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Effective two-body potentials have been studied for nuclei in the

2s-ld shell and the 1p shell via both structure and scattering calcula-

tions. The potential included a central Yukawa force with arbitrary

exchange and a tensor force. Calculations were done by use of poten-

tial multipole expansions which allow the use of bound single-particle

states computed in a Woods-Saxon well.

Effective potential strengths were obtained for nuclear structure

by the application of a least squares criterion to effective two-body

matrix elements currently available in the literature for the 1p and

2s- ld shells. The prominent features of the potential obtained in this

way were strong attractive even strengths and weak repulsive odd

strengths. These results were consistent between the two shells. The

strength of the tensor force, however was not given consistently.

DWBA calculations which included a tensor force have been



carried out for the following reactions: C14(p,n), N15(p,n) 17 (p,n),

018(p, n), N14(p, p'), and C14(He3, t). For the C14(p, n) ground state

transition and the analogous (p, p°) reaction in N14, the tensor force

produced a marked improvement in the fit to the experimental angular

distributions and total cross sections. No improvement was found,

however, for the (He3, t) calculation for the same transition, a case

poorly fit by the central force calculations also. No significant

change was noted in the other reactions.

The effective strengths that were deduced from fitting effective

matrix elements were compared to values obtained from DWBA calcu-

lations. If the two-body potential is expressed as

V = V
oo

+ ( o
1

a2)V'
0

+ (V oi + ( o1 o
2

)V
11

)( F
1

T2),

then, except for the V
00 strength, good agreement is obtained.

Exchange calculations (knockout) have been made for C14(p,n)

and 018(p, n) reactions. The exchange contributions were not large

but were quite significant. In particular, they produced an increase

in the effective even strengths and a reduction of the effective odd

strengths. As a result, a marked improvement in the value of V00

is obtained when compared to structure studies. A discrepancy still

exists; however, it is thought that core-polarization can remove most

of it.

Finally a coupled channel calculation was done for the C14 -N14

system based on a microscopic model with charge exchange. The re-

sults confirmed the validity of the DWBA calculations.
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A COMPARISON OF EFFECTIVE INTERACTIONS IN
NUCLEAR STRUCTURE AND SCATTERING

I. INTRODUCTION

Effective interactions in a shell model description of nuclear

states have interested physicists for a long time (13, 17, 19). A typi-

cal calculation would assume that a nucleus like 018 can be described

by an inert 016 core plus two valence neutrons outside the 016 core.

A simple residual force is assumed between the valence nucleons, and

the wave functions are calculated with the assumption that only a few

shell model levels are important (the 2s- ld shell in this example).

Recently, there have been two important developments in structure

calculations. First, an approach, which parameterizes matrix ele-

ments rather than a specific residual potential (2, 5,11), has had

marked success in predicting various first order transition rates and

moments. Second, calculations which attempt to compute the effec-

tive interaction starting from free nucleon-nucleon forces look very

hopeful (8, 23). A large amount of information is also now available

on the effective force in inelastic and quasi-inelastic scattering (4, 6,

28, 31, 25).

This work attempts to relate current efforts in both structure

and scattering calculations. An effective potential is used, which al-

lows calculation and comparison of matrix elements for different

shells. It also allows comparison of scattering amplitudes with
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nuclear structure matrix elements. Central forces with arbitrary ex-

change have been included in all of the calculations. Also, motivated

by the anomolous behavior of the C14(p, n) reaction (4, 41), a tensor

force has been included in both scattering and structure computations.

This anomalous behavior is analogous and closely related to the ab-

normally slow C14 beta-decay reaction (32, 29). Structure calcula-

tions consist primarily of deducing effective potentials from existing

effective two-body nuclear matrix elements. Scattering calculations

include a survey of the effect of the tensor force in DWBA calcula-

tions, calculation of exchange effects in DWBA, and coupled channel

calculations including tensor forces.

All the calculations are confined to the 1p and 2s-ld shells. One

reason is that the effective matrix elements mentioned above, from

which a potential is deduced, are given for this region. Calculations

with these effective matrix elements indicate that a shell model ap-

proach for the 1p and ld-2s regions is appropriate and useful (2, 5,

11). In addition, there is scattering data for this region from which

one can deduce the effective forces (4, 6, 41). In particular, angular

distributions and total cross sections for (p, n) reactions, along with

some (p, p') and (He 3, t), are calculated for transitions in C14, N15,

017, and 018. Exchange effects are examined for the C14(p, n) and

018(p, n) reactions. Coupled channel calculations are done for the

C14 -N14 system. Most of the scattering data is in the 10-20 MeV
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region, and the calculations are likewise done for these energies.

Formal expressions and computer codes have been obtained to

carry out the above calculations. A multipole expansion for the two-

body tensor force has been obtained. The multipole expansion for the

tensor force as well as central forces allows the calculation of bound

state kernels, ((p.
3 2m

(r
1
)1 v(r

1
-r

0 3
)I(p.

1
na

) , where the bound states,

40, are computed in a Saxon-Woods potential. v is the two-body

interaction. This kernel is used to calculate two-body matrix ele-

ments. It is also used in a larger program which computes kernels

from configuration-mixed shell-model states. These configuration-

mixed kernels are convenient for use as coupled-channel coupling ma-

trix elements and in DWBA calculations.
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IL INTRODUCTION TO EFFECTIVE FORCES

A goal of this work is to compare the effective forces found in

nuclear structure with those in scattering. Although general reasons

for the need to introduce effective forces are known (8, 9), quantitative

calculations of them are very difficult. Also, effective forces do not

necessarily arise from the same reasons for scattering as for struc-

ture. These considerations make one ask whether or not a meaning-

ful comparison can be made. It is not even obvious what it is that

should be compared.

The problem has been studied in nuclear structure for some

time. Brueckner first succeeded in calculating an effective interac-

tion for nuclear matter which was well-behaved (9). Free nucleon-

nucleon potentials have a hard core which gives infinite matrix ele-

ments for unperturbed states (18, 24). An effective interaction, G,

may be defined by Gcp = Vtl, (8) where cp is an unperturbed two-

nucleon state, V is the true nucleon-nucleon potential and ii is

the correlated two-nucleon wave function. Correlations are produced

by the Pauli exclusion principle as well as the hard cores. The ma-

trix elements of G for unperturbed states, then, are finite, unlike

those for V. This theory has suffered troubles and refinements,

but is a starting point for many calculations. Kuo and Brown have ex-

tended the calculations to finite nuclei (23), namely 018. They
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calculate an effective interaction for the two valence neutrons of 0 18

from the free nucleon-nucleon Hamada-Johnston potential (18). An im-

portant feature of their calculation is that of core-polarization contri-

butions to the effective potential. Core-polarizations must be intro-

duced because of the truncated shell-model space in which the nuclear

wave functions are calculated. In the case of 018, the wave functions

are described entirely as neutrons in the ld-2s shell. The true physi-

cal wave functions are more complicated. However, the complication

is absorbed as a modification of the effective force due to core-

polarizations. The core-polarization terms calculated by Kuo and

Brown are three particle-one hole states in 018, and they produce

dramatic improvement in the theoretical fit to the energy spectra.

Since this effect appears to be important, one might expect the effec-

tive force to change as the core changes. Specifically, one would not

be too surprised if the effective force differed in the 1p shell and the

2s- ld shell.

For a nucleon-nucleus scattering interaction, just as for nucle-

ar structure, the hard cores in the potential must still be considered

in finding an effective interaction. The effect of the exclusion princi-

ple will certainly be different for scattering than for nuclear matter

and depends on the energy of the incident particle. At energies high

compared to the Fermi energy of the nucleus, many intermediate

states are available for the interacting particles, and the interaction
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should approach a free nucleon-nucleon interaction. At low energies,

the exclusion principle is more important and the effective interaction

will change. Core polarizations have been shown by Love and Satchler

to be important in scattering calculations (26). The philosophy is sim-

ilar to Kuo and Brown's work (23). Namely, one wants an interaction

that takes account of core excitations in intermediate states, while the

model wave functions used are those of simple shell-model states for

the valence nucleons outside an inert core. However, while Kuo and

Brown consider one particle-one hole excitations of the core, Love

and Satchler use a collective vibrational model to describe the excita-

tions. Another trouble that besets a comparison of effective forces in

scattering and structure is the problem of a scattering theory. An ef-

fective force deduced from cross-sections using a DWBA theory may

be taking up deficiencies of the DWBA calculation. Two immediate

troubles are nuclear distortions produced by channel coupling and ex-

change effects.

The point of view taken in this work is empirical. Effective

forces deduced from empirical data for the 1p shell will be compared

with those for the 2s- ld shell. Also, a comparison will be made be-

tween the effective forces deduced from structure with those deduced

from scattering. The possibility of exchange effects and channel cou-

pling modifying the effective force as deduced from a DWBA calcula-

tion will be examined by explicit calculations.



III. THEORETICAL FORMALISMS

Coupling Matrix Elements

In a coupled-equation formalism, the total wave function,

is expanded in a product basis set of functions which consist of nuclear

wave functions times projectile wave functions. Explicitly (37),

where

and

Jn
Jnij(r )V9n n n

§In JM

[w, J §I 3JM C nIn j; niimniviry, 5 Mn n n nnInnm.
3

n n 3

Mn

ny
Es].3m

n

(3.1)

(3. 2)

(3. 3)

.1.
I

is the nuclear wave function for channel n with nuclear

spin I. Es represents the spin and isospin parts of the projectile

wave function with spin s. RJranjn

for the projectile whose center of mass is at r. The angular mo-

mentum parts of the wave function are coupled to good total angular

momentum to reduce the amount of coupling necessary. With this

form of the Schrodinger equation, H4, = Eip, becomes (37)

are the radial wave functions



where

112
d2

+

,en(i

2
n+l)

2
+Vnn(r)-E+En

_
2m dr

V nnt(r)RJn'i (r)
nljni

n' jri'

R Jni r)
n3n(

Vnin(r ) =
JM V I PI j jm)

non, n n n

(3. 4)

(3. 5)

A microscopic description will now be given for the coupling matrix

elements Vn'n. In practice, optical potentials will be used for the

diagonal terms, Vnn. If Vn n is written in detail, one finds

where

V = ECU I J; m.M M)C(jtvIntJ; mi.M M)n'n n n 3 n 3 n'

X C (fnsj
n ; m m m.)C n'sjn'; nal sm'j)

n -f rn')
m' Y m K(r )d'i=

n' Q n

K(r) (.T.IMEsm' IV1.1I M Esm
n' n' s n n s

(3. 6)

(3.7)

8

V may be written as the sum of two-body potentials representing the

effective interaction, V = E v(i, j). i and j refer to nucleon co-
if

ordinates in the nucleus and projectile respectively. In second-

quantized notation, V may be written



V(r)= (1)x (0)Iv(1, 0)1
i2m2a2 v2a2

X c o (1)X (0)jma va
1 1 1 1 1

X a. a. C_ _
j

C-
2m2a2 j 1ml a

1
v

2a2
v

1
a

1

(3. 8)

9

atThe aoperators create single-particle bound states of the nucleus,

t
q'. = a. 10 .jma Jima (3. 9)

j is the angular momentum of the state while m is the z-compon-

ent. a is the z-component of isospin, a = 1/2 for neutrons and

-1/2 for protons. The Ct operators create the spin-isospin part

of the projectile nucleon wave functions,

ct )
Xv 2a2 v2a2

(3. 10)

The two-body matrix element in the above equation is integrated over

all co-ordinates except the position co-ordinate, r, for the projec-

tile. It is thus a function of r. Scattering operators, A
IK and

CIK, are now defined by (28)

t 1 1 _ 1/2-7
1C (a a )C

v
C(T2-P; viv2-1(')(-) I'K' 1 22 2 1 1 I'K'

(3. 11)
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1 l-m
(j1 j

2
1; m 1-m2-K)(-

)J1

K( r) may now be written as

K(7) =

j2m2a2 172
F.

2
V

1
FL

1
IK

I' K'lmlal

j 1j21; m
1
-m

2
-K)(-) 1-m1

1/2-71
X C(-2

2

1 1 I'; T1-7
2
-IV)(-)

x

(3. 12)

CLInt Mn' AIK 1 2 a "la2InMn ) ( ICZsmt- 1'K' ( la) I2 sms

X
(9'

Iv(1, 0)1(p. X )
2 2 2 v

2
a

2 v all (3. 13)

As in Reference (28), it is convenient to define spectroscopic ampli-

tudes as reduced matrix elements of the scattering operators,

IMn
S (1InInt; )C(I I I; M -1\4 CK)(-)ii2ctia2 n n n n

I I

MI M AIK
n' n' n)

S-ms
S(SI', TiTt.2)C(SSI'; ms-m's-K')(-)

ICPK' IZsna'
s

sms

(3. 14)

(3. 15)

If a multipole expansion for the potential exists, it is then convenient

to reduce the two body matrix element in Equation (3. 13) by defining
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z, such that the quantity

a ( (gyp. Xv Ce' X
2m2a2 2'12 1

M
1

CL

1
V

1
CL

1

- )NYL-N(C)C (IPL; KK'N)C(j
1
j

2
m

1
-m

2
-K)(- )j1-m1

LN.
LI°

KK'
1/2-7

1X C(2
2

1 1
It; v1- v2- K')( -) z(II'L; j1 j2 a1 a2' rl )

(3. 16)

It is not hard to show that the above form is quite general. The ex-

pression for z will be given explicitly for central and tensor two-

body forces. If the last three equations are substituted into Equation

(3. 13) for K and a few simple orthogonality sums are performed,

one then finds

K(7) =

where

KK'
LN

I -M
-)NYL-N(i)C(IPL; KK'N)C(InIn' I; Mn-Mn- K)(-) n n

S-m
X C (SSI'; ms -m's -K' )(- ) s X(IPL, In, In', SIrl ), (3.17)



X(II'L; I
n
In', S, (/.1) = 5(11nIn ,; j1j2a1a2 6.171.2)

X z(II'L; 171-2 ; rI)-

12

(3. 18)

Equation (3. 17) for K now can be substituted into Equation (3. 6) for

Vn'n. After a certain amount of Racah algebra, one obtains the fol-

lowing expression for V :n'n

I'+jn' +In-J
Vn'n n' YL nLjnj

IPL

in
X W(jnjn,InInt; IJ) L

in'
I'
5

I

int

X(II'L; InIn,S,

(3. 19)

where L = Ni2L +1. The reduced matrix element follows the conven-

tion of Messiah (29, Vol. 2, p. 573).

This expression for Vn'n is very general and is analogous to

similar expressions for the collective model (10, 37). The collective

coupling interaction may be written as

N

(- )
NY

L-NQLNvL(r) (3. 20)



where QLN is an operator in the space of the collective model of

13

the nucleus, and vL(r) gives the spatial dependence. In this case,

it is not hard to show that

X(LI'L; I
nIn'' S, 1/.1) = vL(r)6/, 06th (In,11QL11In ) (3. 21)

The isospin dependence of X will now be examined in more

detail. First assume that the isospin dependent part of the effective

two-body force, V, may be factored from the space-spin part of

the potential, Vo,

V(1, 0) = V0(1, 0)Vcp (1, 0). (3. 22)

-
Normally, VV is either equal to 1 or T1 T0. Co-ordinates 1

and 0 refer to nuclear- and projectile-nucleon co-ordinates. A

new zo may be defined by factoring out the isospin part of the ma-

trix element that is implicit in the z defined in Equation (3. 16),

z(II'L; jij2aia2a'
1
a'

2
, 1/.1)

= z
o

(IIIL; j1 j2 a1 a2 , Irl)

where

(1)al

2
(1)-a-

2
(0)1Vri (1, 0)1a (1)-a-,

I al (1) ) I cT1 ( 0) )

(0)) (3.

(3.

23)

24)

is a product state. I a
1 (i) ) is a spinor in co-ordinate i which
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represents an isospin wave function with z-component al. Since

the spatial dependence of bound states may differ for protons and neu-

trons, zo may depend on al and a
2.

