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Analysis of alternative concepts has a significant impact on design project 

outcomes, and yet many design teams fail to consider a significantly broad range of 

conceptual solutions. Within the realm of conceptual design exists a technique called 

design by analogy (DBA) – the practice of reapplying old solutions to new problems. 

DBA mitigates the effort required to generate a large field of candidate concepts by 

leveraging existing knowledge from a wide variety of domains, making it an 

attractive approach toward improving design outcomes. Unfortunately, DBA is 

challenging in the absence of expert knowledge. Designers need computational 

support in order to effectively identify a large number of high-quality analogical 

connections across a wide variety of domains. With this challenge in mind, the goal 

of this dissertation is to improve the body of knowledge regarding computational 

support for design by analogy. More specifically, this body of work includes five 

manuscripts. Manuscript 0 presents a review of several function-related design 

abstractions, including their impacts on education and industry. Manuscript 1 studies 



 

 

analogy retrieval in a novel design context and catalogs the types of abstract 

similarity (including function) commonly used to form analogies. Manuscript 2 

examines a scalable approach to capturing analogy-relevant design knowledge to 

support large-scale analogy searching. Manuscripts 3 and 4 examine and modify a 

technique from de novo drug design for quickly indexing and retrieving design 

analogies. Manuscript 3 examines the domain independence of the technique, and 

manuscript 4 develops it as a large-scale design analogy search method. The body of 

work contributes to a greater understanding of (1) the abstractions used by designers 

during conceptual design, (2) the use of human computation to support conceptual 

design activities, and (3) large scale solution screening using a variety of mixed 

design abstractions. This understanding advances the creation of tools that enable 

designers to consider a wide range of conceptual solutions in spite of lacking domain 

expertise. 
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Introduction 

Design is fundamentally distinct from scientific pursuits. While science involves 

the search for absolute truths, design seeks answers that are good enough. Conceptual 

design in particular can be described as the transformation of a problem space into a 

solution space – it is the designer’s job to generate plausible mappings between these 

two domains. A variety of solutions is sought at this stage of design – when the 

solution space is still large and uncertainty is still high.  

As a consequence of this large solution space, designers employ a unique set of 

mental shortcuts to find one or more satisfactory solutions to a problem quickly and 

easily. One such shortcut is the design analogy – a mapping between two domains 

that can reveal nonobvious connections between a problem and an existing solution. 

In drawing analogies, a designer leverages existing knowledge in new contexts, thus 

providing a tool to efficiently explain newly encountered artifacts, evaluate existing 

designs, and synthesize new designs. Analogy has proven its value as a design 

heuristic, but analogy formation is limited by a designer’s own narrow experiences 

and knowledge models. In order to address this challenge, the focus of this 

dissertation is on improving designers’ analogizing capabilities by providing 

intuitive computational support for conceptual design analogy formation. 

Analogy  

There has been a great deal of research about analogy across various fields. The 

first manuscript discusses analogy research as it pertains to design, but the key points 

as they pertain to the entire dissertation are discussed here. 
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Hofstadter [1] explains analogy as the process of understanding multiple 

“conceptual skeletons” at the right levels of abstraction and retrieving them according 

to their “ports of access.” These ports represent the handles by which a concept is 

later retrievable. In a design context, experts are more proficient at retrieving 

analogies than are novices [2]. One plausible explanation for this is experts’ more 

mature knowledge models – the “ports of access” for an expert designer are more 

likely to be governed by meaningful design knowledge, such as function. In contrast, 

a novice is more likely to retrieve a spurious analogy based on less meaningful types 

of similarity. 

Gentner’s structure mapping theory of analogy explains this principle more 

precisely [3]. According to structure mapping, every conceptual domain can be 

represented as a network of concepts and the relationships between those concepts. If 

one domain’s relationships (content and structure) can be mapped onto another 

domain’s relationship content and structure, then there is a strong analogical 

relationship between those domains – hence the name “structure mapping.” Gentner 

uses a comparison between the Rutherford model of the atom and a planetary system 

to explain the theory [3]. In this example, an electron revolves around a nucleus while 

a planet revolves around the sun. A nucleus is more massive than an electron while 

the sun is more massive than a planet. The content of the relationships and their 

arrangement amongst their domains’ entities are both mappable from one domain to 

the other – thus there is a strong analogy between the Rutherford model and a 

planetary system. 
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Another important principle of structure mapping is that high-level causal 

relationships dominate analogy formation. If a relationship or set of relationships is 

known to cause another relationship, that causal relationship is of high importance in 

retrieving an analogy. In a design context, the concept of a causal relationship can be 

understood as a design abstraction – such as requirements, functions, or operating 

conditions – that play an important causal role in the synthesis of an artifact. If two 

systems share similar requirements or functions, then they are likely to have strong 

analogical similarity.   

These two principles of mappable relationships and causal relationships are 

widely accepted as key concepts that govern analogy formation [4], and they form the 

main theoretical foundation for the work presented in this dissertation. 

Analogy and Abstraction 

Two important facilitators for design analogy are representation and abstraction. 

Representation refers to how concepts are modeled, while abstraction refers to the 

specificity with which those concepts are modeled. The two are closely related. For 

example, structure mapping deals with the representation of conceptual domains that 

lead to analogy formation. Multiple shared relationships between entities across 

domains indicate a valid analogical mapping. Revisiting Gentner’s example, the 

electron, nucleus, planet, and sun are entities; while revolves around is a relationship. 

This single highly abstract relationship encompasses a network of many lower order 

relationships involving sizes, distances, and physical laws. In other words, this single 

abstract relationship between entities in a domain serves the same role in finding 

analogies as a network of many low order relationships. 



4 

 

This abstraction provides a convenient heuristic for finding design analogies. 

Instead of mapping a complex network containing many relationships, a designer can 

rely upon a few simple abstract relationships to achieve the same goals. In the design 

domain, abstractions such as function and working principles are commonly used. 

Historically, research on product function abstraction and (to a lesser extent) 

component abstraction has furthered the goal of standardizing analogical mapping 

(e.g., [5, 6]).  This dissertation studies and augments design analogies under this 

assumption: that large networks of mappable causal relations within a domain are 

interchangeable with design-relevant categories of abstract similarity. Under this 

assumption it is valuable to consider many types of abstract similarity in order to (1) 

increase the breadth of potential analogies retrieved and (2) increase the quality of 

analogies retrieved by mapping multiple similarity types. In doing so, it is possible to 

support a design-by-analogy methodology that considers a variety of design 

information simultaneously – including key requirements, functions, and physical 

constraints. 

How to Read this Dissertation 

This dissertation consists of five manuscripts. It is not necessary to read them in 

any particular order, although manuscript 0 is a literature survey and presents a good 

primer for the field. Table 1 summarizes the main topics of each manuscript and the 

key design capability that each one supports. The following sections summarize each 

manuscript by their main contributions and how they are related to each other. 
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Table 1. Chapter Topic Guide 

Chapter Topics New Design Capability 

Introduction (This Chapter)  Context and problem 

 Contributions 

 Manuscript Relationships 

 

Manuscript 0 
Impacts of Function-Related 
Research on Education and 
Industry 

 Historical context 

 Function abstraction 

 Component abstraction 

 Failure abstraction 

 

Manuscript 1 
Discovery of Mental Metadata 
Used for Analogy Formation in 
Function-Based Design 

 Designers’ analogy forming 
processes 

 Natural abstractions used to 
create design analogies 

 Single analogies versus 
compound analogies 

Search design knowledge 
libraries in new ways 
according to flow behavior 
properties 

Manuscript 2 
The Biology Phenomenon 
Categorizer: A Human 
Computation Framework in 
Support of Biologically Inspired 
Design 

 Extracting concept maps 
from natural language 

 Human computation 

 Games with a purpose 

Use natural language 
data to support 
conceptual reasoning in 
computational design 

Manuscript 3 
Using Molecular Fingerprints to 
Infer Functional Similarity in 
Engineered Systems 

 Molecular fingerprinting 

 Inferring abstraction 
relationships 

Screen large design 
solution spaces within a 
digital design and 
manufacturing framework 

Manuscript 4 
Analogy Fingerprinting: Fast 
Analogy Search Inspired by 
Drug Design 

 Molecular fingerprinting 

 Fast design concept 
matching 

Evaluate large conceptual 
design solution spaces 
within a digital design and 
manufacturing framework 

Conclusions  Annotated conclusions from 
each manuscript 

 General conclusions 

 

  

Manuscript Descriptions by Contribution 

This dissertation represents an effort to improve understanding of design analogy 

representation and abstraction in order to facilitate heuristic support for conceptual 

design analogy formation. The work consists of five manuscripts that encompass 

three overarching research contributions. 



6 

 

The very first manuscript establishes the background context for the dissertation’s 

main thrust of design analogy research. It does not present any original research, 

hence the label “Manuscript 0” in Table 1. 

The first contribution comes from manuscript one, which includes the various 

types of abstract similarity that designers were observed using to form design 

analogies. The study uses controlled experiments and protocol analysis to observe 

several types of similarity that are predictive of analogical relationships in design. 

The results show that designers often draw analogies based on not just what an 

artifact does (functions), but also on the things that an artifact interacts with (flows). 

Additionally, this study found no difference between the types of abstract information 

used to create single and compound analogies. Understanding these types and 

structures of commonly used information informs computational models for design 

decision support.  

The second contribution comes from manuscript two, which discusses a scalable 

human computation method for capturing design-relevant analogy information, and is 

adapted from work aimed at capturing common sense knowledge. Current 

computational support for design by analogy suffers from problems of either 

information richness or scope. Tools with rich information lack breadth, while tools 

with high information breadth lack information richness. The second manuscript 

addresses the challenge of obtaining a large quantity of design information in a form 

that is easily computable in a context where (1) a large information library is needed 

and (2) natural language processing methods are insufficiently accurate. More 

specifically, the manuscript presents and evaluates a Game with a Purpose model 
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used to capture relevant design analogy abstraction information within the context of 

biologically inspired design (a specific type of design by analogy). The approach 

captures this information in the form of restricted-vocabulary concept maps, where 

the restricted vocabulary captures design-relevant abstract relationships (e.g., 

functions and flows). Scalably capturing conceptual information in this computable 

form contributes to large scale screening of potential analogies. 

The third contribution is the adaptation of a molecular search algorithm for use in 

design contexts where information is representable as a graph, and is presented in the 

third and fourth manuscripts. Specifically, the third publication demonstrates the 

applicability molecular fingerprinting to characterizing electromechanical products’ 

functionality based on their component graphs. Results show a strong predictive 

connection between two important design abstractions in existing systems – functions 

and component classes – using a representation that enables efficient large-scale 

screening of solution candidates.   

The fourth manuscript adapts this same algorithm for use with concept maps – 

such as those gathered using the human computation approach described in the 

second manuscript. This publication introduces the Analogy Fingerprinting algorithm 

and demonstrates its applicability for automatically retrieving good analogies. The 

Analogy Fingerprinting algorithm supports a process in which a designer creates a 

concept map of the most important facets of a design problem and modifies it to 

represent a conceptual solution. The designer can then use this concept map to 

computationally retrieve a breath of design analogies based the extent to which its 

abstract relationship structures map onto a library of solution candidates. 
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Relationships Between Manuscripts 

This section outlines the main conceptual relationships between the four 

manuscripts, which are also summarized in Figure 1 under the categories of 

understanding, preparing, and matching design abstractions. 

 

Figure 1. Conceptual Relationships between the Four Manuscripts 

The key results of the first manuscript include the observation of many types of 

abstract similarity used in analogy formation, and lack of any observed difference in 

these similarity types between single and compound analogies.  

Manuscript two uses a fixed relationship taxonomy to collect knowledge models, 

and the observed variety of similarity abstractions from manuscript one informs the 

creation of a diverse taxonomy to describe concept relationships. The types of 

concept maps produced in manuscript two are used directly by manuscript four to 

support computational analogy search.  

Manuscript three observes a strong function-component correlation when using 

the path-based molecular fingerprinting algorithm from drug design. This manuscript 

establishes molecular fingerprinting as a useful technique for describing abstract 
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design information in new design domains, and sets the stage for manuscript four to 

describe concept maps with the same algorithm. 

Manuscript four presents a simple similarity measure to detect analogies between 

concept map fingerprints. This measure can retrieve full analogies to an entire 

problem as well as partial analogies to a subproblem. Manuscript one observed no 

significant difference between the similarity abstractions that designers use to draw 

analogies, regardless of whether they are single analogies or compound analogies 

(i.e., the composition of multiple analogies into a single design). This result from 

manuscript one supports using the techniques in manuscript four to perform 

simultaneous retrieval of both types of analogies from a single knowledge 

representation. 
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Abstract  

Designers have long understood that a device must function well in order to 

satisfy its users, but only relatively recently has function been studied formally and 

extensively. The corresponding function-based paradigm focuses on abstracting what 

a system does separately from what it is. Within this paradigm, it is important to 

communicate abstract functions in a consistent manner, without binding them to their 

embodiments. This chapter discusses two recent outcomes in function-based design 

research, their impacts on education and industry, and the authors’ observations 

regarding their adoption into practice. The first of these outcomes is an information 

schema for capturing design artifact knowledge, which includes a standardized 

function taxonomy. The information schema provides guidance for teaching 

functional thinking, and also supports basic computational design techniques during 

conceptual design. The second research outcome is a conceptual linking between 

functions and failure modes, enabling new types of failure analysis techniques in 

early design. Both research outcomes are likely still in the early stages of impacting 

practice, but evidence points toward the most immediate impacts occurring during 

education. While industry is typically more reserved regarding the details of their 

design practices, the chapter also presents several instances of practical interest in 

function-based design approaches. 

Historical Context 

The Internet boom of the 1990s improved the feasibility of engineering 

partnerships across large distances. As a result, design of complex engineering 

systems became an increasingly collaborative task among designers or design teams 
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that were physically, geographically, and temporally distributed. The complexity of 

these products meant that a single designer or design team could no longer manage 

the complete product development effort. Additionally, developing products without 

sufficient expertise in a broad set of disciplines resulted in extended product 

development cycles, higher development costs, and quality problems. This shift 

toward increasingly knowledge-intensive and collaborative design increased the 

importance of computational design frameworks to support the representation and use 

of general knowledge among distributed designers [7]. 

Around this time, Product Data Management (PDM) systems hit their stride as an 

effective way to manage engineering data, such as computer-aided design (CAD) 

drawings. By organizing product component data, PDM systems improved 

communication, shortened production times, and reduced costs. However, designers 

were no longer merely exchanging geometric data (as supported by these PDM 

systems), but more general knowledge about design and design process, including 

specifications, design rules, constraints, rationale, etc. As such, merely providing 

access to schematics and CAD models was no longer sufficient. In order to support 

reuse of engineering knowledge, a representation was needed to convey additional 

information that answers not only “what?” questions about a design, but also “how?” 

and “why?” questions. Mappings from form to function had often been pointed to as 

an example of the kind of information that is needed for effective reuse of design 

knowledge, but were absent from traditional CAD models.  

Early attempts at cataloging function were not entirely suitable for design 

repositories, being either extremely domain-specific or extremely general. For 
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example, Collins et al. [8] developed a helicopter-specific list of 105 unique 

mechanical functions to accurately archive helicopter failure information. This 

approach is useful for cataloging and retrieving helicopter failure information, but is 

not generalizable to other types of systems. More generally, Pahl and Beitz [9] 

provide a highly abstracted vocabulary containing five functions and three flows 

(function operands), and Hundal [10] develops six abstract function classes, each 

containing more specific functions. The Theory of Inventive Problem Solving (TIPS 

or TRIZ), published by Altshuller in 1984 [11], describes all mechanical design with a 

set of 30 functions. TRIZ was developed through a survey of over 2 million patents, 

pointing to a high level of validity. Malmqvist et al. [12] noted that the TRIZ 

vocabulary would benefit from a structured function hierarchy using the Pahl and 

Beitz functions. A further review of function classification at the time can be found in 

Hubka and Eder [13]. 

To address the functional issues in PDM systems, the National Institute of 

Standards and Technology (NIST) held a workshop to identify basic research and 

industry needs for their Design Repository Project. This emerging research area of 

design repositories was aimed at making use of research in knowledge-based design 

to facilitate the representation, capture, sharing, and reuse (search and retrieval) of 

corporate design knowledge [14]. Importantly, while there was widespread use of 

functional decomposition at this time, there was no standard language for describing 

function [14]. Within such decompositions, whether for function or architecture, no 

standard existed concerning levels of abstraction. Specific needs identified at the 

workshop included: (1) a need for representation of function in CAD, in addition to 
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geometry, (2) a need for a fixed representation scheme for modeling function, (3) a 

need for a commonly agreed set of functions performed by mechanical systems, and 

(4) a need for representations that are both human-interpretable and machine-

interpretable [14]. To meet these needs, a collaborative research effort between NIST 

and academia was formulated to investigate the underlying framework for creating 

design repositories, including representation of design function, product architectures, 

and form; and notably lead to the development of a design repository data schema 

containing generalized function and component abstractions. 

The remainder of this chapter will discuss two related research outcomes. The 

first is the aforementioned design repository information schema designed to address 

the needs identified by NIST, and the second is a relationship between functions and 

system failures. Each outcome is summarized, and followed by a discussion of their 

impacts in practice. 

Research Outcome: A Design Repository Information Schema 

The first research outcome, an information schema for describing artifacts in a 

design repository system, was formulated to enable designers to store and retrieve 

design knowledge at various levels of abstraction, from form (components, sub-

assemblies and assemblies) to architecture description to function. The different 

levels of abstraction provide innovative ways to approach design. This information 

schema includes a function description language called The Functional Basis, a 

taxonomy of electromechanical components, and basic matrix representations that 

afford computational concept generation. 
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The Functional Basis 

A systematic approach to functional modeling (e.g., [7, 9, 13]) generally has the 

designer decomposing a product’s overall function into subfunctions until each 

subfunction is small and easily solved. Unfortunately, knowing when a function is 

small and easily solved can be quite ambiguous. As such, one of the key issues 

motivating the development of a consistent functional vocabulary was to provide 

guidance on when to stop decomposition. General function vocabularies (e.g., [9-11]), 

while applicable to a wide variety of domains, lack the detail to provide guidance on 

decomposition depth. In contrast, domain-specific function taxonomies (like Collins’ 

helicopter-specific taxonomy [8]) are not useful outside of their fields. 

The NIST Function Taxonomy and the Functional Basis were separate parallel 

efforts undertaken to address this disconnect between function abstraction layers. 

Both projects sought to create a general function taxonomy with high validity by 

unifying past research. To support this goal, the taxonomies were unified into a single 

reconciled Functional Basis (Table 2 and Table 3). The reconciled Functional Basis 

represents a general standard function taxonomy that describes the electromechanical 

design space at multiple levels of abstraction. This reconciled Functional Basis 

contains a set of functions (action verbs) and flows (nouns), to be used together as 

verb-noun pairs in a functional model. The function and flow sets both provide three 

levels of decomposition guidance. These levels are called primary, secondary, and 

tertiary; and they correspond to the level’s degree of abstraction. A fourth column 

called correspondents offers synonyms to define and contextualize each function and 
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flow. Italicized correspondents occur in multiple functions, indicating slightly 

different usages or senses of the word.  

