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A need has existed for an in-depth structural analysis of pen-
stock bifurcations because they form an integral part of hydroelectric
power plants. Their geometrical complexity has prevented classical
structural analysis from providing an accurate and overall picture of
the stresses in the structure.

Digital computers and the development of finite element methods
have prévided. an alternative to past methods of analysis. A finite
element solution is developed and described which treats the structure
as a continuous entity. The basic finite element is a flat plate element
which superimposes bending action and membrane action. Itis clas-
sified as a mixed formulation and is derived from Reissner's principle.
Convergence of the solution, with decreasing element size, is dis-
cussed.

Verification of the basic formulation is established by comparing



results for several simple structures for which classical solutions are
available. Verification of the finite element model for penstock bifur-
cations is established by comparison with experimental data obtained
from a prototype bifurcation.

Application of the finite element solution is made to a penstock
bifurcation which is currently being designed for the Lost Creek pro-
ject on the Rogue River in southern Oregon. Results of this analysis
are presented and discussed.

The cofnputer program was developed so that it can be applied
to most symmetrical penstock bifurcations. Included in the Appen-.

dices are a user's manual, program description, and program listing.
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STRUCTURAL ANALYSIS OF SYMMETRICAL PENSTOCK
BIFURCATIONS BY THE FINITE ELEMENT METHOD

I. INTRODUCTION

For many years penstock bifurcations have been designed by
various governmental agencies and private companies engaged in
hydroelectric power generation. Their function, generally, is to
divert the kinetic energy of water from one penstock into two genera-
tors. As a result of these efforts, methods of analysis have been
developed and are continually being improved (22). These analyses
have been adequate in the sense that they have provided a design basis
for many successful penstock bifurcations. Only a relatively few
structural failures have been noted and some were due to inferior
materials and fabrication methods.

Until recent years, however, analyses have provided stresses
only in certain parts of the structure and have not provided an overall
picture. Furthermore, the results have been based on extensive
assumptions that have been cause for concern among engineers. The
digital computer, combined with the advent of certain matrix methods,
has provided an alternative approach. This approach could conceiv-
ably result in a substantial improvement by yielding an overall streés
analysis without the need for extensive simplifying assumptions.

Consequently, the U.S. Army Corps of Engineers, Portland



‘District, initiated an investigation of the true structural behavior of
penstock bifurcations. The immediate objective was to apply the
results to the Lost Creek Reservoir project on the Rogue River. The
overall objective was to provide a capability for analyzing stress in
other symmetrical penstock bifurcations of the same general con-

figuration.

1.1 Statement and Scope of the Problem

Early work of mathematicians and engineers has provided the
classical methods and useful solutions to simplified, typical situations
which the practicing engineer still uses today, but which sometimes do
not permit an extension to real engineering situations. Owing to its
complex geometry, the symmetrical penstock bifurcation, as shown in
Figure 1.1, is a difficult structure to analyze even under such simple
loading conditions as uniform internal pressure.

" The need for the reinforcing girders is best understood with the
aid of Figure 1.2. The effect of the crotch girder is to provide reac-
tion RV due to the discontinuity in hoop stresses all along the inter-
section a-b. The ring girders have a similar effect along intersec-
tion a-c except their behavior is complicated by a lack of symmetry.
Therefore, it must be assumed that they provide vertical reactions,
horizontal reactions, and bending moment reactions along a-c.

Heretofore, it has been necessary to make simplifying
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Figure 1.1. Typical penstock bifurcation.



d

p

e e ]

a

- /A
N
/

\<\A

o AN
Plan view
R, (provided by crotch girder)
Hoop force /Hoop force

Section A-A

Figure 1.2. Illustration of crotch girder function.



assumptions in order to accomplish a tractable analysis via the afore-
mentioned classical methods. Specifically, these assumptions are as
follows:

(1)  The effect of the shells on the girders is a linearly varying

plane stress load.

(2) ' The bending rigidity of the shells is neglected.

(3) The girders behave as beams-as opposed to plates.

It maly be that under certain low pressure and small diameter applica-
tions these assumptions are reasonable but the engineer can seldom
say when this is so. The shell-girder interaction is basic to the be-
havior of the structure and as the above assumptions compromise this
interaction, the endpfoduct, a rational design basis, would likewise
be compromised.

The primary objective of this presentation is to obtain stresses,
strains, and displacements throughout the structure while subjected to
uniform internal pressure.  The interaction problem will be circum-
vented by viewing the entire’ structure as a continuous entity as
opposed to disregarding the shell except as a load transferring mecha-
nism and analyzing the girders as if they were a three-dimensional
space frame composed of curved beams.

Two load conditions will be studied; hydrostatic test condition
and operating condition. In the former, bulkheads are applied to the

bifurcation inlet and outlet apertures and in the latter no bulkheads are



assumed. The internal design pressure is a statically equivalent
pressure that takes into account the static head, the effect of water
hammer and a factor of safety.

The effect of concrete encasement will not be considered be-
cause present design conditions assume all the load to be taken by the

bifurcation disregarding its interaction with encasement.

1.2 Method of Solution

Certainly it is possible with more ingenious analytical
approaches to overcome the necessity for the aforementioned assump-
tions. The procedure of this presentation, however, will be to use
the approximate numerical approach of the finite element method (28).
By dividing the entire structure into a large number of elements, each
element can legitimately be treatea with the simplified theories of
plaﬁe stress and/or plate bending, provided the boundary conditions
around each element and around the structure are satisfied. Thus
the approagh is not to abandon simplified methods, but to be more
efficient in applying them. This is the central idea behind any numeri-
cal approximation, and as long as the desired result is insight rather
than numbers, the idea is valid.

The structure is thought of as being composed of four sub-
structures for purposes of explanation. The crotch girder, the ring

girder, the cylindrical shell, and the conical shell. Two planes of



symmetry are evident from geometry and the symmetry of uniform
internal pressure as shown in Figure 1.3. Because of these condi-
tions the crotch girder is subjected to plane stress loads only. The
ring girder is more complicated in that it must be aséumed to contain
plate bending moments as well as plane stress components. Both the
cylindrical and conical shells must be assumed to contain bending
stresses along with membrane stresses for a completely general
solution.

x In order to model such varied stress conditions, it would appear
that several different finite element types are required. This, how-
ever, immediately leads to difficulties unless the elements have the
same number and types of degrees of freedom per node. x Further, it
is particularly important to insure interelement displacement com-
pagibility and this may not be provided by some otherwise possible
combinations. » If inconsistent displacement functions are involved,
then the displacements will be continuous at the nodes but not along
the element edges. Despite these difficulties, some results have been
achieved with elements of mixed degrees of freedom (5).

An alternative approach, and the one used here, is to select a
finite element that wi“ll model, in its most sophisticated state, the
shell stress condition (bending and plane stress) and degenerate to
model the more simple plane stress condition found in the crotch

girder. This is a difficult proposition‘with a plate bending element
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based on the pure displacement formulation such as found in (1, 2, 3)
because this element invariably contains rotation as a degree of free-
dom. Since a plane stress element does not contain a rotational
degree of freedom, it may be difficult to combine it with a plate bend-
ing element based on the displacement method. Therefore, while
there are many adequate shell finite elements based on the pure dis-
placement formulation, they are not easily adapted when there is need
to combine them with plane stress elements as in this analysis.

Recently, the development of the finite element method has pro-
duced the mixed methods (10,11,19). Unlike the displacement formula-
tions which yield elements containing only displacements and their
derivatives as unknowns, the mixed methods result in elements which
contain displacements, stresses and/or stress resultants as unknowns.
The mixed methods are all derivable from Reissner's variational
principle (21) or a modification of it. In fact, all finite element
methods, whether they be displacement, mixed or equilibrium methods
are derivable from a variational statement. This point of view is very
well presented in (17).

The displacement method traces back to the minimum potential
energy theorem, the mixed method to Reissner's principle, ana the
equilibrium method to the minimum complementary energy theorem.

It should be added that Reissner's variational principle can be derived

by applying appropriate conditions of constraint to either the potential



10
energy or complementary energy theorems (26). Thus, the variational
theorems of minimum potential energy and minimum complementary
energy are fundamental in the finite element method.

The basic formulation used in this presentation is due to

L.R. Herrmann (12) and is a mixed method. The primary reason for
this chbice is that it has the ability to model the stresses occurring in
intersecting shells and easily combines with plane stress elements
without violating displacement compatibility. No rotational degrees
of freedom exist in the formulation.

The structure is analyzed in the following manner:

(1) The crotch girder is represented as a series of plane stress
elements and the ring girder, cylindrical shell and conical
shell are represented as a series of flat-plate elements.

(2) The bending and membrane characteristics of a plate ele-
ment is expressed by combining a plate-bending element
with a plane stress element.

(3) . The compatible response of adjacent elements is assured.



11

II. VARIATIONAL PRINCIPLE

The purpose of this chapter is to present a generalized varia-
tional principle and the sequence of specialization that leads to the
particular variational principle used. In this manner the validity of
the principle is presented and at the same time sufficient information

is given to establish convergence of the method.

2.1 Discussion of Basic Theorems

The theorem of minimum potential energy states the stationary
condition of the potential energy functional HP which is defined

(23) as

- a a
HP = S‘yyW(eij)dV - S'\S“S'Fi uidV - nykude. (2.1)
v v

St

The indices 1i,j, and k take on values 1, 2, and 3. The strain
energy density function W(ei_) is assumed to be positive definite.
The prescribed body forces F? and the prescribed surface forces
Tla; on the portion of surface ST where they act are assumed to be
conservative forces. The strains Eij are related to the displace-

ment components a, in the volume, V, according to the expan-

sion .
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(u, .+u, ,) in V. (2.2)

Finally, the displacement components U on the boundary are to

a
satisfy the prescribed boundary displacement components u on the

k
surface, S ,
u
a
= ) 2.3
W, =u  on Su ( )
The variation of the functional I'IP uset equal to zero, leads to the
Euler equations,
c.. . +F .= 0 (equilibrium) (2. 4)
ij, i
and
Uij Vj, = Tia (natural boundary conditions) (2.5)
1/ : . :
where Uij are the stresses and Vj —' are direction cosines of

the outward surface normal. Equations (2.2) and (2.3) can be re-
moved as subsidiary conditions and placed in the framework of the
variational statement. This is done by introducing as Lagrange

multipliers o-ij and ‘Tk ‘and rewriting Equation (2.1) as

1 ‘ .
— The term Vv is also used to designate Poisson's ratio and
should not be confused with it.
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— a l
nG = y§S‘W(eij)dV - S‘S“fFi uidV - yy [eij- 5 (ui,j“l'uj, i)]O'ijdV
: v v v
a a
- ‘S‘Sy Tkude - yy(uk-uk)de.S. (2.6) -

The generalized variational principle (26) states the stationary condi-
tion of N _,. The independent quantities subject to variation now in-

G

clude the Lagrange multipliers. Setting the variation of I'IG equal
to zero will now include Equations (2. 2) and (2.3) along with Equations
(2.4) and (2. 5) as Euler equations. The fact that the Euler equations
are the governing equations of an elastic body verifies the generalized
principle and the principle of minimum potential energy. Alterna-

tively, the proof can be found by deriving the principles from the

principle of virtual work as.in (23).

2.2 Hellinger-Reissner Principle

Using the appropriate stress-strain relationship, the strain
energy *W(ei,) can be written in terms of stresses. The comple-

mentary energy.is defined as

B(s,,)=¢ .0, - W(o,). (2.7
1} 1} 1} 1}

Using Equation (2. 2) the functional HG may be rewritten as
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_ a
HR = .S‘fy[—B(gij)+0_ij€ij—Fiui]dV
A%
- ([ r2a s - ﬁ a, 03T, dS. (2. 8)

°r

The Hellinger-Reissner principle states the stationary property of the
functional in Equation (2. 8). While the principle of minimum potential
energy has greater significance in the finite element analysis of plane
stress or plane strain problems, this principle has its merit in the
finite element analysis of plates and shells (17).

The classical plate bending formulation makes the assumption
that lines perpendicular to the middle surface remain straight and
perpendicular to the deformed middle surface. Figure 2.1 shows the
coordinate system for a.plate. This premise, referred to as the
Kirckhoff hypothesis, leads to the following relationship between the

transverse displacement w and the in-plane displacements u,:

1
N
g
-
H
et
[\

-
€
[
il
w

Substituting this equation into Equation (2. 2) the strains are written as

-zw,, . i,j=1,2
€. = H (2.10)
1 0 iorj=3
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Note that the transverse shear strains are zero under the Kirckhoff
hypothesis. The stress resultants which participate in the comple-
mentary energy function, now written in terms of the resultants as

B(Mij)' are defined as

[ h/2

—S\ (rijzdz i,j=1,2
‘M., - 4 -h/2 (2.11)
ij
0 iorj=3

The minus sign is a matter of choice and in this manner it leads to a

positive relationship between curvature Wi and moment Mij'

The prescribed stress resultants on the boundary are defined as

h/2 a
M= y T, 2dz (2.12)
n _h/2
h/2
Mat = - y T;zdz (2.13)
n -h/2
a h/z a
0% = 5‘ T, dz (2.14)
n _h/2

Substituting Equations (2.9) through (2. 14) into Equation (2. 8) and

integrating on dz, the HR functional may be written for plates as
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a a a
n, = - + - - " -
R 5‘5[ B(Mij) Mijw,ij pwldA y(an’nJ’Mntwt Q w)d!

A ; CT
a a a
- - ~ - - - 2.
y[Mn(W,n W,n)+Mnt (w,t w,t) Qn(w wo)lde, (2.15)
C
u

i,j=1,2

The sign convention for the displacements and stress resultants are

shown in Figure 2. 2.

2.3 Discussion of Convergence

The variational formulations offer more elegant and concise
procedures for deriving finite element analysis techniques than do less
rigorous formulations. One of the advantages is that they permit
statements to be made regarding convergence to exact solutions with
vanishing element size as in references (14) and (15). Convergence
of the finite element method depends on two requirements; 1) the
elements are connected in such a way that no discontinuities of de-
formation occur,.and 2) the elements are in equilibrium subject to the
external loads and the forces they exert on each other. Generally,
one of these requirements is stated explicitly and the other follows
implicitly according to the mechanics of the particular method being

used. For example, in the direct-stiffness method, continuity of

deformation is explicitly required by choosing appropriate deformation
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/ Middle surface
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functions for each element while the equilibrium requirement is
Aimplicit in the finite element solution process.

The finite element process begins by dividing the plate into a
finite number of elements as shown in Figure 2.3a. It is then assumed

that if II. represents the contribution of a typical element to II

R
e
Mg = ZHR

This is generally true if no infinite values of the first integral in

R
that

Equation (2. 15) occur on the element interfaces.  Thus, in the varia-
tional approach to finite element analysis, the compatibility condition
is defined by the requirement that the variational functional be defin-
able on the element interface (.17). As a result, for different varia-
tional functionals, different compatibility conditions will occur.

Infinite values or delta functions Will occur when a discontinuous
function is differentiated.  Therefore, since only the second term of
the first integral in Equation (2.15) involves differentiation, it alone
will be considered. For convenience, this term is rewritten, choosing

the local n-t coordinate system at an interelement boundary, as

? + s b4
S:Y (ank nn 2'I\/Intw. nt+Mt w‘ tt)dA
A

The question now is under what conditions for the above integral will



y

Figure 2.3a. Discretized plate.
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b

Figure 2.3b. Adjacent elements.
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the functional I'IR be definable. There is more than one solution
and each leads to an entirely different finite element formulation (17).
Since a smooth function for w within any individual element is a
natural occurrence in the finite element method, only a differentiation
in the normal direction, n, may yield a delta function. But the
functional I'IR will still be definable if the normal moment Mn is
continuous. Therefore, one set of conditions that will satisfy the
continuity requirement is to choose interpolating functions for w
and Mn that are continuous across interelement boundaries. Thus,
these variables become the primary variables in the formulation and
their continuity satisfies explicitly the requirements of continuity of
displacement and equilibrium of normal moment.

_ The equilibrium requirements of the other stress resultants
contained in HR are satisfied implicitly and, of course, approxi-
mately in the finite element solution process. Because of the allow-

ance of discontinuity in normal slope w, ~Wemay add a subsidiary

constraint equation to the formulation of the form

w | = -w | (2.16)

These slopes are evaluated at a common interface a-b between two
elements A and ‘B as shown in Figuré 2.3b. The minus sign is a

consequence of the opposite orientations of the local normal directions
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for two such elements. This constraint equation can be incorporated
in the framework of the functional HR through the use of a

Lagrange multiplier \. Equation (2.16) can be rewritten as

b b
5‘ AW, dt| + 5‘ )\w,ndt' =0 (2.17)
a n A a B

The Lagrange multipliers are to be treated as additional variables.

When all the interelement boundaries have been considered, the

integral HR over the entire plate area is equal to the sum of the
integrals H; over each elemental area. That is, Equation (2.15)
becomes

M. = . - + , di
R z ST[ B(M; M, W, pwlda S‘ann
m A C
m m

—S‘ (Maw, +M w,,-QaW)dl
n n nt ¥ n

cT
m

(2.18)

a a a
_5‘ [Mn(w,n-w,n)+Mnt(w,t-w,t)—Qn(w-w )] dr.

C
u
m

By taking the variation of HR with respect to w and \ it can

be shown that the Lagrange multiplier A is equal to Mn. Thus

-Mn has replaced \ in the second integral of Equation (2.18).
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. This line integral is to be evaluated around each element m. Now
that the constraint Equation (2. 16) is incorporated, normal slope
compatibility will be satisfied implicitly, analogous to the element
equilibrium requirement for the direct-stiffness method. This
analogy and other similarities has lead R.E. Jones in reference (15)
to term the variational approach as a generalized direct-stiffness
method. Indeed, the final system of simultaneous algebraic equations
are assembled and solved using the same algorithms that are used for

the direct-stiffness method.

2.4 L.R. Herrmann's Formulation for Plates

The modified Reissner functional I in Equation (2.18) is

R
similar to a version of the energy functional proposed by L.R.

Herrmann (11). To obtain this version, Equation (2.18) is integrated

by parts using Green's Theorem,—z-

fy Q, -P, )dA = 5‘ Pdn + Qdt.
n t

A C
m m

The second term of the first integral in Equation (2.18) ex-

panded in the local n-t coordinate system becomes

2 '
-—/'The functions Q and P are used here temporarily and are

‘not to be confused with shear Q, or subsequent terms.
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yyMijw’ijdA = Sy(‘an’nn+2‘Mntw,’nt:+‘MtW’tt)dA'
A A
T m m

If in Green's Theorem the functions Q and P, defined as

O
n

Mw, +M w,
n nt

n t

g
"

- b + b
(MW, +M_ W, )

are substituted and the indicated differentiations are carried out, a
substitute expression can be found for this second term. This sub-

stitute expression is

S‘yM"W'”dA = -yyM w,. dA + y - Mw,+M w, )dn
i) 1) ij,3 1 t 't nt n

A A C
m m m

+ (M w, +M .w, )dt. (2.19)
n mn nt ¢t

But since dn is everywhere perpendicular to the boundary Cm,
the first portion of the line integral vanishes. Further, by specifying
the displacement function w to be linear within each element and
the moments M.1j as constants within each element, the terms
W’ij" Mij,j and Qn will vanish. Therefore, rewriting Equation

(2.19) under these conditions, the following relationship is obtained:
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S'Mw, dt=—5‘M w, dt (2.20)
n n nt t

C C

m m

This relationship may now be used in Equation (2.18) to form the fol-

lowing functional where dt has replaced df.

my = Z yy[—B-(Mij)-pw]dA - 5 M_,w, dt
m A
m

C
m

+ S\ [(M*-M )w, +(M> -M_)w, _0%*wldt
n n n nt nt t n
- S‘(M wo +M_wo)de. [ . (2.21)
n n nt 't

In going from Equation (2.18) to Equation (2. 21), the transverse dis-
placement boundary requirement is removed from the variational
statement, but it will, of course, be an added requirement in the
formulation. L.R. Herrmann makes use of Equation (2. 21) with the
added stipulation that the prescribed normal moment boundary re-
quirement be satisfied; that is, this requirement is removed from the
variational statement as was the transverse displacement boundary
condition. Subsequently, in the formation of the linear algebraic

equations that result from &I = 0, these boundary conditions will be
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included by merely specifying the prescribed value in place of a cor-
responding algebraic equation and corresponding unknown. This is
possible because the unknowns are the transverse displacements at
each corner of an element and the normal moment at each side of an
element.

The boundary condition that is not explicitly satisfied is the
twisting moment at each element side. Since there does not exist an
unknown variable for twisting moment, a prescribed value can not be
input into the solution process.

If the above considerations are accepted, then the functional

which is attributed to L.. R. Herrmann (11) becomes

M, = z S‘S[-B(Mij)-pw]dA - E.Mntw,tdt
m Cm

m [ A

| 5 Qawdt-y M wodt V. (2.22)
n n n
CT cu

m m

An alternate method is to choose a linear moment field. While
this approach would be expected to furnish better results particularly
as far as moments are concerned, it would require the solution of a

substantially larger system of equations (18).
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III. FINITE ELEMENT FORMULATION

As stated at the end of Chapter I, the basic finite element used
in this study is a flé,t element combining plate bending components
with plane stress components. This combination is an uncoupled
superposition of both of these components and therefore disregards
the natural coupling occurring due to curvature of the structure sur-
face.  Thus, the crotch girder and ring girder are approximated more
accurately than t;he cone and cylinder portions of the penstock bifurca-
tion.

