4), NCOCM(315,3), K140,014,4/C INTERCHANGE COLUMNS 00476 COMMON /F1/ SYLVEC1486)CO 710 1=1,9 00477 COMMON /COE/ 18009L=941-I 00478 ALPFA.1.57079-BETIF 1INCEX(1,11-INDEx11,211 63C, 710, 630 00479 CI.SINTALPHAI63C JMOLI=INCEX(1,1) 0048C C2=COSIALPHAIJCCIAN=INUEXII,21 00481
N =CCC 705 K.1,9 00482 H.0SwAP=A(K,JROWI 00483 CO 1C K=I,NRACK,J.,010.A(K,JCCLUf,) 00484 IF (COCRIK,0).EC.1.1.R.CCCO1K,5).EC.2) 5.N*1A(K,JCOLLMI=SMAP CC485 IF ICCORIK,51.EG.3.CR.CC0RIK,51.EC.4) P=M+17C5 CoNTINLE 00486 IC CONTINUE71C CONTINUE
NU=5-1

74C 2ET1.12
FCY=1(P#(RCYRCY)*3.141591/(4.0*NLII*144.ENC C0489

C ******************m************.s.ss.**********************.********
SU,ROLTINE REARN (TCP,PL,.+PL)
ril,LNsioN 91112,12), A2112,121,TFF112,121,TEMP112,121,

1 201121,RPL112)
CC 4 1=1,12
LO 4 J=1,12

21(1.J).C.0
4 A211,J).C.0

1=1
J=1
t;C:. IC 9
J.2
GO TC 9

I,o=F,-I
rcc= I ( P . )RCX:*PCC) .3. 1,11 I / 2 .C.NU) ) *144.
Cr 1CC ,tiP
IF CCORI K 5 I . ) GC TO ICC
I F I CCATIO I T. 5) .5O CGCR I K .EC.4 / GO TO 25
F =FCN
IF I COOP I k 5 ) .FG. 21 F= C.54FCY
I G.40000F' I k r 1
FITLVEI I fr, )=SYLVEC I IF I -I-
GO IC ICC

25 5=FC.C.
I F (CCC ( I 5 ) ) F =11; 5*I-CO
I 1) I=NUCCF, 11(r11 Cr,



102=NECCMIK.3/ 66C CONTINUE
SYLVECI101)=SYLVECIICIITF*C1 GO TV 5(0
SYLIIECII021=SYLVECII027+F*C2 cICU CONTINUE c BACK SLESTITLIICKRETURN

C
ENE

7CC N=N-1C * ****************************************************************** cSLBROLTINE DANMAD INE.MBI
C I. CFECK FOR FIRST ECLATICNCOMMON /81/ NE.017E1116.16/
CJ=1

IF(%) 75COCC.750CO 259 N=IONE
CCO 258 1=1.16
C 2. CALCLLATE LNKNCMN DISPLACEMENTSIFINCULEIN.1).EQ.C/ GC TO 258
CCO 257 L=I.16

750 CO BCC K=2,M8I(INCODEIN.L).E1.0) GC TO 257 L=N+K-1KK=IABSINCEDEINs1/NCCOEIN.M w IFINO-11 81C.77C.77/IFIKKT.J/ 257.257.256 77C QINI=CIN)OGKINOWICIL1256 J=KK
8C1 CONTINLE257 CONTINLE

GO TO 7CC258 CUNTINLE
9GC CONTINUE259 CONTINUE

MH=J*1 CV 11 1=100
K1=NCOOM(1.1)RUMPS
K2=NOCOMII.2/END
K3=NOCCM(1.3)

C ******************************************************* ****** ****** * IFIK1.E1.1) CIK1/=C.0SUERUUTINE SYM5CL (PP)
IFIK2.EQ.C/ C(K2) =C.C.COMMON /89/ NP,NE.INCCMPOCEPT.NNP
1F(10.E1.01 QIK3)=O.0COMMON /BCD/ KN0VA(47.4). NECCMI3150). KNCM0(4.41