Table 2. Functional Basis Flows [15] 

Class 
(Primary) 

Secondary Tertiary Correspondents 

Material Human  Hand, foot, head 

 Gas  Homogeneous 

 Liquid  Incompressible, compressible, homogeneous, 

 Solid Object Rigid-body, elastic-body, widget 

  Particulate  
  Composite  

 Plasma   

 Mixture Gas-gas  

  Liquid-liquid  

  Solid-solid Aggregate 

  Solid-Liquid  

  Liquid-Gas  

  Solid-Gas  

  
Solid-Liquid-
Gas 

 

  Colloidal Aerosol 

Signal  Status Auditory Tone, word 

  Olfactory  

  Tactile Temperature, pressure, roughness 

  Taste  

  Visual Position, displacement 

 Control Analog Oscillatory 

  Discrete Binary 

Energy Human   

 Acoustic   

 Biological   

 Chemical   
 Electrical   

 Electromagnetic Optical  

  Solar  

 Hydraulic   

 Magnetic   

 Mechanical Rotational  

  Translational  

 Pneumatic   

 Radioactive/Nuclear   

 Thermal   

Overall increasing degree of specification  
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Table 3. Functional Basis Functions [15] 

Class  
(Primary) 

Secondary Tertiary Correspondents 

Branch Separate  Isolate, sever, disjoin 

  Divide Detach, isolate, release, sort, split, disconnect, 
subtract 

  Extract Refine, filter, purify, percolate, strain, clear 

  Remove Cut, drill, lathe, polish, sand 

 Distribute  Diffuse, dispel, disperse, dissipate, diverge, scatter 

Channel Import  Form entrance, allow, input, capture 

 Export  Dispose, eject, emit, empty, remove, destroy, eliminate 

 Transfer  Carry, deliver 

  Transport Advance, lift, move 

  Transmit Conduct, convey 

 Guide  Direct, shift, steer, straighten, switch 

  Translate Move, relocate 

  Rotate Spin, turn 

  Allow DOF Constrain, unfasten, unlock 

Connect Couple  Associate, connect 

  Join Assemble, fasten 

  Link Attach 

 Mix  Add, blend, coalesce, combine, pack 
Control  Actuate  Enable, initiate, start, turn-on 

Magnitude Regulate  Control, equalize, limit, maintain 

  Increase Allow, open 

  Decrease Close, delay, interrupt 

 Change  Adjust, modulate, clear, demodulate, invert, normalize, 
rectify, reset, scale, vary, modify 

  Increment Amplify, enhance, magnify, multiply 

  Decrement Attenuate, dampen, reduce 

  Shape Compact, compress, crush, pierce, deform, form 

  Condition Prepare, adapt, treat 
 Stop  End, halt, pause, interrupt, restrain 

  Prevent Disable, turn-off 

  Inhibit Shield, insulate, protect, resist 

Convert Convert  Condense, create, decode, differentiate, digitize, 
encode, evaporate, generate, integrate, liquefy, 
process, solidify, transform 

Provision Store  Accumulate 

  Contain Capture, enclose 

  Collect Absorb, consume, fill, reserve 
 Supply  Provide, replenish, retrieve 

Signal Sense  Feel, determine 

  Detect Discern, perceive, recognize 

  Measure Identify, locate 

 Indicate  Announce, show, denote, record, register 

  Track Mark, time 

  Display Emit, expose, select 

 Process  Compare, calculate, check 

Support Stabilize  Steady 

 Secure  Constrain, hold, place, fix 

 Position  Align, locate, orient 

Overall increasing degree of specification  
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In forward design, a designer can use the Functional Basis to iteratively 

decompose a functional model from a single black box function. To maximize form-

independence and promote a wide search of the solution space, the first iteration is 

generally performed at the primary level. Subsequent iterations contain increasingly 

specific functions at the secondary and tertiary levels, until the designer shifts to 

component selection or domain-specific terminology. In general, decomposition to 

the secondary level is a good target due to its high information content [16]. In 

reverse engineering, the Functional Basis offers a way to consistently catalog 

products based on functions performed by those products, subassemblies, 

components, etc.  

For example, a vise grip (Figure 2) can be described with the black box model in 

Figure 3. The black box model captures incoming and outgoing material, energy, and 

signal flows. Here, the vise grip’s overall function is to secure material. Mechanical 

energy, Hand and Object materials, and a Not Clamped signal flow into the system. 

The same flows also exit the system after operation, except the system visually 

signals that the object is now Clamped. The functional model in Figure 4 provides a 

higher resolution functional view of the same system using Functional Basis 

terminology. As with natural language functional models, there are multiple correct 

ways to describe the system’s function (e.g., the signal flow could be treated 

differently or omitted entirely), but the standard terminology enables meaningful 

comparison between multiple models. 
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Figure 2. Vise Grip 

 

Figure 3. Vise Grip Black Box Model 

 

Figure 4. Vise Grip Functional Model 



20 

 

Several studies point to high validity of the Functional Basis. On grounds of 

theoretical validity, the Functional Basis is built upon extensive past work, subsuming 

the function taxonomies of Pahl and Beitz, Hundal, and Altshuller, as shown in Figure 

5.  

 

Figure 5. The Functional Basis Compared to other Function Taxonomies [17] 
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More pragmatically, a study by Ahmed and Wallace [18] found that 90% of the 

functions described by a group of practicing aerospace engineering designers could 

be described by the Functional Basis, with two thirds of those function descriptions 

matching a Functional Basis term exactly. This study suggests that the Functional 

Basis has good validity in an industry engineering design context. Further, a study by 

Kurfman et al. [19] found that a directed approach to functional model creation using 

functional basis terminology produced more uniform functional models than an 

undirected approach. Finally, an information-theoretic study of the Functional Basis 

demonstrates that the information content of function terms increases from primary to 

secondary levels, while the jump from secondary to tertiary provides marginal 

benefits [16]. 

This function terminology is the first of several standard vocabularies and 

representations that are embodied in a design repository. Combined with these other 

standard vocabularies, the Functional Basis facilitates forward design activities 

including automated concept generation and early detection of potential failure 

modes. 

The Component Taxonomy 

Similarly to the Functional Basis, the electromechanical component taxonomy 

provides abstract categories for components in order to support a consistent 

knowledge vocabulary. General component terms are accompanied by synonyms and 

definitions, and are organized according to the functions that the components 

generally perform (Table 4). 
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Table 4. Component Taxonomy Excerpt 

Primary 
Component 
Classification 

Secondary 
Component 
Classification 

Component 
Term 

Component 
Subset 

Synonyms Definition 

Branchers 
Separators ...       

Distributors ...       

Channelers 

Importers/ 
Exporters 

...       

Transferors 

Carousel     
A device used to move 
material in a continuous 
circular path. 

Conveyor     
A device used to move 
material in a linear path. 

Electric Conductor lead 
A device used to transmit 
electrical energy from one 
component to another. 

  

Electric Wire   
An electric conductor in the 
form of a thin, flexible thread 
or rod. 

Electric 
Plate 

  
An electric conductor in the 
form of a thin, flat sheet or 
strip. 

Electric 
Socket 

    

A device in the form of a 
receptacle that transmits 
electrical energy via a 
detachable connection with an 
electric plug.  

Electric Plug     

A device in the form of a plug 
that transmits electrical energy 
via a detachable connection 
with an electric socket. 

Belt   

strap, 
girdle, 
band, 
restraint 

A device shaped as an 
endless loop of flexible 
material between two rotating 
shafts or pulleys used to 
transmit mechanical energy. 

...       

Guiders 

Hinge   

pivot, axis, 
pin, hold 
down, jam, 
post, peg, 
dowel 

A device that allows rigidly 
connected materials to rotate 
relative to each other about an 
axis, such as the revolution of 
a lid, valve, gate or door, etc. 

Diode     
A semiconductor device which 
allows current to flow in only 
one direction. 

...       

Connectors 
Couplers         

Mixers         

... ... ...       
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As was the case with function, this taxonomy was formulated with the goals of 

standardizing electromechanical component terminology and enabling automated 

design tools [20], while being as complete and exclusive (i.e., low redundancy 

between terms) as possible. Because components are more concrete than functions, 

the component taxonomy is easier to use as a framework for domain-specific 

adaptation. Unlike function, technological progress results in new types of 

components. As a consequence, a general classification of components can always be 

updated, but the vast majority of components in the taxonomy form a stable core 

capable of describing most products. 

Matrix Representations 

Given these consistent abstractions for functions and components, several types of 

matrix representations are possible. These matrices reveal interesting similarities 

(functions) between apparently dissimilar physical solutions, and enable automated 

design tools. The matrix representations support simple mechanisms for propagating 

abstract functions forward into more physical domains. 

The first of these, called the Function Component Matrix (FCM), relates a 

product’s subfunctions to the components that perform those functions. One axis lists 

functions, and the other axis lists components. Each matrix cell contains an integer 

representing the number of times a component has solved a given function, and FCMs 

can be created for an individual product or a set of products. Individual product 

FCMs can be combined via matrix addition. Consistent FCMs are made possible by 

the standardized terminologies of the Functional Basis and Component Taxonomy. 
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The Design Structure Matrix (DSM) catalogs the internal physical connectivity of 

a design. Several types of DSM exist, but a simple variety catalogs binary yes/no 

connections between components in a system. Both axes in this two dimensional 

matrix contain a row/column for each component, allowing pairwise comparisons 

between every pair of components in a system. A DSM can represent connections 

between specific individual artifacts inside a product or connections between 

components. Again, the standardized component terminology enables meaningful 

comparison and combination of separate DSMs. 

Broadly, these representations enable tools that provide guidance from general 

abstract function description to domain-specific component selection. For instance, 

after aggregating a large number of FCMs representing historical product data, a 

designer can query the matrix for the desired functions to generate a large number of 

potential component solution candidates. These solution candidates take the form of 

morphological matrices wherein multiple potential solutions are given for each 

subfunction. This enables designers without expert knowledge to examine alternatives 

that they may not have otherwise considered. 

Impacts of Design Repository Information Schema 

The initial driver behind much of this work was to enable design repositories, and 

many of these results are appropriately embodied in a design repository (hereafter 

referred to as “The Design Repository”). The Design Repository represents an 

influential research outcome in that it broadly demonstrates the value of capturing and 

reusing product knowledge according its function. These vocabularies and techniques 

are used to capture knowledge about (at the time of writing) 184 reverse engineered 
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electromechanical products. Products in the repository are decomposed to multiple 

levels of abstraction, including function data for components, subassemblies, and 

assemblies. Key artifact information, including function and component data, is 

stored using standard vocabulary. Figure 6 shows a typical artifact entry in The 

Design Repository. The rotation plate in the figure is a housing component in the 

Dyson Air Multiplier system, and it performs the function transfer mechanical energy 

from the base motor artifact to the base artifact. 

 

Figure 6. Rotation Plate Artifact in The Design Repository 

Using The Design Repository, designers can store and retrieve design knowledge 

at these various abstraction levels, providing innovative ways to approach design. 

However, in addition to supporting a repository of design knowledge, the repository 

information schema has also had less tangible (but no less significant) impacts in both 

education and industry. 
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Education Impacts 

To date, dozens of medium and large engineering schools in the U.S. introduce 

functional modeling in their undergraduate and graduate curriculum and use the 

Functional Basis as a language for expressing functionality. Owing to its small 

vocabulary, the Functional Basis guides students around common pitfalls associated 

with learning to create functional models. Some common pitfalls include references 

to specific components or forms, modeling the product as a flow through itself, or 

violating verb-object norms. Invalid functions (e.g., function descriptions that imply 

an embodiment) are more difficult to express when using Functional Basis 

terminology as opposed to natural language, which leads students to identify more 

product subfunctions [21] and increases repeatability in functional model creation 

[19]. For instance, the function-flow format of the Functional Basis encourages verb-

object function descriptions (e.g, “rotate” becomes “transfer rotational energy”), and 

solution-centric function descriptions must be reconsidered to exclude references to 

form (e.g., “unlatch spring” becomes “actuate mechanical energy”).  

In a separate but related effort, the Biomimicry 3.8 Institute has recognized 

function as valuable tool for organizing biological strategies in their AskNature 

database, which is used in classrooms around the world to teach and promote 

biologically inspired design (BID). The group has developed a biology-specific 

function taxonomy in order to help designers easily answer the question “How would 

nature do X?” Easily interpretable function categories in this taxonomy are the key to 

supporting the search process. 
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While the design repository research discussed prior did not directly influence 

these efforts, they illustrate an important parallel. The topic of biologically inspired 

design is widely studied in universities, but its application in practice remains limited. 

A series of BID workshops has brought together a community of researchers in order 

to address this issue by investigating ways to facilitate BID in a practical context. 

Function-based taxonomies represent a promising framework for mining and 

cataloging biological strategies, as seen in AskNature, to increase the ease of applying 

BID techniques. Progress in this area is still early, but several industry representatives 

have expressed interest in the outcomes of these workshops. More generally, such 

workshops may serve the dual roles of addressing research challenges and gaining 

critical industry support. 

Industry Impacts 

In industrial practice, Ford Motor Company participated in efforts to utilize the 

functional basis in its design efforts dating back to the late 1990s and early 2000s.  A 

new program in Design for Six Sigma uses the functional basis as a method of 

developing critical and repeatable “transfer functions” to create robust designs.  

Informal reports indicate that functional modeling has been received with great 

enthusiasm, and the results show that the functional basis can model the large-scale 

systems developed by Ford.  

Also in the automotive industry, General Motors engaged in research related to 

functional recall of prior components for reuse in their advanced design teams in the 

2000s [22].  One area of interest included using function as a way to link customer 

need statements to appropriate vehicle related performance metrics that supported 
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both Design for Six Sigma and requirements flowdown activities.  The Functional 

Basis was presented to GM employees and utilized for these activities. 

In a case of practical research application in an academic setting, a method for 

generating behavior models from functional models was applied to a Formula SAE 

car. This function-based behavioral modeling method [23] contains the steps (1) 

functional modeling, (2) state identification, (3) behavioral model element 

identification, (4) model solution, and (5) model iteration; and allows a designer to 

simulate system performance based on a functional model and the historical 

connectivity between functions and behavior equations. A full-vehicle dynamic 

simulation model of a Formula SAE car was created, providing a test and evaluation 

platform for the team to inform vehicle tire selection [24]. 

A project sponsored by the National Center for Defense Robotics extends 

functional modeling techniques to model product and process together [25]. The 

technique was used to model two vehicle decontamination processes: (1) the United 

States Army Nuclear, Biological, and Chemical (NBC) decontamination system and 

(2) the Kärcher TEP 90 decontamination procedure. The research assessed automation 

potential by calculating functional similarity between separate stations in each 

process, and showed that a single automated solution could likely accomplish the 

tasks of these multiple decontamination stations. 

Guidelines and Platform behind transfer to Practice 

The chief mode for moving this design research outcome into practice has been 

through training young engineers. The Design Repository, its related tools, and its 

data schema are used as a framework for teaching functional thinking in 
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undergraduate engineering coursework. This approach has been used to teach the 

basics of functional modeling, and demonstrate its utility, using automated concept 

generation tools. These tools hide the historical data and matrix math from users 

while providing inspiration for multiple different concept variants. 

For example, FunctionCAD [26] is a functional modeling environment that can 

enforce Functional Basis terminology and integrate directly with the Design 

Repository tools described in prior sections. A major goal driving the development of 

FunctionCAD was to ease students into functional thinking. Because of the extra 

effort associated with learning the function-based formalism, engineering students 

commonly opt to use natural language function terms instead of Functional Basis 

terms. The payoff for using a structured language is not immediately evident. 

FunctionCAD is a product of the design repository research that can experientially 

demonstrate this payoff without a lengthy learning process. For instance, a student 

using FunctionCAD might create a new functional model, export and load the file 

into the Design Repository concept generator, and retrieve a morphological matrix for 

that functional model. The tool’s interface clearly indicates the available function 

terms, and can enforce other rules such as conservation of mass and energy. This 

demonstrates one added benefit of using the Functional Basis while imposing 

minimal obstacles on the designer. 

A key takeaway observed from deploying tools like FunctionCAD is that software 

usability can have a severe impact on learning and acceptance of conceptual design 

techniques. A poor implementation can actually be worse than nothing at all. In order 

to maximize the effectiveness of research dissemination, especially when students are 
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a target audience, the implementation must be stable and easy to use. When using 

prototype software as a teaching tool, students were observed becoming frustrated 

with bugs, missing features, and other usability issues. As a result, some students 

discounted the underlying approach as troublesome and ineffective. This effect has 

been observed with prototype versions FunctionCAD and Design Repository concept 

generator tools.  

More generally, the effort required to learn and adopt new research findings is a 

barrier to their acceptance into practice. Tools like FunctionCAD are designed to 

minimize that effort while demonstrating the utility of the research findings. When 

usability issues decrease ease-of-use, such tools can become no more effective than 

teaching the methods directly. 

It follows that usability and polish should be highly ranked requirements when 

such tools are anticipated to have a significant effect on training activities. Similarly, 

researchers should try to consider usability heuristics when producing research 

artifacts for outreach purposes.  

A related contributor to the success of the Functional Basis as a teaching tool is its 

ease of adoption. Its function vocabulary balances natural language, physics-based, 

and teleological views of function. This balance affords descriptive power, simplicity, 

and flexibility. Similar attributes can be seen in other commonly accepted design 

tools, including TRIZ and Failure Modes and Effects Analysis (FMEA). These tools 

are simple and flexible enough for anyone to learn, and powerful enough to solve 

practical problems. It follows that design researchers should aim to condense research 

outcomes into simple and flexible packages. In short, our experiences using Design 
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Repository tools in the classroom indicate that usability and adaptability should be 

top priorities when formulating a design research outcome as a training tool. 

Research Outcome: Function Failure Relationship 

The second research outcome discussed in this chapter concerns the relationship 

between functions and failure. Failure, put simply, occurs when a system becomes 

unable to perform its intended function. The failure state manifests as unintended 

behavior. This conceptual linking between functions and failures has led to a number 

of tangible research products with the potential to influence practice. The research 

described in this section falls into one of two categories: component level function-

failure approaches and system level function-failure approaches. 

Component Level Failures 

At an individual component level, failures are often the result of loading 

exceeding material limits. The material limits are ultimately a function of variation in 

the manufacturing process while the loading can be described by the component’s 

performance equations. If this variation is specified up front, then that variation can 

be propagated back through the performance equations. This enables a designer to 

define the component form such that failure is avoided even in the presence of 

manufacturing variation. Taking this one step further, if components are linked to 

function then a designer can predict what components to use and what failure modes 

are possible well before any components are fabricated.  

Motivated by the success of the prior taxonomy research, and the need to perform 

failure analysis as effectively as possible, a research effort in this area produced a 

general electromechanical failure mode taxonomy. The helicopter-specific failure 
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taxonomy of Collins et al. [8], which formed the groundwork for a matrix-based 

failure lookup tool, also provides the basis for the electromechanical failure mode 

taxonomy. The end result is a taxonomy of updated mechanical failure modes [27] 

and new electrical failure modes [28] (Table 5). This abstract failure mode 

categorization enables earlier consideration of failure modes in the design process by 

enabling an FCM-style relationship between function and failure.  

Table 5. Failure Mode Taxonomy Excerpt [27] 

Primary Identifier Failure Mode Definition 

Corrosion …  … 

Creep …  … 

Ductile 
Deformation 
(Ductile Material) 

Brinelling 

A static force induced permanent surface 
discontinuity of significant size occurring between 
two curved surfaces in contact as a result of local 
yielding of one or both mating members. 

Force induced 
elastic 
deformation 

Occurs when the imposed operational loads or 
temperatures in a machine member result in elastic 
(recoverable) deformation such that the machine 
can no longer satisfactorily perform its intended 
function. 

Yielding 

Occurs when the imposed operational loads or 
motions in a ductile machine member result in 
plastic (unrecoverable) deformation such that the 
machine can no longer satisfactorily perform its 
intended function. 

Fatigue 
(Fluctuating loads 
or deformation) 

High cycle 
fatigue 

The sudden separation of a machine part into two or 
more pieces occurring when loads or deformations 
are of such magnitude that more than 10,000 cycles 
are required to produce failure. 

Impact fatigue 
Failure of a machine member by the nucleation and 
propagation of a fatigue crack that occurs as a 
result of repetitive impact loading. 

… … …  
 

The Function Failure Design Method (FFDM) uses this standard failure mode 

taxonomy, along with historical failure data, to algorithmically predict failure modes 

from a design’s functions [29]. A binary function-component matrix relates functions 

to components, and a second matrix relates components to quantity of observed 

failures for each failure mode. Multiplying the two matrices gives the failure mode 
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frequency for each function. The EF matrix can be generated for a single product, or 

for an entire database of functions, components, and failure modes. A designer can 

use this matrix of function-failure correlations to revise the functional model, inform 

component selection, and rank concept generator results. 

The Function Failure Rate Design Method (FFRDM) extends the FFDM 

knowledge base by adding approximately 36,700 failures from Failure 

Mode/Mechanism Distributions 1997 (FMD-97) and Nonelectric Parts Reliability 

Data 1995 (NPRD-95). These additions improve the validity of the failure mode 

knowledge base, and using failure rate data from these documents instead of relative 

raw frequency improves the validity of FFDM’s likelihood predictions.  

