
AN ABSTRACT OF THE THESIS OF

PAULA ANN HITCHCOCK for the MASTER OF SCIENCE
(Name) (Degree)

in COMPUTER SCIENCE presented on July 30, 1973
(Major) (Date)

Title: A BLOCK METHOD APPROACH TO SOLVING THE

LAPLACE EQUATION, ON A PARALLEL COMPUTER.

Redacted for Privacy
Abstract Approved:

Joel Davis

This paper continues exploration in the area of

programming for parallel computers. The appendix to the

paper contains an extensive survey of the literature re-

lated to parallel computers and parallel programming tech-

niques. The paper itself presents a new appraoch to solv-

ing the Laplace equation on a. parallel computer. A new

"block" method, the Accelerated Alternating Halves method,

is found to be consistently better than the Accelerated

Point Gauss-Seidel method or the Accelerated Line Gauss-

Seidel method when used on a parallel processor computer_.

A BLOCK METHOD APPROACH TO SOLVING

THE LAPLACE EQUATION ON A PARALLEL COMPUTER

by

Paula Ann Hitchcock

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Master of Science

Completed July 30, 1973

Commencement June 1974

APPROVED:

Redacted for Privacy

fessor'd 'Computer Science

Redacted for Privacy

Head of Department of Computer Science

Redacted for Privacy

Dean of Graduate School

Date thesis is presented July 30, 1973

Typed by Diane Glassmire for Paula Ann Hitchcock

TABLE OF CONTENTS

I. Introduction 1

II. Common Numerical Techniques for
Solving the Laplace Problem 5

2.1 Problem Definition 5

2.2 Common Methods for
Solving the Matrix Problem 12

2.3 Evaluation of Convergence of Methods
for Solving the Matrix Problem 18

III. The Alternating Halves Methods 31

3.1 The New Matrix Problem 31

3.2 Definition and Evaluation
of the Alternating Halves Methods 36

IV. The Effect of Parallel Computations on
Method Efficiency 43

4.1 Overview and Assumptions
of the Evaluation 43

4.2 Summary of Arithmetic Operations
Required by the Accelerated Point
Gauss-Seidel Method 44

4.3 Summary of Arithmetic Operations
Required by the Accelerated Line
Gauss-Seidel Method 47

4.4 Summary of Arithmetic Operations
Required by the Accelerated Alter-
nating Halves Method 56

V. Examples, Evaluations, and Conclusions 62

5.1 A Closer Look at the Operation
Count and the Effect of the
Values of I and J 62

5.2 Parallel versus Nonparallel 72

5.3 Further Improvements 73

BIBLIOGRAPHY 76

APPENDIX 77

LIST OF ILLUSTRATIONS

Figure Page

1 The Matrix A When I= J= 5 11

2 The Matrix A* When I = J = 5 37

3 The Matrix P When I= J= 5 38

LIST OF TABLES

Table Page

I Total Parallel Operations
Required by Each of Three
Methods to Improve e")
by a Factor of 10-3 when
I = J = 33, h = k = .1

64

II Operations Required for Accelerated 67

Point Gauss-Seidel (APGS), Accelerated
Line Gauss-Seidel (ALGS), and Accelerated
Alternating Halves (AAH) Methods when
33 < I(=J) < 257

III Operations Required for Accelerated 69

Point Gauss-Seidel (APGS), Accelerated
Line Gauss-Seidel (ALGS), and Accelerated
Alternating Halves (AAH) Methods when
129 < I(=J) < 161

A BLOCK METHOD APPROACH TO SOLVING

THE LAPLACE EQUATION ON A PARALLEL COMPUTER

I. INTRODUCTION

The desire to use computers in the solution of in-

creasingly complex problems has continually motivated

the creation of machines with greater computing capa-

bilities. The emphasis of computer technology, until

approximately the last ten years, has been on shorten-

ing switching times of circuit components, increasing

the speed of memory units, and minimizing component

size. The achievements in these areas have been im-

pressive so impressive that computing systems have

advanced to "... the point where efforts to increase

performance [have encountered] basic physical laws as

limiting influences."1 One attempt to circumvent this

apparent dead-end in computer growth has been the ex-

ploration of hardware redundancy. In particular, much

attention has recently been focused on the "parallel"

computer.

The defining feature of the parallel machine is,

simply enough, that it can perform more than one com-

1
W.L. Miranker, "A Survey of Parallelism in Numerical
Analysis," Society for Industrial and Applied Math-

ematics Review, 13 (October, 1971), p. 524.

2

putation at a time. That is, it is capable of perform-

ing operations "in parallel." Experiments in parallel

computing have been highly varied. In the literature,

however, we find three common types of parallel compu-

ters. 2 The first, and simplest, involves parallelism

at the machine instruction level. Several higher level

instructions appear to be processed simultaneously, but

actually different phases of the instructions are done

at the same time. That is, while a "fetch" for one

instruction is being done, an "execute" for a second

instruction is underway, a "store" for a third instruc-

tion is being done, etc. This type of parallelism is

referred to as a "look ahead" capability. The second

type of parallel computer contains a single control

unit which issues identical instructions to several

arithmetic units. Each arithmetic unit has its own

data memory. This "array processing" computer is high-

ly suited for working with vectors and matrices. The

most complex parallel computer has a control unit which

can divide the instruction stream into several sub-

streams to be executed simultaneously. Each substream

of instructions is then executed by a separate process-

or, concurrently with all other substreams.

2 Ibid., p. 525.

3

Several parallel computers have already been con-

structed. We find among these the CDC 6600, ILLIAC IV,

GAMMA 60, SOLOMON, and IBM SYSTEM/360 MODEL 91. With

these parallel machines ready for use, or soon to be

available, attention is now turning to finding ways of

using them efficiently. In the area of numerical anal-

ysis, for example, some techniques are "naturally"

parallel. Linear algebra provides many such examples.

However, most algorithms have been developed in the

traditional sequential manner. Some of these have

recently been reconstructed to take advantage of

the new parallel processing capabilities. Problems

which have been re-examined include matrix inversion,

root finding, integration of ordinary differential

equations, and polynomial evaluation. (A list of the

related literature is given in the appendix to this

paper.)

Very little has been published in the

area of parallel-computer-oriented methods for

solving partial differential equations. An article by

Rosenfeld and Driscoll discusses the solution of the

Dirichlet problem on the third type of parallel com-

puter described above. Two other relevant articles

concerned with solving certain partial differential

4

equations involved in weather prediction. One of

these, the paper by Carroll and Wetherald, investi-

gates the solution of the Laplace equation on the SOL-

OMON computer.

In this paper, two new "parallel" methods for

solving the Laplace equation are presented. The meth-

ods are designed to be used on an array-processing

computer, although they could be efficiently used on

more sophisticated machines. The methods are not

limited by being defined about a specific problem,

since it seems likely they could be adapted for the

solution of other similar problems.

5

II. COMMON NUMERICAL TECHNIQUES

FOR SOLVING THE LAPLACE PROBLEM

2.1. Problem Definition

As stated in the Introduction, this paper exam-

ines the effect of parallel computations on the sol-

ution of a partial differential equation. The parti-

cular problem considered is the solution of the La-

place equation,

(2.1.1)
3
2

2
m
, 9

2
u

ax ay
2

=

on the rectangle D = {(x,y) 0 < x < a, 0 < y < b}.

It is assumed that the function u is continuous and

that its value is known on C, the boundary of D.

That is, u = f(x,y) for (x,y) e C, where f(x,y)

is known.

The usual approach to finding a numerical approx-

imation to u begins by approximating the domain D

by a finite set of points.3 Approximations to u(x,y)

are obtained for only those points (x,y) in this

finite set. The domain actually considered, then, is

defined as

3E. Isaacson and H.B. Keller, Analysis of Numerical
Inc.,Methods (New York: John Wiley and Sons, 1966),

444 ff.

6

DIET = {(xi yj) I xi = ih, i = 1 , I 1;

y, = jk, j = 1, J 1}.

Here it is assumed that h = a/I, k = b/J, where I

and J are any positive integers. The boundary of

the domain D
IJ

is defined to be

C
IJ

= {(x., yj) I i E {0, I}, 1< j < J 1} U

{(xi, yj) I j E {0, J }, 1< i< I-

We denote the restrictions of f and u to D U
CIJIJ

by 1-* and U, respectively. Finally, second dif-

ference quotients are used to approximate the second

derivatives of the Laplace equation. The numerical

problem thus becomes the following:

U(xi+l, yj) + U(xi_l, y.) - 2U(xi, y.

h
2

(2.1.2)
U(x., yj+1

j-1
) + U(x., y) 2U(x., y.)

= 0

k
2

for (x., y) E DIJJ

U(xi, yj) = F*(xi, yj) for (xi, yj) E CIJ.

y letting 0 = 2/h
2

+ 2/k
2

, 0
x

=
1

and 0 =
1

h
2 '

k
2
6

'

the problem can be rewritten as

(2.1.3)

(U(xi+1, yj) u(.

xi-1' Yj))

O (U(x., y.3+1 3
) + U(x., y.

-1
)) -

Y 1

U(x., y.3) = 0 for (xi, yi) E Dij

U(x., y.) = F*(x., y.) for (xi, y.)

7

By viewing each value U(xi, y.), for (xi, y.)

D
ILI'

as an unknown, 2.1.3 can be seen to be a system

of (I-1)(J-1) linear equations in (I-1)(J-1) un-

knowns. The problem given in 2.1.3 thus can be trans-

formed into a matrix problem of the form AU = G. Here

U is defined to be the vector

U

U1

U
2

u(
I -1) (J -1)

U(x y
1

)

U(x2, y
1

)

U(x
I-1' Y1)

U(x1, y
2

)

U(x y)
I-1' J-1

The definitions of A and G are somewhat more

8

complicated. First we let

T
I

=

0

1 0

1 0

1 0

O

0

1 0

be an (I-1) x (I-1) matrix, and let SI be an

(I-1) x (I-1) identity matrix. The matrices S and

T are each composed of (J-1) x (J-1) submatrices,

with each submatrix being of dimension (I-1) x (I-1).

The arrangement of the submatrices composing S and

T are the following:

0

SI 0

S =

0

9

and

T
I

T

0

I

T
I

O

T

We can now define the matrix A by

T

A = e
x
(r + TT) + ey (S + ST) - IN .

Here, and in the rest of the paper, IN is an

(I-1)(J-1) x (I-1)(J-1) identity matrix, and the

superscript "T" denotes the transpose of the given

matrix. We use the conventional notation of represent-

ing the element in the ith row and jth column of A

by a1.. The matrix A, when I = J = 5, is shown in

figure 1.

In defining the vector G, we first note that on

the boundary CIL). the values of U are known. This

means that some of the equations in the system AU = G

contain only three or four unknowns. All known values

in these equations are included in the vector G.

More precisely, we define

G . . = 0 if 1 < i <

= -0 U(x1,i X o' Y'),

-(3 U(x .7
I-1,i

=
x 1'

y]),

7. . = G. . if 1 < j

1,]

= G. -
'

U(x.
1,1 1,1 y 1

I-1,

< J-1,

y)
0

and finally,

- 0 y
7i,J-1 1,J-1 y

U(xI'
J

)
'

G1

G
2 I I

7
2,1

G
(I-1)(J-1)

71-1,J-1

10

11

-1

6 x

0

0

8
Y

0

0

0

0

0

0

0

0

0

0

0

A x

-1

0 x

0

0

6
Y

0

0

0

0

0

0

0

0

0

0

0 0

e ox

-1 8

0 - 1x

0 0

0 0

8 0
Y

0 0

o o

0 0

0 0

0 0

o o

0 0

0 0

0 0

x

Y

8
Y

0

0 8 y
0 0

0 0

-1 6 x

ex-lexo
0 0 x
0 0

e 0y

0 8y

0 o

0 0

0 0o
0 0

0 0

0 0

Figure

0 0

0 0

8 0y

0 0

0 0

-1 0

8 -1x

00
0 0

e o
y

0 8

o

0 0

0 0

0 0

1.