For the case of good isospin, new spectroscopic amplitudes may

be defined (28),

T'T') -

for the projectile and

S(IInInt; TnTniT; j1j2)

IICST' I'T IIZST'
A A

T'

T IIA IT 11 I Tn' n' n n
IT

(3. 25)

(3. 26)

for the nucleus where the matrix elements are reduced in space-spin

and isospin space. T' is the projectile isospin. Tn and T
n1

are the initial and final isospins of the target nucleus. The scattering

operators A and C have been appropriately generalized,

1 1
1/2-a

(j j(j j ) C(--T; a -a -p)(-) l
AAIKTp 1 2 2 2 1 2 IK 1 2a

1
a

2
)

CI,K,T,p,

ala2

a
1a 2

1/
1 1 _ 1(--T' a -la -p9(-) C ra2 2 1 2 I'K' 1 2

It follows from these definitions that

(3. 27)

(3. 28)



§(ITS; a171.2) =

Tti, I

1 1( T1*2 2 71
1

-Zr 2 -P9(--)
1 /2 -al

T -1n
X C(T'T'T'; 15n-Tint-p9(-) S(I'S; T'T'),

15

(3. 29)

where Tn and T5n, are the initial and final z components of

projectile isospin. If this identity is substituted, along with the fac-

tored form for z, into Equation (3. 18) for X, one obtains

where

x(rL, S, 11.1)

S(IInIn,; j1j2a1a2)S T'T')
jj aa

1 2 1 2
Tfpf

X zo(II'L; jii2cLia21r1)d(ctia2;

X C(T'T'T'; pn-pn,-0(-)

CL a
1 2

T p

riC (ala2; ¶'p')

n

Ttp

1/2-Ti
1(-

2
7-11; a

1
-a

2
-p')( - ) (a2-62iv

(3. 30)

(3. 31)

If z is independent of a
1

and a2, then, in exactly the
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same fashion, X may be re-expressed for the case where both the

target isospin and the projectile isospin are good. In that case,

X(II'L; InIno TnTnt, S, I r I )

S (IInIny; TnTn,T ; j j2)§ (I'S; TIT )

ili2 1-PTtpt

X z(IPL; j1j2, I r I ) ef(Tp; T'p')

x c(TiT,1"; Tn-i5nt-P9(-)
T' -T5n

T-P
X C(T T T; P-Pn' -p)(-) n n

nn n' (3. 32)

where Pn and Pni are initial and final z components of target

isospin which correspond to total isospin Tn and T
n1.

See Refer-

ence (28) for details. The factor r) is

c,(Tp; T'p') =
a, a

1 2

1 1(77T; a1- a2-p)rVala2, T'p') (3. 33)

The factor 4 which appears in the above expressions, is es-

sentially a reduced matrix element for the isospin part of the two -

body matrix elements. For the case of definite target isospin,

i(TP, VP') has the following values:



and

26
TIO

o for V = 1p'06
TO

6 p0

2(- )1)8
T1

6T'l 6p, for V = 71
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For the case of non-definite isospin, _4(alo.2; T'p') has the follow-

ing values:

and

NffE) a
1
a

2

ST10 6 p'0

NITE,T'l 2 2' a2P al)

DWBA Expressions

for V = 1

for V = Fl F2.

Although the above expressions for X were developed in the

context of a coupled-channel formalism, they are also a useful way to

express DWBA amplitudes. The DWBA amplitude for inelastic scat-

tering is (28)

A = (Xf(- )1KIXi(+))

I-M
YtNC(11114 KK'N)C(InIntI; Mn-Mnt-K)(-)

II'L
KK'N

S-ms
X C(55P; m -mt

s s

X (xf(- )IYLNX(IPL; Inlet, S, I r I )1 xi (+) \ (3. 34)



where (+)
Xi and xf (-)
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are initial and final distorted waves. For

unpolarized states, the amplitude may be squared and summed and

averaged over initial and final states to obtain

do- 12m
2 )2

kf

4Trt
k. (21 +1)(2S+1) I (xf (-)1 yLN )(ix im) 12dS2

i n IPLN
(3. 35)

Appropriate statistical factors have also been added (28).

Calculation of Two-body Matrix Elements by Means of Multipole
Expansions

If a multipole expansion for the potential exists, the two-body

matrix element, M = AN( j
3
j
4

JT I V I j1j2 JT )AN' may be conven-

iently expressed in terms of a quantity, z, already defined for use

in scattering form factors (Equation (3. 16)). V is the two-body po-

tential. I j1j2JT )
AN is a two-particle state coupled to good total

angular momentum J and is ospin T:

/
1- P1212

2 )13132,1T/ (3. 36)I li2jT )AN 1+5.
3

1 2

where

m1m2

and

C(j1j2J; m1m2M)Ijimi ) I j2m2 ITP) (3. 37)



TP =

Q. a
1 2

1C(-
2 2

1 T a a
2
P)I 1 a 11

1 2 1) .2a2/
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(3. 38)

j1
and j2 are the single-particle angular momenta. The sub-

script, AN, indicates the state is antisymmetric and normalized.

are the single-particle states. are the corres-

ponding isospin spinors. m. and a, areare z components of angu-i

lar momenta and isospin. P12 exchanges all co-ordinates in states

1 and 2.

Apply P12 to Equation (3. 37) to see that

j +j -T
P 1 2 1 2 , 1 T) = (- )

1T
(- )

1 2
I j

2
j

1,TT
,

so that

M =
AN

j
3
j
4
JTIVI j

1
j

2JT )AN

(1-P12)

1J

JT\2 2 1/ 2 . . JT V3 4(1+5. . ) (1+5. . )
212 1J2 /

J132 J 3 J4

= A.{ (i
3

j
4

JT I V I j1j2 JT) + (- ) (3
3

3
4 JT IV I j2j1 JT)

where

A. (1+5. . ) (1+8. . )

- J1 J2 3334

1/2

(3. 39)

}

(3. 40)

(3.41)
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The first term in M is the direct term and the second is the ex-

change. Both may be calculated in the same fashion, and only the di-

rect term, MD, will now be considered. Factor the isospin part,

, from V. V = Voice . Define MT = (TPIV ITP) MD

then becomes

MD = (j
3

j
4

JT I V I jlj2 JT)

= MT / C (j3j4J; m
3
m

4
M)C (j j 2J; m 1

m 2M )

1 1
X C(i2

2- 2
j

2;
n

2
v

2
m )C(/4-ij,; n v m )4 4 4

X (j4i4n4la(r )1j2i2n2) . (3.42)

j.e0 = Y R i is the space part of the wave function. The spin
j

part, is contained in a(7) which was defined by Equation
xi/

(3. 16). Any isospin dependence of a(r) ) has been taken to be in

MT. If Equation (3. 16) for a( r ) is substituted into Equation (3. 42),

and if the factor
Cf 4n4 I YLN I / 2n2 is evaluated, then one obtains a

sum over eight Clebsch-Gordan coefficients. The sum can be done to

give a Racah coefficient and 9-j coefficient. The final result is

MD =MT
II'L

" A
zRJ1J3 (i 4 YL II I

2
L II'j

2
j
4

(- )
I-Fit

3234

X W(jiJIj4;
j2

3233) 34

I

1

2
1

2

/
2

£4

It L

(3. 43)



where

zR.'.3
co

zR.. R .R PL; jl j3 I r I )r dr.
3234 0 /434 / 232
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(3. 44)

The same expression can be used for the exchange term, ME.

The final expression is

M = Kj3j4JT I V Ijij2JT )AN

= o .m [m
T D

MT has the following values:

MT = 1 for V = 1 and

MT =
T1

-36TO for V
di

= Tl T2.

Tensor Force Multipole Expansion

The usual tensor force is defined by

V
T

(T1 T2) 7: V S )12 12 1

where
1 1 lie

-2 L 2 + (ar) + 3 ar(ar)

-ar

and

(3. 45)

(3. 46)

(3. 47)



3(cr
1
r)(cr

2
-r)

S
1 2 2 - 611 62 2r

2Tr y*
2p 2P5

The second-rank spin tensor S2 is defined by

2 2 2

S20 ,h-os-s )

22

(3. 48)

(3. 49)

with S = S1 + S2. The desired multipole expansion for the spatial

part of VT has the form

where

V
1 2

(r )Y
2P

(c) f
LX

(r
1,

r
2

)C (LX 2; Np.13)Y (r':\
2

)Y LN (c.
1

)

LN

First note that'

VT = 12
a

r := r .r2
1

(0"
1

Cr
2

) e-ar
(o-1'

)(cr
2

v ) - V
1 3 ar

from Reference (12, p. 437).

(3. 50)

(3. 51)

'This approach to the tensor force expansion is due to A. Ker-
man in a private communication.



Now Fourier transform the Yukawa force,

CL- r
e

r
1 r d3q

3 '2,11r 2 eiq
(27) (a +q)

Then Equation (3. 51) becomes

S V ( 72. ;)(
1 2 1 2 3a

0-
1

Cr
2v) -

3

Differentiating inside the integral gives

S1
2
V1

2

13

(-)PS
2-13

Y
213

(;)V
1 2(r)

1 S q2

672a 3
a2 +q2

23

(3. 52)

(1 )3S 41r eiq rd3
q

21T
a

2+q 2
(3. 53)

3(0-1.0(62q)
q

2 - (61. 62) elq d3q

(3. 54)

/247 1 c cl

NI 5
(-fs

2_11
- 2 3 j 2 2

Y211(21)ei q r d3q
- 67 a a +q

1 1 ( . 55)

By comparing coefficients of S2P, one finds

2
1

3 51
q

2
V

1 2
(r)Y

2p (r) _- Y el q r d3q
67

2a a 2
+q

2P

1,01qr2 -iq-r
1Write ei q r

= e

(3. 56)

and separately expand each plane

wave in terms of spherical bessel functions, jQ (qr):



V
12

Y
2P

(471)2

6Tr2a
3

)21m
1

2m2

1(i 2- 1

)Y m (
) Yi m (r1 )

2 2 1 1

oo

X
q

2

j (qr )j (qr )q 2
dq

0
a2+q 2 1

1
1 1

2
2

X Y./
2m2(q)Y2i3(q)Yi m

(q)dq
1 1

The last integral is

.e 1-ml 11+12

2m211(213111m1) 5
C (11 I 22; -m 1 m 213)

x (1211 Y2 II )

A little manipulation yields

24

(3. 57 )

(3. 58)

V
12

Y
2P

= f
/1i 2(r 1 r

2
)C (11 22; m 1 m 22)Y/

2m 2(r 2)Y.
1
m

1

(r
1)

1122

where

with

mlm2

00 4
= q j (qr )j (qr )dqfi

1/2 a 3
0 a2 2

+q 1
1

2
2

(3. 59)

(3. 60)

(3. 61)
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These results give the desired multipole expansion. It yet remains to

evaluate f .i 1/ 2

Consider first the case where r2 > r
1.

Now use

2j
2

= h (1) + h (2)
.e

2
.e

2

where h
.e

(1)
and h (2) are spherical Hankel functions of the first

2
/

2

and second kind. f can then be written
/1.e

2

A r 00
q4 1 (1) (2)f/

= 3 j 2 2 21"',/
2

)dq (3. 62)(cir2)+11/ (cirdbi (cirl
1 2 a 0 a +q 1

The matrix element

the following relations:

2IIY2IIfil implies
/2 +/1

= +1. Note

j (x) = (-)/. (-x), h(2)(x) = (-) h (1)(-x).

The above integral can now be written

Afil.e2 =
2a3

4 1) ([hi (qr2),L (qr,)+111 1)(-qr2)j (-grid dq
a +q 2 xl I 2 xl

A3 4
h (1) (qr

2
)j (qr

1
)dq

2a -00 a 2+q2 2
3 /1 (3. 63)

This integral may be evaluated by contour integration. The contour
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for r
2

> r
1

may be closed in the upper half-plane. The contour

does not contribute in that region since the exponential in h (1) (qr
2

),
iqr

2
2

namely e will damp those in ji (qri) for rz > r1. The
1

Clebsch-Gordan coefficient insures f
1

- /2 > -2, so that the inte-

grand is well-behaved at the origin. The integral is simply, 27ri

times the residue at q = ia:

for

A (ia) 4
(1)

_ (2Tri)-h
./

(iar )j (iar )/1/
2 2a 3 (2ia)

2
2 11 1

=
TrA hi1) (iar )3 (iari)

2 1

r
2

> r
1.

A similar procedure may be followed for r
2

< r
1

which gives

f.e

1
/

2

(r
1

r 2) = it

1) .hi
2

(iar
2)3/

(iar
1)

r2 > r
1

1

(1 .

/)(iar 1)31(iar 2) r
2

< r
1.

(3. 65)
1 2

(3. 64)

The assumption of a one-pion-exchange force makes V12

quite singular at the origin, V - . This is not likely to be val-
12

1

3r
id in practice, and V12 has been regularized to give the potential

Reg V12(ar) = V12(ar) - P 3 V12(13r) (3. 66)
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with

(3> a.

For small r, Reg V -
12 r1 Reg V12 was used for all calcula-

tions in this work.

Bound State Form Factors

The defining relation for z is given by Equation (3. 16). z

is a type of reduced two-body matrix element and forms an important

part of the form-factor for various matrix elements in this work (see

Equations (3. 18, 3.44)).

To obtain an expression for z,

a(7) =
CL

(co3. IVIcp.
a. X

Vv m2m2a2 2a2 1 1 1 1 1

is first evaluated. For a central force of the form

V =

the result for a(r) is

a- r
e

ar
110. 41.

(a cr
1

cr
2

+b)'

(3. 67)

(3. 68)
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a
C

(
/. /.`

L-NJ1J2
LN

KK'

(I II YL
AA

g J2(r)II'

ji +m
2
+I'+1 /2+72 I+ P-LX (- ) (-) C(j

1
j

2
I; m

1 -m 2-K)

X C (IPL; KK'N)C

1

1 2 .e 1\

j
2 2

f2

\I I' L/

1 12(-2 P; vl- v2-K ' )

(2)(6_, a + b).i 1 PO (3. 69)

Review the section for coupling matrix elements for a discussion of

any isospin dependence. Direct comparison of Equations (3. 16) and

(3. 69) gives z immediately for a central force:

A A AA

I-L j
1
j 2IPzc (IPL; j1j2, r) (- ) (e211YL II /1)

X gL
iii2

(2)(6pia+5pob)

z will now be found for the tensor force

* ^VT(r) = 241./
S

213
Y

2(3
(r)V

12
(r)

5

1

jl 2
/ \

1

j2
2

/
2

(3.70)

I It Li

(3. 71)



where
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Y
2r3

V12 = fLX (r
1
r 0)C (Lk 2; Np.P)Y (

1
)Y

LN
(/./

0).
(3. 72)

LN

The first step, as for the central force, is to evaluate a( r), Equa-

tion (3. 16). The bound states, co. in a( r ) are decoupled so

that the spin and space parts of VT can be separately evaluated.

At the same time, if Equation (3. 71) is inserted into Equation (3. 16),

one finds for a( r ),

a
T

= C
1-2

il; n
1

v
1
m

1
)C (e 2-2 32; n2v2m2)

n
1
n2

v v
1 2

247
Ni 5 X X-

2

X (R
2 2

Y
2
n

2
1V12Y2(31Y.elnl R21 j 1)

X X )
V V

1 1

(3. 73)

By use of Equation (3.72), the factor which contains the spatial de-

pendence may be written as

ML = R Y IV R ./
2

j
2

/
2
n2 12 2P ,C

1
n /131

1
= C(LX2; Nµ-p)(- ) pgLx 2 (r) KI22n21Yx.I.LI.e1n1) YLN(r)

LN
(3. 74)



where
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00
2gLX (r) = R . (r )R (r )f (r , r)r dr . (3.75)

0
/232 1 /1)1 1 LX 1 1 1

The spin part will now be evaluated. First couple both the ini-

tial and final pairs of spin states to good total spins, S1 and 52.

The spin matrix element becomes

Ms =
v Xv I S 2P I X v X v

2 2 1 1

where

'sp.) =

1 1 1 1C(7251; vi.Tiiii)C(7-252; v272µ2) S21.12152(i1Sip.i.)

S1µ1
S

2
p.2

vv

and S = 0 and 1.

v vp.) X
V
X)

The Wigner-Eckart theorem yields

(3. 76)

(3.77)

cpizs2;
(5

2
p.

2
I S

2P
151111) -

43 5211521151) . (3.78)

The defining relation for 52p gives 245 for the reduced matrix

element. Note that only S1 = S2 = 1 can contribute since 52P

is a second rank tensor. The tensor force may scatter only between
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triplet spin states. Ms now becomes

Ms
1 1 1 1 5C(--' --7_ 1.' p.2 2 1 v iv]: 1 )C(

G1'2 v2v2 p.
2

)C(12 142)21;
111112 (3.79)

Now recouple the spins in Ms:

Ms

I' K'

2 2 S

1 1

2 2

\1 1 2/

C(§I12; 1.1.K'(3)

1
1/2-v

X C(2 2S' vi-v2-p.)(-) 1

1 1
1/2-71

X C(--I'; v -v2 2 1 2
(3. 80)

The 9-j symbol is a definite number, 1/9, since the only value

that S or I' can have is 1.

Now apply the Wigner-Eckart theorem to the matrix element in

ML, Equation (3. 74), and substitute Ms and ML into Equation

(3.73) to obtain

3 1 2 ^
aT g

LX
(r)Y

LN(r)
LN FTKI

R

(1 211 Yx II d

1 1

2

1/2-v
ii,-13)C( II; v

1 2
-v2-K')(X (-)PC(LX2; N1 X

2



1 1 .
X

1 2
j

1
; n

1
v

1
m

1
)C(i

2 2
j

2
; n2v2m2)

n1n2

1111'2

1 1 1/2-v
IC

Xi )X C(--S; v -v -17)(-) U2 2 1 2 1 2'
n

1 2

The sum in brackets gives,

/11
1

2
-In 32AA/\

I C(X.I; 1.1.17.K)(- )
j

1 1

IK 1

1z 2 2 j2

X C(j1 j
2
I; m 1-m2-K)

Now use

C(X2L; p.(3-N)C(§I12; 1.1.13.,K)

14171,

- L r-
N5 .I.W(PSLX.; 2I)C(I'IL; K'K -N)

to obtain

32

. (3. 81)

(3. 82)

(3. 83)

ji-mi
a

T =/ (-)NYL-NC(IPL; KK'N)C(j
1

j
2
I; m

1
-m

2
-K)(-)

LN
IK

I' K'

1/2-v1
1 1X C(-2

2
I';

1
-7

2
-1(1)(-) X
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A A AA

X 12
21IY II g

2107r (_)L

x
t 61'0

1

2 ji

X W(11LX; 21) X 1 I (3. 84)

1/2
2 j2

A comparison with Equation (3. 16) immediately gives

zi,(IPL; j1j2, I r I ) =

for the tensor force.

