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 Exposure to urban outdoor air pollution is ubiquitous and low birth weight represents an 

important health disparity in the United States. While previous research suggests that exposure to 

outdoor air pollutants are associated with term low birth weight, few studies have evaluated the 

effects of multipollutant outdoor air exposures or whether there is a spatial patterning to such 

associations. In addition, populations living in neighborhoods with poor air quality and high 

neighborhood deprivation may be more likely to reside in neighborhoods that are also 

characterized by adverse food environments.  

 The first study investigated the overall association between fine particulate matter (PM2.5) 

air pollution with term low birth weight (TLBW) in urban Los Angeles County. This first study 

also applies spatial multilevel modeling to explore spatial patterns in the exposure response 

relationship between PM2.5 and TLBW. The results from the first study indicates that higher 

exposure to PM2.5 is associated with a higher odds of TLBW and that the exposure response 

exhibits spatial dependence.  

 The second study examines joint exposure to multiple outdoor air pollutants in Los 

Angeles County, including PM2.5, nitrogen dioxide [NO2], and nitrogen oxide [NO]. The second 

study showed that multipollutant profiles with elevated exposure to NO2, NO, and PM2.5 are 

associated with increased log odds of TLBW, and that multipollutant profiles characteristic of 

primary traffic emissions impart the greatest increased odds of TLBW. 

 In the third study I examine the association between the neighborhood food environment 

and TLBW, and explore whether this relationship may be modified by air pollution exposure. In 



 

 

 

 

this study I also explore how the food environment clusters with other area-level TLBW risk 

factors, including income and greenness, and how exposure profiles for these area-level factors 

combine to impart risk of TLBW. This study found a higher odds of TLBW among mothers who 

resided in neighborhoods with reduced availability of more healthy food stores and increased 

availability of less healthy food stores. This study did not find that the food environment works 

as an effect modifier of PM2.5, however, the data provided evidence to suggest that the food 

environment may influence the magnitude of the association between PM2.5 and TLBW (but not 

the strength of the relationship). Furthermore, I identify neighborhoods with clustering of poor 

food environments, low socioeconomic status, and low greenness, which are associated with an 

elevated prevalence of TLBW.  
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Chapter 1 - INTRODUCTION 

Environmental Health and Joint Assessment of Risk 

 There is increased need in the field of environmental health to evaluate health risks as 

they relate to cumulative (or aggregate) exposures to multiple different environmental stressors 

(National Research Council (U.S.) et al., 2009). In the US EPA's 2003 report entitled, 

"Framework for Cumulative Risk Assessment", cumulative risk is defined as "the combined risk 

from aggregate exposures to multiple agents or stressors." In order to appropriately apply this 

cumulative risk framework the US EPA stresses that "multiple agents or stressors" must be 

assessed and that "agents or stressors" are not merely chemical but can include physical, 

biological and/or an activity (e.g. food consumption). Furthermore, such a cumulative risk 

framework emphasizes that risks due to agents or stressors be combined, and that the combined 

risks should not merely be added together but also assessed jointly. The US EPA also states that 

"an assessment that covers a number of chemicals or other stressors but that merely lists each 

chemical with a corresponding risk without consideration of the other chemicals present is not an 

assessment of cumulative risk" (US EPA, 2003). The proposed study is motivated by this 

cumulative risk framework described by the US EPA and focuses on the assessment of joint 

exposures to multiple environmental chemical agents (i.e. air pollutants) and stressors (i.e. the 

food environment and other neighborhood-level factors) and their associations with population 

level effects on TLBW, an important health disparity. 

 Increasing evidence indicates the importance of place in terms of the combined exposures 

related to neighborhood stressors such as the built environment and exposure to environmental 

pollutants, which have negative consequences for population health and contribute to health 

disparities. However, the decisive combinations of place-based environmental exposures along 
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with other correlated neighborhood stressors are not well characterized. For instance, there are 

many neighborhoods in the United States where disadvantaged racial groups and low income 

populations lack ready access to nutritious and affordable foods, and the negative impacts on 

population health are becoming more apparent as research in this area evolves. Despite the 

evolving literature regarding the relationship between the food environment and human health 

outcomes, very few studies have evaluated the relationship between the food environment on 

birth outcomes. Additionally, it has been hypothesized that populations living in poor food 

environments may live in neighborhoods simultaneously characterized by poor outdoor air 

quality and socioeconomic disadvantage, yet little research has been conducted to explicitly 

investigate whether this is true. Moreover, there is a need to better understand exposure to 

mixtures of air pollutants, especially the spatial patterns of multipollutant exposures and their 

effects on health. The environmental health studies in my dissertation seeks to help fill these 

gaps in knowledge regarding the consequences of multiple and joint exposures and also attempts 

to advance the capacity of public health to apply spatial analysis methods to address such 

critically important environmental health concerns. 

Prenatal Exposures and Birth Outcomes 

 Prenatal nutritional and environmental toxin exposures occur at a sensitive developmental 

stage of life whereby high levels of cell proliferation, organ development, and changes in fetal 

metabolism take place. Such in utero exposures have been linked with prenatal and postnatal 

health outcomes, including spontaneous abortion, infant mortality, preterm birth, and low birth 

weight (among several others) (Ritz and Wilhelm, 2008a; Selevan et al., 2000). The link between 

maternal nutrition and adverse birth outcomes is complex, however, since the effects of nutrition 

during pregnancy may be influenced by a variety of factors, from socioeconomic status (SES), 

cultural and environmental factors, baseline maternal nutritional status, to multiple nutrient 

deficiencies. For instance, maternal nutrient effects on birth outcomes have generally been 
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shown to be most pronounced among lower SES populations, particularly in low 

income/developing nations. Importantly though, it is not just in lower income developing 

countries where we see micronutrient deficiencies, mothers in the US are shown to suffer from 

micronutrient deficiencies that are important for fetal growth and development (Allen, 2005). 

Therefore, to the greatest extent feasible studies should take these other mediating or 

confounding factors into account, given such complexities in the association between maternal 

nutrient intake and adverse birth outcomes (Abu-Saad and Fraser, 2010). Compared to maternal 

nutrition and birth outcomes research, the link between prenatal air pollution exposures with 

adverse birth outcomes has been made relatively recently (Abu-Saad and Fraser, 2010; Ritz and 

Wilhelm, 2008a). By the mid-1990's researchers initiated investigations into exposure to criteria 

air pollutants and associations with birth outcomes and found significant association for infant 

mortality, preterm birth and low birth weight (Ritz and Wilhelm, 2008a). Similar to maternal 

nutrition, the associations of outdoor air pollution on adverse birth outcomes is complex, with 

area-level factors such as SES (Ponce, 2005a; Zeka et al., 2008), proximity to roadways 

(Dadvand et al., 2014; Laurent et al., 2014a; Zeka et al., 2008), and the type of air pollutant, 

shown to influence outdoor air pollution effects on birth outcomes (Bell et al., 2012; Ebisu and 

Bell, 2012a; Laurent et al., 2014a; Ritz and Wilhelm, 2008a). Given the complex nature in the 

relationships between area-level factors and exposure to outdoor air pollution, and the potential 

influence on related birth outcome risks, studies should examine how this interplay of place or 

joint exposures (chemical or non-chemical) contribute to disparities (geographic or otherwise) in 

birth outcomes (Morello-Frosch and Shenassa, 2006).  

Low Birth Weight 

 LBW is typically defined as a birth weight below 2,500 grams (g) with full term (>=37 

weeks gestation) LBW infants (TLBW) typically considered to be growth restricted (Ritz and 

Wilhelm, 2008a). Annually in the United States there are more than 300,000 low birth weight 

(LBW) infants (or ~8% of all births)(World Health Organization and UNICEF, 2004). LBW 

represents an important source of racial/ethnic and socioeconomic health disparities in the U.S 

(Foster et al., 2000) and is a major secondary cause of infant mortality (Abu-Saad and Fraser, 

2010). LBW is also particularly important from a public health standpoint due to its role in the 

fetal origins of disease hypothesis (Barker, 1995; Eriksson, 2005). For instance, LBW tied to 
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undernutrition is considered a risk factor for a variety of diseases later on in childhood and into 

adulthood including diabetes and cardiovascular diseases (Barker et al., 2002), child and adult 

pulmonary disorders (den Dekker et al., 2015; Lawlor et al., 2005), and childhood neurologic 

morbidities (Tandon et al., 2000). Furthermore, LBW infants impose is a significant financial 

burden in terms of healthcare costs in the US. A study from California indicates that the 

healthcare costs attributable to lower birth weight is considerable, with neonatal care costs 

increasing exponentially with lower birth weights (Gilbert et al., 2003).  

 From a biologic standpoint, the rapid growth of a fetus begins from the period 

approximately nine weeks post-conception and continues until birth, with various tissue/organ 

growth that occur at different critical phases of gestation. Fetal growth is dependent on the 

uptake of nutrients and oxygen and a lack of either of these during critical time windows of 

gestation can slow the rate of tissue growth, and thus lead to increased risk of low birth weight 

(Barker, 1995). It is this maternal under nutrition, during middle to late gestation, that is 

hypothesized to contribute to diseases in adulthood, such as coronary heart disease.  

Risk Factors for Low Birth Weight 

 The constellation of risk factors for LBW occur at both the individual and neighborhood 

levels. Individual-level risk factors include preterm birth, sex of the infant, maternal status in 

terms of age, preconception nutrition and prenatal nutrition, existing health status (i.e. pre-

eclampsia/eclampsia and hypertension), parity (e.g. nulliparous), sociodemographics (i.e. 

race/ethnicity and education), smoking, psychosocial stress, and environmental exposures (e.g. 

air pollution such as particulate matter and NOx), among others (Kannan et al., 2006; WHO, 

2014). Operating at the neighborhood-level, research data indicates that neighborhood-level SES 

(English et al., 2003a; Meng et al., 2013a), greenness (Hystad et al., 2014a; Laurent et al., 2013c; 

Markevych et al., 2014), and racial/ethnic segregation each contribute as risk factors for TLBW 

(Vinikoor et al., 2008; Walton, 2009). Additionally, several of these risk factors may act as 

confounders and/or effect modifiers on determinants of TLBW risks (Kannan et al., 2006; Meng 

et al., 2013a). In the interest of disease prevention and reducing health disparities it is paramount 

to identify the modifiable risk factors associated with TLBW. Environmental pollution and the 

built environment stand out as modifiable conditions for policy makers and researchers to 
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consider when attempting to reduce health disparities and to ultimately improve population 

health outcomes overall (Srinivasan et al., 2003).  

Air Pollution and Low Birth Weight 

 Data from several air pollution epidemiologic studies point towards prenatal exposure to 

outdoor air pollutants as being associated with adverse birth outcomes including reduced term 

birth weight (Basu et al., 2013; Bell et al., 2012; Brauer et al., 2008; Ebisu and Bell, 2012a; 

Ghosh et al., 2012a; Kloog et al., 2012; Laurent et al., 2013a; Morello-Frosch et al., 2010a; 

Padula et al., 2012; Parker et al., 2005; Proietti et al., 2013; C Protano et al., 2012; Ritz and 

Wilhelm, 2008a; Ritz and Yu, 1999a; Shah and Balkhair, 2011, 2011; Slama et al., 2009; David 

M Stieb et al., 2012; Wilhelm et al., 2011a; Wilhelm and Ritz, 2003a; Wu et al., 2011). This 

dissertation focuses on TLBW because of this established link between environmental air 

pollution exposures with TLBW and the need to examine how joint exposure to multiple 

different air pollutants and other contextual factors may influence the association between air 

pollution and TLBW. Moreover, there is currently only a small number of studies that focus on 

air pollution and TLBW within the context of maternal nutrition, despite the possibility that these 

two maternal exposures (air pollution and nutrition) act along similar biologic pathways. 

The biologic mechanisms underpinning the effects of air pollution on TLBW is still being 

elucidated. The epidemiologic, clinical and experimental data suggests the following biologic 

mechanics of air pollution on affecting birth outcomes:  

1) systemic oxidative stress (Adamson et al., 2000; Delfino et al., 2009; Donaldson and MacNee, 

2001; Elango et al., 2013; Fleischer et al., 2014; Geer et al., 2012; Jedrychowski et al., 2013; 

Labranche et al., 2012; Mohorovic, 2004; Pedersen et al., 2013; Perera et al., 1998; Ritz and 

Wilhelm, 2008a; Sørensen et al., 2003; Whyatt et al., 1998),  

2) pulmonary and placental inflammation (Bobak, 2000; Brook et al., 2003; Delfino et al., 2009; 

Elango et al., 2013; Nel et al., 1998; Panagiotakos et al., 2004; Robertson et al., 2012),  

3) coagulation of circulating blood (Pekkanen et al., 2000; Peters et al., 1997; Strak et al., 2013), 
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(4) promotion of endothelial dysfunction (Ambrose and Barua, 2004; Brook et al., 2004, 2003, 

2002; Hansen et al., 2007; Holay et al., 2004; Otsuka et al., 2001; Zanobetti et al., 2014b), and 

 (5) alteration of maternal hemodynamics (i.e. altered systolic or diastolic blood pressure) 

(Bellavia et al., 2013; Duvekot et al., 1995; Ibald-Mulli et al., 2004; Misra, 1996; Xiong et al., 

1999; Zanobetti et al., 2004).  

 While molecular epidemiologic studies are fewer in number, some studies further suggest 

various biologic mechanisms by which prenatal air pollution exposure affects birth outcomes, 

such as DNA methylation facilitated by DNA adducts caused by polycyclic aromatic 

hydrocarbon (PAH) exposure (Šrám et al., 2005). Recent work by Ghosh et al., (2016) further 

suggests an epigenomic link with low birth weight by finding CpG sites that were significantly 

more disrupted by DNA methylation among births in the lowest quintile of the birth weight 

distribution in comparison to births from the highest quintile of the birth weight distribution. 

 As the epidemiologic evidence supporting a link between air pollution as a risk factor for 

TLBW strengthens, especially for PM2.5 (Fleischer et al., 2014), such risks may not be equal 

across different sub-populations (Morello-Frosch and Shenassa, 2006). A variety of factors are 

likely to contribute to an unequal distribution of health effects from outdoor air pollution. For 

instance, while concentrations of fine particulate matter (PM2.5) are relatively homogenous 

across a given region, PM2.5 is especially likely to exhibit a spatial dependence in terms of 

variation in different physical (size fractions) and chemical component characteristics (Laurent et 

al., 2014a; Levy et al., 2013a). Such spatial dependence in PM2.5 composition is related to 

localized emissions patterns and meteorology (among numerous other factors)(Hajat et al., 2013; 

Molitor et al., 2011; Su et al., 2012). Hence, it follows that the magnitude of effects on health 

may impose geographic disparities at a population-level (Laurent et al., 2014a; Pirani et al., 

2015a; Zanobetti et al., 2014a). As a study by Laurent et al. (2014) in LA County recently 

showed, different components of PM2.5 pollution exhibited strong source-dependent 

characteristics and thus produced substantial variation in PM-related effects on reductions in 

term birth weight. Wilhelm et al., (2011) similarly found that the exposure-response between 

PM2.5 and TLBW varied by PM2.5 source type (e.g. gasoline versus geologic sources) within LA 

County. Pedersen et al., (2015) investigated eight European birth cohorts and observed variation 
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in the exposure-response between PM2.5 chemical components, with OR estimates for sulfur 

PM2.5 of 1.24, compared to 1.08 for overall PM2.5. Hence we would expect to see that localized 

intra-urban differences in source-dependent particulate air pollution exposure and health effects 

patterns should contribute to inequalities with regard to PM-related adverse birth outcome risks 

(Baxter et al., 2007). Additionally, an array of spatially correlated contextual neighborhood 

factors and individual factors may contribute to variations in susceptibilities to air pollution, 

including socioeconomic status (SES), demographics (i.e. racial segregation), exposure to 

violence (Messer et al., 2006), access to healthy food (Lane et al., 2008), access to green space 

(Hystad et al., 2014a), housing characteristics (Ghosh et al., 2013a), and psychosocial risk 

factors (Ghosh et al., 2010a). So it follows that studies investigating the relationship between 

outdoor air pollutants such as PM2.5 ought to consider the spatial dependency in the exposure 

response relationships. 

 Spatial dependency in air pollution effects, however, are not accounted for when using 

standard regression models that rely on fixed covariate effects (Morello-Frosch and Shenassa, 

2006). While previous health research has demonstrated the spatial dependency of PM-related 

chronic health effects such as cardiovascular disease and asthma (Boehm Vock et al., 2014; Choi 

et al., 2009; Fuentes et al., 2006; Jerrett et al., 2005; Krewski et al., 2009; McConnell et al., 

2010; Samoli et al., 2004; Shankardass et al., 2009), to my knowledge no previous study has 

explicitly modeled the spatial dependency of individual-level PM2.5 exposure-response 

relationships on birth outcomes within an urban area. As such, the first study in this dissertation 

will not only investigate the overall fixed effects from exposure to PM2.5, but will also explore 

the spatial dependency in the exposure response between PM2.5 on TLBW.  

Linking Multipollutant Exposures with Health Outcomes 

 While it is well established that people are exposed to multiple correlated air pollutants 

simultaneously (Hidy et al., 2011; Mauderly et al., 2010; Molitor et al., 2011), it remains unclear 

whether specific mixtures of air pollutants (or pollutant profiles) are implicated in health effects 

(Ebisu and Bell, 2012a; Laurent et al., 2013a; Olsson et al., 2012; Proietti et al., 2013; C Protano 

et al., 2012; Shah and Balkhair, 2011; Slama et al., 2009; David M Stieb et al., 2012). 

Meanwhile, regulatory bodies are increasingly being faced with determining management 
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strategies to reduce the health risks and disparities attributable to multipollutant exposures, yet 

there is insufficient exposure data and health effects research to provide appropriate guidance in 

this area (Hidy et al., 2011; Mauderly et al., 2010). As such, it has become increasingly 

important to better delineate the specific pollutant profiles that are most important within the 

context of multipollutant health risks (Sun et al., 2013; Vedal and Kaufman, 2011). 

 According to a review of multipollutant and health effects research (Oakes et al., 2014), 

there is currently no "gold standard" multipollutant metric or analytic framework for which to 

evaluate the public health risks associated with multi-pollutant exposures (Oakes et al., 2014). A 

major epidemiologic and statistical hurdle in our understanding of multipollutant health effects is 

our inability, as of yet, to determine whether combined exposure to pollutants acts additively or 

synergistically to contribute to health risks, or even infer which pollutant or combination thereof 

are in the causal pathway (see for instance Laurent et al., (2014)). Additionally, while there is 

considerable spatial variation in intra-urban multipollutant concentrations (Levy et al., 2013a), 

little research exists that explores the spatial patterning of multipollutant exposures or 

multipollutant health risks (Mauderly and Samet, 2009). Further complicating our lack of 

understanding regarding multipollutant air exposures and their consequent health risks, as 

pointed out in the much of the environmental justice literature, is the effects of other 

geographically correlated environmental, built environment, social and economic factors that 

coincide with poor air quality in the US. Such correlated contextual exposures may include: 

environmental stressors aside from air pollution exposures, psychosocial stressors, underlying 

health status, poverty, built environment factors such as greenness and access to nutritious foods, 

vulnerable sociodemographic sub-populations, and occupational factors, which are all believed 

to contribute to health disparities (Marshall, 2008; Molitor et al., 2011; Zou et al., 2014).  

 Consequently there is a push to move away from a single pollutant approach (Vedal and 

Kaufman, 2011) and to explore the degree to which pollutant profiles vary over local 

geographies, and to further evaluate whether health effects differ across these pollutant profiles 

and across geographies (Hidy et al., 2011). Therefore, a major focus of this dissertation examines 

spatial patterns in prenatal exposure to multipollutant profiles and birth outcomes, within the 

context of correlated contextual factors. 
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 Multiple different statistical approaches have recently been proposed to address exposure 

to pollutant mixtures for assessment in health research. Several of these approaches have been 

reviewed and described in great detail by Sun et al. (2013), Oakes et al. (2014), and Billionnet et 

al. (2012). These novel statistical approaches include, but are not limited to: (1) least absolute 

shrinkage and selection operator regression, (2) Bayesian model averaging, (3) supervised 

principle component analysis, (4) partial least squares regression, (5) deletion/substitution and 

addition, (6) classification and regression tree, and (7) cluster analysis. A detailed explanation of 

each statistical approach is available in Sun et al. (2013) and Billionnet et al. (2012). Within the 

context of the statistical approach taken in this dissertation research, the following text describes 

the Bayesian model averaging and clustering approach applied in this study. 

Cluster and Bayesian analysis 

 Cluster analysis partitions explanatory variables into smaller sets of variables (or profiles) 

and typically relies on distance-based "hard" clustering methods, such as the commonly used k-

means algorithm (Austin et al., 2012a; Hartigan and Wong, 1979). The primary advantage 

gained from employing cluster analysis in the evaluation of multipollutant exposures and health 

risks relates to mitigation of the well know problems associated with multicollinearity (Dormann 

et al., 2013a). For instance, the presence of highly correlated covariates (i.e. multicollinearity) in 

a regression context challenges our ability to infer which covariates are associated with an effect 

in a given model and is liable to inflate standard errors of regression estimates (Dormann et al., 

2013a). Whereas the 'proxy-indicators' of the collinear variables, represented as a profile of 

covariates into clusters, are more robust to the influences of multicollinearity compared to 

including the multiple collinear variables in a statistical model (Dormann et al., 2013a). 

 A disadvantage with the "hard" clustering approach is the arbitrary pre-assignment in the 

number of clusters for analysis and the need for extensive sensitivity analyses to optimize the 

cluster number (as done in the k means approach), and the inability to handle uncertainty in 

terms of cluster assignment for a given profile of covariates (Abubaker and Ashour, 2013; Austin 

et al., 2012a; Dormann et al., 2013a; Molitor et al., 2010b). Bayesian model averaging (BMA) 

combined with a clustering approach, on the other hand, is a particularly strong approach 

because it is better equipped to handle uncertainty for the purposes of cluster assignment (Sun et 
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al., 2013). Rather than choosing a "hard" clustering with which to partition individual profiles of 

pollutants, the BMA approach averages over all possible partitions of pollutant-concentration 

mixture profiles produced by the cluster sampling algorithm, thereby inclusion of uncertainty 

into "best" cluster assignments (Molitor et al., 2011, 2010b).  

 This unified process of clustering and model averaging is referred to as a Bayesian 

mixture model and has been advanced in work by Molitor et al. (2010b) and Pirani et al., (2015). 