0 0 0

0 0 0

0 0 0

o o oy

e
Y

o o

0 0
Y

0

0 0 8x

0 0 0

-10 oox

6x -1

0 e x - 1

0 0 6y

e o o
Y

0 0 0
Y

0 0 e

0 0 0

The Matrix

0

0

0

o

o

0

0y
0 y

0

e x

-1x

o

0

o
Y

0
Y

A

0 0

0 0

0 0

0 0

o o

0 0

0 0

0 0

8 oy

0 8y

0 0

0 0

-1e0x
0 x -1

o e-lex
o o

0 0

0 0

0 0

0 0

0 o

0 0

0 0

0 0

o o

0 0

8 0
y

0 0 y

0

eox

x

ex -1

When I = J = 5.

12

Before looking at specific ways of solving

AU = G, it should be determined that this system

does, in fact, have a unique solution. A proof

can be found in Isaacson and Keller's Analysis of

Numerical Methods (pp. 447-448).

2.2. Common Methods for Solving the Matrix Problem

A variety of methods are available for solving

the matrix problem, AU = G, defined in section 2,1.

In the following paragraphs, some commonly-used methods

are briefly reviewed. New methods which seem particu-

larly suitable for solving partial differential equa-

tions on a parallel computer are discussed in Chapter

III.

The direct approaches to solving systems of linear

equations often are not used to solve the difference

schemes which evolve from partial differential equations

such as the Laplace equation.4 These systems tend to

become very large..., of the order of 2500 or more un-

knowns. Because of this size problem and because of

the very sparse nature of these matrices, iterative

methods are often used. In the following discussion,

two general types of iterative methods, the point and

4
Ibid., p. 463.

13

the block, are considered. The two types are distin-

guished by the composition of a single iterative step.

Each iterative step of a point method determines an

estimate for one component of the vector U. In con-

trast, a group or "block" of estimates is obtained

in a single iterative step of a block method.

The first step in each of the point methods for

solving AU =G is to write A as A = D - E F

where E is strictly lower triangular, F is strict-

ly upper triangular, and D is a diagonal matrix. In

the particular problem defined in section 2.1, for ex-

ample, we let

D = -I
N'

E = -e
x
S-0

y
T, and F = -0

x
S
T
-e

y
T
T

.

The most straightforward iterative method is the

Point Jacobi Iterative method. Here, AU = G is simply

rewritten as DU = (E + F)U + G. Letting U
(()) be the

initial estimate of the solution vector, we can write

this method as

DU
(m+1) = (E+F)U

(m) + G, or

(2.2.1)

U
(m+1) = D

-1
(E+F)U

(m) + D
-1

G.

The component equations have the form

114

(I-1)(J-1)

U.
1 aii

__ a .U.
3

)4.
ai.

l

(m+1)
=

1 (m)
G.

j=1
i3

jai

The Point Gauss-Seidel method is closely related

to the Point Jacobi, but it uses estimates of the

values U., 1 < i < (I-1)(J-1), as soon as they are
i

calculated. In calculating U.
(m+1)

, for example,

(m+1) (m+1) (m+1)
,the values of U U U.

1 2
U1-1

are used instead of U
1

(m)
'

U2
(m)

, ... U.
(m)

1-1

This iterative method is given by the following:

(2.2.2)
(D-E)U

(m+1) = FU
(m)

G, or

u
(m+1) = (D-E)

-1
FU

(m)
+ (D- E) -1G.

The individual equations in this system have the form

±-1
(m+1) -

!_ad u(m+1)
a.. j

j=1 "
(I-1)(J-1)

.

(m)
GI

//, aii j a
ii

j=i+1

To obtain the third point method, the Accelera-

ted Point Gauss-Seidel method, we define an inter-

1)
mediate vector U

(m+
2 to be the following:

15

,
111-

1.u)
U. =

j =1

a..
1)

U
(Intl)

.

a11 ..

(I -1)(J -1)

j=i+1

a.. G.

U (m)
1

a.. a..

for 1 < i < (I-1)(J-1). The (m+l)st estimate of

U. is then obtained from
1

U = U + w {U.(m+1) (m) (m+2) (m),

1 1 1 1

where we have introduced the real acceleration factor

w. The matrix form of this method is

(2.2.3) (D-wE)U
(m+1) = {(1-01) + wF} U

(m) + wG.

For the block methods, the matrix A is ar-

ranged as a system of submatrices,5 as is shown in

the following:

(2.2.4) A =

'Richard S. Varga, Matrix Iterative Analysis (Engle-

wood Cliffs, New Jersey: Prentice Hall, Inc., 1962).

pp. 98-106.

16

with 1 < M < (I-1)(J-1), and with square diagonal

submatrices A. .., 1 < i < M. Further specification

of M or of the dimensions of the diagonal submatrices

depends on the particular problem. In solving the

Laplace equation, the dimension of Aii, 1 < i < M,

is often chosen to be the number of unknowns in a row

of the rectangular grid, DILI. When this is the case,

we shall refer to the method as a "line" method rather

than as a "block" method. We further define

T5 =

E

A2,2

0

0

A 0
2,1

A. A3,2 0

O

A
M,M

O

A A 0
M,1 M,M-1

5

5

17

and

_

ro A
1,2

A
1,3

A
1,M

0 A
2,3

Am_1,1,1

L 0

Using these definitions, the Block Jacobi Iterative

method is written as

f
U
(m+1) = (E+F)U

(m)
+ C, or

(2.2.5)
(+1) 5-1(T+T)u(M) f-1G.

The Accelerated Block Gauss-Seidel method is given

by

(2.2.6) (f-wT)U(m-1-1) = + (1-w)f)U(m) = wG.

As the formulas 2.2.5 and 2.2.6 suggest, these

block methods determine a group of the components of

U(m +1) simultaneously. More exactly, a single iter-

ative step produces estimates for more than one com-

ponent of U. Each such group of estimates corres-

ponds to a submatrix A.., 1 < i < M and the size of

the grouu is the dimension of the corresponding sub-

matrix. Determination of a group of estimates is

actually the solution of a linear system with coeffi-

cient matrix closely related to the corresponding sub-

matrix. For example, if we let U-1
LIJ

represent the

ith group of components of the vector U and apply

formula 2.2.5, then the ith group of estimates are

obtained by solving the following system:

(m+1) (m)A..0
[1.

.

] , 42
= _ A..0

[3
.

]

+ G .

j=1
jai

Thus, in calculating U
(m+1)

from U
(m)

M matrix

problems must be solved. Since the dimensions of

these linear systems are relatively small, the systems

often are solved explicitly using a factoring tech-

nique6 or some other computation-saving method.?

2.3 Evaluation of Convergence of Methods

for Solving the Matrix Problem

One numerical method is considered to be better,

or. more efficient, than another numerical method if it

requires fewer operation times and yields at least the

6lsaacson and Keller, Op. Cit., p. 52.

7
Ibid., pp. 55-56.

19

same degree of accuracy as the second method, In

order to compare any two methods described in the pre-

vious section, then, we must determine the number of

multiplications and additions required to calculate

U(m +l) from U
(m)

. We also need to know the rate

of convergence for each method -- approximately how

many iterations are required to achieve a desired

accuracy. A technique8 commonly used for comparing

convergence properties of methods is outlined in the

following paragraphs.

All of the methods described in section 2.2 are

of the general form

(2.3.1)
U(m +1) = BU

(m)
+ H.

We refer to B as the iterative matrix of the method.

We define the error vector e
(m) by e

(m)
=

(m) - U,

where U is the unique solution to (I-B)U = H. Then,

by subtracting U = BU + H from 2.3.1, we get

e
(m) = Be (m-1)

.. = Bme (0)

By introducing norms into this string of equalities,

we obtain

(2.3.2) e(m)
II

< NBm He(0)11

8Varga, op. cit., pp. 61-67.

Here the norms could be any consistent norms, but we

choose the vector norm to be the Euclidean norm, de-

fined to be

11 4 =
2

)

for x = (x
1,

x2, x
n
). The matrix norm is chosen

to be the spectral norm, given by

=

20

for any matrix A.

To determine how many operations are required to

reduce the norm of the initial error by a factor of p,

we must find the smallest m such that

fle(m)11

k("11 P

This inequality will hold for a particular value of

m if

< P

If the eigenvalues of the n xn matrix B are

A., 1 < i < n, then we define
1

P B max IX.1.
1<i<n

The method having iterative matrix B converges if

21

and only if p(B) < 1; we assume from now on, then,

that p(B) < 1. From Isaacson and Keller's discussion

of rate of convergence,9 we find that

IIBmII (p(B))m

for large values of m. If B is real and symmetric,

then

11BmIl = (p(B))m.

Thus, instead of working with HBmh, we look for the

smallest m such that

(p(B))m < P5

(2.3.3) m kn p(B) < kn p, and

-tn pm > ,

Mn p(B)I

We define the rate of convergence to be

R (B) = in p(B)I.

Since larger rates of convergence allow smaller

values of m to satisfy 2.3.3, we consider a method

to be superior to a second method if the rate of con-

vergence of the first is greater than the rate of con-

vergence of the second. We further note from the

definition of rate of convergence that the comparison

problem actually reduces to the problem of finding the

9

Isaacson and Keller, op. cit., p. 64.

22

eigenvalue of maximum modulus of a given iterative

matrix.

Before attempting to find the rates of convergence

for the methods of the previous section, we establish

a relationship between eigenvalues of two types of

matrices. This relationship, which is expressed in

the following well-known theorem, greatly facilitates

comparison of both the block and the point methods

among themselves. Before stating the theorem, we

give some preliminary

matrix A' to be given

A"

definitions.

by

A1,1
1,1 1,2

A
2,1 2,2

A;,2 .

We

.

.

define

A" 1
1,r

A
2 ,r

A'
r,r

the

where the diagonal submatrices are square and non-

singular. It is also convenient to write

A' = D' - E' - F', with

and

F

E

=

A"2,2

0

A2,1 0

A3" A' 0
,1 3,2

r,1

0 A1,21,2 1,3

0

0

0

A'r,r

0

5

A' 0r,r-1

23

T
Al

Ar -1,r

0

We assume the problem to be solved is given by

A"X = Y, and define Method I to be given by

(m+1) (m)
X = T"X + D'-1Y,

where T° = D°-1(E°+ F°). Method II is

X
(m+1) = T"-X

(m)
+ (11)°,-wE°)

-1
wY,

with T"= (D°-wE°)-1(wF°+(1-w)D°) and w 0

the acceleration factor. We can now give the fol-

lowing

Theorem.
10 Assume T° can be partitioned in tri-

diagonal block form, with blocks on the main diagonal

composed only of zeros. Let A be a nonzero eigen-

value of T", and let p satisfy

(2.3.4) (A + w-1)
2 = Aw

2
p
2

.

24

Then p is an eigenvalue of T. Further, if p is

an eigenvalue of T', and A satisfies 2.3.4, then

is an eigenvalue of T".

Proof: First we establish what we call the "a property"

of the matrix T. By this, we mean that the eigen-

values of T° are the same as those of T
a'

where T
a

is given by

10See, for example, Varga's similar theorem, Ibid.,

pp. 106-107.

25

T =

0
1T"
a 1,2

aT' 0 IT'
2,1 a 2,3

al3,2 0

O
0

and a is any nonzero number. Let (n,z) be an

eigenpair for T'. Then T'z = nz, and

z
1

=

z

2

S

5

partitioned to correspond to the partitioning of T'.

Thus we have

T' z + T' z
i

= for 1 < < s,
i-1 i-1 i,i+1 +1

T1,' , and T' = nz .