....0 IC WRITE(15) 1,0(K1),5IK21.1(K31COMMON /COE/ LABOR RETURN
COMMON /F1/ 0496/

ENOCOMMON /5L04/ 9081486.87/
C *************************************** ***** * ******** ** ***************CIPENSION F(4861 SUBROUTINE STREMO INCOPTINs5EM88,1EMPA.CR8.11)NO=LACOM COMMON /A4/ ICCAN(116.10

N =C COMMON /89/ E.PR.CON,P5CC N=NTI
COMMON /81/ NCODE(I16.16)

C COMMON /82/ PFIA(161,5141117/1CROT17).PHIBI7).PHII12),013,6),C(3,3)
C RECLCE N Th EOUATION

1,CISPI7IISMCMt3).TES114.3IsT6EP(4.3),TEMOI4.3)tPHIPI12/
C COMMON /83/ F(3,3). 1112.12/
C 1. CIVICE RIGHT SICE 87 CIAGCNAL ELEMENT
C

QIN)=QIN/PIGKIN.1)

C 2. CFECK FOR LAST ECLATICN
C

COMMON /84/ 52,8303,88E8
COMMON /BCD/ KNCVAt47.4 NCCCMI 315.31 KNCM0(414)
COMMON /El/ UEEP(116,3). 6E51(116,31, CEM0I116,3)
COMMON /FI/ SYLVECI486,
COMMON /h1/ DISI41
COMMCN /LI/ COYI1,4/

IFIN-NCI 55COCC,55C COMMON /91/ 8(8)
CIMENSI(N CEMBAIN.16).CEN981N,N/ICRE(NI3. rIVIPE N TM FCLATION Cl CIAGCNAL ELEMENT CCUELE PRECISION F
coueL, PRECISICN cEMBB57C CO FCC K=2,75
COUHLE PRECISION CEN8AF(K)=pCKINIK/
NL=I6

P, )=EuK , /8GK 1 N 1 I
NL=12FCC CONTINLE

IFIICONNIIL.91.67.41 NL=7
CO ICC 1=IINL

C 4. ',EULC,E ,,E^"4ININZ ECtAlliNs
IF INCOCEILL.II.EG.C/ GL IC 1115
PIAL11/ =SYLVECINCCLECIL,III

CU EEC L=20,8 Cr TO ICC
I=N.L-1 105 PhIA(1) = C.0
IF(NC-11 66C.R4C,FEC ICC CONTINLE

6411 J=C
IF I tUANI IL IC 1 .Fc . I .17A. ICCNN I IL '9) oT .41 GC Si 51CL E5C K=L,NIA
REAL 3 / C)EMHA CL BJ=JTI CO 3C 1=1,

F50 QGKII,J, = ?.C1,111J1 Fit,/ * E'Cf<IN.K( PNITII)=C.0
C.:11/=G111-FILW;INI



CU 3C K=1,16
3C PHIT111=RHITII)+CEMBAllfKl*PHIAIK/

CU 40 I=1,N
4c ,,j2171111= 09111-PHIT(1)

CO CC 1=1,N
7612111=0.0
CO 5C K=1.N

50 PFIF(1). 1617(1)+UEROPII,R1*CROTIR1
IF IC.EC.2) GC TO 7

00 TO 9
7 00 F 1=3,7
e PFICII)=0.0
9 CONTINUE

NN = C
-3, 51 CO EC L=1,4

IF IICONNIILt7).EL.F1 GC TC 52
4E10(18) SINSI,SI
NN = NN 1

FINN) = SINSI
NN = KC I

FINN) = SI
52 CONTINUE
3( 3E40(2) X20(30314REA,F,T

IFIICONN(IL.10).E..1 .CR. /CCNN(11,9).GT.41 GC TO 67
CO 67 M=1,7
N=M-34*(1-1)
1E0(.16.16) GC TO 63
K=M-4

E3 RhIPIM)=PFIA(K1
IFIL.EC.4) GC TC 65
K=4EL
PHIP(81=PHIBIK1
CC TO 66

65 PC1PIE)=1,616141
66 RHIP191=PFIE111

7oIll1c1=P619121
PHIP(111=PHIC131
K=3EL
76171121=PHICIE1

67 CONTINUE
NJ=12
IFIICCNNIIL,91.Gf.41 NJ =7
CU 12 I=1,NJ
PHI(I)=C.0
CC 72 K=IINJ
IflICCNNIIL,10).00.1 .02. ICCEN111_,91.GT.41 PEIP(K1=PE14(K)