To formulate such an element, the functional HP in Equation

(2.1) and N in Equation (2.23) are added to form a combined

H 1A

functional IIS. . Thus,

n,.=H_+1 (3.1)
S P

where the variational statement, 6HS = 0, Will be used to select the
approximate solution from a family of triall solutions. This method is
connected closely with the Ritz technique (4). . However, the basic
idea of the Ritz technique is altered in the finite element method since
the process is facilitated by representing the étructure as a series of
elements and applying the Ritz technique individually to each element

instead of to the entire structure.

The variational statement may be written
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e e e
= + 3.2
5ns 61'IP 6nH ( )

where the superscript indicates the contribution to each functional
from a single element. The variation 61'IeP set equal to zero forms
the plane stress matrix equations for the element and the variation

SHEI set equal to zero forms the plate bending matrix equations for

the element.

3.1 Plane Stress Matrix Equations

Equation (2.1) may be written in matrix form for an individual

flat element as

e 1 UX ' a _a u
ng, = S:ST-Z— I:X . yxyj‘ o 4V - &ﬁa ,_FX Fo) ot av
Ve ‘ ny Ve

- ﬁ‘ I-TZ TiJ :& ds. (3. 3)
Se

The term vy introduced here is the shear strain which is equal to
twice the tensor quantity € .. Admissible forms for the inplane
element displacements u and v are now chosen so that displace-
ment continuity is maintained across element boundaries. Therefore,

assume as trial functions
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u=a +a2x+a3y

1

and

; (3. 4)

v'Eoa +a5x+a6y

4

Let u, and vy refer tothe x and vy displacements, respec-

1

tively, of any corner node

1

of the element as shown in Figure 3.1.

Using the displacement boundary conditions for u at each corner,

the following matrix expression is obtained:

[ B (
1 x1 yl al
1 X, Y, la, . (3.5)

(XZ 'YZ) U, —»«XZ

Figure 3.1.

o X, U

Plane stress element.
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The constants a, are obtained by inversion as
1

“ X¥3 - X3¥, X3V - ¥ V3 XV, - EK N 1N
1

“2f T 2a Yo" Y3 Y3 - ¥y Y1 - Y2 )

0.3 i X3—X2 Xl-X3 XZ-XI_ U.3

(3.6)
where A is the area of the triangular element. Since the constants
a, ‘are seen to depend on the coordinates and displacements at each

corner, the displacements in Equation (3.4) will be continuous across

any interelement boundary. Rewriting Equation (3. 6) as

| 3 22 23 % %
1
2 = 3.
o, = | Py Py bs| {9} =[THy, (3-7)
0.3 LCI C2 C3 U.3 U.3

and substituting into the first of Equations (3.4), the displacement u

becomes
1
= — . 3.
=gy (Nju#Nyu,+Nau,) (3. 8)

where

N1 = a, + b1x+ Y

NZ =a, + bZX + co¥

N =

3 a3 + b3x + c3y.

Similarly, the displacement v may be written
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(3.9)

1
v = —21- (N1v1+ N2v2+ N3 3).

Using the strain-dispiacement relationship of Equation (2.2), the

strains can be found from the displacements described in Equations

(3.8) and (3.9) as

€ b, b, by 0 0 0
1 %
= — 3.10
Ey A 0O 0 0 c, €, S5 . ( )
i
Yxy ©} S €3 Py By By

where the displacement vector on the right side stands for the vector

of six inplane displacements for an element. Equation (3.10) can be

written in a simplified form as

X
R (3.11)

The stress-strain relationship for an isotropic material with Young's

modulus E and Poisson's ratio Vv is

o 1 v 0 €
X x X
E S
o = 1v 1 o ¢ \ =[D] ¢ (3.12)
y 1.2 v{
l-v
c-xy _0 0 2 ny ny

Substituting Equation (3. 11) into Equation (3.12), the stresses become
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X
u,
& = [D][2] B (3.13)
y v.
1
a
xy

If Equations (3.8), (3.9), (3.11) and (3.13) are substituted into
Equation (3. 3), the contribution to the total potential energy of one

element becomes

i

i 11 3y R (7] o
Ve

1
0 0 0 N, NN v,

N. N, N, 0 0 O u
{1 a _.a 2 3 i
- —_— dv
S.j‘.SﬂZA LFX Fy_l
Ve

(3.14)

0 0 0 N; N, N |v,

3

Z‘S"Sﬁ__l_ Ta Ta N1N2N3 ui ds
) 2A | Txk Tyk o
k=1 se

Ty

The sum on the last term arises because the prescribed surface
forces could conceivably differ on each of the three element edges.

Next, the variational statement

b e

is applied with respect to each displacement to form the matrix

equations. For each displacement, it yields a corresponding linear
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algebraic equation and since there are six displacements, six simul-

taneous equations develop. In matrix form, these equations become

Ka:Kb X, 0
- b= S S SR (3.15)
L
‘ b:KC Y, 0
Where
K 'k °
3 _— — m
'jr':"b' = [K]® = hala]T[DIA]
K 1K
b1 ¢

is the element stiffness matrix and

; 1

X = 2hAF® + S heT?

i 3 %xi 2 xi
1

Y. = 2 hAF? + 2 meT?

i 3 yi 2 yi

are the load components shown in Figure 3.1. It has been assumed in
taking the variations and in the subsequent integrations that the
.material properties, material thickness, body force components, and
surface force components are constants for the element.

. The body force components are included only for generality and
‘will not be used in the analysis of the penstock bifurcation because the
weight is assumed negligible in comparison with the applied load.
The inclusion of the surface force components, however, is necessary

for the hydrostatic test case where the tensioning effect of the
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bulkheads is produced by applying inplane loads on the bulkhead
boundaries. Otherwise, for the large majority of elements, the load
components Xi and Yi will be zero. It is interesting to note that
the variational process yields the 1/3 and 1/2 factors for the load

components that would be expected for equivalent static loading.

3.2 Plate Bending Matrix Equations

The trial functions used in conjunction with the Ritz process for
plate bending elements are, as stated in Section 2.4, a transverse
displacement function w that is linear in x and y and con-
stants for the moments Mx, My, and Mxy within each element.
The linear variations of w is expressed as a function of the node
values W, as in the treatment of the inplane displacements in Sec-
tion 3.1. The element values of Mx’ My’ and Mxy are expressed
in terms of the values of the normal moment Mn, at the element
‘sides (see Figure 3.2 for a typical plate element) .1

The family of trial functions described in this manner satisfies
the admissibility requirements established in Section 2.3 and insures
the existence of the functional 1I in Equation (2.22).

H

Equation (2.22) may be written for an individual plate elementas
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12 2 2 2
l'Ie =§51 -pw-—‘——[-l-;M +—1-.M +(l1+vIM -vM M ] % da
H , 3"27x 27y Xy Xy
o Eh
A

- \YM w, dt -\YQawdt yM wo dt (3.16)
nt t n n n
e e e
C
cT Cu

Next, all the variables must be written in terms of the unknowns Wi

and M .
oy

Figtire 3.2. Plate bending element.
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The transverse displacement may be written in matrix form as

4
w = |_1 X y_| ay - (3.17)
d

3

The constants d.1 are then expressed in terms of the corner point

displacements w, as
i

d1 B w1

) 3.18
d‘2 [T] W, ( )
d, W3

where [T] is defined in Equation (3.7). Substituting Equation (3.18)

into Equation (3.17), the transverse displacement becomes

A

w = Ll x y_l [T] w, . (3.19)

W3

The Cartesian components of the moments within the element

are expressed as

Mx g1
My = g.2
Xy g3

Since the constants g, areto be expressed in terms of the normal

moments at the element's three sides, the following relationship is
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— 2
cos Bl

2
cos 52

2
_cos [33

L2
sin [31
.2
sin [32

2
sin [33

2 sin [31 cos [31
2 sin [32 cos [32

2 sin {33 cos [33
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Inverting this expression, the constant moments become

where

The tangential slope Wi

must also be expressed in terms of the unknowns.

and the twisting moment M

M
X X
=[p]

Yy Yy

XYy, Xy,
(3.20)
(3.21)

nt

The tangential

slope can be written in terms of the Cartesian components of slope as

-sin Bl

= -sin [32

-sin [33

cos [31

cos [32

cos 63

Using Equations (3.17) and (3. 18), the slopes

written

. (3.22)

W, and w, can be
X
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- = = 1
W, d T T T
| % LT Tz e w, 3.23)
Wiy d3 Ty Taz T
V3

Substituting Equation (3. 23) into Equation (3.22), the tangential slopes

are appropriately expressed in terms of unknown displacements as

W, W
t:1 B 1
= 3.24
2
W w
’ 3
t3
where
_15..=—TI'~ . sin PB. +T.. cosB..
ij 2j i 3j i

For the twisting moments, the following relationships are

needed:
[ ™ . ; ] '
Mntl -sin Blcos ﬁl sin f’IC,OS Bl cos 261 Mx | MX
‘ = - 3 H 5 - o~ M
Mntz sin Bzcos BZ sin Bzcos BZ cos 2(32 MY (B] v
\ nt3 b—sm B3cos 63 sin ﬁ3cos 53 cos ZB3J MXY Mxy ,
(3.25)

Substituting Equation (3. 21) into Equation (3.25), the twisting moments

are expressed in terms of the unknowns as



38

- M M_
1 o ™ _ 1
= BBl { M =[F] /M . (3.26)
nty n, n,
M, M M
3 ny ny

Substituting Equations (3.19), (3.20), (3.24), and (3.25) into
Equation (3.16), the contribution of one element to the energy func-
tional l'IH becomes

w

n
1] \2
e _ | = 121l = =
SR B T CREENR e
. Eh 2
A W, M
3
IVIn 2
"2 lf’.u 22 z ~ +(14v) I_31 32 33 an
M .
3
M M_
- . _ 1
- "lf’llBlzBla_l an l_B21 Ba2 P23 ‘an aa
. M M
n3 n3
3 Mn W1
— wasa— —— 1 —— — —
) z y I_Fkl k2 Fk%_l My Lkl P2 k§J wal
k=1C> 2
k M W,
"3 (3.27)

For clarity the last two integrals of Equation (3.16) have been
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omitted from Equation (3.27). They represent the prescribed bound-
ary conditions for shear and normal slope, respectively, and are not
needed in the formulation because no such boundary conditions are
specified on the structure to be analyzed. However, they will again
be included in the final algebraic equations below for the sake of
generality.

The functional H;I in Equation (3.27) is now completely ex-
pressed in terms of the six unknown nodal values wi and Mn,’
analogous to Equation (3.14). The variational statement 61’1:{ = t)
can now be applied with respect to each unknown for the element and
six simultaneous linear algebraic equations will result. The indicated
integrations are in some cases detailed and are excluded. It again
will be mentioned that the material properties, plate thickness, and
applied load are assumed constant for each element but can be varied

from element to element. The six equations in matrix form are

G | H M L. 0
- i1 IR LY R ~ (3.28)
1 0 W L! 0
! i
where
G..=4[F B +B, B,+204vB,, B, -v(B, B, +B 5]
ij Eh3 11 715 21 2j 3i 35 11 25 21 1j
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L = wo 4
1 n, 1
1
LI_—_Eé + i
i 3 . 2
i,j=1,2,3

1l _a :
The terms -Zini and L, are the contributions of the natural
: 1
i
boundary conditions represented by the last two -line integrals in

Equation (3.16). In the analysis of the penstdck bifurcatibn, ‘these

terms will be set equal to zero for every element.

3.3 Shell Element Matrix Equations

Equations (3.15) and (3. 28) may now be combined to form an
element that can be used to model shell behavior as well as plate
bending and plane stress behavior. The variational statement

61'Ise = 0 yields the matrix equations for a shell element (see Figure

3.3) as,
K, K. 0 o0 ui\ rxi [ 0
T
Kb K 0 0 v Y 0
c - J A R { (3.29)
0 0 0 H w -L. 0 ~
i b
|0 0o H &M - L) \ 0

_This set of twelve equations is the contribution of one triangular ele-

ment to the total set of simultaneous equations for the structure.
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Figure 3.3. Shell element.

. The ‘Kij coefficients can be termed stiffness coefficients, the

Gij coefficientsv can be termed flexibility coefficients and the Hij
coefficients can be termed coupling coefficients. ,‘ Because of this
mixture in the coefficient matrix, the method is often termed a mixed
method.

For an element located on the crotch girder, a plane stress
member, the coefficients Gij and ’Hij ~are set equal to zero so
that plane stress conditions are modeled. The ring girder, cylindri-
cal shell and conical shell will involve all coefficients. . If the ring

girder does not show significant out-of-plane bending after one

analysis, then subsequent analyses can exclude the Gij and Hij
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coefficients from ring girder elements as in the crotch girder ele-
ments and derive the benefits of a reduced number of equations without
loss of accuracy. In this way the ring girder would be treated as a
plane stress member.

The triangular element obtained in the foregoing fashion has 12
degrees of freedom. Four of these triangular elements can be com-
bined to form a quadrilateral element with 16 degrees of freedom.
First, however, the triangular element coefficient matrices must be
referenced to a global coordinate system X, ;, z as shown in Fig-
ure 3.4. Note that the local system, x, y, z is selected so that the
element lies in the =x-y plane and the x axis is collinear with the
external side of the triangle. To facilitate the rotation of the coeffi-
cient matrix, it must be rearranged to correspond to the unknown

vector which is regrouped so that a, v and w. for a single node
i

are together.  Thus, Equation (3.29) can be rewritten as
[E)¢} = (P} (3.30)

where [E] is the rearranged element matrix in the local system
corresponding to the unknown vector {¢} and load vector {P}

which are defined as
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( “1\ (Xl\
Y1 Y,
1 Ly
M L!

1

. -
) X,
v 'Y

’ 2

2 ’ and {(P}= \’
W L
2 2
M L!
2
u X3
v3 Y3
W3 L3
!

\'Mn 1 \ L3 /

Figure 3.4.

Local and global coordinate system.

43
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-Permutating the rows and columns of the element matrix is
accomplished by premultiplying and postmultiplying the original
12 x 12 element matrix of Equation (3.29) by the appropriate 12 x 12
elementary matrices. . An elementary matrix is simply an identity
matrix whose rows or columns have been permutated in the same
desired fashion (7).

- The orthogonal rotation matrix [R] relating the local un-
knowns to the system unknowns for an element is given by the equa-

tion

j j
v, = [R] ;,
J J
w w.
J J

where the bar quantities represent the system unknowns. The nine
coefficients - Rij are the direction cosines for the two coordinate
systems and are given in Appendix A. The triangular element rota-

tion matrix [R] is written as

[R] = 1

so that

{6} = [RI{¢} (3.31)
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and

{P} = [RKP} . (3.32)

Substituting Equations (3.31) and (3. 32) into Equation (3. 30), the fol-

lowing expression is obtained:
[EIRKo} = [RKP} - (3.33)

PremultiplyingEquation (3.33) by [ﬁ]_l, the transformed system

for a triangular shell element becomes

[E)3) = [P] | (3. 34)

where, since the inverse of an orthogonal matrix [R] equals its
transpose,

[E] = [RIVEIR]

Equation (3. 34) thus represents the contribution of one triangular
shell element, as referenced in the global system, to the total sys-

tem of equations.

3.4 Quadrilateral Shell Element

+In order to reduce the required input without a corresponding
loss of accuracy} it is advisable to combine four triangular shell ele-
ments into one quadrilateral element as shown in Figure 3.5. The

coordinates of the center node are computed as the average of the four
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corner point coordinates.

%2

9,10,11

%4 5, 6, 7\x

1
Note: Numbers correspond to

unknowns at each node

Figure 3.5. Quadrilateral element.

A l6-degree-of-freedom quadrilateral element matrix is formed
by first appropriately combining the four 12-degree-of-freedom tri-
angular element matrices into a 23-degree-of-freedom element
matrix (one degree of freedom for each unknown). Then through a
process commonly known as static condensation (27) the internal
seven unknowns are eliminated, resulting in a 16-degree-of-freedom
quadrilateral element matrix.

The algorithm used to combine the four triangular element
matrices was proposed in reference (24) and explained further in
reference (16). Code numbers for each triangular element consisting
of 12 entries, one for each element unknown are developed as shown

in Table 1. These code numbers are the same for every quadrilateral
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" element in the system and are therefore generated only once in the
computer program. - After four triangular element matrices are gen-
erated for an individual quadrilateral element, they are used in con-
junction with the FORTRAN statements in bTable 2 to generate the

23 x 23 element matrix previously mentioned. If the load matrices
{_1-:-’} for each of the triangular elements are similarly superimposed,

the 23 equations may be written

[E'He'} = {P"} (3.35)
where
(1) 7]
. external unknowns {¢;}
¢ —
{or={- 18 }
¢17 ]
: internal unknowns {q%}
(%23 ‘L
and

1
e
: external "loads" ‘{P;}
P! —
{r'} E‘ 16
' —
P17
. internal '"loads" {Pl')}
1

Partitioning Equation (3. 35) into two equations, the following is

obtained:



Table 1. Tezcan code numbers.

Displacement or Moment Numbers

1 2 3 4 5 6 7 8 9 10 11 12
Element
No. ay vy W Mn u, vy w, 'Mn ug £ Wy -Mn
1 2 3
1 1 2 3 4 5 21 17 18 19 20
2 5 6 7 8 9 10 1 22 17 18 19 21
3 9 10 11 12 13 14 23 17 18 19 22
4 3 14 15 .16 1 2 3 20 17 18 19 23
Table 2. Tezcan code number algorithm.
DO 150 L'=1,4 .
DO 150 J=1,12 ¥ 7 777
KA = ICODE (L, J)
DO 150 N =7J,12
KB = ICODE (L, N)
150 TQEM (KA, KB) = TQEM (KA,KB) + TEMT (J,N)

TQEM 23 x 23 temporary quadrilateral element matrix.

TEMT 12 x 12 transferred triangular element matrix of the
form in Equation (3. 34).

ICODE 4 x 12 matrix of the code numbers in Table 1.

8%
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E' | E' ¢’ P'

22l abf Jrap _ } a (3.36)
1 1 ' Pl

Epa ' Eob | (% Py

Taking the bottom equation of Equation (3. 36) and solving for {<|>]'3}

(o} = (e TPy )-[E; He!h (3.37)

The internal unknowns {q)]')} are eliminated by substituting Equation

~ (3.37) into the top equation of Equation (3.36). Thus

£ Ne ) = (P | (3.38)
where
(0.3 = {8}
® = o) - E e, THR)
®% =& - (& e ] ]

Inversion of the 7 x 7 matrix [El'ab] and multiplication of the indi-

cated matrices of Equation (3. 38) should be carried out in double
precision. In the mixed method, the coefficient matrices can contain

elements which differ widely in order of magnitude and result in ill-

conditioned arrays.

3.5 System Equations and Solution Process

*
As the element matrices [E ] are generated, they are
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appropriately superimposed into a system matrix [S]. This super-
imposition is accomplished in a manner similar to that in which the
four triangular element matrices were combined into one quadrilateral
element matrix. The code numbers this time, however, contain 16
entries corresponding to the 16 unknowns for each element.

x A structural system that contains a Iargenumber of elements
must necessarily involve a good deal of tedious input data preparation.
This includes a code number for each element. In order to reduce
preliminary work of this nature, a subroutine was written to generate
the code numbers for each quadrilateral element. The information
used by the subroutine is input information that ordinarily would be
included for any matrix analysis of structures; the nodal point coordi-
nates and the element connectivity. The latter includes for every
element number the corresponding nodal point numbers.

When the system matrix [S] and systend load vector {V}
are generated using the code numbers and algorithm indicated in Table
2, the total system of simultaneous algebraic equations in the un-

knowns {8} is represented as
[sKe} = {v}. (3.39)

The primary concern in the solution of this system is the condi-
tioning of the system matrix. It is a symmetric matrix as a conse-

quence of the symmetry of the triangular element matrix in Equation
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(3.29) which is a result of conservation of energy. In addition, it is
also a banded matrix where the band width is dependenlz on the direc-
tion of nu\mbering the node points. ;They should be numbered in such
a way as to minimize the difference between the largest and smalles£
nodal point number for any element. This is true in the mixed method
just as in the more common displacement formulations. The band-
width in this method is increased because of the existence of side
nodal points which must also be numbered. Nevertheless, the system
matrix is banded and advantage is taken thereof along with the sym-
metry when storing the coefficients in computer storage.

The solution process, contained in a single subroutine, is
Gaussian elimination. The input system matrix is in the packed form;
having a width of half the band-width plus one for diagonal terms and
a length equal to the number of system unknowns. The band-width is
a’utomavtically computed prior to solving the system as it is required
input to the solution subroutine along with the system load vector. It
is of coué‘se desirable to carry out the solution process in double pre-
cision especially in the mixed method for reasons mentioned in Sec-
tion 3.4. This consideration must, however, be weighed with program

size, desired accuracy and available computer storage.
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IV. THE FINITE ELEMENT MODEL

The purpose of this chapter is to describe the finite element
model and to describe its basic strengths and weaknesses. When
interpreting results from the symmetrical penstock bifurcation
model, a certain amount of judgement must be applied and it is hoped
that this chapter will help cultivate that judgement. In order to
accomplish this, two approaches to verifying the finite element model
are taken. First, verification of the basic finite element is sought by
comparing its results with those of known classical solutions. Sec-
ond, verification of the symmetrical penstock bifurcation finite ele-
ment solution is sought by comparing its results with experimental

data from a hydrostatic test of a prototype penstock bifurcation.