2
z
2

= nz
1 s s-lzs-1

We define z as

26

az
1

2
a z2

3
a z3

Z

zl

2
2

z3

The following, then, holds for 1 < i < s:

aT + T' z
i-1 i-1 i 1+1 1+1

i 1 1+1
T"aT" a

-1
+z

i-1 a 1 i+la z1+1i 1-1

a (T" z
i

+ T" z)

1,i-1 -1 1+1 1+1

= a
i
(nz) =

A similar result holds for i = 1 and i = s. We

now see that if 71 is any eigenvalue of T', n is

also an eigenvalue of T
a

. We further note that the

a property holds for any matrix having zeros where

T" has zeros.

With this preliminary result, we can proceed with

the proof of the theorem. We write T" = TL + T6,

where T" is strictly lower triangular and T' is

27

strictly upper triangular. T''can now be expressed. as

T"= (I
N L

wT")
-1

fwT" + (1-w)I 1,

Let X be any nonzero eigenvalue of T;"and assume

11 satisfies (X+w-1)
2

= Xw
2
p
2

. Then we have the fol-

lowing:

0 = detE(I
N L
-wT")-1-1wT" + (1-w)IN} XINI

= detEwT" + (1-w)IN
X(I

N L
wT")1

= detE(1-w-X)IN
+ wT" +),(1)TL "J.

The second equality is obtained using the fact that

det(I
N

wT") = 1. The next step is to apply the

a property" to the last expression in the above string

of equalities. We recall that

X+w-1
1

or

X 7w

-(X+w-1)
1

X7w

1
We choose the sign of x

T so that the first expression

1

for p holds. Choosing a = x2, we obtain

1
7

detE(1-w-A)IN
+ wX'T" + X

7
wT

L
J = 0.

1
-1

Since (X7w) I
N

is nonsingular,

28

1
7 -I

detI(1-w-MX w) I
N

t T' + TL] = 0.
L

Thus we see that p is an eigenvalue of T.

The proof of the other half of the theorem follows

by reversing the arguments given above.

The Method I and Method II of the theorem are ob-

viously very similar to the Line Jacobi and Acceler-

ated Line Gauss-Seidel methods. We now show that the

theorem can, in fact, be applied to the methods given

by 2.2.5 and 2.2.6. With the partitioning of A given

in 2.2.4, the diagonal submatrices are square. Assum-

ing 0 # 0, the diagonal submatrices are also strictly

diagonally dominant and thus nonsingular. The Line

Jacobi and Accelerated Line Gauss-Seidel are clearly

of the proper form to be classified as Method I and

Method II types, respectively. Thus we need only check

for the property of T' = 5-1(T + T) required by the

theorem. By returning to the original definition of

the matrix A given in section 2.1, we see that

A..
311

= S
I

+ x
(T

I
+ TIT 1 < i < J-1,

Ai = e S 2 < < J-1 and
Y I '

A. =OS 1 < i < J-2.
1+1,1 y I'

29

All other blocks contain only zeros. Thus T-1(f T)

is block tridiagonal with zero blocks on the main dia-

gonal. The theorem can, therefore, be used to relate

the eigenvalues of the Line Jacobi iterative matrix to

those of the Accelerated Line Gauss-Seidel iterative

matrix. In particular, the largest eigenvalues, and

consequently, the rates of convergence, can now be

easily compared. For example, by choosing w = 1,

we see that the eigenvalues of the Line Gauss-Seidel

iterative matrix are the squares of those of the Line

Jacobi iterative matrix. This means that the rate of

convergence of the Line Gauss-Seidel method is equal

to twice the rate of convergence of the Line Jacobi

method. For this reason, and because the Line Jacobi

requires twice as much storage, the Line Gauss- -Seidel

is clearly more efficient. The Accelerated Line Gauss-

Seidel, as we see from the theorem, is even better.

The optimal acceleration parameter has been shown to

be

w- 2

1 + 2

7
where u = (20 cos

I
- 2e

x
cos,)

-1 is the largest
u

eigenvalue of the Line Jacobi iterative matrix. The

rate of convergencell when this value is used for

is:

27TkVIa
2 ((111

0/.

The point methods of section 2.2 do not satisfy

the hypotheses of the theorem, but a similar result is

true for them, also.12 Thus we find that, as in the

case of the block methods, the Point Gauss-Seidel meth-

od is superior to the Point Jacobi method. The optimal

acceleration factor for the Accelerated Point Gauss-

Seidel method is

30

2

w 1+1-X2

where X = 1-48
x
sin2 () 40 sin2(1L) is the largest

2J

eigenvalue of the Point Jacobi iterative matrix. Using

this value of w, the rate of convergence13 is

/
8

1) o(1-)
b2 el

11Isaacson and Keller, 22. cit., p. 474.
21 Ibid., pp. 465-467.

13 .IbId., p. 470.

31

III. THE ALTERNATING HALVES METHQDS

3.1 The New Matrix Problem

The methods described in the previous chapter

are based on a sequential approach to computations.

Employing such methods to solve the Laplace problem

on a parallel computer makes little use of the spec-

ial capabilities of the machine. As will be seen in

the next chapter, some economies are possible if one

of the conventional block methods is used. Even these

block methods, however, cannot take full advantage of

the number of processors available.

A new method for solving the Laplace equation on

a parallel computer appears in a 1967 paper by Carroll

and Wetherald. -4 They use the standard finite diff-

erence approach explained in Chapter II. The sol-

ution is obtained via a modified Point Gauss-Seidel

method. The grid DILI is divided into groups of

four points in the following way:

14A.B. Carroll, and R.T. Wetherald, "Application

of Parallel Processing to Numerical Weather Pre-

diction." Journal of the Association for Comput-

ing_Nlachinery, 14(July, 1967), 591-614.

32

1 2 1 2

3 4 l 3 4

2

3 4

1 2
. .

3 4

1 1 2

I

3 4

All points labeled with the same number can be pro-

cessed simultaneously. That is

(I-1)(J-1)

unknowns are estimated in each iterative step.

No formal analysis of the method is given, but

tests conducted by the authors show the convergence

rate of the new method to be slightly better than

than of the Point Gauss-Seide2. The real advantage

to the method is that it processes one -fourth of the

unknowns simultaneously. In the following paragraphs

we describe two new block-type methods designed to

even more completely employ the processors of a

33

parallel computer. These methods process half of

the unknowns simultaneously. Due to the lack of anal-

ysis in the paper by Carroll and Wetherald, we are not

able to compare the rate of convergence of their method

to the rates of convergence of the Alternating Halves

methods presented below.

The Alternating Halves methods are similar to the

line methods. In the latter methods, each block corres-

ponds to a row of the grid, DIJ'
and a single block is

processed in each iterative step. The new methods, in

contrast, treat the unknowns of approximately half of

the rows of the grid in each iterative step. More spec-

ifically, the first iterative step, and every odd-

numbered step thereafter, finds estimates for the un-

knowns corresponding to the grid points on all the odd-

numbered rows of the grid. Each even-numbered iterative

step treats all unknowns corresponding to points in the

even-numbered rows of the grid.

Since the Alternating Halves methods process the

unknowns in a different order from that assumed in sec-

tion 2.1, a reformulation of the matrix problem is

necessary. This new system is denoted by A*U* = G.

A* is obtained from A by permuting certain rows and

columns,, In particular, A* = PAP'', with the permutation

34

matrix P defined as follows. Let S
I

be an

(I-1)x(I-1) identity matrix. Let P be composed

of (J-1)x(J-1) submatrices P. ., with each sub-1,

matrix being square of dimension I-1. If we further

define 0 to be the (I-1)x(I-1) matrix composed en-

tirely of zeros, and define K to be the largest inte-

ger satisfying K

P

-J-1,1

if

P.
1,J 1 Sr if

< J/2 , then

`1 2

j = 2i - 1, 1 <

j = 2i - 2K, K-+

otherwise.

Now to exactly specify the matrix A*, we define

p
1 , - 1

with

PJ-1 J-1

i < K,

1 < i < J 1,

S
1

to be the (I-1)(J-1-K)x(I-1)K matrix given by

35

-I I

if J is an odd number, or

S

SI SI

SI SI

0

SI

SI

if J is even. Then the (I-1)(J-1)x(I-1)(J-1)

matrix S
2

is given by

0 0

S
2

=

IS, 0

Letting T be defined as in section 2.1, we have

A* = x
(T T

T
)

y
(S

2
+ S

2

T
) I

N'

A* and P, for the case I = J = 5, are shown ex-

36

plicitly in figures 2 and 3.

The last step in reordering the equations of the

system AU = G is to reorder the vectors U and G.

The new order still numbers the unknowns from left to

right along each row of the grid. The difference, as

stated before, is that the rows are considered in the

following order: 1, 3, 5, 7, ..., 2, 4, 6, . . We

define U*, then, to be U* = PUPT. G* is similarly

defined.

3.2 Definition and Evaluation of

the Alternating Halves Methods.

Using the definitions of the previous section,

the Alternating Halves method is given by the follow-

ing:

(m+1)
(3.2.1) U* =

N
)
-1
V*U*

(m)
+ ") 1G*

N

with H* =
x
(T + TT) and V* = -6 y (S

2
+ S

2
T). Assum-

ing Gy X 0, CH -IN) exists because H*-I
N

is

strictly diagonally dominant. In order to compare

this method with those discussed in Chapter II, we

must determine the eigenvalues of maximum modulus of

(H*-I)
-1

V*. To this end, we also define

-1

0x

e x 0 o

0 0

o o o o

0 0 0 0

Ay 0 0 0

0 0y 0 0

37

0 0 0 0

0 0 0 0

o 0x -1 ex o o o o o o Ay o 0o oo
0 o e x 3. o o o o 0y 000 o

0 0 0 0 -1 0
x

0 0 0
Y

0 0 0 0
Y

0 0 0

0 0 0 o exlexo o A

Y
0 o oe

Y
o o

0 0 0 0 0 0 x 1 0
x

o o e
Y

o 0 0 0 0

0 0 0 0 0 0 A x 1 o o o Ay 0 0 0 0
Y

Ay 0 0 o 0
Y

o o o 1ex0 o o o o o

0 0
Y

0 0 o e
Y

oo 0
x

-1 0
x

0 0 0 0 0

0 0 0
y

0 0 0 A
y

0 o e x l e x 0 0 0 0

0 0 0 0Y 0 0 0 0Y 0 0 0 1 0 0 0 0

0 0 0 0 A
Y

0 0 0 0 0 0 0 -1 0
x

0 0

0 0 0 0 0 0
Y

0 0 0 0 0 0 Ax -1 0
x

0

0 0 0 0 0 0 0
Y

0 0 0 0 0 0 Ox -1 ex

0 0 0 0 0 0 0 AY 0 0 0 0 0 0 ex -1

Figure 2. The Matrix A*

When I = J = 5.

38

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 3. The Matrix P

When I = J = 5.

39

H =
x
(T + T

T
) and V = -6y (S ST). After noting that

f
x
(T + TT) - I

N
and (E + T) = -0

Y
(S + ST), we see

that the iterative matrix of the Line Jacobi method can

be expressed as (H - IN)
-1

V. By setting Ox = 0, it

follows that

-V* - IN = PAPT = P(-V) PT

-PVP
T

I
N

so that v* = PVPT. A similar argument shows that

PHP
T = H. Starting with the Line Jacobi iterative

matrix, then, we observe the following relationships:

PPH - I
N
)-1V]PT

= P(H - I
N
)-1t)TPVPT

= [P(H - IN)PT]-1PVPT

= (H* - I
N
)-1V*.

The Line Jacobi iterative matrix is thus seen to be

similar to the Alternating Halves iterative matrix.

Since the two matrices have the same eigenvalues,

it follows that the corresponding methods have the

same rate of convergence.