72 pi_1(1)=1341(1)ET 11,1T1,TPHIP1E1
If(ICONNIIL,Y).GT.4) AL TC 69
CO 71 1=1,NO2PT
IF 11L.EC.KErvC11,411 EC IC 73

71 CONfIELT
AL TO 22C

73 IF (L.E4.11 00 TC 83
GC 70 22C

01 11=NUC,H (KNOvQ(1,1),11
JJ=3,ccCH (FNOMC11,11,21
1,( ,1141=-1SVIACC1111-Sy0d6C1JJ11

22C CuMl= 12.*IREA1
1J 74 1=1,3
CO 74 J=1,6

74 AII,J)=C.0
.11,(1,1).-r3/uvi
0(1,2)= Y3/00(1
113,4(= 111,1)

A(3,51= AI1.2)
012,41=113-12)70L61
012,51=-X3/CU.1
0)2,61= X2/0461
443,17.0(2.6)
0(3,2(.0(2.5)
A(1,31.6(2,6)
CoM2=6/11.-1PR*Pk11
CO 75 1=1,3
CU 75 J=1,3

75 C(I,J)=C.0
C)1,1(= 0062
C(2.2)= C11.11
0(1,71= PR*01'62
C(2,11= 0(1,2)
CI3,1I= CLN*CL62
CO 76 1=1,7

76 CISPII)=C.0
CO 77 1=1,3

77 SMOPIII=0.0
69 CONTINUE

CISF11)=RHI(1)
CI5R121=P131151
CISP(31=661191
CISP(4)=PHI(2)
CISPI6)=PHT(6)

CISP(E)=PHI(10)
CISP(71=PHI(3)
CIS(1)=IL
CIS(2)=CISCI1)
C15(31=0151'(4)
DISt4I.CISP(7)
6RITE(15) CIS
IFI1CCNN(IL,9).GT.41 GC TC 91
5606I1)=PHI(6)
561)6(2)=PHICR(
S606(3)=PHI(12)

91 CONTINUE
CO 79 1=1,3
TOEI(L.11=0.0
TCEPIL,I)=0.0

7E TEMOIL,I)=0.0
IFIICCNNIIL,91.GT441 CO TC 92
CC 79 1=1,3
CO 79 K=1,6

79 TTEPIL,I1=TFEPIC,I1+A(I,E1*C15P(K1
CC 11 1=1,3
EL Cl E=1,3

81 TES111,11=TESICL,11EC11,E1.TEEP(L,K)
CALL 1111No ITCSI(L,11,TESI(L,21,TESI1L,31.21
CO (2 1=1,3
CO 02 E=1,3

82 TemOIT,I) =TEVCAL,11EF(1,K)EsPcM(E1
CC Ti 9?

42 TFEFIL,1)=-FI5P(1) /82
1E51(1,11= E*TEEPIC,1)

93 Ci1NI1NCE
13ITE11(1 IltC,(13SI(L.I),1=113).(CCM(1,1),I=1,4)
ITAICO30lIC,10).30.1 .C3. ICCEE(IL,9).GT.41 CC IC B5

00 CO,IINCE
CALL 3CIV
CO F7 r=1,3"-
CCEPIIC,01=C.0 Od



*

0851(IL.8)=C.0
CEM1I11101)=C.0
LC 87 1=1,4
0688111,8)= CEEP(11.0).1. TEEP(1,0)/4.0
CESIIIL,P)= QE51)11,81+ TESI(1,81/4.0
CEM0(1118)= CEm0111.,M)1. TEPC(101) /4.0

27 CONTINUE
GO TO 9C

85 CC 26 J=113
0607(11,21=TEER11.2)
CIES1(11,J)+TESII1IJ)

06 GEMCIILIJ)=TCPC(112)
9C CONTINUE

CALL PRINC 10CSI(11.1),CESI(IL,2),OESIIIL.3),2)
6kITE(211 IL,ICESI( IL,1).1.1.3),(GCM(1,1).1.1,4)
CALL PRINC ICEM0111.1).CEPC(11,21,CEPC111,3).2)
WRITE(22) IlgIOEMOIIL.1),1.1,3),(CCP11.1)11.1.4)
RETURN
ENO