In a separate parallel effort, the Risk in Early Design Method (RED) [30] extends 

FFDM to translate function and failure information into categorized risk elements. 

RED uses a set of risk-attitude heuristics to select from different types of likelihood 

and consequence equations. RED communicates risks according to their likelihood 

and severity in the form of a risk fever chart (Figure 7), commonly used to display 

risk elements in various companies, including NASA and Boeing. In this chart, all 

system risks are plotted according to their likelihood and consequence, providing the 

designer with a visual snapshot of the overall system risk. 

 

Figure 7. Risk Fever Chart 
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System Level Failures 

A systems-view product of the function-failure relationship in early design is the 

Function Failure Identification and Propagation (FFIP) framework [31]. FFIP was 

introduced as a design-stage method for reasoning about failures based on the 

mapping between components, functions, and nominal and off-nominal behavior. The 

goal of the FFIP method is to identify failure propagation paths through the functional 

model by mapping component failure states to function ‘health’. This approach uses 

simulation to determine fault propagation and fault effect, thus providing the designer 

with the possibility of analyzing component and interaction failures and reasoning 

about their effects on the rest of the system. The two main advantages of the FFIP 

method are: 1) a functional abstraction which allows it to be used in complex systems 

employing both software and physical components; and, 2) a simulation-based 

approach allowing analysis of multiple and cascading faults. 

An FFIP analysis begins with a functional representation of a system and utilizes 

the mapping of functions to components in a component structural representation. A 

system simulation is built following the structural representation. The nominal and 

faulty behavior of generic components is stored as state machines in a component 

library. Each state represents a behavioral mode of the component where the 

qualitative intervals (high, low, etc.) of the input flow attributes are converted to 

output flow attributes. For example, in the nominal mode of a fuel line the input flow 

level of fuel is the same as the output. However, in the blockage fault mode, the 

output flow level is reduced to zero. Finally, the approach introduces a Function 

Failure Logic (FFL) reasoner which relates the input and output attributes of the 
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component simulation to the expected change for the function mapped to those 

components. The result of an FFIP analysis is an evaluation of the health status of 

each function in the system. There are four potential health states for a function, as 

defined in Figure 8. These states are based on the concept that a function is the 

expression of the designer’s intent describing the actions that affect the flows of 

energy, material and signal in the system.  

1. Healthy: The function affects the flow as intended 
2. Degraded: The function affects the flow differently than intended 
3. Lost: The function does not affect the flow 
4. No Flow: There is no flow for the function to act on (usually due to an upstream failure) 

Figure 8. FFIP Function Health States 

Impacts of Function Failure Research 

The failure analysis tools commonly used in industry (e.g., Failure Modes and 

Effects Analysis (FMEA) and Fault Tree Analysis (FTA)) rely on expert knowledge to 

identify failure modes. For example, Team X at NASA’s Jet Propulsion Laboratory 

(JPL) is an expert team used to create conceptual designs of space missions. The 

design activity itself takes place in a setting that promotes constant communication, 

and a risk expert on the team solicits potential risks from subsystem chairs. This 

reliance on experts to identify failures can serve as a design process bottleneck.  

Eliminating this expert knowledge bottleneck was a major motivator driving 

function-failure research. The function-failure abstraction provides the means for a 

novice engineer to reuse expert knowledge for failure prediction. For instance, the 

failure modes, likelihood values, and severity values generated by RED can 

prepopulate an FMEA table. This approach provides a secondary baseline to 

compliment a traditionally generated FMEA (based on tribal knowledge of similar 

projects), and can be created without expert involvement. Additionally, connecting 
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failures back to functions reduces FMEA’s reliance on physical component 

selections. This disentangling of form and function enables designers to begin FMEA 

earlier in the design process, reducing schedule pressures on failure identification. 

In one attempt to apply the function-failure relationship in practice, the failure 

mode taxonomy was used to label failures described in JPL’s Problem/Failure 

Reporting (P/FR) database [32]. In general, the authors found that the database 

contained insufficient detail about the spacecraft systems and their failures to create a 

confident failure mode mapping. When additional information was available from 

individual reports and expert interactions, high-confidence failure mappings were 

created for 69 out of 86 (80%) of failure modes. A key takeaway from this work is 

that in order to make use of function-failure relationship design tools in practice, 

practitioners would need to capture additional information about failure events. In this 

case the tools don’t fit smoothly into existing practices, posing an obvious but 

important barrier to their adoption.  

As indicated in the earlier section on the Functional Basis, the automotive 

industry (in these authors’ case that was General Motors) has shown interest in the 

usage of function-to-failure correlations that grew out of the FFDM work. The 

primary interest (in the mid 2000s) was for cataloging historical failure information to 

support FMEAs for new vehicle systems. The function-failure correlations made 

possible by the specification of functional and failure taxonomies were considered a 

framework by which in-house knowledge could be formulated and retained despite 

employee turn over. 
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In the realm of defense, the US Air Force investigated functional modeling as a 

platform for supporting counterterrorism operations [33]. The researchers 

demonstrated how to identify the most vulnerable functions in the model through 

injecting failures, tracing each failure’s propagation, and measuring function 

sensitivity. This failure propagation through a functional model closely parallels the 

FFIP methodology. As an example, a model of Improvised Explosive Device (IED) 

incidents was created using Functional Basis terminology. Faults were injected to 

demonstrate which functions in an example IED creation and use scenario are the 

most vulnerable to disruption. Due to the sensitive nature of this domain, the full 

extent of the research impact is unknown. 

FFIP has been adopted in multiple projects in a variety of domains. At NASA 

projects, FFIP was morphed into Functional Fault Analysis to break down a system 

architecture [34] and analyze how faults propagate through aerospace systems. In this 

case FFIP demonstrates the value of function-failure linking in relatively practical 

terms, lending to the adoption and adaptation of its basic underlying principles. FFIP 

has also been applied to the design of nuclear power plants, led by a group at Aalto 

University in Finland, who have been consulting with the Radiation and Nuclear 

Safety Authority (STUK) of Finland [31] as to the applicability of the approach in 

future designs. 

Finally, as a consequence of the complexity of modern vehicles, the Defense 

Advanced Research Projects Agency (DARPA) has invested in novel methods for 

design and verification of complex systems through their Adaptive Vehicle Make 

(AVM) program. FFIP was included as part of a model-based design effort led by 
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Palo Alto Research Center under DARPA funding to establish “correct-by-

construction” design prior to prototyping [35]. Sustained interest in model-based 

design points toward the abstract function-failure relationship as having a 

fundamental impact on future design activities. A company that has formed through 

this project, CyDesign has commercialized portions of this approach. 

Both FFIP and FFDM are part of a graduate course at Oregon State University 

that teaches various methods of failure and risk analysis. Students who have 

graduated from Oregon State University with this training have every intention to 

introduce these methods as the next generation failure and risk analysis tools into the 

reliability engineering practices with their current employers, which include NuScale, 

Xerox, Daimler, and Raytheon. 

Conclusions 

The Functional Basis, its utilization as a building block of the Design Repository, 

and the function-to-failure mappings have made impacts in education and in the 

practice of industry. In the education arena, we are likely still in the early stages of 

seeing the results as the concept of functional decomposition as a key activity in 

design process continues to take root in the US engineering education landscape. 

Early data (it is largely anecdotal at this point) leads the authors to conclude that the 

abstraction that is possible through the Functional Basis pays dividends in better 

designed products [36] and more critical thinking by students in the engineering 

design courses. While the outcome is generally a better result, the qualitative data 

indicates that grappling with abstraction is at times a mentally stressful activity – 

particularly during the first few encounters with the approach.  With repetition the 
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abstraction-making potential of using the Functional Basis during the conceptual 

design process becomes more natural and easier to implement for student engineers. 

Considering the impact of the work on industry practice, the use of function has 

gained ground over the past decade. While industry is typically tight-lipped as to what 

makes up the “secret sauce” of their success, the authors speculate that based on our 

interactions there has been measurable acceptance of function-based methods within 

the design teams of US industry. As noted in our conclusions regarding educational 

practice, the abstraction-making potential of the Functional Basis and the function-

failure approaches take some intentional practice to master. It therefore likely takes a 

supervisory champion to push these activities into the standard operating procedures 

at a given company. In general, we have seen at a minimum interest and preliminary 

use at automotive, aerospace and product innovation companies as well as national 

labs and Department of Defense agencies. 

Summary 

These research contributions have made their way into practice in different ways 

and at different rates, though the full extent of their impacts is difficult to measure. 

Education and training activities provide direct bottom-up influence, though tracing 

the impacts caused by newly trained engineers is challenging. The effects of such 

training may not manifest for years, and cultural inertia within established 

organizations can present barriers to acceptance of new design techniques.  

In contrast, direct collaboration with industry provides top-down influence. This 

arena affords more immediate impact, but requires buy-in from key people in the 

organization. In this respect, small startups represent a compromise between 
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receptiveness to new ideas and capacity to impact practice. In all likelihood, the 

continued combination of top-down and bottom-up techniques is necessary to 

produce noticeable change in practice. 

In both of these arenas, our experiences indicate that the research outcomes must 

possess demonstrable utility by providing direct solutions to practical problems in an 

easy-to-use manner. Simplicity and flexibility of the core research contribution are 

critical to facilitate the transition into practice, such that interested stakeholders can 

adopt and adapt the research outcomes with low effort. 
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Abstract 

Applying previous solutions to solve new problems is a core aspect of design. In 

this context, analogies provide a mechanism to reapply previous solutions in new 

ways, but analogy formation is limited by a designer’s knowledge. One approach 

toward improving a designer’s analogy-forming capabilities is to provide an easy-to-

use computational means of retrieving a wide breadth of relevant analogies. This 

work aims to answer what types of similarity are commonly used to draw design 

analogies, and whether some types of similarity are used more frequently in 

compound analogy versus single analogy. In this study, an experiment was performed 

to observe and document the types of information that designers found useful when 

forming analogies during conceptual design. A categorization of this information is 

sought in order to inform (1) the types of similarity data to store in an intuitive 

design-by-analogy database and (2) the form that a search query should take. The 

experiment consists of a design task and a follow up interview. Ten mechanical 

engineering graduate students specializing in design participated. These participants 

were interviewed, and their internal knowledge queries were encoded to reflect their 

objectives, thought process detail, direction of reasoning, and subject behavior type. 

Each conceptual design is cataloged according to whether it represents a compound 

analogy, a single analogy, or no analogy. The results show little difference between 

the types of information used in compound versus single analogy. Function, flow, and 

form information were all observed during analogy formation, indicating that all three 

types of information should play a role in a design-by-analogy database, regardless of 

generative goal. Notably, flow behavior was a commonly observed type of abstract 
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similarity across domains. This points to the value of capturing flow behavior 

abstraction in engineering analogy databases. 

Introduction 

A growing number of engineering design research efforts advocate the reuse of 

prior knowledge to support more informed design decisions. Related to this need is 

the hemorrhaging of corporate engineering knowledge as practicing design engineers 

retire or change careers. In both instances, there is a clear need to specify and archive 

the appropriate types of existing design knowledge – including contextual 

information that often eludes CAD drawings and design documentation. Such a 

specification would inform not only what types of information to capture, but what 

types of information to retrieve. 

Paralleling this success with the domain of early engineering design reveals the 

crux of the challenge in early-stage design automation: the general lack of sufficient 

formalized knowledge about the elements of information (representation) and 

processes (reasoning algorithms) involved in the design process. Design, especially 

early-stage design, is a highly human-centric, creative activity. The process of 

synthesizing a solution from needs follows complex mechanisms, a complete 

understanding of which will require advances in the fields of human cognition and 

intelligence, computability theory, data structures and algorithms, and human and 

computer-aided formal reasoning. This research takes a step toward this level of 

understanding by cataloging the types of information elements transferred during 

design analogizing. 
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It has been shown that designers of all experience levels use analogy, but expert 

designers do so more effectively [2]. This overall understanding as it applies to 

engineering design has inspired many research projects in the areas of case-based 

reasoning and design-by-analogy, with applications in any domain or organization 

that relies on past experiences to inform design decisions. Experiments also show that 

in the early synthesis process, function-based thinking helps to broaden the solution 

search space. Cross-domain similarities between abstractions such as function provide 

a convenient shortcut for finding analogical connections. This provides a motivation 

for finding types of abstract similarity used to make analogies in original design. 

Database-driven design-by-analogy has the potential to facilitate analogy formation 

across domains by providing a designer with plausible analogy candidates generated 

in a large variety of ways.  

Background 

This section describes related work in function-based design, case-based 

reasoning, design by analogy, and repositories of design knowledge. 

Function-Based Design 

Functional analysis is a well-established design approach [37-40] wherein product 

function is separated from product form. System models created at the functional 

analysis stage consist of both functions and flows. Functions are modeled as nodes 

that operate on flows through the system, while flows are categorized as the 

materials, energies, and signals that flow between function nodes. Together these 

elements can be used to describe how a system interacts with its environment. 

Functional modeling allows designers to represent and discuss systems before a 
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solution has been determined. In functional modeling, a standardized set of function 

terminology leads to repeatable and meaningful system descriptions [15]. The 

reconciled Functional Basis, a standard set of function and flow terms [15], has been 

shown to be an effective language for describing systems [41].  

Similarly, the Component Taxonomy represents an effort to generalize 

components in the same way that the Functional Basis generalizes functions and 

flows. This taxonomy serves as a framework for the “archival, search and reuse” of 

component information [42]. Together these terminologies enable a generalized way 

of describing system function and internal structure, and make up the language used 

to describe products within a historical product information repository.  

Case-Based Reasoning and Design by Analogy 

Formally or informally, designers often reference and base their conceptual 

designs on previous solutions [43-46], commonly referred to as case-based reasoning 

or design by analogy (DBA). These types of formalizations are important because 

they support computer-assisted analogizing, and analogies are often difficult to 

retrieve from memory [47, 48]. Further, expert designers typically form more 

analogies than novice designers [2], pointing toward the value of DBA. This 

difference in approach may be due to expert designers’ chiefly schema-driven 

approach to analogy formation, as opposed to novices’ case-driven approach [2]. The 

schema-driven approach, due to its higher level of abstraction, necessarily allows for 

a wider range of analogies to be formed than does the case-driven approach. 

Difficulties that novices face when applying analogies include (1) failure to encode 

their experiences well, (2) trouble creating mental links between “components that 
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play the same role”, and (3) insufficient experience to acquire the relevant knowledge 

[48]. Computer-directed analogy formation can potentially provide support for all 

three types of difficulty by (1) providing smarter means of creating relationships, (2) 

capturing and recalling the important types of relationships between entities, and (3) 

augmenting a designer’s experiences with additional information.  

One class of analogy formation techniques relies on fostering creativity to 

produce analogies. For example, Synectics [49] aims to support creative analogy 

formation using direct analogies, personal analogies, symbolic analogies (i.e., 

metaphors), and fantasy analogies [50]. These types of creative analogies are not 

considered in this paper. 

By the structure mapping definition of analogy, for a design process to be 

analogical, the knowledge transferred from a source case to the target problem must 

pertain to some relation between objects and not just an attribute of an object [3, 51]). 

Structure mapping is context-independent, which makes it an appropriate framework 

for studying analogy content.  The definition of analogy used in this paper is any 

comparison between two domains that share similar structures of entities and 

relationships, with causal relations increasing the strength of analogy. By this 

definition, an analogy’s strength falls somewhere on a continuum, and is based on the 

quantity and hierarchy of these relationships. A comparison that has surface similarity 

without deeper relationship alignment (e.g., a red apple and a red car) is not an 

analogous comparison. Additionally, if two things share large amounts of structural 

and literal similarity, then they are directly related rather than analogous (e.g., the 

hub-spoke-rim structure of bicycle wheels and cart wheels). While similarity between 
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abstractions (e.g., functional similarity) is not directly indicative of a structure-

mapping style of analogy, it does suggest a number of shared causal relationships. 

This motivates the goal to find different types of abstract similarity that are used to 

form analogies during conceptual design.  

In contrast, many theories of analogy depend on knowledge content (e.g., [44, 52-

54]). These theories focus on the content of knowledge that makes analogical transfer 

feasible by describing different types of analogies along the dimensions of Why, 

What, How, and When [55]. Most present computational theories of analogical design 

are content theories [55]. One common method explaining how within-domain 

analogies are formed is the case-based method (or the direct transfer model) [56] 

wherein knowledge is transferred without intermediate abstraction. A common 

method for cross-domain analogical transfer in computational design is the schema-

based model [57] in which knowledge is transferred from a source case to a target 

problem by abstracting a solution schema. The IDeAL system [54, 58] is one of many 

implementations of a schema based model for conceptual design. The problem 

transformation model [52, 53, 59, 60] proposes that initial failures cause designers to 

reframe the problem [61], ultimately leading to a successful analogy to the new 

problem. This concept of problem transformation is related to the compound analogy 

model [62], which describes how designers combine multiple analogies to explore the 

problem and solution space. 

Representations of Design Knowledge 

In terms of existing representations, general content models of the early design 

process provide a rich range of categorizations. The Function-Behavior-Structure 
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(FBS) model [63] represents design knowledge in terms of structure, behavior 

predicted from structure, function, expected behavior, and design description. The 

design process in this model is a translation from function to design description. The 

problem mapping framework [64, 65] describes problem exploration in terms of 

requirements, issues, functions, behaviors, and artifacts. 

More recently, biologically inspired design has been the focus of many analogical 

design studies due to the apparent effectiveness of design analogies made between 

very different domains. One example in this area includes the Design by Analogy to 

Nature Engine (DANE) [66], which uses the Structure-Behavior-Function [67] 

language to represent biological systems. The SR.BID problem schema and the Four-

Box method for problem formulation and analogy formation [68] capture the 

operational environment, function, specifications, and performance criteria in a 

domain. IDEA-INSPIRE, another tool for finding biological analogies [69], uses the 

SAPPhIRE model [69] to capture information about engineered and biological 

artifacts. This model organizes information about a system’s associated actions, state 

changes, physical phenomena, physical effects, inputs, organs (properties and 

conditions of a system), and parts.  

Repositories of Design Knowledge 

Over the past several decades, researchers have addressed knowledge-based 

design information systems and their associated product representations to support 

automation of some aspect of engineering design – typically the recall of past designs 

to mimic directly or inspire indirectly 
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Various efforts have sought to leverage the information in design repositories 

(e.g., [70-72]), which capture information in various data schemas to drive concept 

generation (e.g., [73-75]). These types of efforts support schema based analogy at 

various levels of abstraction, providing multiple ways to approach design. Functional 

schema matching is particularly useful in this context because it models a causal 

relationship at a level above physical components – it is abstract enough to promote 

meaningful matches, but not so abstract that it is unintuitive to the casual user. 

The infrastructure supporting these efforts is an information ontology (e.g., [76, 

77]) that describes what types of design information can be stored, the relationship of 

those elements, and the extensibility of including new and additional types of design 

information. This taxonomy allows for artifacts to be grouped into well-defined, but 

abstract, categories. 

The Design Repository is an example of an analogical database that works at the 

schema level as opposed to the case level. Products within the repository are broken 

into components, and these components are tagged with general function [15] and 

component [42] information (general schemas) that enables the user to locate 

components with the desired functionality. The overall goal of the current work is to 

identify missing elements for a database such as the Design Repository whose capture 

may lead to better analogy formation support. 

Research Approach 

This section describes the approach for capturing analogy formation events. The 

process begins with an experiment designed to collect descriptions of newly designed 

concepts and previously observed systems. Next these descriptions are chunked and 
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organized according to which concept they describe. After chunking, chains of 

premises, questions, and answers are extracted or inferred from the text in each 

chunk. Each question is then coded to characterize internal knowledge queries, and 

the types of codes involved in each concept formulation chain are used to characterize 

different types of analogy. These types of analogy are then compared with the 

direction of reasoning and type of similarity observed. Two raters performed the 

chunking, creating premise-question-answer chains, and question coding 

independently; reconciling the outcomes of each step before proceeding to the next. 