The approach relies on a non-parametric mixture modeling technique that unconstrained (i.e. 

infinite) by a predetermined number of clusters; thereby allowing a data-driven determination of 

clusters as opposed to pre-assigning an arbitrary number of clusters as with contemporary "hard" 

clustering techniques (Austin et al., 2012a; Zanobetti et al., 2014a). The infinite mixture profiles 

are described by unknown probabilities that are derived from a prior distribution known as the 

Direchlet process, described in detail elsewhere (Ferguson, 1973; Pirani et al., 2013). 

 The application of cluster analysis in combination with Bayesian model averaging 

techniques in air pollution epidemiologic studies is still in its infancy, most especially for 

modeling multipollutant health risks. The Bayesian mixture modeling framework described 

above-- also referred to as Bayesian profile regression-- has been employed in several recent 

publications (Molitor et al., 2014a, 2011, 2010a, 2010b; Pirani et al., 2015a), but only one of 

these studies examined the association between multiple air pollutant exposure with health risks 

(Pirani et al., 2015a). Although, a Bayesian model averaging technique has been used in previous 

studies to establish model covariates to predict pollutant health effects,  none of these studies 

have applied a multipollutant cluster analysis to evaluate health risks (Clyde, 2000; Clyde et al., 

2000; Clyde and DeSimone-Sasinowska, 1998; Koop and Tole, 2004; Schwartz and Laden, 

2004). A cluster analysis of health effects related to multiple pollutant profiles was conducted in 

(Qian et al., 2004a) and Zanobetti et al., (2014a), these studies relied on a "hard" clustering 

framework and did not use a Bayesian approach. Furthermore, for such a complex birth outcome 

such as birth weight, it is imperative to examine joint chemical exposures since different 

pollutants are liable to have different biologic effects.  

 The one study by  Pirani et al., (2015) that employed the Bayesian profile regression 

technique to estimate health risks attributable to multipollutant profiles provided intriguing 
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results. The authors used the PReMiuM package in R (Liverani et al., 2014) and evaluated the 

relationship between temporal air pollutant exposure profiles with respiratory mortality in 

London (UK). The authors were able pinpoint PM2.5 component profiles most related with 

elevated respiratory mortality. The PReMiuM package in R builds off of earlier work by Molitor 

et al., (2010b) and offers an easily implementable and novel approach to model health risks 

associated with multiple air pollutant profiles, and therefore provides the statistical framework 

from which to achieve parts of Aim 1 of this proposal. In using this Bayesian profile regression 

approach, the second study of this dissertation explores exposure to multiple different air 

pollutants simultaneously-- in the form of clusters of exposure profiles-- to assess which 

multipollutant profiles exhibit elevated log odds of TLBW and to determine the spatial 

patterning of these multipollutant exposure profile TLBW relationships. 

Nutrition and Low Birth Weight 

 Maternal diet during pregnancy must provide sufficient nutrients to attain fetal nutrient 

requirements for optimal placental and fetal growth. Maternal nutrition is also capable of 

changing expression of the fetal genome, and animal studies further demonstrate that both 

undernutrition (Belkacemi et al., 2010) and overnutrition (Wallace et al., 2004, 2003) are capable 

of inducing reduced placental-fetal blood flows, thus contributing to stunting of the fetus (Wu et 

al., 2004). Inadequate dietary intake of protein-energy and micronutrients (i.e. iron and folate) 

during the rapid growth phases of fetal development may be most important with respect to 

malnutrition's effect on fetal growth. Research data also suggest that micronutrient 

supplementation (Cogswell et al., 2003), multi-micronutrient supplementation (Shah et al., 

2009), and food-supplementation (Buescher et al., 1993) programs can reduce the risk of low 

birth weight, particularly among low SES populations (Abu-Saad and Fraser, 2010). In addition, 

inadequate gestational weight gain (GWG) is related to an increase risk of lower birth weight 

babies (Siega-Riz et al., 2009), and inadequate GWG has been found to be influenced by 

gestational dietary intake and pre-pregnancy BMI (Chihara et al., 2014; Rasmussen et al., 2009).  

 It has been hypothesized that nutrition may confound or modify the association between 

environmental exposures on birth outcomes (Abu-Saad and Fraser, 2010; Erickson and Arbour, 

2014; Ritz and Wilhelm, 2008a; Ritz and Yu, 1999b). Kannan et al. (2006) hypothesized a 
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biologically plausible mechanism for  joint effects between nutrition and air pollution exposures 

on birth outcomes due to the fact that air pollution and nutrition are believed to act on similar 

etiologic pathways. Some studies have found antagonistic effects of fruit and vegetable derived 

antioxidants on environmental toxin effects, such as down-regulation of endothelial 

inflammation associated with environmental pollutants (Hennig et al., 2007a, 2007b, 2005). 

Observational data suggests that certain micronutrients likely play a role in counteracting 

oxidative stress; these include fat-soluble carotenoids (Kiokias and Gordon, 2003) and vitamin E, 

water-soluble vitamin C (Bhagavathy and Sumathi, 2012; Mayne, 2003; Porrini et al., 2002), 

methyl nutrients such as B-vitamins and folate (Kawashima et al., 2007; Smolková et al., 2004), 

and trace minerals such as zinc and manganese (Ames, 1999; Modi et al., 2006). While a few 

epidemiological studies have directly examined effect modification of nutrition on air pollution 

effects on birth weight, unfortunately such studies are few in number and study finding have 

been mixed in terms of finding evidence for effect modification (Jedrychowski et al., 2010, 

2007; Masters et al., 2007; Pedersen et al., 2013). However, these studies do provide important 

insights to indicate the importance of evaluating the potential for joint effects between nutrition 

and air pollution effects on birth outcome risks.   

The Food Environment and Health Outcomes 

 The vast majority of epidemiologic literature relating the food environment to health 

outcomes have centered on overweight/obesity health effects (Broady and Meeks, 2014; 

Drewnowski et al., 2012; Dubowitz et al., 2012; Giskes et al., 2011; Hattori et al., 2013; Janevic 

et al., 2010; Salois, 2012). This body of research has provided data to indicate that, in urban 

areas, the availability of supermarkets, fast food/takeout restaurants (Dubowitz et al., 2012; 

Hattori et al., 2013), and convenience stores (Walker et al., 2014), are associated with 

overweight/obesity status. Since research data in the US indicates that maternal 

obesity/overweight is related to having a large for gestational age baby, the implication is that an 

adverse food environment may actually contribute to birth weight in the opposite direction of 

reduced term birth weight. For instance, previous research findings show that closer distance to 

supermarkets within a neighborhood is associated with improved diet quality in pregnant women 

(Laraia et al., 2004) and further distance to supermarkets has been linked with pre-pregnancy 

weight >200lbs (Janevic et al., 2010). Geospatial analysis has also shown that the prevalence of 
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fast food retailers is associated with a higher odds of gestational diabetes (Kahr et al., 2015), and 

gestational diabetes is linked with a higher birth weight for gestational age. While data from 

several studies indicate that both maternal overweight/obesity status (Bhattacharya et al., 2007; 

Crane et al., 2009; Frederick et al., 2008) and excessive GWG (Crane et al., 2009; Siega-Riz et 

al., 2009) are related to a reduced risk of TLBW babies, these relationship are not so clear-cut, 

particularly with regard to race and pre-pregnancy weight status.  

 Olafsdottir et al.,( 2006) found that overweight women pre-pregnancy were more likely 

to have inadequate GWG compared to women at a normal pre-pregnancy weight. Seabra et al., 

(2011) similarly found that overweight/obesity was associated with higher prevalence of 

inadequate GWG. Importantly, differences in the effect of pre-pregnancy BMI on GWG, by 

race-ethnicity, have been observed in the US. Headen et al., (2015) used the 1979 USA National 

Survey of Youth cohort and found that normal weight non-Hispanic Black and Hispanic women 

had increased risk of inadequate GWG compared to Whites, and only underweight African 

Americans had increased risk of inadequate GWG compared to underweight Whites. This 

apparent effect modification was not observed in overweight or obese pregnancies. Liu et al., 

(2014) found similar evidence of effect modification by race in the relationship between pre-

pregnancy weight and GWG. Among women with a BMI<25kg/m
2
, Blacks and Hispanics 

showed a 50% higher odds of inadequate GWG compared to Whites. Research data also suggests 

effect modification by race in the positive relationship between excessive GWG with an increase 

in birth weight among women with a pre-pregnancy BMI>30kg/m
2
, wherein Blacks (101 g [95% 

CI: 91, 111]) show a lower increased birth weight compared to Whites (118 g [95% CI: 109, 

127]) when comparing excessive GWG to those with adequate GWG. 

 Despite this array of rather complex research findings, the food environment has been 

proposed as a neighborhood level mediator of the observed socioeconomic effects on birth 

outcomes (Erickson and Arbour, 2014; Meng et al., 2013a; Metcalfe et al., 2011). A likely driver 

behind poor food environments in possibly increasing the risk of having a TLBW baby in the US 

could be related to its influence on maternal consumption of highly processed foods or fast foods 

that tend to be low in micronutrients that are essential for optimal fetal growth and development 

(Goletzke et al., 2015; Institute of Medicine (U.S.) et al., 2005; Laraia et al., 2004; Moodie et al., 

2013). Not surprisingly, however, the relatively few number of studies that have examined the 
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relationship between the food environment on birth outcomes have thus far shown conflicting 

results (Farley et al., 2006; Lane et al., 2008; Ma et al., 2015).  

Neighborhood Food Environments and Birth Weight 

 A cross-sectional study by Farley et al. (2006) examined census tract-level (N=1,015) 

density of retail outlets selling food in relation to individual-level birth outcomes (N=105,111) in 

Louisiana. Data from this study did not find a significant association between food retail outlet 

density and birth outcomes. The coefficient for supermarket density (stores per 1,000 population) 

in relation to birth weight and gestational age were -0.24 (SE=0.27) and 0.022 (SE=0.021), 

respectively.  Another study, conducted by Lane et al. (2008), examined the relationship between 

census-tract level (N=57) distance to supermarkets within 1/2 mile and IUGR. This study found 

a significant association between supermarket proximity on IUGR with an adjusted OR of 3.38 

(95%CI:1.26-9.09) for low food access census tracts compared to high food access census tracts. 

A recently published study by Ma et al., (2015) examined the association between the food 

environment on individual birth weight, using neighborhood-level indicators of low food access 

for 867 census tracts. The unadjusted linear regression in Ma (2015) indicated significantly 

reduced birth weight in low supermarket access communities. After adjustment for confounders, 

however, low access tracts had significantly increased birth weight (β=18.7, 95%CI:10.1,27.3). 

On the other hand, this study also found that the presence of at least two convenience stores 

within a one-mile buffer was associated with a significantly lower birth weight in the study 

population (Ma et al., 2015).  

 One possible explanation behind these conflicting results in previous food environment 

and birth outcomes research may be related to the variation in the definition of the food 

environment along with potential misclassification of exposure. Two of these study described 

above employed a one-dimensional construct for the food environment (only looking at grocery 

stores). A one-dimensional examination for the food environment may not adequately capture 

the determinants of neighborhood level food purchasing and consumption behaviors, and may 

therefore act as a source of bias due to exposure misclassification. Given the lack of health 

research on this topic, the conflicting evidence from different studies, and the use of one-

dimensional constructs to define the food environment, this dissertation uses a multidimensional 



15 

 

 

framework to define food environments rather than the more narrowly defined proximity based 

measure of food environment, and relates these to birth outcomes. 

Neighborhood food environments and dietary intake 

 Dietary intake during pregnancy and the types of foods mothers purchase are influenced 

by a complex set of factors; ranging from individual level behavioral and socioeconomic status 

to environmental and other socially dynamic factors (Black et al., 2014; Cannuscio et al., 2014). 

In addition, area-level factors are shown to influence maternal access to and consumption of 

healthy and nutritious foods, and have further been shown to contribute to birth weight of 

infants. For instance, birth outcome and maternal and child health studies in developing countries 

have demonstrated that seasonality in some regions influence both access to nutritious food and 

birth outcomes (including birth weight and PTB) (Bantje, 1983; Bates et al., 1994; Fulford et al., 

2006; Kinabo, 1993; Rayco-Solon et al., 2005; Rousham and Gracey, 1998). Thus it follows that 

neighborhood-level factors, such as food environments in developed countries, may be an 

important determinant of birth outcomes. While neighborhood access to healthy and affordable 

food should not be considered the most precise and direct measure of individual-level dietary 

intake, data from a number of studies provide evidence that neighborhood food access and food 

affordability indicators significantly influence individual dietary intake.  

 Black et al (Black et al., 2014) conducted a review of the literature on the food 

environment in developed countries and found a trend that better access to healthier foods and 

less healthy foods were related to better and poorer dietary intake, respectively. Black's review 

found that overall, proximity to supermarkets tended to be a better predictor of improved dietary 

intake relative to other indicators such as grocery stores or "green grocers". This review also 

found that compared to other developed countries, studies conducted in the United States (N=24) 

generally showed the strongest relationship (p<0.05) between the food environment and dietary 

intake. However, there is a considerable amount of heterogeneity regarding the association of the 

food environment on dietary intake. Caspi et al. (2012) also conducted an extensive review of the 

literature on studies that examined the relationship between the food environment and dietary 

intake. This review similarly found conflicting results. Importantly, authors in this review noted 

that studies which measured the food environment by incorporating more than one dimension of 
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the environment tended to find more consistent associations with food intake. The implication 

here is that defining the food environment based purely on distance to a healthy food stores is 

insufficient since it ignores other area-level factors such as proximity to fast-food and 

convenience stores, access to transportation, and the affordability of neighborhood food stores 

(Caspi et al., 2012). For instance, research data from California finds that spatial proximity of 

fast-food restaurants near homes and schools are related to dietary intake (Babey et al., 2011).  

Poor food environments in Los Angeles County 

 An examination of the USDA’s Food Environment Atlas dataset suggests that poor food 

environments may be a significant problem in LA County (US Department of Agriculture 

Economic Research Service, 2014). For instance, year 2007 data indicate that LA County is 

below California's median for grocery stores per capita (US Department of Agriculture 

Economic Research Service, 2014) and year 2008 data further indicate that LA County is below 

California's median number of grocery stores per capita authorized for the federal food subsidy 

program Women, Infant and Children (WIC).  Incidentally, studies have shown that prenatal 

WIC participation has been associated with reduced risk of LBW babies (Buescher et al., 1993; 

Reichman and Teitler, 2003). Research from LA indicates that WIC participation reduces food 

insecurity among pregnant women (Herman et al., 2004), and improved food security during 

pregnancy has been shown to modify the association between poor maternal health status effects 

on TLBW (Meng et al., 2013a).  

 Studies conducted in LA County also indicate that the relationship between the 

neighborhood food environment and health may be strongly linked with household economic 

resources. According to an LA County Health Survey of LA County households, there is a strong 

correlation between increasing household poverty and increasing food insecurity and that this 

relationship is strongest among households with children (Morier, 2015). Inagami et al. (2009) 

studied 2,156 adults from 63 LA County neighborhoods and found that the association between 

the local food environment (as measured by fast food restaurant density) and body mass index 

was significantly stronger among residents who did not own a vehicle. The implication of this 

result is that a lack of vehicle ownership in neighborhoods with low access to healthy foods-- but 

ready access to fast food restaurants-- may be more likely to opt for less healthy foods that 
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increase obesity risks, since such food options are accessible by means that don't involve use of a 

vehicle or paying for public transportation. A different study conducted in LA County found that 

low income, minority and urban communities suffered from markedly reduced access to 

supermarkets per capita (Shaffer, 2002). Furthermore, another study conducted in LA County 

found that census tract-level fast-food restaurant density (per roadway-mile) was significantly 

higher in lower income communities compared to the highest income communities (Inagami et 

al., 2009). Taken together, these data suggest that LA County is characterized by SES and 

racial/ethnic disparities in food insecurity and healthy food access. 

Linking Air Pollution Exposures, Food Environments, and Socioedemographics 

 Since it has become well established that neighborhood design influences air pollution 

exposures, there is increased research interest into how specific aspects of the built environment 

and related community-level stressors may correlate or interact with neighborhood-level air 

pollution (Marshall et al., 2009). Also, the concept of environmental inequity emphasizes that the 

distribution of desirable and undesirable environmental characteristics and their health burdens 

are distributed unevenly between different communities (Hilmers et al., 2012; Larsen and 

Gilliland, 2008). While only a fraction of the U.S. population lives in so-called food deserts, it is 

clear that urban residents belonging to racial minority groups and areas of low income are 

disproportionately burdened in this regard (Ver Ploeg et al., 2012). Currently, however, there is a 

paucity of research into the neighborhood-level correlation between exposure to poor air quality 

and poor food environments, or how this combination of neighborhood factors correlate with 

socio-demographic factors such as racial segregation.  

 There is sound reason to hypothesize that populations in US that live within 

socioeconomically disadvantaged neighborhoods are simultaneously exposed to higher levels of 

air pollution and more adverse food environments, which may have important implications for 

population health. Multiple lines of evidence indicate that neighborhood deprivation indicators 

are correlated with both poor food environment neighborhoods (Cummins et al., 2005; Franco et 

al., 2008; Hilmers et al., 2012; Lamichhane et al., 2013; Larson et al., 2009; Pearce et al., 2007; 

Richardson et al., 2012) and higher air pollution exposures (Gray et al., 2013; Hajat et al., 2013; 

Lee et al., 2014; Molitor et al., 2011). Research data further suggests that access to either fast 
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food restaurants or grocery stores are each influenced by proximity to arterial roads (Hurvitz et 

al., 2009a; Macintyre et al., 2005) and highways (Block et al., 2004). Likewise, differences in 

neighborhood air quality are influenced by proximity to arterial roads and highways (Choi et al., 

2013). For instance, Kozawa et al. (2009) observed that neighborhoods 150 meters downwind 

from arterial roadways in the LA area are exposed to significantly higher levels of black carbon, 

nitric oxide, ultrafine particles, and particle-bound polycyclic hydrocarbons.  

 The maps of urban LA County presented in Figure 2 suggests substantial spatial overlap 

between clustering of neighborhood deprivation, exposures to elevated levels of multiple air 

pollutants, and adverse food environments. The first map (Figure 1.1.a) is from a paper by 

Molitor et al. (2011) which displays colored areas corresponding to census tracts with high 

multipollutant exposure profiles associated with clusters of high poverty neighborhoods. The 

colored census tracts in the second map (Figure 1.1.b) displays the spatial distribution of the 

CDC's modified retail food environment index (mRFEI) for LA county, with less healthy food 

environments indicated by darker shaded tracts and more healthy food environments indicated by 

lighter shaded tracts. These maps depict the strong potential for correlation between high 

exposure multipollutant profiles, high poverty, and poor neighborhood food environments. 

 
         (a) Census tract multipollutant profiles associated with poverty                                      (b) Census tracts mRFEI scores 

Figure 1.1. Census tract-level air pollution, deprivation, and food environments in LA County. 
(a) Map of tracts with High Air Pollution Mixtures com-

bined with Poverty Clusters (Molitor et al. 2011) 

(b) Poor Food Environment Map. (US Department of 

Agriculture Economic Research Service 2014b).  
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Specific Aims  

 The overall goal of this research is to apply a joint risk framework through investigations 

into the relationship between TLBW and outdoor air pollution and pollutant mixtures (or 

pollutant profiles), and between TLBW and the food environment in Los Angeles County, 

California. To achieve this goal, this research comprises three separate studies. The first study 

examined the overall relationship between exposure to outdoor PM2.5 with TLBW in urban Los 

Angeles (LA) County, and further explored the within region spatial variation in the pollutant 

exposure response relationship. The second study used a Bayesian framework to model exposure 

to multiple pollutants in order to develop pollutant profile clusters, and further relates these 

pollutant profiles with TLBW within LA County. The third study examined whether the 

neighborhood environment is related to TLBW, and further explored whether the food 

environment acts as an area-level confounder or possibly as an effect modifier in the 

relationships between PM2.5 on TLBW. 

Specific Aim 1  

To determine multiple air pollutant exposure profiles for residents in LA County and 

examine the relationship between mixed pollutant exposure profiles on TLBW. 

Hypothesis 1a. There is a higher prevalence of TLBW with higher exposure during the entire 

pregnancy to urban outdoor air pollutants (PM2.5, NO2, and NO). 

Hypothesis 1b. Air pollution exposure profiles composed of PM2.5, NO2, and NO are clustered 

by pollutant concentrations within LA County neighborhoods. 

Hypothesis 1c. Individual births assigned to pollutant exposure profiles with high exposures to 

NO2, NO, and PM2.5 are more likely to be TLBW compared to births assigned to low NO2, NO, 

and PM2.5 pollutant exposure profiles. 

Hypothesis 1d. Pollutant profile associations will be non-linear, in that high risk profiles will 

have high levels for some pollutants and low for others. 
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Specific Aim 2 

To determine the confounding or effect modifying role of neighborhood-level food access 

on the association between individual-level prenatal exposure to air pollution on TLBW in 

LA County. 

Hypothesis 2a. There is a higher prevalence of TLBW from mothers living in neighborhoods 

with low access to healthy foods compared to mothers living in neighborhoods with better access 

to healthy foods. 

Hypothesis 2b. The magnitude of association between the food environment with TLBW is 

significantly larger at higher concentrations of PM2.5 air pollution. 

Specific Aim 3 

To determine whether the geographic variation in air pollution concentrations are 

associated with poor food environments throughout Los Angeles County. 

Hypothesis 3a. Higher concentrations of outdoor air pollutants in LA County are positively 

associated with census tracts with low access to healthy food retail stores. 

Hypothesis 3b. Non-white populations are exposed to both poorer air quality and neighborhoods 

with low access to healthy food retailers compared to White populations. 
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Chapter 2 - Modeling Spatial Effects of PM2.5 on Term Low Birth Weight in 

Los Angeles County 
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Abstract 

 Air pollution epidemiological studies suggest that elevated exposure to fine particulate 

matter (PM2.5) is associated with higher prevalence of term low birth weight (TLBW). Previous 

studies have generally assumed the exposure-response of PM2.5 on TLBW to be the same 

throughout a large geographical area.  Health effects related to PM2.5 exposures, however, may 

not be uniformly distributed spatially, creating a need for studies that explicitly investigate the 

spatial distribution of the exposure-response relationship between individual-level exposure to 

PM2.5 and TLBW. Here, we examine the overall and spatially varying exposure-response 

relationship between PM2.5 and TLBW throughout urban Los Angeles (LA) County, California. 

We estimated PM2.5 from a combination of land use regression (LUR), aerosol optical depth from 

remote sensing, and atmospheric modeling techniques. Exposures were assigned to LA County 

individual pregnancies identified from electronic birth certificates between the years 1995-2006 

(N=1,359,284) provided by the California Department of Public Health. We used a single 

pollutant multivariate logistic regression model, with multilevel spatially structured and 

unstructured random effects set in a Bayesian framework to estimate global and spatially varying 

pollutant effects on TLBW at the census tract level. Overall, increased PM2.5 level was associated 

with higher prevalence of TLBW county-wide. The spatial random effects model, however, 

demonstrated that the exposure-response for PM2.5 and TLBW was not uniform across urban LA 

County. Rather, the magnitude and certainty of the exposure-response estimates for PM2.5 on log 

odds of TLBW were greatest in the urban core of Central and Southern LA County census tracts. 