4.1 Comparison with Classical Solutions

The basic finite element formulation of this investigation was
applied to four different types of structures so that a feeling could be
gained as to the behavior and validity of the formulation. The struc-
tures are relatively simple structures for which classical solutions
are available. Even though the resulting finite element models are
quite simple when compared to the complex model of the bifurcation,
this type of verification has become traditional in finite element work.

Because the ring girder of the penstock bifurcation could
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possibly contain flat plate bending, it is of interest to know how wéll
the basic formulation approximates a flat plate structure. The thin,
uniformly loaded, rectangular plate shown in Figure 4.1 is a good
choice for comparison among classical plates because of its varied
boundary conditions. A six by six element model was selected and
the results are shown in Figures 4.2, 4.3, 4.4, and 4.5. It is seen
that there is excellent agreement with the exact solution for the

-moments but that the displacements in Figure 4.5 are somewhat off
on the high side. In general, however, the agreement is good.
Reference (11) analyzed the same structure with'an eight by eight ele-
ment model of the same formulation and shows very similar results.
The verification of the finite element formulation for the flat plate
demonstrates its usefulness for what it was basically intended;
-analyze thin flat plates. It is of course another matter to use the flat
plate element to model curved surfaces or shells.

The first shell structure to be considered in demonstrating the
applicability of the formulation to curved surfaces is the open-ended
cylinder. The cylinder is subjected to internal pressure and because
the walls are unrestrained at the ends no moment should develop.

Six elements were used to model a 90 degree portion of the wall as
shown in Figure 4. 6. The results for the membrane stress are shown
in Figure 4.7 where it is seen that the agreement with the exact value

is excellent. More interesting, however, are the moment results
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shown in Figure 4.8. Here, the finite element results are shown in
two forms; the side point moment values and the element moment
values (moments at center of the element). The side point values are
completely erroneous while the element moment values correctly
show zero moment. The side point values reflect the slope discon-
tinuity between elements and are naturally yielding moments that
might be expected for an ''equivalent folded plate structure.'' In the
smooth shell, there are no such slope discontinuities and therefore
the side point moment data should be ignored in favor of the element
moment values.

The third structure to be analyzed is a circular cylindrical
shell with both ends completely restrained against rotation and dis-
placement. Under a uniform internal pressure the restrained ends
will cause a vertical mément at the base of the cylinder to be devel-
oped. Characteristically this moment will be maximum at the base
-and will eventually decay to zero at some point above the base, pro-
vided the cylinder is sufficiently long. . It is of interest to know how
well the finite element formulation models this behavior because the
‘penstock bifurcation contains a similar shell configufation with bound-
ary conditions developing moment. The finite element model takes
advantage of three planes of symmetry for the cylinder as shown in
Figure 4.9. This figure shows six elementsof 15 degrees each in the

direction of curvature. . A second model, not shown, with 12 elements
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of 7.5 degrees é_ach was also prepared because the first model proved
very coarse. The results for both membrane hoop force and vertical
moment are shown in Figures 4.10 and 4.11, respectively. The hoop
fqrce is on the high side near the base but achieves reasonably good
accuracy with distance from the base. In Figure 4.11 it is seen that
the six-element model yields moment which does not agree well with
the exact results. A si/gnificant improvement is achieved with the
12 element model. /Thus it is concluded that the results are very de-
p?ndent on the number of elements in the direction of curvature.y

The fourth structure is a spherical cap subjected to uniform
internal pressure. It is included in this investigation because it is a
doubly-curved shell and would seem a more difficult test for the
formulation than the previous cylindrical shell. Two conditions are
studied: the first has the outer edge of the shell restrained against
vertical displacement only and the second has the outer edge com-
pletely restrained. Figure 4.12 shows the model configuration of
seven elements in the meridian direction and six elements in the hoop
direction. A second model was constructed with 13 elements in the
‘meridian direction and six elements in the hoop direction. The
results are shown in Figures 4. 13 through 4. 16.

From the results it can be seen that the second model with
nearly twice the number of elements yielded little additional accuracy.

It may be that the spherical cap's curvature was sufficiently mild to
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justify the smaller model only. The agreement is generally better for
the hoop stresses than for the meridian stresses. The hoop stresses,
at most points, are primarily due to membrane action whereas the
larger meridian stresses are primarily due to bend.ihg action. It
would seem, therefore, that the formulation will model membrane
action better than bending action. Also it appears that the bending
stresses, where agreement is poor, are on.the small side.

4.2 Approximation of Curved Surfaces with
Flat Plate Elements

As previously stated the basic unit of the finite element model
used in this investigation is a flat plate element in which membrane
action is superimposed on bending;actic‘m. In the shell structures the
flat plate representations resemble folded plate structures as can be
seen in Figures 4.6, 4.9, and 4.12. The resulting slope discontin-
uities along the line of curvature will give rise to side point bending
moments in the model where in the shell there are, in fact, nene.
This undesirable effect is inherent in this formulation and cannot be
altered. It can be minimized by using a large number of elements in
the direction of curvature so that the slope discontinuities are made
less severe.

It has been noted, however, in (12) and at least partially

demonstrated in Figure 4. 8 that the quadrilateral element moments
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(as opposed to the side point moments) give more reasonable results
despite the fact that they are computed from the side point values.
They are computed as follows: first, Equation (3.21) isﬂ.’,z'us‘ed to
obtain the rectangular cartesian components of the mo’iﬁént in a tri-
angular element from the side point moments; second, the valp.es for
each of the four triangles making up a quadrilateral are referenced to
a common set of axes for the quadrilateral; third, the four sets of
values are then averaged to obtain the.rectangular cartesian compo-
nents of the moment within the quadrilateral.

The quadrilateral element moments then are to be treated as
reasonable data while the side point values in the direction of curva-
ture are to be treated as ficticious values and ignored. In additidn, it
has been shown (13) that the quadrilateré,l element moment data is
adversely affected when the subtended angles of the elements in the
direction of curvature are unequal. Thus it is advisable when devel-
oping the finite element model for the penstock bifurcation to make
the elements uniform in the direction of curvature for the cylinder and
cone.

Further comments on the appropriateness of modeling curved

surfaces with flat plate elements can be found in (6, 9).

4.3 The Symmetrical Penstock Bifurcation Model

The symmetrical penstock bifurcation has two planes of
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symmetry and these are used to advantage in the basic structure
shown in Figure 1.3. It is this configuration that is discretized into
flat plate elements resulting in the model shown in Figure 4. 17.

The boundary conditions for the side points and corner points
of the flat plate edges which lie in the ;-; and x-z planes are
dictated by symmetry; that is, the rotation of the side points are zero
‘and the displacements perpendicular to the planes of symmetry are
constrained to zero.

There are two load configurations studied in this investigation.
They are the hydrostatic test condition and the operating load condi-
tion. Each requires a d.iffe1;ent set of boundary conditions along the
inlet edge of the cylinder and the outlet edge of the cone.

The hydrostatic test configuration assumes the existencé of
bulkheads which constrain the displacements to zero in the plane of
the inlet face and the outlet face; that is, the bulkheads are assumed.
infinitely rigid in their own plane. Displacements are allowed per-
pendicular to the planes in anticipation of the tensioning effect which
is produced by equivalent static loads applied at the boundary nodes in
the direction of these displacements. The infinitely rigid bulkheads
are an idealization since in actual test conditions the bulkheads will
most likely be hemispherical and will have a finite stiffness. Their
stiffness cannot be determined in advance so the idealization is thomight

reasonable.



73

Cylinder
Ring girder
y
Crotch girder
= 77
4
N
Y l (] \
) " /
7 b
!
' ' N '
N g \
_I |
' N
! -1 —
| | 1 | X
I
L1 / ’
z Tie rod
Cone

Figure 4.17. Finite element model of a symmetrical penstock
bifurcation. ‘



74

. The operating load configuration assumes that no bulkheads
exist and that displacements are constrained to zero in the direction
of the longitudinal axes of symmetry for the cylinder and cone. Dis-
placements are-allowed in planes perpendicular to these axes.

For both load configurations the displacement boundary condi-
tions on the inlet face of the cylinder coincide with the global refer-
ence system, thus there is no difficulty programming them. . This is
also true of the displacement boundary conditions mentioned previ-
ously.

The displacement boundary conditions for the cone outlet face,
however, do not coincide with the global directions and therefore their
inclusion requires more programming effort. There are two
approaches to this problem (8).. The first and more exact is to
-modify the method of generating the system of equations in terms of
global unknowns to include some equations which are written for
constraint-oriented axes. The second method is to remove the actual
support and attach a ficticious axial member having an extremely
large cross-sectional area so that its longitudinal axis is collinear
with the constrained displacement. The opposite end of this member
is restrained against displacement and therefore its boundary condi-
tions can be conveniently cast in the global system. . This method has
the advantage of being more easily programmed. Even though more

‘members are added to the structural system with one additional
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unknown per member, the programming effort was significantly re-
duced and, for this reason, it is the method selected for the bifurca-
tion model. Figure 4.18 illustrates the idealization of the boundary

conditions on . the outlet face of the cone.

. 4.4 Comparison with‘Expei'imental Data

Once verification of finite element formulations is achieved by
comparisons with classical solutions it is assumed that the formula-
tions can be applied to the analysis of more complex structures whicli
defy classical methods. - A need does exist, however, for experimen-
tal data to substantiate the use of finite element formulations for solv-
ing complex structures. In addition, such expgrimental investigations
should be coordinated with the finite element’ investigation so that sub-
sequent comparison.of results will be meaningful. The experimental
effort described herein was unfortunately not coordinated in this man-
ner but it does offer valuable information where very little heretofore
existed.

A symmetrical bifurcation prototype was constructed for the
*Snettisham project in southeastern Alaska. Its configuration and
specific dimensions are shown in Figure 4.19. Hemispherical bulk-
heads were installed and the structure as shown in-Figure 4.20, was
‘hydrostatically tested in the shop at 900 psi internal pressure and was

instrumented with 24 linear strain gages and 56 rosette strain gages.
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Figure 4. 20. Snettisham prototype bifurcation as tested in the shop.
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The instrumentation was placed on the inside surface as well as the
outside surface and arranged to measure bending stresses at isolated
locations in the cone and cylinder and plane stresses in the ring girder
and crotch girder.

A finite -element model consisting of 116 elements was generated
for the Snettisham configuration. This model is shown in Figure
4.17. The plane stress results for the crotch girder are shown in
Figure 4.21 where the finite element principle stresses are shown
along with the experimental stresses. The stresses along the hori-
zontal line of symmetry are the more important data because they are
maximum, as expected, at this location. It can be seen that finite
element stresses agree very well with the experimental stresses both
in magniitude and from a behavior point of view. To emphasize this,
the finite element and experimental data are plotted at this location in
Figure 4.22. A primary observation is that the maximum measured
stress occuré just to .the left of the cone attachment line. The finite
element stress also shows this behavior-but only in an approximate
‘manner. The traditional analysis of penstock bifurcations (22) pre-
dicts the maximum stress to be on the inside edge as if the crotch
girder were a curved beam in bending. While this may be true in
other penstock bifurcations, the data clearly shows the Snettisham
crotch girder behaves as a stretched plate instead.

The finite element model predicted the stress in the tie rod
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very well. The measured value was 5400 psi and the predicted value
was 5457 psi.

Stresses in the ring girder are compared in Figure 4.23. Here
the finite element stresses are plotted for each of the four triangles
in a quadrilateral element because the elements are very coarse in
comparison to the crotch girder elements. In this way the stress
distribution or behavior can better be seen across the two rows of
elements. The agreement is good but the finite element values are
on the low side. This is probably attributable to the coarse mesh for
the ring girder but it is doubtful that a finer mesh is warranted be-
cause the overall behavior is modeled and the maximum stresses in
the crotch girder were predicted with sufficient accuracy. In addition,
the computed stresses shown are plane stresses only and the ring
girder does contain some bending stress.  The maximum computed
bending stress is about 2 ksi and that appears at the top near the inter
section with the tie rod. This stress could account for some of the
difference in Figure 4.23. Elsewhere in the ring girder, the bending
stress varies from the maximum of 2 ksi te less than 1 ksi near the
horizontal line of symmetry.

While a sufficient number of strain gages existed on the crotch
girder and ring girder, insufficient experimental data was available
on the shell portions of the bifurcation for an adequate comparison of

data. Principal stresses were measured at 14 locations on the shell
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-as shown in Figure 4.24. . Also unavailable was the information as to
the strain gages' orientation thus precluding determination of the
principal directions.

To facilitate comparison of the available data an ''envelope'
stress was computed. This '"envelope'' stress is a summation of the
computed principal membrane stress and the computed principal
bending stress without regard to their respective directions. The
finite element data, in this form, will-naturally be larger than the
computed tofal principal stress and therefore is expected to be con-
servative in comparison with the experimental principal stress.
Membrane stress values are also plotted so that the bending stress
can be observed by noting the difference between the ""envelope'' stress
and membrane stress. Comparison of stresses for the cylindrical
»shell are shown in Figure 4.25. The angle 6 is measured from the
horizontal plane of symmetry to top-center; that is, © equals zero
‘at points b and d and © equals 90 degress at points a and
c. The results for the cylinder show the actual and computed stresses
to be less than the stresses for an equivalently loaded thick-walled
cylinder. The\hemispherical bulkhead constraint and the ring girder
constraint account for this behavior. But the finite element data, it
must be concluded, reflects a. modeled bulkhead that is too stiff. If
the bulkhead were correctly modeled, the envelope stress would be

conservative, as mentioned above, and it is not. However, it does
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appear that the finite element data behaves more rationally than does
‘the experimental data. The effect of the ring girder constraint de-
creases from point b to point a, gradually allowing the mem-
brane stress to develop. This gradual increase is shown in the finite
element data.

The comparison of stresses for the cone along line c¢-d is
shown in Figure 4.26. The finite element ”envelope"" stress values
are conservative for the most part. However, for good agreement,
the curve of experimental values should be somewhere between the
'"'envelope'' and membrane stress values.

Comparison of stresses for the cone along line c-e is shown
in Figure 4.27. The computed values here, except for the data at
4 feet, show better agreement than before.  Again, however, where
the computed data does not surround the experimental curve it is high
and therefore too conservative. The data at 4 feet was taken from an
unusually large element in the model and therefore is suspect.

The finite element model from which the above data has been
taken can be considered coarse with regard to the stresses near lines
c-d and c-e in the conical shell. As can be seen in Figure 4.17,
only four elements are used in the direction of curvature to model the
90 degree cylindrical surface and eight elements are used to model
the 180 degree cone surface. However, with respect to the crotch

girder stresses, the model is adequate.
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It was noticed that the triangular elements on the conical sur-
face near the crotch girder gave unusually high bending stresses but
accurate membrane stresses. The bending stress data for such ele-
ments, which are few in number, was ignored in favor of the bending
stress data for the quadrilateral elements.

The stresses in the cylinder were unconservative (too small)
due to the assumption of infinitely rigid bulkheads. This is also
likely to be true for the stresses near the outlet face of the cone,

although there is no experimental verification.
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V. FINITE ELEMENT STRESS ANALYSIS OF
LOST CREEK BIFURCATION.

As mentioned in the beginning of this dissertation, the results
of the computer program development are applied to the analysis of
the penstock bifurcation for the Lost Creek project. The proposed
design configuration for the structure is illustrated in Figure 5. 1.

It is considerably larger than the Snettisham bifurcation (Figure 4. 19)'
but the design load is considerably less; 220 psi internal pressure for
the operating load configuration and 330 psi for the hydrostatic test
configuration. The design differs noticeably in two respects. First,
the crotch girder, for all practical purposes, is entirely external and
second, the tie rod is much larger and placed differently.

Because the computer program was written to handle sym-
metrical bifurcations whose configurations are of the Lost Creek
format, nobdifficulty was expérienced in generating the necessai'y
input data. A user's manuall for the program, which describes all
necessary operations for generating the data, is included as Appendix
B. Appendix C describes the function of the primary subroutines and
Appendix D is a listing of the program. An 82-element model was
generated for the structure and is shown in Figure 5.2. The modulus
of elasticify of the steel was assumed to be 30 x 103 ksi and Poisson's

ratio was assumed to be 0. 3.
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Once the basic input data is generated, the computer program
can be used as a design tool by varying themember thicknesses and/or
the input geometry in a trial and error fashion. However, no attempt
will be made in this investigation to design the Lost Creek bifurcation
as this was not an objective of this investigation. An analysis of the
present design configuration is undertaken with the added goal of
analyzing the effect and structural participation of the tie rod. Two
basic configurations are therefore studied. The first contains the tie
rod (li in. in diameter) and the second has a negligibly small tie rod
(.0001 in. in diameter). Both of these structures are su'lbjected’to_
the hydrostatic and operating load configurations.

An extensive amount of data is naturally obtained (see Appendix
B) from the computer output for each run. It is not possible to pre-
sent all the data and therefore the data to be discussed is limited to
stresses only. In order to present it clearly, it will be’discussed in
two separate categories. First, the data pertaining to the stiffening
members, the crotch girder, the ring girder, and the tie rod, will be
presented. This data includes plane stress and axial stress. Second,
the data pertaining to the shell portions of the structure, the cylindri-
cal shell and the conical shell, will be ﬁresented. This information

includes membrane stress and bending stress data.
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5.1 Analysis of the Stiffening Members in the
Prototype Configuration

With regard to the stiffening members the crotch girder con-
tains the largest stresé and it exists, as expected on the inside edge
‘near the horizontal likne of symmetry as shown in Figure 5.3. This
location is very different from the location of the largest stress for
the Snettisham configuration (see Figure 4.22). Moreover, in the
Lost Creek configuration, the stresses decrease more rapidly from
the maximum on the inside edge of the crotch girder to the minimum
stress on the outside edge of the crotch girder along the horizontal
line of symmetry and are everywhere tensile. These differences are
due to the difference in the locations of the conical shell-crotch
girder attachement line or the ''load line'' for the crotch girder.

Figure 5.4 shows the finite element stresses in the crotch gir-
der for the operating load configuration. It is obvious that the hydro-
static load condition is more severe with regard to the crotch girder
stresses. Further comparison of Figures 5.3 and 5.4 reveals, how-
ever, that the 11 in. -diameter tie rod is more severely stressed in
the operating load configuration. This reflects the existence of the
bulkheads in the hydrostatic case which produce a constraining effect
on the structure similar to the tie rod. Since the bulkheads are
"absent in the operating load configuration, the tie rod is allowed to

participate structurally to a greater extent, in spite of the reduced
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loading. This greater tie rod force is also evident in comparing the
principal stress directions at the point where the tie rod attaches to
the crotch girder. The changes in principal directions are more
pronounced near the point of attachment in the operating load con-
figuration.

The stresses in the ring girder are shown for the hydrostatic
load configuration in Figure 5.5 and the operating load configuration
in. Figure 5.6. They are rather small in each case. Even though the
‘maximum stress occurs for the operating configuration, they are
slightly larger for the hydrostatic load configuration from an overall
point of view. The stress distribution along the horizontal plane of
symmetry is similar to that in the crotch girder except the magnitudes
are smaller, that is, the stresses vary from a maximum on the inside
edge to a.minimum on the outside edge and are everywhere tensile.
This behavior is not duplicated on a cross-section near the top.
Instead, the stresses across the ring girder are fairly constant
(tensile) for the hydrostatic configuration. For the operating load
configuration they vary from a minimum on the inside edge to-a maxi-
mum on the outside edge; just the reverse of the stress distribution
along the horizontal plane of symmetry. This tendency is present in

the hydrostatic configuration but is only barely discernible.
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Principal stresses in ring girder for hydrostatic test configuration.
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Figure 5.6. Principal stresses in ring girder for operating condition.
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5.2 Analysis of the Stiffening Members Without
the Tie Rod

The study of the behavior of the stiffening members without the
tie rod was effected by assigning a rod diameter value of 0. 0001 in.
in the input data and repeating the computer run for both loading
conditions. Figure 5.7 shows the stresses that result in the crotch
girder for the hydrostatic load configuration. The maximum s‘t’ress‘
occurs at the same location but is increased by about 25%. The’ stress
variation along the horizontal line of symmetry can be seen to be
more pronounced when compared with the data for the 11 in-diameter
tie rod (Figure 5.3). While the stress on the inside edge is greater
the stress on the outside edge is smaller. Also it can be seen that no
concentrated stresses are induced in the proximity of the tie rod
attachment point. The stress-flow bypasses this area exhibiting litt‘le
change in principal direction. The reduced magnitudes just to the
right of the attachment point reflect the tendency of the stress dis-
tribution across the crotch girder to gradually change to a maximum
stress on the outside edge and a minimum stress on the inside edge.
This tendency is not fully developed at the top of the crotch girder in |
the hydrostatic configurati‘on. However, the data for the crotch girder
in the operating condition shown in Figure 5. 8 better illustrates this
reversal in stress distribution. This behavior is the sarﬁe as that

mentioned in Section 5.1 for the ring girder. Thus, without the tie
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rod, the crotch girder participates structurally in the same manner
as the ring girder. In addition, it participates to a greater extent;
the stress levels being generally larger and the stress flow being less
disturbed.

It is also of interest in regard to Figure 5. 8 that the maximum
stress in the crotch girder for the operating condition increases by
about 45% (compare with Figure 5.4) due to the absence of the tie
rod. Nevertheless, the largest stress occurs for the hydrostatic case
as it did in the tie rod configuration.

The effect of the tie rod's absence on the ring girder is to in-
crease the stress ievels everywhere in a fairly proportionate manner.
Figures 5.9 and 5.10 represent the data for the hydrostatic and
operating load configurations, respectfvely. When this data is com-
pared with that of the prototype data (Figures 5.5 and 5.6), this pro-
portionate increase can be seen. In addition, the maximum stress is
increased by about 20% for the hydrostatic configuration and about
27% for the operating load configuration.