Data Collection 

In the experiment, ten graduate-level mechanical engineering students with a 

design focus were tasked with identifying the functionality required for a given 

design problem, and then generating solution concepts to solve it. A novel product 

design task, in this case the design of a towel-ironing and folding machine, was 

created in order to mitigate fixation on preconceived solutions. The problem domain 

is also familiar enough that reasoning about domain principles and related solutions is 

possible. The concept generation stage was followed by an interview. The subject was 

recorded throughout the entirety of the experiment, using both a video camera and a 

pen capable of recording writing and audio. The interview recordings were the only 

data of interest, but the entire experiment was recorded to create a consistent 

environment. 

In task one, the participant was given a short written design brief, with 

instructions to identify some high-level actions of the device (Figure 9). Task one was 

essentially a training task; the purpose of which was to stimulate subjects to think 
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about functions, without strongly biasing them toward any single solution. This task 

engages the participant in emulating an expert’s approach of considering general 

schema-based solutions, rather than the less successful case-driven analogies [2]. In 

task two participants were simply prompted to generate conceptual solutions for the 

towel-folding problem. This task was not timed; participants were allowed to 

continue until they were satisfied. 

Design Problem: 

Design an automatic towel-ironing machine for use in hotels. The purpose of this device is to press 

wrinkled towels and fold them. You are free to choose the degree of automation. At this stage of the 

project, there is no restriction on the types and quantities of resources consumed/emitted. However, the 

hotel has a desire to minimize waste and consumption of energy and materials. The design team is 

informed that typical hotels have the following resources already available: hot water lines, cold water 

lines, steam lines, and compressed air lines.  

 

You are a member of the design team. Your tasks are as follows: 

 

Task1: 

Identify some main/high-level actions that the device will perform. Use utensils and media given for 

this purpose. 
 

Figure 9. Experiment Design Prompt and Task 1 

Following task two the experimenters interviewed the participant. The interview 

was conducted in two stages. In the first stage, participants explained their concepts 

and narrated their design choices. During this stage, interviewers noted organic 

comparisons between design features and other objects (potential analogies). In the 

second stage, interviewers asked questions about these design features and the objects 

to which they were compared in an effort to have the subject discuss the two in 

greater depth. This stage of the interview was similar in style to an articulated use 

interview for customer needs gathering [39] in that it was largely interviewee-driven. 

This style improves external validity of responses, but does not result in well-formed 

data. Specific questions were not prepared beforehand, though typical questions at 

this stage include “where have you seen that before?” and “what made you think of 
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that?” Responses to these types of questions form the basis for inferring internal 

knowledge queries that took place in the course of analogy formation. This approach 

was selected over think-aloud because it elicits extra details about the designer’s 

mental models of both the source and target domains.  

Figure 10 contains sample data for a single analogy formation event produced by 

one subject. The bolded terms indicate potential questions or answers. This subject’s 

sketch data and notes for tasks 1 and 2 contained three design concepts and covered 

approximately 1.25 pages of 8.5”×11” paper. The interview lasted 24 minutes and the 

resulting transcript spanned 8 pages of text. 

 

Figure 10. Subject Speech and Sketch Describing a Single Solution Analogy Event 

Interview Transcription 

After data collection, the audio-visual recording of the post-experiment interviews 

was transcribed into text. Table 6 shows portions of the transcript from the interview 

of a participant. The letter “I” denotes speech by an interviewer and “S” signifies 
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speech by the subject.  In this exchange, the experimenters request elaboration on 

concepts previously described by the subject.  This example will be carried through 

the remainder of this section to aid explanation of the transcript analysis. 

Table 6. Excerpt from an Experiment Participant’s Interview Transcript 

I You talked about the folding assistant jig, you 
mentioned a hard boiled egg slicer, you 
mentioned a robot is boring, beyond that point 
did you think about the robot? 

S I figured it would probably be, if you were going 
to do it, it would probably be similar to how the 
jig would work except it would be automated. 

I And then you made very interesting comments. 
Origami, and easier to fold it if there’s a second 
set of hands, and you can throw the towel on a 
bar. That it’ll probably just fold itself on the bar. 
So the question would be, what made you think 
of origami? Why would that come up here? 

S Uh, well, I started by thinking how do I fold 
towels, and when I couldn’t think of any more 
ideas I started thinking what other things do I 
fold? You fold paper for origami. I’m terrible at 
origami. But how can I make origami easier for 
myself? And that’s having the instructions right 
there. It would be like, where to fold it. 

Chunking 

Chunking begins with the narrative part of the interview, when the subject 

explains each idea without interruption. If the subject sketched their ideas, the coder 

identifies and extracts text all pertaining to each concept sketch. If a concept is not 

embodied, but culminates in a final idea (e.g., “pulling on the edges to make sure it 

stays flat”), then instead text about that idea is identified. This is repeated for the 

question-and-answer portion of the interview, grouping together text that describes 

the same sketch/idea. All text describing a concept is later used to determine the type 

of analogy formation (if any) that occurred during that concept’s formulation. Within 

each of these chunks, the coder identifies all sub-solutions or sub-features, which then 
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aids in the next step: organizing the transcribed data in premises, questions, and 

answers. 

Identification of Premises, Questions, and Answers in Interview 
Transcripts 

For this task a “recognize and apply” cognitive model is assumed based on past 

studies of case-based reasoning [48]. In this context, recognition occurs when the 

designer identifies a relevant premise or answer to a question, while application 

occurs when the designer applies an answer to form a solution or a new question. For 

example, a subject may begin with the premise: “folding devices already exist,” 

which leads to the question “what else (existing device) performs the folding 

operation?” This question may then lead one to recognize that a letter folder performs 

this operation, forming both an answer and a new premise. From this premise, a new 

question may arise: “can I take what I know about letter folders and apply that to a 

towel folder?”  

In this step, each transcript is examined in search of patterns where the thought 

process could be described as an interaction between three elements within the 

participant’s answers to the interview: (1) premises, (2) questions, and (3) answers, or 

in short: PQA chains. A premise is defined here as an assertion based on current 

understanding. A premise leads to a question when a knowledge gap is identified. A 

question leads to an answer when relevant information is pulled from long-term 

memory into working memory. In prescribing this model, the authors do not argue 

that analogy formation follows an ordered process of premise-question-answer; only 

that such a representation makes it easier to capture and categorize the internal 

knowledge queries. 
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Two coders created one PQA chain for each identifiable solution or feature, 

working backwards based on the participant’s statements. Each PQA chain ends with 

a known solution because solutions are the easily observable goals of concept 

generation. After creating all of the PQA chains for a participant, the two coders 

reconciled these chains into a single agreed-upon set. 

Table 7. Excerpt from a PQA Table 

Premise Question Answer 

I fold 
towels 
  

how do I fold 
towels? […] 
and when I 
couldn’t think of 
anymore ideas 
[...]  
 

[null] 
when I couldn’t 
think of anymore 
ideas [...] I started 
thinking what 
other things do I 
fold? 

Other 
things are 
folded, 
besides 
towels 

I started 
thinking what 
other things do 
I fold?  

You fold paper 
for origami. I’m 
terrible at origami.  

You fold 
paper for 
origami. 
I’m terrible 
at origami.  

But how can I 
make origami 
easier for 
myself?  

And that’s having 
the instructions 
right there. It 
would be like, 
where to fold it. 

 

Table 7 shows portions of a participant’s PQA Table (Premise-Question-Answer 

Table). It describes a train of thought formed by the participant as follows: the 

participant started with one premise that other things than towels are also folded, and 

examining those things could help in finding analogies.  This premise led to a specific 

question that takes the form of a query within his long-term memory for things that 

are folded.  Once this question was “asked” mentally, the participant’s cognitive 

processes returned the answer: origami.  The purpose of the PQA table is to capture 

the plausible evolution of premise-question-answer tuples through the analogy-
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building process. These chains provide the basis for identifying the types of internal 

memory queries made during analogy formation. 

In this table, all cells except those with italicized text contain exact strings from 

the transcript.  The boldfaced portion of those strings indicate the phrases that qualify 

as premise, question, or answer in each case.  The italicized text in the first two 

premises indicate phrases that were not uttered directly by the participant, but would 

make a rational candidate for the premise, based on the question and answer that 

followed.  For example, the question “How do I fold towels” would be void if it was 

not premised first that “I fold towels.”  

Following categorization, questions are classified by their objective, direction of 

reasoning, response process, and behavior type. 

Coding of Questions 

Internal questions asked by the designer are encoded based on a coding scheme 

designed to categorize the types of information requests that designers make in an 

engineering organization [78]. This scheme was itself derived after examination of 

several other studies into designer information requests (e.g., [57, 79-81]). These past 

works studied the types of information used by designers during a design process. 

Because the scope of this experiment is focused only on internal requests made 

without going to an external source, the coding scheme is modified. As a result, the 

scheme used in this study only considers the objective, thought process detail, 

direction of reasoning (e.g., function to function, function to form, etc.), and level of 

abstraction. These categories are summarized in Table 8. 
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Table 8. Question Codes 

Category Code Type 

Objective 

D1 Information 

D2 Confirmation 

D3 Comparison 

D4 Constructive Generation 

D5 Explanatory Generation 

D6 Analysis 

D7 Evaluation 

Direction of 
Reasoning 

H1 Flow to Flow 

H2 Flow to Function 

H3 Flow to Form 

H4 Function to Flow 

H5 Function to Function 

H6 Function to Form 

H7 Form to Flow 

H8 Form to Function 

H9 Form to Form 

H10 None 

Response 
Process 

F1 Retrieval-Recognition 

F2 Reasoning 

F3 Deliberation 

Behavior 

I1 Intended 

I2 Predicted 

I3 Observed 

I4 Procedural 

I5 No Value 

 

The Objective category shows the various categories for objectives of the 

information request. This table has been preserved from the previous scheme, but 

results of the current experiments show evidence of only four goals at this stage of 

design: Information, Constructive Generation, Explanatory Generation, and 

Evaluation. Information is a simple retrieval operation that does not specify an 

objective. It answers the question, “what?” The goal of Constructive Generation is to 

create a new concept, and it answers questions of the form, “how could X do Y?” 

Explanatory Generation requests seek to create an explanation of an existing solution. 

It answers questions of the form, “how does X do Y?” The goal of Evaluation is to 
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determine whether a solution is good enough. Evaluation answers the question “is X 

satisfactory?” 

The Direction of Reasoning category captures types of information under 

consideration before and after a question is asked. A question’s corresponding 

premise and answer in a PQA table inform this categorization. Because this study 

occurs in the concept generation domain, function-based design classifications allow 

more specific categorization than the original coding schema. An exhaustive list 

allows for any transition between flows, functions, and forms. Function in this 

context includes any activity that satisfies a need, but also encompasses behavior that 

may not satisfy a need. The two are combined in order to mitigate issues of coder 

inference about the intent behind a behavior. Flow is defined as anything that the 

system is interacting with, but is not part of the design product. This includes both 

physical flows (e.g., towel) and energy flows (e.g., heat). Form in this context is 

defined as a solution embodiment. Typically this is an entire concept or a feature of a 

concept. Form also includes solutions that are not embodied in designed artifacts, 

such as paying people to fold the towels. In a function-based design context, the 

expected transition is from function to form. 

The Response Process category allows capture of the type of thought process. The 

two main processes accounted for are Retrieval and Reasoning. Reasoning accounts 

for questions that require some inferences to be made, while Retrieval accounts for 

information requests that return a single piece of information. Deliberation accounts 

for questions for which the answer is a network of several premises, answers, and 

arguments.  
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The Behavior Type category has not been altered from the source material [78], 

and includes Intended, Predicted, Observed, and Procedural behavior. With memory 

as the only resource available to the designer, there is little difference between a 

predicted behavior and an observed behavior. Both describe a query that returns 

something that behaves in the manner expected by the designer. At the cognitive 

level, it is difficult to reliably differentiate between behaviors that have been directly 

observed and behaviors that the designer has inferred from incomplete knowledge. 

This is further complicated when one considers that these inferences may have 

occurred before storage in long-term memory. As a result, cases that deal with an 

expected behavior of an observed form have been classified as observed behavior. 

One exception to this rule is the case of mental simulation to evaluate a newly 

designed conceptual form. In this case, behavior is predicted from a candidate 

structure in order to identify issues with the design. 

Following through with the example from Table 7, there exist three questions. The 

first question, “how do I fold towels?” represents a request to recognize and retrieve 

(F1) information (D1) that is already stored in memory. It starts with a function 

(folding), and requests information on how that task takes place (H6). This request 

seeks a form matching a behavior that has already been observed by the designer (I3). 

The second question, “what other things do I fold?” is again an information retrieval 

request (D1F1). It seeks a flow that is similar to a towel (H1). The request deals with 

the behavior of flows that have been previously observed by the designer (I3). The 

third question, “how can I make origami easier?” is an attempt to generate a solution 

(D4). To do so requires reasoning beyond simply querying the solution from memory 
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(F2). This request takes an intended behavior (I1), making origami easier, and tries to 

formulate a solution (H6). 

The two coders coded each question independently one subject at a time, and then 

reconciled their codes to arrive at an agreed upon set. Cohen’s Kappa values for inter 

rater reliability [82] are calculated for Objective, Direction of Reasoning, Response 

Process, and Behavior as 0.60, 0.51, 0.55, and 0.62 respectively. According to a 

commonly used guideline [83] 0.41-0.60 corresponds to moderate agreement while 

0.61-0.80 corresponds to substantial agreement. If these values are calculated for only 

the second half of the ten subjects analyzed, agreement over Objective increases to 

0.83 (“almost perfect” agreement [83]) while the others remain relatively unchanged 

(0.57, 0.52, and 0.64 respectively). 

Results and Discussion 

This section presents a summary of the different questions observed, followed by 

a categorization of the different types of concept generation processes, an analysis of 

the direction of reasoning, a discussion of the first concept generated by each 

participant, and the types of similarity observed during analogy formation. 

Summary of Questions 

Ten participants generated a total of 75 concepts, leading to 237 PQA tuples and 

58 different types of code assignments. The most commonly assigned codes appear in 

Table 9. 

The most common objectives include constructive generation and explanatory 

generation, while information and evaluation were used less frequently. Evaluation is 

used primarily in the context of predicting the behavior of a new concept in order to 
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identify problems (D7F3I2). The coders did not select analysis (D6) to capture any 

objectives, instead capturing mental analysis as explanatory generation, constructive 

generation, or evaluation depending on the goals of the analysis. Confirmation and 

comparison were not observed.  

Common directions of reasoning include flow-to-form, function-to-form, and 

form-to-form, though all other directions were observed at least once. These are 

discussed in depth in the Direction of Reasoning section. 

Table 9. Commonly Observed Question Codes 

Code Interpretation 
Number 

Observed 

D5H6F1I3 Recall observed forms that perform a function 45 

D4H9F2I1 Synthesize new form from old form 31 

D5H9F1I3 Recall observed forms similar to observed forms 17 

D4H6F2I1 Synthesize form directly from function 12 

D5H3F1I3 Recall observed forms with similar flows 10 

D4H3F2I1 Synthesize form from similar flow 7 

D4H9F1I3 Synthesize form with directly reused parts 6 

D4H10F2I1 Create a solution with intended behavior- most commonly form from issue 5 

D4H39F2I1 Synthesize form from both flow and form 4 

D5H7F1I3 Recall observed flows operated on by a form 4 

D7H8F3I2 Evaluate a new concept’s ability to perform a function 4 

    

Response process was at times challenging to categorize based on the available 

information. While the difference between retrieval-recognition (F1) and reasoning 

(F2) is clear, the difference between reasoning (F2) and deliberation (F3) is more 

ambiguous. In this study, the deliberation response process was used to categorize 

questions which either (1) had multifaceted answers, (2) were unanswerable with 

available information, or (3) required mental simulation. Both of these situations 

contain additional underlying questions that were not uncovered during the interview. 

This distinction may arise due to the granularity of the observations produced by the 
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experimental design rather than two significantly different types of thought processes. 

Aurisicchio et al. [78] report that the area of greatest disagreement in applying their 

coding scheme was related to this distinction between reasoning and deliberation, and 

the findings from this study have reproduced this ambiguity. 

The observed types of behavior were mainly Intended (I1) and Observed (I3). 

Intended behavior mainly captures the functionality of a newly generated concept, 

while observed captures the behavior and function of a previously observed system. 

Predicted (I2) captures predicted behavior (irrespective of functional intent) from 

newly generated concepts. Predicted behavior was rarely captured except in cases of 

mentally simulating a newly design concept. 

Categorizing Types of Analogy 

Starting with the codes in each concept it was determined whether an analogy was 

involved. If so, the level of detail was categorized. The objective and behavior 

categories were used for this task. A combination of explanatory generation and 

observed behavior (D5I3) or information and observed behavior (D1I3) indicates a 

reference to a previously observed solution. A combination of constructive generation 

and intended behavior (D4I1) indicates that a new concept has been generated. The 

categories and categorization rules are summarized in Table 10.  

Concepts with at least two previously observed solutions and two newly 

generated solutions are said to be compound analogies. By contrast, a concept with at 

least two new solutions but no reference to observed solutions is evidence of 

compound design: multiple new solutions but no references to other domains. 

Concepts in the middle - those involving multiple observed systems and exactly one 
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new solution - are tagged as weak compound analogy. The rationale for the “weak” 

compound analogy label is that this category contains a mixture of compound analogy 

and schema-based analogy, but is predominantly compound analogies. Some 

compound analogies did not have an intermediate idea stated aloud, and some 

schema-based analogies had multiple similar thoughts about the same source idea. 

Table 10. Rules for Categorizing Concept Generation Process 

Category Rule Interpretation 

Compound 
Analogy 

(D5I3 + D1I3) >= 2 &  
D4I1 >= 2 

At least two observed systems and at least two 
newly generated ideas. 

Weak Compound 
Analogy 

(D5I3 + D1I3) >= 2 &  
D4I1 == 1 

At least two observed systems and exactly one 
newly generated idea. 

Compound 
Design 

(D5I3 + D1I3) == 0 &  
D4I1>=2  

At least two newly generated ideas and no 
reference to observed systems. 

Direct Reuse 
(D5I3 + D1I3) >= 1  &  
D4I1 == 0  

At least one observed system and no reference 
to a newly generated idea. 

Schema Analogy 
(D5I3 + D1I3) >= 1 &  
D4I1 >= 1 

At least one observed system and at least one 
newly generated idea. 

     

A compound analogy involves the interplay between problem and solution 

domains [62]. An analogy solves a sub-problem, and then uncovers a new problem. A 

more complete definition for compound analogy might include an evaluation step as 

well (D7), but the experiment was not designed to consistently elicit this level of 

depth for each concept. Five compound processes included evaluation steps. 

The remaining two categories are direct reuse and schema-based analogy. Direct 

reuse takes place when a previously observed system is the final concept (e.g., “pay 

workers to fold the towels”). Schema-based analogy takes place when a new original 

design with inferred behavior is generated based on an observed system. If a concept 

meets the criteria for both schema-based analogy and compound analogy, it is 

categorized as compound analogy. 
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These concept categorizations enable analyses comparing the generative goals of 

a designer to the types of reasoning and similarity used. 

Direction of Reasoning 

Next, direction of reasoning for each category is examined. There is no clearly 

preferred direction of reasoning for any specific analogy type (Table 11, left). 

However, a comparison between concepts where analogies were used versus those 

where they were not used (Table 11, right) indicates that at least one direction of 

reasoning is correlated with the use of analogy (p = 0.0017 < 0.05 using Fisher’s 

Exact Test). In order to identify the specific significant categories, ten post-hoc tests 

are conducted on ten 2x2 contingency tables comparing each direction of reasoning 

against the sums of the remaining nine categories. This reveals the form-to-form and 

“none” categories as significant for p < 0.005 after a Bonferroni correction.  