In preparation for intl,%:ducing the second new

40

method, the iterative matrix of the Alternating Halves

method is further examined. First, we partition A*

into four submatrices:

Al A*11 1,2

A* =

A* A*
2,1 22_

We let AL = S1 and = SiT

and we note that with this specification, At and

2
A*

2
are also defined and are square. Further, we

define

D* =

Al

0

0

A2,2

By comparing D* to the definition of H* - IN and

recalling that

v* -0
y
(s

2
+ S)

2

we see that the method given by

(3.2.2) D*U* (m+1) -e
y
(s

2 2
T+ S)U*(m) + G*

is identical to 3.2.1.

We now define the second new method, the Acceler-

ated Alternating Halves method, to be

41

(3.2.3) (D*+we
y
S
2
)U*(111+1) = (-0

y
wS

2
T+(.1-w)D*)U*(311)+wG*.

Assuming 0, it follows that D* is nonsingular

since it is strictly diagonally dominant. Observing

that D* + we
y
S
2

= D* (I D* (1)0
y
S
2

) and that

D*-1w0y S
2

is strictly lower triangular and thus non-

singular, we have that D* w0
y
S
2

is nonsingular.

The method given by 3.2.3 is written in that par-

ticular form, using the "2x2" partitioning of A*, in

order to use the theorem of Chapter II to find the

eigenvalues of the iterative matrix. We now show that

the hypotheses of that theorem are satisfied. It was

already noted that the diagonal submatrices A!1 and

A2,2 are square. Assuming 0
y

0, they are also

strictly diagonally dominant and thus nonsingular.

Letting D' = D*, E' = -0yS2, and F" = -0yS2T,

we see that 3.2.2 is in "Method I" form and 3.2.3 is

of the proper form to be classified as "Method II."

It is equally evident that T* is of the following

form:

T* =

0

T2,

T*
1,2

0

42

Thus the theorem can be applied to find the eigenyalues

of the iterative matrix of 3.2.3. We recall that the

eigenvalues of the Alternating Halves iterative matrix

are the same as those of the Line Jacobi iterative

matrix. From this, it follows that, for any

w, 0 < w < 2, the rate of convergence for the Acceler-

ated Alternating Halves method is the same as that of

the Accelerated Line Gauss-Seidel. It can also be

shown that the optimal acceleration factor is the same

for both methods.15

15
Varga, op, cit., pp. 109-112.

43

IV. THE EFFECT OF PARALLEL COMPUTATIONS

ON METHOD EFFICIENCY

4.1 Overview and Assumptions of the Evaluation'

In this chapter we compare, on the basis of number

of arithmetic operations required, three of the methods

described in the preceding chapters. Because, in Chap-

ter III, the Point and Line Jacobi and the Alternating

Halves methods were found to be inferior to their res-

pective accelerated versions, in this chapter we con-

sider only the following methods: the Accelerated Point

Gauss Seidel, the Accelerated Line Gauss-Seidel, and

the Accelerated Alternating Halves. In the following

three sections, we estimate the number of parallel

arithmetic operations required for a single iterative

step of each of these methods. By way of explaining

what is meant by parallel arithmetic operations, we

first state the assumptions of the following sections.

It is assumed in the remainder of this chapter that

the methods compared are to be used on a computer with

64 parallel processors. It is also assumed that, al-

though each processor has its own data set, all process-

ors must perform the same operation at a given time. The

user would have the option, however, to select a different

subset of the processors to be "on" at any time. In

1414

such a case, those processors selected. to be on would

all perform the same operation, while the rest would do

nothing to their data sets. In this paper, then, we use

the phrase "one parallel arithmetic operation" to refer

to the total action of all the processors during the

time necessary for an arithmetic operation on a single

processor. One parallel addition, for example, may

consist of one addition on each of as many as 6L4 pro-

cessors.

One definition is necessary before looking at the

individual methods. In the following sections, we use

the function a, where a(x) is defined to be the

smallest integer greater than or equal to

(eg. a(15/2) -7-- 8, o(3) = 3). This notation allows

calculation of the number of necessary operations for

general I and J.

4.2 SummarypfArithmeticOpeLaLions Required

by the Accelerated Point Gauss-Seidel Method

The Accelerated Point Gauss-Seidel method requires

(

the calculation of U
(m+1) before U

i

m+1)
+1

can be

calculated for all 1 < i < (-1)(J-1), m > 0. Thus

each iterative step involves finding only U.
(m+1)

which is given by:

(4.2.1)

u. (m+1) = U.
(m) + w10 U.

(m+1) (m+1)
+ 0 U. +

1 1 x 1-1 y 1-4+1

) (m) (m)
0 U1. + 0 U. -G - Ui . 1,
x +1 y 1+I-1 i

I < i < (I-1)(J-2).

In the case of equations involving boundary points, some

of the terms shown in 4.2.1 are omitted. Regardless

of whether terms are omitted, and assuming that the

quantities we and we
x

are available, the following

parallel operations are required for one iterative step:

1) One parallel multiplication calculating
simultaneously the following:

(

t -4- (we
x

) * U
1 i-1

m+1)

(
t
2

*- (we
y

) C Ui-I+1
m+1)

(we) * U m)

(m)
t
4

4- (w8 y) * U.1+I-1

t, -w C G.

t
6

(1-w) ,; U.
(m)

2) One parallel addition calculating:

t
1

4- t t
2

t
3

+- t
3

+ t
4

t
5

÷ t
5

+ t
6

3) One parallel addition calculating:

ti 4- t + t
31

one parallel addition calculating:

(m+1)
U. t

1
+ t5

We conclude that calculating U (mil) from U
(m)

requires the following:

(I- l)(J -l) parallel multiplications and

3(I-1)(J-1) parallel additions.

4.3 Summary of Arithmetic Operations Required

lathe Accelerated Line Gauss-Seidel Method

We recall from section 2.2 that each iterative

step of the Accelerated Line Gauss-Seidel method

consists of the solution of J -1 linear systems.

Each of these systems has the form

(4.3.1)

_we u (m +1) (m)
[1_1] weyU[3.4.1j +

(1-w)AiiU[T + wG .

[11'

1 < i < J-1,

if we assume U
[0]

and U[3] ,
are vectors of zeros.

Because A. .
is tridiagonal and the same for all

1,1

i, 1 < i < J-1, we rewrite 11.3.1, the iterative step

as

48

(m+1) (m+1) (rt)
A . 7 we U we UA. UFA y 1,7-11 y

(4.3,2) (mot)
(1,-w)A . wG

1 1 Ill I A.

Here AT AU z: A11, with

and

A
U

U1

U 1-2
ex

I 1

1

,e,
3

1

I-1

The procedure to solve 4,3.2 involves first performing

the multiplications and additions on the right side of

the equation, and then using an "LU" decomposition al-

49
Cm+1)

gorithm to solve for U . ,

1
The matrices A

u
and

AT are calculated initially, and because they remain

constant, they do not have to be calculated more than

once.

The nonzero elements of A
U

and A
L

are spe-

cified by the following equations:

ul = = -1 -(0x2/uj_1), 2 < j < I-1,

Q2 = -0x, £. = ex/ui_i, 3 < j I-1.

Rather than solve these sequentially as the formulas

seem to require, we use the technique of "recursive

doubling." This technique was recently shown, in a

paper by H.S. Stone,
16 to expedite all phases of the

solution of a tridiagonal system on a parallel com-

puter. Typically, this technique is applied to a sys-

tem of equations of the following form:

= := 1). m.v. 2 < < n.
-1 1--1'

We note that yi can be writteil as

(4.3.3)

i i

-y . >

e
b. I\ m, , 1 < i < n,

1 1, j K
j=1 k=j+1

16Harold S. Stone, "An Efficient Parallel Algorithm
for the Solution of a Tridiagonal Linear System of
Equations," Journal of the Association for Comput-
ing Machinery, 20 (January, 1973), pp. 27-38.

50

with the assumption that an empty product of the mk

is equal to one. Applying the recursive doubling

technique here, we have the following algorithm:

1) yl f b1, y2 4- b2, yn 4-- bn,

(4.3.4)
2) for j = 1 step j until z (where z is

defined below) do the following:

a) yi F yi + yi_i * mi, for j+1 < i < n.

b) m.
1 j '

m. * m. for 2j +1 < i < n .

In step 2a. it is assumed that all the right-hand sides,

j+1 < i < n, are calculated in parallel. This means

that all the values of yi, j+1 < i < n, are changed si-

multaneously. The right-hand sides of step 2b. are

similarly done in parallel. They can be calculated

after step 2a. is completed, or the two steps can be

done concurrently. If we have 2
k-1

< n < 2
k

, then

we define z to be 2
k-1

. When step 2-a is com-

pleted for j = z, the yi, 1 < i < n, have the

values given in 4.3.3. The parallelism of the algo-

rithm comes from the fact that for a given j, all

y., and/or all m., j+1 < i < n, can be calculated

simultaneously. The result is that, instead of the

number of operations being proportional to n as

is the case with the traditional sequential algo-

rithm, the number of operations is proportional to k.

51

To give a better picture of what is involved in

thealgorithillof14.3.14,14eassumethatm.,7.1, 2 < j < n,

The first step is initialization. The second step adds

together pairs of the bi in the following way:

Y2 b2 bl' Y3 b3 b2' Yn bn bn-1*

Each succeeding step doubles the number of bi included

in y.. The process is completed for a particular y.

when yi is the sum of all b , 1 < j < i.

In a similar way Stone has implemented the construc-

tion of A. We see that we need the following operations

to calculate u., 2 < i < I-1 (with z=2
k1

< I-1 < 2
k
):

1) one parallel multiplication to calculate

2) one parallel addition to calculate

t
I+1

t
I

+ 1.

Then the following assignments are made:

ti 4- 0, ti -LI, 2 < i < I-1,

r. t 1, -1 < i < I-1,

q0 t 1 , qi - 1 , 1 < 1 < 1 - 1 ,

p1 *- -1' pi tI+1,
2 < i < I-1.

For i = 2 step i until z, do 3,4,5.

3) a((2I - 2i + 2)/64) + a((I - i + 1)/64)

52

parallel multiplications and

6((I-i)/64)

parallel additions to get

Si 4- qi tj_i+2

i - 1 < j < I-1.

4) a((2I 2i)/64) + a((I-i)/64)

parallel multiplications and

a((I i)/64)

parallel additions to calculate

p. :, t. . q. .qj
3-1+1 3 --1,

i < j < I-1.

Then assign

r. F S. - 1< j < I-1.
J

5) 6((i-i-1)/64) parallel multiplications and

a((I-i-1)/64) parallel additions to get

p. -4-- -q.
--

+ t. * r. o, i + 1 < 1 < I-1.
3 1 J-L

6) a((I - 2)/64) parallel divisions to calculate

u. p./p. 2 < j < I-1.
-2

Calculating the lower diagonal of A
L

now requires on-

ly the following:

1) a((I - 3)/64) parallel divisions to obtain

t. t e
x J
/u.

-1'
3 < j < I-1.

53

After the preliminary calculations, each iterative

step, as given by 4.3,2, is easy to perform. Assuming

that 1-w, we , (1-w)e , and wG[1 . 1 < i < j-1, are

also initially available, the iterative step which cal-

culates U
Eli
(m+ 1)requires the following operations:

1) u((4I 4)/64) parallel multiplications and

u((3i - 5)/64) + 2u((I-1)/64) parallel additions

to calculate

1) (m)(-we . wt[1] Y
) .: u

G1-1]
m + (-e

y
) * U

E. +1J

(m)
1 -w A1,1

* u[i]
wG[i]"

Assign the following:

y. ¢ t., 1 < j < 1-1

m. -Q., 2 < j < I-1
]

For i = 1 step i until z do 2,3,4

2) o((i- i - 1)/64) parallel multiplications

to calculate

J-1
m., i + 1 < j < 1-1

3) e((I i 1)/64) parallel additions

to get

1
+ 1 < j < I-1

17We use t[i] to represent the ith subvector of the

temporary storage vector t. Here each subvector is
of dimension I-1.