These results suggest that the effects may be spatially patterned, and that simply estimating 

global pollutant effects obscures disparities suggested by spatial patterns of effects. Studies that 

incorporate spatial multilevel modeling with random coefficients allow us to identify areas where 

air pollutant effects on adverse birth outcomes may be most severe and policies to further reduce 

air pollution might be most effective. 

Research Highlights 

 We model the spatial dependency of PM2.5 effects on term low birth weight (TLBW). 

 PM2.5 effects on TLBW are shown to vary spatially across urban LA County. 

 Modeling spatial dependency of PM2.5 health effects may identify effect 'hotspots'. 
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 Birth outcomes studies should consider the spatial dependency of PM2.5 effects.  

Keywords 

Air pollution; PM2.5; term low birth weight, spatial effects, multilevel modeling 

Introduction 

 Extensive evidence indicates that prenatal exposure to outdoor air pollution is associated 

with risk of term low birth weight (Brauer et al., 2008; Fleischer et al., 2014; Ghosh et al., 

2013b, 2012a; Hyder et al., 2014; Padula et al., 2012; Parker et al., 2011; Ponce, 2005a; Proietti 

et al., 2013; Ritz and Wilhelm, 2008b; Shah and Balkhair, 2011; David M. Stieb et al., 2012; 

Wilhelm et al., 2011a; Wu et al., 2011). While TLBW contributes to racial-ethnic and 

socioeconomic health disparities in the United States, air pollution is thought to be an important 

place-based factor in the complex geography of and susceptibly to TLBW (Jerrett and 

Finkelstein, 2005; Morello-Frosch and Shenassa, 2006). It is reasonable to consider, however, 

that air pollution exposure-response effects on adverse birth outcomes, such as TLBW, vary 

spatially within an urban setting.  

 First and foremost, air pollutant mixtures or components of PM air pollution can be 

autocorrelated spatially within urban environments− depending on local-scale air pollution 

sources, the intensity of emissions, and meteorology (among other factors)(Hajat et al., 2013; 

Molitor et al., 2011; Su et al., 2012). As a result, the intrinsic toxicity of PM2.5 mixtures is likely 

to be spatially dependent. For instance, Laurent et al. (2014) found that various components and 

sources of fine PM air pollution, which exhibit strong spatially varying characteristics, produced 

statistically significant gradients in PM-related TLBW risk in LA County. Similarly, Wilhelm et 

al., (2011), found that the exposure-response between PM2.5 and TLBW varied by PM2.5 source 

type (e.g. gasoline versus geologic sources) within LA County. Furthermore, (Pedersen et al., 

2015) studied eight European birth cohorts and found that the exposure-response between PM2.5 

was dependent on its chemical composition, with OR estimates for sulfur PM2.5 of 1.24, 

compared to 1.08 for overall PM2.5. Such local-scale intra-urban differences in particulate air 

pollution exposure and health effects patterns may therefore lead to inequalities with regard to 

PM-related adverse birth outcome risks (Baxter et al., 2007). Further, a wide range of contextual 
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neighborhood factors and individual factors that are spatially correlated, from socioeconomic 

status (SES), demographics (i.e. racial segregation), exposure to violence (Messer et al., 2006), 

access to healthy food (Lane et al., 2008) or green space (Hystad et al., 2014a), housing 

characteristic, and psychosocial, may contribute to variations in susceptibilities to air pollution 

that are not fully accounted for in standard regression models relying on fixed covariate effects 

(Morello-Frosch and Shenassa, 2006). Few studies, however, have been conducted to examine 

whether there is a spatial patterning − or a "risk-scape" (Morello-Frosch and Shenassa, 2006) −  

for PM-related birth outcomes. While previous health research has evaluated the spatial 

dependency of PM-related chronic health effects such as cardiovascular disease and asthma 

(Boehm Vock et al., 2014; Choi et al., 2009; Fuentes et al., 2006; Jerrett et al., 2005; Krewski et 

al., 2009; McConnell et al., 2010; Samoli et al., 2004; Shankardass et al., 2009), no studies have 

modeled the spatial dependency of individual-level PM2.5 exposure-response relationships on 

birth outcomes. 

 Several recent studies examined the spatial variation in PM2.5 effects on TLBW between 

different countries or between US states. A large collaborative multi-site international study 

found a substantial degree of heterogeneity in estimates for entire pregnancy exposure-response 

between study sites, despite the use of similar exposure assessments and statistical models in the 

studies (Dadvand et al., 2013; Parker et al., 2011). (Hao et al., 2015) found substantial 

differences between states in the U.S. in terms of the magnitude and direction of effects of PM2.5 

on TLBW. Another multi-state U.S. study also found that the size of exposure-response 

estimates for PM2.5 and TLBW depended upon study site; with odds ratios ranging from between 

0.942 (95% CI: 0.817, 1.09) in Utah to as high as 1.72 (95% CI: 1.55, 1.93) in New York state 

(per 10-unit increase in PM2.5 exposure) (Harris et al., 2014). Additionally, Williams et al. (2007) 

demonstrated, through implementation of a multilevel linear random coefficient model, that 

adverse effects on average birth weight in a population varied by census tract due to hazardous 

air pollution emitting industrial sites. The observed statistically significant differences in effect 

size between census tracts remained significant even after adjusting for the number of hazardous 

sites per census tract, individual level confounders, and contextually relevant census tract level 

confounding factors (Williams et al., 2007).  
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 Despite the recent evidence suggesting that air pollution-related adverse effects on birth 

weight may vary spatially, no studies have explicitly examined spatial variation in effects within 

a dense metropolitan region such as LA county, which we are targeting in our paper. Our guiding 

hypothesis is that modeling of the spatially varying coefficients will show differences in  TLBW 

according to LA County census tracts and thus provide evidence for localized PM2.5 exposure 

response. Specifically, the magnitude of effect will be higher in some census tracts when 

compared to the global mean exposure-response for all of urban LA County. Our approach goes 

beyond the commonly employed estimation of an overall average PM2.5 effect on birth weight 

and will allow us to describe a spatially-patterned deviation from the average effects, thus 

pinpointing potential 'hotspots' within LA County where the magnitude and probability of PM2.5 

effects are likely to be strongest.   

 In our paper we utilize an existing land use regression (LUR) PM2.5 exposure model 

within a multi-level Bayesian framework; implemented with spatially-dependent random 

coefficients. This information may be useful from a policy perspective to create targeted public 

health interventions for LA County.  

Methods 

Study Population and Birth Outcomes 

 Data on infant birth weight were derived from electronic birth certificates provided by the 

California Department of Public Health, for LA County births between 1/1/1995 and 12/31/2006 

(N=1,522,084). The birth records provided information on maternal characteristics such as age, 

race/ethnicity, education, total number of previous maternal births, and residential address, as 

well as characteristics of the infant (abnormalities, birth season, gestational age at birth, birth 

weight and baby’s sex). Human subjects research was approved through the University of 

California, Los Angeles' Office of the Human Subjects Protection Program, the California 

Committee for the Protection of Human Subjects, and the University of Southern California's 

Office for the Protection of Research Subjects. Similar to previous studies, we restricted the 

dataset to singleton births with no recorded abnormalities (Ghosh et al., 2013b, 2012a; Wilhelm 

et al., 2011a). Additionally, we excluded births with extreme gestational days (less than 140 days 

or greater than 320 days), births that were not full term (<259 gestation days), and births with 
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birth weight less than 500g or greater than 5000g due to concerns about recording errors. For our 

final analyses, we further excluded births without complete information on the full set of study 

covariates (n=19,017). Finally, since we are interested in estimating within-city spatial variation 

in PM2.5 effects, the spatial analysis further excluded rural sub-region of LA County, thus leaving 

a final study population of N=1,356,304. A detailed description of methods for geocoding 

residential addresses are described elsewhere (Goldberg et al., 2008).  

PM2.5 Exposure Assessment 

 A PM2.5 LUR model developed previously by (Jerrett et al., 2013) was used to estimate 

individual exposures to PM2.5 at each mother's residential address. Such estimates are intended to 

best represent spatially resolved long-term exposure to annual levels of PM2.5 between 1995-

2006, rather than pregnancy period-specific exposure. This PM2.5 LUR model has been used 

previously to examine chronic long-term exposure to PM2.5 and related health effects over time, 

in a large cohort study of California adults (Jerrett et al., 2013). This LUR method has been 

described in previous publications and the reader is referred to  (Beckerman et al., 2013a) and 

Jerrett et al. (2013) for greater detail. Briefly, the predicted concentrations of PM2.5 were based 

on covariate data from the following sources: (1) daily observations of PM2.5 air monitoring 

collected between 1998-2002 at government monitoring sites throughout California, which was 

supplemented with remotely-sensed PM2.5 data covering the time period between 2001-2006 

(Beckerman et al., 2013a); (2) data on traffic and road networks from 1990-2001; (3) land use 

data from the year 2001; (4) population density data from the 2000 US Census; and (5) 

numerical output from  remote sensing modeling coupled with atmospheric modeling (van 

Donkelaar et al., 2010). A deletion/substitution/addition algorithm was then implemented to 

develop the final model covariates with a cross-validated R
2
 value of 0.65. 

Covariates 

 Since this study is a methodological extension of previous work for the LA County area 

(Ghosh et al., 2012a; Wilhelm et al., 2011a), we applied similar covariates as in the  previous 

studies to evaluate PM2.5 in relation to risk of TLBW. Individual-level covariates were maternal 

age at delivery (<20 years, 20-24 years, 25-29 years, 30-34 years, ≥35 years), maternal race 

(non-Hispanic White, non-Hispanic Black, Hispanic, Asian, and Other race), maternal years of 
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education (< 9 years, 9-12 years, 13-15 years, and ≥ 16 years), parity, gestational days, gestation 

days-squared (Ghosh et al., 2012a; Wilhelm et al., 2011a) and sex of the infant.  

Statistical Analysis  

Standard Analysis  

 While our main objective was to evaluate the spatial dependency of PM2.5 effects on 

TLBW, we initially examined “global” (or L.A. County-wide) associations between PM2.5 and 

TLBW using crude-unadjusted and multivariate adjusted logistic regressions techniques. The 

intent of implementing a global fixed effects model is to replicate exposure-response 

relationships between increasing PM2.5 exposure and increasing prevalence of TLBW as 

demonstrated from previous research. The crude and multivariate models were implemented as a 

generalized linear model (glm) using the binomial family with the logistic function in the R 

statistical computing environment (R-version 3.1.2) (see supplemental materials for code 

describing the specific models employed in R (Everitt and Hothorn, 2010)). For consistency, the 

multivariate model utilized same fixed effects covariates as for the multilevel model described 

below. 

Multilevel Spatial Modeling 

 The focus of the present study was to expand on previous work by implementing a 

multilevel spatial logistic regression model that would assess whether exposure-response 

relationships vary within L.A. County. Along with the fixed effects on the covariates, we 

simultaneously included a random effect coefficient for the census tract-level effect of PM2.5 on 

log-odds of TLBW. The random air pollution effect coefficient is composed of a global intercept 

plus independent and spatial residual error terms via the Besag-York-Molly (BYM) model 

(Besag et al., 1991). Because this model includes both spatial and independently structured error 

terms, the data determined the extent of spatial smoothing employed, without requiring strong 

assumptions regarding residual spatial dependency. Further, this approach yields both a 

countywide global mean effect as well as census tract-level random coefficients indicating sub-

regional (or census tract) effects of PM2.5 on TLBW.  
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 The variance structure of the spatial component of the BYM model requires specification 

of a spatial zero-one weight matrix of dimension   by  , where   is the number of census tracts. 

Each element     of the weight matrix is one if census tract   and   are adjacent to each other, and 

zero otherwise. The ‘spdep’ package (spdep package version 0.5-77 obtained September 30 

2014) in R (R. Bivand et al., 2013; Bivand and Piras, 2015) was used to construct this 

neighborhood weight matrix and we assigned neighbors based on queens adjacency, which is 

defined as any neighboring census tract with a shared edge or vertex for a given area (i.e. census 

tract). 

 In fitting the model, we took advantage of the computational efficiency of Integrated 

Nested Laplace Approximations (INLA, version 0.0-1420281647) estimation techniques as 

implemented in the well-established R-INLA package  (Rue et al., 2015), which has been used in 

several recent studies of large dimensions (Bennett et al., 2014; Castelló et al., 2013; Lee et al., 

2013; Lee and Mitchell, 2014). The INLA approach avoids the computational burden related to 

typical Markov Chain Monte Carlo techniques (Gilks et al., 1998a) often used to fit Bayesian 

spatial models and allows accurate approximations to posterior marginal distributions of the 

model parameters (Grilli et al., 2014). 

 In the implementation of our model using R-INLA, the sub-regional-level air pollution 

effects consist of an overall fixed effect (that represents the overall mean effect) plus spatial and 

independent random residual effects as defined in the BYM model. (Rue et al., 2014, 

2009)(Martino and Rue, 2009a)(Martino and Rue, 2009)(Martino and Rue 2009)(Martino and 

Rue, 2009). Hence, each Sub-Regional air pollution effect is then obtained as the sum of the 

overall fixed effect plus spatial and non-spatial census tract-level residual terms via the linear 

combination feature in R-INLA. This allows us to obtain a posterior distribution for each Sub-

Regional-level air pollution effect,   , and to examine the spatial distribution of these effects 

throughout L.A. County.  

The full model specification is presented in equations (1) and (2) below. Our first-level 

logistic-regression model is,  

 logit            
   (1) 
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where    denotes the logit probability of TLBW for individual  ,     represents individual-level 

covariates  and associated fixed effect coefficients   ,    
 represents sub-regional random 

effects of exposure, and    denotes individual-level PM2.5 exposure. Note that      indicates 

the census tract   to which individual   belongs, so if, say, individual 3 is in census tract 

number   , then      , and    
    . There are therefore            effects of PM2.5 on 

log-odds of TLBW corresponding to each census tract,  .  

 We model the effects of PM2.5 on TLBW for each census tract,  , as 

            
 

 (2) 

where    is the overall region-wide PM2.5 effect, and    and   
 

denote spatial and independent 

residual error terms, respectively, with the restriction        imposed for indefinability 

reasons. While the independent error term is defined in the standard way as   
 

       
 ), the 

spatial error term is defined as, 

         
         

       
 

  

       
 , 

where the weights      are elements of the zero-one neighborhood adjacency matrix defined to 

be equal to one when census tracts     are adjacent and zero otherwise. This approach has been 

successfully employed in a variety of exposure/health association studies.  (See, for example, 

(Molitor et al., 2007).) 

Mapping 

 Estimates of the posterior quantities correspond to the adjusted random air pollution 

effects from the multilevel model were imported into ArcGIS 10.1 (ESRI, Redlands, CA) and 

merged with census tract boundary shapefiles to create exposure-response census tract-level 

'effect maps'. In addition to mapping the multilevel adjusted census tract mean effects, the R-

INLA package includes the 'inla.pmarginal' function that computes probabilities from the 
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posterior distribution of the marginal random effects as obtained from the linear combinations 

described above. This enabled us to map the marginal probabilities that a given census tract's 

random effect coefficient lies above zero,        . Similarly, we mapped the probability that 

a given census tract's random effect coefficient is above the adjusted global mean effect, 

        . Computation of these probabilities help illustrate where associations between PM2.5 

and TLBW are most likely to occur (see supplemental materials for requisite R-INLA code 

needed to obtain posterior probabilities). Thus, our 'effect maps' depict probabilities that the 

PM2.5 census tract-specific exposure response (   ) lies above zero (or an OR above 1) and the 

probability that a census tract-specific air pollution effect deviates from the overall average 

          . 

 Results 

Descriptive Analyses 

 Between 1995-2006 the overall prevalence of TLBW was 2.1% and the average PM2.5 

exposure was 17.04 µg/m
3
 (interquartile range= 16.25, 18.21). The spatial distribution of PM2.5 

concentrations indicated that exposures were highest within the urban core of LA County, 

specifically the southern, eastern, and northwest portions of urban LA (Appendix A, Figure A.1). 

Risk factors that were associated with TLBW included maternal age, race, level of education, 

parity, gestation length (days), gestation squared, sex of the infant (Table 2.1), and were adjusted 

for in the following models. 

PM2.5 Regression Analyses 

Standard Logistic Model  

 The final statistical analyses included 1,356,304 births from 2,033 LA County census 

tracts. In unadjusted fixed effects logistic regression, the odds of TLBW was 23.2% higher 

(OR=1.23 [95%CI: 1.16, 1.30]) per 10 µg/m
3
 increase of PM2.5. After adjusting for maternal age, 

race-ethnicity, education, parity, and infant gestation and sex, a 10 µg/m
3
 increase in PM2.5 

exposure remained associated with statistically significant increased odds of TLBW (OR=1.17; 

95%CI=1.10-1.24)(Table 2.2). The fully adjusted model results along with the model covariates 

are provided in detail within the supplementary material (Table A.1, Appendix A). 
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Multilevel Spatial Model 

 The multilevel spatial model provides PM2.5 coefficients on TLBW at a global county-

wide level (Table 2.2) and at the census tract neighborhood level. The overall mean PM2.5 

exposure-response estimate for our multilevel spatial model was similar in magnitude to the 

fixed effect logistic regression result (ORspatial=1.19 versus ORfixed=1.17, Table 2.2). The two 

maps presented in Figure 2.1 and Figure 2.3 present the probability that a given census tract's air 

pollution effect (with outcome on log-odds scale) is above zero (Figure 2.3) and the probability 

that a given census tract's effect is above the estimated overall mean effect (Figure 2.3), while 

Figure 2.2 presents the mean PM2.5 random effect per census tract. 

 For the probability effect map in Figure 2.1, the census tracts in dark brown have a >95% 

probability of an effect that is above zero (       .).  Thus, these areas represent census tracts 

where the PM2.5 exposure-response with TLBW is most likely to be positive. The dark brown 

neighborhoods in Figure 2.3 have a >95% probability for an effect above the county-wide (or 

“global”) mean effect. Hence, these areas represent census tracts that are most likely to exhibit a 

PM2.5 exposure-response that is greater in magnitude compared to the estimated mean exposure-

response relationship, which we are considering to be  'hotspots' within the context of our study. 

The hotspots appear to be concentrated in census tracts within central and south-central LA 

County (Figure 2.3).  

LA Health District Summaries 

 LA County is composed of 26 health districts created from aggregates of census tract 

boundaries for the purposes of health assessments. Therefore, to highlight the observed spatial 

patterns in Figure 2.3, from the posterior distribution of the marginal random effects we 

calculated and mapped the average probabilities for LA County health districts with respect to 

tract-level probabilities above the overall mean PM2.5 coefficient. These numerical summaries 

are simply descriptive since they were acquired by calculating the mean tract-level probabilities 

across health districts. Health districts of LA's urban core, including Central, Compton, 

Hollywood-Wilshire, Inglewood, South, Southeast, and Southwest health districts, are 

characterized by the highest probablities for PM2.5 random coefficients above the overall county 

mean PM2.5 coefficient (Figure 2.4). Thus the map suggests effect ‘hotspots’ are concentrated 



32 

 

 

within these health districts, which are generally lower income and non-white in terms of race-

ethnicity (see Appendix A, Figures A.2 and A.3).  

Discussion 

Key Findings  

 We applied Bayesian multilevel spatial modeling to examine whether the exposure-

response relationship between PM2.5 and TLBW varies spatially. Consistent with previous 

findings from LA County (Ghosh et al., 2012a; Ritz et al., 2007a; Wilhelm et al., 2011a), we 

observed an overall relationship between increasing  PM2.5 exposure and increasing risk of 

TLBW. More important, we observed substantive variations across census tracts within LA 

County in the exposure-response between PM2.5 and TLBW. Higher probabilities for positive 

PM2.5 effects were mostly concentrated in central LA and south central LA sub-regions. Relative 

to the mean regional PM2.5 effect on the log odds of TLBW, several census tracts located in 

central LA and south-central LA exhibited higher exposure-response relationships in terms of 

effect size and posterior probabilities for effects above the mean (        ) > 0.95). These 

observations suggested that PM2.5 related adverse effects on birth weight may be modified by 

place. 

 A number of plausible explanations may account for the spatial patterning in the 

exposure response between PM2.5 exposures and TLBW observed in our study. Firstly, 

regionally varying and spatially correlated neighborhood contextual factors may enhance 

exposure gradients within an urban setting and other spatially structured individual factors may 

further create susceptibility to adverse birth outcome by interacting with PM2.5. Regionally 

varying and overlapping aspects of neighborhoods with the potential to enhance exposure to air 

pollutants or susceptibility to air pollution related health effects may include (but are not limited 

to): built environment factors (i.e. age of homes, homes set back further from the curb along 

heavily trafficked roadways) (Ponce, 2005a; Ramachandran et al., 2003); spatially correlated 

variation in the types of PM2.5 sources (e.g. large truck traffic) and thus PM2.5 component 

mixtures (Laurent et al., 2014a; Wilhelm et al., 2011a); the presence of older and higher 

pollution emitting vehicles, and neighborhood SES (Ponce, 2005a)(Lane et al., 2008)(Lane et al. 

2008). For example, (Singer and Harley, 2000) observed that older vehicles tended to emit 

(E) 



33 

 

 

higher air pollutant levels relative to newer vehicles within the LA area, and that vehicular 

emissions tended to be higher in low income areas compared to higher income areas (even for 

vehicles of the same age). Individual-level differences that display spatial clustering may also 

partially explain spatial patterns in birth outcomes risks; such as psychosocial (Ghosh et al., 

2010b), occupational (Horner and Mefford, 2007; Ritz et al., 2007a), or nutritional factors 

(Jedrychowski et al., 2010; Lane et al., 2008), as well as individual home environments (i.e. 

home insulation or access to  air conditioning (Ghosh et al., 2013b; Jerrett et al., 2005; Ponce, 

2005a)). For instance, (Ritz et al., 2007a) found that parous women in LA without an occupation 

outside the home during the last 6 weeks of the pregnancy who were highly exposed to traffic-

related air pollution had higher odds for preterm birth than exposed parous women working 

outside the home, illustrating the potential impact of exposure misclassification when sing a 

home address. In another study we conducted in LA (Ponce, 2005a) individuals’ access to health 

insurance and their race, as well as neighborhood level factors such as SES and the physical 

environment (i.e. proximity to air pollution-related traffic and winter season) acted in concert to 

increase susceptibility to adverse pregnancy outcomes across LA county census tracts. Taken 

together this suggests a rather complex set of individual- and neighborhood-level social, cultural 

and environmental contributors to adverse birth outcomes that vary over space and may act on 

different biologic pathways to impair growth of the fetus resulting in TLBW, as suggested by the 

spatially varying effects estimated in our study. 