This result correlates with the expectation that analogies are chiefly drawn 

between existing forms. Likewise it is not surprising that uncategorized processes are 

usually not involved with analogy. The “none” code was commonly used when a 

comparison to a previously seen idea could not be identified – which by definition is 

required for analogy. For example, one subject started with a concept, posed the 

question “how can I automate this?” and then added motors. This instance was coded 

as D4-H10-F2-I1 – a newly constructed concept with no direction of reasoning from 

premise to answer, designed using a reasoning thought process to produce an intended 

behavior. 
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Table 11. Direction of Reasoning for each Process Type 
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Flow to Flow 1 3 0 1 3 0 5 3 

Flow to Function 0 0 0 1 1 0 1 1 

Flow to Form 8 6 3 4 3 1 18 7 

Function to Flow 0 1 0 0 1 0 1 1 

Function to Function 0 0 0 2 2 0 2 2 

Function to Form 17 8 3 11 22 3 36 28 

Form to Flow 3 2 1 3 3 0 8 4 

Form to Function 3 0 3 1 0 1 4 4 

Form to Form 30 7 4 19 8 2 56 14 

None 0 1 4 4 2 8 5 14 

First Concept 

While it is challenging to determine the interrelationships between concepts, the 

first concepts of each participant are relatively easy to compare. The design prompt of 

pressing and folding a towel is closely related to familiar systems and processes like 

using a hand iron to press clothing or folding a towel by hand. These are systems with 

high literal similarity to the problem, and their reapplication is evidence of direct 

transfer (as opposed to schema-based analogy). Of the nine participants that generated 

concepts for removing wrinkles, four participants’ first concept is either two flat 
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plates pressing together or reusing an existing pressing machine. Three first concepts 

used a steam room, and the remaining two used rollers.  

Seven of these nine participants used a flat pressing surface within the first two 

concepts. This is evidence of early preliminary direct transfer: analogical abstraction 

is not necessary because literal similarity between the problem and existing solutions 

is high. Hand irons apply heat, pressure, and steam to a piece of fabric. The fabric is 

pressed between a flat metal surface and a flat ironing board. While ironing towels is 

likely not something that most people have done, it is easy to infer that what works 

for a thin piece of cloth could be directly applied or modified slightly to work for a 

thick piece of cloth as well. As one participant said of a clothing steamer, “the 

material I saw was very delicate kind of material, but with a tougher kind of material 

I think you will need a heavier jet.” 

Only two of the five process types were observed in the pool of first concepts. 

Four of these concepts were created by direct reuse and six were created by 

compound analogy. This could indicate different goals: while direct reuse quickly 

increases the breadth of concepts generated, compound analogy increases the detail of 

a concept. The group that started with direct use generated an average of 9.75 

concepts, while the group that started with compositional analogy generated an 

average of 6 concepts. Only one participant did not use direct reuse for any of their 

concepts. While there exists an observed difference in concept generation goals, there 

is no correlation between the types of similarity used to generate analogical 

connections and the depth of the search. 
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Types of Similarity 

Analogies played a role in 35 of the 75 concepts. The types of similarity that were 

referenced in connecting the source and target domains are cataloged as shown in 

Table 12. Each analogy source is documented, and then reference text from that 

analogy’s chunk is searched for statements connecting the source domain to the target 

problem. The types of similarity referenced in the quoted text lead to the development 

of eight similarity categories (Table 13). 

These types of similarity are separated into compound and single analogy 

processes in order to determine whether the depth of analogy process affects the 

useful types of similarity. The first four categories relate to the material, behavior 

(irrespective of intent), shape, and function of a form. Working principles in both 

domains were occasionally used, while the behavior of flows in the source and target 

systems was more commonly used. Descriptor similarity (“iron”) and process 

similarity (“if I am ironing my clothes, what would I do?”) were each observed only 

once. The total number of observations for each type of similarity is shown in Table 

13. 

The compound category includes both strong and weak compound analogies, 

while the single analogy category includes only schema-based analogies. The results 

show no discernable difference between the types of similarity used to form 

compound and single analogies (p = 0.74 using Fisher’s Exact Test), though each type 

of information is a candidate for capture and reuse in database-driven DBA. 
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Table 12. Examples of Observed Analogies and their Similarity References 

Example 
Types of 
Similarity Reasoning (quoted from interviews) 

Bike Tire 
Knobs 

Similar 
material, shape, 
and motion of a 
form 

I thought of the bike tire because I figured the 
conveyor belt would be some sort of rubber, 
and the only rubber thing I know that’s circular 
and turns that has knobs is a bike tire. So, so 
yeah. That’s why I have the knobs. 

Barbeque 
Lid 

Similar 
material, 
motion, and 
shape of a form 

And when I looked, this wide shape for some 
reason, when I was thinking of metal, and this 
was a metal barbeque with a metal top, and 
it’s just the first thing that popped into my 
head. 

Origami 
Similar function 
of form and 
behavior of flow 

I started thinking what other things do I fold? 
You fold paper for origami. 

Cold Rolling 
Steel 

Similar function 
of form, 
different 
behavior of flow 

Like, cold rolling steel. So when you… when it 
gets flatter, thinner… 

Vacuum 
Packing 

Similar shape 
and function of 
a form 

I saw that, like I was watching TV or 
something, and I saw somebody doing 
[vacuum packing]. […] when I started drawing 
out the thing and I thought about the tracks 
and I thought oh, we could just do it like that. 

George 
Foreman 
Grill 

Similar working 
principles of a 
form 

So, because it gets hot, and I guess I think of 
like making, grilled cheese sandwiches on the 
George Foreman grill. [...] And you put it in, so 
obviously there’s a measureable amount of 
heat and pressure. I guess those were the 
things I was thinking that would flatten a towel. 

Falling 
Water 

Similar flow 
behavior 

[…] keyword is ‘falling’ [gestures air quotes]; 
towel is falling, water is falling. 

Lint Roller 
Similar process 
and similar flow 
behavior 

Basically, I was thinking ‘If I am ironing my 
clothes, what I would do?’ 

    

Table 13. Types of Similarity Observed in Compound and Single Analogies 

 
Type of Analogy 

Type of Similarity Compound Single Total 

Material of a Form 1 1 2 

Behavior of a Form 4 4 8 

Shape of a Form 3 0 3 

Function of a Form 7 7 14 

Working Principles 3 3 6 

Behavior of a Flow 8 10 18 

Descriptor 0 1 1 

Process 0 1 1 
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Conclusions and Future Work 

As other work has shown, schema-based similarity of shared functions can 

improve retrieval of design analogies, so other types of abstract similarity should 

likewise facilitate computational analogy retrieval. The results of this work provide 

evidence suggesting a variety of abstractions to support schema-based design 

analogies. The key findings of this work include: (1) that flow behavior was observed 

as a commonly used type of abstract similarity for drawing analogical connections, 

and (2) that there was no significant difference in the types of similarity used to 

inform compound and single analogies.  

Notably, while flow behavior was exhibited as a common connection between 

domains in this study, a flow behavior abstraction to support database-driven DBA 

does not currently exist. This study also resulted in several inconclusive observations 

about common types of internal knowledge queries, the frequencies of various 

concept generation categories, and the prevalence of direct reuse as a preliminary 

design strategy. Potential areas for future work include studying these areas in more 

detail, mining the collected data for further correlations, and investigating the 

relationship of concept quality to concept generation process, direction of reasoning, 

and the presence or absence of analogy. 

In general terms, these results provide insights into the types of high-value mental 

shortcuts and processes that commonly facilitate analogy formation. As they relate to 

industry, the results inform the creation of CAD tools and knowledge management 

techniques to help novice designers see conceptual connections between institutional 

design knowledge and existing design challenges. This may be useful not only for 
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helping novice designers to perform more like experts, but for helping companies 

interested in developing a dynamic and innovative product lineup to explore 

nonobvious cross-domain solutions and strategies. 

The results of this study show no significant difference between the types of 

similarity used to draw compound and single analogies. This result suggests that the 

value of different types of similarity with respect to forming analogical connections is 

independent of the generative goal. Whether expanding the breadth of the concept 

pool (single analogy) or improving concept fidelity and problem understanding 

(compound analogy), different types of abstract similarity are equally useful. 

With respect to the direction of reasoning, function-to-form, form-to-form and 

flow-to-form reasoning all occurred frequently in analogy formation. This suggests 

that function, flow, and form information should all play roles in similarity-based 

analogy retrieval. Of these, similarity between the behaviors of flows through a 

system is both prevalent in the results and missing from the categorizations in the 

reviewed literature. 

For example, common analogies observed in this study include paper-processing 

devices (e.g., printers, printing presses, and junk mail folders) and sheet metal rollers. 

One way of abstracting this problem is by function. A search query of “shape 

material” could be used to retrieve metal rollers, but likely not printers. While printers 

change the shape of paper, the design intent of a printer has little to do with this 

behavior. The starting and ending shapes are also the same; so state-based methods 

may also have difficulty detecting this behavior. 
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Paper shares more literal similarity with towels than with sheet metal, yet all three 

undergo processes that could be used to flatten or fold something. There are 

properties of paper and sheet metal that relate to their “flattenability;” their emergent 

behavior under specific conditions. Many designers in this study inferred from these 

properties (and from observed behaviors of paper and metal) that paper and sheet 

metal are sufficiently similar to cloth that similar mechanisms will produce similar 

flattening behavior in both.  

The results of this study suggest that a designer could leverage flow behavior 

abstraction (e.g., “foldability” and “flattenability”) to search for systems that interact 

with things possessing desired (e.g., towel-like) behavioral properties. More 

generally, abstracting the behavioral properties of flows (in addition to system 

functions) can be a valuable approach to finding analogical connections, especially 

when the analogy search is guided computationally. This approach provides a simple 

search heuristic to improve the quantity of potential high quality analogies for a 

designer to consider. Because analogy is a major component of design, this will 

improve design outcomes.  
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Abstract 

Locating relevant biological analogies is a challenge that lies at the heart of 

practicing biologically inspired design. Current computer-assisted biologically 

inspired design tools require human-in-the-loop synthesis of biology knowledge. 

Either a biology expert must synthesize information into a standard form, or a 

designer must interpret and assess biological strategies. These approaches limit 

knowledge breadth and tool usefulness respectively. The work presented in this paper 

applies the technique of human computation, a historically successful approach for 

information retrieval problems where both breadth and accuracy are required, to 

address a similar problem in biologically inspired design. The broad goals of this 

work are to distribute the knowledge synthesis step to a large number of non-expert 

humans, and to capture that synthesized knowledge in a format that can support 

analogical reasoning between designed systems and biological systems. To that end, 

this paper presents a novel human computation game and accompanying information 

model for collecting computable descriptions of biological strategies, an assessment 

of the quality of these descriptions gathered from experimental data, and a brief 

evaluation of the game’s entertainment value. Two successive prototypes of The 

Biology Phenomenon Categorizer (BioP-C); a cooperative, asymmetric, online game; 

were each deployed in a small engineering graduate class in order to collect assertions 

about the biological phenomenon of cell division. Through the act of playing, 

students formed assertions describing key concepts within textual passages. These 

assertions are assessed for their correctness, and these assessments are used to 

identify directly measurable correctness indicators. The results show that the number 
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of hints in a game session is negatively correlated with assertion correctness. Further, 

BioP-C assertions are rated as significantly more correct than randomly generated 

assertions in both prototype tests, demonstrating the method’s potential for gathering 

accurate information. Tests on these two different BioP-C prototypes produce average 

assertion correctness assessments of 3.19 and 2.98 on a five point Likert scale. 

Filtering assertions on the optimal number of game session hints within each 

prototype test increases these mean values to 3.64 and 3.36. The median assertion 

correctness scores are similarly increased from 3.00 and 3.00 in both datasets to 4.08 

and 3.50. Players of the game expressed that the fundamental anonymous interactions 

were enjoyable, but the difficulty of the game can harm the experience. These results 

indicate that a human computation approach has the potential to solve the problem of 

low information breadth currently faced by biologically inspired design databases. 

Introduction 

Designers often base conceptual designs on previously known information [43-45, 

84], and cross-domain analogies have proven to provide meaningful inspiration to 

design problems. However, designers do not typically possess biology knowledge in 

the depth and breadth required to discover applicable analogies to their engineering 

problems. As a consequence, the usual difficulties encountered in forming analogies 

[48] are highly exacerbated in biologically inspired design. Biologist-designer 

collaboration is one solution, but has the obvious drawback of relying on immediate 

access to a biologist. A design team will not always have a biology expert, and the 

knowledge of any single expert is unlikely to be applicable to a wide variety of design 
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problems. In contrast, computational techniques have the potential to leverage vast 

quantities of existing biology knowledge to provide design inspiration.  

At present, computational approaches to inspiration tend to be either natural 

language processing (NLP) or database driven. Database approaches require well-

formed biology phenomenon knowledge, relying on expert human synthesis to 

correctly form the knowledge so that it can be repurposed as a design strategy. The 

expert is able to contribute their depth of knowledge to the database, but the number 

of contributing experts limits the breadth of knowledge in the database. In contrast, 

natural language processing approaches can quickly parse large text corpora, 

extracting biology knowledge as they go. These approaches generally use a 

combination of linguistic heuristics and statistical techniques to determine the most 

likely interpretations for strings of words [85]. However, humans remain superior at 

handling natural language (e.g., [86]). As a consequence, NLP approaches tend to 

trade information quality for raw information breadth. 

Given that these approaches suffer from opposing challenges, there exists an 

opportunity to synergize complimentary elements from both. The main contribution 

of this paper is an attempt to address this conflict between breadth and quality. 

Specifically, the paper introduces a scalable method for populating a biologically 

inspired design database in a way that could be used by future computational tools to 

find design analogies across domains. The secondary contribution of the paper is an 

evaluation of the method. 

This paper presents a novel approach to populating a biology knowledge 

database: The Biology Phenomenon Categorizer (BioP-C). BioP-C is an effort to 
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combine the superior reasoning capabilities of humans with the raw processing power 

of computational approaches to biology knowledge categorization. BioP-C takes the 

form of a game that, as a side effect of players’ participation, collects externally valid 

assertions about biological phenomena and strategies. These assertions are organized 

in a general and computable format that is designed to facilitate meaningful design-

to-biology analogizing. The main goals of this paper are (1) to present the BioP-C 

game and information schema, and (2) to evaluate the validity of preliminary data 

collected using this framework. Validation activities include an evaluation of 

individual BioP-C assertions and an exploratory investigation of how these assertions’ 

correctness might be improved. 

The remainder of the paper contains the following sections: Related Work, 

Approach, Results and Discussion, Example, and Conclusions. The Approach section 

includes discussion of the BioP-C framework, player experience, and several 

validation approaches. The Results and Discussion section addresses the outcomes of 

each validation activity. The Example section presents the envisioned usage of BioP-

C data for providing design inspiration. The paper concludes with a brief synthesis of 

the results and identifies areas for future work. 

Background 

This section discusses related research in design by analogy, biologically inspired 

design, human computation, and the dual efforts of Open Mind Common Sense and 

ConceptNet for collecting and organizing commonsense knowledge.  
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Analogy in Design 

Biologically inspired design is a subset of design by analogy, and research on 

design by analogy has created a number of approaches to facilitate conceptual design 

analogizing. Among these are the IDeAL system [54, 58] which supports computer 

aided conceptual design with a data schema model, a functional similarity metric for 

finding design analogies [5], the WordTree design by analogy method [87], and 

Latent Semantic Indexing (LSI) approaches for finding analogous patents [88] and 

functional models [6, 89].  The IDeAL system, and similar prescriptive models of 

design knowledge, support analogizing between systems by enabling direct matching 

between values stored as the various data types. Relatedly, the functional similarity 

metric assesses the functional distance between products (and thus the degree of 

analogy to some extent), based on restricted-terminology functional models. In 

contrast to the prescribed schemas of database driven methods, the WordTree and LSI 

approaches rely on descriptive techniques. These techniques highlight existing 

conceptual connections rather than prescribing a new formalism. WordTree uses 

WordNet’s [90] term connectivity to provide inspiration for potential analogies, while 

LSI and related techniques rely on large quantities of information and dimensionality 

reduction techniques to increase the likelihood of matches between noisy but related 

documents. 

There exist numerous content models of design knowledge that could support 

analogy formation (e.g., [15, 91]), as well as many models of biology knowledge. 

Connecting the two domains is a challenge because it requires abstraction to a level 

shared by both biological and engineered systems. The Engineering-to-Biology 
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Thesaurus [92] represents an effort to connect these domains on the functional level, 

but connecting non-functional abstraction levels remains challenging. A general 

method is required to support broad conceptual connectivity across domains. 

Structure mapping [3], the theory that two domains are most strongly analogically 

related when they share similar structures of relationships between domain elements, 

is sufficiently general to facilitate cross-domain transfer. Structure mapping forms the 

theoretical underpinning of the approach presented in this paper. 

Biologically Inspired Design 

Existing biologically inspired design tools, which consist of both database and 

natural language processing approaches, serve as benchmarks for BioP-C. These 

existing tools include AskNature, the Design by Analogy to Nature Engine (DANE), 

Idea/Inspire, and two natural language search tools. 

AskNature (asknature.org) and DANE [93, 94] are two examples of database 

approaches with excellent information depth. AskNature uses a catalog of strategy 

pages arranged by a function-based biomimicry taxonomy, with each page describing 

how a problem is solved by a specific biological phenomenon. DANE uses the 

Structure-Behavior-Function (SBF) data schema [91], providing additional 

conceptual representations of the systems, which can add value to a designer seeking 

understanding and inspiration from a biological solution. An evaluation of DANE in a 

classroom environment indicated that the students found the richness and multiple 

representations to be useful, but the lack of content was extremely limiting [95]. 

Conversely, AskNature’s larger content database and relatively high quality of 

information offered good initial strategies, but the lack of detailed information made 
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those strategies difficult to evaluate [95]. In both AskNature and DANE, human 

curation is the bottleneck preventing the databases from growing rapidly. In DANE, 

only the curators can provide additional information to the database. In AskNature, 

although users can submit new strategies, a curator must approve them before the 

strategy is searchable. 

Idea/Inspire [69] is another database tool for supporting biologically inspired 

design that uses the SAPPhIRE (State change-Action-Part-Phenomenon-Input-oRgan-

Effect) data schema [69], enabling direct connections across engineering and biology 

domains. Idea/Inspire contains over 100 plant and animal phenomena, and provides 

inspiration based on a user’s verb/noun/adjective keyword search. Idea/Inspire 

represents a moderately large and relatively detailed database for assisting 

biologically inspired design, but by its nature suffers from the same curation problem 

as DANE and AskNature. 

Natural language processing (NLP) techniques [85] provide an alternative 

approach. NLP approaches have the power to be descriptive rather than prescriptive 

in nature, and benefit from increased breadth of search over database approaches. In 

an evaluation of a basic text search tool in a classroom environment, designers had 

difficulty locating relevant inspiration in the search results, pointing toward a need for 

high quality term matching and filtering [95]. Improving upon this basic functionality, 

the BID Lab search tool [96, 97] uses language heuristics to address the filtering 

issue, locating analogies in a biology textbook by using part of speech patterns to 

identify causally related functions. Structure mapping theory supports causal function 

relationships as strong indicators of good analogy [3], but extracting these 
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relationships using language heuristics can be sensitive to the writing style in the 

source text. For example, the technique of stylometry is used to identify authors based 

on “writer invariant” features of text. Syntactic features, such as part of speech 

patterns, have been experimentally verified for this purpose [98]. Applying the same 

part of speech patterns across different sources risks introducing variation into search 

results, thus returning extraneous information that the designer must filter manually. 

Human Computation and Games with a Purpose 

Human computation is a method that solves large problems by breaking them into 

subproblems that can be solved by many people. Luis von Ahn’s CAPTCHA [99] was 

initiated as a method for determining humans from spam bots to prevent automated 

scanning and collecting of information. CAPTCHAs require that the user identify a 

word that has been visually distorted so that optical character recognition (OCR) 

software cannot recognize it. Its successor, reCAPTCHA [100], was created to 

harness CAPTCHAs as a form of human computation for the purpose of deciphering 

scanned text that is unrecognizable by software. Other examples of human 

computation include classifying galaxy shapes [101] and identifying features on Mars 

[102]. Human computation approaches are inherently scalable because distributing 

the subtask to many participants is trivial. 

A non-trivial portion of human computation is incentivizing users, as the task may 

solve a problem (e.g., protecting websites from spam bots), but does not add value for 

those completing the task. Games with a purpose (GWAPs) provide a solution to this 

problem by providing users with entertainment while harvesting information. 

Examples of GWAPs include the ESP Game for image tagging [103], Verbosity for 



81 

 

common sense fact acquisition [104], Tag-a-Tune for music tagging [105], and Jinx 

for word sense disambiguation [106]. Generally, these games are two-player 

cooperative games where players are paired with an anonymous partner. Players are 

given no means of communication outside of the game itself, as any communication 

could be a method of subverting the game and invalidating the gathered data. 