4) a((I - 2i - 1)/64) parallel multiplications

to calculate

m. f m. * m. 21 + 1 < j < I-1.
J

5) a((2I - 3)/64) parallel divisions

to calculate

Y. 4-- Y. u., 1 < j < I - 1.
J/ J

n. + -0
x

1 < j < I - 2.

Assign the following:

n
I-1

+ 1

For i= 1 step i until z do 6, 7

6) a((I - i - 1)764) parallel multiplications

and

a((I - 1)/_64) parallel additions

to calculate

Y F Y + Y +* n.
3 '

< j < I - i - 1.

54

7) i 1)/64) parallel multiplications

to calculate

nj + nj * 1.

After execution of step 7 with i = z, the vector Y

contains U
(m+1) For the special cases i = 1 and

- 1, where either 6yUfi_li or 8371J[i+1] is

included in GEiP
fewer operations are needed. It is

55

also important to note that the subvectors of U
(m+1)

must be estimated sequentially since calculation of

i]

((m)
each UL-.-

m+1) involves the values of ULi_ii. We

further observe that the values of rn. and n

1 < j < I - 1, are the same for each iteration. We

thus calculate the m. and n., 1 < j - 1, on

only the first iteration, saving all intermediate

values since these also must he used during each iter-

ation.

To aid in calculating the total operations for an

iteration, we define the following:

2k
(I) y a(i) = a()_) + a(2) + a(4) + a(8) +

1=1

+ a(2),

for any function a. We can now give the total number

of operations required to calculate U
(m+1) from U(.I"

after the initial calculation of AU'
AL, m. and n

j < I - 1:

(J-3)a((41 4)/64) + 2a((3I 3)/64) +

z
(J-1)(i) 2o((I i -- 1)/64)

i=1

parallel multiplications,

(J-3)a((31 - 5)/64) 2o((21 - 4)/54) +

56

(J-1)I(i) 2a((I -
i=1

parallel additions, and

1)/64) t 2a((z 1)/64)]

(J-1)u((I-1)/64) parallel divisions.

4.4 Summary of Arithmetic Operations Required

by the Accelerated Alternating Halves Method

Estimating the number of operations required by

the Accelerated Alternating Halves method is not a

great deal different from the procedure of section 4.3

The one significant difference is that U* is parti-

tioned into only two subvectors, U , and U
[li 121'

An

iterative step thus involves calculating either

(4.4.1) A* U*(1114-1) = -we S TU*(m) wG*
1,1 [1] y 1 [[1]

(1-w)A U*(m
-1,1 [11-

)

'

or

(4.4.2) A2,2 UMm+1) = -weyS1U34-1) wG21

(1-w)A* U*(m-1)
2,2 r'?

If we assume J is an odd number, then AIL, =

In this case, the initial calculations involve finding

why, wG*,(1-00x,l-w,At, and AU, where AtA =

and

A*

A*

1

9,

2
1

9,

3
1

u1 ex

u
2

e
x

3
Ox

9,M I -1) 1

'i<(

C)

0x

We recall that the tridiagonal matrix
1

A*
1

has the

form

A*
1,1

A
2,2

A3
, 3

1

57

58

with the diagonal submatrices defined as they were in

connection with the Line Gauss - Seidel method. We know,

then, that

and

A* =

A* =

U

AL

AL

0

A
U

A
U

AL

A
U

0

1

Here, as in section 4.3, the initial operations are

those necessary to find AL and AU. These are given

in detail in the preceding section.

Again assuming ,
1

= ,, it is clear that
,1 L,4

59

4.4.1 and 4.4.2 require the same number of arithmetic

operations. To calculate 4.4,1, we do the following:

1)a(3K(I-1)/64) parallel multiplications and

a((3KI-I-5K + 1)/64) + 2a(K(I-1)/64)

parallel additions to calculate

-Ell

.(

2]

)m(-A S T)
* Ugs

[
+ wG

ELI
*

+

*Cm
(1 -u

1
A* U`

[1].
)

Assign the following:

Yk
t
k+j '

1< j< I-1, k= k"(I-1), 0< k'< K-1.

m. t -Z., 2 < j < I 1.
J

For i = 1 step i until z do 2,3, and 4.

2) a(K(I-i-1)/64) parallel multiplications

to calculate

tk . Y
k+J

.

-1
. m., i + 1 < j < I-1, k = k '(i-1),

0 < k"< K-1.

3) a(K(I-i-1)/64) parallel additions to calculate

-k+j k+j
+ t

k+j'

0 < K-1.

+ 1 < j < I-1, k = '(17-1),

4) a((I-2i-1)/64) parallel multiplications

to calculate

m. 4- . , 21 + 1< j < I-1.

Assign the following:

60

n
I-1

1

5) U((KI+I-K-2)/64) parallel divisions

to calculate

Yk+1 Ykl.i/uk+1, 1 < j < I-1, k = k"(I-1),

0 < k"< 1<-1.

n. 4-- -e
x
/u., 1 < j < 1-2.

For i = 1 step i until z do 6,7.

6) a(K(I-1-1)/64) parallel multiplications and

o(K(I-i-1)/64) parallel additions

to calculate

Y
10-j

Y
l--kj

+
Yk +j+i

.: n 1 < j < I-1-i,

k = k'(I-1), 0 < k'< K-1.

7) a((I-i-1)/64) parallel multiplications

to calculate

< j<
]-1-1

Again, we note that the values of m. and n.,

1 < j < I-1, do not need to be recalculated after the

first iteration. After the initial calculations,

the total parallel operations required to calculate

U* (m+1) from U* (m) are the following:

z

(i) 4a(K(I-i-2)/64) 26(3K(I-1)/614)
i=1

parallel multiplications,

2c((3KI-I-510-1)/64) + 4g(K(I-l)/64)

z

+ (i) 40(K(I-1-1)/64)
i=1

parallel additions, and

2a(K(I-1)/64)

parallel divisions.

62

V. EXAMPLES, EVALUATIONS, AND CONCLUSIONS

5.1 A Closer Look at the Operation Count and

the Effect of the Values of I and J.

Because the operation count formulas of Chapter

IV are written in a general way to avoid specification

of I and J, they are difficult to compare. In this

section we see how the methods compare when the formulas

are evaluated using a variety of values for I and

We begin with an example.

To determine the total effect of combining the op-

eration counts of Chapter IV with the rates of conver-

gence for the three accelerated methods, we examine the

case where I = J = 33 and h = k = .1. It is assumed

that the acceleration parameter for each method is set

to the optimal value. From Isaacson and Keller's clis

cussion of rate of convergence,
18 we find that the num-

ber of iterations required to reduce the Error by a fa.2--

.

for of 10
-t is the least value of m for which

(p(B))m < 10
-t

, where B is the iterative matrix of the

method.

16 Isaacson and Keller, op. cit., p. 64.

63

If we assume that the initial error e
(0) is to be

improved by a factor of 10
-3

then we have that

(p(B))111< 10-3, m R,n p(B) < -3kn 10,

and m > 3kn 10 '3kn 10 .

I Qn p(B)I R (B)

The minimal values of m for the three methods, to-

gether with the respective total numbers of operations

required to achieve the specified accuracy, are given

in table 1. For this particular example, we see that

the Accelerated Alternating Halves method is approx-

imately twice as fast as the Accelerated Line Gauss-

Seidel and over eight times as fast as the Accelerated

Point Gauss-Seidel. The percentage of improvement of

the Accelerated Alternating Halves method over either

of the other two is generally not as good. As I = J

increases, we find that the percentage of improvement

gradually decreases. When i = J = 257, for example,

the number of operations required by the Accelerated

Alternating Halves method is about 95% of the number of

operations required by the Accelerated Line Gauss-Seidel

and about 20% of the number of operations required by

the Accelerated Point Gauss-Seidel. It is important

to note, however, that the decrease in the percentage

of improvement is not monotone. The case where

TABLE 1.

Total Parallel Operations Required by Each of Three
Methods to Improve e") by a Factor of 10-3 When

I = J = 33, h = k = .1.

Method
Rate of
Convergence

Number of
Iterations (m)

Parallel OperationsiTotal Parallel
Per Iteration Operations

Accelerated
Point
Gauss-Seidel . 189 37

1024 mult.

3072 add.

37888 mult.

113664 add.

Accelerated
Line
Gauss-Seidel .269 26

384 mult
446 add.'
32 div.

10004 mult.
11609 add.

834 div.

Accelerated
Alternating
,Halves
.-----

.269 26
180 mult. 4700 mult.
210 add. 5473 add.
16 div. 418 div.

65

I - 1 = J 1 = 64q , for some positive integer 1,

generally yields a lower percentage of improvement

than the case where I - 1 = J 1 = 64q p,

1 < p < 10, p an integer. In fact, any value r of

I = J, for which I-1=J-1 is notamultiple of

64 is likely to yield a better percentage of improve-

ment that s or t, where s = 64s'+1<r<64(s'+1)+1 = t,

for any positive integer s'. This is, of course,

a direct consequence of the way in which the Alternating

Halves methods are constructed. Each iteration of the

Accelerated Alternating Halves method requires nearly

as many operations as does the Accelerated Line Gauss- -

Seidel. If a step of the Accelerated Alternating Halves

method consists of Kn operations which can be done

simultaneously, doing the equivalent operations using

the Accelerated Line Gauss-Seidel method requires K

steps, each consisting of n operations which can be

done simultaneously. If n is close to a mui- , of

64, which is often the case when 1 is a

multiple of 64, then the percentage of processors used

by the two methods does not greatly differ. When

is not close to a multiple of 64, however, K * u(n/64)

parallel operations are required by the Accelerated Line

Gauss-Seidel method, but the a(Kn/64) parallel opera-

tions required by the Accelerated Alternating Halves may

66

be considerably less. For example, if n = 96 and

K = 16, the Accelerated Line Gauss-Seidel method re-

quires 32 parallel operations to do what the Accelerated

Alternating Halves method can do in only 24 parallel

operations.

Tables 2 and 3 give the number of parallel oper-

ations required by the three methods for a variety of

values of I = J. Table 2 covers a wide range of values

for I = J, while table 3 provides a closer look at how

the operation counts vary for neighboring values of

I = J. To aid in evaluating the improvement of the

Accelerated Alternating Halves method over the other two

methods, the last two columns of each table contain a

ratio of the number of parallel operations required by

the Accelerated Alternating Halves method to the number

of parallel operations required by one of the other

methods.

Tables 2 and 3 deal only with the cases where

I = J. Some operation counts for I # J have also

been made. All the cases calculated with T > J show

only about 1% difference, from the case where a has

the value of I, in the percentage of improvement of the

Accelerated Alternating Halves method over either of

the other two methods.