5.3 Analysis of the Shell Members in the
Prototype Configuration

The stress data for the cylindrical shell and conical shell is
presented in graphs as opposed to plotting stresses on the member

configuration as was done for the stiffening members. Such a
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procedure for the shell surfaces, though perhaps more revealing from-
an overall standpoint, does not permit sufficient scale to emphasize
the relative amount of bending stress as compared to membrane
stress. The distinction between these two types of stress is ipara--
mount because the bending stresses in the shells have been heretofore
generally ignored in the analysis of penstock bifurcations.

A reference diagram for subsequent graphs is given in Figure
5.11. A preliminary survey of the shell stress data revealed the
locations which were most highly stressed and, based on that survey,
the sections shown in Figure 5.11 were chosen. In addition, the loca-
tions in the shell immediately adjacent to the girders are of ‘interest
because they are likely to contain significant bending stresses. Un-
less otherwise noted in the graphs to follow, the membrane stress and
tﬁe total stress are both plotted. The bending stress is observed by
noting the difference between these two stresses. The total stress is
plotted for one surface, either inside or outside, whichever is more
severely stressed.

The data for the cylinder is shown in Figures 5.12a and 5. 12b.
The angle © is referenced to point a and has a value of 90
degrees at point b. The hoop stresses in Figure 5.12a are com-
pared with the hoop stress in a pressurized thick-walled cylinder.
The data for the hydrostatic case is similar to the data for the

Snettisham bifurcation (Figure 4. 25) in that they are both conservative
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when compared to the thick-walled cylinder, though the Lost Creek
data is less so. Again this must be attributed to the constraint of the
bulkhead attached to the cylinder in the hydrostatic configuration.
With the bulkhead removed (the operating configuration), the hoop
stresses are seen to approximate more closely the thick-walled
cylinder stress. The bending stresses, as expected, are very small

in the hoop direction.

b
— +

|
|
|
l
l
I
|
%

a

Figure 5.11. Reference diagram for shell stresses.

The longitudinal stresses in the cylinder are shown in Figure
5.12b as they vary along line a-b. The membrane stresses for the
hydrostatic condition.approximates closely the longitudinal stresses

for a closed cylinder. In the operating condition these stresses, of
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course, drop off markedly because the cylinder is not closed at its
end. The bending stresses are more significant iin the longitudinal
direction than in the hoop direction. They appear to increase from
point a to point b to a maximum at the top of the cylinder.
Nevertheless, the maximum stresses in the cylinder are in the hoop
direction as can be seen by comparing Figures 5.12a and 5. 12b.

The stresse; in the cone along lines c¢-d and d-e are
plotted in the same manner as the finite element data in Section 4. 4.
That is, the principal membrane stress and the principal bending
stress are superimposed without regard to their respective directions.
The sum that results is termed the ''envelope'' stress. Plotted with
this stress is the maximum principal membrane stress. By noting
the difference between the two, the maximum principal bending stress
is observed. In this mannel" the bending stress along lines c¢-d and
d-e is emphasized. However the computed total stress (true
maximum stress) along these lines most probably lies between the
" two data points at each station where data is plotted.

The stress data for Figure 5. 13 was taken from the row of four
quadrilateral elements on t};e_ cone which border the ring girder (see
Figure 5.2). The angle 6 is referenced to point ¢ and has a
value of 90 degrees at point d. It can be seen that the principal
bending stress is c;)nsiderable when compared to the principal mem-

brane stress, especially at the smaller angles. Thereisa reversal in
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the sign of the moment at about 70 degrees.

The data for the stresses along line d-e in Figure 5.14 was
taken from the quadrilateral elements on the cone nearest the crotch
girder. Triangular-element moment data was found suspect in the
experimental verification study of Section 4.4 and therefore this data
was purposely avoided. Because there are four triangular elements
bordering the girder the data plotted does not represent stresses in
the cone immediately adjacent to the crotch girder, but instead about
1.5 to 2 feet away. The bending stresses are significant in the region
of the tie rod, but drop off toward point . e where a reversal in the
sign of the moment takes place. It is suspected, though no data is
available for support, that the moment in the cone closer to the crotch
girder is even larger than that shown. Combining this suspected
moment with the large membrane stresses (18-19 ksi in the hydro-
static configuration) computed forkthe triangular elements (triangular
element membrane stresses are believed reliable) a potentially
localized high stress could exist in the cone near the tie rod for the
‘hydrostatic configuration.

The hoop stresses . in the cone along line f-g are plotted in
Figure 5.15a. The angle 6 is referenced to point f and hasa
value of 112.5 degrees at point g. This data and that of the following
graph were taken from the five quadrilateral elements, two rows out

from the ring girder (see Figure 5.2). . The membrane stresses in
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Figure 5. 15a for the hydrostatic case with 0= 80 degrees isthehighest
computed membrane stress in the structure.  This is to be expected
because line f-g is near the largest circumference on the cone
which is sufficiently:removed from the constraining ring girder. The
influence of the ring girder gradually diminishes as 6 is increased
from zero to 80 d.egreeé allowing this hoop stress to gradually develop.
Fortunately, the accompanying bending stress.is rather small up to
80 degrees. The bending stress thereafter increases before it under-
goes a reversal in sign. The dotted line is an extrapolation of the
bending stress which is only suspected as was discussed above in con-
nection with the stresses along line d-e.

The bending stress variation in Figure 5. 15b reflects the ring
girder constraint. It is large near point f which is nearest the
ring girder. Thereafter, the moment decreases to its minimum
value at about 80 degrees as the line f-g diverges from the ring
girder. At angles greater than 80 degrees, the moment increases
and then reverses due to the proximity of the constraining crotch
girder. The stresses in the longitudinal direction, however, are
smaller than the hoop stresses along line f-g.

Stress data for line h-j is taken from a row of quadrilateral
elements along top-center of the cone. The cone is approximately
10 feet long at this location and this distance is measured from point

h to point j along the abscissa in the next two graphs. Figure
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5.16a shows the hoop stresses as they are constrained by the girders
near point h and as they rapidly increase to their maximum value
at about 4 feet. This value is the same maximum stress discussed
for the stresses along line f-g (see Figure 5.15a). Beyond the
4_foot station the hoop stresses for both load conditions decrease
gradually as the circumference of the cone decreases. The obvious
difference in behavior near point j is due to the constraining effect
of the bulkhead at the outlet face of the cone in the hydrostatic con-
figuration. The data for the operating configuration continues the
gradual decrease in hoop stress to the end of the cone. Bending
stresses along this line are fairly small and decrease to zero near
the end of the cone.

The longitudinal stresses along line h-j are shown in Figure
5.16b. The membrane stresses behave similar to the membrane
stresses in the hoop direction although not as pronounced. The bend-
ing stresses are largest near the extremities of line h-j. This is
due to the rfng girder constraint near point h and the bulkhead con-
straint near point j‘. It is also interesting to note that the longitudi-
nal st;resses near point j are in compression for the operating con-
dition. This compression zone is localized and the stress magnitudes
are small. By comparing Figures 5.16a and 5. 16b it is seen that the

hoop stresses are again the larger of the two stress components.
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5.4 Analysis of the Shell Members Without the Tie Rod

The stress magnitudes in the cylindrical shell are very similar
(in either loading condition), with or without the tie rod. It therefore
appears that the cylinder is sufficiently removed from the tie rod
that it is not influenced by the tie rod's size.

A more noticeable effect on stress magnitude appears in the
cone. In some locations the stresses are actually smaller but for the
most part the cone membrane stresses have increased. Bending
stresses remained basically unchanged. This effect was more
noticeable in the operating condition than in the hydrostatic condition.
The largest increase in membrane stress occurred near the outlet

face of the cone and this was about a 10% increase.
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VI. SUMMARY AND CONCLUSIONS

This dissertation was initiated by a need for an in-depth investi-
gation into the structural behavior of symmetrical penstock bifurca-
tions. Heretofore, analyses generally had been based on classiéal
indeterminate methods of analysis where the structure was conven-
iently reduced to a tractable form. As a result of the inherent
assumptions of this procedure, the design basis was compromised and
a very conservative approach had to be taken.

The current level of development in structural analysis by
matrix methods using the digital computer offered an alternative
approach to analysis of these structures. The basic advantage of such
an approach is that the structure need not be reduced in form to such
a great extent. Thus the structure can be treated as a continuous
entity with the degree of continuity being limited only by the computer's
capacity to solve simultaneous equations. The results of this approach
are a more accurate model of the structure and a more complete
picture of its struétural behavior on which to base the design. = This
is not to say that the resulting design will be less conservative but

that, whatever the degree of conservatism, it will be better realized.

6.1 Discussion of the Method of Selution

For about.ten years the finite element method has been in a rapid
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state of development and as a consequence there are many different
types of elements available for use. In the selection of the basic ele-
ment used in this investigation, two considerations were most impor-
tant. First, the element must be capable of modeling the plane stress
situation in the crotch girder and the membrane and bending stress
occurring in the ring girder and shell portions of the structure. A
single finite element formulation with the flexibility of modeling both
stress conditions would seem more advantageous than using two dif-
ferent finite elements. Second, the finite element formulation should
be capable of convergence with decreasing element size while contain-
ing a minimum number of unknowns. The geometry of the penstock
bifurcation is complex and a large number of elements would seem
necessary and therefore the basic element must contain as few un-
knowns as possible. The convergence requirement is best studied by
deriving the finite element formulation from a valid variational func-
tional such as the potential energy functional or the Hellinger-
Reissner functional. If the condifions on the variables of the finite
element formulation are sufficient to insure the existence of the func-
tional, then the compatibility requirement is satisfied and convergence
with vanishing element size is expected.

The finite element formulation chosen is a flat plate element
which superimposes plane stress action and bending action. It is de-

rived from the Hellinger-Reissner principle and is shown to satisfy the
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requirement of convergence. Its variables are, in the most general
case, the in-plane displacement, the transverse displacement, and
the normal moment. It is termed a mixed method as opposed, for
example, to a pure displacement method. In addition, the finite ele-
ment formulation selected for use had been applied with good results
to an intersecting shell problem. Whereas the penstock bifurcation
partially resembles an intersecting shell, the formulation was thought

a good choice from this point of view also.

6.2 Discussion of the Development of the Finite Element Model

After the basic finite element was selected, a finite element
model of the penstock bifurcation was constructed. Element matrices
for elements appearing on the crotch girder are formed by generating
only those stiffness coefficients which correspond to in-plane dis-
placements. Elsewhere on the structure the element matrices are
forméd by generating the coefficients corresponding to all the vari-
ables. No difficulty was experienced in compatibly connecting these
two elements together along their common boundary; the crotch
girder-cone attachement line. This is because they are basically the
same element with the same number and types of unknowns at corner
node points. Along the common boundary between the ring girder and
shell, three elements share the same side point node, commonly

called a branch point. Here it was necessary to assign two unknown
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moments to each branch point. The third moment was computed by
virtue of moment equilibrium of the branch point after solution of the
system of simultaneous equations yielded values for both of the other
moments. This equilibrium condition or constraint is applied at each
branch point.

Displacement boundary conditions for the finite element model
were dictated by symmetry and the type of loading condition selected.
Difficulty was experienced in applying the correct boundary conditions
to the outlet face of the cone. These boundary conditions are not ex-
pressible in terms of global coordinate directions as were all other
boundary conditions. Linear elements were added to the structure
along the outlet face of the cone to solve this problem. These ele-
ments were given an extremely large axial stiffness and were geo-
metrically oriented so that their axes were collinear with the direction
of the constrained displacement. The resulting displacements in these
directions were not zero but were severval orders of magnitude less
than typical displacements in the structure and the desired effect was

achieved.

6.3 Discussion of Verification of the Finite Element Model

Verification of the finite element formulation was sought by
comparing the finite element solutions of several simple structures

for which classical solutions were available. Very good agreement
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was achieved for membrane stresses in shells and bending moments
in flat plates. Bending moments in shells were found to be less
accurate and required a greater number of elements in the direction
of curvature for good accuracy. The side point moments in the direc-
tion of curvature were found unreliable and should be ignored in favor
of the moments computed for the center of the elements. The com-
promise in moment data was not unexpected because a flat plate ele-
ment is being used to model the behavior of a smooth shell. The
need here is for a curved shell element with a reasonably small
number of unknowns, but this is only in the developmental stage at
present.

In addition to the above verification, a finite element model for
a prototype penstock bifurcat‘ion was éonstructed and the results were
compared with experimental data obtained from a hydrostatic test of
that prototype structure. Very good agreement was achieved for
stresses in the crotch girder and tie rod. Moreovef, the stress dis-
tribution along the critical section of the crotch girder was accurately
predicted and the crotch girder behaved as a stretched plate instead
of a curved beam as presumed by previous methods of analysis.
Elsewhere in the structure the finite element data was consistentkfrom
a behavior standpoint but the accuracy was not as good as that achieved
in the crotch girder and tie rod. The difficulty could well have been

the very coarse model that was used, but experimental data was
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unfortunately too scarce to justify a second model with a greater num-
ber of elements. The agreement with the available experimental
data, on the whole, was good and served to verify the capability of the
finite element model to analyze reasonably well a symmetrical pen-
stock bifurcation.

Additional experimental verification of the basic formulation
used in this study may be found in a report (9) on an experimentaylV
model study of structures similar to symmetrical penstock bifurca-
tions.

It was also found that the element moment data for the triangular
elements in the model was abhormally high and suspect. It is believed
the triangular elements are influenced by the side point moments to
too great an extent. It is therefore recommended that the triang@laf
element moment data be ignored along with the side point moment
data and that the use of triangular elements on the shell be kept to a
minimum.

6.4 Discussion and Recommendations for the Lost
Creek Bifurcation

The data indicates that the structure as designed would not be
subject to failure under either the hydrostatic test condition or the
operating load condition. There is some evidence that a localized

elastic failure might occur between the top-center area of the cone
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and the tie rod during hydrostatic testing. The data definitely shows

the stresses in this localized area of the structure to be maximum and
that they could equal 80% of yield stress (based on a yield stress of 30
ksi) which is the upper limit according to current design specificatioﬁ.

Elsewhere in the structure the stresses are much lower. The
maximum computed stress in the crotch girder is about 12 ksi for’ the
hydrostatic condition. The maximum computed tie rod stress is kabc)ut
6.7 ksi and it occurs in the operating load configuration. The maxi- "
mum stress in the ring girder is about 6.4 ksi and it too occurs in the
operating load configuration. The maximum stress in the cylindrical
shell is about 15 ksi in the hydrostatic configuration. Generally, the
data for the Lost Creek bifurcation indicates an under-stressed condi-
tion except for a localized area in the cone.

The results for the structure with the negligibly small tie rod
indicate that the 11 in. diameter tie rod affects the stresses in the
girders to a gréater extent than in the shell where little sigr;ificant .
difference in stress level was indicated. The stress flow in the c¢rotch
girder is substantially improved allowing the crotch girder to partici-
pate structurally in the manner in which it was intended. The results
indicate that the tie rod could be deleted or relocated to the weld
point between the girders where it would double as a weld post and
stiffening member. On the whole, the deletion of the tie rod does in-
crease the stresses in the structure but the maximum stresses in the

crotch girder and ring girder remain at a safe level.
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APPENDIX A

DERIVATION OF DIRECTION COSINES IN TERMS
OF GLOBAL COORDINATES
The 3 x 3 orthogonal rotation matrix [R] mentioned in Section
3.3 is composed of the nine direction cosines R-1j relating the local
unknowns (u,v,w) to the global unknowns (—L]—., ;,—\;/) for a triangu-

lar element (see Figure A.1).

y,» v ’
T/.\
J
i)—:-*x,u (x,, v, 2,)
i

/ Note: x and y axes are in plane of triangle

7, W

Figure A.1l. Global and local coordinate systems.
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In terms of the global coordinates of the three corner nodes the

side lengths a, become

= = - =2 - = 2.1/2
a, = [(xj—xi) + (yj-yi) + (zj—zi) ]
where
i+1 i=1,2
j:
1 i=3

Unit vectors 4% and ’ﬁ3 which are collinear with the x axis and

side 3, respectively, are written as

aolis = AL = AL T T
X = . [(xz—x1)1 + (yz-yl)J + (zz-zl)k]
1 (— — A - - A ~— = A
N e _ A _ A N
B3 a, [y 3 4 (y3-y))T+ (25 z))k]
AN A
where i, j, and k are unit vectors in the global system.
The direction cosines for the x axis; Rll’ RlZ’ and R13,

are found by the following scalar products

X_-X
2 1
R :/1\.,)2:
11 a
1
Y5-Y
AanAn_ 271
RlZ'_J =72
1
R _/};A_ZZ-ZI
13- %7 T3
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The following scalar products will be of use in computing the remain-

ing direction cosines.

X ~X
1
c, =18y ==
23
Y.-Y
A~ 7371
CZ—Jn3_ a,
z.,-2
A A
C,=k-n, = > 1
3 3 a,

.The Ci are direction cosines for an axis along side 3.

The angle  between sides 1 and 3 is defined by the vector

product

)3

/\ﬁ‘3 = siny 2

~ . . . .
where 7z is a unit vector along the .z  axis. Therefore, the sine

of the angle  can be written as

o 2 2 2.1/2
sin y = [(R,C)-R 3C))"+ (R ;C R, C4)" +(R}C,-R;,C )]

R and R_._., are

The direction cosines for the =z axis, R 32 33

31’

found by the following scalar products

A~ B12C3-R;5C,
‘R =iz

31 . sin
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R.. = NA R13Cl R C3
32 - 3727 sin
2 _,}: A R“C2 R C
33 z= sin
A unit vector ;r\ in the direction of the vy

performing the vector product 2z /\;:\.
for the vy axis, RZI’ RZZ’ and R33
following scalar products.
N
Rap Ty = RypRy3 -
AN
Rap =377 = RysRy
R ,=%k'y=R, R
Rz Tk y= Ry Ry, -

axis is created by

Then the direction cosines

-are found, as above, by the

Ri3R 5

-R_,.R

31713

R32R11
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APPENDIX B

USER'S MANUAL FOR GENERAL SYMMETRIC
PENSTOCK BIFURCATION PROGRAM

This appendix is included in order to encourage the use of the
developed computer program to analyze and design symmetrical pen-
stock bifurcations. While the subsequent descriptions are thought
sufficient by themselves‘ to operate the computer program, users are
- encouraged to read the dissertation to which thi; manual is appended
for general information.

Initially, generating input data for a preliminarily designed
bifurcatio‘n may be tedious. The‘reaftell', the design effort can be
greatly reduced by modifying member sizes and geometry with only
slight variations in the input data. Such a trial and error procedure
of analysis and design can result in an optimum final design in Which

each component is stressed to the desired level.

B.1 Program Capability

The FORTRAN IV program written for an IBM 360 computer
described herein computes principal membrane strains, principal
membrane stresses, principal bending moments, and displacements

for a symmetrical penstock bifurcation, subjected to internal hydro-

static pressure. Use of the program with other computers should be
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possible with additional setup effort. The structure may or may not
contain a tie rod and/or an internal crotch girder. The method of
analysis is the finite element method using a triangular plate element
based on a mixed formulation. The analysis is a static, linear elastic
analysis and does not include the effects of concrete encasement or
thermal loads. Two load configurations can be analyzed; the hydro-
static test configuration and the operating load configuration. The
test configuration assumes infinitely rigid bulkheads are placed over
the bifurcation apertures and the operating configuration assumes the
apertures free to deflect in the radial direction and that the bulkheads
do not exist. The program does not provide for unsymmetrical loads
in the operating configuration.

Present limitations on the finite element model's size are as
follows; 315 node points, 116 elements, 47 constrained nodal points,
and 5 branch points.> If the user wishes to increase these limits the
following named common areas must accordingly be changed in the
program; common Al, common A4, common Bl, common BCD, com-
mon C2, and common El. In addition the number of unknowns and the
band width, presently specified as 486 and 87 respectively, must also
be expanded. To accomplish this the following must be changed;
common F1l, common SLOW, the indices on both DO LOOPS in sub-

routine INTABC, and the dimension statement in subroutine SYMSOL.



134

B.2 Preparation of the Finite Element Mesh

After taking advantage of the bifurcations two planes of sym-
metry, only 6ne-fourth of the structure (see Figure 1.3) is to be
discretized. Three shapes of elements are used to construct the
model; quadrilateral, triangular, and linear as shown in Figure B. l.
The model shown in this figure is also shown in perspective in the
dissertation (see Figure 4. 17). The majority will be quadrilateral
elements as they are the most efficient; that is, the quadrilateral
element is sub-divided by the program into four triangles. Moreover,
the number of equations in the final system of simultaneous equations
associated with one quadrilateral is less than the number for four
triangles with no corresponding loss in accuracy. Since the system
of equations requires a large amount of core storage, the use of
quadrilaterals should be encouraged wherever possible.

In some areas of the structure the geometry is such that the use
of quadrilaterals may be impossible. Such areas sometimes may
occur along the conical shell at its intersection with the crotch girder.
When this happens the mesh generation can be expedited by using tri-
angular elements, but it should be mentioned that moment data is
suspect for these elements. In addition, the use of triangles is
advisable where the layers of quadrilateral elements need increasing

because the structure gradually widens; see, for example, Section
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2 ' ) \
Plan view ?
' Linear element

1I\_ Ring girder Cone

Cylinder )
. . Cone attachment line
Begin numbering nodes

Crotch girder

Tie rod
<

;1
Global axes \ \
2O—x—>x ~ L \

7/

/

Section:A-A

Figure B. 1. Example finite element mesh showing beginning of
: node numbering scheme.
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A-A in Figure B. 1.