The game design of a GWAP is shaped by the desired information. In a symmetric 

game, both players perform the same task, and verification is established by 

agreement between responses. Because both players must perform the entire task, 

symmetric games are generally limited to simple tasks. In an asymmetric game, each 

player performs a separate task, with data coming from ‘hints’ generated by one of the 

players, and validation coming from the other player, who uses the ‘hint’ to select the 

correct response. Asymmetric games generally have more complex information 

requirements. 

For example, the ESP Game is a symmetric output-agreement game [107] that 

collects image tags. Player pairs type descriptions of the same image, as quickly as 

possible, until they type the same word. Players’ scores increase as they improve their 

speed. This scoring function incentivizes players to produce a high quantity of image 

tags, and correctness is confirmed via tag frequency over multiple games on the same 

image. Another symmetric game (Tag-a-Tune) collects labels for audio clips. Because 

the task of labeling music styles naturally produces less convergence than labeling 

images, Tag-a-Tune uses an input-agreement mechanic [107]. In games using this 

mechanic, players must infer whether they are working from the same source 

information based on the output that their partner is producing. 
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Asymmetric games can provide the sophisticated agreement mechanics required 

by more complex tasks. Each partner is given a different role in the game, which is 

accompanied by a different task. For example, the GWAP Verbosity is designed to 

collect commonsense facts from players. Players are assigned to the role of either 

Narrator or Guesser. The Narrator is given a secret word, and must used restricted-

form templates to provide hints about the word (e.g., “It contains a keyboard” as a 

hint for “laptop”), without using any words from a restricted list. The templates result 

in well-formed assertions about the key word, while the word restrictions promote a 

breadth of new assertions. Assertions are rated on both a time-dependent scoring 

function and the frequency with which they are independently created.  Verbosity’s 

fact quality was evaluated by asking six human raters to evaluate whether the 

statements in a 200 assertion sample were true [108], and a similar validation 

approach is used in this paper. 

Another GWAP, called “Foldit” (fold.it), has players solve 3D puzzles. These 

puzzles are surrogate representations of protein folding problems in computational 

biology. Players maximize their score by folding a simulated protein structure into 

low energy states, which contributes to solving the related protein-folding problem 

[109]. Foldit has led to meaningful results in the protein-folding domain where 

experts alone were unsuccessful [110, 111]. This game exemplifies a class of single-

player GWAPs that use a built-in scoring function based on descriptive models with 

high external validity. Foldit demonstrates that relatively few people are necessary to 

reformulate a problem requiring high cognitive effort into one that non-experts can 

solve.  
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ConceptNet and Open Mind Common Sense 

Open Mind Common Sense (OMCS) [112] is a platform for gathering common 

sense knowledge from the general public. A series of online tasks gathered common 

sense facts (e.g., “baseball is a sport”) from visitors to the OMCS website, 

accumulating over one million common sense facts. Early versions of OMCS 

contained several different types of information gathering activities, but template 

activities (similar to those later used in Verbosity) produced the highest quality of 

information [112]. Later versions of OMCS used a set of templates created from 

previously generated natural language facts. BioP-C uses a similar template style to 

organize information. In this paper, the most highly rated facts on the OMCS website 

are used to benchmark BioP-C’s assertion quality. 

ConceptNet is a related project that consists of a semantic network containing 

these OMCS facts [113], and enables some basic reasoning using these assertions 

[114]. In ConceptNet, concepts are graph nodes and relationships are directional 

edges. BioP-C uses a similar structure, leaving open the possibility for future merging 

with ConceptNet data. Additionally, dimensionality reduction (e.g., singular value 

decomposition) has been used to effectively find analogous concepts in ConceptNet 

[115]. Such a technique reduces the variation created by natural language concepts 

and relationships, improving general network connectivity and increasing the number 

of suggested analogies. Another rank reduction technique for finding design analogies 

uses LSI (which is itself based on singular value decomposition) on patent documents 

[6, 88]. Improvements to the basic LSI algorithm include probabilistic LSI [116], 
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which improves precision; and latent Dirichlet allocation, which improves topic 

mixtures [117]. 

Approach 

The research approach is described next, broadly organized into two sections. The 

Framework section details the general framework, the method for collecting source 

text, the BioP-C game, and the limited relationship set used as both gameplay 

elements and a representation of the collected knowledge. The Validation Approach 

section discusses validation efforts including descriptions of how trial data was 

collected, an approach to assessing the correctness of BioP-C’s assertions, and an 

assessment of the game’s entertainment value. 

Framework 

The knowledge-gathering process begins with collecting small chunks of domain-

relevant text, and ends with a representation of the relationships within and between 

the atomic concepts in these texts.  

A set of roughly paragraph-sized texts is collected from reliable sources within the 

domain in which a network of relations is desired. This is ideally an automated 

process. For example, in the prototypes presented later in the paper, a collection of 

research paper abstracts was collected on the subject of cell division using a semi-

automatic process. This collection of texts is stored in a database and is presented to 

the players of the online game BioP-C. In each round of the game, one of these 

paragraphs serves as the main element on the playing field.  

During each round, players generate assertions from the source text as a 

byproduct of gameplay (e.g. "cell has cell membrane"). Session data is recorded to 
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assess assertion correctness, improve gameplay mechanics, and identify undesirable 

player dynamics. Once a set of assertions is generated, it is added to the collective 

information network. This is represented as a graph, with concept tokens (e.g. cell), as 

nodes, and relationships (e.g. has) as edges.  

A search algorithm can traverse this graph for the purpose of finding analogies – 

related concepts with similar relationship structures. Liu and Singh [114] demonstrate 

a spreading activation approach for searching ConceptNet, which is convenient for 

applying assertion confidence (stored as edge weights) to finding analogy candidates. 

The spreading activation algorithm establishes baseline similarity by propagating 

edge weights outward from a single source node. Weights naturally decay as they 

spread further from the source, but weights on merging paths are additive. This 

technique finds nodes that are strongly connected through many different paths in the 

graph, which means that related nodes possess a high degree of shared information. 

Matches at this stage reflect an unknown combination of simple attribute similarity 

and analogical similarity. Further subgraph matching around these potential matches 

can be evaluated for deeper relationship alignment, which more closely reflects true 

analogy. The BioP-C graph closely reflects the design of ConceptNet, enabling 

support for similar search techniques, while also permitting compatibility between the 

two information structures. 

The BioP-C Game 

The BioP-C game enables collection of assertions about biological phenomena. It 

should be noted that there have been three iterations of this game. The first (v0.1) was 

a single player game not previously reported on. The second (v0.2) was used to 
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generate a significant amount of usable data and feedback from players, and provided 

one set of data for the validation. The third version (v0.3) is a refinement of v0.2 with 

mostly cosmetic improvements, and it provided a second set of data for this study. 

BioP-C v0.3 is described here, and changes between versions are explained where 

relevant. 

Two players, called the Codebreaker and the Keymaster, engage in an anonymous 

asymmetric online game. The players share knowledge of a paragraph (in this study, 

an abstract from a set of biology papers related to cell division). The game begins 

with the Keymaster picking a word or contiguous phrase from this paragraph. This 

selection is referred to as “the keyword.” The Codebreaker then begins selecting 

words or phrases from the shared paragraph, attempting to guess the keyword. No 

other communication is possible. 

For every guess the Codebreaker makes, the Keymaster can respond with a 

relationship to the keyword from a list on the right-hand side of their screen. They 

have nine possible relationship types, which are matched to the guess in the form “A 

relates to B.” The placement of the guess and the keyword is up to the Keymaster. 

Eight of these nine relationships have a corresponding negated relationship (e.g. is 

and is not), and the Keymaster also has the option to discard guesses that are 

unrelated to the keyword. Keyword negation and discarding are new to v0.3. Players 

in v0.2 had the option of ignoring a guess, which is not possible in v0.3. 

For example, consider the phrase “…correct placement of the cell division site at 

the midcell position…” The Keymaster selected the keyword “midcell position,” and 

the Codebreaker responds with a guess of “cell division site” The Keymaster could 
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then choose to respond with the phrase “midcell position is cell division site” (as 

shown in Figure 11), or perhaps “cell division site is at midcell position.” The 

Keymaster’s response is saved to the database as a player-made assertion, and then 

sent back (with the keyword removed) to the Codebreaker to inform future guesses as 

shown in Figure 12. In the case of these example responses, the Codebreaker would 

see “????? is cell division site” and “cell division site is at ?????” respectively. This 

process continues until the Codebreaker guesses correctly or the players’ shared score 

reaches zero, ending the game. 

  

Figure 11. BioP-C v0.3 Keymaster view (paragraph sourced from [118] 
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Figure 12. BioP-C v0.3 Codebreaker view (paragraph sourced from [118]) 

The scoring system in BioP-C v0.3 is uses a combination of game duration and 

number of hints, and starts players with a shared pool of points that slowly 

decrements over time. This shared score also decrements by a variable amount with 

every guess made by the Codebreaker, and increases with every hint formed by the 

Keymaster. The game ends when a score reaches zero, which disincentivizes mass 

random guessing. Players’ scores in BioP-C v0.2 simply decremented after each 

guess, and these scores had no impact on ending the game. 

It is important to note that these interactions are asynchronous. As the Keymaster 

is selecting a relationship which they feel best accommodates the guess they have 

been given, the Codebreaker can send additional guesses. The Keymaster only sees 

the current guess and the next guess in the queue if it exists. 

The information captured from these exchanges between players is stored on a 

directional multigraph (i.e., edges have directionality and multiple edges can exist 
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between the same pair of nodes) that captures atomic concepts on nodes and 

relationships on edges. Edge types follow a taxonomy generalized from that used in 

the Open Mind Common Sense (OMCS) [112] project to catalog common sense facts 

in any domain. In BioP-C these relationships are intended to capture general physical, 

spatial, functional, temporal, and causal connections between concepts. This type of 

knowledge organization supports extremely general schema-based analogizing 

approaches, and supplements them with connectionist techniques (i.e., techniques 

based purely on graph connectivity independent of knowledge content).  

Implementation 

In the BioP-C prototypes, data is stored in a Postgres SQL database containing 

source paragraphs, user-selected words and relationships, and session data for each 

game. A JavaScript powered front-end employs a simple short-polling design pattern, 

and interfaces with the database using the Django web framework. Additionally, the 

jQuery JavaScript API was used to minimize the need to accommodate specific 

browsers. 

Relationship Set 

There is a tension between the entertainment value of BioP-C as a GWAP and the 

desire for high precision representation of biology concepts. Existing taxonomies 

were considered (e.g., the Functional Basis [15]), however the multitude of potential 

terms (in addition to learning their precise definitions) could easily overload players, 

making these existing choices a poor game design option at this stage. In the current 

version of the game, the emphasis has been on enjoyable gameplay. To further this 

goal, the twenty-two concept relationships identified in [40] have been condensed 

https://mail.google.com/mail/u/1/?shva=1#143e701dc7e56400__ENREF_40
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into a list of nine: is, has, causes, happens before, happens during, is at, is near, does, 

and uses. These words represent a compromise that provides a relatively simple user 

interface.  

Initial play testing confirmed that having the complete set of twenty-two 

ConceptNet relationships visible was unwieldy and confusing. Distinctions between 

ConceptNet relationships can be quite subtle, and even in the case of clearly distinct 

relationships, twenty-two unique options exceeds the number that a player could be 

reasonably expected to deal with, motivating the consolidation of relationships. 

The goal of this consolidation was to reduce cognitive load, especially for new 

players. By restricting the number of choices a player can make for a given 

relationship to a minimum while still addressing every category of relationship 

identified by OMCS, ambiguous cases where different people might make different 

choices are also minimized. To accomplish this, the authors began with an arbitrary 

goal of having seven relationships that could be directly mapped to the OMCS set. 

The current set represents numerous iterations and evaluations of the design 

implications thereof. The nine relationships chosen conform to the criteria that they 

are simple English, and every OMCS word can be mapped to at least one of them. In 

response to player feedback, BioP-C v0.3 introduced a negated relationship for each 

positive relationship (e.g., does not for does). The happens before relationship is a 

unique case because it is reversible by flipping its direction. The negated relationships 

are shown in Figure 11. 

 The precision of this mapping varies somewhat, but the overall generality 

promotes human-driven abstraction that supports general analogizing. OMCS has 
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twenty-two relationships in eight categories. BioP-C has nine relationships in 8 

categories. The category of "General Relationship" is considered to be a superclass of 

all the relationships used in the game, especially the relationships is, uses, and does.  

Table 14 shows the mapping of the BioP-C relationships to the OMCS 

relationships. It can be clearly seen that there is not a one-to-one correlation between 

the two sets. The BioP-C relationships were chosen to be as general as possible while 

maintaining separation between categories. This set of connecting words was chosen 

with the ideal goal that there should be one relationship that was clearly the best for 

any given situation. This meant restricting the possible relationships, but not so much 

that a user would not find themselves unable to select a reasonable word to connect a 

keyword and guess. 

The relationships is at and is near represent spatial relationships. As in English, is 

at can also express a temporal relationship. The relationships happens before and 

happens during are used to round out the time relationships. Causal relationships are 

represented by causes. This is an example of where a colloquial word is used instead 

of a more explicit relation such as “EffectOf,” thus sacrificing some precision to be 

more relatable to a user. 

The word uses represents what might be called a catch-all word, whose purpose is 

to cover any number of complex relationships. This showcases the tradeoffs inherent 

in designing a word game for both correctness and fun. By combining a large number 

of potential relationships into a single word, the cognitive load on the player is 

reduced. By the same token, the precision for the game is diminished. 
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Table 14. BioP-C relationship mappings to OMCS relationships 

Category 
BioP-C 

Relationships OMCS Relationships 

General Relationship All 

ConceptuallyRelatedTo 

ThematicKLine 

SuperThematicKLine 

Things (Structure) is, has 

IsA 

PropertyOf 

PartOf  

MadeOf 

DefinedAs 

Agents (Function/Behavior) uses, does CapableOf 

Events (Function/Behavior) 

happens 
before, 
happens 
during, 
is at 

PrerequisiteEventOf 

FirstSubeventOf 

SubeventOf 

LastSubeventOf 

Spatial is at, is near LocationOf 

Causal (Behavior) causes 
EffectOf 

DesirousEffectOf 

Functional (Function/Black Box Function) does 
UsedFor 

CapableOfReceivingAction 

Affective (Function/Black Box Function) uses 
MotivationOf 

DesireOf 

 

As functional relationships play an important role in design analogy formation, 

the does relationship is specifically intended to describe function-to-form 

connections. Such a relationship supports a simple back-edge matching approach to 

finding functional analogies. 

The structure words has and is exemplify the limits of the current set of BioP-C 

relationships. These two words can express a wide range of structure relationships, 

but OMCS has five structure words, making it capable of more subtlety.  In future 

versions of BioP-C, it will be desirable to capture these more nuanced relationships. 

One solution would be to have a sliding scale of lexical depth correlated to difficulty 
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level. Players also have the option to reverse the directionality of relationships (i.e., 

“A relates to B” vs. “B relates to A”), which improves the descriptive power of this 

small set without introducing more relationship types.  

Gathering Source Text 

It is a considerable challenge to automatically locate and reliably interpret 

passages describing biological phenomena. Reducing the problem to that of simply 

locating such passages is much simpler, but still nontrivial. BioP-C v0.3 uses journal 

abstracts located in ScienceDirect’s [119] “Agricultural and Biological Sciences” 

category with the keywords “cell division.” Abstracts were selected because they are 

available in high quantity, contain succinct but significant biological information, 

contain inherent links for further information if required, and have the general 

reliability of a peer-reviewed source. 

Research using the Engineering-to-Biology Thesaurus [120] has demonstrated 

that biology keywords are more likely to cause inspiration if they are common 

vocabulary, rather than technical jargon. Eq. 1, used by Glier et al. to rank word 

commonness in several different domains [120], gives a normalized score for word 

readability. In Eq. 1,  𝑁𝑖  gives the normalized readability score of word i where Ni is 

the frequency of word i in the text and N is the vector of frequencies for all words in 

the text. The 5000 most common words from the Corpus of Contemporary American 

English [121] are used to establish readability. Additionally, passage length is 

considered, with shorter passages ranking more highly. The logarithmic terms 

normalize scores between 0 and 1, which is convenient when distributing weighting 

factors in calculating the overall passage rankings. Eq. 2 ranks passages based on 
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length and the frequency of their words in common vocabulary, using each passage’s 

median word readability score and normalized inverse passage length. In Eq. 2, 𝑅𝑗 

gives the overall readability score of passage j where 𝑤𝑁̂ is the readability weighting 

factor, 𝑁̂𝑗 is the vector of all individual word readability scores in passage j, 𝑤𝑛 is the 

passage length weighting factor, 𝑛𝑗  is the number of words in passage j, and 𝑛 is a 

vector containing the number of words in each passage. The ranking scheme arising 

from these two equations prioritizes short passages with a low ratio of jargon to 

common vocabulary. The validation activities presented in this article use equal 

weightings of 0.5 for both readability and passage length. 

 

𝑁𝑖̂ = 1 −
ln(𝑁𝑖 + 1) − ln(max(𝑁))

ln(min(𝑁) + 1) − ln(max(𝑁))
 Eq. 1 

 

𝑅𝑗 = 𝑤𝑁̂ ∗ 𝑚𝑒𝑑𝑖𝑎𝑛(𝑁̂𝑗) + 𝑤𝑛 [1 −
𝑛𝑗 − min (𝑛)

max(𝑛) − min (𝑛)
] Eq. 2 

 

This technique still benefits from including a human rater to remove 

miscategorized, non-biology, and opinion papers. However, because this can occur 

after ranking, human curation is limited to the highly ranked abstracts. The abstract 

ranking algorithm was informally validated by human raters, who ranked a 

randomized subset of abstracts about cell division into the same high/low ranks as did 

the algorithm. Further development and formal evaluation of the passage-ranking 

algorithm are areas for future work, as the current reliance on human curation is 

unsatisfactory.  
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Validation Approach 

Broadly, the goal of validation activities in this paper is to address the question: 

“Does the GWAP approach embodied by BioP-C represent a feasible approach for 

populating a biologically inspired design database with broad and accurate 

information?” In order to conduct this evaluation, the two prototypes were given to 

two different graduate-level design classes. BioP-C v0.2 was presented in a product 

design class and BioP-C v0.3 was presented in a biologically inspired design class, 

both in the mechanical engineering department. Both game tests were preceded by a 

lecture explaining the basic goals of BioP-C as well as how to play. This lecture had 

the dual purposes of (1) teaching the students how to play and (2) replicating the 

ecological conditions faced by many GWAPs, where ethical concerns require that 

players be informed of how their data will be used. Students’ performance and 

participation in the activities had no impact on their grades in the course. All activities 

were conducted over the course of approximately one hour during a regularly 

scheduled lecture time.  

This arrangement produced a large number of distinct assertions with which to 

test basic hypotheses regarding their correctness. While the number of participants in 

each trial was relatively low, each player produced multiple assertions based on a 

variety of complex factors. The player dynamics that emerge from interactions 

between the Keymaster and Codebreaker are influenced by player personalities, 

passage text, and evolving game history. Because of the high complexity arising from 

the combination of these interdependent and continuously changing factors, multiple 

assertions created by the sample player can be treated as unique data samples. This is 
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in contrast to many design studies wherein subjects produce at most one data point 

per treatment group. 

In the first test, 11 students and one instructor generated 105 assertions in 28 

game sessions with some baseline relatedness to cell division. An additional 135 

assertions regarding cell division were collected from 18 students across 38 game 

sessions in the second test. For this study, two random subsets of 50 assertions were 

sampled from each test session. A technical error during assertion retrieval from the 

database invalidated 27 assertions from the BioP-C v0.2 test that were used to create 

the correctness assessment survey. As a result, the BioP-C v0.2 assessment uses a 

sample size of 23 assertions per treatment group, while the BioP-C v0.3 assessment 

uses 50 assertions per treatment group.  