A A A
L Y21

12,4107r (- ) 61,0 (i211Yx11/1)

ii
X gLx

i2
W.(11L).; 21) X

/2

1

2

1

1

2

jl

I

2

. (3. 85)
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IV. EFFECTIVE POTENTIAL IN STRUCTURE

Review of Some Calculations Using a 2-body Force in Light Nuclei

There have been numerous shell model calculations employing a

residual 2-body force (13, 17, 19-21, 38, 39). Inglis (19) first made a

comprehensive study of structure in light nuclei (A=5, A=17). His

approach was primarily to make theoretical fits to the available en-

ergy spectra. One important conclusion, that he reached, was that

the jj shell-model coupling scheme, successful in heavier nuclei, was

unsatisfactory. At least an intermediate coupling model, intermedi-

ate between LS and jj-coupling, was needed. He also examined in

some detail the problem of the beta-decay rate in C14 which experi-

mentally is anomalously slow. The transition is from the 0+ ground

state of C14 to the 1+ ground state of N14, and is thus an allowed

Gamow-Teller transition. The slow rate can only be explained by a

cancellation of wave functions, which results in a near zero nuclear

transition matrix element. Inglis showed, that if the wave functions

for C14 and N4 are described by two holes in the 1p-shell, then it is

impossible for any central plus spin-orbit residual interaction to give

wave functions which produce the necessary cancellation. The alter-

natives are a tensor force in the residual interaction, and, or config-

uration mixing of other shells in the wave functions.

The possibility of a tensor force has been studied extensively
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by Visscher and Ferrell (39). They assume that the C14 and N14

ground-state wave functions may be described as two holes in the 1p-

shell. Wave functions are then found using a residual potential. with

central, spin-orbit, and tensor terms. They find that, with the inclu-

sion of the tensor force, the experimental beta-decay rate can be

achieved; and, at the same time, the ground-state energy level of C14

and the ground state and first two excited states of N14 can be fit.

They further test the wave functions by calculating Ml and E2 rates

among the same levels. If E2-enhancement is assumed, there is rea-

sonable agreement with experiment.

Another study of the N14 nucleus has been made by True (38).

He uses a central residual potential nearly identical to the central

part of the Visscher-Ferrell force. If he assumes that N14 consists

of an inert C12 core with two extra valence nucleons which can move

in the 1pil 2s1l2, 1d512 and the 1d3/2 orbitals, he is able to give

shell model assignments in agreement with experiment to nearly all

levels in N14 up to 10. 5 MeV excitation.

An application of the residual potential approach has been made

to the 2s- ld shell by Inoue et al. (20, 21). They use a very general

two-body potential which includes central, spin-orbit, and tensor

forces, all of which include exchange forces. The potential parame-

ters are varied to obtain a fit to the energy spectra of 018, F18, 019,

and Ne20. The wave functions which result from the parameter fit,



36

are tested against beta-decay rates and electromagnetic data. With

some exceptions, there is reasonable agreement with experimental

observations. After a discussion of two applications of the effective-

matrix-element approach, a more detailed discussion of the actual

potential parameters used in the above calculations will be given.

Effective-Matrix-Element Approach

One reason for using a parameterized residual potential is to

see if some nuclei may be understood in terms of a simple shell mod-

el, that is, where the nucleus is described by a few interacting va-

lence nucleons in shells outside an inert core which produces the

shell-model potential. Any failures of this approach might be due to

a residual potential which was not correct. It is possible, however,

that a simple shell-model scheme will not work, that agreement with

experiment cannot be attained no matter how general the residual po-

tential is. In order to test the shell-model description rather than

the residual potential, calculations have been made which treat the

two-body matrix elements as parameters (2, 5, 11). In this way no re-

striction is placed on the potential, and the success or failure of the

calculation rests on the assumption that the wave functions may be de-

scribed in a truncated shell-model space.

In second-quantized notation, the shell-model Hamiltonian may

be written,



H = E . a . a. + aa
2 ij, kP j ika e

ijkQ
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(4.1)

where serethe a. create holes or particles depending on the case be-
].

ing considered (see Appendix). The E. are single-particle energies

which correspond to the single-particle wave functions cp. for the

shell-model Hamiltonian h1., h.. = E . 9.. The ..
1 1 1 1

body matrix elements of the residual potential.

V. ki (C0.9.117(1' 2)1909.12)
1 3

are two-

(4. 2)

The problem is solved in a truncated space, which means that only a

few cpi's are considered. For example, the 1p shell has two states,

the 1p112 and 1p312. From these, one can obtain 15 two-body ma-

trix elements and two single-particle energies which gives 17 param-

eters (11). Once these parameters are determined, then the Hamil-

tonian in the truncated space is completely determined, and wave

functions may be calculated.

Cohen and Kurath (11) do the effective matrix element calcula-

tion for the 1p shell. In order to determine the 17 parameters, they

do a least squares fit to the experimental energy levels of nuclei from

A = 6 to A = 14. In other words they minimize

X2 = [E-Eexp] 2
(4. 3)
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where the sum is over all the energy levels. Two well known levels

were omitted, namely the 4+ in Be 8 and the 0+ excited state in C12 at

7. 65 MeV Inclusion of the 0+ state produces a large increase in

x2, and they believe the state is not well described by a 1p-shell

model.

The resulting wave functions are tested by calculating magnetic-

dipole moments, beta-decay rates, and Ml-transition strengths. In

general, the agreement with experiment is excellent. Later work in-

dicates that some E2 enhancement is produced by the wave functions,

but not enough (30). One very satisfying result is the prediction of

the anomolously small beta-decay rate in C14. A comparison of their

results with those of Amit and Katz (2) indicates that the choice of en-

ergy levels being fit is quite critical to the results.

If they assume a potential with the general form of the Hamada-

Johnston (18) potential, but without the hard cores, Cohen and Kurath

are able to express the two-body matrix elements in terms of one-

body matrix elements in the relative co-ordinate system of the pair of

particles. This method enables them to show that the qualitative fea-

tures of their potential are similar to the Hamada- Johnston potential.

One interesting result is that a very short-range dependence is indi-

cated for the singlet-even part of the force, much like a pairing force.

Arima et al. (5) apply the effective matrix element method to

the ld-2s shell exactly as Cohen and Kurath did for the 1p shell. In
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this case, energy levels in Ne20, F20, 0 20, F19, 019, 018, and F18

are fit. The 1.7 MeV state in F18 disrupts the fit and is left out. The

T = 1 effective two-body matrix elements are well determined by the

oxygen data alone. Inclusion of the flourine and neon isotopes in the

fit changes these matrix elements by less than 200 keV. The matrix

elements themselves are on the order of two MeV. The T = 0 ma-

trix elements are more sensitive. Their values depend on which Ne20

levels are included and can become completely ridiculous if a bad

choice of levels is made. They note that all the T = 1 and three of

the T = 0 matrix elements are well enough determined to make

meaningful comparisons with other data. A comparison is made with

the theoretical reaction matrix elements of Kuo and Brown (23) and

rough agreement is noted. The theoretical and empirical matrix ele-

ments differ by about 20-30% for those matrix elements which are

well determined. Again, as with Cohen and Kurath, the resulting

wave functions are tested against beta-decay rates and electromagnet-

ic data. Overall agreement is reasonable; although, there are a num-

ber of cases where it is necessary to include core excitations or con-

sider the ld3/2 level to explain the data. They confined their calcula-

tions to the 2s1/
2

and ld5/2 levels. For the particular case of the

F18 ground state beta-decay transition to 018, the correct value is

obtained. Earlier calculations by Elliot and Flowers (13) and also by

Kuo and Brown (24) which also used 2s- ld shells-model wave functions
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gave an ft value too low for the same transition.

Potential Strengths Determined from Effective Matrix Elements

A straight forward method for extracting an effective potential

from a set of effective two-body matrix elements is now given. It

was noted above that Cohen and Kurath found an effective potential in

order to compare their results with the Hamada-Johnston potential.

They made explicit use of the harmonic oscillator states in order to

reduce their two-body matrix elements to one-body harmonic oscil-

lator integrals. A primary goal of the present work is to compare ef-

fective forces in nuclear structure and scattering. Scattering calcu-

lations are more sensitive to the bound state wave functions than are

structure calculations (22); so that, it is more important to use bound

states calculated in a Woods-Saxon potential. For single-particle ex-

citations, the form factor which enters the DWBA amplitude is,

jli
g 2(

2
(r) = cp. (r )(. (r

1
)v

L
(r

1,
r)r 1dr 1J2 1 31

(4. 4)

where the yols are bound state wave functions and v L is a coeffi-

cient of the multipole expansion for the force. For a central force,

V(Ir-r11) =
LN

L
(r 1)y LN L

(r
1,

r). (4. 5)
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Chapter III gives a more complete development of the multipole expan-

sion. A more meaningful comparison between effective potentials for

structure and for scattering will be made if the nuclear two-body ma-

trix elements are calculated from the same bound state form-factor

that enters the scattering calculation. The result, derived in Chapter

III, is
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JT = C (IP L ) (cp. I g I (p. + exchange. (4. 6)
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In this form the nuclear two-body matrix elements are coupled to good

spin and isospin J and T, and the potential is conveniently writ-

ten as

V = PABV ABvC(ar ) + V
T

S12 (T1. T
2

)v
T

(aTr )

AB

(4. 7)

where the PAB and V
AB

are projection operators and strengths

respectively for the central potential. The four operators, PAB'

are PT_E , PTO' PSE' and P
SO

and project onto triplet-even,

triplet-odd, singlet-even, and singlet-odd states respectively. VT

is the tensor strength while S12 (T
1.

T2) is the tensor operator times

a T
1

T2 isospin dependence.

-ar
(4.8) 8)VC = ear
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where

= E(ar) - (
a,

)
3E((3r)

1 1E(ar) = +
1

2) ear
(ar)

-ar

vT
is discussed in Chapter III.
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(4. 9)

(4. 10)

Given a set of ranges and potential strengths and appropriate bound

state parameters, the computer then calculates the two-body matrix

elements for bound states in a Woods-Saxon potential. The computer

code was checked against a table of 15 T = 0 and T = 1 two-body

matrix elements listed by Arima et al. (5) for a Yukawa force with a

Rosenfeld exchange mixture (33, p. 233). The bound states were

harmonic-oscillator states in the 2s-ld shell.

In order to find the set of potential strengths which yield the

best fit to a given set of two-body matrix, a least-squares criterion is

used. Specifically,

i=1

(4. 11)

is minimized, where {mi} (i =1, N) is the set of empirical matrix

elements and {Yi} are the values of the two-body matrix elements

calculated for a given set of potential strengths {Vs}.
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(Vi, V2, V3, V4, V_b ) ('VTE' VSE' VTO' VSO' VT). Because the effec-

tive potential depends linearly on the potential strengths, so do the

calculated matrix elements

where a.is

{yi}.

5

y. = a. V
s

(4. 12)is
s=1

is the value of the i-th matrix element computed by set-

ting all the V's equal to zero except for Vs = 1. Now, 5 is min-

imized with respect to the potential strengths, {Vs}.

as =0, s = 1, 5. (4. 13)ays

This set of five equations for the five potential strengths easily be-

comes

where

and

/Ass'Vs1 = Bs

St

Ass' a. a.is is

B =/ a. m..
s is

i

(4. 14)

(4. 15)

(4. 16)

Thus, for a given set of empirical matrix elements, the best choice of
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potential strengths is found by first calculating all the a. is. Theis

above set of equations is then solved for the V
s

is. In practice, ob-

vious modifications may be made to find the best set of {Vs} for

s = 1, 4 with V5 -= VT = 0, or any other fixed value.

Effective Potential Strengths in the 1p and 2s-ld Shells

First an effective potential for the 1p-shell was extracted from

Kurath's effective matrix elements. The inverse range used for the

central force was a = . 578 fm-1 while (aT'(T) = (. 709, 3. ) for

the tensor ranges. The wave functions used were harmonic oscillator

functions with an exponential dependence,

where

e
-1/2(yr)2

y = .595 fm-1.

(aT' (3T) are the two ranges that enter the tensor force. Table 1

summarizes the primary results. Each row gives the potential

strengths that result in the best effective potential. a, y, N, and

10
N

6.2 are also listed, where N is the number of matrix

elements used in the fit.

The first Kurath fit was to all 15 1p-shell matrix elements de-

noted by (8-16) 2BME by Cohen and Kurath (11). The strong



Table 1. Potential strengths determined from effective matrix element fit and comparison with
other potentials.

10 2Description a. Y N VTE V
SE V TO VSO

VT
N E6i

CK fit(a)(a) . 578 . 595 15 -28. 6 -24. 5 7. 4 8. 1 3. 7 3..8
CK fit 578 . 595 9 -27. 7 -27. 7 -24. 0 4. 4 15.4 4. 1

CK fit with

(
578 . 595 15 -28. 8 -22. 9
578 . 595 15 -28. 7 -24. 1 8. 1 9. 1 0. 3. 9
578 . 595 1 5 -28. 6 -25. 3

10. 0 11. 8 -10.

6. 2 6. 4 10.

4. 6

fixed tensor
4. 0

Arima(b) fit 638 . 510 11 -42. 0 -24. 4 13. 0 -90. 6 -25. 5 1. 0
Arima ( ) fit 638 . 510 8 -25. 1 12. 9 -23. 1 1. 2

Arima fit with 638 . 510 11 -43.0 -28. 8 12. 2 -83. 8 -10.
638 . 510 11 -43.7 -31.7 11. 8 -79. 5 0. 1. 5
638 . 510 11 -44.4 -34. 6 11. 3 -75. 2 10.

1. 2

fixed tensor
1. 8

CK (short range) 2. . 595 15 -489. -391. 399. 565. 3. 42 3. 6

Other potentials
VF(c) . 578 . 595 -- -51. 9 -32. 8 0. 0. 11. 4
True(d) 548 . 566 -- -52. 0 -32. 5 0. 0. 0.
Inoue(e) X. = 2/3 -- -35. 0 -27. 0 13. 5 0. 10.

Comparison of normalized potentials
CK . 7 . 55 15 -53. 2 -45. 6 19. 5 21. 4 3. 7
VF . 7 . 55 -53. 6 -33. 9 0. 0. 11. 4
Arima . 7 . 55 11 -43. 7 -25. 4 13. 9 -96. 5 -25. 5
Inoue . 7 . 55 -53. 2 -41. 1 26. 5 0. 10.

(a)Ref. 11. (d)Ref. 38 True uses a Gaussian potential
(b)Ref. 5. (e)Ref. 19, 20 Inoue et al. use a Yukawa potential.
(c)Ref. 39 VF use a Gaussian potential.
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attractive even potentials and the relatively weak odd potentials are

the most prominent features. The tensor strength is also very weak.

In view of Visscher and Ferrell's results, the tensor strength seemed

small and a fit was made to the nine effective matrix elements which

had (J, T) = (0, 1) or (1, 0). The reason for this choice is that the

low lying levels in C14 and N14 which concerned Visscher and Ferrell

are (J, T) = (0, 1) or (1, 0) type states. Table 1 shows that the

result of the new fit is to increase the tensor strength from 3. 7 to

15. 4 MeV in closer agreement with Visscher and Ferrell. A precise

comparison of the tensor strength used here and of that used by Vis-

scher and Ferrell is not possible, since different spatial dependences

of the tensor force are assumed. However, the new fit also changes

the VTO strength radically to -24. MeV, and one sees that the

choice of matrix elements used in the fit is crucial.

Another fit was made with a = 2. to investigate the effect of

range in the central force. The value of A in Table 1 shows that

the fit is improved by the short range, in agreement with Cohen and

Kurath's results. See the Appendix for a discussion of the range de-

pendence of the potential strengths. Also, three runs were made with

the tensor strength fixed at VT = -10. , 0. , and 10. MeV. Only

the central strengths were allowed to vary in these runs. These re-

sults will be discussed later.

Exactly as with Cohen and Kurath, an effective potential was
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derived for the 2s- ld shell from the matrix elements of Arima et al.

(5). In their paper it is pointed out that only the T = 1 and three of

the T = 0 matrix elements listed there are reliable. Two fits were

thus made, one to the eight T = 1 matrix elements and another

which included the three T = 0 matrix elements. For the eight pa-

rameter fit, the V TE and V
SO

strengths are undetermined since

they correspond to T = 0. Again, the even strengths are strongly

attractive and VTO is smaller and repulsive. VSO = -90.5 MeV

is in complete disagreement with the results of Cohen and Kurath.