 In addition to spatial clustering of neighborhood and individual determinants and effect 

measure modifiers for birth outcomes, multi-pollutant mixtures in urban areas may create 

gradients in effects between Sub-Regions (Levy et al., 2013b; Novák et al., 2014). While multi-

pollutant mixtures may be more toxic in terms of birth outcomes, our study did not explicitly 

account for pollutant mixtures. While inclusion of a spatial random effects term may have 

mitigated this limitation to some extent − since multiple pollutant profiles have been observed to 

be clustered spatially (Austin et al., 2012a) − this is an important limitation of this study. 

Furthermore, it cannot be ruled out that neighborhood-level and individual-level susceptibility 

and pollutant mixtures co-occur and together contribute to the observed spatially varying effect 

estimates seen in our study. Within regions of CA, such geographic-based susceptibility may be 

particularly acute. For instance, countywide studies in three California counties (Alameda, LA 
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and San Diego) found that, while concentrations of individual pollutants such as diesel PM, 

NO2, and PM2.5 were statistically significantly higher within socioeconomically disadvantaged 

compared to less disadvantaged communities, when cumulative exposures to diesel PM, NO2, 

and PM2.5 were considered, the relationship between SES and exposure was stronger (Su et al., 

2012). Overlap of environmental and SES risk factors that can enhance neighborhood-level 

susceptibility has been reported previously (Jerrett and Finkelstein, 2005; Morello-Frosch and 

Shenassa, 2006). 

Spatial Dependency, Air Pollution, and Birth Outcome Studies 

 A multilevel spatial hierarchical modeling approach is established as a flexible means of 

addressing spatial structure in the exposure-response relationship between air pollution and 

health effects (Boehm Vock et al., 2014; Dominici et al., 2000; Lee et al., 2013) and may 

therefore highlight notable localized effects (Chakraborty, 2012; Dominici et al., 2000; Earnest 

et al., 2007). A major statistical advantage gained in using this approach to modeling a spatially-

structured exposure-response relationship is to maximize statistical power by using data in all 

sub-regions to inform the analysis, rather than calculating separate regression models for each 

sub-region (Gelman and Hill, 2006a) . Multilevel modeling approaches which incorporate spatial 

smoothing allow information from nearby regions to potentially exert more weight and influence 

compared to distant regions (Banerjee et al., 2004; Zhuoqiong He, 2000).  

 A strength of our approach is the inclusion of individual-level pollutant effect estimates 

that are modeled with spatial structure at the census-tract level. Some air pollution and birth 

outcome studies have accounted for spatial dependency in the residuals, but still assume a global 

effect due to exposure (Berrocal et al., 2011; Castelló et al., 2013; Thompson et al., 2014; 

Williams et al., 2007). A spatial correlated autoregressive (CAR) model has been applied by 

(Berrocal et al., 2011) to examine the effect of CT-level PM2.5 on continuous birth weight in 

North Carolina. An important distinction between the present study and Berrocal et al (2011) is 

that we applied a spatially structured random air pollution effect term, whereas Berrocal et al 

(2011) implemented a random intercept and did not explore the possibility of geographic 

disparities in the PM exposure-response relationship. A study by (Thompson et al., 2014) 

examined the exceedance probability of very LBW risks in relation to proximity to National 
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Priorities List Superfund Sites in Texas by modeling the spatially structured error term using 

Poisson regression. This study, however, used aggregated outcomes for a given geographic area 

and did not include individual-level air pollution estimates of exposure. A study conducted in 

Spain that examined municipal-level risks of PTB and LBW with proximity to different types of 

industries modeled spatially varying effects using Poisson regression with a spatial error term 

and an unstructured error term (Castelló et al., 2013). A major difference in the Castelló et al. 

(2013) study is that these researchers, again, used aggregated outcome data and did not relate 

birth outcomes with individual-level estimates of air pollutant exposures. A study by (Williams 

et al., 2007) applied a linear hierarchical random effects model with spatially unstructured 

random coefficients and found substantial variation across census tracts regarding the estimated 

effects of maternal residential proximity to hazardous air pollution sites for reducing average 

birth weight. Our results also found varying effects by census tract; however, Williams et al 

(2007) did not use air pollution estimates but rather the proxy measure of spatial proximity to 

hazardous air pollution emitting sites and did not apply spatial structure to the random 

coefficients. While it is clear from these studies that multilevel modeling is capable of revealing 

important spatial processes regarding air pollution-related reductions in birth weight; our work 

goes beyond previous findings by not only applying spatial structure to pollutant effects but 

illustrating spatially varying effects while adjusting for individual level confounders. 

Study Limitations 

 Our study is limited by the presence of unmeasured confounders. Most notably we lack 

information on maternal smoking or maternal exposure to indoor smoking. However, our 

previous research (Ritz et al., 2007a) found that adjustment for maternal or household smoking 

did not alter the strength of air pollution effects on adverse birth outcomes in LA County. Our 

study also did not account for spatially varying housing characteristics (e.g. age of housing stock, 

substandard housing, or lack of air conditioning) that could potentially exacerbate gradients in 

intra-urban exposures; even between neighborhoods with similar ambient PM concentrations 

(Baxter et al., 2007; Burgos et al., 2013; Clougherty et al., 2011; Jerrett and Finkelstein, 2005; 

Lv and Zhu, 2013; Meng et al., 2005; Ramachandran et al., 2003; Reid et al., 2009). 

Additionally, PM-related birth outcome risks may be modified by individual-level or 

neighborhood-level susceptibility factors that are often spatially patterned, such as SES, racial-
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ethnic status, maternal body mass index, maternal nutrition status, and other adverse 

neighborhood conditions, e.g., poor access to healthy foods or green spaces (English et al., 

2003b; Hystad et al., 2014a; Jedrychowski et al., 2010; Kannan et al., 2006; Lakshmanan et al., 

2015; Lane et al., 2008; Laurent et al., 2014a; Ponce, 2005a; Schempf et al., 2009).  

 While the PM2.5 LUR estimates in our study best represents the spatial contrasts of 

chronic exposures at maternal residences throughout LA county, our estimates lacked the 

temporal resolution to consider exposures during specific pregnancy time periods. This limitation 

may obscure important biologic differences with regard to birth outcome risks associated with 

different trimester exposure windows. Studies that have relied upon nearest site monitors for 

PM2.5 estimation (Ghosh et al., 2012a; Wilhelm et al., 2011a) are better equipped to capture the 

temporal contrasts in maternal exposures, however, these studies lacked the spatial resolution to 

assess spatially varying effects of PM2.5. For instance, while PM2.5 may be fairly homogenous 

over a large region, it is likely that local-scale sources of PM2.5 pollution carry greater 

importance when examining spatially varying TLBW effects (Laurent et al., 2014a, 2013b).  

Therefore, it was determined that the value in obtaining high spatial resolution was an acceptable 

temporal tradeoff, given the nature of our research question. Furthermore, we are confident in the 

ability of our exposure model to assess TLBW risks since our overall fixed effect PM2.5 

exposure-response estimate was consistent in terms of effect size when compared with previous 

research findings (Dadvand et al., 2013; Ghosh et al., 2012a; Hyder et al., 2014; Laurent et al., 

2014a; David M. Stieb et al., 2012; Wilhelm et al., 2011a). For example, in the present study, we 

found an OR of 1.03 per IQR increase in maternal PM2.5 exposure (Table 3.2). Ghosh et al. 

(2012) estimated maternal PM2.5 concentrations, using an inverse distance weighting  procedure 

based on governmental air monitoring stations for the years 2000-2006 in LA County, and found 

an OR of 1.04 per interquartile range (IQR) increase for entire pregnancy PM2.5 exposure. 

Recently, Laurent et al. (2014) estimated an OR of 1.025 per IQR increase in maternal PM2.5 

exposure for LA County births between 2001-2008. Notably, Laurent et al. (2014) found that 

gasoline PM2.5 exposure imparted the highest risk of TLBW compared to all other sources of 

PM2.5 within LA. In a separate PM2.5 and birth outcomes study, (Dadvand et al., 2013) pooled 

multiple PM2.5 and TLBW analyses from seven different country study sites, despite large 

heterogeneity between the country-specific PM2.5 effect estimates, they estimated a 10% 
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(95%CI: 3%, 18%) adjusted increased odds of TLBW for a 10-unit increase in PM2.5 exposure, 

which is comparable to our finding of a 17% increase per 10-unit increase in PM2.5 exposure 

(Table 3.2). 

Public Health Implications 

 Findings from our research is highly relevant to environmental health disparities and 

regulatory policy. First of all, our study implies that uniform regulatory standards geared towards 

reducing public health impacts from air pollution may not be sufficiently protective of 

susceptible sub-populations, and that such policies may need to be spatially tailored to protect 

these sub-populations. Secondly, our approach could identify 'hotspots' to help guide spatially 

targeted public health interventions intended to protect susceptible sub-populations from outdoor 

air pollution health effects (e.g., for example, by installing HEPA filters and air conditioning to 

reduce indoor exposures). Lastly, while our study found large within-county differences in effect 

estimates and thus the potential for PM2.5 effect 'hotspots', additional data on potential modifying 

factors by neighborhood (i.e. PM2.5 composition or neighborhood food environment) are needed 

to more fully explain the causes for this apparent spatial variation in the exposure-response 

relationship between PM2.5 and TLBW. 

Conclusion 

 We found that maternal exposure to PM2.5 was associated with higher odds of TLBW in 

LA County. Moreover, our results indicate that the spatial patterning of the exposure-response 

relationship for PM2.5 and TLBW needed to be considered. While previous research conducted in 

LA County has found variation of pollutant effects on adverse birth outcomes based on 

neighborhood factors such as SES, our results take these previous findings a step further by 

identifying neighborhood TLBW 'hotspots' most likely to be affected negatively by air pollution. 

Also, compared to global effect estimates, our findings suggest the potential value of modeling 

spatial random air pollution effect coefficients in identifying disproportionately impacted 

communities as well the relative probability of localized exposure-response estimates. Finally, 

additional research is needed in hotspot areas to explore which spatially-based factors may help 

to better understand these differences between neighborhoods. 



38 

 

 

Acknowledgments 

"Research described in this article was conducted under contract to the Health Effects Institute 

(HEI), an organization jointly funded by the United States Environmental Protection 

Agency (EPA) (Assistance Award No. R-82811201) and certain motor vehicle and engine 

manufacturers. The contents of this article do not necessarily reflect the views of HEI, or its 

sponsors, nor do they necessarily reflect the views and policies of the EPA or motor vehicle and 

engine manufacturers.” 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



39 

 

 

 

Table 2.1. Demographic Characteristics Overall and by TLBW and Crude Odds Ratios for TLBW (N=1,359,284). 

 

Parameter
 

Overall  

(N = 1,359,284) 

TLBW Cases 

(N=27,714) 

Non Cases 

(N=1,331,570) 

Crude TLBW 

n % or mean (95%CI) n % (95%CI) n % (95%CI) OR (95%CI) 

Gestational 

Age (days) 

 Mean = 278.91 

(278.92, 278.89) 

     

Sex of Infant        

Male 688568 50.66 

(50.57, 50.74) 

11890 42.90 

(42.32, 43.49) 

676678 50.82 

(50.73, 50.90) 

1.00 

Female 670716 49.34 

(49.26, 49.43) 

15824 57.10 

(56.51, 57.68) 

654892 49.18 

(49.10, 49.27) 

1.38 

(1.34, 1.41) 

Maternal Age         

<20 years 143265 10.54 

(10.49, 10.59) 

4090 14.76 

(14.34, 15.18) 

139175 10.45 

(10.40, 10.50) 

1.00 

20 - 24 years 318122 23.40 

(23.33, 23.47) 

6959 25.11 

(24.60, 25.62) 

311163 23.37 

(23.30, 23.44) 

0.76 

(0.73, 0.79) 

25 - 29 years 364301 26.80 

(26.73, 26.86) 

6581 23.75 

(23.25, 24.25) 

357720 26.86 

(26.79, 26.94) 

0.63 

(0.60, 0.65) 

30 - 34 years 322341 23.71 

(23.64, 23.79) 

5674 20.47 

(20.00, 20.95) 

316667 23.78 

(23.71, 23.85) 

0.61 

(0.59, 0.64) 

≥35 years 211255 15.54 

(15.48, 15.60) 

4410 15.91 

(15.48, 16.35) 

206845 15.55 

(15.47, 15.60) 

0.73 

(0.69, 0.76) 

Race-

Ethnicity 

       

White 249759 18.37 

(18.31, 18.44) 

3605 13.01 

(12.61, 13.41) 

246154 18.49 

(18.42, 18.55) 

1.00 

 

Hispanic 852886 62.75 

(62.66, 662.83) 

16260 58.67 

(58.09, 59.25) 

836626 62.83 

(62.75, 62.91) 

1.33 

(1.28, 1.38) 

Black 107237 7.89 

(7.84, 7.93) 

4175 15.06 

(14.65, 15.49) 

103062 7.74 

(7.69, 7.79) 

2.77 

(2.64, 2.89) 

Asian 94764 6.97 

(6.93, 7.01) 

2097 7.57 

(7.26, 7.88) 

92667 6.96 

(6.92, 7.00) 

1.55 

(1.46, 1.63) 

Other 54638 4.02 

(3.99, 4.05) 

1577 5.69 

(5.42, 5.97) 

53061 3.98 

(3.95, 4.02) 

2.03 

(1.91, 2.15) 

Maternal 

Education  

       

0-8 years 206487 15.19 

(15.13, 15.25) 

4194 15.13 

(14.71, 15.56) 

202293 15.19 

(15.13, 15.25) 

1.00 

 

9-12 years 666565 49.04 

(48.95, 49.12) 

14867 53.64 

(53.06, 54.23) 

651698 48.94 

(48.86, 49.03) 

1.10 

(1.06, 1.14) 

13-15 years 232319 17.09 

(17.03, 17.15) 

4453 16.07 

(15.64, 16.51) 

227866 17.11 

(17.05, 17.18) 

0.94 

(0.90, 0.98) 

≥16 years 253913 18.68 

(18.61, 18.75) 

4200 15.15 

(14.73, 15.58) 

249713 18.75 

(18.69, 18.82) 

0.81 

(0.78, 0.85) 

Parity        

0 522598 38.45  

(38.36, 38.53) 

13257 47.84 

(47.25, 48.43) 

509341 38.25 

(38.17, 38.33) 

1.00 

≥1 836686 61.55 

(61.47, 61.64) 

14457 52.16 

(51.57, 52.75) 

822229 61.75 

(61.67, 61.83) 

0.68 

(0.66, 0.69) 
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Table 2.2. Association Between PM2.5 Exposure and TLBW using Standard and Multilevel Spatial 

Regression Methods (N=1,356,304) 

  Standard Model
a     

 Spatial Multilevel Model
a       

Exposure OR (95% CI)
b 

 OR (95% CI)
c 

PM2.5 (per 10µg/m
3
) 1.17 (1.10, 1.24)

d 
 1.19 (1.02, 1.39) 

a
Adjusted for sex of the infant, gestation age of infant, gestation age squared, maternal age, maternal race, 

maternal education level, and parity 
b
OR per interquartile range = 1.03 (95% CI: 1.02, 1.04), IQR=1.96µg/m

3
 

c
OR per interquartile range = 1.03 (95% CI: 1.00, 1.07), IQR=1.96µg/m

3
 

d
For all of LA County, including rural areas, OR = 1.17 (1.10-1.24) 
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Figure 2.1. Probability Map
a
 for Census Tract PM2.5 effects for TLBW (       ) after adjusting for maternal age, 

race-ethnicity, education, parity, and infant gestation+gestation squared, and infant sex.  
a Areas colored white are either rural designated areas or areas outside of LA County. 
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Figure 2.2. Census Tract PM2.5 effects for TLBW (mean) after adjusting for maternal age, race-ethnicity, education, 

parity, and infant gestation+gestation squared, and infant sex. 

 

Mean PM2.5 Effects (quintiles)

-0.061 - 0.005

0.006 - 0.017

0.018 - 0.025

0.026 - 0.035

0.036 - 0.110

Railways

Major Roadways

Pacific Ocean± 0 10 205 Miles



43 

 

 

 
Figure 2.3. Probability Map for Census Tract PM2.5 effects for TLBW (        ) after adjusting for maternal age, 

race-ethnicity, education, parity, and infant gestation+gestation squared, and infant sex. 
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Figure 2.4. Mean Probabilities for Census Tract Random Effect Above Global Mean Effect by LA County Health Districts. 
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Abstract 

Research indicates that multiple outdoor air pollutants and adverse neighborhood conditions are 

spatially correlated. Yet health risks associated with concurrent exposure to air pollution 

mixtures and clustered neighborhood factors remain underexplored. Statistical models to assess 

the health effects from pollutant mixtures remain limited, due to problems of collinearity 

between pollutants and area-level covariates, and increases in covariate dimensionality. Here we 

identify pollutant exposure profiles and neighborhood contextual profiles within Los Angeles 

(LA) County. We then relate these profiles with term low birth weight (TLBW). We used land 

use regression to estimate NO2, NO, and PM2.5 concentrations averaged over census block 

groups to generate pollutant exposure profile clusters and census block group-level contextual 

profile clusters, using a Bayesian profile regression method. Pollutant profile cluster risk 

estimation was implemented using a multilevel hierarchical model, adjusting for individual-level 

covariates, contextual profile cluster random effects, and modeling of spatially structured and 

unstructured residual error. Our analysis found 13 clusters of pollutant exposure profiles. 

Correlations between study pollutants varied widely across the 13 pollutant clusters. Pollutant 

clusters with elevated NO2, NO, and PM2.5 concentrations exhibited increased log odds of 

TLBW, and those with low PM2.5, NO2, and NO concentrations showed lower log odds of 

TLBW. The spatial patterning of pollutant cluster effects on TLBW, combined with between-

pollutant correlations within pollutant clusters, imply that traffic-related primary pollutants 

influence pollutant cluster TLBW risks. Furthermore, contextual clusters with the greatest log 

odds of TLBW had more adverse neighborhood socioeconomic, demographic, and housing 

conditions. Our data indicate that, while the spatial patterning of high-risk multiple pollutant 

clusters largely overlaps with adverse contextual neighborhood cluster, both contribute to TLBW 

while controlling for the other.  
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Introduction 

 Evidence has been accumulating that birth outcomes may be particularly sensitive to air 

pollution mixtures, specifically components related to traffic sources of airborne particulate 

matter (PM) (Bell et al., 2010; Laurent et al., 2014a; Wilhelm et al., 2011a). While earlier 

research has linked increased prevalence of term low birth weight (TLBW) with various outdoor 

air pollutants including NO2, NO, and PM2.5 (Geer, 2014; Ritz and Wilhelm, 2008a), most 

evidence relied on single pollutant modeling of exposures (Ritz and Wilhelm, 2008a). A number 

of studies (Brauer and Tamburic, 2009; Ghosh et al., 2012b; Gouveia et al., 2004; Laurent et al., 

2014a; Le et al., 2012; Morello-Frosch et al., 2010b; Wilhelm et al., 2011a, 2011b) investigated 

exposures to multiple pollutants in relation to birth outcomes; however, these studies are limited 

in assessing which combination of pollutants are most hazardous or how multipollutant health 

effects vary spatially. Despite there being no single exposure-measure-framework to holistically 

address the health effects of multipollutant exposures (Oakes et al., 2014), investigating health 

effects of profiles of multiple pollutants using clustering techniques has recently shown promise 

(Gu et al., 2012; Molitor et al., 2014b; Papathomas et al., 2010; Pirani et al., 2015b; Qian et al., 

2004b; Zanobetti et al., 2014a). 

Multipollutant Exposures 

 Considerable intra-urban spatial variations in outdoor air pollution concentrations exists, 

and recent research indicates that between-pollutant correlations and PM2.5 composition exhibit 

highly localized spatial patterns to create complex mixtures (Austin et al., 2013, 2012b; Bell et 

al., 2011; Geer, 2014; Hasheminassab et al., 2014; Houston et al., 2014; Janhäll et al., 2012; 

Laurent et al., 2014a; Levy et al., 2013b; Molitor et al., 2011; Monn, 2001; Tsai et al., 2015). 
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Spatially correlated air pollution mixtures correspond to localized sources, such as 

transportation-related emissions (Laurent et al., 2014a), local industrial activities (Morello-

Frosch et al., 2002; Zhu et al., 2011), or small-area commercial land uses (Morello-Frosch et al., 

2002, 2001). Factors that combine to determine exposure to spatially correlated pollutants from a 

particular source are complex and diverse, e.g., traffic-source driven exposures are influenced by 

traffic volumes and congestion, proximity to traffic, the types of fuel and engines, operating 

conditions of emitting sources, types of emitting sources, background air pollution levels, local 

meteorology, chemical reactions between pollutants, and local topographies (Austin et al., 

2012b; Boehmer et al., 2013; Cho et al., 2009; Greco et al., 2007; Hu et al., 2012; Janhäll et al., 

2012; U.S. EPA, 2008; Zhang and Batterman, 2013).  

 Correlations across different pollutants hinders our ability to assess their individual or 

combined health effects, since estimates of effects may become unstable when adjusting for co-

pollutants using regression techniques (Mauderly et al., 2010). Correlations between PM2.5 

concentrations and nitrogen oxides (NO2 and NO [NOx]) are typically weak to moderate (Ghosh 

et al., 2013b; Laurent et al., 2014a; Levy et al., 2013b). However, such correlations can vary 

spatially (Levy et al., 2013b; Tsai et al., 2015) based upon whether the particulates represent 

primary PM2.5 (particles emitted directly from the source, e.g. fuel combustion (Fine et al., 

2008)) or secondary PM2.5 (particles formed in the atmosphere (Fine et al., 2008)). Therefore, 

since some PM2.5 components represent "fresh" traffic emissions (i.e. ultrafine PM and black 

carbon), they can exhibit high correlations with outdoor concentrations of NOx, as studies of 

urban air pollution from Asia, Europe, and North America demonstrate (Brauer et al., 2011; 

Dionisio et al., 2014; Janhäll et al., 2012; Levy et al., 2013b; Tsai et al., 2015; Wang et al., 

2014). Furthermore, the spatial variation in between-pollutant correlations also suggests a strong 
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potential for a unique spatial pattern of multipollutant-related health risks, yet research on this 

question is lacking. 