67

TABLE 2

Operations Required For Accelerated Point
Gauss-Seidel (APGS), Accelerated Line Gauss-
Seidel (ALGS), and Accelerated Alternating
Halves (AAH) Methods When 33 < I(-J) < 257

Oper-
ation
Type I(=J)

Number of Operations
Per Iteration for
APGS ALGS AAH

AAH AAH
APGS ALGS

* 33 1024 384 180 .18 .47

+ 33 3072 446 210 .07 .47

÷ 33 0 32 16 .50

* 49 2304 720 452 .20 .63

+ 49 6912 814 522 .08 .64

49 0 48 36 .75

* 65 4096 1022 836 .20 .82

+ 65 12288 1086 960 .08 .88

7:- 65 0 64 64 1.00

* 81 6400 2158 1388 .22 .64

+ 81 19200 2398 1584 .08 .66

-:-. 81 0 160 100 .62

* 97 9216 2878 2072 .22 .72

+ 97 27648 3164 2354 .09 .74

97 0 192 144 .75

113 12544 3694 2896 .23 .78

113 37632 4028 3282 .09 .81

113 0 224 196 ,87

129 16384 4348 3844 .23 .88

129 49152 4604 4348 .09 .94

129 0 256 256 1.00

145 20736 6764 5012 .24 .74

+ 145 62208 7340 5652 .09 .77

145 0 432 324 .75

161 25600 7996 6328 .25 .79

+ 161 67800 8634 7118 .09 .82

161 0 480 400 .83

68

TABLE 2 - Continued

Oper- Number of Operations
ation Per Iteration for AAH AAH
Type I(=J) APGS ALGS AAH APGS ALES

177 30976 9324 7800 .25 .84

+ 177 92928 10026 8758 .09 .87

÷ 177 0 528 484 .92

193 36864 10362 9416 .26 .91

193 110592 10938 10556 .10 .97

193 0 576 576 1.00

209 43264 13930 11192 .26 .80

209 129792 14970 12532 .10 .84

209 0 832 676 .81

225 50176 15674 13116 .26 .84

225 150528 16792 14670 .10 .87

225 0 896 784 .88

* 241 57600 17514 15196 .26 .87

+ 241 172800 18712 16982 .10 .91

÷ 241 0 960 900 .94

257 65536 18936 17416 .27 .92

257 196608 19960 19448 .10 .97

257 0 1024 1024 1.00

69

TABLE 3

Operations Required for Accelerated Point
Gauss-Seidel (APGS), Accelerated Line Gauss-
Seidel (ALGS), and Accelerated Alternating
Halves (AAH) Methods When 129 < I(.=J) < 161.

Oper-
ation
Type I(.7.1)

Number of Operations
Per Iteration for
APGS ALGS AAH

AAH AAH
APGS ALGS

129 16384 4348 3844 .23 .88
129 49152 4604 4348 .09 .94

129 0 256 256 1.00

* 131 16900 5326 3998 .24 .75
+ 131 50700 5846 4522 .09 .77

131 0 390 266 .68

* 133 17424 5672 4142 .24 .73
+ 133 52272 6200 4682 .09 .76

133 0 396 274 .69

135 17956 6026 4282 .24 .71

135 53868 6562 4838 .09 .74

135 0 402 282 .70

137 18496 6116 4424 .24 .72

137 55488 6660 4996 .09 .75

137 0 408 .290 .71

* 139 19044 6482 4570 .24 .71

+ 139 57132 7034 5158 .09 ,73

2.- 139 0 414 228 .72

141 19600 6576 4724 .24 .7?

141 58800 7136 5330 .09

141 0 420 308

143 20164 6670 4874 .24 .73

143 60492 7238 5498 .09 .76

143 0 426 316 .74

70

TABLE 3 - Continued

Oper- Number of Operations
ation Per Iteration for AAH AAH
Type I(=J) APGS ALGS AAH APGS ALGS

* 145 20736 6764 5012 .24 .74
+ 145 62208 7340 5652 .09 .77

145 0 432 324 .75

* 147 21316 7294 5184 .24 .71
+ 147 63948 7734 5844 .09 .76
-:7 147 0 438 334 .76

* 149 21904 7394 5340 .24 .72
+ 149 65712 7840 6018 .09 .77

149 0 444 344 .77

* 151 22500 7496 5504 .24 .73
+ 151 67500 7946 6198 .09 .78
÷ 151 0 450 352 .78

* 153 23104 7596 5664 .25 .75
+ 153 69312 8202 6378 .09 .78

÷ 153 0 456 362 .79

* 155 23716 7696 5832 .25 .76
+ 155 71148 8310 6568 .09 .79

155 0 462 372 .81

157 24336 7796 6002 .25 .77
157 73008 8418 6756 .09 .80
157 0 468 382 .92

* 159 24964 7896 6176 .25 .78
+ 159 74892 8526 6950 .09 .82

.i 159 0 474 392 .83

161 25600 7996 6328 .25 .79

161 76800 8634 7118 .09 .82

161 0 480 400 .83

7]

Cases where J > I yield much different results,

however. For example, when I = 65 and J assumes

values ranging from 65 to 257, the percentage of im-

provement remains almost constant, at the percentage of

improvement when I = J = 65. Thus, although the number

of operations required depends on J, the percentage of

improvement of the Accelerated Alternating Halves method

over either of the other methods appears to be a func-

tion of only the value of I.

If we assume h = k, the rate of convergence of the

Accelerated Point Gauss-Seidel method is less than the

rate of the other two methods. From this and from the

calculation of operation requirements, we conclude that

the Accelerated Alternating Halves and the Accelerated

Line Gauss-Seidel methods are both generally superior to

the Accelerated Point Gauss-Seidel in a parallel pro-

cessor environment. We also note that the Accelerated

Alternating Halves method is consistently better than

the Accelerated Line Gauss-Seidel. As we have just

seen, the degree of improvement varies considerably and

tends to zero as I increases. Careful selection of

and J can increase the improvement of the Accelerated

Alternating Halves method over the Accelerated Line

Gauss-Seidel.

72

5.2 Parallel versus Nonparallel

In the previous section we saw how the methods

compare for particular values of the parameters. The

basic assumption there was that the methods would be

used on a parallel computer. We now return to the ex-

ample of section 5.1 to see how the methods compare on a

non-parallel computer and how much the operations count'7,

for a method differ using a parallel as compared to a

non-parallel machine. As in section 5.1, we assume

I = J = 33, h = k = .1, and that the initial error is to

be decreased by a factor of 10-3. The Accelerated Point

Gauss-Seidel method requires the following non-parallel

operations:

189,440 multiplications, and

189,440 additions.

The Accelerated Line Gauss-Seidel method requires the

following non-parallel operations:

156,447 multiplications,

181,407 additions, and

26,686 divisions,

if wO
y
U
Ei-1]

(m+1)
'

< j - 2, is not stored for use in

the next iteration. If this quantity is retained to be

used in the calculation of U
(m+2

,)then the Accelerated Line

Gauss-Seidel requires the same number of non-parallel

73

operations as does the Accelerated Alternating Halves:

131,487 multiplications,

176,415 additions, and

26,686 divisions.

Assuming divisions and multiplications require approx-

imately the same time, the latter two methods are

slightly faster than the Accelerated Point Gauss-

Seidel.

If we compare the non-parallel operation counts

with the parallel operation counts of table 1, we see

a significant difference. Even if the non-parallel

computer is as much as six times faster than the parallel

machine, the latter could perform the calculations of the

example in about 1/10 the time required by the non-

parallel computer.

5.3 Further Improvements

The conclusions of the previous sections about the

Accelerated Alternating Halves method are highly de-

pendent on the particular algorithm used to determine

operation counts. The goal in the selection of Chapter

IV's algorithms was the maximization of processor , se

Stone's algorithm appears to be the most efficient tech-

pique available for solving 4.3.1 or 4.4.1 with LU de-

composition. If LU decomposition is not used, the

74

most likely approach involves initially finding

A1'-1 and then multiplying A
1,1

-1 by the sum of
1

products on the right of 4.3.1 to obtain U(m+i).
Iil

When this technique is used with both. the Accelerated.

Alternating Halves method and the Accelerated Line

Gauss-Seidel method, the Accelerated Alternating Halves

is faster than the other method. The large number of

multiplications necessary with this technique, however,

makes it considerably less efficient than the recursive

doubling approach to LU decomposition.

To determine how fully the algorithm of section

4.4 uses the 64 processors, we look at the individual

steps. The first step can fully utilize all processors

if, for example, I 1 is a multiple of 64 and K is

a multiple of 32. A similar result follows for steps 2,

3, and 4 if K is a multiple of 64. When neither

I 1 nor K is a power of two, 100.% use of the pro-

cessors is not possible. Because of this latter fact,

some improvement of the algorithm would be possible.

However, because there are cases where the pr'ocesscs

are fully used, significant improvement does not seem

likely.

As the above argument indicates, the conclusions

about the Accelerated Alternating Halves method are

75

very dependent on the choice of 64 as the number of

processors. When I 1 is greater than 64, for

example, the Accelerated Line Gauss-Seidel method is

able to use all 64 processors most of the time.

Since the Accelerated Alternating Halves method re-

quires almost as many operations as does the Accel-

erated Line Gauss-Seidel, the difference between

their processor use is small in such a case. In the

example of section 5.1, the number of processors

was greater than I. There we saw that the Acceler-

ated Alternating Halves method requires only about 50%

of the number of parallel operations required by the

Accelerated Line Gauss-Seidel method. By increasing

the number of processors to 256, the common range of

I should be less than the number of processors. The

Accelerated Alternating Halves method, on the average,

allows K(I-1) operations to be done simultaneously,

while the Accelerated Line Gauss-Seidel allows only

I - 1. Thus, the Accelerated Alternating Halves met

od would keep more of 256 processors busy and would

complete an iteration with fewer parallel operations

than would the other method. From this argument, we

conclude that as the number of available processors

increases, the Accelerated Alternating Halves will be-

come a more valuable method.

76

BIBLIOGRAPHY

Carroll, A.B., and Wetherald, R.T. "Application of
Parallel Processing to Numerical Weather
Prediction." Journal of the Association
for Computing Machinery, 14(July, 1967),
591-614.

Isaacson, E., and Keller, H.B. Analysis of Numerical
Methods. New York: John Wiley and Sons,
Inc., 1966.

Miranker, W. L. "A Survey of Parallelism in Numerical
Analysis." SIAM Review, 13(October, 1971),
524-545.

Rosenfeld, J.L., and Driscoll, G.C. "Solution of the
Dirichlet Problem on a Simulated Parallel_
Processing System." Information Processing
68 Proceedings of the IFIP Congress 68,
Edinburgh, Scotland, 5-10 August, 1968, 1,
499-507.

Stone, H.S. "An Efficient Parallel Algorithm for the
Solution of a Tridiagonal Linear. System of
Equations." Journal of the Association for.
Computing Machinery, 20(January, 1973),
27-38.

Varga, Richard S. Matrix Iterative Analysis. Engle-
wood Cliffs, N.J.: Prentice Hall, Inc., 1962.

APPENDIX

APPENDIX

Bibliography on Parallel Computers

and

Parallel Programming Techniques

The following bibliography is a survey of
the last ten years' publications in the area of

parallel computing. The listings have been or-
ganized into several subject groups, ranging
from parallel programming in numerical analysis
to parallel computer architecture. Most of the
articles, it should be noted, deal with more than
one subject area, but are listed only according
to one area of emphasis.

Not included in the listings of the follow-
ing pages is the book, Paralle .P=a_sar_f_y_atems,
Technologies and ApDlications.L9 Because this
large collection of articles covers a wide range
of topics, it is recommended as a convenient
source of general information about parallel com-
puting.

1 L.C. Hobbs, et. al. ed., Parallel Processor Sys-

tems, Technologies, and Applications (London:

McMillan, 1970).

77

78

Existing Parallel Computers

Alsberg, P.; Gaffney, J.; Grossman, C.; Mason, T.; and
Westlund, G., A Description of the ILLIAC IV
Operating System. Report ILLIAC-IV-212.
Urbana, Ill.: University of 111., 1969.

Barnes, George H.; Brown, Richard M.; Kato, Maso;
Kuck, David J.; Slotnick, Daniel L.; and
Stokes, Richard A. "The ILLIAC IV Computer.
IEEE Transactions on Computers, C-27
(August, 1968), 746-757.

Burroughs Corporation. ILLIAC-IV Systems Character-
istics and Programming Manual. Document
No. 66000A, June, 1969.

Chen, F.T. Linear Program Implementation in ILLIAC-IV:
Revised -Simplex Method. Report ILLIAC-IV-
177. Urbana, Ill.: University of Ill., 1968.

Davis, R.L. "The ILLIAC IV Processing Element." IEEE
Transactions on Computers, C-28 (September,
1969), 800-816.

Gallagher, R.J. "An Experimental Parallel Logic
Pattern Recognition Machine." Unpublished
thesis, State University of New York at
Stony Brook, 1971. (Available from Univ.
Microfilms, Ann Arbor, Mich., Order No.
72--6380.)