However, the T = 0 strengths, VTE and VSO, are determined

by only three T = 0 empirical matrix elements. If the details of

the fitting procedure are investigated, one finds that V TE depends

on the sum of the three matrix elements, while V
SO

depends very

strongly on the (J, T) = (2, 0) matrix element. In particular, if the

(2, 0) matrix element were changed from -3.70 to -1. 25 MeV, VSO

would change from -91. to about +10. MeV. The value for VTE

should be reliable; although, the value for
VSO

is not. Inoue et al.

find that VSO varies from 0. to 17. MeV and depends strongly on

the ground state energy of F18.

If
N
10

Sit is considered as a criterion for the quality of a

fit, then the fits for the 2s- ld shell are remarkably better than those

for the 1p shell. One possible explanation is that an average shell-

model potential is better defined for the 2s-ld shell. The 1p shell
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includes nuclei from Li 5 to 016, and the single particle wave functions

would vary appreciably as one progresses through the shell.

Finally, in Table 1, a comparison is made between the results

of Cohen and Kurath, Visscher and Ferrell, Arima, et al. and Inoue

et al. In order to make the comparison, all the results were convert-

ed to an inverse range of a = .7 fm -1 and a harmonic-oscillator

parameter y = .55 fm-1. It was assumed that, V - (a )n where

n=2. 3, and 3. 7 for the even and the odd potential strengths respec-

tively. These values for n were arrived at by a comparison of po-

tential strengths obtained from fits in the 1p shell for two different

values of a. This procedure is described in more detail in the Ap-

pendix. The central results are in semi-quantitative agreement. The

general features to be noted are the strong attractive even potentials

and the smaller odd repulsive potentials. VSE is smaller than

V TE in all cases; although, the amount varies considerably. Al-

though Vs0 is very poorly determined, it is consistent with the re-

sults to say it has the same sign and magnitude as VTO.

The results of Cohen and Kurath, and Visscher and Ferrell ap-

ply to the 1p shell, those of Arima, et al. and Inoue et al. to the

2s-ld shell. Note that a common y = . 55 fm 1 was chosen for both

shells in order to allow a comparison of the strengths between the two

shells. This value of y corresponds to an rms radius of 2.87 fm

and 3.41 fm for the 1p and 2s-ld shells respectively. These values
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were computed from Ni(r2) =1[2(n-1)441-1]1/2 where (n, /) are
"11

2

harmonic-oscillator quantum numbers.

The primary results of the calculation with a Woods-Saxon po-

tential are shown in Table 2 along with the previous harmonic-

oscillator results. The index, 10
N

5.2, which is a measure

of the quality of the least squares fitting procedure, shows a slight

improvement in the fit for both the 1p shell and the 2s-ld shell; al-

though, the improvement is more noticeable for the latter. In order

to compare the magnitudes of potential strengths, all the results are

normalized to an inverse range a = . 7 fm -1 as was done before for

the harmonic-oscillator results. Previously, the harmonic-oscillator

parameter was chosen to be y = .55 fm -1 for the purpose of com-

parison. This value corresponds to rms radii of 2. 87 and 3. 41 fm

for the 1p states and 2s-ld states respectively. The average rms

radius for the 1p 1/2 and 1p 3/2 states computed in the Woods-Saxon

potential was 2. 80 fm. The average rms radius for the ld5/2 and

2s 1/2 was 3. 90 fm. The potential strengths for the Woods-Saxon cal-

culations were renormalized to correspond to rms radii consistent

with the above value of y = .55 fm-1 (see Appendix for this conver-

sion). These results are displayed in Table 3. One sees that for the

central forces the results of the Woods-Saxon calculation are in gen-

eral agreement with those for the harmonic-oscillator calculation.

Recall that VSO is very poorly determined in the 2s-ld shell. The



Table 2. Effect of using a Woods-Saxon potential, W-S, in determining effective potentials
compared to using a harmonic-oscillator potential, H. 0. (See Chapter 4 for param-
eter definitions. ) aT = . 7 and . 71 for the 2s- ld and 1p shells respectively. pT = 4.

2s- ld shell (N =11)

a = .7 r= 1.25 x A1/3
a = . 638 y = . 510

1p shell (N =15)

a = . 71 r = 1. 25 x A1/3
a = . 578 y = . 595

Potential
well VTE VSE V

TO
V

SO VT 10 2

W-S -67.7 -49. 2 25. 5 -126. 0 - 2. 5 . 8
H. O. -42.0 -24.4 13.0 - 90.7 -25.5 1. 0

W-S -46.7 -38. 7 14. 0 14.7 3. 6 3. 7
H. O. -28. 6 -24. 6 7. 4 8. 1 3.7 3. 8

Table 3. Renormalized values for Table 2. Potential strengths have been altered to corres-
pond to a common a = . 7 and y = . 55. An effective y is defined for a Woods-
Saxon well by considering rms radii.

Potential
well VTE V SE VTO VSOSO

2s- ld shell W-S -49.7 -36. 2 15. 5 - 2. 5
H. O. -43.7 -25. 4 13. 9 -96. 5 -25. 5

1p shell W-S -51. 1 -42. 4 16. 2 17.0 3.6
H. O. -53. 2 -45. 6 19. 5 21.4 3.7
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tensor force did not change much for the 1p shell, but changed mark-

edly in the 2s-ld shell.

The Tensor Force in Nuclear Structure

The tensor results in Table 1 show no consistency. The result

of the fit to Arima's matrix elements has the opposite sign for the

tensor compared to the other results in Table 1. Although the tensor

value of Inoue et al. is positive, this result was only chosen to agree

with the Hamada-Johnston potential, in order to narrow the range of

investigation. To see what the effect of different strengths might be

on the overall fit, the tensor force was fixed at values of -10. , 0. ,

and 10. MeV while the central strengths were chosen to give the best

fit. This procedure was followed for both the Cohen and Kurath, and

the Arima et al. sets of matrix elements. The values of A indicate

that the fit becomes only slightly worse as VT deviates from the

best value. Also note that the central strengths do not vary much as

VT is altered. In general, the additional parameter of the tensor

strength gives an improved fit, but not to a significant degree. The

fact that the tensor force is not determined in a consistent fashion in

the manner of the central strengths does not mean that it is unimpor-

tant. It was noted earlier that Visscher and Ferrell found a tensor

force was needed to explain the C14 beta-decay rate if no configura-

tion mixing from the 2s- ld shell was assumed (39). Their strength is
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not inconsistent with the results of the fit to the Cohen and Kurath ma-

trix elements. In particular, it was also noted earlier that if a fit was

made to only those (J, T) = (0, 1) and (1, 0) matrix elements, then

the tensor strength would increase from 3.7 to 15. 4 MeV.

A recent work by Rose, Ha-usser, and Warburton (32) has con-

firmed the necessity of a tensor force in the A = 14 system. They

examine the possibility of configuration mixing from the 2s- ld shell

as well as a tensor force in the shell model interaction. They find

two important results if configuration mixing is allowed, but if a ten-

sor force is not. First, it is impossible to simultaneously explain

the C 14
(1

+
0+) beta-decay result and the 2. 31 MeV Ml gamma

transition from the first excited state in N14. Second, it is not pos-

sible to explain the 3. 95 MeV M1 gamma transition from the 1+ excit-

ed state, and at the same time obtain agreement for the E2/M1 mix-

ing ration for the same transition. This latter conclusion is nearly

as strong as the beta-decay argument. With a tensor force and some

configuration mixing, they obtain reasonable agreement for all the

data associated with the low lying levels in the A = 14 system.

The calculation of effective potentials for both the 1p and 2s-ld

shells has been redone using bound states calculated in a Woods-

Saxon potential rather than a harmonic-oscillator potential. One rea-

son is that the Woods-Saxon potential, which goes to zero as the radi-

us of the potential well increases, is more realistic than the
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harmonic-oscillator potential. A second reason, which is important

for this work, is that it allows a comparison of results between the

structure calculations and the scattering calculations. It is more im-

portant to use the Woods-Saxon potential in scattering calculations,

since they are sensitive to the wave functions (22).
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V. EFFECTIVE FORCES IN SCATTERING

DWBA Formalism for the Microscopic Model

As mentioned earlier, defects of a particular scattering theory

may be absorbed to some extent by an effective scattering force; so

that, the effective force must be defined with respect to a given scat-

tering theory or model. In this work, a microscopic DWBA theory is

the model used (16, 28, 34). The cross section is given by,

where xf(-) and

do-
1 (Xf(-)1KIXi(+)) 12

(+)
Xi

(5.1)

are the initial and final distorted waves

which describe the projectile nucleon.

K(ro) = (1.fZf I V 11.iZi (5. 2)

K(ro) is the value of the two-body scattering interaction, V, inte-

grated over the target nucleon and projectile spin co-ordinates.

and f are the initial and final nuclear wave function, while Z.
1

and Zf are the corresponding projectile spin wave functions. In

the microscopic model and (If are configuration-mixed shell-

model states formed from single-particle bound states (p. . Then,jm

K(r0 ) may be written as the sum of single-particle form-factors,

gL (ro), weighted by coefficients which describe the configuration-



mixed wave functions,

iii2
gL
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(5. 3)

is the same single-particle form-factor which entered the cal-

culation of two-body nuclear matrix elements. See Chapter III for

further details. As for structure, V is a two-body interaction

which is the sum of central and tensor terms. V = Vc + VT. For

structure calculations, V
c

was conveniently written as a sum of

even and odd, and triplet and singlet strengths.

V
c

= (PTE VTE+PSEV
SE

+P
TO

V
TO

+P
SO

V
SO

)v
C

(ar)

where PAB

(5. 4)

are the appropriate projection operators. For scatter-

ing, it is more convenient to write,

V
c

= [V
00

+V
10

( o-
1.

o-
2

)+ (V
01

+V11( cr
1*

62 ))T
1

T
2
iv

C
(ar ) (5. 5)

The strengths VST (VOO' V10' VOr V11) and

VAB = (VTE' VSE' V TO' VSO) are simply related by a four-

dimensional matrix (see Appendix). The choice of VST strengths

for scattering is due to various selection rules discussed elsewhere

in detail (28). For example, a (J =O, T=1) (J=1, T=0) transition

would depend only on V11, but on a linear combination of the VAB.
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These rules allow the determination of single VST 's or simple

combinations of them, if a judicious choice of nuclear transitions is

made.

Review of Known Strengths

Estimates of the central force parameters have been made for a

number of cases (4, 6, 25, 31, 35, 41). Satchler has made preliminary

studies of more than 20 reactions (35), primarily (p, p') with some

(p, n), to determine the effective strengths. These studies include

mass regions A z 18, 50, 90, and 208 at incident proton energies,

E 110-20 MeV. The primary results follow. A range of a = 1. fm

was used in a Yukawa potential.

1. V0 z- 150-200, except for Pb 208 where V0 z 200-300 MeV

2. V
1

< 67

3. V
01

z. 20-24 MeV

V
0

and V1 are defined by Vs = (V
s 0

+V
s 1

-7
1 2

), s = 0, 1. The

isospin dependence of V
0

is small; so that, the value of (T1 T2)

should not change the value of V
o

appreciably.

Reif et al. (31) have studied the spin-flip strength, V1' in the

excitation of non-normal parity 1plh states in 016, S32, and Si 28 by

inelastic proton scattering at about 17 MeV. They have also studied

the non-spin-flip strength, V0, for normal parity states in the
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same nuclei. They find strengths consistent with Satchler's values;

however, since they use a Gaussian potential with a range a1 = 1.7 fm,

the comparison is not too meaningful. The ratio V 1/V 0
should be

more meaningful. They find for 016, Si 28
, S

32 values of V 1/V 0

of . 29, . 31, and . 31 respectively.

P. J. Locard, S.M. Austin, and W. Benerson (25) have studied

the Li7(p, p') and Li7(p, n) reactions to the first excited 1/2 (-) states

of Li7 and Be 7 respectively over a range of incident proton energies

from 23 to 52 MeV. They have also examined the Li 6 (p, p') transition

to the T = 1 second excited state of Li6. If a range of a1 = 1. fm

is assumed with a Yukawa potential, they find that V00 varies from

90 to 113 MeV as the energy varies from 44. 7 to 25. MeV. They also

find that V11 = 15 MeV and is independent of energy. Contributions

of other parts of the potential are found to be small. They have also

carried out distorted wave calculations, using a theoretical effective

interaction deduced by McManus (27), which indicates that the V00

term contributes about 70% of the Li 7(p, p') cross section and that the

V11 term contributes 90% of the (p,n) cross section.

A survey of (p, n) reactions in C, N, 0, Al, Ti, and Zr isotopes

has been made by J. D. Anderson et al. (4) at incident energies in the

range, E 12-19 MeV. They compute Vol and V11 strengths
-1 iwhere an inverse range, a= . 7 fm , is assumed with a Yukawa in-

teraction. For L = 0 transitions, they find values of VII from
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4. 6 to 8. 0 MeV with an average value V11 = 6. 5 MeV. They also

find, V 01/V11 3/2. Quadrupole enhancements are found for a

number of L = 2 transitions. V01 and V11 are increased by

factors of about 1. 5-3. 0.

iBall (6) has made an extensive experimental survey of (He 3 ,He3)

and (He 3, t) reactions in p-shell nuclei at energies of 40-50 MeV from

which he has deduced effective nucleon-nucleus strengths. He norma-

lizes his results to a1 = 1. fm for a Yukawa potential. There are

three features of his data pertinent to this work. First, except for

transitions that appear to have quadrupole enhancements, he finds the

following strengths overall. V00'" 47-60, Vol z 19-33, and

V11 s" 16-31 MeV. Second, for those transitions confined to the 1p

shell he finds, Voo 60. 3, Vol z 20. 6, and V11 z 16. 5 MeV.

Only magnitudes have been determined. The assumption of a Serber

force would give IV
10 I 3

= V
00

z 20. 1 MeV. Finally, for the anom-

alous C14 N
14 ground state transition, he finds V11 = 25.9 MeV.

Also, the DWBA fits to the angular distribution of this latter transi-

tion are noticeably worse than other fits he makes.

The foregoing results are summarized in Table 4 for a1 =1. fm.

Consistent values are obtained for V01 and V11. Except in the

combination V1 = V10 + (T1. Tz)Vi V10 is undetermined. There

is a rather large variation in V
00.

The results of Locard et al. (25)

show that, in contrast to V11, it is energy dependent. Also, Ball
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is much smaller for the p-shell than for heavi-

er nuclei, a fact he attributes to core-polarization. However, Sat-

chler's data includes the 018(p, p') reaction, a nucleus just above the

1p shell, from which he deduces V
0

74 205 MeV. Core-polarization

in this reaction will be reviewed in a later section. Only the magni-

tudes of the strengths have been determined in Table 5, not the signs.

Preliminary Comparison With Structure Calculations

The values of the central strengths deduced above will now be

compared to earlier values found by fitting effective matrix elements

used in nuclear structure. The values used for the comparison will

be those in Table 2 found by fitting 1p-shell and 2s-1d-shell matrix

elements, where a Woods-Saxon potential was used for the bound

states. The strengths found for both are 1p shell and the 2s- ld shell

are to be normalized to a potential with a range a1 = 1 fm. It is

assumed, as in earlier comparisons (see Appendix) that the even

strengths are proportional to a
2. 3, and the odd to a3. 7. After

the normalization to a = 1. fm -1 has been made, the even and odd

strengths are transformed to the representation used in the scattering

discussion. The results of these normalizations are shown in Table

5. Since the value of V
SO

in Table 2 for the 2s- ld shell is com-

pletely unreliable, it was taken equal to VTO = 25. 5 MeV in the

calculation of the values in Table 5. This value was chosen since
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Table 4. Potential strengths determined from DWBA studies. Unless
noted otherwise, the inverse range is a = 1. fm-1, and the
projectile is a proton. Energies are in MeV.

Incident
energy I v 100 v 101 I V 011

I V
111

Letter notes reference

10-20 150-200 < 67 20-24

44.7 90 15..
25. 113 15.
12. -19. 9. 6.5
12. -19. 28. -19.
40-50 47-60 19-33 16-31
40-50 60. 3 20. 6 16. 5

a)
b) V 1/V0 z . 3 for 1plh

excitations.
c)
c)
d) a = . 7

d) normalized to a = 1.
e) p-shell target nuclei
e) p-shell transitions

a) Satchler (35).
b) Reif et al. (31), V

o 1
and V are defined by Vs = Vs

0
+ Vs

1
-71 -72- -for s = 0, 1.

c) Locard et al. (25).
d) Anderson et al. (4).
e) Ball (6), He3 projectiles

Table 5. Values of potential strengths from Table
2 transformed to spin-isospin representa-
tion. The values are taken from the W-S
fit and are normalized to a = 1. assuming
that even strengths obey VE a2. 3 and
odd strengths obey Vodd a3- 7.

Shell V
00

V
10

VO1 V11

2s-ld 9.9 23. 3 33. 7 28. 5
1p -4. 0 15. 6 20. 0 18. 1
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VSO
z V TO

in the 1p shell where the values appear better deter-

mined.

The first thing to notice in Table 5 is that V00 is not consis-

tent and that both values given disagree completely with the values de-

termined from scattering reactions which are displayed in Table 4.

The strength V
00

is very sensitive to the value of VTO. Expli-

citly,

V
00 16

= (3VTE +3VSE+9V TO
+VSO ).