 Contextual Factors 

 Neighborhood-level "contextual" factors may also affect risk of birth outcomes (English 

et al., 2003b; Morello-Frosch and Shenassa, 2006). Contextual effects are non-chemical stressors 

(Lewis et al., 2011) that arise when grouped neighborhood-level factors − such as socio-

demographic or built environment (e.g. housing as one component of the built environment) 

factors − influence health outcomes across populations (Sheppard et al., 2012). Data from 

Southern California indicates that spatially clustered socioeconomic deprivation and racial 

segregation correlate with air pollution exposures, including pollutant mixtures (Molitor et al., 

2011; Morello-Frosch et al., 2011, 2002; Morello-Frosch and Shenassa, 2006; Su et al., 2012). In 

addition, compared to newer homes, older homes are shown to have higher indoor air pollution 

levels within LA County (Spengler et al., 1994). Older housing stock may further correlate with 

higher poverty, residential racial segregation patterns, substandard housing conditions, and a lack 

of compliance with building or sanitary codes (Shennassa et al, 2004). Moreover, research from 

LA County indicate that housing ventilation conditions may be associated with TLBW (Ghosh et 

al., 2013b).  

 Air pollution and birth outcomes research studies, however, generally do not account for 

spatial clustering of multiple neighborhood-level vulnerabilities (i.e. race-ethnicity, poverty, and 

adverse housing conditions etc.) related to exposure. This may confound multipollutant 

exposure-response relationships (Geer, 2014; Morello-Frosch et al., 2011; Morello-Frosch and 

Shenassa, 2006; Ponce, 2005b; Ritz and Wilhelm, 2008a). Given this gap in air pollution and 

health effects literature, our study includes contextual factors, as clustering covariates, to better 
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control for highly correlated contextual factors known to influence differential exposures across 

socio-demographic groups and risk of TLBW. 

 Study Objectives 

 The primary objectives of our study are to first identify profiles of exposure to multiple 

different air pollutants (pollutant profiles) for pregnant women within LA County, and secondly 

to assess whether and which pollutant profiles relate with elevated prevalence of TLBW. 

Additionally, our approach identifies pollutant profiles most likely related to primary traffic 

emissions, based on examination of the spatial patterning of pollutant exposure profiles and well 

established pollutant source emissions relationships.  

Methods 

Study Population and Birth Outcomes 

 Electronic birth certificates from the California Department of Public Health provided the 

data on baby’s birth weight and individual-level covariates for LA County births during the years 

2000-2006. Individual data from the birth records included maternal characteristics (age, race 

and ethnicity, education, total number of previous maternal births, and residential address) and 

information on the infant and birth (date of birth, abnormalities, birth season, gestational age at 

birth [as determined by self report of last menstruation], birth weight and baby’s sex). The 

dataset was restricted to singleton births without apparent abnormalities, while births with 

extreme gestational days (less than 140 days or greater than 320 days) and births with weight less 

than 500g or greater than 5000g were excluded from the analysis. Such extreme values are likely 

attributable to recording errors. These data restrictions provided a sample size of 899,554. 

Finally, we defined TLBW as full-term (≥259 gestation days) infants with a birth weight <2500 

grams, which further restricted the study population to term births, to provide a final sample size 

of 804,726 to assess the relationship between TLBW with neighborhood-level pollutant profile 
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exposures. Human subjects research was approved through the University of California, Los 

Angeles' Office of the Human Subjects Protection Program, the California Committee for the 

Protection of Human Subjects, and the University of Southern California's Office for the 

Protection of Research Subjects. Geocoding of residential addresses are explained elsewhere 

(Goldberg et al., 2008). 

Exposure Estimation 

Two separate land use regression (LUR) models estimated individual-level exposures for 

PM2.5, NO, and NO2 (Beckerman et al., 2013a, 2013b; Su et al., 2009). LUR estimates were 

temporally adjusted to derive the entire pregnancy average exposures. LUR exposure predictions 

for NO and NO2 were based on traffic volumes, truck routes, road networks, land use data, 

satellite-derived vegetation greenness and soil brightness, truck route slope gradients, and air 

monitoring data. NO2 and NO data were collected during 2-week time periods in Summer of 

2006 and Winter of 2007, from over 200 monitoring locations (Su et al., 2009). The PM2.5 

exposure estimates came from a LUR model that utilized long-term governmental monitoring 

data of PM2.5 measurements collected between 1998 through 2002 (Beckerman et al., 2013b). A 

machine learning deletion/substitution technique (Beckerman et al., 2013a) assessed as many as 

70 covariates to develop the final PM2.5 LUR model, such as land use data (i.e. agricultural, 

barren, all developed land, high-density development, green space, water, and wetland), long-

term traffic counts (1990-2001), and road networks from the year 2000 (Beckerman et al., 2013a; 

Jerrett et al., 2013).  

We adjusted LUR exposure estimates temporally to derive "seasonalized" values that 

correspond to each pregnancy time span. For temporal adjustments, we first used daily air 

monitoring data from LA County between the years 1999-2006, for all monitors to calculate an 

overall daily average for PM2.5, NO2, and NOx. Pregnancy time period averages were then 
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calculated for each pregnancy from these daily averages. As NO was not directly measured by 

these monitors, we subtracted the NO2 pregnancy average from the NOx pregnancy average to 

derive NO pregnancy time period estimates. Temporal adjustments of the LUR estimates for 

NO2 and NO was achieved using the following equation, which is similar in approach to our 

earlier work (see (Ghosh et al., 2012b)):  

                                    
                                     

                                         
  

                                 
                                        

                                           
  

Since the PM2.5 LUR estimates represent long-term estimates spanning the study time period and 

some pregnancies began in 1999, we performed seasonal adjustments with the following 

equation:  

                                     
                                       

                                                     
  

Such temporal adjustment via region-wide monitoring station ratios has been validated for the 

purposes of estimating pregnancy exposures in birth outcomes studies (Ross et al., 2013).  

All of the available data from the temporally adjusted LUR model estimates (N=899,554) 

were then averaged over census block groups to develop air pollution exposure profiles at the 

census block group level. Data aggregation at the census block group-level for individual 

estimates was performed since we were interested in assessing between neighborhood 

multipollutant exposure-related TLBW risks. Moreover, implementation of the Bayesian profile 

regression using individual-level estimates with a dataset as large as ours is not feasible given the 

current computational limitations of the R PReMiuM package (described below). 

Bayesian Profile Regression 

 We developed the profile clusters using a non-parametric dimension reduction technique 

known as Bayesian profile regression, based on commonly used Dirichlet process mixture model 
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methods (Neal, 2000). Profile regression is set in a Bayesian framework using Markov chain 

Monte Carlo (MCMC) methods. Bayesian profile regression uses covariate values to observe 

joint patterns within the covariate data. This approach was used in recent studies (Hastie et al., 

2013; Molitor et al., 2014b, 2011, 2010b; Papathomas et al., 2012),  including environmental 

epidemiology studies (Papathomas et al., 2010; Pirani et al., 2015b; Vrijheid et al., 2014). This 

clustering approach is advantageous because it reduces the dimensionality of the covariate data 

and allows for examining health risks as they relate to joint patterns of exposure, while avoiding 

the pitfalls of exposure variables that are highly collinear. This approach is also quite flexible 

because it does not rely on setting a total number of allowable clusters, as seen with k-means 

clustering procedures (Austin et al., 2013, 2012b; Gu et al., 2012). We implemented the profile 

regression using the PReMiuM package in R (Liverani et al., 2015). Since our interest is in 

obtaining clustering that best fits the data for sub-regions within the LA County area, we utilized 

a feature of the PReMiuM package that excludes the outcome variable from the profile 

regression model (Liverani et al., 2015). We relied on "hard clustering” (Fang et al., 2011) in the 

sense that a census block group's final allocation is to a single cluster. Cluster allocation is based 

on the “best” clustering derived from the Bayesian averaging process, rather than probabilistic 

allocation to several different clusters simultaneously (as in fuzzy [or soft] clustering). Briefly, 

for each census block group,  , a covariate profile is defined as,    = (  ,   , ...,   ), where every 

covariate,   ,    , ...,  , within each profile signifies a level of exposure for covariate   in 

region  . The primary model for cluster profiles was defined by a multivariate normal mixture 

model (Jain and Neal, 2004) that further integrates a Dirichlet process prior into the mixing 

distribution. For greater details on this Bayesian profile regression approach, the reader is 
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referred to other recent works (Hastie et al., 2013; Liverani et al., 2015; Molitor et al., 2014b, 

2011, 2010b; Papathomas et al., 2012, 2010).  

 We performed two separate profile regressions to develop a set of two unique profile 

clusters to fit in the TLBW risk model. The first clustering procedure developed pollutant-only 

profile clusters. The second clustering procedure developed contextual-only profile clusters. The 

co-pollutants for our pollutant-only profile regression included average census block group-level 

concentrations for NO2, NO, and PM2.5. Furthermore, since our LUR estimates were seasonalized 

and thus provide temporally resolved estimates of exposure for each pregnancy, we also 

performed pollutant profile regression across different birth seasons and across different birth 

years. We present the results of these seasonal and yearly pollutant clusters in the supplemental 

materials (Appendix B, Figures B.1-B.4), however, in this paper we focus on the overall 

pollutant profiles as described above since the spatial patterning and between-pollutant 

correlations were very stable across each of these different seasonal and yearly pollutant profile 

cluster analyses. 

 The contextual-only exposure profile regression utilized year 2000 U.S. census data and 

included census block group-level race-ethnicity (percent non-Hispanic White, percent non-

Hispanic Black, and percent Hispanic), median household income, and percent of homes built 

prior to year 1950. Even though our multivariate risk model (described below) adjusts for 

individual-level maternal race-ethnicity, we included census block group-level racial/ethnic 

composition as a clustering contextual covariate under the rationale that area-level racial/ethnic 

composition may act as a contextual risk factor for TLBW separate from an individual's race-

ethnicity (Debbink and Bader, 2011). Similarly, while our multivariate model adjusts for 

maternal education as a marker of individual-level SES, we included census block group level 
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median household income as a contextual SES variable in the clustering procedure, under the 

same rationale that area-level SES acts as a contextual risk factor for TLBW independent of 

individual-level SES (Grady, 2011, 2006). We included the percentage of homes built before 

1950 since disparities in housing quality and other housing characteristics correlated with older 

housing may act as an important contextual risk factor in TLBW risk (Ghosh et al., 2013b; 

Grady, 2011). Individual mothers were then assigned to both a pollutant cluster and a contextual 

cluster as determined by which census block group the mother resided in according to their 

address at time of delivery. 

Multilevel Risk Model 

 Our multilevel logistic regression model was set in a Bayesian framework with pollutant 

profile clusters and contextual profile clusters used as separate random effects variables in the 

regression equation, along with spatially structured and unstructured independent error terms fit 

as additional random effects. The model specification is detailed in turn: 

                      
                        

                           (1) 

where    denotes the logit of TLBW (yi =1) for individual  ,    represents the individual-level 

covariate fixed effects,   
                                          

              represents the 

random effects for the pollutant-clusters and   
                                            

      

        represents the contextual cluster random effects. Following Gelman et al., (2006), we 

use the notation      to denote the pollutant profile group   to which individual   belongs and 

     to denote the contextual profile group   to which individual   belongs. Thus, each pollutant 

random error term represents the variation in TLBW prevalence in the pollutant profile clusters 

and likewise each contextual random error term represents the variation in TLBW in the 

contextual clusters. In other words, the cluster random effect can be interpreted as measuring the 
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change in baseline log odds of TLBW for individual i in cluster k, when all other covariates in 

the model are set to zero (see (Molitor et al., 2010b).  

 Regarding the spatial and independent residual error terms, here    and    denote spatial 

and independent residual error terms, respectively, with the restriction        imposed for 

indefinability reasons. While the independent error term is defined in the standard way as 

         ), the spatial error term is defined as, 

         
         

       
 

  

       
 , 

where the weights      are elements of the zero-one neighborhood adjacency matrix defined to 

be equal to one when census tracts     are adjacent and zero otherwise. This approach 

implements the Besag-York-Molly (BYM) model (Besag et al., 1991) and has been successfully 

employed in a variety of exposure/health association studies ((Molitor et al., 2007). 

 Given the large number of records in the dataset, we “pre-clustered” exposure profiles as 

described in our clustering section and then used the R-INLA (integrated nested Laplace 

approximations) package to implement the Bayesian multilevel random effects model described 

in equation (1) above. R-INLA estimates Bayesian posterior marginal distributions (Rue et al., 

2014; Rue and Martino, n.d.) without relying on computationally intensive Markov chain Monte 

Carlo techniques (Gilks et al., 1998b). 

Assessing Uncertainty in Pollutant Random Effects 

 As our analysis is in a Bayesian framework, with random effects terms for each pollutant 

cluster and for each contextual cluster, we assessed the uncertainty with respect to the random 

effect for each cluster on the baseline log odds of TLBW. For instance, we calculated the 

posterior probability that a specific profile cluster's posterior distribution of baseline log odds for 

TLBW (                      is above the overall baseline log odds for TLBW ( ) 
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(Papathomas et al., 2010). Said another way, for each cluster we calculate the probability as 

       , with probability values close to 1 indicative of a high probability for a baseline log 

odds above zero for each cluster (evidence for adverse effect). Conversely, a posterior 

probability close to zero is indicative of a low probability for a baseline log odds above zero for 

each cluster (evidence for no adverse effect). The posterior probabilities for each pollutant 

cluster and for each contextual cluster were then mapped in ArcGIS V.10.1 (Redlands, CA) to 

investigate the spatial distribution of these clusters effects on the log odds of TLBW. These kinds 

of probability effect maps are commonly used in Bayesian modeling of spatial effects of 

exposure (R. S. Bivand et al., 2013; Coker et al., 2015). 

Covariates 

 Individual-level covariates adjusted for were maternal factors including age at delivery 

(<20 years, 20-24 years, 25-29 years, 30-34 years, ≥35 years), race-ethnicity (non-Hispanic 

White, non-Hispanic Black, Hispanic, Asian, and Other race), highest education level attained (< 

9 years, 9-12 years, 13-15 years, and ≥ 16 years), parity, along with infant factors such as 

gestational days, gestational days squared, and infant sex (male/female). 

Characterization of Pollutant Clusters 

 In order to infer which clusters are most likely affected by near highway traffic emission 

(or primary emissions) we characterized each pollutant cluster in terms of their respective 

pollutant ratios, between-pollutant correlations, and maternal residential distance to major 

highways. Such metrics have shown to be helpful in terms of assessing sources of emissions 

related to near road vehicle traffic (Austin et al., 2012b; Janhäll et al., 2012; Laurent et al., 

2014a; Levy et al., 2013b). Also, since both NO and NO2 could be highly correlated with PM2.5 

under certain emissions scenarios, we normalized NO and NO2 concentration to PM2.5 as 

described in (Austin et al., 2012b). This normalization helps to indicate which pollutant clusters 
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have elevated NO and NO2 concentrations, after accounting for their overall relationship with 

PM2.5. We obtained the normalized concentrations by calculating the cluster-specific ratio of NO 

or NO2 to PM2.5 and dividing by the overall study area ratio of NO or NO2 to PM2.5.   

Results 

 We observed an overall TLBW prevalence of 2.07% (95% CI: 2.04-2.11, n=16,694) for 

the study population. Our data also showed spatial autocorrelation at the census tract level with 

respect to prevalence of TLBW (Figure B.5, Appendix B). Average census block group 

concentrations of NO2, NO, and PM2.5 were 22.49 ppb (interquartile range [IQR]: 19.68, 25.30 

ppb), 21.84 ppb (IQR: 16.05, 26.11), and 16.94 µg/m
3 

(IQR: 15.96, 18.18), respectively (Table 

3.1).  

Pollutant and Contextual Variable Correlations 

 As indicated in Figure 3.1, there is evidence of strong correlation (Pearson’s r) for 

between pollutant concentrations, most notably for NO2 and NO. The positive correlations 

between PM2.5 and NO2 and between PM2.5 and NO are considerably weaker (Figure 3.1). 

However, we did find that the between-pollutant correlations for PM2.5 and the NOx species 

varied widely across LA County (Figure B.7, Appendix Bf). Correlations between our contextual 

variables and the study pollutants ranged from only weak to moderate (range: -0.53 to 0.54) 

(Figure 3.1). Correlations between the contextual variables on the other hand were stronger 

(range: -0.66 to 0.64).  

Pollutant clusters 

 The profile regression identified 13 pollutant profile clusters (P1 - P13) from the 6,280 

census block groups from which we had complete air pollution data. Summary statistics for each 

pollutant overall, and stratified by cluster, are in Table 3.1. These data summaries are color 

coded to help indicate which exposure profile clusters have either elevated (red), typical (green), 
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or lowered (blue) pollutant concentrations compared to the overall concentrations. According to 

pollutant summaries in Table 3.1, the elevated NO2 clusters are pollutant clusters P3, P7, P9, 

P10, and P13. The elevated NO pollutant clusters are the same as for NO2, plus P12. The 

elevated PM2.5  pollutant clusters are clusters P6, P7, P9, P10and P13. Four of the pollutant 

clusters show elevated levels for all pollutants, including P7, P9, P10, and P13. Whereas 

pollutant profile clusters P1, P2, P4, P5, and P11 show low levels for all pollutants. We mapped 

the spatial distributions of pollutant clusters in Figure 3.2. Clusters with high concentrations for 

all pollutants are mostly within the downtown/metro area of LA and South-Central LA (clusters 

P7, P9, and P10), and a relatively fewer number of census block groups in the eastern section of 

the county (P13). 

 Between pollutant correlations for each pollutant cluster are indicated in Table 3.2 (see 

Appendix B for the spatial pattern of pollutant correlations). In Figure 3.3 we present the 

distributions of NO/NO2 ratios and the normalized NO2 and normalized NO values for each 

pollutant cluster, while the median residential distances to major highways throughout the county 

are shown in Figure 3.4. According to these pollutant and near-highway exposure metrics, 

mothers residing in pollutant clusters P9 and P10 are most likely exposed to higher levels of 

primary traffic pollution since these two clusters are characterized by high NO/NO2 ratios and 

high normalized NO and NO2 concentration. Additionally, P9 and P10 are characterized by low 

correlations between NO and NO2 (suggestive of near roadway emissions) and elevated PM2.5 

concentrations. Moreover, clusters P9 and P10 have the shortest median residential distance to 

major highways (478 meters and 230 meters respectively). Even though pollutant cluster P13 

exhibited the highest average PM2.5 in addition to elevated NO2 and NO, this cluster is 

emblematic of combined high levels of regional sources of PM2.5 and secondary particulate 
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formation from traffic emissions. For instance, compared to all other clusters, P13 shows some 

of the strongest positive correlation between NO2 and PM2.5, a low NO/NO2 ratio and low 

normalized NO and NO2 levels. AQ6: Yes, Number of CBGs is correct. 

Pollutant Cluster Random Effects 

 For each pollutant cluster, Table 3.3 presents the total number of births, the number of 

TLBW cases, percent prevalence of TLBW, and the posterior means and 95% credible intervals 

for the pollutant cluster random effects. The cluster-specific effects represent the variation in the 

baseline log odds of TLBW, after adjusting for individual-level covariates, contextual cluster 

random effects, and accounting for spatially structured and unstructured residual error. In Table 

3.3 we also present the posterior probability that a pollutant cluster effect is above the overall 

baseline log odds for TLBW (i.e. probability effect > zero).  

 Pollutant clusters with the highest probabilities for a random effect above zero are 

clusters P9 and P10, with probabilities of 94.9% and 91.6%, respectively (Table 3.3). Pollutant 

cluster P13 showed the next highest probability (77.4%). All other pollutant clusters showed 

probabilities below 70% for posterior probabilities with effects above zero. Pollutant clusters P1, 

P2, and P3  showed substantially lower baseline log odds of TLBW (Table 3.3). 

 Spatial Distribution of Pollutant Cluster Effects 

In Figure 3.5 we mapped the posterior probabilities for the pollutant cluster random 

effects. This map indicates clustering within LA County's urban core of downtown/metro LA, 

South-Central LA, and parts of east LA County for the pollutant profile clusters associated with 

the highest probability for increased baseline log odds of TLBW. Furthermore, the census block 

groups with the largest certainty for elevated TLBW log odds are mostly confined to census 

block groups near major highways; suggesting that women exposed to air pollution mixtures 

near highways have the greatest probability of delivering a TLBW baby.  
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Contextual clusters 

 The profile regression determined 14 distinct contextual profiles clusters (C1 - C14) and 

are summarized in Figure 3.6. Since the contextual clusters were developed separtely from the 

pollutant clusters, these contextual clusters are distinct from the pollutant clusters.  Table 3.4 

presents a summary of the the contextual profile cluster random effects. Again, these random 

effects represent the variation in the baseline log odds of TLBW across contextual clusters in our 

multilevel model.  Compared to all other clusters, contextual cluster C6 showed the largest 

posterior mean effect (0.124) and the highest probability for a baseline log odds above the 

overall baseline log odds (probability = 99.5%). The income distribution for cluster C6 is 

significantly below the overall median income for LA County and consists of a significantly 

lower percentage of Whites. Additionally, we find that cluster C6 has above average percentage 

of homes older than 1950, percentage of Blacks, and percentage of Hispanics. The next two 

highest probability contextual clusters are clusters C11 and C14, with elevated baseline TLBW 

log odds probabilities of 90.2% and 81.6%, respectively. While contextual clusters C11 and C14 

have elevated percentages for homes older than 1950 and elevated percentages for Black 

populations, only C11 has significantly lower median income levels. All other clusters fell below 

80% for elevated baseline TLBW log odds probabilities.  

We also mapped the spatial distribution of contextual profile cluster effect probabilities in 

Figure 3.7. This map indicates that contextual profile clusters with the highest probabilities for 

an elevated baseline log odds of TLBW are mostly in the urban core of LA County (central LA 

and south central LA). As anticipated, we find a large degree of spatial overlap between pollutant 

profile clusters with elevated effects on TLBW and contextual profile clusters with elevated 

effects on TLBW. Despite this spatial overlap, the two types high risk clusters take on distinct 

spatial patterns from one another. 
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Fixed Effects Results 

 In Table 3.5 we summarize each fixed effects estimate and corresponding 95% credible 

intervals from the multilevel spatial model. Individual-level factors associated with odds of 

TLBW were female sex, gestational days, and gestational days squared, as well as maternal 

factors such as parity, age, race-ethnicity, and education level.  

Discussion  

 Our Bayesian profiling approach highlights the varied and distinct spatial patterns of 

pollutant exposure profiles and how such exposures contribute to TLBW within the context of 

clustered indicators of socio-demographic and housing. While exposure profile clustering has 

been used in previous epidemiologic studies (Molitor et al., 2014a; Papathomas et al., 2010; 

Pirani et al., 2015b; Zanobetti et al., 2014a), no such studies have examined birth outcomes. Our 

clustering procedure and multilevel analysis provided concentration estimates for pollutants and 

TLBW risk estimates for place-based air pollution mixtures across LA County that take on a 

strong spatial structure.  