Graham, W.R. The Parallel, Pipeline and Conventional
Computer. Rand Corporation Report No.
P-4221. Santa Monica, Cal.: Rand Corporation.
1969. (Available from CFSTI. Springfield, Va.)

Graham, W.R. "The Parallel and the Pipeline Ccmputers.
Datamation, 16 (April, 1970), 68-71.

Kato, M.; Koga, Y.; and Naemura, K. Diagnostic Test
Patterns and Sequences for ILLIAC IV Process-
ing Element. Report ILLIAC-IV-180. Urbana,

University of Ill., 1968.

Knapp, M.A. "Parallel Processing Computer Systems."
Government Reports Announcement, 72 (May 25,
1972), 97.

79

Knapp, M.A. "Evolution of Computer Systems to Perform
Parallel Processing." Star, 5 (April, 1967),
1043-1044.

McIntyre, D.E. "An Introduction to ILLIAC IV Computer."
Datamation, 16 (April, 1970), 60-67.

Matsushita, Y. Diagnostic Sequence Generator for ILLIAC
IV Processing Element. Report ILLIAC -IV-
187. Urbana, Ill.: University of Ill., 1968,

Schwartz, J. "Large Parallel Computers." Journal of the
Association for Computing Machinery, 13
(January, 1966), 25-32.

Schwartz, J. "AT-1 Parallel Computer--Second Preliminary
Version." Unpublished report, New York. Uni-
versity, 1964.

Stern, L. "PDP-11 Parallel Multiprocessor." Decuscope,
9(1970,7-8.

Stokes, R.A. "ILLIAC IV Route to Parallel Computers."
Electronic Design, 26(December, 1967), 64-69.

Thurber, K.J., and Berg, R.O. "Applications of Assoc-
iative Processor." Computer Design, 10
(November, 1971), 103-110

Westinghouse Defense and Space Center. Parallel Net-
work Computer (SOLOMON) Applications Anal-
yses. August, 1964.

Westinghouse Electric Corporation. SOLOMON Parallel
Network Processor. Internal Report, 1962.

80

Parallel Programming

Anderson, J.P. "Program Structures for Parallel
Processing." Communications of the ACM, 8

(December, 1965), 786-788.

Ashcroft, E., and Manna, Z. "Formalization of Pro-
perties of Parallel Programs." Machine
Intelligence, 6 (July, 1970), 17-41.

Baer, J.L., and Russell, E.C. "Modelling and Sched-
uling of Computer Programs for Parallel
Processing Systems." In: Second Conference
Qn Application of Simulation, New York, 2-4
December, 1968. New York: Institute of
Electrical and Electronics Engineers, Inc.,
1968. 278-281.

Bekishev, G.A. "Parallelization of Computational
Algorithms." Star, 5 (July 8, 1967), 2287.

Bernstein, A.J. "Analysis of Programs for Parallel
Processing." IEEE Transactions on Elec-
tronic Computers, EC-15 (October, 1966),
757-763.

Bingham, H.W., and Seward, J.W. "Plan for Detection of
Parallelism in Computer Programs." United
States Government Research and Development
Reports, 67 (October 10, 1967), 75.

Fateman, Richard J. "Optimal Code for Serial and Par-
allel Computers." Communications of the ACM,
12 (December, 1969), 694-695.

Gilmore, P.A. "Structuring of Parallel Algorithms."
Journal of the Association for Computinc
Machinery, 15 (April, 1968), :176-192.

Gonzales, M.J., Jr., and Ramamoorthy, C.V. "Program
Suitability for Parallel Processing." IEEE
Transactions on Computers, C-20 (June, 1971),
647-654.

81

Gonzales, M.J., Jr., and Ramamoorthy, C.V. "Recognition
of Parallel Processable Streams in Multi-
processor Computers." In: Twenty - .first
Annual Southwestern IEEE Conference and
Exhibition, San Antonio, Texas, 23-25 April,
1969. New York: Institute of Electrical and
Electronics Engineers, Inc., 1969.

Han, J.C., and Han, C. "Tree Height Reduction for Par-
allel Processing of Blocks of Fortran Assign-
ment Statements." Government Reports Announce-
ment, 72 (May 25, 1972), 98.

Karp, R.M., and Miller, R.E. "Parallel Program Schemata:
A Mathematical Model for Parallel Computa-
tions." In: IEEE Conference Record of Eighth
Annual Symposium on Switching and Automata
Theory, October, 1967. New York: Institute
of Electrical and Electronics Engineers, Inc.,
1967. 55-61.

Kotov, V.E., and Narinyani, A.S. "On Transformation of
Sequential Programs into Asynchronous Parallel
Programs." Information Processing 68 Proceed-
ings of the IFIP Congress 68, Edinburgh,
Scotland, 5-10 August, 1968, 1, 351-357.

Kuck, J. "ILLIAC IV Software and Application Program-
ming." IEEE Transactions on Computers, C-17
(August, 1968), 758-770.

Larson, R.E.; Richardson, M.H.; and Bree, D.W., Jr.
"Dynamic Programming in Parallel Computers."
In: Proceedings of the Fourth Hawaii Inter-
national Conference on System Sciences,
Honolulu, Hawaii, 12-14 January, 1971. Holly-
wood, Cal.: Western Periodicals Co.,19.71.256-9.

Ramamoorthy, C.V., and Gonzales, M.J., Jr. "Subex-
pression Ordering in the Execution of
Arithmetic Expressions." Communications
of the ACM, 14 (July, 1971), 479-485.

Ramamoorthy, C.V., and Gonzales, M.J., Jr. "A Survey
of Techniques for Recognizing Parallel
Processable Streams in Computer Programs."
AFIPS Conference Proceedings 1969 Fall
Joint Computer Conference, Las Vegas, 18-20
November, 1969, 3511 -15.

82

Rosenfeld, J.L. "A Case Study in Programming for Par-
allel-Processors." Communications of the ACM, J_2
(December, 1969), 645-655.

Schwartz, J. "Algorithms in Parallel Computation."
Unpublished report, New York University, 198L1.

Squire, S.J. "Programming and Design Considerations of
of a Highly Parallel Computer." AFIPS Confer-
ence Proceedings 1963 Spring Joint Computer
Conference, Detroit, May, 1963, 23, 359-400.

Stone, H.S. "Parallel Processing with the Perfect Shuf-
fle." IEEE Transactions on Computers, C-20
(February, 1971), 153-161.

Wishner, R.P.; Downs, H.R.; and Shechter, J, "Real-
Time Computing Techniques for Parallel Pro-
cessors." Information Processing 71 Proceed-
ings of MP Congress 71, Ljubljana, Yugo-
slavia, 23-28 August, 1971, 1, 704-710.

83

Parallel Computing in Numerical Analysis

Dorn, W.S. "Generalizations of Horner's Rule for Poly-
nomial Evaluation." IBM Journal of Research
and Development, 6 (April, 1962), 239-245

Hellerman, H. "Parallel Processing of Algebraic Ex-
pressions." IEEE Transactions on Electronic
Computers, EC-15 (February, 1966), 877-77.

Miranker, W.L. "A Survey of Parallelism in Numerical
Analysis." SIAM Review, 13 (October, 1971),
524-545.

Miranker, W. L. "Parallel Methods for Approximating
the Root of a Function." IBM Journal of
Research and Development, 13 (May, 1969),
297-301.

Shedler, G.S. "Parallel Numerical Methods for Solu-
tions of Equations." Communications of the
ACM, 10 (May, 1967), 286-290.

Winograd, Shumel. "Parallel Iteration Methods." In:
Complexity of Computer Computations. Edited
by R.E. Miller and J.W. Thatcher. New York:
Plenum Publ., 1972.

84

Parallel Computing in Solution

of Ordinary Differential Equations

Downes, H.R. "Parallel Computation of a Differential
Equation." SIAM Review, 13 (April 1971), 265.

Miranker, Willard L., and Liniger, Werner. "Parallel
Methods for the Numerical Integration of
Ordinary Differential Euqations." Mathematics
of Computation, 21 (July, 1967), 303-320.

Nievergelt, J. "Parallel Methods for Integrating
Ordinary Differential Equations." Communi-
cations of the ACM, 7 (December, 1964),
731-733.

85

Parallel Computing in Solution of

Partial Differential Equations

Carroll, A. B., and Wetherald, R.T. "Application of
Parallel Processing to Numerical Weather
Prediction." Journal of the Association for
Computing Machinery, 14(July, 1967), 591-614.

Gilmore, P.A. "Numerical Solution of Partial Differ-
ential Equations by Associative Processing."
AFIPS Conference Proceedings 1971 Fall Joint
Computer Conference, Las Vegas, 16 18
November, 1971, 34, 411-418.

Rosenfeld, J.L., and Driscoll, G.C. "Solution of the
Dirichlet Problem on a Simulated Parallel
Processing System." Information Processing
68 Proceedings of the IFIP Congress 68,
Edinburgh, Scotland, 5-10 August, 1968,
499-507.

86

Parallel Computing in

Linear Algebra

Matsushita, Y. Sparse _Matrix Inversion on ILLIAC IV

Report ILLIAC-IV-193. Urbana,

versity of Ill., 1968.

Pease, Marshall C. "Matrix Inversion Using Parallel

Processing." Journal of the Association for

Computing Machinery, 14 (October, 19577,

757-764.

Sameh, A.H. "On Jacobi and Jacobi-Like Algorithms for

a Parallel Computer." Mathematics of Compu-

tation, 25 (July, 19717, 579-590.

Stone, H.S. "An Efficient Parallel Algorithm for the

Solution of a Tridiagonal Linear System of

Equations." Journal of the Association for

Computinz_Machiaery, 20 (January, 1973),

27-38.

87

Compilers and Languages for Parallel Computers

Allard, R.W.; Wolf, K.A.; and Zemlin, R.A. "Some
Effects of the 6600 Computer on Language
Structures." Communications of the ACM,
7 (February, 1964), 112-119.

Baer, J.L., and Bovet, D.P. "Compilation of Arith-
metic Expressions for Parallel Computations.
Information Processing 68 Proceedings of the
IFIP Congress 68, Edinburgh, Scotland, 5 -'0
August, 1968, 1, 340-347.

Betourne, C.; Ferrie, J.; Kaiser, C.; Krakowiak, S.;
and Mossiere, J. "System Design and Imple
mentation Using Parallel Processes." In-
formation Processing 71 Proceedings of the
IFIP Congress 71, Ljubljana, Yugoslavia,
23-28 August, 1971, 1, 345-352.

Betourne, C.; Boulenger, J.; Ferrie, J.; Kaiser, C.;
Krakowiak, S.; and Mossiere, J. "Process
Management and Resource Sharing in the Multi-
access System ESOPE." Communications of the
ACM, 13 (December, 1970), 727-733.

Chamberlin, D.D. "Parallel Implementation of a Single-
Assignment Language." Unpublished thesis,
Stanford University, 1971. (Available from
Univ. Microfilms, Ann Arbor, Mich., Order
No. 71-23494.)

Chamberlin, D.D. "The 'Single-Assignment' Approach to
Parallel Processing." AFIPS Conference Pro-
ceedings 1971 Fall Joint Computer Conference,
Las Vegas, 16-18 November, 1971, 39, 263-277.

Dennis, Jack B., and Van Horn, Earl C. "Programming
Semantics for Multiprogrammed Computations."
Communications of the ACM, 9 (March, 1966),
143-155.

Ellis, Clarence A. "Parallel Compiling Techniques."
In: Proceedings of the 1971 Annual Conference
Association for Computing Machinery, Chicago,
3-5 August, 1971. New York: Association for
Computing Machinery, 1971. 508-519.

88

Gosden, J.A. "Explicit Parallel Processing Description.
and Control in Programs for Multi-. and Uni-
Processor Computers." AFIPS Conference Pro-
ceedings 1966 Fall Joint Computer. Conference,
San Francisco, 7-10 November 1966, 29, 651-
660.