And, small variations of V TO

(5. 6)

would cause large variations of

V00. Thus, V
00

is not well determined if V
TO

has an appreci-

able magnitude.

However, the strengths of V
10,

V 01'
and V11 determined

from structure calculations in Table 5 are in good agreement with the

results in Table 4. The magnitudes of the values in Table 5 are well

within the range of values displayed in Table 4. Vol is 10-20%

greater than V11 in Table 5 in reasonable agreement with Table 4.

V10 in Table 5 is consistent with the results of Table 4 which gives

the value determined from scattering reactions; although, the latter

is poorly determined. Finally, note that there is a slight confirma-

tion in Table 4 of the result that the 1p-shell strengths are smaller

than those of other shells. However, the greater strengths in the 2s-

ld shell in Table 5 depend critically on the Woods-Saxon well radius
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used. Recall that r = 1. 25 x A1/3 fm was used where A = 14

and 18 were taken as typical atomic masses for the 1p shell and 2s-ld

shells respectively. One should also note that, although the signs of

the potentials are, for the most part, undetermined in DWBA calcula-

tions, they are completely specified in Table 5.

Tensor Results and Calculations in DWBA

Since a T1 T2 isospin dependence has been assumed for the

tensor force, scattering reactions will now be discussed for reactions

which depend on the corresponding central strengths, V
01

and V11'

but do not depend on the V00 and V
10

strengths. If the results

of the effective matrix element fits are reliable, then one would not

expect to see any effect of a tensor force in scattering where the very

large V00 strength would predominate even if some other isospin

dependence were assumed.

(p, n) reactions in C14, N15, 017, and 018 have previously been

investigated by means of a central two-body force (4). A comparison

of these results will now be made with calculations which include the

tensor force. A note on some technical problems is in order at this

point. Nearly all the DWBA calculations with a tensor force have been

done on the CDC 3300 computor at Oregon State University. However,

because of the limited size of this machine a complete DWBA program

for it does not exist at present. In order to do the calculations,
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distorted waves were first computed by the DRC program (15) at Law-

rence Radiation Laboratory. These distorted waves were stored on

punched cards and magnetic tape. DWBA form factors were then

computed and combined with the stored DRC distorted waves on the

Oregon State machine, with a program called DWBA, to produce total

and differential inelastic scattering cross sections. This procedure

allowed parameter variations of the form factors, but the distorted

waves, once computed, could not be altered. An additional difficulty

which involves a variable mesh size in DRC integrations, hampered

precise calculations. In order to insure meaningful results, differ-

ential cross sections were calculated with both the DRC program and

the DWBA program which used the DRC distorted waves. The differ-

ential cross sections calculated by the two methods agreed, point by

point, in nearly all cases to within 5% when the same parameters

were used in both codes for the calculation of the form factors and

with the curves normalized to one-another. In addition, a comparison

of the cross sections showed that the results of the DWBA code were

consistently big by 10-20%. One test was made in which the mesh

size difficulties were removed to be certain that the source of the dis-

crepancies was understood. Agreement was good in that case.

Table 6 displays the effect of a tensor force for a number of re-

actions discussed in Reference (4). The central strengths, V01 and

V11 are set equal to 7. MeV and the tensor force is varied from 0.
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Table 6. Total (p, n) cross sections calculated with a tensor force in-
cluded. The two central strengths, V01 and V11, are
both 7. MeV. The inverse central and tensor ranges are
ac = . 715, aT = 715 and pT = 4. fm-1.

E Target
et

nucl
Transition II'L V =0 VT= 7. VT=14 Exp

13. 7 C
14

0+-.1+ 110 37. 0 36. 1 35. 2
(3.95) 112 . 02 2. 2 9. 6

total 37. 0 38. 3 44. 8 -35

18. 8 N15 anal. 000 5. 95 5. 95 5. 95
110 1.98 1.93 4.36
112 . 89 . 06 . 67

total 8. 82 7. 94 10. 98 -15
15 1

(-)
3(-F

18: 8 N 7--2 110 12. 72 14. 36 16. 28

J6.15).___ 112 . 09 1. 02 3. 32
202 . 52 . 52 . 52
212 . 79 2. 32 4. 86

total 14. 12 18. 22 24. 98 -11

13. 5 017 anal. 000 10. 79 10. 79 10. 79
110 15. 11 14. 27 13. 72
112 . 23 . 27 1. 91
202 1. 13 1. 13 1. 13
312 2. 03 1. 52 1. 26

total 29. 29 27. 98 28. 81 -50
VT= -14

11. 7 018 0 -.1 110 21. 00 19. 07 17. 58 26. 20
(g. 112 . 33 . 38 2. 68 7. 00

total 21. 33 19. 45 20. 26 33. 20 -10
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to 14. MeV for each transition. These strengths were picked only for

comparison purposes. Optimum values for the central strengths were

determined in Reference (4). Also, recall that the calculated cross

sections are somewhat too big. In particular, the C14 cross section,

calculated by the DWBA program, is about 20% high while the rest are

about 10% high or less. The inverse central range used was

a = .715 fm 1. The inverse tensor ranges (see Chapter III for the

form of the tensor force) used were a
T

= .715 fm -1 and

PT 4. fill-1' The value used in Reference (4) for

for an inverse range a = . 715 fm -1. A tensor strength, VT z. 14.

V11 is 7. MeV

MeV is comparable to the Viss cher-Ferrell tensor strength and to the

tensor strength found by fitting the effective matrix elements related

to the low-lying states in the A = 14 system. Therefore, the

strengths used in Table 6 are of reasonable magnitude. The total,

spin, and orbital angular-momentum transfers I, I', and L are

also given.

A strength of VT = 7. MeV produces very little change in any

of the total cross sections. A strength of VT = 14. MeV does pro-
3-duce some effect, notably in the N 15

(-2 ) transition. Two general

properties of the tensor force can be seen in Table 6. First, only

spin transfers I' = 1 are allowed since the spin operators in the

tensor force are of rank 1. Secondly, note that the effect of the ten-

sor force compared to the central force is much greater for the L = 2
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transitions. In particular, this effect is very apparent in the C14 (p,n)

transition to the 3. 95 MeV state in N14.

Figures 1-5 display angular distributions for the reactions in

Table 6. For each reaction, the experimental angular distribution is

displayed, together with DWBA fits for two values of the tensor

strength, VT = 7. and 14. MeV. The central strengths, V
01

and

V11, are still set equal to 7. MeV. For each figure the VT = 0.

case is displayed by a dotted line, while the V = 14. MeV case is

shown by a dot-dashed curve. I, I', and L, which are the total,

spin, and orbital angular momentum transfers respectively, are also

noted. For example in Figure 2, for the N15(1- 1) transition, the

VT = 0 case is displayed for two sets of (II'L) which give identi-

cal angular distributions. Namely, (II'L) = (000) and (110). The

angular distribution for the VT = 14 MeV case is the incoherent

sum of contributions from (II'L) = (000) and (110). For this latter

case, the individual angular distributions are not identical. In all the

figures, only the important (II'L) sets have been shown.

For the C14 (0
+ (p,n) reaction at 3. 95 MeV excitation, and

1- 1- 1- 3-for the two (p, n) reactions in N15, the 7 - 7 and the 2-

transitions, the VT = 0 DWBA fits are in qualitative agreement

with experiment as was discussed in Reference (4). The inclusion

of a VT = 14. MeV tensor force does not drastically change this

conclusion. Although the N15(2
2
1 fit is made worse at zero
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degrees.

For the 017 and 018 reactions, the VT = 0 MeV cases fit the

data very badly, a fact already noted in Reference (4). In these cases

also, the introduction of a tensor force does not change the nature of

the theoretical fits. These fits have all been calculated with the use

of distorted waves calculated by the DRC program which does not in-

clude a spin-orbit interaction in the distorting potential. The effect

of a spin-orbit potential in these reactions is discussed in Reference

(4). It is found that the spin-orbit effect produced a noticeable im-

provement in the oxygen angular distributions. At the same time, the

effect is small in the C14 and N15 calculations which were in better

agreement with experiment in the first place.

In general then, the effect of the tensor force in DWBA calcula-

tions does not give any consistent improvement. Although, there are

some changes in the calculated angular distributions, these changes

are not large compared to the overall discrepancies in the fits. The

same result is true for the total cross sections. These conclusions

are analogous to those found for the structure calculation. Namely,

the tensor force does not give consistent improvement for a range of

nuclei. Again, as was the case for nuclear structure, this result

does not imply that the tensor force is negligible. However, one must

look for special cases where the tensor force might be expected to

have a more pronounced effect. Such a case will now be examined.
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If a central force is assumed for the two-body inelastic scatter-

ing operator in a DWBA calculation, then the C14 beta-decay transi-

tion and the C14(p, n) ground state transition are both produced by the

same spin-flip, isospin-pip operator, Cr T (41). However, the same

cancellation which produces the small beta-decay rate, implies a

small quasi-inelastic scattering cross-section. The experimental

cross section is reduced compared to what one would expect if there

was no cancellation, but not to the degree predicted. This cancella-

tion of the central force contribution to the (p, n) reaction makes the

C14 -N14 ground state transition an ideal case in which to look for the

effects of a tensor force. Actually, because of the spatial dependence

of the scattering operator, assumed in this work to be a Yukawa for

the central force, the cancellation only occurs completely for zero

orbital angular momentum transfers, L = 0. Nevertheless, the

L = 2 multipole, the only other one possible in this case, does not

contribute a sufficient amount to explain the experimental cross sec-

tion without the use of a potential strength which is large compared to

the strength needed for other reactions. Also, the angular distribu-

tion predicted by the L = 2 part of the central force is very poor

(4).

The effect of a tensor force will now be examined for the

C
14(p, n)N 14 ground state transition, as well as, two other reactions,

the C14 (He
3, t)N 14 ground state transition and the N14(p, p')N 14
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transition to the 2. 31 MeV first excited state in N14. The 2. 31 MeV

state is the analog of the C14 ground state, so that the (p, p') reaction

is analogous to the (p, n) reaction. These reactions have all been

analysed before in terms of a central force DWBA theory2 (6, 41).

The C14(p, n) and N14(p, p') reactions will be examined first.

As in Table 6, a strength V11 = 7. for a. = . 715 fm 1 was as-

sumed as a basis for comparison. Table 7 displays the total cross

sections for VT = 0. , 7. , and 14. MeV for both L = 0 and 2.

For both the (p, n) and (p, p') reactions, a definite improvement is ob-

tained in the total cross section compared to experiment when VT

is non-zero. As noted in Reference (4), in order to obtain agree-

ment with experiment for VT = 0 a value V11 = 22. MeV is re-

quired. (The computed values in Table 7 for the total cross sections

are 10- 20% high as noted earlier for Table 6. ) This value for V
11

is clearly out of line compared to the more normal reactions in Table

6. Possible quadrupole enhancement could account for some of the

discrepancy; however, in Reference (4) it was shown that the value

V11 = 22. MeV is high even compared to other L = 2 transitions.

The tensor force does not help as much in the (p, p') transition. If

VT = 0, then V11 = 14. MeV is needed to obtain experimental

agreement. This value was obtained under the assumption that the

2Private communication from S. M. Austin.
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Tensor force in the C14(p, n)N 14 ground state transition and
the N14(p, p')N14 (2. 31 MeV) transition. The ranges and
strengths are the same as for Table 6.

E Target Transi- II'Lnucleus tion VT=0 V
T=,7. VT=14 Exp

13.7

24.5

C14

N14

+ +
0 --... 1

,_(g. s. )

(2. 31)

110
112

total

110
112

total

0
2.
2.

0
.

.

50
50

294
294

3. 66
1. 08
4. 74

.407

. 121

. 528

14. 55
2. 46

17. 01

1.62
. 26

1. 88

-18

-.7-1.0



N14 calculated cross section is too large by the same factor as for

C14. The smaller value,

compared to

76

V11 = 14. MeV, for the (p, p') reaction

V11 = 22. MeV for the (p, n) reaction might be taken

as an energy dependence of V11, since the (p, p') reaction is at

nearly twice the energy of the (p, n) reaction. The inclusion of the

tensor force, however, removes any need for the implied energy de-

pendence of V11, in agreement with the conclusions by Locard

et al. (25) Recent data for the C14(p, n) ground state transition at 18

MeV incident proton energy seems to agree favorably with the N14

(p, p') results. 3

Figures 6 and 7 display experimental and theoretical angular

distributions for the reactions discussed in the previous paragraph.

The theoretical curves are given for VT = 0, 14, MeV and

V11 = 7. MeV. For both reactions, there is a big improvement in

the fit with the inclusion of a tensor force. The fit is still not out-

standing however, and its significance is in doubt. An interesting

point is that the VT = 14 MeV, L = 2 angular distribution for the
14

C (p, n) reaction fits the data nearly perfectly. However, as seen in

Table 7, the L = 2 contribution is small compared to the L = 0

contribution for VT = 14. MeV, and its effect should not be seen.

Ball has measured cross sections and angular distributions for

3Private communication with J. D. Anderson.
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the C14(He
3, t) N14 ground state transition and the N14

(He
3,

He 3 ')N 14

transition to the first excited state corresponding to the (p, n) and

(p, p') reactions just discussed (6). He has also examined the analog-

ous reaction to 014, the N14
(He

3, t)0 14 ground state transition. Inci-

dent He 3 energies were about 45 MeV. Total cross sections for the

three reactions are mutually consistent, and the angular distributions

are very similar. A central force DWBA fit to the C14(He
3, t) reac-

tion did not fit the data (6). For all three reactions, he found that

V11 = 24 ± 1 MeV corresponding to a = 1. fm -1. If V cc a 3 is

assumed, the strength corresponding to a = .715 fm 1 is

V11 - 9. MeV. This value does not seem large. However, it is

more meaningful to compare this value with other values obtained

from his He3 reactions. From Table 4, one sees that V11 is

z 16. 5 MeV for transitions in the p shell corresponding to

a = 1. fm -1. Thus, by this standard, the above value of

V11 z 24. MeV is considerably enhanced.

Tensor force calculations were made for the C14 (He
3, t) reac-

tion at 44. 8 MeV. As in previous discussion, the calculations were

done for V11 = 7 MeV with VT = 0 and 14 MeV. The results,

shown in Figure 8, are discouraging. The central force fit has its

minimum more than 100 too early. This difficulty has already been

noted by Ball (6). The fit with the tensor force is also bad. A small-

er value of the tensor force was tried and gives a result intermediate
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to those shown. The effect of the tensor force on the total cross sec-

tion is very similar to the results for the (p, p') and (p, n) reactions

already discussed. For VT = 7. and 14. MeV, the total cross

section is increased by the factors 1. 37 and 4. 04 respectively. These

increases are enough to obtain the experimental cross sections with-

out any assumption of L = 2 enhancement.

Exchange Calculations and Results

Exchange effects will now be studied for the C14 and 018(p, n)

reactions which have just been discussed. A detailed discussion of

exchange in DWBA has been given by Amos, Madsen, and McCarthy

(3). They include contributions of the knockout term in addition to the

usual direct term calculated in a direct reaction theory. They give

the following expression for the inelastic scattering amplitude:

M.
M = N (x f(-)(0RJ f( 0)1V(0' 1)1X i(+)(MJ. o ))

M M.
N (xf(-)(ORJff(0 )1\7(0,1)1Xi(+)(1) J. 1

1( )) (5. 7)

where the first term is the usual direct reaction amplitude, and the

second term is the knockout term. N is the number of target nucle-

x.(+)(0)ons. is the incident distorted wave described by space,
M.

spin and isospin coordinates, r0' . ( )0' °o' 0 o
represents the
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target state described by co-ordinates 1 through N excluding the

0 co- ordinates. The co- ordinates 1 and
1

have analogous

meanings. V(0, 1) is a central two-body potential with arbitrary ex-

change.

V L WST
PST

S, T=0

where the PST are the singlet or triplet and even or odd state pro-

jectors and the WST

previous notation,

are the corresponding strengths. In terms of

(P
10

,P
01

,P
11

,P
00

) (PTE' PSE' PTO' P50).

WST should not be confused with VST used earlier, where the

VST
referred to spin and isospin-flip strengths. In particular,

V=W P +W P +W P +W10 TE 01 SE 11 TO 00
P

SO

= V00 V o- ) + T1 T (V +V o- cr. ).
00 10

cr
1 2 1 2 01 11 1 2

(5. 8)

For definite total, spin, and orbital angular momentum transfers

(I, I', L) and isospin transfer T, the differential cross section for

transitions from state i to state f is proportional to the square

of a sum of single-particle transition amplitudes.
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(5. 9)

il and j
2

denote single-particle states in the initial and final nu-

cleus respectively. ji includes the usual (nlj) single-particle

quantum numbers. The C. 2 contain configuration-mixing coeffi-

cientscients which describe the nuclear states. Both the Cili2 andf
D

j1
contain various coupling coefficients, which give rise to vari-

ous selection rules mentioned later. See Reference (3) for details.