Pollutant Profile Clusters and Effects on TLBW 

 We find that census block groups adjacent to major highways in the downtown/metro 

LA, South-Central LA, and parts of eastern LA County show elevated PM2.5, NO2, and NO 

concentrations. We also find that census block groups in downtown/metro LA, South-Central 

LA, and east LA County, consistently had the most hazardous air pollution mixtures in relation 

to prevalence of TLBW.   

 We also identified profiles of clustered neighborhood contextual factors to show that sub-

populations previously shown to be vulnerable to TLBW are concentrated in the 

downtown/metro area of LA and South-Central LA County. These high risk contextual clusters 

partially overlapped spatially with the most hazardous air pollution mixtures. Such co-occurrence 
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of clustered indicators of disadvantage and hazardous air pollution mixtures reinforced the 

validity in our approach of adjusting for such correlated factors in examining multiple pollutant 

health effects.  

Spatially clustered emissions related to residential proximity to emissions sources may 

explain why our multilevel analysis of pollutant profile TLBW risks reveals such distinct spatial 

patterning. Spatial cluster inducing factors may include localized circumstances, such as traffic 

volumes and congestion, the vehicle fleet (e.g. heavy-duty trucks), and higher exposures to 

specific primary PM components that result from proximity to PM emissions sources. In our 

study, the spatial patterning across pollutant profiles of maternal distance to major highways, 

between pollutant correlations, elevated concentrations of NO and NO2, and elevated NO/NO2 

ratios suggest that clusters reflective of primary traffic emissions tended to impart the greatest 

risk of TLBW (i.e. pollutant clusters P9 and P10). For instance our spatial proximity data show 

that the highest risk pollutant clusters (P9 and P10) are characterized by the smallest median 

maternal residential distances to major roadways, compared to all other cluster-specific 

residential distances to highways. In terms of primary traffic emission above background levels, 

the residential distances for P9 and P10 are consistent with the literature that suggest primary 

traffic emissions decay to background levels between 115 meters to 570 meters (Karner et al., 

2010). In addition, there was clear spatial clustering of higher risk pollutant profiles (P9 and P10) 

at interchanges where LA's major interstate highways (I-5, I-110, I-710, and I-10) converge in 

central and south-central areas of LA County. This is suggestive of highly localized traffic and 

emission patterns that are germane to these major highways and their intersections. 

Findings from our study are notably consistent with our earlier studies and other's 

conducted in LA County that found variation in estimated effects on birth outcomes between 
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traffic-related sources of air pollution (e.g. traffic-related versus natural background sources) and 

proximity to major roadways (Laurent et al., 2014a; Ritz et al., 2007b; Wilhelm et al., 2011a; 

Wilhelm and Ritz, 2005). When juxtaposed with other recent studies (Bell et al., 2011; Coker et 

al., 2015; Laurent et al., 2014a; Pirani et al., 2015b; Wilhelm et al., 2011a; Zanobetti et al., 

2014a), our findings carry the implication that TLBW risks related to spatial patterns in exposure 

combined with the physical and chemical properties of PM2.5 requires further investigation, and 

further suggests important spatially derived hypotheses. For instance, recent findings by our 

group showed that the exposure response relationship of PM2.5 on TLBW varied spatially across 

LA County (Coker et al., 2015). Spatially varying effects suggests greater than additive health 

impacts influenced by (1) the sources of localized emissions, (2) proximity to PM sources 

(Buonocore et al., 2009; Cho et al., 2009; Greco et al., 2007; Kuhn et al., 2005; Laurent et al., 

2014a; Wagner et al., 2012), and (3) the varied pollutant profiles associated with proximity to 

different emissions sources of PM2.5 (Laurent et al., 2014a).  

 An important limitation of previous studies that attempted to find gradients in TLBW risk 

associated with various PM2.5 components is the inability to pinpoint major sources or 

components contributing to TLBW risks. Instead, nearly all sources and components imparted a 

risk of exposure and are correlated. For example, the inherent dependencies between PM2.5, 

PM0.1, and various carbonaceous particulates (e.g. organic carbon, black carbon, and elemental 

carbon), or between PM2.5 and sulfates in the exposure model used by Laurent et al. (2014), 

made it impossible to parse out which fraction sizes, components within PM2.5- or combination 

thereof - are most likely to impart the greatest TLBW risk (Laurent et al., 2014a). A single major 

source combined with certain spatially determined factors may produce a particular air pollution 
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mixture that is more hazardous, yet multiple regression techniques struggle to distinguish 

between them. 

 The results from ours and a recent study by (Pirani et al., 2015b), show that Bayesian 

profile regression provides a tangible clustering procedure to develop profiles of exposure to 

multiple pollutants and simultaneously provide visualization tools. For instance,  (Pirani et al., 

2015b) studied variations in respiratory mortality across exposure profile clusters using a similar 

Bayesian profile regression. They found that days with high levels of secondary particulates (e.g. 

nitrates and sulfates) imparted the highest mortality risk in comparison to all other PM2.5 

component exposure profiles. Thus, rather than multiple regression models with pollutants and 

sources being highly correlated (Hampel et al., 2015; Laurent et al., 2014a), our clustering 

approach could be applied to develop PM-exposure profiles using data on PM2.5 components, 

sources, and size fractions. Furthermore, our spatially-based clustering approach enables 

identification and mapping of sub-regions that are characterized by the most hazardous PM-

source components.  

 Rather than simply examining gradients in multipollutant health outcome risks devoid of 

spatial information, our study illustrates the importance in examining the spatial patterning of 

multipollutant health effects to help bring out the likely causes of apparent non-linear effects. For 

example, pollutant cluster P9 - reflective of primary traffic PM2.5 pollution - was not the only 

cluster with elevated concentrations for all study pollutants. Cluster P9, however, displayed the 

highest probability for an estimated effect above zero and the second highest effect estimate size, 

despite other pollutant clusters displaying higher PM2.5 or higher NO and NO2 concentrations. 

The only other pollutant cluster with a larger estimated effect size was cluster P10, which was 

also characteristic of primary traffic pollution. Whereas pollutant cluster P13 − reflective of 
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mostly secondary traffic PM2.5 − has a PM2.5 concentration 30% higher than P9 and P10. Despite 

this, the estimated effect size for cluster P13 is lower than P9 and P10. Our approach thus 

identifies patterns that help explain apparent non linear effects, such as: (1) mapping of cluster 

effects that exhibited strong spatial patterns related to major roadways, (2) the variations in 

pollutant metrics such as correlations and pollutant ratios across clusters combined with the 

spatial patterning of these pollutant metrics, and (3) the influence of residential distance to major 

roadways. These spatial data provide strong evidence that primary traffic emissions uniquely 

impart the largest effect on TLBW. 

Correlated Pollutants and Health Effects Research 

 Our approach to examining health effects of correlated exposures via exposure profile 

clusters offers several advantages compared to co-pollutant regression methods. Problems with 

collinearity within a multivariate regression include inflated variance in regression coefficients, 

unstable effect estimates, and causal inference challenges (Dormann et al., 2013b; Lin, 2008; 

Schmidt and Muller, 1978). Several outdoor air pollution studies find that pollutants contribute 

to a health outcome in single pollutant models; however, mutual adjustment for correlated 

pollutants can result in no pollutant showing an association (Ebisu and Bell, 2012b) or 

coefficients flipping sides i.e. opposite in direction from single pollutant models (Kelsall et al., 

1997). Furthermore, whether mutual adjustment is necessary − i.e. whether multiple pollutants 

actually confound each other − cannot be determined in models with highly correlated pollutants. 

When we analyze our data using a co-pollutant model that includes all pollutants in a 

multivariate regression model, we find instability of specific pollutant coefficient estimates and 

increased standard errors (see Table B.1 in the Appendix B). Also, while we find suggestive 

evidence for a statistically significant interaction between NO and NO2 in a co-pollutant model 

(Table B.1, Appendix B), the interpretation is challenging since both pollutants tend to co-vary 
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and are linked through conversion into one-another by atmospheric chemistry involving ozone. 

Bayesian profile regression on the other hand harnesses the collinearity of air pollutants to find 

meaningful patterns of joint exposure that are relevant for determining different health risks 

across pollutant clusters.  

 Another important problem with multipollutant modeling is that correlations between 

pollutants can vary over space (Dionisio et al., 2014; Levy et al., 2013b; Snowden et al., 2015). 

Spatial variability in pollutant correlations between and within urban communities is challenging 

because it can lead to exposure measurement error and further calls into question estimating co-

pollutant effects reliably. It is also unclear whether results from studies in one particular region 

are generalizable to others that have different spatial patterns of pollutant correlations. Consistent 

with previous studies (Dionisio et al., 2014; Levy et al., 2013), we found substantial within 

county variability in pollutant correlations between our pollutant clusters (Figures S3.6 and S3.7, 

Supplemental Materials). To some extent our approach overcomes spatial variation in pollutant 

correlations because we characterized the heterogeneity in pollutant relationships across space, 

and further relate these exposure profiles to a health outcome. Hence, employing our approach in 

environmental health studies may better inform policies designed to protect public health since 

policies can be tailored towards pollution mixtures relevant to a specific area.   

Contextual Neighborhood Effects on TLBW 

 An important aspect to our pollutant clustering approach lies in simultaneously adjusting 

for clustered neighborhood indicators of disadvantage (i.e. income and race) and older housing. 

While other contextual factors related to TLBW could have been included in our clustering 

procedure, it is clear that our clustering variables are highly correlated with other adverse 

contextual factors (i.e. education, housing values, low social support, neighborhood greenness, 

violent crimes, etc.) in southern California, and thus likely account for these other contextual 
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factors (Boggess and Hipp, 2010; Conway et al., 2010; English et al., 2003; Ghosh et al., 2010). 

Furthermore, since our contextual variables correlate with one another and correlate with 

pollutants, it was important to separate out the contextual area-level effects from the pollutant 

profile cluster effects. Despite the spatial similarity between the two different types of clusters in 

our study, the high risk contextual clusters display a spatial pattern that is distinct from the high 

risk pollutant clusters, suggesting that these two separate exposure profiles measured different 

spatial patterns of risk related to their respective variables.  

Study Limitations 

We lacked data on speciation and tracers for specific sources of PM2.5, which limits our 

ability to attribute a particular air pollution source to effects on TLBW. Despite this limitation, 

the spatial patterning of our results, supplemented with metrics such as cluster-specific NO/NO2 

ratios and between pollutant correlations, offers strong evidence implicating primary traffic 

pollution. Another limitation lies in the lack of fine-scale spatial data for other air toxics (i.e. 

benzene, ozone and carbon monoxide). Since we lack data on other air toxics that correlate with 

the pollutants considered in our study (Fujita et al., 2011; Ghosh et al., 2012b; Laurent et al., 

2014a; C. Protano et al., 2012; Salam et al., 2005; Wilhelm et al., 2011a), we cannot say whether 

and how these other pollutants may contribute to the observed spatial patterning of TLBW risks. 

Other limitations include a lack of information on indoor air pollution exposure and time-activity 

patterns that may influence air pollution exposures, such as information about whether the 

women worked outside the home (Ritz et al., 2007b) or commuted daily (Zuurbier et al., 2010); 

all of which can contribute further to exposure misclassification. However, recent findings 

suggest that maternal outdoor air pollution estimates at the home address are unlikely affected by 

a lack of time-activity patterns during pregnancy (Ouidir et al., 2015). Finally, while our 

approach offers several important advantages over previous air pollution profile studies, our 
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Bayesian approach is currently limited in regards to handling a dataset with high dimensionality, 

which can only be overcome via future gains in computational efficiencies.  

Study Strengths 

The primary strength of our study is that we were able to examine exposures to multiple 

correlated air pollutants and TLBW, mitigating some of the typical problems encountered with 

correlated exposures. Our study also had a large sample size and used population-wide data for 

exposure, thus avoiding selection of a study population based on proximity to major sources of 

air pollution or proximity to central site monitors (Dionisio et al., 2014; Kumar, 2012). Another 

strength is adjustment for individual-level covariates and contextual factors associated with 

TLBW, and adjustment for spatial residual confounding at the census tract-level. Another 

important strength is that we were able to fit a multilevel/hierarchical random effects model for 

the clustered pollutant profiles and contextual profiles enabling us to look at multiple profile-

specific risks, thus avoiding some of the issues related to multiple testing of myriad 

exposure/SES effects on health (Gelman and Hill, 2006b). 

Conclusion 

 Our Bayesian clustering procedures allowed us to go beyond simple one-at-a-time 

analyses usually employed to examine marginal effects of individual pollutants on birth 

outcomes. Further, this spatially distributed mixtures approach provides information on the 

spatial distribution of exposure/SES profiles that pertain to the levels of various pollutants and 

SES factors.  Policy analysts can use this information to determine which exposure/SES profiles 

dominate a particular sub-region of L.A. County, as a starting point for regulatory 

considerations. In our analyses, we found that neighborhood-level PM2.5, NO2, and NO 

concentrations were correlated with census block group-level contextual factors throughout LA 

County; and the nature of these relationships was quite complex and highly spatially variable 
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across the County. Moreover, the pollutant profile clusters showed a strong spatial contrast with 

respect to exposure-related TLBW risks. LA County's urban core, south-central urban region, 

and parts of the eastern-most region of the county exhibited the largest exposures for PM2.5, NO2, 

and NO, which decreased with distance from major highways. Moreover, the highest 

concentration pollutant profile clusters imparted the greatest TLBW risks after controlling for 

other important risk factors, especially those closest to major highways, which suggests near 

roadway emissions are more important in terms of risk of adverse birth outcomes related to these 

air pollution profiles. 

Acknowledgments 

Research described in this article was conducted under contract to the Health Effects Institute 

(HEI), an organization jointly funded by the United States Environmental Protection 

Agency (EPA) (Assistance Award No. R-82811201) and certain motor vehicle and engine 

manufacturers. The contents of this article do not necessarily reflect the views of HEI, or its 

sponsors, nor do they necessarily reflect the views and policies of the EPA or motor vehicle and 

engine manufacturers. 

 

 

 

 

 

 



71 

 

 

 

Figure 3.1. Pearson correlation matrix of census block group level averages for air pollutants, contextual variables, and pollutant 

metrics. 
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Table 3.1. Summary Statistics of Mean Census Block Group-level Pollutant Concentrations for Pollutant 

Exposure Profile Clusters. 

Pollutant Cluster (Number 

of Census Block Groups) 

 

PM2.5 µg/m
3
 (IQR)

 
 

NO2 ppb (IQR) 

 

NO ppb (IQR) 

P1 (329) 13.20 (11.95, 14.55) 18.19 (15.58, 20.79) 10.99 (9.30, 12.87) 

P2 (242) 12.83 (12.03, 13.69) 21.34 (19.28, 23.2) 19.17 (16.07, 21.60) 

P3 (633) 14.93 (14.58, 15.30) 28.14 (26.12, 29.84) 29.10 (23.46, 33.90) 

P4 (1399) 16.91 (16.41, 17.36) 23.87 (21.87, 26.17) 21.08 (17.35, 24.53) 

P5 (624) 15.96 (15.27, 16.52) 21.94 (20.61, 23.33) 23.50 (21.84, 25.21) 

P6 (500) 18.87 (18.31, 19.41) 17.84 (16.12, 19.66) 15.46 (13.24, 18.20) 

P7 (1715) 18.16 (17.79, 18.50) 25.63 (24.00, 27.31) 29.36 (26.11, 32.57) 

P8 (96) 16.90 (16.40, 17.18) 16.46 (13.23, 18.78) 22.34 (16.29, 30.91) 

P9 (513) 17.66 (17.12, 18.15) 31.74 (30.14, 33.27) 42.31 (37.57, 46.37) 

P10 (52) 17.23 (16.84, 17.67) 42.51 (39.91, 44.29) 74.08 (63.40, 80.79) 

P11 (29) 10.01 (8.93, 10.83) 14.44 (7.44, 16.80) 18.67 (10.86, 23.07) 

P12 (52) 16.87 (16.28, 17.47) 16.51 (15.78, 17.42) 59.62 (35.43, 83.08) 

P13 (96) 22.77 (21.89, 23.75) 31.39 (29.55, 32.85) 30.69 (28.13, 33.10) 

Overall (6,280) 16.88 (15.84, 18.13) 24.41 (21.33, 27.45) 25.99 (19.12, 30.94) 
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Figure 3.2. Spatial distribution of pollutant exposure profile clusters 
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Table 3.2. Between pollutant Pearson's correlations for the pollutant exposure profile clusters (P1-P13)
a
. 

 Pollutant Clusters 

Pollutants P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 

NO2~NO 0.86 0.85 0.90 0.88 0.79 0.86 0.73 0.93 0.53 0.15 0.94 0.41 0.75 

NO2~PM2.5 0.49 0.75 0.24 0.26 -0.42 0.37 0.12 -0.27 0.15 -0.23 0.58 0.40 0.55 

NO~PM2.5 0.45 0.67 0.33 0.10 -0.14 0.38 -0.11 -0.18 0.23 0.43 0.56 0.30 0.36 

PM2.5~NO/NO2
b
 0.16 0.38 0.36 -0.06 0.32 0.26 -0.27 0.02 0.18 0.54 0.15 0.27 0.14 

aOverall correlations: NO2~NO=0.76, NO2~PM2.5=0.25, NO~PM2.5=0.26, PM2.5~NO/NO2 ratio=0.19 
bCorrelation between PM2.5 concentration and the ratio of NO concentration to NO2 concentration. 
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(b) 

(a) 

(c) 

Figure 3.3. Boxplots of 

(a) NO/NO2 ratios, (b) 

normalized NO, and (c) 

normalized NO2 for each 

pollutant cluster. The red 

line indicates the overall 

average for each of these 

pollutant metrics. 
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Figure 3.4. Distribution of residential distance to highways among mothers within each pollutant cluster. Redline 

indicates the overall median for all maternal residential distances (median  = 867 meters). 
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Table 3.3. Prevalence of TLBW for Multipollutant Clusters and Model Results for Multipollutant Exposure Profile 

Cluster Random Effects (N=804,726).  

Cluster  No. Births
a 

No. TLBW  % TLBW
b 

(95% CI) 

Cluster Effect
c,d

 

(95% CI)  

Probability 

Effect > 0
e
 

P1  29394 431 1.47* 

(1.33, 1.61) 

-0.122 

(-0.254, 0.008)  

0.033 

P2  34263 589 1.72* 

(1.58, 1.86) 

-0.108 

(-0.232, -0.015)  

0.042 

P3  79199 1555 1.96 

(1.87, 2.06) 

-0.026 

(-0.133, 0.081)  

0.315 

P4  168145 3305 1.97 

(1.89, 2.03) 

0.006 

(-0.093, 0.106)  

0.548 

P5  66035 1595 2.42* 

(2.30, 2.53) 

0.017 

(-0.092, 0.126)  

0.619 

P6  58164 1067 1.83* 

(1.73, 1.95) 

0.003 

(-0.109, 0.115)  

0.519 

P7  256817 5612 2.19* 

(2.13, 2.24) 

0.019 

(-0.080, 0.117)  

0.642 

P8  7452 113 1.52* 

(1.25, 1.82) 

-0.096 

(-0.275, 0.079)  

0.141 

P9  77336 1824 2.36* 

(2.25, 2.47) 

0.089 

(-0.018, 0.195)  

0.949 

P10  3171 82 2.59  

(2.06, 3.20) 

0.141 

(-0.060, 0.338)  

0.916 

P11  3491 74 2.12 

(1.67, 2.65) 

0.043 

(-0.168, 0.252)  

0.656 

P12  3357 51 1.52 

(1.13, 1.99) 

-0.012 

(-0.232, 0.205)  

0.459 

P13  17902 396 2.21 

(2.00, 2.44) 

0.055 

(-0.087, 0.196)  

0.774 

Overall 804,726  16,694  2.07  

(2.04, 2.11) 

  

aFull term births (>259 days gestation). 
bPercent prevalence of TLBW without model adjustment. 
cAdjusted for maternal age, race, education, and parity, infant sex, gestation (days) , gestation-squared, and contextual random effect clusters. 
dRandom effect presented on the log-odds scale. 
eProbabilities were calculated utilizing the "inla.pmarginal" function in INLA. 

*TLBW prevalence is significantly (p-value<0.01, two-sided) different from the overall proportion of TLBW (unadjusted). 
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Figure 3.5. Spatial distribution of pollutant profile cluster random effect posterior probabilities. 
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Figure 3.6. Contextual profile clusters: Cluster size (number of census block groups) and posterior distributions for median 

income, percent older homes, percent black, percent white, and percent Hispanic (Nclusters=14). Black lines indicates the overall 

average exposure for a given covariate.     
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Table 3.4. Prevalence of TLBW for contextual clusters and model results for contextual exposure profile cluster 

random effects (N=804,726).  

Cluster  No. Births
a 

No. TLBW  % TLBW
b 

(95% CI) 

Cluster Effect
c,d

 

(95% CI)  

Probability 

Effect > 0
e
 

C1  64018 965 1.51* 

(1.42, 1.60) 

-0.09 (-0.19, 0.02) 0.05 

C2  95559 1869 1.96 

(1.87, 2.05) 

-0.03 (-0.12, 0.07) 0.30 

C3  76163 1218 1.60* 

(1.51, 1.69) 

-0.08 (-0.18, 0.02) 0.07 

C4  39105 787 2.01 

(1.88, 2.16) 

-0.03 (-0.14, 0.08) 0.31 

C5  38084 809 2.12 

(1.98, 2.27) 

-0.002 (-0.11, 0.11) 0.49 

C6  112919 2970 2.63* 

(2.54, 2.73) 

0.12 (0.03, 0.22) 0.99 

C7  39738 912 2.30* 

(2.15, 2.45) 

0.03 (-0.08, 0.14) 0.71 

C8  165328 3384 2.05 

(1.98, 2.12) 

0.03 (-0.07, 0.12) 0.71 

C9  101455 2040 2.01 

(1.93, 2.10) 

0.02 (-0.07, 0.14) 0.67 

C10  2624 42 1.60 

(1.18, 2.16) 

-0.08 (0.30, 0.13) 0.22 

C11  43403 975 2.25* 

(2.11, 2.39) 

0.07 (-0.04, 0.17) 0.90 

C12  963 18 1.87 

(1.18, 2.95) 

0.07 (-0.31, 0.18) 0.30 

C13  18784 538 2.86* 

(2.64, 3.11) 

0.03 (-0.09, 0.15) 0.68 

C14 6583 167 2.54* 

(2.18, 2.95) 

0.07 (-0.09, 0.23) 0.82 

aFull term births (>259 days gestation). 
bPercent prevalence of TLBW without model adjustment. 
cAdjusted for maternal age, race, education, and parity, infant sex, gestation (days) , gestation-squared, and pollutant random effect clusters. 
dRandom effect presented on the log-odds scale. 
eProbabilities were calculated utilizing the "inla.pmarginal" function in INLA. 