The BioP-C v0.3 game improves on BioP-C v0.2 by improving player 

matchmaking, adding a basic timer-based scoring system, allowing the Keymaster to 

discard unrelated guesses, and enabling the Keymaster to form hints involving 

negation (e.g., “preprophase is not critical cell volume”). While these game design 

details are different between tests, the underlying mechanisms for collecting 

assertions are the same, and thus both sets of tests are informative about the overall 

method. 

Two factors are assessed using this data: (1) individual assertion correctness and 

(2) players’ enjoyment of the game. Correctness addresses the factual accuracy of 

statements produced by the users, and is the product of human assessment of assertion 

truth. This approach aims to provide a bottom-up view of the technique’s validity. 

The correctness of individual assertions (factor 1) is measured by comparing the 
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assertions’ relative truth against groups of low-correctness and high-correctness 

statements. Additionally, the correctness values are used to check for correlations 

with directly measureable session data. A general assessment of entertainment value 

(factor 2) addresses the likelihood that people will play the game, and helps to 

identify areas for improvement. The first factor addresses the game’s ability to collect 

accurate information. The second factor addresses the likelihood of obtaining a broad 

player base and thus broad information. 

Relative Assertion Correctness 

The correctness of BioP-C’s assertions is assessed by comparing them versus 

assertions at the theoretical upper and lower bounds of correctness. This assessment 

takes the form of a 150 Likert item survey. Each item in the survey is an assertion. 

For each assertion, the rater indicates their level of agreement with whether the 

assertion is true on a five point Likert scale, where a response of five indicates 

“strongly agree,” four indicates “agree,” three indicates “neither agree nor disagree,” 

two indicates “disagree,” and one indicates “strongly disagree.” A response of three 

suggests rater uncertainty about assertion truth due to factors including ambiguity and 

conditional truth of the assertion. Each assertion comes from one of three equal-sized 

groups: BioP-C assertions, random nonsense assertions, and high quality assertions 

from Open Mind Common Sense. Surveys were completed digitally and the 

presentation order of survey items was randomized for each respondent. In order to 

mitigate rater fatigue, a response of “NA” was presented as an option to indicate “I 

don’t know.” Two Wilcoxon signed-rank tests address whether mean Likert ratings 

for each assertion are significantly different between (1) BioP-C assertions versus 
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random nonsense and (2) BioP-C assertions versus Open Mind Common Sense 

assertions. 

For the lower bound of correctness, nonsense assertions were randomly generated 

from concept tokens identified by BioP-C players. To generate a single statement, two 

tokens were randomly selected and paired with a random relationship type from the 

BioP-C relationship taxonomy. This algorithm generated statements like: (1) 

“dinosaurs does genes,” (2) “control has changes in cell shape,” and (3) 

“biochemical events happens during growth.” Clearly most of these randomly 

generated statements are nonsense, but the algorithm occasionally produced an 

apparently true statement, as in the third statement above. The purpose of comparing 

BioP-C’s assertions to these random statements is to assess the quality of 

relationships selected by players, independent of the quality of tokenization, as 

compared to random chance. Using BioP-C tokens and relationships rather than those 

from a different vocabulary produces a conservative test because the nonsense 

assertions are stylistically similar to BioP-C assertions. 

For the upper bound of correctness, the top fifty assertions were taken from the 

OMCS website, as voted upon by site visitors. These assertions represent the 

theoretical upper bound of correctness for short natural language statements generated 

via human computation. Representative assertions from this set include: (1) “baseball 

is a sport,” (2) “an activity a dog can do is bark,” and (3) “a book can be made of 

paper.” While OMCS assertions have more expressive capability, the general shared 

token relationship token style enables direct comparison with between BioP-C and 
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OMCS. The purpose of comparing BioP-C’s assertions to high quality statements is 

to assess the relative validity of BioP-C’s information gathering mechanisms. 

Correctness Indicator Correlations 

In an effort to streamline identification of assertion correctness, correlations are 

assessed between the subjective correctness ratings and quantitative session data. A 

significant correlation between directly measurable quantities and correctness would 

provide a way to automatically assign confidence values to facts (independent of raw 

assertion frequency). Two correlations with correctness were tested: (C1) the number 

of hints given in a single round and (C2) the length of the source passage. For C1 it is 

hypothesized that a large number of hints is indicative of the hints themselves being 

inadequate. Good hints should lead players to the solution in fewer iterations than bad 

hints. For C2, it is hypothesized that players have more difficulty synthesizing longer 

passages. Because providing hints requires the player to synthesize the passage, 

increasing the difficulty of synthesis should lower the quality of hints.  

Entertainment Value Assessment 

The entertainment value of the game is important because it contributes to a large 

player base, and thus more data. As a consequence, it is important to assess the 

entertainment value of the prototype game to identify ways to improve the player 

experience. In this study, a brief survey was given to players after each prototype test. 

The responses to these questions are used to assess the game’s entertainment value 

and identify improvement opportunities. 
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Results and Discussion 

The Results and Discussion section contains results for relative assertion 

correctness, correctness indicator correlations, and assessment of entertainment value.  

Relative Assertion Correctness 

In order to establish the relative correctness of BioP-C v0.2 and BioP-C v0.3 

assertions, twelve human raters (six per dataset) ranked their general agreement with 

assertions from Open Mind Common Sense (OMCS), BioP-C, and a group of 

randomly generated nonsense assertions. The BioP-C v0.2 survey contained 50 

assertions from each treatment group, but a technical error necessitated reducing this 

number to 23. The BioP-C v0.3 survey contained 50 new assertions from BioP-C 

v0.3, but the same OMCS and nonsense assertions. Random-ordered versions of these 

relative correctness surveys were given to two different sets of six mechanical 

engineering graduate students. The surveys were untimed, and the respondents were 

given instructions to respond with “NA” if they could not decide how to respond.  

The missing data from “NA” responses complicates the analysis, and so statistical 

tests were conducted in two different ways: (1) by ignoring “NA” entries when 

averaging responses to each assertion, and (2) by replacing each respondent’s missing 

data with the imputed mean for that respondent. Approach (1) weights individual 

ratings differently based on the number of raters that respond with “NA” for an 

assertion, while (2) tends to pull ratings to the center. No single assertion was rated as 

“NA” by all raters, indicating that some raters chose to assign neutral or low scores to 

ambiguous phrases. The nonsense category used to benchmark BioP-C’s performance 
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captures the raters’ tendencies for scoring ambiguously constructed statements as 

moderately low correctness.  

Two different Wilcoxon signed-rank tests, each comparing BioP-C assertion 

correctness scores against those of the nonsense and OMCS statements, are both 

statistically significant (p < 0.05) for both datasets using both approaches to handling 

missing data. Using approach (1), the p-values for the BioP-C v0.2 dataset are 0.003 

for BioP-C vs. Nonsense and 2.13e-4 for BioP-C vs. OMCS. For the BioP-C v0.3 

dataset, these values are 0.022 and 1.69e-9 respectively. Using mean imputation, 

these values are 2.07e-4 and 5.55e-5 for v0.2, and 2.89e-4 and 1.15e-9 for v0.3. A 

Bonferroni correction for two tests per dataset modifies the significance level from 

α=0.05 down to α=0.025, which does not change these findings. The result of this 

relative comparison indicates that BioP-C’s statement correctness is better than 

random, but does not approach the correctness of the most highly agreed upon OMCS 

statements. The first approach to handling missing data produced the most 

conservative p-values. A comparison of average scores for each group is shown for 

BioP-C v0.2 in Figure 13 and BioP-C v0.3 in Figure 14. 

The raw quantities of “NA” responses in each treatment group correlate inversely 

with assertion correctness, which speaks to the difficulty of the rating task. The 

OMCS treatment group assertions received 0% and 1% “NA” ratings as a percentage 

of the overall number of ratings in the BioP-C v0.2 and v0.3 surveys respectively. The 

BioP-C assertion groups received 25% and 34% “NA” responses, and the nonsense 

group received 33% and 45% “NA” responses. Based on informal conversations with 

the raters, the “NA” ratings were typically used in response to two situations: 
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assertion ambiguity and rater’s incomplete biology knowledge. The higher prevalence 

of “NA” in the nonsense group indicates that denoting ambiguity was its primary 

usage mode. 

 

Figure 13. Relative assertion correctness for BioP-C v0.2 (N=23) 

 

Figure 14. Relative assertion correctness for BioP-C v0.3 (N=50) 
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Comparing these nonsense assertions against the BioP-C assertions rather than 

interpreting the raw Likert scores of each group blocks the noise resulting from raters’ 

preferences about how to handle ambiguous statements. Future assessments of this 

kind will include multiple types of “NA” responses in order to better capture the 

impacts of ambiguity and rater knowledge on correctness ratings. 

While BioP-C’s outperformance of nonsense data is a meaningful result, its 

assertion correctness is also a significant distance from the theoretical maximum. A 

number of factors contribute to this outcome.  

First, the abstraction imposed by the small relationship schema limits expressive 

capability. Aggregate statement correctness is reduced as a direct consequence. In 

contrast, this abstraction improves graph connectivity, which supports analogy 

formation. For example, the relationship does is intended to capture function-to-form 

relationships. It is simple to search for such abstracted relationships on a given 

function node in the network in order to return potential forms that solve the function.  

Second, these tests compare unfiltered BioP-C assertions against heavily filtered 

OMCS assertions. The average correctness of the BioP-C assertion group is harmed 

by apparently unclear assertions, such as “site does accomplished,” which 

lower the average value of the information. The presence of such assertions highlights 

the importance of filtering and weighting mechanisms to prioritize information that is 

likely to be correct. There are two primary mechanisms for filtering these nonsense 

assertions. The first is to weight BioP-C graph edges based on the number of times an 

assertion is made. The second is to identify session data predictors of whether a 
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statement is likely to be true. These mechanisms can be employed in combination 

with game mechanic refinements that improve unfiltered assertion correctness. 

Notably, the average unfiltered BioP-C scores for both tests are near three on the 

five-point Likert response scale. This clearly indicates that BioP-C does not 

consistently produce statements that are unambiguously true in the absence of 

context. However, the significant difference in ratings between the BioP-C and 

Nonsense assertion groups suggests that BioP-C produces some valuable information. 

This combination of high and low quality information is an expected outcome of a 

relatively complex human computation task. The Correctness Indicator Correlations 

section discusses a filtering technique for isolating this valuable information without 

involving human raters. 

Correctness Indicator Correlations 

In order to identify potential correctness indicators from directly measureable 

session data, two correlations with assertion correctness were tested. The first test 

examines the number of hints in the assertion’s source session, and the second test 

examines the number of words in the assertion’s source passage. Both tests are 

conducted on the combined data set of 73 correctness ratings from BioP-C v0.2 and 

BioP-C v0.3. 

Pearson’s correlation coefficient is calculated for both dataset pairs. Additionally, 

a t-test is performed to determine the statistical significance of each linear correlation. 

The correlation between number of hints and correctness gives Pearson’s ρ = -0.298 

and p = 0.011 (Figure 15), indicating that there is a statistically significant moderate 

negative correlation between the number of hints in a game session and assertion 
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correctness (for α = 0.05). A separate study of 70 randomly sampled data points from 

BioP-C v0.2 suggested this same correlation, but fell just short of reaching statistical 

significance [122]. For passage length and correctness, Pearson’s ρ = -0.030 and p = 

0.803 (Figure 16), indicating no correlation between passage length and assertion 

correctness. While results from the separate study of 70 BioP-C v0.2 assertions 

suggested a significant positive correlation between passage length and correctness 

(longer passages predicted higher correctness [122]), the study presented here 

suggests no such correlation. 

As expected, a lower number of hints in a game session can serve as a predictor 

for higher assertion correctness. This result can be trivially applied to the datasets 

from the relative assessments to filter out all sessions with a large number of hints. An 

optimal cutoff number has not been determined for mass scale implementation, and so 

this section presents the best cutoff for both sets of assertions. In the BioP-C v0.2 

dataset, filtering out sessions with more than three hints reduces the number of 

assertions from 23 to 12, and increases the group’s mean correctness value to 3.64 

(from 3.19). The corresponding median value is increased to 4.08 (from 3.00). A 

Wilcoxon signed-rank test against a random sample of 12 nonsense assertions 

indicates that this filtered subset of BioP-C assertions differs from the nonsense 

assertions by a statistically significant amount (p = 0.026). The BioP-C v0.3 dataset’s 

correctness is most improved by filtering out sessions with greater than six hints, 

which reduces the set size from 50 to 17 assertions. The corresponding mean and 

median values are increased to 3.36 and 3.50 respectively (from 2.98 and 3.00), and a 

Wilcoxon signed-rank test indicates a statistically significant difference in correctness 
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from a randomly sampled set of 17 nonsense assertions (p = 0.017). This evidence 

serves to demonstrate the potential of using this type of session data to filter 

assertions. Further studies of this variety may help to identify additional filtering 

criteria and optimal cutoff values. 

 

Figure 15. BioP-C assertion correctness versus number of hints in source game (p = 

0.0105) 

 

Figure 16. BioP-C assertion correctness versus source passage length (p = 0.8027) 
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A potential limitation of this analysis is that individual player data was not 

collected across multiple game sessions. It is likely that players have innately 

different skill levels, which should translate directly into higher assertion correctness. 

These unmeasured skill levels are confounded with the passage length and number of 

hints in a game session. For example, a single session with a given player pair 

produced nine different assertions. Each of these assertions has a different correctness 

value associated with it, but all of these assertions came from the same game session. 

In this case, all of the different correctness scores would be associated with the same 

player skill level and same passage length of 92 words. As a consequence, individual 

player skill represents a potential noise factor in these tests as well as a potentially 

beneficial correctness predictor to be studied in future work.  

Entertainment Value Assessment 

In order to elicit feedback about the player experience, a short open-ended survey 

was given to both groups of students after their participation. Subjectively, this 

feedback leads the authors to conclude that while these prototypes were perceived as 

more fun than an early prototype that lacked game elements, BioP-C in its current 

state is not seriously competitive with existing entertainment options. 

The feedback from this survey highlights some key attributes of the BioP-C 

player experience. Most notably, a frequent comment from both tests indicates that 

players enjoyed trying to work together with their teammate. These emergent 

interactions between players are a necessary component of the data collection 

mechanism, so it is advantageous that this mechanism is not in conflict with 

entertainment value. Multiple players also commented that the entertainment value of 
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the game depends on the quality of the hints; players that form high quality hints and 

guesses are fun partners, while players that produce low quality guesses and hints also 

harm their partner’s experience. This suggests that a player population will self-select 

for high-performing players, while low-performing players will quickly abandon the 

game. Foldit mitigates the issue of game difficulty by providing a series of simple 

tutorial puzzles to gradually introduce the player to game mechanics. A similar 

technique could be used in BioP-C to form a core of high-performing players that 

allows the population to grow. 

This dependency between assertion quality and fun also highlights the need to 

improve the player experience. The quality of assertions depends heavily on how 

easily understood the passage is, and players in both prototype tests expressed that 

some passages were difficult to understand. While an effort was made to select 

passages with minimal jargon, challenging terminology inevitability exists in 

scientific paper abstracts. To mitigate this issue, multiple players suggested an 

additional user interface element to provide dictionary definitions of highlighted 

words in a passage. This feedback also indicates that improvements to the passage-

screening algorithm are a worthwhile approach to increasing the game’s 

entertainment value.  

Players also requested several other features including (1) relationship negation, 

(2) more relationship choices, and (3) a full-featured scoring system. 

The capability to express negation was requested several times (e.g., plant is 

not animal) during the BioP-C v0.2 test. In the case of two unrelated concepts, 

the expected BioP-C v0.2 behavior was that players would choose to ignore bad 
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guesses entirely, not producing an assertion. Player feedback clearly indicates that 

this is not satisfying behavior, prompting the inclusion of negative relationships in 

BioP-C v0.3. ConceptNet is already capable of expressing negation, so this feature 

does not prevent future integration with BioP-C data.  

Multiple players in both tests requested more relationship choices. At present, 

adding more detailed relationships would harm the generality of connections in the 

network, which promotes a wide breadth of analogical matches. However, more 

precise relationships are useful for analogy filtering. Future work will investigate 

approaches to dynamically present more detailed relationship choices to players based 

on past assertions about a given concept or group of concepts. Such an approach will 

require baseline concept information to be effective, but should improve specificity. 

Further, once baseline graph connectivity is established using general relationships, 

detailed natural language relationships can be gathered to increase the potential power 

of analogical matching. In terms of structure mapping using shared relationships, a 

positive match on multiple player-specified relationships would be a stronger 

indicator of analogy than the generic relationships used in the current version of 

BioP-C. Just as OMCS uses a variety of tasks to gather different types of information 

into the same network, it may be worthwhile to develop an additional BioP-C game 

for capturing detailed relationship information. 

While a more feature-filled scoring system was less frequently requested, 

observations during BioP-C v0.2 testing support scoring improvements to promote 

behaviors that produce better assertions. A good scoring system forms the core of 

player incentives by promoting high quality information as well as player satisfaction. 



110 

 

In the BioP-C v0.2 test, players’ scores simply started at ten and decremented once 

for every guess. This system incentivized high quality hints and guesses, but 

promoted slow games with periods of inactivity. An effective technique used in prior 

GWAPs (e.g., [104, 106]) requiring low cognitive effort is to base player scores on 

the speed of responses. Correctness in these cases is determined based on time taken 

to get the correct solution, taking advantage of the correlation between correctness 

and speed. Because game speed is correlated with a low number of actions, it is 

reasonable to formulate a scoring metric that is strongly based on the number of hints 

formed in a session. These factors influenced the development of the scoring system 

in BioP-C v0.3. As additional session data predictors of correctness are discovered, 

the scoring system can be altered to promote these other behaviors as well. 

Example 

This section uses data from the unpublished BioP-C v0.1 prototype to present an 

example of how the BioP-C network can facilitate conceptual design. This early 

version used different game mechanisms, and lacked two-player validation, but the 

data is useful for demonstrating the envisioned usage of BioP-C for supporting design 

inspiration tools. The prototype used a relationship taxonomy closely based on 

OMCS [40], and the relationships between concepts have been modified for this 

example to reflect the current relationship taxonomy. This example is demonstrative 

only; a design tool has not yet been developed. 

BioP-C v0.1 presented players with three different passages describing xylem: a 

tube-like structure in plants used to convey water upward from the roots. All three 

passages were sourced from DANE, like the one shown in the excerpt below. The 

https://mail.google.com/mail/u/1/?shva=1#143e701dc7e56400__ENREF_40
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bolded words are those that users selected to form some of the assertions in the 

following example. 

This model describes the process of water transport from the plant 

roots to the leaves via the xylem. Transportation occurs as a result of 

tension in the upper xylem created from osmosis moving water into 

the leaves. The movement of one water molecule affects those below it 

as a result of cohesion, creating tension. Tension is transmitted through 

the length of the xylem through cohesion forces between water 

molecules, which are stacked in the very thin tubes of the xylem. To a 

lesser extent root pressure and adhesion between water molecules and 

xylem cell walls also plays a role, not covered here. [123] 

 

Figure 17 shows a subgraph of the nodes surrounding “xylem,” generated from a 

small subset of these responses, with edges filtered to remove relationships asserted 

less than twice. In addition to this initial filtering, most of the irrelevant nodes have 

been pruned for simplicity of presentation.  

 

Figure 17. Subgraph of data collected from prototype test 

The data structure is a directional multigraph (edges have directionality, and 

multiple edges can exist between the same two nodes), with each edge possessing a 

‘relationship type’ and ‘weight’ attribute. These attributes track how frequently 

players have indicated a relationship between two nodes. For example, if three 
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players have asserted “xylem is hollow,” then the nodes xylem and hollow are 

connected with an edge possessing a relationship type of is and a weight of 3. 

As a demonstration of how a designer might use this information, consider a 

conceptual redesign of an oil pump. The designer describes the design problem or 

existing system using assertions of the same style as those generated by the game. 

Because the designer makes these assertions, all edge weights are set to the maximum 

to reflect the highest level of validity. If the designer asserts that a pump is hollow, is 

made of metal, has an impeller, and transports oil, then these assertions would be 

represented as shown in Figure 18. After merging these assertions with the existing 

knowledge network, the (pruned) search space looks like Figure 19. The edge 

weighting and graph merge algorithms offered in this example are quite simple, but a 

design tool need not be limited to those presented here. For instance, the designer 

could specify confidence values on edges, and natural language processing techniques 

such as stemming and lemmatization could control graph merge aggressiveness. 