W
ST are the potential strengths defined above. FLM is propor-

tional to the usual single particle transition rate. For a Wigner force,

j1i2 (_)
(

ii2Fu\di (xf r0)1YLm(ro)gL (r0)! xi(+)(70))

where the X's are the distorted waves and

particle form factor. G
i1j2
LM

1132
gL

(5. 10)

is the single-

is the corresponding amplitude which

arises from the knockout term of the DWBA amplitude. It is defined

to be equal to FLMj2 in the limit of zero range.

As mentioned already the
C.

1,2
Is and Di-0112

ts in Equation

(5. 9) give rise to selection rules, just as for non-exchange scattering.



Some of these are the following:

A (IJ. J
f

A (P, S, S), A (IPL), A(TTiTf)
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where I P, L, and T are the total, spin, oribtal, and isospin

transfer quantum numbers respectively. J. and Jf are the initial

and final nuclear spins, while Ti and Tf are the initial and final

isospin quantum numbers. S is the projectile spin. t indicates

that a triangle relation must be satisfied. Three reactions will be

considered, each of which is from Ji = 0, Ti = 1 to Jf = 1, Tf = 0,

the 018(p, n) ground state transition and the C14(p, n) transitions to

the ground and second excited states of N14. The above selection

rules imply I = T = 1. In addition, P and L may have the fol-

lowing values:

I' L

0 1

1 0
1 1

1 2

Parity requires that for the direct terms in the 1p shell, only L = 0

and 2 are allowed. This rule arises from a nuclear one-body matrix

element which has 1p initial and final bound states.

The same procedure was used for both the 018 and C14 reac-

tions. Total and differential cross-sections were calculated for both

the direct and exchange terms alone. These cross sections were also
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calculated for the case where the direct and exchange terms contri-

bute coherently. Only even components of the force have been consid-

ered, that is, where the phase between FLM and GLM
'

(- )(- )
T+S

is positive. In particular, the even strengths were chosen equal and

the odd strengths were 0.

W10 -= VTE = -56. MeV W11 V TO = 0.

W
01

VSE = -56. MeV W
00

V
SO

= 0.

(5. 11)

(5. 12)

These values correspond to V01 = V11 = 7. MeV where as before,
11.

V01 and V11 are the strengths of Ti T2 and ( 62)(T1' T2).

Calculations, that are referred to as direct or exchange alone, were
lj jM2done by setting either GL or Fili2LM to zero respectively.

The effect on the angular distributions of varying the range of

the potential was studied for both the direct and exchange contributions

independently. Figures 9-14 display, in pairs, these angular distri-

butions for three transitions, the L = 0 018(p, n) ground transition,

and the (L = 0 and 2) contributions to the C 14(p, n) transition to the

3. 95 MeV state in N14. Each figure displays the results for a = . 5,

.7, and 3. fm -1. The most striking feature is the almost complete

independence of the exchange angular distributions on a. In all

cases, they are very similar to the short-range direct angular distri-

butions. (As mentioned above, the exchange and direct curves must
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be identical at zero-range. ) This independence of a for the ex-

change curves means, that as long as the direct angular distributions

are not too different from the shape they would have for short ranges,

then the direct and exchange angular distributions will be similar.

One sees from the figures that the direct angular distributions deviate

appreciably from the short-range shapes only near 0° and 180°.

Figures 15-17 compare the angular distributions of the direct

results, the exchange results, and the coherent contribution of both

together for the same three reactions, the L = 2 C14(p,n) ground

state transition, the L = 0 C14(p, n) transition to the 3. 95 MeV

state in N14, and for the L = 0 018(p, n) ground state transition.

The direct, exchange, and combined results are labeled by

idex = 1, 2, 3 for each curve respectively. The inverse range, a.,

is . 7 fm 1. As noted in the discussion of range dependence, the in-

dependent direct and exchange results are very similar, except near

0° and 180°. In addition, the coherent contributions of direct and ex-

change are close to an average of the independent contributions, which

indicates that the relative phase of the direct and exchange amplitudes

must be relatively constant, as well as the magnitudes being alike.

The direct angular distributions shown in Figures 1 5- 17 differ

somewhat from the results already discussed for these same transi-

tions. First, the optical potentials used were not always the same.

And second, the exchange code does not include any effect due to
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recoil while the DRC code does.

Total cross sections have been found for all possible sets of

transfer quantum numbers with the exception of L = 1 transfers in

the 018(p, n) reaction. These are shown in Table 8 for the L = 0, 2

transitions. First note the small values of the total cross section for

the L = 0 ground state transition in C14. This point has already

been mentioned for the direct term. The small result depends on the

SUM

being near zero in Equation 5. 9 and on the assumption that the
j2FLM are relatively independent of j1 and j2 for the p shell.

Thus, to the extent that the GLM2 are also independent of j1 and

j2' the exchange term will also give a small result for the L = 0

transition.

For the normal L = 0 transitions, the 018 ground state tran-

sition, and the C14 transition to the 3. 95 MeV state in N14, the ex-

change contribution is small compared to the direct. The amount is

non-negligible; however, and the coherent sum of exchange and direct

is appreciably enhanced over the direct value alone. Again, because
1 2

LM andand GLM are equal for zero-range, the exchange is more

noticeably for a = 3. fm-1. For the L = 2 transitions, the



exchange terms are more important than they are for the L = 0

ones.

Table 9 shows the enhancement in a quantitative fashion. Let

92

and E be the direct and exchange amplitudes, so that the direct

and exchange angular distributions are given by 1D12 and 1 E 1 2

respectively. I D+E 12 gives the angular distribution for the coher-

ent sum of direct and exchange contributions. For each transition,
2the enhancement, aL' may be defined by where=

CrL D+E
/Cr

D

crD =SID 12cic2 is the total cross section for the direct term.

o-D+E is defined similarly. aL is L dependent. Average values

of aL
from Table 9 are a

0
= 1. 27 and a

2
= 1. 79. Recall that

these enhancements are for even forces, where V TO and V50

were chosen to be zero. This assumption makes the relative phase

of FLM and G lj j2 (-)(-)T+SLM' , equal to +1. The following

identities allow the calculation of the cross-section for odd forces.
j2 j2That is, where FLM and GLM add with opposite signs.

where

2 12 12ID±EI = IDi + 1E1 t 2Re(DE*)

TD+E crD crE

o-D-E = cr
D

+ crE - y

y = 2Re(DE*)c1c2

(5. 13)



Table 8. Direct and exchange cross sections in the C
14(p,

n) and 018(p, n) reactions. Direct, exchange, and direct plus exchange cross sections
are denoted by IDEX equal to 1, 2, and 3 respectively for each of three ranges, three transitions, and two orbital angular momentum
transfers. Only relative magnitudes are important.

ID EX

a = . 5 a, = . 7 a = 3.
1 2 3 1 2 3 1 2 3

C14(p, n)
E = 13.7

P

G. S. ; L=0

G. S. ; L=2

3. 95; L=0

3. 95; L=2

3.03 x 10-3

5. 18

117.0

. 0509

9. 77 x 10
-4

6. 42 x 10-3

3. 95 16. 93

4.39 161. 8

. 0327 . 1517

1. 542

20. 2

.01354

1. 354

1. 618

. 01101

5. 42

32. 5

. 0464

. 001856

.00980

1. 994 x 10-5

. 001969

.00371

1. 417 x 10-5

. 00761

.0248

6. 547 x 105

018(p, n)

E = 11.7
P

G. S. ; L=0

G. S. ; L=2

75.0

. 802

2.46

. 324

100.8

1. 969

12.04

. 207

. 828

. 0957

18.7

. 558

2.65 x 10-3

1.379 x 10-4

1. 604 x 10-3

1. 120 x 10-4

8.35 x 10-3

4. 99 x 10-4

Table 9. Enhancement factors, a

appear in Table 8 for a =

and pL, due to exchange. aL and (3L are shown for the same transitions that

. 7 fm
-1.

(See Chapter V for a discussion of the table.)

0- 0-E
y

0-
D+E

o- D-E 13 L

C
14(p,

N) G. S. ; L=2 1. 542 1. 354 2. 524 5. 42 . 372 1. 876 . 493

3. 95; L:) 20.2 1. 618 10.68 32. 5 11. 14 1. 269 . 752

3. 95; L=2 . 01354 . 01101 . 0218 . 046 4 .00275 1. 851 . 451

018(p, n) G. S. ; L=0 12.04 . 828 5. 83 18.7 7. 04 1. 246 . 764

G. S.; L=2 . 207 . 0957 . 255 . 558 . 048 1. 641 . 482
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The equation for crD+E gives a value for y which in turn can be

used to find o-D-E. An enhancement, PL' for odd forces may be

2defined in the same fashion as for aL. Namely (3L

PL

crD-E/Th-

is given along with aL in Table 9. Average values for
PL

are, Po = . 758 and P2 = . 475. Just as the even forces are en-

hanced by aL, the odd forces are diminished by PL.

Earlier, the strengths V
OW V10, V01, and V11, as deter-

mined from fitting effective matrix elements were compared with val-

ues obtained from DWBA fits to various scattering reactions. The

two sets of strengths were given in Tables 5 and 4 respectively.

Since, the exchange effects are non-negligible, at least for the reac-

tions just studied, it is of interest to see how the inclusion of the ex-

change amplitudes affects the potential strengths determined from

DWBA calculations. However, since almost all calculations up to the

present time have not included exchange (4, 6, 25, 31, 35, 41), a differ-

ent point of view will be taken. Rather than redetermine the values in

Table 4 by the inclusion of exchange, a new effective force with modi-

fied strengths will be defined; such that, a direct DWBA calculation

with the modified strengths will give the same results as a calculation

with unmodified strengths which includes the exchange amplitude. The

possibility of mocking-up the results which include exchange, by sim-

ply changing the strengths in a pure direct calculation, depends criti-

cally on the following fact: the most important effect of exchange is
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to change the magnitude of the cross-section and not the angular dis-

tribution. It may be that the contribution of exchange to the total

cross section will be consistent with the present results for other re-

actions; although, the angular distribution is not. In that case a di-

rect calculation with altered strengths may give correct total cross

sections, but not the correct angular distributions. Only calculations

for a wider range of nuclei can answer the question.

The enhancements of the even and odd strengths, aL and pL

will now be used to modify the effective potential strengths, given in

Table 2, determined from the effective-matrix-element fits. These

modified strengths are to be considered as effective strengths for di-

rect DWBA calculations and can be compared directly with the results

in Table 4. The procedure is the following and is applied independent-

ly to the potentials determined from both the 1p and 2s-1d shells giv-

en in Table 2. First, for each shell and the appropriate L, the

even and odd strengths are multiplied by a
L

and PL respectively.

These altered even and odd strengths are then normalized to a range

a-1 = 1. fm. with the assumption that the even and odd strengths are

proportional to a2. 3 and a3. 7 respectively. Finally, a trans-

formation is made from the even-odd potential representation to the

spin and isospin representation.



The results of the enhancement by aL and pL
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are shown in Table

10 for both shells and L = 0, 2. Table 11 gives the results of Table

10 renormalized to a = 1. fm 1, and in terms of the

(V00' V10' VOV V11)
strengths.

Table 11, which contains the potential strengths determined

from effective matrix elements and by the inclusion of exchange en-

hancement, may now be compared to Tables 5 and 4. Table 5 does

not include exchange enhancement and Table 4 contains strengths de-

termined from direct DWBA calculations. A comparison of Tables 11

and 5 shows that for the V10' V01' and V11 strengths there is

very little L = 0 enhancement due to exchange effects in either the

1p or 2s- ld shell. For these same strengths, there is some L = 2

enhancement of about 20-30%. The new values of these strengths are

still consistent with the experimental results in Table 4. Also in-

creased values of V01 and V11 for L = 2 transitions have

been noted in other studies (4, 6). The most encouraging aspect of the

new values in Table 11 is the increased magnitudes for the values of

V
00

compared to the results in Table 5. In fact, in Table 5, the

values of V 00
for the two shells did not even have a consistent sign.

The new values of V
00

are still small in magnitude compared to

the experimental values, but the inclusion of exchange has produced a

marked improvement in the agreement. Finally, note that for the

L = 2 transitions, V00 is increased far more than the other three
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strengths.

The L = 2 enhancements just mentioned must not be confused

with the usual meaning of L = 2 or quadrupole enhancement. The

normal meaning of L = 2 enhancement originates in the experimen-

tal fact that E2 gamma-transition rates are, normally, many times

greater than would be expected for a single-particle nuclear transi-

tion (40). This fact is explained by a collective model of the nucleus

and is often described in terms of effective charges. Inelastic scat-

tering transitions are described, in the collective model, by the same

rank 2 tensor which describes the E2 transitions. And so, for those

states which have enhanced E2 rates, the inelastic scattering cross-

section is likewise enhanced. The enhancement discussed in the pre-

ceding paragraph, however, is not due to any property of the nucleus,

but is the result of an attempt to obtain correct experimental scatter-

ing cross-sections with the use of a pure direct DWBA theory. The

effect of ignoring the exchange amplitude has been absorbed by a mod-

ification of the potential strengths. This type of L = 2 enhancement

would affect a pure single particle transition since it is not a nuclear

property. At the same time, the effect is not pertinent except in the

context from which it arises, specifically, in a direct inelastic scat-

tering calculation.

A reminder and a comment which have effects on the interpreta-

tion of the strengths in Table 11 are in order. First, the meaning of
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the relative strengths between the 1p and 2s- ld shell is somewhat un-

certain, since this relative strength depends on the nuclear sizes cho-

sen for the two shells. Second, in the calculation of V
00

from the

even and odd strengths, V
00

is quite sensitive to the VTO

strength. A small increase in the magnitude of V TO for V
TO

positive can reduce the magnitude of V
00

a disproportionate

amount (see Appendix).

L = 1 contributions to the total cross-sections were calculated
14and are given in Table 12 for the C (p, n) reactions to the ground and to

the 3. 95 MeV states in N14. For these transitions, I = 1 and

II = 0, 1. A comparison of these values, with the corresponding val-

ues in Table 13 for the L = 0 and 2 contributions, shows that the

L = 1 values are negligible. The L = 1 contributions are pure

exchange, since they are parity forbidden for the direct terms.

Core Polarization

The importance of core-polarization in relation to this work

will now be discussed. Although the inclusion of exchange gave a

marked improvement in the values of V00
determined from effec-

tive matrix elements, those values are still small compared to the

experimental values in Table 4, determined from scattering studies.

The values of V
00

determined from effective matrix elements were

about 20. and 60. MeV for L = 0 and 2 transitions respectively.
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Table 10. Enhancement of effective potentials by aL and pi,.
Initial values are taken from rows 1 and 3 of Table 2.
The even and odd strengths have been multiplied by
aL and pi, respectively for L = 0 and 2. VSO was
set equal to VTO for 2s- ld.

VTE VSE VTO
VSO

W-S L = 0
a = . 7 L = 2

Initial
value -67. 7 -49. 2 25. 5 25. 5

r Initial
1 p ) value

a = . 71 l.. L = 2
W-S L = 0

-85. 1 -61. 8 19. 3 19. 3
-121. 1 -88.0 9. 2 9. 2

-46. 7 -38. 7 14. 0 14. 7
-58. 7 -48. 6 10. 6 11. 1
-83. 5 -69. 2 5. 0 7. 0

Table 11. Values of effective strengths in Table 10 normalized to
a = 1. and transformed to spin-is ospin representation.

L

(2s-ld) 0

2

(1p) 0

2

V00 V10 V01 V11

-17.4 23.3 36.5 29.9
-67. 5 24. 6 43.4 34. 0

-20. 6 16. 6 22. 1 19. 6
-51. 4 18. 8 26. 7 23. 6

Table 12. Total exchange cross sections for L = 1
for the C14(p,n) ground state and 3. 95
MeV transitions. V01 = V11 = 7. MeV.
a = . 7.

g. s. 3. 95 MeV

10
11

.07 .11

.01 .09
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In the low-energy region, 10-20 MeV, the values deduced by Satchler

(35) were about 150-200 MeV and even larger. These values were de-

duced from a range of nuclei that include (p, p') scattering from 018,

Zr 90, Ti 50, and Pb 208. Core-polarization can remove part of this

discrepancy.

Often, in the calculation of transition rates or scattering cross-

sections, it is assumed that only one or a few valence nucleons par-

ticipate in the transition. Core-polarization is a means which impli-

citly includes the effect of other nucleons in the nucleus. These other

nucleons are often referred to as the core. Core-polarization often

takes the form of effective charges (26). If the effect of all nucleons

in a nucleus could be calculated, the idea of core-polarization would

not be needed. Satchler and Love (26) have recently studied the effect

of core-polarization in the determination of effective potentials for in-

elastic scattering. They used, as a measure of the polarization, E2

transition strengths, which are normally much larger than single-

particle transition rates. They find, that if core-polarization is in-

cluded, the V
00 strength may be reduced to 70-100 MeV rather

than 200 MeV. With this reduction, the values of V
00

as deduced

from scattering and from effective matrix elements are in much clos-

er agreement; although, there is still a discrepancy.