The linear elements are actually axial members and they are
provided for two reasons: First, in the event of an inside tie rod as
seen in Section A-A of Figure B.1, a linear member will model the
axial stiffness of the tie rod. Second, the boundary conditions along
the outlet face of the cone are modeled by linear members having a
very large axial rigidity as shown in the Plan View of Figure B. 1.

In the second instance, the linear elements can be termed fictious,
but nevertheless should be shown in the finite element mesh to facili-
tate subsequent numbering and geometry definition. Their length is
not important as long as it is reasonably similar to adjacent quadri-
lateral element dimensions.

On the shell portions of the bifurcation, quadrilateral shell ele-
ments should be constructed so that each subtends the same angle 1n
the direction of curvature. That is, if fop.r elements are to be used
over a 90° arc, each should subtend a 22.5° arc. This will allow for
easy data input, but moreover, there is evidence that the elements
will model more closely the actual shell behavio-r. This. procedure,
ho{avever,’ must be abandoned in the area of the intersections with
stiffening girders where, as mentioned above, the complex geometry
prohibits uniform mesh development.

Numbering the node points should begin after the finite element

mesh has been decided upon. In general, two types of node points are



137

assumed to exist for the elements; a corner point node at each corner
and a side point node at the half-way point along each side of thé ele-
ment. Numbering of these nodes should begin where shown in Figure
B. 1 and proceed in the axial direction of the cylinder and then the
cone in a layered manner. When the ring girder is encountered, ‘the
numbering proceeds up the side of the girder and continues again at
its base al‘ong-the cone. Generally, the nodes of the crotch girder are
numbered from top to bottom and then along the cone again. But the
primary objective of the numbering scheme is to minimize the numeri-
cal difference between node point numbers associated with the ele-
ments. This technique minimizes the computer storage requiremeht
for a given number of elements.

The numbering scheme should be sequential up to the largest ’k
numbered node, and naturally no node points should remain without a
number. The elements of the crotch girder and linear elements do
‘not receive side point numbers because there is:no moment, thus no
side point node, associated with these elements. Side point nodes will
occur where the crotch girder intersects the ring girder and cone,
but these nodes belong to the elements of the ring girder and cone
and not to the crotch girder elements.¥ Once the numbering has been
accomplished, it should be checked so that no points-have been missed,
and no numbers have been repeated or left out and that no side point

numbers have been assigned to elements of the crotch girder or
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linear elements. -  An error at this point will nullify any further effort.
Next, all elements should be numbered sequentially and in a
layered manner following as closely as possible the scheme for num-

bering the nodes.

B.3 Sign Conventions

Global displacement and load cémponents are positive when in
the direction of the positive global coordinates (;c-, ;r-,—z-) shown in
Figure B.1l. Local displacement and load components are positive
when in the direction of the positive local coordinates. The local
coordinate systems for the various elements are shown in Figure B.2
as they relate to side one of the elements. Side one is defined by the
first two or three, as the case may be, “nodal point numbefs aséoci-
ated with the element (see Section B, 5.7). Note that the quadrilateral
has a different local coordinate system for each corner point while
the triangle and linear elements have only one coordinate system per
element. Positive moments cause compressive stress oh the top
surface of the element (see Section B. 5.7 for a definition of top sur-
face). The normal load on an element is positivé when acting as a
pressure on the bottom surface.

The above description of local coordinate systems is not neces-
sary for constrluct-ing the input data but only in interpreting the out‘put

data.
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Quadrilateral element

Note: x and y axes liein
plane of the element

X, u .
! Side one

Triangular element

zZ,w y, Vv

X, u

Linear element

Figure B. 2. Local coordinate systems.
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B.4 Job Control for IBM 360-50

The following information is systems oriented and describes
IBM operating system job control cards placed atop the data deck.
Sequential read-write access devices used in the computer program
are listed and defined as to their size.

//JOBLIB DD DSN=LIBRARY, DISP=SHR

// EXEC PGM=FINITELE

//FT06F001 DD SYSOUT=A

//FT02F001 DD UNIT=SSYSQ, DISP=(NEW, DELETE),

' ’ SPACE=(CYL, (5, 5))

//FT03F001 DD UNIT=SSYSQ, DISP=(NEW, DELETE),
SPACE=(CYL, (5, 5))

//FT15F001 DD UNIT=SSYSQ, DISP=(NEW, DELETE),
SPACE=(CYL, (5, 5)) ‘ ;

//FT16F001 DD. UNIT=SSYSQ, DISP=(NEW, DELETE),
SPACE=(CYL, (5, 5))

//FT17F001 DD UNIT=SSYSQ, DISP=(NEW, DELETE),
SPACE=(CYL, (5, 5))

//FT18F001 DD UNIT=SSYSQ, DISP=(NEW, DELETE),
SPACE=(CYL, (5, 5))

//FT21F001 DD UNIT=SSYSQ, DISP=(NEW, DELETE),
SPACE=(CYL, (5, 5))

//FT22F001 DD UNIT=SSYSQ, DISP=(NEW, DELETE),

. SPACE=(CYL, (5, 5))

//FTO5F001 DD * ‘
Data

. B.5 Preparation of Input Data

The following describes the cards and sets of cards shown in
Figure B.3 which form the necessary input data to the program. All

integer data should be right adjusted in their respective columns.
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Pressure card \
Branch point cards -\

Constraint cards \

i foaced

Connectivity cards : J

|

BN ,
N ,
\ :
\ A Coordinate cards

|| \\" Control card

Material properties card

Tie rod diameter card

-
\\ Geometry card

Load configuration card

Figure B.3. Input data for the penstock bifurcation program.
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B.5.1 Load Configuration Card (I5)

Columns 1-5

Place a 1 for the hydrostatic test condition or
a zero (blank card) for the operating load

configuration.

B.5.2 Geometry Card (8F8. 5)

Columns

1-8

9-16

17-24

25-32

. 33-40

41-48

49-56

57-64

Radius of the cylinder (feet).

Outlet radius of the cone (feet).

Angle change in flow direction (degrees).

Cone half-angle (degrees).

Crotch girder thickness (inches). Because the
crotch girder is bikrsected by a plane of sym-
metry, the program halves this value.

Ring girder thickness (inches).

Cylinder thickness (inches).

Cone thickness (inches).

B.5.3 Tie Rod Diameter Card (F8.1)

Columns

1-8

The tie rod diameter (inches). If a tie rod
exists. in the finite element model and the user
does not wish it to participate structurally,

then the diameter may be made extremely )
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small (. 0001). A zero diameter should not be
used in this instance. If a tie rod does not

exist, the card is left blank.

B.5.4 Material Properties Card (2X, E10.3, F10.3)

Columns 3-12 "Modulus of elasticity for the steel (ksi).

13-.22 " Poisson's ratio for the steel.

B.5.5 Control Card (515)

Columns 1-5 Number of néde points. (See Section B. 2.)
6-10 Number of elements or connectivity cards.
(See Section B.5.7.)

11v-15 Number of constraint cards. (See Section
B.5.8.)

16-20 Number of branch point cards. A branch pointk
occurs only at side points along the intersection
between the ring girder and the shell. (See
‘Section B. 5. 9.)

21-25 Number of co‘ordinate cards. | Note that this
number. is considerably less than the number of

node points. (See Section B.5.6.)
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B.5.6 Coordinate Cards (I8, 2F10. 2, 3F5.0)

This data set describes primarily the overall geometry of the
structure in terms of two coordinates for each corner node point of an
element. In addition the number of unknowns to be assigned various
nodes are de-scribed in this data set. Because of this, branch points
are also.included in these cards even though, as side points, their
coordinates are of no interest and are not entered by the user.

The coordinates for each node point will be referenced to one
of the four sub-structure reference systems shown in Figure B. 4
provided for convenient data input. Numbers 1 through 4 are used to
to indicate the reference system for corner nodek points on the crotch
girder, ring girder, cylinder, and cone, respectively. The end nodes
for linear members which also occur on a boundary are assigned a 5
in the case of members along the outle!; face of the cone and a 6‘ in the
case of a tie rod member. Numbers 5 and 6 do not represent addi-
tional reference systems but svpecial cases of reference systems 4
and 1, respectivelv.

qurdinates for corner node points occurring along intersec-
tions involving the ring girder should be referenced to the ring girder
system (reference system 2). If the intersection involves the crotch -
girder and does not involve the ring girder, the coordinates should be

referenced to the crotch girder system (reference system 1).



Crotch girder coordinates: x y
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Figure B. 4. Sub-structure reference systems.
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In the case of a branch point card a 2 is placed in column 33

and all other columns are left blank.

Columns

1-8

9-18

19-28

33

38

43

Node number. (Number assigned to the node.)
The x coordinate-of the node (feet).

The y coordinate (feet) if the node is on the ring
girder or crotch girder. The angular coordi-
nate (degrees) if the node is on the cylinder or

cone.

.This entry indicates the number of unknowns the

program will assign the node point. In the
finite element formulation used, this will pre-
dominantly mean 3 unknowns. However, a 2
should be assigned the following node points:
node points whose coordinates are cast in the
crotch girder reference system and branch
points.

Sub-structure cogrdinate reference system
number 1, 2,3, or 4. A 5 is entered for the
node point on the constrained end of a linear
element, and a 6 is entered for the constrained

node point on a tie rod element.

‘Most cards will not contain an entry here. Only

those corner point nodes on the inlet face of the
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cylinder and outlet face of the cone are of con-
cern. A 1l is entered for both the 0° a.nd 90°
nodes on the cylinder and intermediate nodes
‘are assigned a 2. A node located at 6 = 0°
(see Figure B. 4) on the outlet face of the cone is
referred to as a 0° node, etc. . A 3 is entered
for the 0°.and 180° nodes on the cone and a 4
is assigned to the intermediate nodes. These
entries signify the location of tensioning loads
-produced by bulkheads when the hydrostatic test
condition is specified. The loads are computed
-automatically from internal pressure and

geometry.

B.5.7 Connectivity Cards (I5, 5X, 815, 2I10)

This data connects the element number with the node point num-.

bers on the element's perimeter. The node points for a quadrilateral

and triangle are listed counterclockwise on the perimeter beginning

o~

with a corner point node and ending with a side point node. The first

two or three nodes, as the case may be, define side one of the ele-

ment and the resulting output data will be referenced to a local x

axis collinear with this side (see Figure B.2). For example, the

stress in the x direction for the element will act parallel to side
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one. The ''top surface'' of theelément is also defined as the surface
that is viewed when numbering counterclockwise (a positive moment
creates compression on the '"top surface'). For linear members the
smallest numbered node should be listed first. There must bea card
in this data set for every element. ¥ach card, besides the above
information, contains an entry indicating to which part of the structg';:é
the element belongs. The indicators are'l, 2, 3, and 4 and they
represent the crotch girder, ring girder, cylinder, and cOhé, respec-
tively. A 5 indicates a linear element along the outlet face of the cone
anfifa 6 indicates a tie rod element. These indicators are similar to
those in Section B.5.5 but here they refer to elements and not nodes.

Columns ' 1-5 Element number (number assigned to the
element). .

13-15 Corner point node.

18-20 Side point node only. Columns are left blank '
if the element is on the crotch girder or is a
linear element because no side point should have
been assigned te these elements.

23-25 Corner point node or ena point node if element
is a linear element.

28-30 Side point node or blank.

33-35 Corner point node or blank.

38-40 Side point node or blank.
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43-45 Corner point node or blank.
48-50 Side point node or blank.
60 ‘A number 1 through 6 as indicated above.
70 Enter a 1 if the element is a triangle otherwise

leave blank.

B.5.8 The Constraint Cards (415)

These cards apply primarily to corner node points (as opposed
to side point nodes) on the boundaries of the finite element model.. A
constraint is a ''fixing against movement'' of a displacement componént
in one of the three global directions (;, ;, -z-). The constraints are
dictated by symmetry of the structure along those boundaries that are
formed by intersections with the symmetrical X - ; plane and
symmetrical X -z plane (see Figure B.4). For example, a corner
node point in the x-z plane cannot move in the ;r- direction and
therefore is constrained in the ; direction. In the same way a
corner node point in the x - ; plane is constrained in the z
direction.

An exception to this procedure occurs for corner node points
on the crotch girder to which 2 unknowns have been assigned in ’col-
umn 33 of Section B. 5. 6. Though these nod.e;points lie in the ; - ;r—

plane they do not receive a constraint in the z direction. Those

‘node points which are also comrnon to the x-z plane are assigned
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a constraint in the ; direction. This is a consequence of the crotch
girder being a plane stress component in the x - ; plane.
In-addition to~boﬁndary conditions resulting from symmetry,
constraints will exist because of load conditions along the inlet face of
the cylinder and outlet face of the cone. If the hydrostatic test con-
figuration is chosen in step B. 5..1 above, the user must constrain the
; and z displacements of corner node points along the.inlét face
of the cylinder. In this manner he is consistent with assuming
infinitely rigid bulkheads welded to the structure. If the operating
configuration is chosen, only the x displacements must be con-
strained along the same boundary. Boundary conditions on the outlet
face of the cone are subject to the same considerations but they cannot
be case in terms of global directions ‘(;, ;r—, ;). The linear elements
along the cone outlet face were developed to approximate these bound-
ary conditions (see Figure B. 1). The end nodes of these elements
must be completely fixed against displacement by the user by con-
straining them in all three directions; X, ;r-, and z. This is all that
" need be done regardless which of the two load configurations are
chosen. The user should note, however, that step.B.5.1 and thkis step
are related insofaras the boundary cenditions along the cylinder inlet
face are concerned. That is,when the load configuration is changed

the constraints along the inlet face of the cylinder must be changed

accordingly.
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The majority of cards will represent constraint conditions for
corner node points but the user must also generate a card for each qf
the side points along the free ed‘ge of the ring girder. The purpose is
to constrain the moment at these side points to zero. These are the
only side points that are assigned constraints by the user. This is
done by entering a 1 in all three columns normally reserved for dis-
placement constraints.  The user should note that this does not mean
the displacements are constrained along the free edge.

In the following columns a 1 is used when the constraint is de-
sired, othérwise the column is left blank.

Columns 3-5 Node point number.

10 x direction constraint. (1 or blank.)

15 ; direction constraint. (1 or blank.)

20 z direction constraint. (1l or blank.)

B.5.9 Branch Point Cards (415)

These cards pertain to side points along the intersection of the
‘ring girder with the shell.
Columns 3-5 Side point number.

9-10 Adjacent cylinder element number.

14-15 | Adjacent cone element number.

- 19-20 ' Adjacent ring girder element number.
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'B.5.10 ‘Pressure Card (F5. 3)

Columns 1-5 Pressure (ksi).

- B.6 Checking Input Coordinates and Connectivity

It is important in a finite element inv‘estigation of this magni-
tude that the user have confidence in the accuracy of the input c‘oo’rdi’-
nates (B. 5.5) and input connectivity (B. 5. 6). . The preferable way to
check this data is by plotting the finite element mesh using a mechani-
cal or electronic plotting device. The information needed from the
program will be contained in subroutine GLOCOR and may be
obtained on card output by removing the comment designation on the
‘appropriate statements. Specifically, the computed global coordinate
variables XBAR, YBAR, and ZBAR are written out on cards along
with the connectivity matrix ICONN. This information must then be
converted by an appropriate program so that a plotting device can
interpret and plot the finite element mesh. . Development of the pro-
gram will depend in part on the type of plotting device used and there-

fore such a program is not included.

.B.7 Printed Information and Data

The input data is printed first. This includes the selected load

configuration, the dimensions and angles, the material properties,
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the control numbers, the element connectivity, the node point coordi-
nates, the constraint data, the branch points, and the internal pres-
sure.

Some useful computed information is printed out next.* First,
the generated displacement or moment numbers for each node point
in the model are printed. For each corner node point there are three
possible displacements depending on the constraints. For a side
point node there is only one moment, and thus one number assigned
to it (if the side point is a branch point, two numbers are assigned).
Each number, whether a displacement or moment number, represents
one equation in the system. The largest number represents the num-
ber of simultaneous equations in the system. ¥ Secondly, the code
numbers for each element are printed. This information is generated
from the input connectivity and the displacement or moment numbers
and is used to assemble the system of simultaneous equations. .Third,
the global coordinates for each node are printed; These coordinates
are referenced to the global system and are computed from the input
coordinates which are referenced to the four sub-structure reference
systems. * Finally, the maximum half-bandwidth for the system of
simultaneous equations .is printed. In the FORTRAN program the
named common area SLOW must have dimensions equal to or exceed-
ing the product of the half-bandwidth and the largest displacement

number.  Also, the named common area F1 must be dimensioned in
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excess or equal to the largest displacement number.

The output data is printed next. First, for every node point
the global displacement components (UBAR, VBAR, WBAR) or side
point moments, as the case may be, are printed. The units are
inches for displacement and kip-inches per inch for side point
moments. In the finite element formulation, the side point moment
values in the direction of curvature of the shell are to be treatedk as
suspect as are the element moments for triangular elements. Side
point moment values on the ring girder and elsewhere should be rea-
sonable data. When a side point node is also a branch point, two side
‘point moments will be printed. The first moment will be for the

cylinder (M_.) and the second moment will be for the cone (an),.

nl

The side point moment in the ring girder (M_,) at that branch point

_ n3
can be computed by M _, = -(M ,-M _).
n

3 nl ~n2

The next data printed is the corner point displacement compo-
nents referenced in the local coordinate systems (see Figure B. 2).k
- These components (u,v,w) are listed by /element number. A Quad-
rilateral element will have four sets of components, one for each
corner point. A triangular element will have one set of fc;)mponents
‘as wili a linear element. The units are inches.

The membrane strains, membrane stresses, and bending

moments for the center of each element are printed next. Listed for

each element are the rectangular cartesian components (as referenced
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in the local system with side one of the element collinear with the x
axis) the maximum value, the minimum value, the maximum shear
strain, maximum shear stress, or raaximum twisting moment, as the
case may be, and the angle between side one and the outward normal
of the face containing the maximum value. Bending stresses can be
. : 2 .
‘computed by multiplying the bending moment by 6/t  where t is

the thickness of the element.
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APPENDIX C
DESCRIPTION OF COMPUTER PROGRAM

Eighteen subroutines comprise the body of the computer pro-
gram. They are controlled by call statements which comprise the
‘main program. Extensive use of common storage is made to transfer
information from one subroutine to another. Approximately 294, 000
bytes of storage are required for the program in its present state, of
which 180, 000 are allotted to f;ast core and 114,000 are allotted to
slow core. The former amount comprises the system matrix and the
latter amount comprises the remainder of the program. Sharing the
storage of the program betwéen fast and slow core in this manner
‘made it possible for the program to be run on a. 200, 000 byte fast core
partition set up for normal operation of a batchrproces sing system.
. A brief description of the function of each subroutine is given
below.
1) Subroutine INPUT. This subroutine reads into storage the
input data according to control card information described in
Section B.5.5. pl®

2) Subroutine SUBCOD. This subroutine generates the 4 x 12
matrix of code numbers used subsequently to combine four
‘triangular elements into one quadrilateral element. i‘;.\K.o

¥ 3) Subroutine GENCOD. This subroutine generates a code



4)

5)

6)

7)

8)
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number for each element in the finite element model. These

-are subsequently used to assemble the system matrix of

algebraic equations.
r:’l“
Subroutine GLOCOﬁ. This subroutine computes the global

coordinates for the node points whose coordinates were given

in terms of sub-structure reference systems.

7\b}
;Subroutine»INTAB((I. This subroutine initializes the system

matrix and system load vector to zero.
\}vv

Subroutine QUASYA.Q This subroutine computes the center
point of each quadrilateral element and thus begins the pro-
cedure for subdividing these elements.

K?\\;\f
Subroutine TRISYS. This is a very large subroutine as it
performs many functions. Its overall function is to compute
triangular element matrices for each of the four triangles
composing a quadrilateral element and then use code numbers

to assemble the 23 x 23 quadrilateral element matrix and

associated load vector.
ot
' This subroutine performs the static

ENE!
;’)\(‘
i,

Subroutine QUASYB%(}.
condensation process which reduces the 23 x 23 element
matrix to a 16 x 16 element matrix.

AT
Subroutine SYMAG. This subroutine uses the code numbers

to assemble the element matrices into a system matrix and

-system load vector.
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\U{

10),_,Subroutine-MAINVZ. This is a standard matrix inversion

11)

12)

13)

- 14)

15)

16)

subroutine. It is used to invert only small matrices such as

‘required by the static condensation process.

t;f‘xt*‘w
Subroutine REARR:! This subroutine rearranges or permu-

tates triangular element matrices and their associated load
vectors prior to their synthesis into quadrilateral element

matrices. Qw’
Subroutine. SYLMOD. This subroutine is used only in the
hydrostatic load configuration and it modifies the system
load vector to include the tensioning loads induced by the
bulkheads.

i:,;.’g‘:ﬂ
Subroutine BANWID.' This subroutine computes the band

width of the system of simultaneous equations prior to the

solution process.

wikd

Subroutine'SYMSOL?; This is a standard subroutine used to
solve the system of simultaneous equations by Gaussian
elimination.

QE}&-’!
Subroutine STREMO: . This subroutine uses the global dis-
placements and side point moments which are direct solutions
of the 5ys_terh of simultaneous equations and computes the
local displacements, stresses, and moments for the elements
in the finite element model.

A
Subroutine ROTVA.\ This subroutine is used to rotate the



17)

18)

159

reference system for each triangular element into a quadri-

lateral element reference system so that the correct average
of stresses and moments can be computed within each
quadrilateral element.