*TLBW prevalence is significantly (p-value<0.01, two-sided) different from the overall proportion of TLBW (unadjusted). 
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Figure 3.7. Spatial distribution of  contextual profile cluster random effect posterior probabilities. 
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Table 3.5. Fixed Effects Odds Ratios of TLBW for Individual-level Covariates
a
 

(N=804,726). 

 

Fixed Effects Covariates 

 

Odds Ratio 

 

2.5% Quantile 

 

97.5% Quantile 

Infant     

    Male (reference) 1   

    Female  1.45 1.40 1.49 

Parity     

    No previous births (reference) 1   

    ≥1 previous birth 0.59 0.57 0.61 

Maternal Age    

<20 years (reference) 1   

20 - 24 years 0.97 0.92 1.03 

25 - 29 years 0.90 0.85 0.96 

30 - 34 years 0.91 0.86 0.97 

≥35 1.06 1.00 1.14 

Maternal Education    

 0-8 years (reference) 1   

9-12 years 0.90 0.86 0.94 

13-15 years 0.75 0.70 0.79 

≥16 years 0.66 0.62 0.71 

Race/Ethnicity    

   Non-Hispanic White 

(reference) 

1   

Hispanic 1.08 1.02 1.15 

Non-Hispanic Black 2.16 2.01 2.32 

Non-Hispanic Asian 1.42 1.32 1.53 

Other 1.81 1.67 1.97 

 Gestation (days) 0.32 0.30 0.33 

Gestation-squared 1.0019 1.0018 1.002 
a
 ORs represent covariate fixed effects estimated from the multilevel model. Random 

effects in this model were pollutant clusters, contextual clusters, a spatial random error 

term based on adjacent census tracts, and a spatially unstructured random error term 
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Abstract 

Proper nutrition during pregnancy is considered an important determinant towards ensuring a 

healthy birth weight baby. Neighborhood retail food environments may also influence local food 

options and food intake among pregnant women and risks of adverse birth outcomes. Using a 

Bayesian multilevel framework we implemented a multivariate logistic regression model with 

spatial conditionally autoregressive (CAR) errors to investigate the association between term low 

birth weight (TLBW) and the modified retail food environment (mRFEI) in Los Angeles (LA) 

County. We found that an interquartile range (IQR) increase in the mRFEI is associated with a 

lower adjusted odds of TLBW by 3.44% (95%CI: 0.76%, 6.07%). We also found that mothers 

residing in tracts with joint exposure to poor food environments (low mRFEI), low 

socioeconomic status (SES), and low area greenness had the highest log odds of having a TLBW 

baby. This cross-sectional analysis of LA birth data suggests that an improved neighborhood 

food environment is protective against TLBW. Since these findings are observational and 

restricted to LA County, further research into the relationship between the neighborhood food 

environment and birth outcomes as well as joint exposure to other neighborhood indicators such 

as SES and greenness is warranted. 

Key Words: food environment, low birth weight, PM2.5, Bayesian multilevel modeling, birth 

outcomes 

Introduction 

Food purchasing habits and food intake are influenced by individual-level factors such as 

behavioral, exposure to advertisements, socioeconomic, and demographic, to higher level factors 

such as the neighborhood-level food environment and local food systems (Black et al., 2014; 

Brown and Brewster, 2015; Cannuscio et al., 2014; Halford et al., 2004; Laraia et al., 2004; Neff 

et al., 2009; Sobal and Wansink, 2007; Zenk et al., 2014). A wealth of research data suggests that 
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low access to grocery stores at the neighborhood level and greater access to fast food restaurants 

and small corner stores are associated with a higher prevalence of overweight or obesity (Broady 

and Meeks, 2014; Drewnowski et al., 2012; Dubowitz et al., 2012; Giskes et al., 2011; Hattori et 

al., 2013; Hsieh et al., 2015; Janevic et al., 2010; Koleilat et al., 2012; Langellier, 2012; Salois, 

2012). Maternal obesity is linked to adverse reproductive health outcomes such as diabetes, 

preterm birth, and fetal growth disorders (Marsh and Hecker, 2014), thus investigations into the 

relationship between the food environment and birth outcomes is warranted.  

 Despite the relative lack of research investigating community-level food environments on 

term birth weight (Farley et al., 2006; Lane et al., 2008; Ma et al., 2015), data from the U.S. 

suggests that differences in proximity to supermarkets is associated with differences in both diet 

quality during pregnancy (Laraia et al., 2004) and pre-pregnancy weight (Janevic et al., 2010). A 

greater prevalence of fast food restaurants in neighborhoods has also been linked with greater 

consumption of fast food during pregnancy and a higher prevalence of gestational diabetes 

(Dominguez et al., 2014; Kahr et al., 2015).  

 The few studies that address the relationship between the food environment and birth 

outcomes have produced inconclusive results (Farley et al., 2006; Lane et al., 2008; Ma et al., 

2015). A cross-sectional study in Louisiana by Farley et al., (2006) found that neither 

supermarket density (per 1,000 population) nor fast-food restaurant density (per 1,000 

population) were associated with birth weight (Farley et al., 2006).  Another study by Lane et al., 

(2008) examined the relationship between the neighborhood food environment (defined as a 

census tract with or without a supermarket within 1/2 mile) and intrauterine growth restriction 

(IUGR) in Syracuse, New York and found a three times higher adjusted odds (adjusted OR=3.38 

(95% CI:1.26-9.09)) of IUGR for census tracts without a supermarket within 1/2 mile. A study 
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conducted in South Carolina showed that a higher prevalence of convenience stores was 

associated with lower birth weight in the study population, however, further distance to 

supermarkets was associated with a higher birth weight (Ma et al., 2015).  

 In the present study we used the modified retail food environment index (mRFEI) to 

represent the food environment to investigate the association between the food environment and 

TLBW. The mRFEI has been used in recent studies to investigate the relationships among socio-

demographics (Salinas et al., 2014; Salinas and Sexton, 2015), health outcomes (Adam 

Drewnowski et al., 2014; A Drewnowski et al., 2014; Koh et al., 2015), and dietary intake (Greer 

et al., 2014). When examining the relationship between food environments and birth weight, 

particularly within urban environments, it is important to consider other area-level birth weight 

risk factors that coincide with poor food environments, since other area-level factors may 

confound or modify any observed association. For instance, research has shown that the 

locations of fast food restaurants are dependent on proximity to heavily trafficked roadways 

(Dunn, 2010; Hurvitz et al., 2009b; Inagami et al., 2009). Outdoor air quality is also partially 

dependent on heavily trafficked roadways and studies further show that maternal exposure to 

traffic-related air pollution is associated with a higher prevalence of TLBW (Coker et al., 2015; 

Ghosh et al., 2012c). Also, in urban envrironments low levels of area-level greenness is linked 

with impervious surfaces such as roadways, and area-level greenness has been linked with 

TLBW. Hence, in the present study we assesses the association between the food environment 

and TLBW while accounting for exposure to air pollution and other area-level factors. 

 The primary goal of this research is to investigate the relationship between the 

neighborhood food environment (at the census tract-level) and TLBW in LA County. We also 

investigate whether the association between the food environment and TLBW is influenced by 
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exposure to fine particulate matter (PM2.5). Additionally, we employ a novel Bayesian profile 

regression technique to explore whether the TLBW prevalence is associated with clusters of 

tract-level covariate exposure patterns for the food environment, socioeconomic status (SES), 

and greenness (controlling for PM2.5). 

Methods 

Study design and population 

We used a cross-sectional study design to examine the association between the mRFEI and 

TLBW in women who gave birth to a full term baby. The study population is comprised of 

women who resided in LA County at the time of delivery between the years 2004 to 2006 

(N=344,244). 

Birth data 

Birth data were obtained from electronic birth records from the California Department of Health. 

Access to these data were approved through the University of California, LA Office of the 

Human Subjects Protection Program, the California Committee for the Protection of Human 

Subjects, and the University of Southern California's Office for the Protection of Research 

Subjects. We assessed the birth outcome measure of term (>=37 weeks gestation) low birth 

weight (<2,500grams (g)). Information on the mother (i.e. race, education attainment, prenatal 

care attendance, residential address, etc.) and the infant (i.e. sex, presence of any birth defects) 

were obtained from these records. We restricted the dataset to singleton births lacking any 

apparent abnormalities. Births with extreme gestational days (<140 days or >320 days) and birth 

weights (<500g or >5000g) were excluded from analysis, as such values are likely due to 

recording errors. Geocoding of residential addresses are explained elsewhere (Goldberg et al., 

2008). 
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Modified Retail Food Environment Index 

The mRFEI comes from the Center for Disease Control and Prevention's (CDC) data on the food 

environment. The mRFEI was developed by the CDC to assess the spatial patterns of healthy and 

unhealthy food environments across the U.S. The mRFEI represents a ratio (multiplied by 100) 

of healthy food retailers to less healthy food retailers per census tract that ranges between 0-100. 

Hence, higher mRFEI scores reflect better food environments while lower scores reflect poorer 

food environments. The equation below indicates how the CDC calculated the mRFEI: 

                                            

                                                                                               

 

CDC defined healthy food retailers as supermarkets, large grocery stores, fruit and vegetable 

markets, and warehouse clubs, while less healthy food retailers were fast food restaurants and 

convenience stores (CDC, 2011). CDC utilized the InfoUSA database to obtain data on healthy 

food retailers (year 2009) and data from the NavTeq database (year 2009) and the Homeland 

Security Information Program database (year 2008) for data on the less healthy food retailers 

(CDC, 2011).  

Individual-level measures 

Infant factors including sex, gestation age (days), gestation squared (days
2
), as well as maternal 

factors such as race/ethnicity, age, parity, education level, number of prenatal care visits, and 

exposure to outdoor PM2.5 were included as covariates. These variables were selected based on 

prior studies in this population that demonstrated the importance of these variables for TLBW 

(Coker et al., 2015; Ghosh et al., 2012c; Wilhelm et al., 2011c; Wilhelm and Ritz, 2003a). PM2.5 

exposure estimates were derived from a land use regression (LUR) model (Beckerman et al., 

2013a) that we used in our previous work (Coker et al., 2015). This LUR provides long-term 

exposure concentration estimates for PM2.5 at each maternal residence. Briefly, data for the PM2.5 

LUR model included long-term regulatory monitoring data of PM2.5 measurements (Beckerman 
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et al., 2013b) along with remotely sensed aerosol optical depth data. A machine learning 

deletion/substitution method (Beckerman et al., 2013a) tested up to 70 covariates to build the 

final LUR model, including data on land use (i.e. agricultural, barren, all developed land, high-

density development, green space, water, and wetland), long-term traffic counts, and road 

networks (Beckerman et al., 2013a; Jerrett et al., 2013). Entire pregnancy average exposures for 

each mother were then calculated by applying a temporal adjustment factor to the LUR 

estimates. Daily PM2.5 air monitoring data from LA County were utilized to compute the 

temporal adjustment factor. 

Area-level measures 

Census tract-level covariates were included in the following models to adjust for area-level 

confounding. They were average normalized differential vegetation index (NDVI) and median 

household income. These covariates were selected since research data conducted in LA and other 

regions show that NDVI (or area-level greenness) and median household income are risk factors 

for lower term birth weight (Gray et al., 2014; Hystad et al., 2014b; Laurent et al., 2013c; 

Markevych et al., 2014; Zeka et al., 2008). Furthermore, low SES neighborhoods have been 

correlated with poor neighborhood food environments in the U.S. (Inagami et al., 2009; Shaffer, 

2002b). Additionally, NDVI and the food environment may be spatially correlated built 

environment factors.  

Year 2000 U.S. Census data on LA County median household incomes for census block groups 

was downloaded from the American Fact Finder. Average NDVI was calculated from 250 meter 

resolution 16-day composite images from the Moderate Resolution Imaging Spectroradiometer 

(MODIS) as downloaded from the University of Maryland's Global Land Cover Facility 

database (Carrott et al., 2005). NDVI 16-day composites from January 1, 2005 through 

December 31, 2005 were averaged for the year 2005 using the Raster Algebra tool in ArcGIS 
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(version 10.1, Redlands, CA) to obtain a single year NDVI raster surface. The entire year 

average NDVI raster surface was averaged over census block group boundaries (year 2000 US 

Census boundaries) using the Zonal Statistics tool in ArcGIS to assign maternal NDVI. 

Since mRFEI data are based on census tracts, each subject was assigned to a census tract based 

on latitude and longitude of their geo-coded residence . Mothers were similarly assigned to a 

census block group using the residential latitude and longitude. The spatial join tool in ArcGIS 

was used for maternal census tract and census block group spatial assignments. Data merging 

between the respective maternal census tract and maternal census block group assignments with 

the spatially bounded covariate data were performed in the R statistical computing environment 

(version 3.2.0) by matching on census tracts for the mRFEI data and census block groups for the 

NDVI and median household income data. 

 Statistical analysis 

Births with complete covariate data resulted in a total of 344,244 full term births for analysis. 

Summary statistics were computed for the study's health outcome as well as for individual and 

neighborhood level covariate data (Tables 4.1 and 4.2). We fit two separate multilevel 

multivariate logistic regression models to estimate the association between the food environment 

and TLBW. The first model was fit to estimate the main effect of mRFEI on TLBW while 

controlling for other factors and residual spatial error. The second model tests whether there is a 

significant multiplicative interaction effect between PM2.5 exposure and mRFEI (e.g. 

mRFEI*PM2.5) in the association with TLBW. Covariates included in the models were 

determined based on a priori information drawn from the literature. Since the continuous 

covariates were on widely different scales, we standardized these covariates to similar scales in 

order to facilitate interpretation of regression coefficients. The mRFEI was rescaled by dividing 

each mRFEI observation by 100, while all other continuous covariates were standardized by 
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subtracting the mean and dividing by the standard deviation for each observation (e.g., [meanx - 

xi] / std.devx). Each model was fit in R (R version 3.2.0) using the R-INLA package (R-INLA 

version 0.0.1453319343) in order to implement the multilevel model for Bayesian inference 

(Martino and Rue, 2009b; Rue et al., 2015).  

The multilevel component of the model incorporates spatially structured (CAR) and unstructured 

(independent and identically distributed [iid]) random effects error terms to account for extra-

variability in our response variable (TLBW) not explained by the first-level covariates. The 

multilevel/hierarchical logistic regression model is presented below in Equation 1. 

                                                         (1) 

where    is the logit probability of having a TLBW baby for individual  ,    is the global 

intercept,        is the main effects coefficient for census tract level mRFEI,          is the 

mRFEI value for census tract  ,      are the additional coefficients and predictors in the model 

(e.g. NDVI),    is the spatially structured residual error term for the     census tract (with 

restriction        for indefinability reasons), and    is the independent residual error term for 

the     spatial unit. The independent error term is defined in the typical way as          ) and 

the spatial error term is defined as, 

         
         

       
 

  

       
 , 

where the weights      are elements of the zero-one neighborhood adjacency matrix classified 

equal to one when census tracts     are adjacent and zero otherwise. This method employs the 

Besag-York-Mollé (BYM) model (Besag et al., 1991). 

Since several of the covariates in our analysis are defined at the census tract-level (i.e. the food 

environment, median household income, and NDVI),  we also explored how these area-level 
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contextual factors cluster together throughout LA County and how joint exposures to contextual 

factors are associated with the odds of TLBW. A Bayesian clustering technique known as 

Bayesian Profile Regression was used to determine how tract-level mRFEI, median income, and 

NDVI cluster together numerically, and geographically.  

 Bayesian profile regression is a modeling approach that is able to flexibly cluster joint 

patterns of exposure values while handling the uncertainty in these joint patterns in a Bayesian 

framework. For an in-depth description of this technique, the reader is referred to (Liverani et al., 

2015; Molitor et al., 2010c). We implemented the Bayesian profile regression using the R 

statistical package PReMiuM (version 3.1.2) (Liverani et al., 2015). The statistical output from 

this analysis provides posterior distributions of the covariate profiles for each cluster, which are 

drawn from the Markov Chain Monte Carlo (MCMC) simulations.  

 The profile clusters derived from this clustering analysis were analyzed in a third 

multilevel model, with the profile clusters included as random effects. Such a modeling 

framework means that the cluster random effects represent the variation in TLBW explained by 

the profile clusters, after controlling for individual-level covariates and modeling of spatial 

residual error (described above). Hence this modeling framework was identical to Equation 1 

except that this final model (Model 3) included the random effect implemented as an iid random 

error term for profile clusters. Another important difference in this final model is that mRFEI, 

median income quartiles, and NDVI tertiles were not included as typical fixed effects because 

these area-level variables were captured within the profile cluster random effects. All other fixed 

effects from Model 1 are however included in this final model. To display the spatial pattern 

from the results of this secondary analysis we mapped the posterior probability that a given 

profile cluster has a higher log odds above the baseline log odds of TLBW.  
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Results 

Descriptive statistics 

 Statistical summaries of individual-level characteristics for the study population are 

provided in Table 4.1, while area-level variables are summarized in Table 4.2. Supplemental 

materials Figure C.1 (Appendix C) describes the correlations between mRFEI and the other 

continuous covariates in our study (i.e. NDVI and median income). The prevalence of TLBW in 

our study population was 2.13% and the overall average tract-level mRFEI was 11.05 (Table 

4.1). Average neighborhood mRFEI among TLBW cases was lower (10.66 [95% confidence 

interval (CI): 10.51-10.81]) compared to non-cases (11.06 [95% CI: 11.03-11.08]) (Table 4.1). In 

a univariate analysis we found that the percentage of TLBW was significantly higher (p-

value<0.05) among mothers who resided in census tracts with the lowest (less healthy) quartile 

of mRFEI (2.31% [95% CI: 2.21, 2.41]) compared to mothers who resided in census tracts with 

the highest (more healthy) quartile mRFEI (1.97% [95% CI: 1.88, 2.07].  

 We also observed significant differences by race-ethnicity for several important 

exposures in our study. As indicated in Table 4.3, in comparison to nonHispanic Whites, 

nonHispanic Blacks and Hispanics have on average significantly lower area-level mRFEI, 

NDVI, and household incomes, and significantly higher PM2.5 exposure. 

Multilevel regression model  

 The estimated coefficients and their corresponding 95% credible intervals for each 

standardized covariate analyzed in the multilevel logistic regression model are summarized in 

Figure 4.1. An IQR increase in mRFEI was associated with a 6.48% (95% CI: 3.93%, 8.95%) 

lower odds (unadjusted) for TLBW. After adjustment for individual and census tract level 

covariates and accounting for spatial residual error, a higher mRFEI score(per IQR) was 

associated with a 3.44% (95% credible interval: 0.76%, 6.07%) lower odds for TLBW (adjusted 
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Odds Ratio = 0.97 [95% credible interval: 0.93, 0.99]). After statistical adjustment, an IQR 

increase in PM2.5 was associated with an odds ratio of 1.02 (95% credible interval: [0.99, 1.04])  

for TLBW. An interaction term between PM2.5 and mRFEI indicated there was no apparent 

change in the association between mRFEI and TLBW with a change in PM2.5 exposure and vice 

versa (see Supplemental Materials, Appendix C, Table C.1.).   

Profile regression results 

 The joint patterns of tract-level mRFEI, median household income, and NDVI 

values resulted in six different profile clusters from the Bayesian profile regression analysis. 

Figure 4.2 displays these joint patterns across each variables, along with the number of tracts 

within each profile cluster (or cluster size). The boxplots for each indicator in Figure 4.2 

represent the within cluster posterior distributions of the means from the MCMC draws, with the 

black lines indicating the overall mean for each indicator. As shown in Figure 4.2, two of the 

profile clusters have low means for mRFEI, NDVI and median income (clusters 3 and 5). 

Conversely, the two highest income clusters have elevated means for NDVI and mRFEI (clusters 

4 and 6). The largest cluster (cluster 1) is about average for all tract-level indicators, while 

cluster 2 is about average for mRFEI and elevated for NDVI and income. A map of the 

geographic pattern for each cluster is provided in the Supplemental Materials, in Figure C.3 

(Appendix C).  

 

 The profile cluster random effects estimates from the multilevel logistic regression 

model (Model 3) are shown in Figure 4.3. According to Figure 4.3, cluster 3 has the largest 

deviation above the baseline log odds for TLBW (meaning increased log odds) and cluster 5 has 

the second largest deviation above the baseline log odds for TLBW, while all other clusters 

showed a deviation below the overall baseline log odds for TLBW. There was a 97.3% 
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probability that cluster 3 is associated with a higher log odds for TLBW and 77.8% probability 

that cluster 5 is associated with an elevated log odds for TLBW. In Figure 4.4 we mapped the 

spatial distribution of the cluster random effect probabilities of elevated log odds for TLBW, 

overlaid with LA County Health Districts. This map highlights the concentration of the highest 

risk clusters (cluster 3) being concentrated within the urban core of LA County. The Health 

Districts with at least a third of their area that includes the highest risk cluster (cluster 3) are the 

South, Southeast, East LA, Southwest, Inglewood, Compton, and Hollywood-Willshire Health 

Districts, which comprise nearly half (45%) of cluster 3 tracts. The spatial distribution for the 

profile clusters are mapped in the supplemental materials in Figure C.3 (Appendix C).  

Discussion 

Key findings  

 This large cross-sectional study in LA County observed that mothers residing in 

neighborhoods (census tracts) with a higher ratio of healthy food retailers to less healthy food 

retailers (mRFEI) were less likely to have a TLBW baby. We did not observe a multiplicative 

interaction effect between the food environment with exposure to PM2.5 on the association with 

TLBW, although the effect estimate for PM2.5 on TLBW lowered by 10% after including the 

food environment as main effect in the model. Another important finding from our study is that 

we observed clustering between the food environment, greenness, and SES across LA County 

census tracts, and that tract-level profiles with adverse food environments, low greenness, and 

low SES were associated with a higher log odds of TLBW compared to neighborhoods without 

such an adverse profile. Importantly, we did not observe spatial variation in the effect of TLBW 

when fit as a random coefficient. 
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Interpretation of findings 

 A plausible mechanism for the food environment to influence risk of adverse birth 

outcomes such as TLBW is predicated on the rationale that the food environment acts as a built 

environment determinant of poor prenatal or pre-pregnancy nutrient intake and thereby lowers 

maternal nutritional status to reduce fetal growth. Since the developing fetus must obtain 

sufficient nutrients from the mother to attain optimal growth (Barker, 1995), an insufficient 

maternal diet  related to the food environment may play an important role in determining risk of 

reduced birth weight. Some research conducted in higher income developed countries suggests a 

link between maternal food insufficiency and reduced birth weight. A study by Meng et al., 

(2013b) conducted a study in Ontario, Canada found that the effect of maternal health status on 

TLBW was modified by food insecurity of the mother. Research data from the U.S. has shown 

that prenatal WIC participation is associated with reduced risk of LBW infants (Buescher et al., 

1993; Currie and Rajani, 2014; Hernandez et al., 2010; Reichman and Teitler, 2003). Research 

conducted in LA further indicates that WIC participation reduces food insecurity among 

pregnant women (Herman et al., 2004). Moreover, our study is in agreement with studies by 

Lane et al., (2008) and Ma et al., (2015) who also found a link between the neighborhood food 

environment and birth weight. Lane et al., (2008) conducted a study in Syracuse, New York and 

found that infants born to women living in census tracts with low access to a supermarkets had a 

significantly higher odds of a lower birth weight infant. Ma et al (2015) conducted a study in 

South Carolina and found that a higher number of convenience stores within a 1-mile buffer of a 

census tract was associated with a lower birth weight in the population.  