If the reduced values of
V00, which do not include core-

polarization, are compared with values of V
00

as deduced from
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effective matrix elements, then, to be consistent, core-polarization

effects should not be included in the effective matrix elements. That

is, suppose effective matrix elements, which do not include any effect

of core-polarization, were used to calculate wave functions from

which E2 rates could be found. Then the calculated E2 rates should

be too small. For the case of the 1p shell and the effective matrix

elements of Cohen and Kurath, the calculated E2 rates are indeed too

small. Effective charges are needed for neutrons and protons of

e = e(1+ p) and en = I3e where p z . 5 (Ref. 30). There is some

justification, then, for the comparison of values of
V00,

as de-

duced from effective matrix elements, with the reduced values of

V
00

found from scattering studies.
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VI. COUPLED CHANNEL CALCULATIONS

To check for additional defects of the reaction theory, in the de-

duction of effective potentials, a coupled-channel calculation has been

made for the A = 14 system. It was shown earlier, for example,

that neglect of exchange had several important effects. DWBA is only

an approximation to the coupled-channel calculation and in some cases

has been shown to give markedly different results (10, 37).

Because the computer calculation is long and expensive, com-

prehensive surveys are impractical. The A = 14 system is suit-

able for a number of reasons. The C 14(p, n) ground state transition

is weak and, just as it was a place to look for tensor force effects, it

is a place where coupling effects might be seen. A reasonable

amount of scattering data is available for this system (4, 41). A set

of wave functions is available which appear to adequately describe the

low-lying levels (39). And finally, the number of functions, that are

necessary to couple, is not large.

Four channels were coupled, the C14 ground state, the N14

ground state and the two lowest excited states in N14 at 2. 31 and 3.95

MeV (see Figure 21). The channel description must include the state

of the projectile which was a proton for the C14 channel and, in order

to conserve charge, a neutron in the N14 channels. All possible cou-

plings were included, and all diagonal coupling terms were described
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by an optical potential (see Appendix). The code to calculate the off-

diagonal elements is described in the Appendix, while the integration

of the coupled equations was done by a code at Oregon State Univer-
4sity. This code includes spin-orbit coupling in the optical potential.

Computer time for this problem is about 20 minutes on the Oregon

State CDC 3300 computer.

The values chosen for
V10,

V
01' and V11 were 7. , 9. 5,

and 8. 0 MeV respectively. These are rounded values obtained from

the structure values in Table 2 for the 1p shell. The strengths were

normalized for a = . 715 fm-1. Also, although the effect of exchange

in a coupled-channel calculation is not understood, the values were

renormalized for L = 0 exchange contributions. This same proce-

dure gives a value for V
00 of -14. MeV. However, on the basis of

other evidence (Table 4), V
00

= -60. MeV was used instead. VT'

taken to be 14. MeV, was picked for the tensor strength since it has

been shown to give a reasonable description for the C14(p, n) ground

state transition (see Table 7 and discussion of the tensor force).

The first column in Table 13 gives the total cross sections

found with the coupled-channel method along with corresponding

DWBA values for the C14(p, n) ground state and 3.95 MeV transitions.

The effect of coupling in these two transitions is negligible, if one

4Written by M. J. Stomp.
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Table 13. Coupled-channel cross sections.
millibarns. a = aT = . 715 fm-1;

All values in
PT = 4. fm-1.

Run 1(a) Run 2(b) DWBA(c)

C14 (reaction) 721.

C14(p, n) (0+ (g. s. ) 12. 8

C14(p, n) (0+--.1+)
(3. 95) 35. 7

N
14(n, n') (1 +J.-0+)

(3.95) 13.9

N14(n, n) (elastic) 828.

- -

12. 2

36. 2

22.0

17.

44.

0

8

(a)
V 00 = -60. V10 = 7. V01 = 9. 5

(b)Same as (a) except V10 = 30.

V11 = 8. VT = 14.

(c)V11 = 7. VT = 14. (Recall that DWBA results are -20%
high for the C14(p, n) (3. 95) transition. )
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remembers that the theoretical DWBA values were about 20% high

(see section on tensor force calculations). A comparison of the angu-

lar distributions for the DWBA and coupled-channel calculations is

given for the two transitions in Figures 18 and 19. Again, the effect

of coupling is negligible. Most of the difference seen, is more likely

due to the inclusion of the spin-orbit potential in the coupled-channel

calculation.

14Any coupling effect on the C(p, n) ground state transition was

expected to result from coupling to the N 14(n, n') 3. 95 MeV transition.

The experimental value for the N 14(p, p') cross section is - 23 mbrns

at 14.1 MeV incident proton energy. In view of this value, the N14 (n, tit )

coupled-channel value, 13.9 mbrns, shown in Table 13 (see Figure 20)

seems small. In order to detect possible effects of this transition on

the C14(p,n) ground state transition, its theoretical value was artifi-

cally boosted by increasing V10 from 7. to 30. MeV. The 3.95

MeV transition in N14 is the only coupling affected by a change of

V10. The value for the N 14(n, n') transition was raised to 22. 0 mbrns.

But there was almost no effect on the C14(p, n) ground state transition.

One must conclude, therefore, that the DWBA calculations made for

the C14(p, n) reactions are about as accurate as the coupled-channel

calculations. Spin-orbit effects for this system appear small, but

non-negligible in agreement with other work (4).
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VII. SUMMARY

Effective potentials have been extracted from two independent

sets of effective matrix elements, one set for the 1p shell (11), and

the other for the 2s-ld shell (5). These potentials were then com-

pared to values obtained by DWBA calculations from various scatter-

ing data. Several factors which could alter the DWBA results, and

thus affect the comparison, were noted or investigated. These were

exchange effects, core-polarization, and channel-coupling.

For both the 1p and 2s-ld shells, the central potentials, which

were well determined, were found to have strong attractive even

strengths and weak repulsive odd strengths (see Table 2). The com-

parison of the values obtained from individual shells was very reason-

able, although a precise comparison was not necessarily meaningful.

Unlike the central potentials, the tensor strength did not appear well-

determined, and its values were not consistent for the two shells.

These results are consistent with other determinations of the tensor

strength however (39).

The potential strengths determined from effective matrix ele-

ments were found to be in good agreement with the spin and isospin-

flip strengths, V10, V01, and V11 determined from DWBA calcu-

lations. They did not, however, give a reasonable value for the pure

Wigner strength, V00. The inclusion of exchange in DWBA calcu-

lations for the 018(p, n) and C14(p, n) reactions was used to define new
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effective potentials for DWBA without exchange. These new potentials

showed a dramatic improvement in the value obtained for V
00

com-

pared to the values obtained from scattering without a significant

change in the agreement of the three other central strengths. This

effect was L dependent, and the values predicated for V
00

were

greater in magnitude for L = 2 transitions than for L = 0 transi-

tions. Core-polarization was also noted to give some improvement

in the value for Voo.

The procedure which obtains strengths from effective matrix

elements gives an unambiguous determination of the signs of the

strengths which are needed in coupled-channel calculations.

Coupled-channel calculations were made for the A = 14 sys-

tem. There were no noticeable effects due to coupling on either the

C14(p, n) ground state transition or the transition to the 3. 95 MeV ex-

cited state in N14.

The tensor force was used in a survey of DWBA calculations.

The effect in most reactions was not significant. A big improvement

was noted in the results for the C14 (p, n) ground state and N 14(p, p')

2. 31 MeV transitions. The C14(He3, t) results remained in serious

disagreement with experiment.
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Optical Model Parameters

The general form of the optical potential used in this work is,

dfs
2 1

dfo
V( r) = -V f (r) - iW f (r) - i4as Ws(- dr ) - V (.e o-)(m c) (--r dr )o o v v so

Tr

where

fx(r) = [1+e

r-Rx
ax 1-1

for x = o, v, or s. All strengths are positive, and m
Tr

pion rest mass.

(A. 1)

is the

For all DWBA calculations and the coupled channel calculation,

with the exception of the N 14(p, p') and C14(He
3, t) reactions,

R
o

= R
s

= 1. 25 x A1/3, a
o

= . 65 and as = . 47 fm. In addition,

Wv = 0,

except for the coupled channel calculation Vso = 0 MeV. The values

of the other parameters used are displayed in Table 14. Strengths for

the real and imaginary parts of the potential are given for incident and

final channels, along with the incident proton energy, the Q-value,

and the final state energy for each reaction. For the most part, the

parameters were obtained from Reference (4) and private communica-

tion. 5 Certain compromises were made however. For example, for

the C14 reactions, an average Q-value was used for both the ground

state and 3. 95 MeV state transitions in order that a single set of

5 Private communication with C. Wong.



Table 14. Optical model parameters (see Appendix for additional parameters). All values in
MeV.

Reaction, transition Ep Q V o(i) V
o

(f) Ws (i) Ws (f)

C
14(p, n) (0+-1+) (g. s. ) 13. 7 -2 46. 0 50. 6 9. 0 6. 26

C
14(p, n) (0+-.1+) (3. 95) 13. 7 -2 46. 0 50. 6 9. 0 6. 26

N
14 (n, n') (1 +--.0+) (2. 31) 24. 5 -2. 31 51.9 51.9 5.95 5. 95

17N15(p, n) (7 - (anal. ) 18.8 -3. 54 46.0 50. 0 9. 5 7. 5

1- 3
N

15(p, n) (-27-'.
2

(6. 15) 18. 8 -9. 65 46. 0 50. 0 9. 5 7. 5

5- 57017(p, n) (7 - (anal. ) 13. 5 -3. 55 52.0 50.0 6. 25 4. 16

018(p, n) (0 +-1 +) (g. s. ) 11. 7 -2. 45 52. 0 50. 5 9. 0 5. 0

Exchange calc.
C

14(p, n) (0+_1+) (g. s) 13. 7 - . 628 46. 0 50. 6 12. 42 8. 66

C
14(p, n) (0+-1+)

(3. 95) 13. 7 -4. 58 46. 0 50. 6 12. 42 8. 66

018(p, n) (0+_..1+) (g. s. ) 11.7 -2. 45 52. 0 50. 5 12. 46 6. 92

Coupled channel calc.

Initial channel is C14 + p 13. 7 a 47. 0 47. 0 7. 0 7. 0

aQ-values used were -. 628,
in N14.

-2. 94, and -4. 57 MeV for ground and first and second excited states
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distorted waves could be used for both transitions.

For the coupled-channel calculation, the spin-orbit potential was

included with a strength Vso = 6 MeV. A single average optical po-

tential was used in all channels (7, 36).

For the N14(p, p) reaction, the parameters used were derived

from values given in private communication. 6 The radii and diffuse-

ness parameters were, ao = . 57, as = . 61, Ro = 2. 90, and

Rs = 2. 92 fm for both incident and final channels.

For the C14(He
3, t) calculation, volume absorption was used,

rather than surface absorption, to conform with calculations by Ball

(6). For the incident channel, Wv = 12. 6 MeV, Ro = 2. 94,

Rv = 4. 39, a
o

= . 569, and a = . 795 fm. For the final channel,
v

Wv = 11. 37 MeV, Ro = 2. 89 fm, Rv = 4. 29 fm, a
o

= . 565 fm, and

av = . 811 fm.

Shell-Model Wave Functions and Bound State Parameters

For all bound states calculated in a Woods-Saxon potential, the

diffuseness parameter was, a = . 65 fm, and the radii were

R = 1. 25 x A1/3 fm. The binding energy, E, the potential depth,

V, and the spin-orbit strength, CLs, are given in Table 15. The

9. MeV binding of the 1p 1/2 state is an average of the neutron separa-

tion energies in C14 and N14, while the 6 MeV difference between the
6Private communication from S. M. Austin.
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1p 1/2 and 1p 3/2 states is approximately the splitting seen in N15 and

015(41). The binding energies given for the ld 5/2 and the 2s1/
2

states are found from the neutron separation energies of 017 and the

first excited 1/2+ state in 017, respectively (1).

In all cases, except for the A = 14 nuclei, the nucleon states

were assumed to be pure jj-coupled shell-model states. For the

A = 14 system, the intermediate-coupling wave functions of Visscher

and Ferrell were used (39). The reasons for not using configuration

mixed wave functions for the 018(p, n) reaction have been discussed

in Reference 4.

Range and Shape Effects of Potentials

Equivalent Gaussian and Yukawa potentials may be found by
2

equating two-body matrix elements for V (r) = V e
-ar

-(pr) and

V (r) = V e
. Two particle harmonic-oscillator wave functions

y y ar
may be recoupled in relative co-ordinates so that two-body matrix

elements may be expressed as one-body matrix elements.

where,

Kj3j4JT i V I j1j2JT)- (n° IV' n.e) (A. 2)

nn'

I = (nt it I V I n.l2)= R Vr 2dr.
(A.3)
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For short range (large a ),

I z Srl+VV(ar)r2dr

1
(A. 4)

a

The two-body matrix element will normally be proportional to 1

a3

for short range, since those terms with the smallest .e and it

will contribute. For .0 = = 0, equate Gaussian and Yukawa po-

tentials (22).

-(13r)
2 -ar

V e r2dr = r 2dr.
g y ar (A. 5)

This equality implies V /V = 2. 25 for a = p.
g Y

The range and form dependence has been noted for some special

cases using numerical methods. Two matrix elements have been

looked at in detail.

M2S =

MDS =

[(192s' 92s1J=01V I EC92s' 2s1J=0)

([92s' 92s1J=0 I V I [91d' 91c11,1=0)

(A. 6)

(A. 7)

Define n by, M = Va-n where V and a-1 are the strength

and range used in computing the matrix element M. M is M2S

or MDS. For a varying from . 5 to 1. 5 fm-1, n was found to
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vary from 2. 1 to 2. 6 for M2S and from 1. 7 to 2. 5 for MDS.

This result is valid for both Gaussian and Yukawa potentials, and

compares with a short range value of 3 for n. For equal values

of the inverse range a, the ratio, V
g
/V

Y
, varied from 1. 7 to

1. 8 for M2S and from 1. 4 to 1. 6 for MDS. Recall that the short

range value of this ratio is 2. 5.

To obtain a more complete feeling for these effects, n was

also determined for fits to the 15 effective matrix elements (refer to

Chapter IV) in the 1p shell. A central Yukawa force with arbitrary

exchange and a tensor force were assumed. There are four central

exchange terms, triplet-even, singlet-even, triplet-odd, and singlet-

odd. Each potential strength was then determined for two values of

the inverse central range, a = . 578 and 2. fm 1. A parameter,

n., was determined from these strengths for each exchange term in
n.

athepotential with the assumption that V. . The four values of

ni were nTE n
= 2. 38, nsE = 2. 23, 3. 21, and nso = 4. 25.TO

The larger values of n, for the odd parts of the potential show thati

the matrix elements fall off faster with decreasing range for odd

states. This result is expected, since the probability of finding two

particles close together for an odd state is smaller than for an even

state. For even and odd forces, average values for n. of nE 2. 3

and of n0 3. 7 are convenient values for use in comparisons of

calculations which use different ranges.
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A similar procedure has been applied to DWBA amplitudes, both

direct and exchange. Amplitudes were computed for three inverse

ranges, a = . 5, . 7, and 3. fm-1 for a simple Yukawa force.

This was done for the L = 2 ground state transition, and the L = 0

and L = 2 3. 95 MeV transitions in the C 14
(p , n) reactions. The

parameter n was determined from A a -n where A is the

DWBA amplitude. One value of n was computed for the inverse

range a = . 5 to . 7 fm -1 using the amplitudes computed from these

two inverse ranges. A second value for n was computed for the in-

verse range

16.

a = . 7 to 3. fm - 1. The results are tabulated in Table

Two things should be noted for the direct values. First,

increases toward the short-range value of 3 as a increases; second,

the value of n is smaller for L = 2 than for L = 0. For the

exchange amplitudes, n behaves in a nearly identical fashion; al-

though, the magnitudes are somewhat smaller for exchange.

Hole Particle Transformations

In the use of configuration mixed wave functions and in the de-

termination of the signs of potential strengths and matrix elements,

it is important to obtain correct phase relationships in the calcula-

tions (32). This problem is more difficult when, as in this work,

holes and particles appear. The problem will be discussed first for
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Table 15. Single-particle bound state parameters
(see Appendix for additional parameters).
All values in Me V.

State V E CLS(a)

1p 1/2 48,1 9.00 .18

1p 3/2 49.0 15.00 .18

id 5/2 48.0 4.15 .10

2s 1/2 48.0 3.28 .10

CS
(a)The usual spin-orbit strength is V

SO 2
L

= V ( ).

Table 16. Range dependence of direct and exchange amplitudes.

ni is found from A a-ni where A is the amplitude.
i = 1,2 for two ranges.

Direct ExchangeTransitions in

C14(P, n)
g, s.
L=2

3.9 5
L=0

3.95
L=2

g. s.
L=2

3.95
L=0

3.95
L=2

n1, for a = . 5 to . 7

n2, for a = .7 to 3.

1.88

2.31

2.61

2.62

1.96

2.24

1.69

2.25

2. 38

2.46

1.76

2.25
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scattering calculations and second in relation to two-body matrix ele-

ments.

In nucleon-nucleus scattering, the projectile is always a particle

while the nucleus may be described in terms of holes or particles.