******************************************

SUB/1011.15E ROTVA
CIIPPON /82/ PHIA(16),PHIT) 7),CR2T17).PHIPI7),PH1(12),A(8,6)1011.3)
1,U1SP(7),SPOP13),TE51(4/3),TEEP(4,3),TEPC14,3),PHIP(12)
COMMON /81/ 8(8)
CIPENSICN TEER(4,31, TES/4140), TEMR(4,3)
CU IC 1=1,0

IC H(11= ARSIN(2(I))
A2=C.0
CC 2C L=2,4
1= 11-1182
J= I+1
02= -11.57079-13(J)+B111 -A2)
82= A2-1.57C79
SA= SIN(2.C*A2)
CA= COS(2.C*021
50= 5I6(2.0 *02)
CH= CCS(2.0 *82)
TEER(1,1)= (TEERIL,1)+TEEFILt2))/2.0 (TEEP(1.1)-TEEPIL/2))/2.0

*CA 4 TEEP(1,3)/2.C*SA
TFERIL,21= (TEEP(1/1)+TEEP(1.2))/2.0 (TEEP(1,1)-TEEP(1,2))/2.0

2 *CU TEEPIL,1)/2.C*S2
1EE8(1.31= -ITEEP(L,II-TEEPIL,2))/2.0 *SA + TEEPIL,3)/2.C*CA
TESR11,1). ITES111,11THS1(1,2)1/2.0 ITES1(111)-TES1(1.2))/2.0

i. *CA TES1(1.,31,SA
TES8IL.2). ITES1(1.1)+TESI(L.2))/2.0 + (TESIII.,1)-TES1(1.2))/2.0

2 *CH + TES111,3)*S2
TI 5811,31= -1 TES1 ( L t1).-TES1(1.2))/2C*SA + 7E51(1,31*CA
TUNR(1,1). ITENC(1.1)+TEMCIL/21/12.0 + I7E70/1,1)-TEMCIL.2))/2.0

1 *CA TE+C(1,3)*5A
1-18'1(1.2). ITEMCIL.1)+TEMO(1,2))/2.0 ITEPC(L.1)-TEMCIL.21)/2.0

*CB TES1(1.1)58
-(TEPC(1,1)-THFC(1,2))/2.C*SA TEMOIL,2)*CA

20 005TINLE
faJ 30 1=2,4
UN 10 J=1,3
TEEPI1,J)= TEEJII,J)
IF (J.F6.1) 116711,J)= 2.C*T6ER(I,J)

TESR)1,J)
TCYCII,J)= 1E7311,2)

30 2UKII51.6
RLTLRK
E.JL

**********************************************************************

su6KULIINE PRINC 18,e,00)
COMPCN /11/ G0811.4)
IF (0.65.0 .ANC. C.EC.0) GC TC IC
AVE.(2.1.8)12.0
2ASE=(1-1))/2.0
CP2=0
1E(5.83.11 CRR=C/2.6
RAC=ItASE*BASE+CPP*CP2)**,5
[IV= -OPP/OASE
COM(1.1)=AVE+RAO
COPI1,21=AVE-RAO
COM(1.8).RAC
IFIN.EC.1) CCP(1/3).RAO*2.0
C0M11,4)=IC.5*4TAN10110)/0.01745329

CC TO 2C
10 CO 15 1=1,4
15 COP11.I)=C.0

IF (3.81.0) C0M(1,1)+A
2C RETURN

ENO
C ********* **********************

SUBROUTINE OUTPUT
COPPCN /41/ CCCR(31575)
COMMON /A4/ ICCAN(116.101
COMMON /A9/ EgPR,CCNIP
COMMON /81/ NCODE(116,16)