Wiy
Subroutine-PRINC. This subroutine computes the principal
stresses, principal moments and the principal directions
for each element.

[
§

e
Subroutine OUTPUT.K This subroutine controls the printing

out of input information and output data.
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APPENDIX D:

AR A R R R R R R R P R R P 2221

EXTERNAL EUUMP

CALL ERRSET1208+2+290+ECUMP+2(9)

COMMON /A17 CCOR(31%,5)

COMMON 7437 ICOOF (4412)

COMMON 7847 TCONNU13€,1C)

CUMMON /AS/7 QFEMAA(LE,1€6)s QEMABIL6,7), CEMT3I(1647),
1QEMTLILT,16) QEMT2(16416)y GRALL6)

CGMMON ZA6/7- TQEM(23,23)

COMMCN /AT/7 QRT(23)

COMMON /AE/ BU3+3)s 8P(3)y CPU3)y AI{3,3), AJ(3,3), AK(3,3), SI(3)
1y CUL2), GU3e3)s L(343)y CU3,3),PT(3,3), K{3,2), :
2TEMI12+12),PLUL12) s TEMPIL2+12) s RPLIL2)

COMMON /7A9/7 E4PRyCCN,P

CUMMON /B1/7 NCODE(11é&,16)

COMMON 7827 PHIA(L6) oPHITIT) oCREVIT) oPHIB(T7) yPHIT12)4A13,6),C(3,3)
LoLISPUT)oSMOMI3) o TEST(4¢3) o TEEP(443) o TEMCI443)4PHIP(12)

COFMON /B3/ F{3,3), TI12,12)

COMMON /B4/  X24X3,Y3,ARER

COMMON /7B6/ TEMTU12,12)4RPLTI12)

CUMMON /BT/ RCYoRCOWBET,GAMAL 4 TCGoTRGyTCYoTCCoDITR

COMMON /B9/ NP oNE,NCCAP ¢yNCEPT ¢ANNP

COMMON /BCD/ KNCVA(47,4) 9 NCCOMI315,3), KNOMO(444)

CUMMON /CL/7 M
COMMON /C2/ XBAR(315), YBAR(315), ZBAR{315)

COMMON /C4/ CEM (16+1€)¢ LRILE)

CAOMMON /CLE/ LAOCM
COMMON 701/  THoXBARR,YBARR,ZEARR
COMMON /E1/ QEEP(11642)y CESI(11643)y CEMO(11643)

COMMON /F1/ SYLVEC(48€)

CCMMON /117 CISU4)

CUMMON 7117 CTU1&)

COMMON /L1/ NCASE

COMMCN /Y27 " RBL2)

COMMON /SLOW/ BGKU4BEET)

DIMENSICN  QEMBA(7,16) 4QEMBBIT,7)4CRELT)

COUBLE PRECISION F

COuRLE PRECISICN GEMBB

LOUBLE PRECISION CEMEA

CaLL INPLT

Call GLCCOR

CALL SueCun -

CALL GENCGED | NPoNEGNCONP,NCEFT)

CALL  INTAEC

O 25C #=1,NE

CALL QUASYA (¥)

CALL TRISYS(M)

n=T

IFCICONNEM,9)  Ekal) N=2

CALL CUESYB (¥,LNy\yCEMIR,CEMPA,GRED

CALL SYNAGILNgN)

CUNTINLE

IF{NCASELEC.1) GO TC 150

o TC 2cc

CALL syLmce

CONTINLE

CALL BANWIDL (NELMB)

PROGRAM LISTING

CALL SYMSGL {(mB)

REWINL 2

REWIND 3

REWINE 18

CC 2CC IL=1+KE

N=7

IFCICONNETL ,9) 4 EG. 10 A=2
300 CALL STREMO (NOBPT,A,CEMBE,CEVMBA,CREB,IL)

CALL CuTPLY

stoe

END

[ e L e I T Lttt i T ey

s}

SUBRCUTINE INPUT
COMMON /Al/ CCOR(315,5)
CUMMCN 7A4/ ICONNI11641C)
CUMMON 7A9/ E4PRyCON,P
COMMON /BT/ RCYRCOGBEY,GAMy)AC,TCGoTRGoTCY+TCOWCITR
COMMON /B9/ NP4NENCONP JNCEPT NNP
CGMMON /BCD/ KNOVALGT94)e NCDCM(315,3)y KNOMO(4e4)
COMMON /L1/ NCASE .
REAC(5+2C0)INCASE
2CGC FURMATY (15)
REAC(5¢253) RCYSRCO+BEToGAM,
RET=,C1745328+BET
GAM=,C1745328%CAM
3 FURMAT (BFR.5)
REAC{54254) DITR
DITR=CITR%0.5
4 FORMAT(FB,1)
AC={RCY~RCO¥CCS(GAM))/SINIGAM)
READ(S,255) E,PR
CON= (1.-PR)*.5
255 FURMAT (2X,E10.3,F10,3) . - .
REAC(54271) NP ,NEJNCCNP,NCBPT,NAP ~ T

TCGoTRGTCY,TCO

2

w

2

u

2

~

1 FORMAT (515) )
CO 8C0 I=1,NP ’ woome
£0 8CO J4=1,5
80C CBORIT,4)=C.0
Ot 275 [=1,NNP
REAC(5,280) Ky fCCORUK,d)ed=1,5)
IFICOUR(K4)eEQa3URWCOORIK4)4ECL4)ICCORIK,2)=,017453284CCCRIK,2)
275 CONTINE
250 FORMAT (18,2F1C.2,2F5,C)
CC 3CC I=1,NE

3C0 REACIS54305) 1,{ICONNiTedd ed=1s1C }
3C5 FORMAT (15,5X,815,211C)
Clt 224  [=1,KCONP

334 REAC(5,235)
335 FCRMAT (415)
LU 34C 1=14NORPT
4C READ (9542411
41 FGRMAT (415)
REALL5,3443 P
344 FURMAT (F5.3}
RETLRN
ent
R R R R L L PSPy
SUERCUTINE SUECLO
COMMON 7A 37 TCCDE (4e12)
£ 189 I=1,4
L0169 ) 12
159 ICOREIT,9)=0
L6 2CC a=1,7
i=1

(KNCVALTod) 9 d=104) - R

(KACMGET 3y J=144)

091



2ce

2¢

-

202

2C3

265

2C7

209

211

C ‘##‘###‘;;““‘#“";“‘;;i“‘““““#““"##";;;““““;;“#‘#‘#‘

23

30

~

ICUOCE(I+J)=d

DO 2C1 J=1+7

1=2

ICOUCELTL +J)=J+4

€0 2C2 J=1,7

I=3

ICOCE(E,J)=J48

CO 202 J=1,2
ICODE(4+3)1=1CCNE(3+J%4)
CG 2C5 I=ls4
ICOCELY,9)=17
ICOCE(1,10)=18
1COCEtL,11)=19
ICOCE (4s+4) = 16

DO 207 J=1,3

ICOCE (49J+44) = ICCCE (1,00
00 209 I=ls4

ICOCE (Ls8)= 2C+1
ICUCE (4.+8) = 2¢C

CO 211 =1,4

ICOPE (1,123 = 1+19
RETLRN

ENC

SUBROUTINE GENCCD { NP+NENCCAP,NCEPT)

COMMGN /A1/ CCOR{315.5)

COoMMON /A4/ TCONNELLE,1C)

CGPMON /BL/ NCCDE(11é,16)

CLMMON /BCD/ KNOVAI4754)s NCDCMI315+3) s KNCMC{4,4)
COMMON /CDE/ LALCHM

LO 22 I=1+NE

€€ 23 J=1+16

NCOCE(T+J1=0

DG 3C I=1, NP

CL 3C J=1.3 i
NGCCMUIsd)=C P
K=C

Tl 12 [=1, NP

CU 2 N=1sNCONP

IF (KNOVAINs1).EC.I) GO TC 3
GC TG 2

CU 4 M=2454,]

IF (KNOVAUINYM)LEGQ.Y) GC TC 4
K=K+l

J=m-1

NODCMUT,J)=K

CONTINUE

co 10 12

CUNTINLE

IF (CCUR(E142)-2.) 74849

iz

CONTINLE
LACOM=K

LU 15 L=1.NF
N=C

13

19

2D
15

16
17

18

IFCICCANIL,1C)eERe1) AL=3 .
I+ (ICGNNILs1C)oNE.1) ML=4

U0 14 LCUM=1,NL

K=N*4

J=N»2

CL 13 [=1,3

NCOCE (Lo 14K)=NODOMIICONNIL2+d) 1)
IF(CCOR(CICONNIL3)+4).GTo4) GC TC 15
IFCICONN(L,244).ER.C) &C TC 19

NCUDE (L,44K)=NCDOMIICCAN(L24J),1)
N=N+]

Gu ¥ 185

K=0

J=C

NU=NL-1

L0 2C LCUM=14NU

K=K+4

J=J+2

00 2C 1=1.3

NCOCE (L, F4K)=NCDOM{ICCNN{L1+0), 1)
CONTINGE

CC 18 I=1,NOBPT

CO 18 K=2,4

IF (ICONN(I+1C).EC.1} LN=¢

IF (ICONN(I+10Q).NE.1) LN=E

CO 1& J=2+LNe2

IF (ICONN(KNCMO(I,K),J) EC.KNCMC(T,1}) GC TD 17
CONTINUE

L=J*2

M=K=1

NCODE(KNOMO( I1+K)oLY=NCOOM(KKCHDLI,1) M)
RETURN

END

C AR ARBRRRRAB R ARSI BIR AR BRI BB A AR BB IS RAR B RB AR IR RR R XS R R A

99

SUBROUTINE INTABC

COMMON /CDE/ LADOM

COMMON /F1/ SYLVEC(48€)
COMMON /SLOW/ SYMA(486,87)
00 1C I=1,486

SYLVEC({D) = 0.0

BC 99 i=1,486

L0 99 J=1,87

SYMA(I,J) = D.0

RETURR

ENG

o 2 R s 22 RS R RS SRS RS2 2R 222 RS S22 2SR RSS2 222 22 2 L LS

SUBRCLTENE GLCCCR

CLMMON 7A17 CCOR(315,5)

CUMMTN A4/ ICOANEL16510)

CUVMMON /BT/ RCY,RCCoBETGAMyAC,TCGyTRGTCYTCCHEITR
COMMON /B3/ NPNELNCCAPINCEBPTHARP

CUMMUN /BCD/ KNOVAG4T94)r NCTOM{31543)y KNOMCU444)
CUMNMGN /CZ2/ XBARU31S5)e YBAR(31S), ZEBAR(315)

CUMMCN L1/ NCASE

TANCM= SIN(BETI/(2.C#COSL S%(BET+GAM) )#CCST53(BET~GAM)))
FS= (RCYRTANCMESIN(GAMYI/SINGRET)
ALPHA=(2.1416/2.0)-ATANITANCH)

CeAL=CLS(ALPHA)

SIAL=SIN(ALPRA)

COHET S{BET)

SIRET=SIN(CET)

TAZAV=TAN{GAM)

191



550

5C¢

35

-

361

364

E)
11

911
321

R A R T Ittt

LG 55C I=l.NP
XBAR{1}=C.C

YEAR(1}=C.C

gart1)=C.C

Ct 371 I=1l, NP .

IF (CCUR(I,41).0€.0) GC TC SCQ

IF (CCUR(1+2).NE.C) GLC TC SCC
[F(CCOR(1,+4).EQ.1 LER. COCRI,4).EC.6) CC TG S00
GO 70 271

IF (COUR(I44).EGe.l «CR. CCCR{I,4).EQe6) GC TC 351
IF (CCOR(1,4).EQ.2) GC TC 361

IF (CCCRI144).EQ.3) GC TC 3é4

IF (COOR{1,4).EGe4 oCR. CCCRII,4).ECe5) GC TC 369
XBAR(I}=CCOR(T,1) + FS
YBAR(I)=CUCR(I,2)

IBAR(I)=C.0

GG To 37N

XBARP(1)= COAL*CCOCR{I,1)+F§

YBAR(I}= COOR(1,2}

ZEAR{I)= -STAL*CCOR(I,1)

60 1O 371

XBAR(1)= COOR(1+1)4FS

YBAR{I)= RCY*SIN(COCR(I,2))

ZBAR(I)= RCY*COS{CCCRII,2))

G0 TC 371

TA=TAGAN

RA=FCO

If (CCCR{T.4).EC.4) GC TC 27C

IF (NCASE.EC.C) TA=C.C

IF (NCASE.EQ.1) RA=RCC/5.1C

IF (NCASE.EQ.1) COOR(1,1)=A0

COCG =COS{1CO0R(1,2))

stce =SINICCOR(T,2))

TEML = RA+(AD-CCCR(I,1))%7A

TEM2 = COGR(I.1)

= TEM2 *COBEV-TE¥]L *SIRET*CCCC
YEAR(I)= VEM] *SICC

18AR(IY= TEMZ *SIRETHTEMI*CCBET*COCC
CONTINGE

CO 4CC 1=1,NOBPT

YBAR(ICORNNUKNCMCU192143)) = YBAR(ICCAN(KNCMC(142),1))

= ZBAR{ICCANIKNOMO{1+2),1))
YBARCICONN(KNOMOUNCEPT227,5)) = YBAR(ICCNL (KNCMGINGEPT,2),7))
= ZBARLICCANIKNCMO(NCEBPT42),7))

ZBARCICCNN(KNGMOLT 42)43))

26AR ( ICONN(KNOMCINCEPT 420 45))
CU $C8 Is14NP

WRITE (7411) ToXBARCI)SYRARCI) o ZRAR(T)
FURVATEL4 93X 0F 12, 49X k12,64 BXoFL12,4 BX,84)
LU 911 [=1,KE

J=I41CCC

WRITE(T,321) JoLICENNCT KD, K=1,842)
FORMAT {16114,1X))

RETLRN

EC

SLUBRLUTINE GUASYA ()
COMMOA /A4/7 [COANI116,1C)

COMMON /BT/ RCYRCCIBET GANM AL, TCGoTRGLTCY,TCL,CITR

COVMON /C2/ XBAR{315), YRAR{315), ZBAR(315)
COMMIY D1/ TH,XPARR ,YRARR . ZRARR
Lx

fe=C,
IF

ICOANIV, 10} .FCa1) GC TO 16l

[FEECONNINM,9).6T4) GL TG 161
EC € J=1+8,2
CX=0X ¢ XBARCICCNNINMo3))
CY=CY ¢ YRAR(ICCNA(F,3))
8 CZ=C7 + ZuARCICUAN(NM,J))

lel XBARR= [X*,25
YEAR Cy».25
IPARR= £Z%,25
IFCICCANIP,9).EG.L) GC TC 11
IF(ICONNC(M99)LEQ.2) GC TO 12
IFCICONNIF 49 ,EC.3) GC TC 13
IFCICONN(M99),EQ.6) GC TO 14
IFCICONNIM,9) 4 €Q.5) GC TC 9
IFCICONNIP+91.EC.6) GC TN IS5

11 Tk=7CC
60 1C 9

12 TH=TRG
Go 7o 3

13 TH=TCY
6C 70 9

14 TH=TCO

GO YO 9

TH=CITR

RETURN

END

-
-yt

[ tt#t*#t###########t#t###########t##################'##########‘##‘####

SUBROLUTINE TRISYS(M)
CCMEON /A3/ [ECCDE (4,12)
COMMON /A4/ TCONN(11&,10)
COMMDN. /A€/ TGEM(23,23)
COMMON /AT/ GRT(23) ¢
COMMON /a8/ 8(3,3), BP(3), CP(3), AlL3,3),

ly CUL3), GE393)y C1343)y G(3,3),PT(3,3), Hi3,3),

2TEM(12412)4PLT12)s TEPPLL2,12), RPL(12)
COMMON /A9/ ELPRCCA,P

CUMMON /837 F(2,3), T(12,12)

COMMON /B4/  X24X34Y3,AREA

COMMON /Be/ TEMT(12,12),RPLT(12)

COMMON /B7/ RCYRCO4BET+GAWAC,TCGoTRG,TCY,TCO,0ITR

COMMON /C2/ XBART315), YBAR(315), ZBAR(315)

COMPON /CL/  TH,XBARR,YBARR,ZBARR

COMMUN /L1/ NCASE

CUMMON /Y27 BB(Y)

DUUBLE PRECISICN F,MB,DEY

£0 145 [=1,423

4RT{1)=C.0

TU 145 J=1,23

TCEMIT,4)=0.0

CO 155 L=144

IF (L.EC.1) GC Y0 1¢C

1F (L.EC.2) 6C T 2¢

IF (L.EC.3) GC TC 3¢

IF (L.EC.q) GO TC 40

10 XUARL=XRARLICONNING1))
YBART=YHAR{TCCAN(M,1))
ZBARI=ZRARCICONNIN, 1))
XRAR2
YLAR2=YRAR(CICCANLY
LRAR2=ZBAR{ ICONNIY
TFCICONN(M,10) W AE.

14

s

X e AR BARLCICONN( Y,
Yiaw BARLICLAKY
Ipar RAZLICUNNTN g 5))
S 10 55

291



20 XBARI=XRAR(ICONN{¥,3))
YEARI=YBAR( ICONN(M,3))
IBARLI=ZBAR(ICCNN(M,3))
XBAR2=XBAR(ICCNN(M,5))
YBAR2=YBAR(ICONN(N,5))
ZRAR2=ZBAR{ICCAN(NF,5))
<0 T0 45
30 XBAR1=XBAR(ICCNN(M,5)}
YBAR1=YRAR(ICOKNN{F,5))
IBAR1=ZBAR(ICCAN(M,5))
XLAR2=XBAR(CICCNN(NM,T))
YBARZ=YRAR(ICCNN(M,7))
IBAR2=IBAR{ICCNNIN,7))
GO O 45
4C XBARI=XBAR(ICONNAM,7))
YBARI=YRAR(ICONN(M, 7))
ZBARI=ZBAR(ICORNN(M,7))
XBAR2=XBAR(ICONN(M,1))
YBAR2=YBAR(ICONN{M, 1))
ZBAR2=ZBAR(ICONNEM,1)}
45 Al = ((XBAR2-XBAR1}*(XBAR2-XBAR1)+{YRAR2-YEARL)*(YRAR2-YBARL )+
1 (ZBAR2-IBARL)*{ ZBAR2-ZEARL) ) *% .5
IFCICONNIM,9).GT.4) GC TN 56
A2 = ((XBARR—XEARZ)‘(XBARR-XE‘RZ)'(VEARR—VBARZ)‘(VB‘RR—VB‘RZ)O
1 {ZBARR~IBAR2)*{ZBARR-ZEAR2)) #%,5
A3 = ({XBARR-XBAR1)#(XBARR-XBAR1}+(YRARR-YBARL)*#(YRARR-YBAR] )+

1 (ZEARR-ZBARL ) *{ZLBARR-ZEARL) ) ** .5
GO TC S¢
55 Al = ((XBAR2-XBARI)%{XBARZ2-XBAR1)+({YRAR2-YBAR1)#*{YRAR2-YRAR]1)+
1 (ZBAR2-ZBAR1)*(ZEAR2-ZEAR]L)) *%,5
A2 = ((XBARI-XRAR2)#(XBAR2-XRARZ)+(YBAR3I-YBAR2)*(YBARI-YBAR2)+
1 (ZBAR3-ZBAR2)I*(IBAR3I-IEAR2)) *#*,5
A3 = ((XBARL-XBAR3)*({xBAR1-XBAR3)+(YBARI-YBAR3)}*(YBARI-YBAR3)+
1 {ZRARI-ZRAR3)I S {ZBARL-ZRAR3) I *%,5
56 Blls1)={XBAR2-XBAR1)/AL
B(le2)={YBAR2-YBAR]1) /A1
B{1l93)=(2ZBAR2-IBARL)/A]
IFCICONNIMP1C)4ECLL) GC TC 57
1F{ICCNN(M,9).GT.4) GC TO 54
Cl={XBARR-XRAR1)/A3
C2={YLARR=YRAR])I/AZ
C3=(ZBARR~IBARL)/AZ
Cu TC 58
57 C1=(XBAR2-XDARL1)/AZ
C2=(YEARI-YBAK])/A]
C3=(ZBAR3I-IBAR]) /A
D8 SINSI= {{R{1s2)30C3-K(1,3)3C2)%(H(1+2)%C3-8(1+3)%C2) + (E{L,3)%C1
“R(191)#C30e (P(1+2)%C1-P(1+1)%C3) + (R{1,1)%C2-RE(1,2)%C1)

P #FIB(141)4C2-B(14+2)%L1))%%.5
CUSSI= RUls11%CLl4B(1,2)%C24B11+3)%C3
B{3s10= (D(1,+2)%C3~8(1,3)1%C2V1/SINSI

BU2920= {B{Ly21¥CI~E(2+10%C2)/SENST

E(292)= (P{1o1D4C2~2(192)%CLY/SINSI

ezl BU342)¥650142)-R{3,31%E(1+2)

Bl2+2)= BL2,3)%8(141)-3{2,1)%2(1+3)}

RU292)= BU3o 1120801421 -£{3,2)%B(1+1)

GO TC 48
24 IF (ICONNE¥49) o565 oANCe NCASELEGLCY GC TC S1
IF C(ICUNN{Ms9) oEQeS oANLe NCASELEGCL1) CC TO 52
IF {ICCNNGH#9) et Qo) CC TL &2
WRITELEYE) ¥
FURAMAT (' ERRCP® IN ICCNN FUR ELEMENT?,15)
BElZy10=Ce0

u
figye

4

53

)

59

E{2+2
B(391)=-B(1+3)
Bl3,2)=C.C
Bl3s3)=B(1,1})

GO TQ 49
ALPHA=1.,57C79~BET
B13,1)=SINCALPHAY
8(3,2)=C.C
B(3y3)=COSCALPHA}
Bl241)==-8(1,21%8(3,2)
Bl242)=8(1+1)/813,3)
B1243)=8(1,2)%B(3,3)
GG TG 49

B{2+1)=1.C

Bl2+2)=C.0

B(2+33=C.0

Bi3,1)=C.C
B8(3,2)=C.0

B(3:3)=1.0

CUNTINUE

E0 59 1=1,3

CO 59 J=1,3
IF(ABSIBL{I,J)).LE. .C35C0) BlIsd) = C.0
A1=A1%12,

IFCICONN{M,9) .GT.4) GC TC 72
A2=A2%12.