 Although our study did not find evidence that the food environment acts as a 

multiplicative effect modifier on the relationship between PM2.5 and TLBW (or vice versa), there 

was evidence to suggest that the magnitude in the association between PM2.5 and TLBW is 
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sensitive to the inclusion of the food environment into the statistical model. For instance, the 

inclusion of mRFEI in the model lowered the β coefficient for PM2.5 by 10.5 

% (Table C.1, Appendix C). However, the reverse was not true, in that including PM2.5 in the 

model failed reduce the coefficient estimate for mRFEI substantially (~4% change in the β 

coefficient) and thus does not suggest that PM2.5 is a confounder in the relationship between 

mRFEI with TLBW. Importantly, the strength of the PM2.5 association with TLBW is not 

impacted after including the food environment into the model, which indicates that air pollution 

is still important as a risk factor for TLBW even after factoring in the food environment. 

We also found evidence for distinct spatial patterning for clustering of area-level indicators 

including the food environment, SES, and greenness, with profile clusters characterized by poor 

food environments, low greenness, and low SES located predominantly within the urban core of 

LA County. These same profile clusters with the most adverse conditions were also characterized 

with a higher log odds of TLBW, even after adjusting for individual-level maternal and infant 

characteristics. We also found that on average, nonHispanic Blacks and Hispanics lived in 

neighborhoods with the poorest food environments, the lowest levels of greenness and median 

incomes, and had the highest PM2.5 exposures (Table 4.3). Importantly, we found that association 

between the food environment and TLBW was uniform across census tracts and across different 

racial-ethnic groups (data not shown). 

Study implications 

Our main finding relates to the food environment and its association with TLBW in LA County. 

This finding implies that an improvement in the neighborhood food environment may be an 

important structural intervention at the built environment-level to reduce socioeconomic 

disparities in birth outcomes. However, since the three studies (including ours) that demonstrate 

such a link, longitudinal research is needed to substantiate these results. Our study findings also 
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imply that the food environment may act as an important place-based factor to influence 

maternal nutrition and thus TLBW, and that it may further act additively with the effects of air 

pollution on TLBW. To our knowledge this is the first study to explore the association of PM2.5 

on TLBW within the context of the food environment; as such it requires further investigation to 

replicate our finding. If this finding is borne out in other research, it also implies that health 

studies investigating environmental exposure associations birth weight should account for 

maternal nutritional status. Furthermore, since the area-level factors analyzed in our study exhibit 

clustering that occurs with a distinct spatial pattern, it implies strong geographic disparities in 

exposure to these adverse neighborhood conditions.  

Strengths and limitations  

There are several important limitations to our study however. Firstly, our study is cross-sectional 

and observational and therefore no causal links may be inferred. While few studies have 

addressed our main and novel secondary research questions, longitudinal research better served 

toward establishing a causal link is needed. Importantly our study is unable to directly link 

mRFEI scores with food purchasing and dietary intake behaviors among individuals in our study 

population; hence our study is purely ecological in this respect. Nor were we able obtain 

information on maternal smoking, which is a limitation of our study. Another important 

limitation is in regards to exposure misclassification as it relates to our estimates of exposure to 

PM2.5 and area-level NDVI. For instance, we assumed that residential address at the time of 

delivery--used for exposure assignments-- is the same address for the entirety of the pregnancy, 

which may not be accurate. Also, we assumed that average census block group NDVI values 

properly characterizes area-level exposure to greenness, which may or may not be the case 

(Kihal-Talantikite et al., 2013; Markevych et al., 2014). Finally, the use of an index, which 

incorporates multiple dimensions of the food environment, is also limiting since it may obscure 
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which specific aspects of less healthy food environments (i.e. fast food versus convenience 

stores) are contributing to our findings. While each of these limitations do not necessarily 

invalidate our study findings, it implies that our results should be interpreted with caution. 

A major strength of our study is the large sample size from which to assess the relationship 

between the food environment and TLBW. We were also able to control for a number of 

individual-level and area-level covariates that may confound our main research question. 

Another important strength of our study relates to assessing whether the relationship between a 

ubiquitous air pollutant (PM2.5) and TLBW is modified by the neighborhood food environment. 

Another important strength of this study lies in using a multilevel modeling approach such that 

we were able to account for some degree of residual confounding related to unobserved spatial 

processes. Moreover, our study used a novel clustering approach in a multilevel modeling 

framework to successfully identify sub-regions of LA County most adversely affected by a 

combination of poor food environments, low greenness, and low SES. 

Conclusion 

Our analysis of LA birth data suggests women residing in neighborhoods with better food 

environments are associated with lower odds of TLBW. Our analysis further shows that the food 

environment attenuates the positive association between PM2.5 and TLBW. Since our findings 

are strictly observational and restricted to LA County, further research into the relationship 

between the neighborhood food environment and birth outcomes is warranted, including research 

that discerns the mechanisms by which the food environment may influence pre-pregnancy and 

prenatal maternal diet. 
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Table 4.1. Individual Characteristics overall and stratified by TLBW cases and non-cases (N=344,244). 

 

Individual-level 

Parameter
 

Overall  

(N=344,244) 

TLBW Cases 

(N=7,340, 2.13%) 

Non Cases 

(N=336,904, 97.87%) 

N % or mean (SD) n % or mean (SD) N % or mean (SD) 

Gestational Age 

(days) 

 277.94 (9.99)  273.62 (10.49)  278.04 (9.95) 

mRFEI
a 

 11.05 (6.91)  10.66 (6.75)  11.06 (6.91) 

Sex of Infant       

Male 174535 51%  3170 43%  171365 51%  

Female 169709 49%  4170 57%  165539 49%  

Maternal Age 

(years) 

      

<20 years 32660 9%  968 13%  31692 9% 

20 - 24  76033 22%  7809 25%  74224 22% 

25 - 29  89776 26% 1771 24%  88008 26% 

30 - 34  85576 24%  1552 21%  84024 25% 

≥35  60199 17%  1240 17%  58959 18% 

Race-Ethnicity       

Non Hispanic White 60843 18% 881 12%  59962 18%  

Hispanic 216332 63%  4494 61%  211838 63%  

Non Hispanic Black 24989 7%  985 13%  24004 7%  

Non Hispanic Asian 26767 8%  566 8%  26201 8%  

Other 15313 4%  414 6%  14899 4% 

Maternal 

Education 

      

0-8 years 42154 12% 956 13%  41198 12% 

9-12 years 164393 48% 3835 52%  160558 48% 

13-15 years 61425 18%  1212 17%  60213 18% 

≥16 years 76272 22% 1337 18%  74935 22% 

Parity
b       

Nulliparous 135723 39%  3570 39%  132153 49%  

Multiparous 208521 61% 3770 51%  204751 61%  

Prenatal Care Visits
c 

 12.95 (3.76)  12.61 (4.33)  12.96 (3.74) 

PM2.5 (µg/m
3
)  17.07 (2.14)  17.14 (2.05)  17.07 (2.14) 

a
mRFEI stands for modified retail food environment index 

b
Parity refers to whether or not the mother has had a previous live birth. Nulliparous and Multiparous refer to no previous 

births and at least one previous birth, respectively. 
c
Prenatal care visits refers to the number of prenatal care visits attended by the mother throughout the course of  the 

pregnancy. 
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Table 4.2. Means and standard deviations for area-level variables overall and among TLBW cases and non-cases 

(N=344,244). 

 

Area-level Parameters 

Overall TLBW Cases Non Cases 

mean (SD) mean (SD) mean (SD) 

mRFEI
a
 11.05 (6.91) 10.66 (6.75) 11.06 (6.91) 

NDVI
b
 106.31 (21.17) 104.45 (20.59) 106.35 (21.18) 

Median Income ($) 41,628 (20,012) 39,167 (18,673) 41,682 (20,037) 
a
mRFEI, modified retail food environment index; Interquartile Range (IQR) for mRFEI is 7.62. 

b
NDVI, normalized differential vegetation index. 

 

 

 
Table 4.3. Food environment scores, PM2.5, NDVI, and Income by maternal race/ethnicity 

Race/Ethnicity mRFEI 

(95%CI) 

PM2.5 - µg/m
3
 

(95%CI) 

NDVI  

(95%CI) 

Income - $ 

(95%CI) 

nonHispanic Black 9.91  

(9.81, 10.00)* 

16.84 

 (16.81, 16.86)* 

103.6  

(103.4, 103.8)* 

36131  

(35933, 36328)* 

Hispanic 10.87  

(10.84, 10.90)* 

17.336 

 (17.28, 17.344)* 

102.8 

 (102.8, 102.9)* 

35880  

(35821, 35939)* 

nonHispanic White 

(reference) 

11.65  

(11.59, 11.71) 

16.26  

(16.23, 16.28) 

117.1  

(116.9, 117.3) 

59126  

(58918, 59334) 

nonHispanic Asian 11.74  

(11.66, 11.82) 

17.08 

 (17.06, 17.11)* 

112.0  

(111.7, 112.3)* 

50268  

(49998, 50538)* 

Other (nonHispanic) 11.87  

(11.75, 11.98)* 

16.82  

(16.79, 16.86)* 

107.1  

(106.8, 107.5)* 

47186  

(46896, 47478)* 
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Figure 4.1. Adjusted coefficient estimates (+ 95% credible intervals) of every covariate from the multivariate Model 

1. For NDVI the reference group is the third quartile (or highest tertile). For sex the reference group is male. For 

maternal age the reference group is 25-29 years old. For education the reference group is ≥ 16 years of education. 

For parity the reference group is Nulliparous. For race and ethnicity the reference group is nonHispanic White. 

Income the reference group is the 4th quartile (or highest quartile). Continuous covariates were analyzed in their 

standardized forms. 
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Figure 4.2. Posterior means of mRFEI, NDVI, median income, and number of census tracts for each profile cluster. 
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Figure 4.3. Random effects estimates (+ 95% credible intervals) for profile clusters (clusters 1-6). The mean effect 

estimate (represented by the circles) represents the deviation in the log odds of TLBW away from the baseline log 

odds of TLBW.  
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Figure 4.4. Spatial distribution of pollutant profile cluster random effect posterior probabilities. 
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CHAPTER 5 - SUMMARY AND CONCLUSIONS 

 Given the vast array of urban neighborhoods with differing characteristics in terms of 

environmental quality, built environments, demographics, and SES, it is believed that the role of 

place and its inherent cumulative exposures burden is an important determinant of health 

disparities. TLBW represent an important health disparity in the U.S. and the neighborhood 

factors mentioned above have each been associated with the risk of TLBW in previous studies. 

This dissertation research examines the odds of TLBW using a multilevel and joint exposures 

framework, and thus goes beyond previous studies that tend to isolate a single exposure or 

neighborhood characteristic in relation to TLBW. A multilevel and joint exposures frame is 

likely to reveal the complex nature of disparities of TLBW and disparities in environmental 

exposures across geographic, SES and racial lines.  

 The first manuscript used a multilevel Bayesian modeling framework to observe an 

overall and spatially varying exposure response between PM2.5 and TLBW after controlling for 

individual-level risk factors. In other words, elevated exposure to PM2.5 (at the individual-level) 

showed differing associations in terms of the magnitude and direction of PM2.5 effect estimates, 

dependent upon the census tract and adjacent census tracts where mothers resided. An important 

aspect of this study, from a population health standpoint, is the mapping of spatially varying 

effects to help reveal the effect hotspots. Conveying this information to community and 

governmental stakeholders regarding effect hotspots could help focus air pollution exposure 

efforts intended to protect against adverse birth outcomes. An important implication from this 

first study is that latent spatial processes may be interacting with the association between PM2.5 

on TLBW. Given the spatial dependency of PM2.5 composition and emissions sources, in 

addition to other air pollutants in urban environs, it is plausible that part of the unobserved 
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spatial processes involved with spatially varying effects are explained by unobserved localized 

pollutant mixtures (or pollutant exposure profiles). Furthermore, since local multipollutant 

exposures are likely to correlate spatially with other neighborhood-level stressors, it is also 

plausible that such neighborhood stressors and adverse built environments play a role in 

determining these spatially varying effects.  For instance, a recent study by Li et al., (2016) 

found that the spatial variability in air pollution effects in LA County are influenced by census 

tract-level factors including distance to highways, socioeconomic status, greenness, racial-ethnic 

composition, and other land use factors. Finally, since this first study suggests strong geographic 

disparities in PM2.5 associations with TLBW, it also implies that population-level TLBW 

disparities that fall along racial and SES lines may be partially explained by such spatially 

varying effects. Therefore more research is critically needed to investigate the degree to which 

spatially varying pollutant effects impact health disparities in the U.S.  

 The next study employed a Bayesian profile regression technique to identify 

multipollutant exposure profiles and further observed that multipollutant profiles with high 

exposure to PM2.5, NO2, and NO are associated with a higher log odds of TLBW. This study also 

reveals that the high exposure multipollutant profiles that most resembled primary traffic-related 

PM2.5 mixtures were the only high exposure profiles associated with significantly higher odds of 

TLBW. This second study thus supports finding from the first study in two important ways. 

Firstly, the second study confirms that the air pollution association with TLBW is likely 

influenced by place. Secondly, this second study lends support to the concept that different types 

of PM2.5 exposures may well impact the odds of TLBW, which can also be implied from the first 

study. Moreover, the spatial mapping of these results are consistent with the first study in that 
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LA County's urban core of central and south-central LA show some of the strongest effects in 

terms of associations between air pollution and TLBW. 

 This second study also incorporated contextual factors to examine joint exposure patterns 

to highly correlated neighborhood-level stressors and their association with the odds of TLBW. 

This approach reveals the profound role that contextual factors play in determining spatial 

patterns of TLBW across LA County. For instance, the multilevel analysis demonstrated that 

sub-regions that were predominantly Black or Hispanic populations and simultaneously 

exhibited some of the highest levels of older housing stock and lowest median incomes were also 

characterized by the largest deviations above the baseline log odds for having a TLBW infant. 

This approach also demonstrates the need to assess multiple dimensions of community-level 

disadvantage in order to help isolate multipollutant effects, particularly since multipollutant birth 

outcome effects are spatially dependent. 

 The primary finding from the third study is that a better neighborhood food environment 

is associated with a lower odds of TLBW. Since this study question is predicated on a 

neighborhood built environment indicator (e.g. the food environment), I also incorporated other 

data at the neighborhood-level, including NDVI (or area greenness) and SES (median income) to 

control for other contextual factors that may confound neighborhood-level relationships. Results 

from this study revealed that the exposure response relationship between PM2.5 on TLBW was 

sensitive to adjustment for the food environment, thus suggesting that the food environment is 

important to consider when examining the association between PM2.5 TLBW.  Importantly, this 

third study failed to observe a spatially varying effect in the food environment, whereas the 

PM2.5 exposure response varied spatially. Because we found that the exposure response for the 

food environment on TLBW may be spatially uniform while simultaneously influencing the 
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exposure response of PM2.5 on TLBW, it further suggests that some of the spatially varying 

effects observed in the first study could potentially be influenced by the food environment. 

However, further study should explore this important hypothesis.  

 This final study also identified clustering of neighborhood level factors-- specifically 

mRFEI, NDVI, median household income-- and portrays the spatial patterning of these exposure 

profile clusters and their association with TLBW. Similar to study two, this approach reveals the 

importance of combined exposure to community-level stressors and elements of the built 

environment in terms of potentially shaping TLBW geographic disparities. Furthermore, much of 

these community level-stressors and built environment factors represent modifiable conditions 

that may be amenable to public health interventions that work at a more structural level, as 

opposed to public health interventions that strictly focus only on individual-level interventions. 

For instance, combing built environment interventions with individual-level interventions that 

focus on improving both area-level greenness and food environments and nutrition education 

may well be needed in low income communities in order to have a positive impact on reducing 

TLBW disparities. Additionally, given that PM2.5 effects on term birth weight may be sensitive 

place-based factors such as greenness (Li et al., 2016) and the food environment, improvements 

in air quality may be more likely to net a public health benefit if more structural neighborhood-

level interventions are pursued in concert.  

 Finally, our results support other studies to show that elevated exposure to outdoor air 

pollution during pregnancy is related to an increase in the odds of TLBW. Our research goes 

beyond previous study findings, however, in that we learned that air pollutant effects may vary 

spatially, and that joint exposure to multiple pollutants is likely to play an important role in 

determining TLBW pollutant risks. Our results also show that the neighborhood food 
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environment is associated with TLBW, which may represent an important built environment 

factor for which to target public health intervention in order to reduce disparities in TLBW. One 

of the more profound conclusions to draw from our study is that adverse environmental and 

contextual factors tend to cluster together and take on strong spatial characteristics that are likely 

to drive population health disparities related to SES and race and ethnicity. This last point drives 

home the larger notion that multilevel joint assessment of risk along with spatial patterning of 

risk is paramount for future environmental health studies; particularly research that targets 

vulnerable populations and exposures amenable to public health intervention across multiple 

levels. 
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Appendix A: Supplemental Material for Chapter 2 

 

Table A.1. Multivariate Logistic Regression Results for Standard and Multilevel Spatial Models 

 
Standard Regression Model Multilevel Spatial Model 

 

Odds Ratios 

Lower 95th 

Percentile 

Upper 95th 

Percentile Odds Ratios 

2.5% 

Quantile 

97.5% 

Quanitle 

PM2.5 (per 10µg/m
3
) 1.17 1.10 1.24 1.19 1.02 1.39 

Maternal Age 

      <20 years  1 (reference) 

  

1 (reference) 

  20 - 24 years .93 0.90 0.97 0.94 0.90 0.98 

25 - 29 years 0.87 0.83 0.90 0.87 0.84 0.91 

30 - 34 years 0.88 0.84 0.93 0.90 0.86 0.94 

≥35 years 1.05 0.99 1.10 1.06 1.01 1.12 

Maternal Education 

      0-8 years  1 (reference) 

  

1 (reference) 

  9-12 years 0.93 0.90 0.96 0.96 0.93 1.00 

13-15 years 0.74 0.71 0.77 0.79 0.76 0.83 

≥16 years 0.64 0.61 0.68 0.70 0.67 0.74 

Maternal Race 

      White  1 (reference) 

  

1 (reference) 

  Hispanic 1.11 1.06 1.16 1.024 0.978 1.073 

Black 2.42 2.31 2.54 2.132 2.012 2.245 

Asian 1.44 1.36 1.52 1.394 1.311 1.482 

Other 1.87 1.76 1.98 1.764 1.654 1.880 

Parity 0.61 0.59 0.62 0.603 0.587 0.620 

Gestation age (days) 0.32 0.31 0.33 0.32 0.31 0.33 

Gestation squared 1.00194 1.00187 1.002 1.001943 1.00188 1.0019442 

Female sex 1.44 1.40 1.47 1.44 1.40 1.47 
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Figure A.1. Spatial Distriubtion of PM2.5 Concentrations (in quintiles) throughout urban LA County Census Tracts. 
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Figure A.2. Spatial Distriubtion of Median Household Income (in quintiles) throughout urban LA County Census 

Tracts. 
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Figure A.3. Spatial Distriubtion of Percent Non-White (in quintiles) throughout urban LA County Census Tracts. 
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Appendix B - Supplemental Material for Chapter 3 
Figure B.1. Between pollutant correlations for different seasons using entire pregnancy average exposure.

 
 

 

 

 



176 

 

 

Figure B.2. Spatial patterns of season-specific pollutant clusters. 
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Figure B.3. Between pollutant correlations for each study year (2000-2006) using entire pregnancy average 

exposure. 
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Figure B.4. Spatial patterns of year-specific pollutant clusters.
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Table B.1. Odds Rations (95%CI) from Multivariate Logistic Regression Fixed Effects: 

Comparison between single pollutant versus multipollutant models 

 Single Pollutant Model Multipollutant Model 

Pollutants OR Std. 

Error 

p-value OR Std. 

Error 

p-value 

PM2.5 (10  

µg/m
3
) 

1.05 0.0026 0.059 1.02 0.0029 0.59 

NO2 (10ppb)
a 

1.06 0.0015 0.0002 1.04 0.0019 0.03 

NO (10 ppb)
a 

1.02 0.0006 0.002 1.01 0.0008 0.23 
a
A multiplicative interaction between NO2 and NO was statistically significant (p-value=0.04).
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Figure B.5. Census tract autocorrelation of TLBW prevalence using Local Moran's I test for spatial autocorrelation. 
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Figure B.6. Pearson Correlations Between Pollutants and Contextual Variables across all pollutant Clusters (P1-

P13). 
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Pollutant Cluster 5 Pollutant Cluster 6 
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Pollutant Cluster 9 Pollutant Cluster 10 

Pollutant Cluster 11 Pollutant Cluster 12 
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Pollutant Cluster 13 
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Appendix C - Supplemental Material for Chapter 4 

Supplemental Materials 

 
Figure C.1. Pearson correlations between continuous covariates.  
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Table C.2. Comparison of coefficients with and without PM2.5 or mRFEI and coefficient estimate for multiplicative 

interaction term.  

Type of Model βmRFEI (95%CI)
a 

βPM2.5 (95%CI)
b 

βPM2.5*mRFEI (95%CI)
c 

Without PM2.5 -0.4761 (-0.838, -0.118)   

Without mRFEI  0.021 (-0.004, 0.047)  

With PM2.5+ mRFEI -0.4587 (-0.8219, -0.099) 0.019 (-0.006, 0.045)  

Interaction - mRFEI*PM2.5 -0.441 (-0.813, -0.073) 0.012 (-0.028, 0.051) 0.073 (-0.215, 0.369) 
a
Δ βmRFEI = -3.8% after adjusting for PM2.5 

b
Δ βPM2.5 = -10.5% after adjusting for mRFEI 
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Figure C.3. Profile clusters from the Bayesian profile regression. 
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