* *4444* *****************************

COMMON /82/ RPIA(161,RNIT(7)/GRET(71.0111017),P01(12),A13,6),C(3,3)
ItDISP(7),SMON(3)1TES1(4,3)1TEEP(4,31,TEPOI4,3),PHIP(12)
COMMON /07/ RCYOCC.OET,GAMOC,TCGORG.TCY.TCO,CITR
COMMON /89/ NP,NE,NCENPOCEPT,NNP
COMMON /ECU/ KNOVA(47,4), KCCCM(3150), 88080(4,4)
COMMON /01/ PH
COMMON /C2/ 08AR(315), 8EAR(315). 2E38(315)
COMMON /El/ CEEP(116,3), CES1(11601, CEMC(116,31
CCPPON /HI/ CIS(4)
COMMON /L1/ NCASE
COMMON /81/ COM( 1 ,4 )

' REWINC 15
REFINC 12

! REW(NC 17
RCN INC 21
REW INC 22
H817E16,260)

260 FORMAT I IFI .5CX, 'INPLr C A T A')
IFINCASE .LQ. 1 ) G(1 IC 6CC
GG TC 6CI

ECG K8116 16,602)
0C2 FURNAT I //' LCAC COKE IGLRAT 1CNJ NYORCSTATIG TEST CONE ITICN 'OUR):lEACS ASSUYEC')

GU TO 264
601 68 I IC 16,6C3)
602 FORYAT (//' LEAL CCKFIGLRATICK: CPERAT(NG GCNC IT ICI\ USING EQU IVA

1LENJ STATIC PRE SSUR6 ,NC EL14FEACS ASSUYEU')
264 CONTINUE

CET=RET/ 01745226
CA6=006/.01746229
U I 18.1 I TRs2.

68 ITU I6,26s ) R0K,RCL,UE1,0AM,AE,TCG,TRC,TCY,TCO,CITR
260 FORKAT I // CYL INLEK INLET RAC] LS = FEET ' 1/ ' CONE CUTL161 kALILS FEET'. /' ANGLE CHANGE IN FIC6 CIRECTICN

CEJIREES',/' GUNS APIA HALF ANGLE = CEGREES

4' CR0T01 u 12CL2 THICKNESS ,F 6 K2* ' INCHES', /. RING CIRCFR TH1



5CKNESS = ..F80,270 INCHES'./. CYLINCER THICKNESS = AlF8.312)(0 I

ANCFES),/° CONE THICKNESS . ',F8.3,27,' INCHES'. /' CIAMETER CF TIE
7ROD = ',F8.5, INCHES.)
WRITE1607C) E.PR

270 FORMAT (I) MODULUS CF ELASTICITY = °pE10.2p2X0 KSI', /' POISSON RA
1110 = 59E5.2)

A° WRITE (6.272) APINEINCCNPACEPTpAiNP
272 FORMAT (Ii,' NUMBER CF NOCE PCINTS = °05,10X0 NUMBER, CF ELEMENTS

1 = )0500X0 NUMBER CF CCNSTRAINEC NCCES = )15./. NUMBER CF BRANC
2F POINTS = .05110X0 NUMBER CF INPUT NCCES = .051

* WRITE(601C)
310 FORMAT WO ELEMENT CONNECTIVITY.)

CO 315 1.1INE
315 WRITE(6020) Is(ICONNII,J),J=1,101
320 FORMAT 4/1150X.815,5X.150005)

WRITE(6085)
205 FORMAT 1//p1000 NCCAL POINT CCCRDINATES')

CU 29C 1.-1, NP
IFICCCR(1,41.EQ43pOR.CCCR(1,4).EC.4)CCCR(1,2)=CCCR(1,21/.01745328
WRITE(60951 111CCCR(IpJ1t.1.1151

29C CONTINUE
295 FORMAT (/s5V050F1C.20F9pC)

* WRI17)60361
336 FORMAT 1 //0 CCNSTRAINEC NCCE PCINTS',/,6K0 NCCE U V

11)
CC 337 I.1INCONP

337 WKITE16,50C) 10KNCVA(I,J)0.1,4)
5C0 FORMAT 12150161

WRITE(60421
342 FORMAT (//0 BRANCH PCINTS.p/p5X0 NCCE ADJACENT ELEMENTS')

CU 343 1.1,0108PI
343 41(17E160LO) 10KNOWC(10),J=1,4)