Ad=A3*12,

X2=A1

X3=A3 *COSSI

¥3=A3 #SINSI
AREA=(X2%Y3/2.0)

BP{1)=-v3

BP(2)=Y3

BP(3)=0.

CP(1)=(X3-x2)

CPl2)=-x3

CP(3})=x2

T ETASE*TH/ {4 #AREA* (1, ~PR*PR)) "

50

Lo 5C I=1,3

CO 5C J=192

ATCTWJI=ETA * (BP(I1)*BP(JII+CPLTII*CP(J)*CCN)
AJOILJI=ETA * (BP(I)*CP(J)*PR+BP(J)*CP{ID*CON)
ARCTsJ)=ETA # (CPUII*CPLII+BP{II*BP(J)*CCON)
Sitt)=-1. .

SI(2)=(x2-X2)/A2

LF {TCUNN(M,T) NELC) WRITECLS) SIASI, SI(2)
CC €1 1=1,13

CO €1 =143

Fllydi=Cet

TF (ECONNIM29) oEG.1) GC FC T2

L SIi2)=Cossl

coglr=c.

CLZ)eCT(2)
2 ss1(2)
FL2423)=2,%CR(2)%51(2)
FU3,12=CC(21%CCULY)
FU3,2)=5113)%51(3)

€91



ec

1

0

79
1

72

80

@

£

w

]

~

sé&
99

FU3,2)=2,#C0(3)%S1()

CALL MAINVZ (F,34BB+C,DET)

ETAP= 12, #AREA/(E*TH*TH*TH)

60 6C [=1,3

GO €C J=1,2

GlxIJ,:‘E;AP‘(Zo‘llo'PR)‘F(JOl,‘Fls'J,'F(1y‘,‘F(lyJ,'F(Z'[)‘F(ZyJ,
~PR¥(FI241)*F (14 J)4F (1, 1)*F(2,4)))

Cllyl)=C,

C(1s2)=C,

ClIy3)==-1,

C(2¢1)==SI12)*C0O(2}

0(242)=-012,1)

Cl2+2)=2,#C0(2)%CCI2)~1.0

Cl3+1)=-51(2)%CC(3)

Cl342)=-D(3,1)
0(3,2)=2,%CO(2)¥CC(3)~1.0

CO 7C I=1,3

CC TC J=1,3
PTCE,d)==BP(JI*ST(I}/ 42, %AREAIHCPIII*CC(II/ (2. #AREA)
ClIyd¥=C,

CU 7C K=1,3

CUIed)= QUILII+DUILKIFFIKyJ)

La 79 1=1,2

€O 79 Jy=1,2

H{lyd)= (+ALRGIL o TI#PT UL o JI4A2¥CL241)#PTI2,J)+4A24C(3, [)#PT(3,y
13}

CO 60 I=1,12

LU BC J=1,12

TEM(I,J)=CaC

IF{ICONN(#M,9).LT.5) 6L TQ 83

AREA=1CCCCOC,

IFCICONAIM 9D EQae) AREA= 3,14159%TH*TH/8.0
AXST= AREA*E/AL

TEMIL141)= AXST

TEMIl,2 AXST
TEM(2,1 TEM(1,2)
TEM(242)= AXST
X2=A1
GO TC 95

3 CONTINLE

CU 85 I=1,3

CC 25 JY=1,3

TEMUT,0)=A1(1,0)
TEVMIT,043)=2d(1,3)
TEM(T143,00=2004,1)
TEMUI+2,043)1=8K(1,J)
TFCICUNN(M,9)0EGL. 1) GL TC 85
TEMCL4S,J46)=H{14J)
TEMUL4+6,J49)=H(Jd, )
TEFR{14G,0491=0(1,9)

CONTINUE

CU 87 1=1,12

PLEEI=C.C

L LICONNIM,6).LT. ) GO TL S8
TG 89 1=7,9

PLIT)= PXAREA/3LC
0O SE 1=1,12
RPLET)=CLC

CALL REARR (TEM,PL,RPL)
CG 1€C I=1,12

Cu 1CC J=1,12
TtIsd)=C.C

Cu 11¢ 1=1,2

11¢

12¢

13

<

14

[=]

142

15¢
35¢

-
n
~

153
154
155
15¢

DO 11C J=1,3

TiIed)=8 (1,0)

TUL44,044)=R (1,4)
TIT48,J48)=R (1,J)

CO 12C 1=4,12,44

J=1

Tilydi=1.0

WRITE (2) X2,X3,Y3,AREA,F,T

€0 13C 1=1,12

EG 130 J=4,12

TEMP(1,J)=0.¢C

CC 13C K=1,12
TEMPULyJ)=TEMP UL, J)+TEMIT K)*T(K,yd)
CC 14C 1=1,12

BC 140 J=1,12

TEMT(1,J)=C.0

DO 140 K=1,12 |

TEMT(I JISTEMTIL W J)+T(K L) ¥TEFP (K, d)
IFUICONNIM,9).G67.4) GG TO 156
0U 142 I=1,12

RPLT(1)=C.0

CO 142 K=1,12
RPLTATI=RPLT (L) +T(KyI)*RPL (K)
IF (ICONNIM,10).EQ.1) GC TO 156
B0 35C J=1,12 -

L0 35C N=J,12

KA=ICODE(L,J)

KB=ICODE(L,4N)

IF (KAL,LE.KB) GO TC 15C
NTEMP=KA

KA=KB

KB=NTEMP
TUEM(KAIKB)=TQEM(KA o KBY+TEMT (J4N)
CONTINUE

C0 152 1=1,23

0O 152 J=1,23

TCEM(Je EI=TQEN(T, )

CONTINUE

CC 154 J=1,23

CO 153 x=1,12

IF {ICOCE(L,K).NE.J) GO TC 153
QRT(JI=CRT(JI+RPLT(K)

CONTINLE

CUNTINLE

CUNTINUE

RETURN

£NC

C t‘#t*#v‘****‘*'ﬁtt“ﬁﬁ$ﬁ‘&&t3‘t“t"t‘*‘3"‘*‘3#3**‘3"3*‘*““*“‘**‘

SUBRCLTINE QUASYR (MyLR,NyCEVPB,QEMBA,CRR)

CUMMUN /A4y TCONNILLE,1C)

CUMMON /AS/ QEMAATLE,16), CEMABIL6,7), QEMT3(16,7),
LGEMTL(T,16), GEMT2(16,16), CRA(LE)

COMMON /A6/ TQEM(23,22):

CONMMON AT/ ©RT(22)

COMMON /C47 CEM (16416}, GR{16)

CUMMON /117 QTL16)

COMMON /227 8DUT)

CIMENSION  CEMBRIN,N), CENMEL(N, L&) 2 CRR(N)

COLOLE PRECISICA GEMRE,LET,BC

CULRLE PRECISION wENM ,UEMAG, CEMAE,QEMBALCEMTLCENT2,LENMT2
TECICONMIM,10) LEQL1) GO FC 302

LFUICORNIM,9) 40T 44) GC T0 3C3

¥91



leu

120
180

16¢

210

220

23¢
233

235

237

239
240

[ R R L e T T T L T 1)

CO 1€6C 1=1+1¢
CU 1&C J=141¢
QENAALT,J)=TCEN(T,J)

EE 17¢ 1=1,1¢6

CO 17C J=14N

QEMAB(T+J)=TQEM{T+J4+1¢€)

CG 18C I=1sN

CO 18C J=1s1¢

WEMBAUT,J)=TGEM(1416,J)

CO 15C I=1,N

CC 19C J=1+N

CEMBBIIJ)=TQEM{I+16+J+16)

CALL MAINV2(CEMBByN,BC,CyCET)

CO 21C I=14N

CO 21C J=141¢

QEMT1(1+d)=CeC

DO 21C K=1,N
GEMTIC(TJ)=QENFTI(T,JI+CENRBITKISCENBA(K,J)
C0 22¢ I=1,1¢

CO 220 J=141¢

LEMT2(1,J)=C.C

C0 220 K=]4N

CEMT2(T+J)=QEMT2(I +J)+CEMARTI,KIFSCENTL(K,J)
CG 230 I=1+1¢

€O 230 J=1+1¢

CEMUT,J)= QEMAA(ILJ)-CENT2(1,J)

CO 222 I=l.1¢

CRA(CEI=CRT(I)

DO 235 I=1,N

QRBUT)I=CRT(T+16)

¥R1TE (2) QEMBA,QEMBE,QRP

CC 237 I=1,1¢

CC 227 J=1,N

QEMTI(1+4)=0.0

LG 237 KZ14N
QEMT3(1,J)=QEMT3(I+J)+CEMABITKIFCEMRB(K,J)
CO 24C I=1vs1¢

CT{I)=C.0

CL 239 K=1,4N

CTUIN= CTCIN4QENTI(T,K)ICRBIK)
LGRODI=URALTI=-GTLT)

Ln=16

G TE 2cl

LN=12

Gu T1C acl

Liv=7 . . Ll
HETURN o ) /

EnE

SUBROUTINE SYPAGULNGMY o thyysiad s -
CLyMON sA4/ TCCNNG1I1E,1C) 7

CONMON /B1/ NCPRE(11641€) ~

CUMMON /BE/ “TEMTIL12,12)34RPLTLL2)

COMMON /597 NPoNE G NCONPNCPPT o ANP /
COVMDN JRCL/Z KNCVALAT 40y NCCCMI315,2), KNCMO14y4)
COMMON /€47 7CEM 116,160y QRULED

Cubdiy /CCE/ LALCY

Ca¥¥ON /FL/ SYLVEC(48E)~

CUMPLIy /SL0w/ SYMM4BELET) [/ .
COLBLE PRECISICA BV o

o

248

303

25¢C

241
240
243

‘*"t‘““*““*“‘t““"tt‘“““““"““‘““““‘tt“‘tt“*““‘

OO0 CON

2

=3

8qQ
&5

U0 25C [=1,LN

€l 25C J=14LN

K=NCOCE (M, 1)

L=NCCOE(M,J)

IF (K+EGe0 «ORe L.EQ.C) GC TC 25C
IF(K,LE.L) GO TG 248

TEFPC=K

K=

L=TEVPC

MPACK=L-K+1

IFCICONN(M,1C).EC.1 +CRe ECCAN(¥,9).GT.4) GE TO 3C3
SYMA(KyMPACK)=SYMALK FPACK)+CEM(I,J)
G0 10 25¢C
SYMAIKPPACK)=SYMA(K,MPACK)I+TENTII,J)
CUNTINUE

IFCICONN(M,9).GT44) GC TO 243

IF (ICONN{M+10).EG.1) NL=12

IF (ICONN(M,1C).NEJ1) NL=16

CO 24C I=1+LACCM

CO 241 J=1sNL

IFINCUBE{M,J),NELI) GC TC 241
IFCICONNEM1C) EC. 1) GRIJI=RPLT(Y)

SYLVEC{I)=5YLVEC (L) +CR(J) AR
CONTINUE ey L A L
CONTINUE . %

RETURN

ENC

SUBROLTINE MAINVZ [A,N+By¥,CETERNM)
MATRIX INVERSICN wITH ACCCMPANYING SCLUTION CF LINEAR
EQUATICNS OF THE FORM AX = B. JCROCN'S METHCD
A IS THE ARRAY TUO BE INVERTEC.
B IS THE COLUMN OF CCASTANTS FOR LINEAR EQUATION SCLUTICN.
N IS THE CROER CF A
M IS THE INDICATCR FCR SPECIFYING INVERSION GR SOLUTICN
GF LINEAR EQUATIGNS.
M=C, INVERSICN IS PERFORNED.
#=1y SOLUTICN CF LINEAR ECUATICAS IS PERFCRMEC.
AT THE RETURN TC THE CALLING FRCGRAM, A INVERSE
1S STGREO AT A AND X AT 2.
NOTEes IF USEC SCLELY FCR INVERSICN, THE CALL STATEMENT
MUST STILL CCNTAIN AN ENTRY CCRRESPCNDING TC 8,
CETERM IS THE LCCATICN IN WHICH THE CETERMINANT IS STCREC.
CIMENSION TPIVCT(T), A(N,N)y, BU(1s1)s INCEX(742), PIVCT(T}
COUBLE PRECISICN A,CETERM,AMAX,ShAP,T,B
L0 ZC J=14N
IPIVET{J)=C
CO 28C I=1,N
SEARCKF FOR PIVOT ELEMENT
AMAX=C,C
CU 1C5 J=1sA
IF CIP1IVOTIJI-1) G, 1059 6C
CU 1CC K=1,N
IF (IPIVOTI(KI-1) 2C, 10Cs 74C
IF (RABS(AMAX)I-CARS(ATJ4K))) 85,1C0,1C0
Iki'w=J
[CoLLp=K

C0409
00410
00411}
€0412
00413
CCals
C0415
004le
00417
co4l8
CCal9
00420
€0421
€g422
CC423
C0424

CC426
€C427
00428
€0429
€Q43¢C
cea3l
€0432

CCa24

0043¢
CC437

991



IS

10C
1¢5

l4C

2CC

210

25¢C
26C

360
270

380

4Ce

450

46
5CC
550

63C

7CH
TiC
tac

R T I T T ST T e T T ]

-

1

AMAX=A{J,K)

CONTINUE

CUNTINLE
fPIVOTOICLLUM)I=TIPIVGT(ICCLUM)+]
INTERCHANGE. ROWS TC PLT PIVCT ELEMENT CN CIAGONAL
IF (IRCw=1CCLUM) 14C, 260, 14C
CONTINLE

CO 2CC L=1,N

SKAP=A(IRGW,L)
A{IRCWILI=ALICOLUM,L)
AUICOLUM,L)=ShAP

{F(M} 260, 26C, 2i0

LG 25C L=1y M

SwAP=B({IRUN,L)
BOIRCWsL)=B{ICCLUM,L)
BOICCLUM,L)=SkAP
INDEX(1oe1)=IRCHn
INCEX({I,2)=1ICOLLY
PIVCTUI)=ALICCLUM,ICCLLM)
CIVICE PIVCT ROw BY PIVCT ELEMENT
ALICOLUM, ICCLUM)=1.C .
BO 25C L=1,N

3 ACICOLULM,L)=A{ICCLUMSLI/PIVCT(T)

IF(M) 380, 3€0, 36C
CO 37C L=1,™

BUICCLUM L) =BLICCLUM,L) /PIVETLI)
RECUCE NON-PIVCT RCKS

LU 556 L1=14N

[F(LI-ICOLUM} 4CCy 55C, 4CC
T=A(LL,ICOLLMY

A(L1,iCOL8M)=C.C

CO 45C L=14N
A(LLyL)=A(LLsL)-ACICCLUM LI%T
IF(M) 55C, 55C, 46C

CO SCC L=1,y¥
BILLoL)=BILYsL}-BUICCLUN,L)%T
CONTINUE

INTERCHANGE CCLUMNS

£C 71C I=1,N

L=n+1-1

IF CINCEX{L,1)-INDEX(L,2)) €3C, 710, 630
JROW=INCEX(Lo 1)
JCOLUM=INDEX(L,2)

B0 TCS K=1,N

SWAP=A(K ¢ JRON)

AUKy JROWIZALK, JCOLUM)

ALK, JCOLLM)=SWAP

CONTINGE

CONTINUE

RETLRR

ENC

SUHRGUTINE REARR (TUM,FL,=PL)

TIMENSICN A1(12,12)y A2012,12),TEF{12412),TEMP(12,12),
PLI12Y4RPLI12)

6 4 (=1,412

Lo 4 J=1s12

Al{l.d}=C.C
AZLLyJdY=CLC
I=1

Uu4 ss
€429
Ccaac
€C4q4l
C0442
Cc4a43

€044%
C044¢
CC447
QC448
CL449
€0450
Co451
0c452
C0453
C0454
CQ4%8
€C456
Cc458
00459
Co460
€046l
CC4as2
C0463
CC464
CCats
Qo4te
C0467
Qc4as8
CCsé9
¢cave
Cuq71
€gat2
€413
€C474
C0475
Ccavs
C0477
CC478
€0479
GC4a8C
€C48l
C0482
00483
C0484
€C485
€0486

C0489

1

1

1

C REERIRIARA AR RERVRNN AR IR SRR SR RR VB R E x%

1

[N

_

2

4

o

J=1

G0 TC 9

J=4

AZ2tled)=1.C

I=1+1

J=J+4
IF(JLECLI3IGC TE S
IF{J.EC.14)GC TG 6
IFIJLEG.LS5)E0 TC 7
IF{J.ECL1E)G0 TC 1
GC 10 9

oc i1 I=1,12

CG 11 J=1,12
ALLI,d)=A2(Jd,1)

CO 12 I=1,12

Co 12 J=1412
TEMP(1,4)=C.0

CU 12 K=1,412
TEMPLI4JI=TEMP(I+J)+TEM(I4KIRA2(K,J)
CU 13 1I=1,12

£C 13 J=1,12

TEK(I,J)=C.0

CO 13 K=1,12
TEMUIoJI=TEM(I,JI+AL(T,KI*TEVP(K,J)
CO 14 I=1,12

RPL{I)=C.C

£0 14 K=1,12
RPLEII=RPLITII+AL{E,K)#PLE{K)

RETURN

END

R 2L L]
SUBROUTINE SYLMUC

COMMON /ALl/ CCOR(315,5)

COMMON /AS/ E4PR4CCN4P

COMMCN /B7/ RCY RCC,BET,GA¥,AL,TCG,TRG,TCY,TCO,CITR
COFNON /B9/ NP ¢NENCONPJNTBPT o NNP

COMMON /BCE/ KNCOVA{4T794)s NCDCM(315,3), KNCMO{4,4)
COMMON /F1/ SYLVEC(48E)

COMMON /CDE/ LADCM

ALPHRA=1,57C79-BET

Cl=SIN(ALPHA}

C2=COS(ALPHA)

N=C

M=0

0O 1C K=14NP

IF (COCRIKyS)oEQeloLRLCLONIKY5).ECL2) NzN+)

IF (CCOR(KS).EC.3.CR,CCORIKeS)EQL4) . M=pe]
CONTINUE

NU=N=1

FLY=((P*IRCY#RCYI*3,16153)1/14.0%AL))*144,

[AVETESY
FCO=(IP#{RCO*RCLI%D.14159)2(2.0xFU)}A144,

€t 1C0 K=1,NP

T+ (CCGRIKYSILEG.CY  GU TC 1CC

IF (CC Ry 53802 CR. COTRIK,S51.ECL4) GO TO 25
F=FCY

IF {CCCRIKy5I.FQa2) F=C.5%FCY

IP=nCCOMIKy 1Y

SYLVECUID)=SYLVEC(ID ¥~F

(IO N R A

25 F=FCE

IE ACCOR(K B aFGae)  F=Ca5%rCL
TEL1=NUCELMIK, 1)

991



tR2=NCOCMIK, 3)
SYLVEC{IDL)=SYLVEC{(CL}+F=»C}
SYLVEC(ID2)=SYLVEC(ID2}+F*C2

1CU CONTINUE
RETURN
ENC

[ R R L T L T Y PP PP T T PP T ey

SUBROLTINE BANWID {(NEsWB)
CG¥MCN /B1/ NCODE(11641¢)
J=0
C0 259 N=1,NE
CC 258 I=1,1¢
IF{NCOLE(NLI)oEG.C) GC TO 258
CO 257 L=1,1¢
IF(NCODE(N,L).EQ.0) GC TO 257
KK=TABS(NCCCE(N, I)-NCCDE(NsL)) -
IF(KK=J) 25742574256

25€ J=KK

251 CONTINUE

258 CUNTINLE

259 CONTINUE
Mi=J+1
RETURN

[ bbb A b R R e T P TP T T
SUBROUTINE SYMSCL {#8)
COMMON /BG/ NPoAENCCAPLNCEPT,AAP
COMMON /BCD/ KNOVAL4T+4)s NCCCM(31593)y KNCMO(494)
COvMMON /CDE/ LADCHM
COFMON /FLl/ Q(486)
CCFMON /SLCOR/ BGK(48€487)
CINENSICN Fla4ge6)
NO=LALCW
N=C

SCO N=N+1

RECLCE N TF EQUATICN

1. CIVICE RIGHT SICE BY CIAGCNAL ELEMENT

conoo0

Q{NI=QINI/BGKIN 1)

2+ CEECK FOR LAST EQUATICN

[a¥aXsl

TF(N=-NE} 99C,7CCy 550

C 2. DIVITE N TH EQUATICAN £Y CIAGONAL ELENMEAT

550 DU 60C K=2,4MR
FOO)=PCK (N ,K)
POK N R Y=t 0K IN G K} /BCKIN, 1)}
6CC CONTINLE

4o FEULCE REMAINING EGLATICAS

s Eaksl

CU €6C L=2y¥8
I=sN+L-1
TF(NC-1) anCrraC 640
640 J=0C
Té €SC K=L,MB
J=J+1
650 ROK{T,d) = 2CK{1yd) = FIL) * PGK(A,K}
GUUI=CUL-F(LI*QIN)