For this problem, attention may be confined to the spectroscopic am-

plitude (see Equation (3. 26)):

'I-n'Tny II AIT (j1 2)11 'TnTnS(In Int I; TnTntT; j1j2) _
IT

where

(A. 8)

1 1
1/2-al

C(jA (j
1
i 2) = / C(-2 2 T; a

1
-a

2
-p)(-)

1
j

2
I; m

1
-m

2
-K)

a
1

Cl
2

m 1m2
i _m

1X (-)"1 at a.j2m2a2 j
1m1

al (A. 9)

To find the spectroscopic factor for holes, first commute the a's

by use of the anticommutation relation

rat. , a. =6. 6 6 .

L
j2m2a2

32j1 m2m1 a2a1

Now define the hole-creation and hole-destruction operators

and

b
f.

= (- )
j+m

(- )
1 / 2+ aa.

jma j-m-a

b. = (b. )t.jma jrna,

With these definitions, it follows that

(A. 10)

(A. 11)

(A. 12)



A
IK Tp

(j
1

j 2) = 47' j lj 25 T 0
6

TO
5p

0
6

KO

jl+j2-I- T
+ (-) AIKTp(i2 1).
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(A. 13)

h
AIKTp

is defined by exactly the same relation as for A IKTp ex-

cept that particle operators at and a are replaced by the hole

operators bt and b. Now take reduced matrix elements of both

sides of Equation (A. 13) to obtain

ji+j2-I-T
S (InIn I; Tn T; j

1
j 2) = (- ) S (InIn'I; TnTn' T; j2 j

1)
(A. 14)

for any transition between distinct initial and final states where

Sh(InInTI, TnTn,T; jij2) - n' T n' HAIT (J1 2)1PnTn)
(A. 15)

One can find spectroscopic factors for hole-states, then, sim-

ply by treating the holes as particles, reversing j1 and j2, and

multiplying by the appropriate phase factor.

In order to compare two-body matrix elements deduced from

hole-states with those found from particle states, one needs to know

the connection between particle and hole interactions. This problem

is discussed by Visscher and Ferrel (39). If V(1, 2) is a two-body

interaction for particles in co-ordinates 1 and 2, they show that

an equivalent hole interaction is



V
h(1,

2) = o-y1Cry2 TylTy2 V Ty2o-y1Ty2
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(A. 16)

where o- and T . are the y components of the Pauli spin ma-
y1

trices for spin and isospin respectively which act on coordinate i.

For Hermitian, time-reversal invariant interactions, such as, 1,

cr
1

cr
2'

T1 T2' T and 512' Vh = V.

In this work, Equation (A. 16) is not strictly true. If a two-

body matrix is calculated between two two-particle states with orbital

angular momentum 11,
2

and 13' 14' then the particle and

hole-matrix elements will differ by an additional factor of

(-)
/ 1+12+i 3

+i
4 This factor arises because Yfm's have been used

in the description of single particle states, rather than the time-

reversal invariant functions if Y
.em

. However, all matrix elements

in this work have been calculated entirely in the 1p or 2s-ld shell,
/1 +12 +.e 3+14and (-) = +1.

Potential Transformations

In this work the two-body potential is written in two different

forms:

and

V = V
00

+V 10
IT

1
0"

2
+ (V +V o- )7 (A. 17)

01 11 1 2 1 2

V = V TEPTE VSEPSE VTOPT0+ S PSO. (A. 18)



The strengths in these two representations will now be related.

and

Projectors onto singlet and triplet spin states are given by

o- 1PO = 4 (1-o-1 cr2)

P
1
Cr

4
1= (3+-;

1
-Jr2)*
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(A. 19)

(A. 20)

PO
1

and P T are defined in the same way for isospin space. PE

and Pr
0

will denote even and odd space projectors. Note that for

antisymmetric states

so that

r o- TPE = P P0'

PTE
r perpT 1

1 E 1 0 16 `-A-cil
Cr2)(1- T]. T2).

(A. 21)

(A. 22)

and P
SO may be re-expressed in a similar fashion.PSE' PTO'

These relations and Equation (A. 18) allow one to write

V =
16

{(3V TE +3V
SE+9VTO+VSO)+ TE-3VSE

+3V
TO -V

T2+ (. )( T
1

T 2)( o-1 62)}. (A. 23)

A comparison of Equations (A. 17) and (A. 23) gives the desired rela-

tion, most easily expressed in matrix form:



V
00 3 3 9 1 VTE

V10
1

I -3 3 -1 VSE
16

AT
01

-3 1 3 -1 VTO

1/11 -1 -1 1 1 V
SO

Also, the inverse matrix is

126

(A. 24)

Note that these relations are valid only in the space of totally anti-

symmetric functions.

Code for Particle Model Coupling Matrix Elements

The following equation has been derived for the coupling matrix

elements (see Chapter III and in particular Equation (3. 19)):

C(II'L, n.n
f
)X(II'L, n.nf )Vnfni =

II'L
(A. 25)

where I, I', and L designate the total, spin and orbital angular

momentum transfers, and ni and of denote initial and final chan-

nels with their associated quantum numbers. The code to be
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described calculates the X's for configuration-mixed shell model

wave functions for an effective two-body potential of the form

-..
V(r) = [(V00+V1 ocri o-2)+ (Voi+Viicri cr2)T1 Tz]vc(r)

+ V
T

S
12

F
1 2

V
12

(r). (A. 26)

V 00' V10, V
01'

V11' and VT are the four central and one

tensor strengths. The radial parts are

and

where

v
C

(r) -
-ar

e

ar

V
12

(r) = E(a
T ar) - ( )3E(P

T
r)

1 1 1 eE(ar) =( 2+ (ar) +
3 ar(ar)

-ar

(A. 27)

(A. 28)

(A. 29)

The bound states may be calculated in a harmonic-oscillator or

Woods -Saxon potential.

For convenience in coding, the following expressions have been

used for X:

for non-definite isospin,

X = SS'd z

ili2
ala2
T'

(A. 30)
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T'-p
n4 (a a Tip'); (A. 31)

for definite isospin

X =

where

SS'T,()z (A. 32)

1 2

T' -p
C(TIT,V F -Pn

T-P
X C(TnTritT; Pn-Pncp )(-) n n 4(Tp; T'p') (A. 33)

The quantities S and S', the nuclear and projectile spectroscopic

factors, and 4 , an isospin factor, have been defined in Chapter

III. z is the sum of central and tensor form-factors also defined

in Chapter III:

with

and

z = zC zT

i2.
. 1zc = (IPL; 3 3 ) g1 2 L

zT = VT /DT (II'LX; 31 j
2
)gL1 2

.

x

The D's are defined by

(A. 34)

(A. 35)

(A. 36)
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with

Dc = (-)ICOM(L, L)
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(A. 37)

7
D

T
23

= [2,1 (- )
L

KX. II Y
2

II L) W (11LX; 2I)8
I11

] COM (L, X)
(A. 38)

COM(L, X) = (-87)

/.\ A AA
1
j

2
II'

.e211Y.k11/1)

7j1
1

2
/1

1

2 2
. (A. 38)

\I It X

The g's are closely related to the g's in Chapter III:

and

gili2 = -(-) L
(47)g

1
i2

1
i2 ( -4w) 1

i2
g LX (k111(2111-') gL

(A. 40)

(A. 41)

A list of the cards and variables needed to operate the program

is given below. The appropriate Fortran format is given at the right.

It is convenient to display the data in five parts.



Part 1.

S TP PP (4F10)

1 I
1

T
1

P1 7
1

2 12 T2 P2 7
2

il, 9X 5F10)

n In Tn Pn Tr
n

Blank

Part 2.

ISPIN IPINDX ITNSR (3i5)

SP n
111

j
1
a1 n212j2a2 E

1
E

2
(10X, 4F5, 10X, 4F5, 2F10)

I I (6X, 12)

S Si S2 nf' ni T

S

S

I

S

S

SP

Blank
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(10X, F10, 5X, F10, 5X, il, lx, il,

7X, il)

Part 3.

V0 VCOUL C
LS

a R AM (6F10)

NPT NCONTRL H (215, F10)
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ac aT PT

Part 4.

(3F10)

V
00

V
10

V
01

V
11

V
T

(5F10)

Part 5.

N1 N2 N3 KG KX KTNSR (6i10)

End of Data

Part 1. The first card contains the projectile spin, S, isospin,

TP, and z-component of isospin PP.

The following cards, terminated by a blank card, contain infor-

mation for the various channel states:

n = channel number.

In = spin of nucleus.

Tn, Pn = nuclear isospin and z-component.

Tr
n

= parity.

The value of Tr is is ignored. The values of Tn and Pn

are ignored if target isospin is not specified to be a good quantum

number (see below).

Part 2. The first card contains three controls:

1. ISPIN =
(1 target isospin is definite.

2 non-definite.



.1
X's are computed for both I' = 0, 1.

2. IPINDX = 2 only I' = 0 terms calculated.

3 only I' = 1 terms calculated.

3. ITNSR =

132

0 does not calculate tensor coefficients, DT
to save time.

not 0 calculation normal.

The remaining cards in part 2. , which are terminated by a blank

card, give spectroscopic information which describes the coupling.

Each card must begin with the letters SP, I, or S.

The SP card designates a single-particle transition,

(n
111

j 1a1 ) (n 2i 2
j

2a 2):

n
1 1

j
1
al = The radial quantum number, the orbital angular momen-

tum, the total angular momentum, and the z-component

of isospin for the initial single-particle states,

n2/2 j
2
a

2
= The corresponding final state quantum numbers.

a is . 5 or -. 5 for neutrons or protons respectively. The num-

bers al and a2 are ignored if the nuclear isospin has been cho-

sen as definite. E1 and E2, both positive, are the single-

particle binding energies.

Each SP card must be followed by an I card specifying the

total angular momentum transfer. Each I card must be followed

by one or more S cards which give all spectroscopic factors for the
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single-particle transition and angular-momentum transfer just speci-

fied on the SP and I cards.

51 is the value of the spectroscopic factor.

nf' ni are integers which specify the final and initial channels.

Important, of < ni. If this requirement is not met, the X's

will not be stored properly.

(T = 0, 1) is the nuclear isospin transfer. This parameter is ignored

if the nuclear isospin was designated as non-definite.

Often for a given single-particle transition, specified by

(nil
1
j

1 a 1) (n
2

12 j
2a 2), it is troublesome to require a separate

SP card for both the (il j
1)

(12 j
2)

and the (i
2j 2) j

1)

transitions. Under the special circumstances given below. S2 may

specify the spectroscopic factor which corresponds to the inverse

single-particle transition (/ 2j2) (yi):
1. for definite nuclear isospin, n1 = n2 or

2. for non-definite isospin, both n1 = n2 and =a. a2.
1 2

These requirements insure that

j1j2a1a2 231 a 1
a 2

g LX
=

°LX.

In any other circumstances the value of 52 is ignored.

(A. 42)
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Part 3. These cards supply parameters for the bound state wave

functions and values for the ranges of the two-body force.

The parameters on the first card follow in order:

V
0

= potential depth for Woods-Saxon potential well.

V coul = coulomb strength (not currently implemented)

C LS = spin-orbit strength.

a = diffuseness parameter.

R = well radius (if R is 0, a harmonic oscillator poten-

tial is assumed).

AM = reduced mass of bound particle.

All the above values are positives. Units are in MeV and Fermis.

The second card contains the number of mesh points to be calculated,

NPT; a control parameter, NCONTRL; and the mesh size, H in Fer-

mis. NCONTRL controls the printing of the bound state wave func-

tions and the type of energy convergence:

NCONTRL =

NCONTRL =

feven bound state functions are printed.

odd no print.

0 The binding energy E is fixed, and V0 is changed

to provide an eigenfunction with energy E. The

value of V
0

read in is used as a first guess for

the potential.
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The well depth Vo is fixed, and the binding energy

is changed. The value of E read in is used as a

first guess for the binding energy.

The third card contains the central range a and the two tensor

ranges a
T

and 13T. A check is made on aT. If a
T

is zero
1the calculation of tensor form-factors, gLX , is bypassed.

Part 4. A single card specifies the four central and one tensor

strength in order:

V00 V10 V01 V11 VT.

Part 5. A single card controls the printing of the g's and X's.

These functions are output for the mesh points from n1

to n2 in steps of n3.

ili2,If KG 0, then the
gLX

are printed.

If KX # 0, then the X's are printed.
ii

If KTNSR 0, then tensor parts of g
LX

i2
are printed

as well as central parts.

Two control routines KRNLMAIN and XMAIN operate the pro-

gram. The g LX
's are computed in KRNLMAIN and stored on unit

6. From there XMAIN uses them, along with the potential strengths

in part 4 of the data, to compute X's, which are stored on unit 7.
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Part 5 of the data is used in XMAIN for output control. If one wants

to recompute the X's where only the potential strengths have been

changed, all that is necessary is to add new data for parts 4 and 5 and
1rerun XMAIN. The gLX.

2 's do not have to be recomputed. A num-

ber of coefficients and tables which are also passed from KRNLMAIN

to XMAIN are saved on unit 3 and are also used again if only XMAIN

is rerun.

KRNLMAIN uses, directly or indirectly, the following subrou-

tines: INPUT, TABLE, DEE GEE, GC BSWF2, BESSL, and a pack-

age of coupling subroutines which include, COFCG COF9J,COFW, and

BICO. XMAIN uses two subroutines: EX and OUTPUT. A brief de-

scription of these routines will now be given in the order they are

listed.

INPUT: This routine inputs and stores part 1 of the data.

TABLE: The most important function of this routine is to provide

control. It creates tables which are passed to GEE, GC, EX, and,

OUTPUT to provide efficient sequencing for these routines. For ex-
j1ample, each gLxi2 is computed only once regardless of how many

coupling matrix elements it may enter.

TABLE also inputs the spectroscopic information in part 2 of

the data. This data not only provides numerical values, but its order

also provides a control for the program.
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Values for I are input, and values for I' are specified by

TABLE according to the value of IPINDX. For each I and I' all

values of L satisfying the triangle relationship A(II'L) are corn-
+112+Lputed. Those that do not satisfy (-) = +1. are discarded.

Each distinct set of II'L values is entered in a table, IT, which

is later stored along with the X on unit 7. At the same time

TABLE also stores a table, NNA, which identifies and addresses

the X's stored on unit 7.

All values of SS'9 (see Equations A. 30-A. 33) that occur are

computed and stored for later use by the EX routine. S'(I', T')

(Equation 3. 25 ) is set equal to +1. for all arguments. A simple

modification would allow other values since the array already exists.

Finally TABLE computes and stores the D's (see Equations

(A. 35-A. 38)) for use in the EX routine.

DEE: DEE calculates the D's for TABLE.

GEE: GEE, with the aid of GC, calculates the functions
g

i1i2
LX

(see Equations (A. 40, A. 41)) and stores them on unit 6. GEE also

reads part 3 of the data and calculates the bound state wave functions

by use of BSWF2. To make space for the wave functions while GEE

is operating, KRNLMAIN temporarily saves a large block of tables on

unit 3. GEE also uses unit 5 for scratch.
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GC: The numerical integrations involved in the calculations are done

by the GC using Simpson's rule. GC also calls BESSL to compute the

necessary spherical Bessel and Hankel functions.

BSWF2: Bound state solutions are found for the differential equation

where

and

112 d2
2

2 /(/-1-1)[(-- + )+V(r)- E]u(r) = 02m dr

Cl" 2 1 dF(r)V = -V0[F(r)-CLS(---
Tr r dr

(A. 43)

(A. 44)

r-R()
F(r) = [1+e a ]-. (A. 45)

X is the pion compton-wave length. If R = 0, however, the rou-e

tine uses a harmonic-oscillator potential:

(i)2].V = -V0[1- (A. 46)

2 It 2tThe harmonic oscillator strength, w , is given by = Va 2m o'
The routine first integrates inward until the function turns over.

The function is then integrated outward and matched to the results of

the inward integration. Either V
o

or E is adjusted until the

match provides a smooth curve. E is altered if a control parameter

NCONTRL is negative. Otherwise Vo is altered. If on the inward

integration, the function fails to turn over, NCONTRL is set to 10 and
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BSWF2 returns to the calling program. Also, if a smooth match is

not made after ten tries, NCONTRL is set to 20 and BSWF2 returns to

the calling program. After the solution is found, the number of nodes

is counted. If the number does not agree with the input data the fol-

lowing message is printed: wrong number of nodes, node = n, where

n is the number counted.

BESSL: The routine calculates the Bessel and Frankel functions of a

complex argument, if j
L

(ix) and (1 )(ix). Higher L values

are formed by upward recurrence and results lose significance as L

increases, especially for small arguments, x.

COFCG, COF9J, COFW, BICO: The first three calculate Clebsch-

Gordan, 9j, and Racah coefficients respectively. BICO is a binomial

coefficient subroutine.

EX: First the potential strengths in part 4 of the data are read.

These strengths are combined with the D coefficients and the

SS'c( factors previously calculated by TABLE. These combined fac-

tors are multiplied by the functions j1i2
gLX

stored on unit 6 and the

appropriate sums are done (see Equations (A. 30-A. 36)). The final

results, denoted by X are stored on unit 7.

OUTPUT: This routine can print the X and g functions directly

from unit 7. If only the X's are to be printed, the routine needs no
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other information except that on unit 7. In order to print the g's,

certain information in tables is required so that the routine must oper-

ate with the rest of the program.