RIME (6045) P

345 FORMAT (II,' INTERNAL PRESSURE.., F90,210 KS)')
RRITE16051)

351 FORMAT 11H1p4CX0CCMPLTED INFCRMATICN°)
RRITE16,352)

X 352 FORMAT 1 //0 NCOE)p5XOUISPLACEMENT ER MOMENT NUMBER')
CO 2C 1.11 NP

2C WRITE(601) 1p (NCOLM)10).J.1.3)
21 FLORA! 11,415/

NRITE16,353)
* 353 FORMAT( //,' ELEMENT1p30X0CLCE NUMBER')

Co 16 1=1INE
16 l,11E(60.7) F0NCCOE1I01,J=106)
17 FCTMAT (/ 05,5/0615)

WRITE (60721
372 FORMAT (//000 CLCGAL CCC,TINATES.p/t) NCOL'070 KEAReg8X0 YEAR

1030 LEAR')
CC 374 1.1,15P

314 65IFF(60731 (rXRAR(1),YEAR11)00AR(I)
373 FORmAT(/050(5R,F9.31)

WAI1E160611 OF
261 FCRmA1 (//,' PARC RICTH=1,15)

0617E16135C/
15C FLRAAT 1101p51501 TIPTI DATA))

KK.4.NC
R1,110(6054)

354 FORMAT(//,44Xp1GLU0AL CISFLACEMENTS ANC SICE POINT NOMENT55./p4C91,
PROCE.P6V0LEARepICA045481.1CKOVRAR.1
CO 355 1.1tRK

'2' REAR 116o0',1' .:356) 1,01,02,03
355 WRITE(6057) 1v0111C2p0 3

WRITE ttpACC)
ACC FORMAT ( / /,'DISPLACEMENTS IA LOCAL CCCRCINATE SYSTEM../ 'ELEMENT ,

114X0108X01.00(.52.)
CO 601 1.1,KK
REAC(15pEND=602) DIS

601 WRITE(6,407) CIS
602 CONTINUE

WRITE (6,6C8)
608 FORMAT (11',50)(0MEMBRANE STRESSES', //' ELE',3X,'TRI', BKOSIGMA

IX'.. 8X0SIGMA Y., 8X,'TAU BKOMAX FIXOFIN SIGMA',
2.MAX TAO', PX,'THETA')
CC 6C5 N=1,KK
REACI17pEN0.607) 1111,1TES1110)01=10)0CCM110)11.114)

605 WRITE(6p6C6) IL.Lp(TES111.0)0.101000MI1.1)0=1.4)
6C6 FORMAT 1215,7(31.E13.5))
607 CONTINUE
4C7 FORMAT I F7.012)(0( 5/(1E134 5) 1
1006 FORMAT 115.5A0(3)(1E13.51)

WRITE (6,1018)
1018 FORMAT 1.1.145KOMEMGE STRESS AT CENTER OF ELEMENT', //' ELEME

INTA.9Xp'SIDMA K.p9Xp'SIGMA Y',IOX,'TAU XYA0X0MAX SIGMA"p7X.MIN S
21GMA.p8KOMAX TAO, 9KOTFETA.)
DO IC15 N=1,KK
RE8D121gEN0 .1017) 110DES1(110)0=10/000M11.1)0.1,41

1015 WITITE(611CC6) 1120CESI(11,1)0.1010CCP110)91=1,4)
IC17 CONTINUE

WRITE 46.102e1
1028 FORMAT 1.1.,45XpBENDING MOMENT AT CENTER OF ELEMENT.,//) ELEMENT

11,8KOMOMENT A5p8X0PCMENT Y1OKOMOMENT XY°03Xp5MAX MOMENT),6)(00
2IN MOMENT.p6X0MAX TAISTAp6XOTHETAA)
CO 1025 N=IgKK
REAC(22pEN0 =1027) IL.ICEMC(11.0)0=1,31000MI1010=1,41

1025 WRITE160CC61 110CEMC(11,110.10),(CCP(1.1)0=1,4)
1C27 CONTINUE

RETURN
ENC

i# i9i# i# i### i#########i### t#i###### ii## ##f##i #ii# ##ii# ##i#i# ##iiiiiii#