€6C

[3Xakal

7¢C

[a¥2X3l

[aXaXal

750

11c
8CC

9¢

S

.9 1c

[ et L S P T I T ]

1C5
1co

CUNTINLE
GO T 5(C

BAGK SLESTITLTICA
NaN-1
Le CPECK FCR FIRST ECLATICA
TF{X) 75C+9CCy750
2+ CALCULATE UNKNCWN DISPLACEMENTS

CO 8CQ K=2.M8

L=N+K-1

IFIND-L) 8CC,77C,77C
QINI=QINI-BGKIN,K)*C(L)
CONTINLE

GG TC 7C0

CONTINUE

CL 1C I=1l.NP
K1=NCOOM(I,1)

K2=NGUOM( 1,2}
K3=NCCCM(,3)
IF(K1.EC.0) QIKEI=CWC
IFIK2.EQ.C) QIK2}=C.C
IF{KI.EC.O0) QIK3I)=C.C
WRITE(LE) 1,Q(K1),0(K2),Q(K3)
RETURN

EXEBRR AR RS
SUBROUTINE STREMO (NCBPT,N,QEMBE,CEMBA,CRB,IL)

CCMMON /7A4/ ICCAN(116,10)

COMMON /AG/ E4PR,CCN,P

CUMMON /B1/ NCODE(1llés1¢)

COMMON /827 PELIA(L6)sPHITUT) (CRBT(T) 4PHIBITI PHICL12),8(3,63,C(393)
LoCISPCT),SMOMI3) , TEST(4,3),TEEP({4,3),TEMC(4,3),PHIP(12]

CUMMON /B3/ F343), T(12412)

COMMON /B4/  X24,X2,Y3,AREA

COMMCA /BCD/ KNCVA(4T441, ANCOCM(315,3), KKCMG(4,4)
COMMON JEL1/ QEEP(11642), (ESI(L1643)s CEMC(116,3)
COGMMON. /FY/ SYLVEC(48&}

COMMON /F1/ DISE4)

CUMMON /L17 COM(1,4)

COMMON /vi/ BLB)

BIMENSIUN  CEMBA{N,161,CE¥BRIASN) JGRE(N)

CCUELE PRECISICN F

COURLE PRECESICN CEMRB

COUHBLE PRECISION GEMBA

NL=1g

TFCLCONNCIL,2C)WEG 1) Ni=12

TFOICENNETIL .S ,GTa4) NL=T

CO 1CC I=1.NL

IF ENCOCE(TIL,T).EG.C) GU IC ICS

PREAULY SSYLVECINCCLE(IL,I}Y

Cf: TR 1CC

PHIS(I) = CoC

CUNTIN
TFLEC EIL,1CY.FELT o0 %e ICONNITIL,9) 5T 4) GO T¢O51
CREALL2Y QEMBA,QLMYER,(xi

Lo 3c ,iv
PHIT(I=C.C

L91



3C

4G

X

w a2l

52

3}
¢

6

~

- READ(2)

CUG 2C K=1y1¢
PHIT{1)=PHIT(I)+CEMBALL,K)¥PHIA(K)
CO 4C I=1l4N
GRBT(I)= GRB(I)-PHITCI)
L0 SC I=l,N
PHIB(E)=C,C
CO 5C K=14N
PHIB(I)= PHIB{I)+LEMBRII yK)IXLRRT(K)
IF {N.EC.2Y GC TC 7
GG TG 9
LG & 1=3,7
PHIL(I)=0.C
CONTINUE
NN [
CO €€ L=ls4
IF (ICONNCIL7).ELL.D)
REACCIB) SINSI,SI
NN N o+ 1
BINN) = SINSI
NN AN+ 1

RINN} = SI
CONTINUE

GC TC 52

16

A
€9

X2+X34Y3,AREA,F,T
IFCICONANTILY1C).Eiual oCR. ICONN{IL+9).GT.4) GC TO 67
Clr g3 M=1,7

K=MaaRr(L~1)

IF{K.LE.le) GC TC €3

K=M=4

PHIP(M)=PHIA(K)

IF(L.EC.4) GC TG 65

K=4+4L

PHEIP(B)=PHIB(K)

G .1 &€

PHIP{E)I=PRIBL4)
PHIP(9}=PrIS(1)
PHIPLLIC)=PHIR{2)
PHIP({11)=PHIB(3)
K=3+L
PRIPLLZ)=PHIBIK)
CUNTINUE

NI=12
TFUICONNALTL9) .G 1. 4)
Cu 72 I=1,NJ
PHICI}=C.C

LU T2 K=14NJ
LFOICONNCILS1IC) eECe)l oNRe TCOMN{IL,9).GT.4)
PEICI)I=PRECII4T (L KIEPHIFLK)
IFLICONNCIL9).GTa4) GG TC €S

Cio 7L I=1,NUBPT

IF (ILetQJKAPMELT,4))
CONFINLE

G TG 22¢C
If (L.E6G.1)
ceoTe Z22C
LI=NCCPM (RNCHOET 1) 1)
JI=ACCOM (KADMC0T,1),42)
PHE(ay=={SYLVECLTTI-SYLVEC(JII)
CuMl= {2.%2REA)

U 146 I=1,3

C 74 J=14¢ N
3

Y3/NUrL

Y3701

LIRER N

9

NJ=T
PHIP(K)=PFIBIK)

60 TE 73

GC oTC 82 8z

Alls2i=
Al3,4)=

A(3,5)= A(1+2)
A4254)=(X3-x2)/CLM]
Af{245)==X3/01M]
B{2+6)= XZ/DLNM]
A(3,1)=A02,4)
A{3,21=A02,5)
A{3,3)=A02,8)
CUMZ=E/{ 1.~ {PR¥PK]))

L0 75 I=1,3

o0 75 4=1,3

Cl1,J)=C.0

Clly1)= DLF2

Cl2,2)= CC1,1)
PRADUM2
C1,2)
CCN#CLI2

B 7€ I=1,7
CisP(Il=C.C

€O 77 1=1,3
SHOE{E)=C.C
CONTINGE
CISF(L)=PHI{1)
CISP(2)=PHI{S})
CISP(2)=PHILQ9)
CISP{4)=PHI(2)
CISPIS)=PHI(6)

CISP(&)=PHI{1C)
CISP{7)=PHI(3)
CIS(II=1IL
CiS(2)=CISP(L)
CIS(3)=DISP(4)
DIS(4)=CISP(7)
KRITE(1S) DIS
IFCICONNCIL+9).6T.4
SMOMIL)=PHI(4)
SMOM{2)=PHILE) -

SMOM(3)=PHI(12)

CONTINGE "
CC 77 I=1,3
TEST{L, [)=C.0
TEEP(L,1)=C.C
TEMC(L,[)=0.0
TFLICONNCILL9),GT.4) GC TC 92

CC 79 I=1,2

LC 79 K=1,6

TEEPIL, I)=TREP{L, 1} 4+A(],,KIRLISP(K)

CC €1 1=1,3

CC £1 K=1,3

TESIL, IY=TEST{L, I}+C 014K I#TEEP(L 4K)

CALL PRINC {TCSI{L, 1), TESIAL,2) 4 TESI{L,3),2)
Lo 82 1=1,3

O #2 K=1,3

TEMOLL s EYSTEMCAL, LI+F (T KI#SHCM (K]

[e 3 FENCE

TEEP{LyL)==CISP{1} /X2

) GC TC 91

TESTL, )= E5TEEPIL, 1)
CUMTIALE

CWRTTELLOY LUy A TESTLE) y1=143) 3 (COMILyI) g I=1,4)
TECICCANGIL, 10 861 oERe [CCANCIL9).GT.4) GC TC £S5
CUNTIALE =
CALL RC Tva )
cooR? v:Y,!’ g
CHEPLIL,M)=0.¢
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CESIUILyMI=CLC
CEME(ILo#)=C.C
CU €7 I=1+4
CEEPLEL M)= CEEPLIL M)+ TEEP(I4M)/4.0
QESIUIL M QEST(ILyM)+ TESILIsV)/4.0
GEMO(IL,M)= QEMOTIL M)+ TENMC(TIIM)/4,.C
87 CONTINLE
GO TQ 9C
€5 LL B€ J=143
GEEP(ILJ)=TEEP(1,4J)
QESICILsJ)=TESI(1eJ)
He QEMCUILsJ)=TENMC(1+d)
SC CONTIANLE
CALL PRINC (QESICILsL)oCESTCILI2) sQESE{IL3)¢2)
A7 WRITE(21) TLo(QESTOILY 0Dy 0=1,3)4(CCMI1o1),1=1,4)
. CALL PRINC (CEMCUIL+1)vGENCUIL2),CENCLIL3)42)
T WRITE(22) TLo(QEMGUILT) 9021430, (CONM(LyT),12144)
RETULRN
ENT

SUEROUTINE ROTVA

COPMON /B2/ PRIA(LE)+PHITIT) oCREBT(T7)yPHIBIT)PHI(12)4A02,6),C(2,3)

LeCISPUT) o SNOMI3) o TESI(4,3) ,TEEP(443),TENC(443),PHIP(12)
COMMON /VL/  BUR)
DIMENSIUN TEER(4+2)s TESR(493)y TENMR(4,+3)
CU 10 f=l,8
1€ BUI}= ARSINIBI(I))
A2=C.C
CC 2C L=2,4
I= (L-1)%2
J= I+1
A2= —{1.57C79-B{J)+B(1)-A2)
B2= A2-1.57C79
SA= SIN(2.C*A2)
CA= CCS{2.0%A2)
SB= SINI[2.0%82)
Co= CCS(2.C*32)
TEER(Ly1l)= {TEEP(LsLI+TEEF{L2))/2.0 + (TEEP(Ls1)-TEEF{L+2))/2.0
1 #CA + TEEP(L+3)/2.C#58
TEER(L2)= (TEEP(LoLI+TEEPIL+2))/2.0 + (TEFEP(L,1)-TEEP{L,2))/2.C
2 #Ct ¢+ TEEPI(L+3)/2.C#SE
TEER(L2)= —{TEEP(Ls1)-TEEPIL2))/2.C%SA + TEEP(L+2)/2.0%Ch
TESRE{Lel)= (TESI(L,LI+TESTUL2))/2.0 + (TESI(LsL)-TESI(L+2))/72.0
1 *CA + TESI{L,2)%S4A
TESKIL2)= (TESI{LeLI#TESI{L2))/2.0 + (TESIIL+1)-TESI(Ly2))/2.0C
é *CB « TESI(L,3)%SE
TESRILy3)= ~{TESI(LeL)I-TESI(L42))/2.C%SA + TEST{L,31%CA
TLMAML s 1) = (TEMCILGLI*TEMC(L208/2.0 ¢ {TEMOIL,1)-TEMD{L,2))/2.0
1 *CA ¢ TENE(L,3)%S)
TLMR{L2)= (TEMCUIL L )+TEMCILy2))/24C + ITEMCALGL)~TENMCILS2))/2.0
2 #CB ¢ TESI(L»3}xSB
TEM (L 92)= ~(TENCILyL)=-TFMOUL2))}/2.0%5A + TENCIL,2)%CA
2C CONTINLE
LU 20 I=244
Tr2¢ J=1,1
TEEPUE, )= TEE={1,J)
IF {JeFGe3) TEEP{L,2)= 2 CHTEER{L,J)
TESIOLed)= TESRILsJ)
TEMU(L 1= TEVMRIT,J)
CUNTINGE
PETULRN
£l

[
I3
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SURKULTINE PRINC  (A,8,C,N\)
COMMCR /L7 COMI1,4)

IF (B.EC.C JAND., C.EG.0) GC TC 1C
AVE=(A+R)/2.C

BASE={A~H)/2.C

cpp=C

IFIN.EQ.1) QPP=C/2.C
RAD=(EASE*BASE+UPP#(PP)#%,5

Clv= -CPP/RASE

CuM{1,1)=AVE+RAD

COMI142)=AVE-RAD

COM{1y2)=RAL

IFINJEG.1) CCM(1+3)=RAD*2.C
COM{1,4)=(C.5*ATANIDIV))/C.CL1T745329

Ge TC 2¢C

16 €U 15 I=1ls4
15 CoMllsl)=C.cC

IF (ALNE.C) COM(1l,1)=a

20 RETULRN

END

C #2432t bsbhbns FEAABSAFRAR AR R e A hadd i L S T T Ty

LY

SUBRCUT INE CUTPUT

COMMEN /ALl/ CCCRI315,5)

COMMON /A4/ ICCAN(11&,1C)

COMMON /AGQ/ EsPR4CCM,P

COMMON /81/ NCUDE(116,16)

COMMON /B2/ PHIAULE) s PHITUT) oCRETUT) ,PHIB(T) 4 PHI{12) AL
1,DlSP(7)ySHUF(3)'TE5[(4.3),TEEP(A.3)'TEVU(4'3)'PHlP(iZ)a'ﬁ)’C(z'z)
COMMCN /77 RCY RCC4BET+GANM AL, TCGoTRG,TCY,TCO,0ITR
CUMMON /BS/ NPyNE,NCCAP 4 NCBPT ,NAP

CUMMON /BCD/ KNOVA(47 44) NCCCMI315,3), KNOMG(4,4)
COMMCN /CLl/ M8

CUMMON /C2/ XBAR{315), YBAR(315), ZBAR{315)

COMMON /EL/ QEEPL116,2), CESI(116+3), CEMU(11643)
CUMMON /H1/ DIS(4)

COMMON /L 1/ NCASE

COMMEN JUI/ COMILle4)

REWIND 15

REWIND 1¢

REWINC 17

REWIND 21

REWINE 22

L WKITE(E:2€0)

2¢€C

ace
ec2

801

#02

264

FORMAT (1HLs5CX,'I AP LT C AT AY)
TFINCASE.EGL1) GO TC £CC

GG TR 8C1

wRITE (¢4802)

FURMAT {//* LCAC CCNFIGURATICA:
LEADS ASSUNMECDY)

GU TO Zeas

WRITL {(6,8C2)

FORNAT (//* LTAL CCNFIGLRATICN: CPERATING CCN
LLENT STATIC PRESSURENC RULKHEACS ASSUMEL') CITICN LSING EQulva
CONTINLE

BET=RET/.Cl745328

CAV=CAM/,CLT4%22R

CITR=0TTIR%2.C

WRITELEy265) ACY RCLGEET ¢ CAM AL ,TCGyTRC,TCY,TCO,CITR

HYDRCSTATIC TEST CONCITICN,BULKK

265 FURNMAT (/7% CYLINCER INLET RADILS = 'rFhe392Xy? FEET,/* CONE CUTL

}ET»NAL!ES = ',F 292Xy FEET?,/* ANGLE CHANGE IN FLCw CIRECTICN =
/'yrs.?.‘X.' EEGREES S/ CUNE APEX HALF ANGLE = '+F6.3,2X,' CEGREES
EARY

4% CROTCH GIRGER THICKAESS = TeFEL342X Y INCRES?Y4/" RING GIRCER THI

691



¥

SCKNESS = '4FB.3,2X,* INCHES®»/* CYLINCER THICKNESS = "4FB8.3,2X," 1
ENCHES?,/* CONE THICKNESS = '9FB.3,2Xs* INCHES's/* CIAMETER CF TIE
TROC = *4F8.5,' INCHES?')
WRITE(6427C) E,PR

270 FORMAT (/' MODLLLS CF ELASTICITY = *,E10.2+2X,* KSI',/% PCISSCN RA
1TIC = *4F5.2)

x WRITE (£4272) NP,NEJNCCNPJNCEPT ANP X

272 FURMAT (/74" NUMBER CF NCCE PCINTS = *,15,10X,* AUMBER CF ELEMENTS

1 = *,[5,10Xy" NUMBER CF CCNSTRAINED NCCES = ']5,/' NUMBER CF ERANC
2F POINTS = *415,10Xe* NUMBER CF INPLT NCCES = *,I5}

X WRITE(&,31C)

31C FORMAY (//,* ELEMENT CONNECYIVITY')
£0 315 I=1,NE

315 WRITE(64320) To(ICOMNET J),43=1,41C)

22C FURMAT {/,1592X98E5,5X,1592X415)
WRITE(6,4285) .

2t5 FURMAT (//,1CX,' NCCAL PCINT CCCROINATES')
CO 29C I=1, NP
IF(CCCRIT94).EQe3.CR4CECRIT24)4EC.4ICCCRIEL2)=CCCRIE,2)/7.01745328
WRITE(£4295) 1o (COORIL4d)4J=1,45)

29C CONTINGE

29% FURMAT (/45X,15,2F1C.243F5.C)
"

WRITE(6,336)
236 FOURMAT (//+* CCNSTRAINED NCCE PCINTS?,/,6X, ¢ NOCE v v u
1)
CC 337 T=1yNCCNP
337 WRITE(6,50C) To{KNCVALL 1 J),yJ=1,4)
5C0 FORMAT (215,216
WRITE(€4342)
342 FORMAT (//4% BRANCH PCINTS?,/,5X,* NCCE  AOJACENT ELEMENTS')
CU 343 [=1,NGBPT
343 WRITE(645CC) Ly (KNOVCILgd) 4 d=194)
WRITE (€,34%5) P
345 FURMAT (//,% INTERNAL PRESSLRE=', F9.3,2X," KSI')
WRITE(£,351)
351 FORMAT (IH144CX,'C C PP UTELC I NFCRMATICN')
WRITE(€,352)
352 FORMAT (/7' NGDE'+5X,*DISPLACEVENT CR MOMENT NUMBER?)
CO 2C 1=1, NP
2C WRITEL6y21) Ty (NCDLM(I,d)ed=193)
21 FURMAT (/,415)
WRITE{E4353) .
352 FORNAT(// 4" ELEVENTY,30X, "CLEE NUMZER?)
Cu 16 §=14KE
16 WRITCUEY 1Y o (NCCEE(T o) g d=1a1€)
17 FERVAT (/7 415,5X,1€15)
WRITE (€£,372)
372 FORMAT (/747X%,* GLOBAL CCCRCINATES® 9/ +* RCDE® 98X ,? XEARY 48X," YBAR
1998Xe" ZBART)
LC 374 I=1,NP
274 WEITECE,372) [ XBAR(I)YRARII) $ZBAR(E)
373 FORMATU/415,3(5X,F8.3})
WATTELE4261) R
261 FURMAY (/7% PAND wICTH=',15)
WRITE(£,25C)
35¢ FLRMAT (1H1.5C%, ' L T 2 L T D AT aY)
KK =4%NE
wWeITE(6y354)
254 FA&MAT(//véhX. GLELEAL CISPLACEMENTS ANC SICE PCINT MONENTS's/440X,
LYWOLEY y€Xy "LRARY ,1CX, PVEAR? 4 1CX ¢ 'wRARY)
L0 385 Is1eKK
THOKEAL (1EsENII=25€) [9G1,C24C3
355 WRITE(E2257) 1,81462,03

-

WRITE (&46CC)
6C0 FORMAT (//7,'CESPLACEMENTS (A LUCAL CCCRCINATE SYSTEM'y/ 'ELEMENT',
T14XePX? 18X 'YY 18X, °2%) .
CG €01 I=1,KK
REAC(15,END=602) DIS
6C1 WRITE(6,407) LIS
6C2 CONTINLE
WRITE (&,6C8)

608 FORMAT (91%95CX, "MEMBRANE SYRESSES'y//* ELE?3Xy*TRI", BX,'SIGMA
1X?y BXo'SIGMA Y?, 8X?TAU XY', 8X,*MAX SIGMA®', BX,*MIN SIGMA', 8X»
2'MAX TAU'y BXo'THETAY) '

LG €C5 N=1,KK
REAC(17+END=6CT) IL Ly (TESIILE) 151430 ,(COMIT,E),021,4)

6C5 WRITE(696C6) IL LolTESIILE) oE=143),(COMIL E) E=14)

606 FORMAT (215,7(3X,E13.5)) '

607 CUNTINLE

4C7 FORMAT (F7.002X93(5X9E13.5))

1C06 FORMAT (15,5Xs7{3X,E13.5))

WRITE {€,1018) S

1018 FORMAT ('17%,49X, 'MEVMBRANE STRESS AT CENTER OF ELEMENT®,//' ELEVE
INT? 39X, "SIGMA X9 ,GX, "SIGMA Y', 10X, 'TAU XY?,9X,"MAX SIGMA? ,7X'MIN §
2IGMA® 48X, TMAX TAL',y 9X,'THETA')

DO 31C15 N=1,KK

REAC(21ENO=1017) IL,(CESTCIL, 1) oI=193)(COM(L,0),1=144)
1015 WRITE(641CCE) FUGIGESTUIL 1) »E=1,43),(COMI1,1)y1=1,4)
1017 CGNTINUE

WRITE t6&,1C28)

1028 FORMAT {"1%,45X,'BENDING MCMENT AT CENTER OF ELEMENT?,//"' ELEMENT
108Xy *MOMENT X0 8Xo"MCVENT Y? 97X, *MOMENT XY ¥ ,8X, ' MAX ruﬂEhT'.éx.'r
2IN MOMENT® 6%y 'MAX TRIST?,6X,'THETA?)

CO 1025 N=1,KK

REAC(224ENO=1027) [Lo(CEMOCILI)oI=142),(COM(Yo1),1=194)
1025 WRITE(E41CC6) TLo(QENCUIL 1) oE=143),(CCMILsE)yE=1,4)
1627 CONTINLE

RETURN
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