Lawrie, D.H. GLYPNIR: A List Processing Lan uaiLtf,JT-
ILLIAC IV. Report ILLIAC-IV-322. Urbane,
Ill.: University of Ill., 1969.

Nielsen, N.R. "Controlling a Real-Time Parallel Pro-
cessing Computer." Simulation, 17 (September,
1971), 97-103.

89

Parallel Processor Simulation

Findler, N.V. "On a Computer Language which Simulates
Associative Memory and Parallel Proces,
Cybernetics, 10, No. 4 (1967), 229 254.

Katz, Jesse H. "Simulation of a Multiprocessor Comp,,LEr
System." AFIPS Conference Proceedings 1966
Spring Joint Computer Conference, Roston,
April, 1966, 28, 127-139.

90

Parallel Computer Architecture

Bredt, T. H. "Analysis of Parallel Systems." IEEE
Transactions on Computers, C-20 (November,
1971), 1403-1407.

Critchlow, A.J. "Generalized Multiprocessing and Multi-
programming Systems." AFIPS Conference Pro-
ceedings 1963 Fall Joint Computer Conference,
Las Vegas, er, 74, 107-177D,

Dennis, J.B. "Programming Generality, Parallelism and
Computer Architecture." Information Process-
ing 68 Proceedings of the IFIP Congress 68,

Edinburgh, Scotland, 5-10 August, 1959,
484-492.

Estrin, G. Russell, B.; Turn, R.; and Bibb, J. "Par-
allel Processing in a Restructurable Computer
System." IEEE Transactions on Electronic Com-

Euters, EC-12 (December, 1963), 747-755.

Fateman, R.J. "Optimal Code for Serial and Parallel
Computation." Communications of the ACM, 12
(December, 1969), 694-695.

Fuller, R.H. "Associative Parallel P-:,ocessing. Coml
Euter Design, 6 (December, 1967), 43-46.

Haberman, A. Nico. "Synchronization of Communicating
Processes." Communications.of the ACM, 15

(March, 1972), 171-176.

Huttenhoff, J.H., and Shively, R.R. "Arithmetic Unit
of a Computing Element in a Global, Highl.v
Parallel Computer." IEEE Transactions on
Computers, C-18 (August, 1969), 695 698,

Koczela, L.J., and Wang, G.Y. "The Design of a _ hly

Parallel Computer Organization." IEEE Trans-
actions on Computers, C-18 (June, 1960),

520-529.

Kuck, D.J. "A Preprocessing High-Speed Memory System.
IEEE Transactions on Computers, C-19

rSeptember, 1970), 793-802.

91

Langsford, A. "Reliable Inter-Process Communication."
In: Proceedings of the First European Sem-
inar on Computing with Real-Time Systems,
Harwell, Berks, England, 1971. London,
England: Transcripta Books, 1972. 123-126.

Nuspl, S.J., and Johnson, M.D. "The Effect of Input/
Output Characteristics on the Performance
of a Parallel Processor." In: Fifth Annual
1971 IEEE International Computer Society
Conference on Hardware, Software, Firmware,
and Trade-Offs, Boston, 22-24 September,
1971. New York:Institute of Electrical and
Electronics Engineers, Inc., 1971. 127-128,

Pomerere, J. H. "An Approach to Parallel Processing."
Information Processing 1965 Proceedings of
IFIP Con ress 65, New York, 24-29 May,
1965 322.

Popova, G.M., and Prangishvili, I.V. "Associative
Parallel Processor for Grouped Processing
of Data." Automation and Remote Control, 30
(January, 1972), 152-162.

Shechter, J. "System Design Criteria for the Use of
ILLIAC IV in Real-Time Environment." In:
Proceedin s of the Fourth Hawaii International
Conference on System Sciences, Honolulu, 12-14
January, 1971. North Hollywood, Cal,: Western
Periodicals,Co., 1971. 260-262.

Shemier, D., and Gupta, S.C. "A Simplified Analysis of
Processor 'Look-Ahead' and Simultaneous Oper-
ation of a Multi-Module Main Memory." IEEE
Transactions on Computers, C-18(Januclry 1969)
64-71.

Sofer, D., and Sproul, W.W. III. "Parallel Pipeline Or
ganization of Execution Unit." IBM T3chnical
Disclosures Bulletin, 14 (March, 1972, 7
2930-2933.

Stone, H.S. "Parallel Processing with the Perfect
Shuffle." IEEE Transactions on Computers,
C-20 (February, 1971)-, 153-161.

92

Parallel Computer Theory

Baer, J.L.E., and Estrin, G. "Bounds for Maximum
Parallelism in a Bilogic Graph Model of
Computations." IEEE Transactions on Com-
puters,C-18(November, 1969), 1012-1014.

Baer, J.L.E.; Bovet, D.P.; and. Estrin, G. "Legality
and Other Properties of Graph Models of Com-
putations." Journal of the Association for
Cbmputing Machinery, 17 (July, 1970), 543-
544.

Baker, K.R., and Morton, A.G. "Scheduling with Parallel
Processors and Linear Delay Costs." Bulletin
of Operations Research Society of America, 20,
Supplement 1 (Spring, 1972),B/86.

Banks, E.R. "Universality in Cellular Automata." In:
IEEE Conference Record of 1970 Eleventh Annual
Symposium on Switching and Automata Theory,
Santa Monica, Cal., 28-30 October, 1970.
New York: Institute of Electrical and Electron-
ics Engineers, Inc., 1970. 194-215.

Barskiy, A.B. "Dynamic Parallel Ordering of Computations."
Cybernetics, 9 (September-October, 1971),
879-883.

Berkling, K.J. "A Computing Machine Based on Tree Struc-
tures." IEEE Transactions on Computers,
C-20 (April, 1971), 404-418.

Bredt, T.H., and McCluskey, E.J. A Model for Parallel
Computer Systems. Report NASA-CR-110465.
Palo Alto, Cal.: Stanford University, April,
1970. (Available from CFSTI, SpringfielC.,

Budnik, P., and Kuck, D.J. "The Organization and Use of
Parallel Memories." IEEE Transactions on Com-
puters, 20 (December, 1971), 1566-1569.

Burkhardt, W.H. "Automation of Program Speed-Up on
Parallel Processor Computers." Computing, 3,
No. 4 (1968), 297-310.

93

Chang, Shi-Kuo. "On the Parallel Computation of Local
Operations." In: Proceedings of the Third
Annth21..201LiorrtutinE,
Shaker Heights, Ohio, 3-5 May, 1971. New York:
Association for Computing Machinery, 1971.
101-115.

Cohen, D. "On Parallel Processing Networks." In: Pro-
ceedings of the Third Hawaii International
Conference on System Sciences, Honolulu,
Hawaii, 14-16 January 1970. Hollywood,
California: Western Periodicals Co., 1970.
580-583.

Cohen, D. "A Parallel Process Definition and Control
System." AFIPS Conference Proceedings 1968
Fall Joint Computer Conference, San Francisco,
Cal., 9-11 December, 1968, 33, pt. 2, 1043-
1050.

Deutsch, E.S. "On Parallel Operations on Hexagonal
Arrays." IEEE Transactions on Computers,
C-19 (October, 1970), 982-983.

Gilbert, P., and Chandler, W.J. "Interference Between
Communicating Parallel Processes." In:

Proceedings of the Fourth Hawaii International
c(221?IfIlsoilsyI21m 1 Sciences, Honolulu,
Hawaii, 12-14 January, 1971. Hollywood, Cal.:
Western Periodicals Co., 1971. 399-401.

Hamacher, V.G. "A Class of Parallel Processing Automata."
Unpublished thesis. Syracuse University, New
York. (Available from Univ. Microfilms, Ann
Arbor, Mich. Order No. 69-7744.)

Hawkins, J.K. "A Parallel Computer Organization and
Mechanizations." IEEE Transactions on Elec-
tronic Computers, EC-12-Taine, 1963), 253-262.

Hebalkar, P.G. "A Graph Model for Analysis of Deadlock
Prevention in Systems with Parallel Compu-
tations." Information Processin 71 Pro-
seedings of the IFIP Congress 71, 'Ljubljana,
Yugoslavia, 23-28 August, 1, 498-503.

Karp, R. M.; Miller, R.E.; and Winograd, S. "Two Graph -
Theoretic Studies of Parallel Computation."
In: Theor of Gra hs--International S m osium,
Rome, 5-9 July, 1966.Paris: Dunod,1967.193-200.

94

Karp, R.M.; Miller, R.E. "Properties of a Model for
Parallel Computations: Determinacy, Ter-
minations, Queueing." SIAM Journal on Applied
Mathematics, 14 (November, 1966), 1390-1411.

Keller, Robert M. "On Maximally Parallel Schemata."
In: IEEE Conference Record of 1970 Eleventh
Annual Symposium on Switching and Automata
Theory, Santa Monica, Cal., 28-30 October,
1970. New York: Institute of Electrical and
Electronics Engineers, Inc., 1970. 32-50.

Korn, G.A. "Back to Parallel Computation: Proposal for

a Completely New On-Line Simulation System
Using Standard Minicomputers for Low-Cost
Multiprocessing." Simulation, 19 (August,
1972), 37-45.

Kotov, V.E., and Narin'yani, A.S. "Asynchronous Pro-
cesses and the Computer Memory." Cybernetics,
2 (May-June, 1966), 54-61.

Mommens, J.H., and Wesley, M.A. "Masking Technique for
Control of an Associative Parallel Processor,

IBM Technical Disclosure Bulletin, 14 (June,

1971), 125-127.

Murtha, J.C. "Highly Parallel Information Processing
Systems." Advances in Computers, 7 (1966),

1-116.

Ofman, Yu. P. "On a Parallel Machine." Problems in
Information Transmission, 4 (Fall, 1968),

46-48.

Patil, S. "An Abstract Parallel Processing System,"
Unpublished S.M. thesis. Massachusetts
Institute of Technology Department of Elec-

trical Engineering, 1967.

Reiter, Raymond. "Scheduling Parallel Computations."
Journal of the Association for Computing
Machinery, 15 (October, 1968), 590-599.

95

Rodriguez, Beza J.E. "A Graph Model for Parallel Com-
putations." Unpublished Ph.D. thesis, Mass-
achusetts Institute of Technology Department
of Electrical Engineering, 1967.

Rothkopf, M.H. "Scheduling Independent Tasks on Par
allel Processors." Management Science, 12
(January, 1966), 437-447.

Schwartz, E.S. "An Automatic Sequencing Procedure
with Application to Parallel Programming."
Journal of the Association for Computing
Machinery, 8 (-October, 1961), 513-537.

Seeber, R., and Lindquist, A. "Associative Logic for
Highly Parallel Systems." AFIPS Conference
Proceedings 1963 Fall Joint Computer Con-

ference, Las Vegas, November, 1963, 24,

489-493.

Shooman, William. "Parallel Computing with Vertical.
Data." In: Proceedings of the Eastern Joint
Computer Conference, 13-15 December, 1960.

New York: Eastern Joint Computer Conference,
1960. 111-115.

Slotnick, D.L. "Parallel and Concurrent Computer Sys-

tems Symposium Summary." Information Process-
ing 1965 Proceedings of the IFIP Congress 65,
New York, 24-29 May, 1965, 1, 319-322.

Tjaden, G.S., and Flynn, M.J. "Detection and Parallel
Execution of Independent instructions." IEEE
Transactions on Computers, C-19 (October,

1970), 889-895.

Wilkerson, L.J. "A Simple Approach for Scheduling on
Single and Parallel Processors." In: Pro-
ceedings of the Fourth Hawaii InternatLonal
Conference on System Sciences, Honolulu,
Hawaii, 12-14 January, 1971. Hollywood, Ca.
Western Periodicals Co., 1971, 338-340.