 

Figure 18. Example of a simple redesign encoding 
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Figure 19. Search space connecting “xylem” to “pump” 

A spreading activation search using normalized edge weights, with designer-

entered assertions weighted to 1 and an arbitrary decay rate of 0.9, finds xylem as a 

candidate match due to the multiple strong pathways between pump and xylem 

(Figure 20). Secondary matching reveals the shared features “does transport” and “is 

hollow.” Back edge matching on the “does” relationship is especially meaningful in 

this context because it implies a function shared by two embodiments. Based on these 

results, an inspiration tool could suggest xylem as a potential analogy, and also 

provide references to the source documents that generated the assertions containing 

xylem. From this point the designer investigates whether the mechanism embodied by 

xylem (capillary action) is appropriate for conveying oil. This algorithm reflects the 

“many are called but few are chosen” (MAC/FAC) model of similarity-based retrieval 

[124]. The spreading activation stage of the search finds potential matches, and 

secondary matching filters these candidates. 
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Figure 20. Spreading activation from “pump” finds “xylem” 

 Deeper relationship matching is less straightforward. While the game presented 

in this paper emphasizes graph connectivity and abstraction across domains to enable 

large numbers of matches, natural language relationships would further increase 

match quality. An obvious solution to this problem is to develop a second 

complimentary game to elicit natural language relationships between domain 

concepts (as in OMCS). Pragmatically, it may also be valuable to match distributions 

of abstract relationship types between nodes as evidence for first-order relationship 

matching. 

Additionally, the graph can trivially be represented as an adjacency matrix to 

support “bag of words” style approaches (such as LSI) to inferring similarity. A third 

dimension captures relationship typing, where each two-dimensional slice of the 

matrix represents connections of a single relationship type. Summing on the third 

dimension returns a standard two-dimensional adjacency matrix containing untyped 
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edge weights between nodes. While LSI uses weighting algorithms that rely on term 

uniqueness to determine word weights, BioP-C can provide word weights based on 

human judgments. This property could be used to supplement an LSI-based design 

inspiration tool by providing alternative term weightings. 

Conclusions and Future Work 

This paper presents and assesses a GWAP for collecting computable knowledge 

about biological phenomena for the purpose of aiding biologically inspired design. 

Specifically, this work assesses the external validity of individual assertions. Humans 

assess these assertions for correctness, and these ratings are used to identify potential 

directly measureable indicators of high correctness assertions. Additionally, this paper 

identifies factors affecting the game’s entertainment value, and potential design 

features to address shortcomings in this area. The results of this study suggest that a 

GWAP approach has strong potential to collect valid biology knowledge into a 

semantic network format that can support biologically inspired design tools. 

Notably, the correctness of unfiltered BioP-C assertions was rated as significantly 

better than random and significantly worse than the theoretical maximum, indicating 

that some of the information produced by BioP-C is correct. Additionally, a 

statistically significant negative correlation was found between statement correctness 

and the number of hints created in a game session, which supports a simple and 

effective filtering operation. Raters' agreement with whether BioP-C assertions are 

true tends to fall between "neither agree nor disagree" and "agree," indicating that 

many of the assertions are ambiguous. This highlights a limitation of the work, and 

suggests that future work is needed to (1) identify additional behaviors that indicate 
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assertion correctness and (2) refine the game design to encourage these desirable 

behaviors. 

The game presented in this paper uses a limited set of general relationships, but 

better classification will be possible as confidence in general relationship types 

grows. For example, more detailed relationships can be defined as subclasses of the 

high level relationships based on existing taxonomies of biology and engineering 

knowledge. Any number of strategies could support this change. These strategies 

might include additional mechanisms within the current game design, such as 

dynamic limitation of available game relationships based on BioP-C’s previously 

collected data. Alternatively, separate game environments could support filtering 

existing assertions and gathering player-specified relationships.  

The validation of this work has revealed the delicate design tradeoff between 

entertainment value and information quality. Complicated tasks produce better data, 

but there exists a complexity threshold past which players will not enjoy the game. 

There may exist a Pareto frontier representing the non-dominated set of tradeoffs 

indicating the limits of what can be learned from a human algorithm in this context, 

but it is unlikely that BioP-C v0.3 has reached this point. In order to understand the 

potential of this approach, future work in this area should aim to quantify this 

tradeoff, establish where these limits exist, and supply heuristics relating game design 

to information requirements.  
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Abstract 

Design of new and advanced materials with shape-shifting or origami-like 

capabilities is an area that bears a strong similarity to the design of electromechanical 

products yet has not leveraged such systematic approaches.  In this paper, 

computational methods to design Metal Organic Responsive Frameworks (MORFs) – 

which are a theoretical type of material that can change their shape and porosity in 

response to light – are investigated. However, it is a significant challenge to 

computationally identify MORFs that are both feasible and useful, i.e., systemic 

invention (as opposed to discovery) of new MORFs. The proposed framework utilizes 

the typical product design process to iteratively generate new candidates, evaluate 

their properties, and then guide the generation of the next set of candidates.  A 

materials designer could then leverage this knowledge to generate structures or 

substructures with specific functional goals in mind. In this paper an approach to 

inferring functional similarity of systems using structural information – based on both 

drug design and database-driven product design – is evaluated. The results 

demonstrate an observable correlation between structural fingerprints of 

electromechanical products and electromechanical function. This evidence, combined 

with the well-established similar property principle in drug design, supports the usage 

of molecular fingerprinting for providing high-level functional guidance in a MORF 

design framework based on purely structural information. 

Introduction 

The discovery of new materials can have a transformative impact in a wide range 

of applications, but trial and error plays a major role in this process. This paper works 
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toward realizing a systemic design-based approach that combines computational 

exploration of a materials design space with human intuition in order to generate 

dynamic materials that are both feasible and useful. More specifically, this work 

focuses on facilitating the computational creation of a new class of photoresponsive 

materials called Metal Organic Responsive Frameworks (MORFs). One potential 

application for these materials is hydrogen storage. Porosity of a MORF could be 

dynamically increased to import hydrogen and decreased to supply hydrogen. 

However, the actual design and creation of a variety of MORFs is a relatively 

unexplored problem; it is not well understood which types of structures will be 

feasible or useful. It is this task of solution space exploration for which principled 

design techniques can be of use. 

MORFs represent a theoretical class of materials that can change their shape and 

porosity in response to light. MORFs combine Metal Organic Frameworks (MOFs) 

with photo-isomerizing molecules to produce materials that behave as stochastic 

linkages. While there are thousands of known MOF structures and many 

photoisomerizing units that can be incorporated into them, the MORF design space is 

governed by complex constraints. The linker components that connect the framework 

together must remain connected as they fold. Further, the order in which linkers fold 

cannot be precisely controlled, so the framework must be sufficiently compliant. 

These constraints are applied at a small scale under forces that are not readily 

apparent, which increases the complexity of behaviors that MORFs may exhibit. As a 

consequence, it is especially challenging to design new MORFs that are both feasible 
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and useful. Many of these challenges exist in other molecule design domains as well, 

such as in drug design. 

The goal of this research is to produce a computational design framework that 

leads to the invention of useful MORFs. In general, this process begins with a 

database of nodes, linkers, and combination rules. Nodes and linkers are the basic 

building blocks of MOFs, and the combination rules describe chemically valid ways 

to combine atoms. Candidate MORFs are rapidly generated using these rules and 

building blocks, and then screened for feasibility. The goals during initial feasibility 

screening are to use computationally inexpensive techniques to predict whether the 

candidate MORF’s properties are close to the design target, and whether the 

photoisomers in that MORF will be able to fold. For example, one of these 

preliminary screens might address whether the change in linker stiffness is acceptably 

close to what is required. The results from this process serve to update a predictive 

model relating MORF structures to their behaviors. In addition to this closed loop 

computational exploration of the solution space, MORF candidates are also screened 

for functional usefulness. This is a challenging problem because usefulness arises 

from a combination of dynamic behavior and human needs. Assessing usefulness 

requires expert judgment, but it is infeasible for a human judge to examine every 

candidate. To assist with this process, candidate MORFs with similar behavior are 

clustered, and then domain experts assess exemplar candidates from each cluster to 

determine whether they are likely to meet a need. 

MORF design is distinct from most molecular design problems because its 

functionality comes from dynamic motion rather than the static positioning of atoms. 
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This shared goal of dynamic functionality also connects the problem of MORF design 

with the problem of electromechanical design. Much as in electromechanical design, 

the goal is to produce a structure that serves a particular function, but it is much more 

challenging to precisely capture a molecule’s usefulness than to capture its behavior 

or structure. In spite of MORFs being an unexplored area, this connection allows 

existing electromechanical system data to serve as a platform for making judgments 

about the efficacy of various computational techniques in the MORF domain.  

This paper contributes to the creation of a MORF design framework by 

demonstrating that an explicit representation of function is not needed. Instead, a 

structural representation from drug design can be used, and function can be inferred 

from this representation. This structural representation has two important properties. 

First, it is relatively efficient to calculate, which makes it conducive to efficient 

solution space exploration. Second, it is significantly correlated with dynamic 

function. 

Background 

The following subsections discuss related work in both engineering design and 

drug design. These background sections serve not only to present the related literature 

from these fields, but also to relate the important concepts back to engineering design 

and MORF design. The key points from this section are as follows.  

Drug design techniques are closely related to computational design synthesis 

techniques; both provide a computational framework for exploring a solution space. 

Within this type of framework, Quantitative Structure-Activity Relationship modeling 

(QSAR modeling) and structural similarity comparison provide mechanisms for 
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guiding the solution search and evaluating solution candidates. Fragment-based 

approaches, which capture and apply important substructures of solutions, provide a 

method to reduce the size and complexity of the MORF search space. The concept of 

similarity between candidate solutions plays an important role in both computational 

design synthesis and drug design, and so this section discusses vector representations 

of systems that enable efficient similarity screening. Of the available representations 

in drug design, the structural fingerprint representation is selected for evaluation in 

the context of dynamic systems based on its past successes in predicting the (static) 

functionality of drug molecules. This section highlights the compatibility of structural 

representations in the electromechanical and molecular domains, and argues that this 

compatibility enables electromechanical product information to be used as a test bed 

for demonstrating the value of structural fingerprints in the MORF domain. 

Summary of Challenges 

There are several challenges involved in realizing a MORF generation 

framework. First, it is impossible to enumerate the full search space of candidate 

MORFs. Second, it is challenging to characterize MORF structures’ functionality. It is 

easier (though still challenging) to characterize MORF structures by their behavior, 

and easier still to characterize structures using the structural information directly. 

Third, there is no efficient means to evaluate candidate MORFs via existing models 

(such as the Quantitative Structure-Activity Relationship models discussed later in 

this section) or similarity to benchmark MORFs. 

To address these challenges, a representation is needed that (1) enables efficient 

substructure search and similarity calculation, (2) is predictive of system 
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functionality, and (3) is in a form that facilitates QSAR model development. 

Structural fingerprints address challenges (1) and (3), but it must be demonstrated that 

this representation is predictive of system functionality. More details about these 

points are presented in the remaining background sections. 

Computational Design Synthesis 

In the domain of computational design synthesis, generative grammars are an 

approach to capturing design knowledge in a manner that can be reapplied to 

computationally generate new designs. Such rules have been successfully applied to a 

number of engineering design areas including electromechanical products [125] and 

sheet metal parts [126]. A major advantage of grammar rules is that they enable rapid 

generation of many solution candidates, altering design from a problem of generating 

concepts to a problem of evaluating concepts. Generative grammars are adopted in 

the MORF design framework as a means to explore the extremely large chemical 

space. These grammars consist of a fixed set of rules to grow a wide variety of graphs 

from a starting seed. This approach takes advantage of the fact that both engineered 

systems and molecules can be represented as undirected labeled graphs. In these 

graphs, nodes represent components or atoms, while edges represent physical 

connections between components or bonds between atoms.  

 A closely related work in the design domain uses grammar rules to generate a 

large space of candidate design topologies based on a functional black box [127]. 

Human judgment is required to make the final evaluation on the quality of these 

design topologies, but the number of solutions is too large for a human to evaluate 

every topology manually. To address this issue, k-means clustering is used to group 
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similar topologies [128]. These groupings could then be used to facilitate human-in-

the-loop exploration and evaluation of the solution space.  

In order to support this clustering, distance values between each pair of Design 

Structure Matrices (DSMs) [129] in the referenced study are calculated by taking the 

matrix difference and determining the Euclidian norm of the result. These DSMs have 

exactly one row and column for each type of component (where the types of 

components are specified by a component taxonomy). Aggregating components in 

this way ensures dimensional consistency between all DSMs and enables valid 

similarity comparisons, but loses structural information when a system contains more 

than one of any component type. This loss of information makes it impossible to 

distinguish between systems with identical types of components but different 

topologies. For example, different types of gearboxes are made of similar types of 

components, but the ways in which their gears are connected has a major impact on 

the types of motion and applications for which each gearbox is suitable. In 

applications where it is important to differentiate between types of dynamic behavior 

(such as electromechanical product design or MORF design), it is important to 

capture this type of topology information. 

The Similar Property Principle 

In drug design, the Similar Property Principle [130] says that drug molecules with 

similar structures tend to have similar properties and biological activity. This 

generally valid assumption supports approaches that infer functional clusters from 

much more readily available structural information. The principle holds true in drug 

design for large ranges of molecules spanning a wide variety of structures [131-133], 
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in spite of the presence of “activity cliffs” [134] where small structural changes result 

in large changes in activity. As a result, it can be said that structure-based approaches 

to drug design are probabilistic in nature. While the shared properties of any two 

structurally similar molecules are uncertain, molecules with high structural similarity 

are more likely to share properties [131]. 

Function based engineering design relies on a similar assumption: that similar 

components generally do similar things (e.g., electric motors usually rotate things, 

screws usually couple things together). As a result, automated design of 

electromechanical products can also be described as probabilistic. A key difference is 

that a drug’s functionality (biological activity) is a direct result of its atoms’ static 

positioning, while functionality in electromechanical design typically includes 

dynamic motion. MORF design shares characteristics with both domains. While 

MORF design takes place at the same scale as drug design, the desired outcome of 

dynamic functionality is more similar to function based engineering design. Because 

of these similarities, it is valuable to consider drug design techniques for creating new 

nanoscale dynamic systems. 

Quantitative Structure-Activity Relationship (QSAR) 

A Quantitative Structure-Activity Relationship model (QSAR model) is often 

central to the discovery of new drugs. This type of regression model aims to relate 

molecular structure to biological activity – a major measure of performance in drug 

design. While biological activity is a common target, desirable molecular properties 

are also commonly mapped to structure (Quantitative Structure-Property 

Relationships), and similar techniques could be used to map structure to groups of 
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dynamic MORF behaviors. Typically QSAR models are created using empirically 

validated structure-activity correlations or (less commonly) simulation results. Partial 

least squares regression is a common method to create these relationships [135]. In 

contrast, some QSAR methods correlate substructure fragments with biological 

activity rather than considering each atom individually (e.g., Fragment-Based QSAR 

[136] and Hologram QSAR [137]). Such approaches serve to narrow the search space 

when performant fragments are known, all without leaving the computational design 

loop. The work presented in this paper aims to support the creation of both traditional 

and fragment-based QSAR methods for MORF design. 

While QSAR is useful for correlating structure to directly measurable properties, 

the goal of this project is to relate MORF structures to behavior and function 

categories. And while a drug’s biological function is easily quantifiable, quantifying 

behaviors in the unexplored MORF domain is more challenging. This motivates the 

need to demonstrate a correlation between structure and behavior – in domains where 

functions involve dynamic motion – using structural representations that have been 

effective for drug screening. Evidence for this correlation in the electromechanical 

consumer product domain (as shown in the Results section) supports development of 

QSAR-style models to predict dynamic behavior or function classifications based 

purely on structure. These results apply to both the electromechanical product and 

MORF domains. 

Fragment-Based Approaches 

Atoms are the basic building blocks of molecules, so it is reasonable to use atoms 

themselves as the building blocks in a drug design database. Unfortunately, 
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computationally generating new molecules from atoms quickly results in 

combinatorial explosion [138]. One technique for managing this search space size is 

to capture fragments (i.e., molecular substructures) rather than atoms, similar to how 

a product designer might select an electric motor rather than an armature and stator. 

This reduces the size of the chemical search space from roughly 1070 molecules to 

1016 molecules [138]. Frequently used fragment types in fragment-based drug design 

include rings, functional groups, or particularly unique or interesting patterns within a 

domain [139]. 

For MORF design, one key task will be capturing fragments that are unique to 

distinct functional groups. Such fragments could then be used to seed the generation 

of new structures with similar properties, which has the effect of simplifying the 

search space. The results section will show an example of fragment mining in the 

consumer product domain using a group of vacuum cleaners. This example is equally 

applicable to molecule design because systems in both domains can be represented as 

undirected graphs. 

Fingerprints 

The challenge of performing drug design in silico requires a representation that 

contains a large amount of information in a small space. Linear bit vectors describing 

2D properties of molecules are not only very fast at substructure screening [139], but 

have been shown to be superior to 3D descriptors for distinguishing compounds’ 

biological activity [133]. Structural keys [138] are an early type of bit vector 

representation that capture structural features (such as important fragments) by 

assigning a bit index to each important feature. Unfortunately, structural keys 
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containing anything more than 1D descriptors are time consuming to use. Not only 

must a new structural key mapping be designed for each new application, but 

generating a bit vector for each molecule is inefficient. 

Hashed fingerprints address these issues while preserving the bit vector 

representation that enables efficient screening. Much like structural keys, hashed 

fingerprints represent structural information (node labels and connectivity) in a form 

that promotes fast similarity screening. A major advantage of structural fingerprints is 

that features do not need to be prescribed. Instead, each molecule’s structural 

information is hashed into a fixed length bit vector using the same algorithm and 

hashing functions for every molecule. Additionally, because every structure generates 

a fixed length bit vector, this representation is conducive to matrix methods for 

developing predictive QSAR-style models (e.g., partial least squares). In virtual 

screening applications, fingerprints have been found to be equal or superior to using 

chemical graphs directly [140].  

A commonly used style of fingerprint is the Daylight fingerprint [139]. This type 

of fingerprint relies on a fixed vocabulary of node labels. In drug design and MORF 

design, these are atoms. In engineering design, a component taxonomy (e.g., [141]) 

provides a similar set of node labels. It is worth noting that more recent fingerprinting 

methods use the property information of nodes (atom properties) rather than their 

labels (atom names), which increases the chances of finding different structures with 

similar behavior (e.g., [142]). While advantageous, this type of information is more 

challenging to abstract to the domain of electromechanical components. Such 

abstraction is left to future work. 
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Drug design relies heavily on the assumption that similar structures will have 

similar biological activity. A key difference between drug molecules and MORFs is 

the type of functionality. A drug’s behavior is based on the types of sites that it binds 

to in the human body, which is determined by the static structure of atoms in the 

molecule. In contrast, a MORF’s behavior is determined by the type and 

configuration of nodes and linkers, which determine how the MORF will move. This 

paper addresses whether this structural fingerprinting representation, which has been 

empirically validated over years of use for predicting biological activity, is also 

correlated with dynamic function. Such evidence is needed to support the use of 

structural fingerprinting for both automated MORF design and automated engineered 

product design. 

Chemical Similarity 

While fingerprints were originally designed based on the Bloom filter [143] as a 

way to support screening operations, they are commonly also used to calculate 

pairwise similarity between molecules for clustering. The most commonly preferred 

similarity measure in drug design is the Jaccard coefficient (Eq. 3). The Jaccard 

coefficient divides the total quantity of vector indices where both vectors have true 

bits by the number of vector indexes where at least one bit is true. Indices where 

neither vector has a true bit are ignored. This measure has proven its effectiveness in 

a wide range of drug design applications [144], and it is for this reason that the 

Jaccard coefficient is used in this study. 
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𝐽(𝐴, 𝐵) =  

|𝐴 ⋂ 𝐵|

|𝐴 ⋃ 𝐵|
 Eq. 3 

One common usage for these similarity measures is to perform chemical 

clustering in order to manage the complexity of a search. For example, a 

representative subset of candidates from each cluster may be selected for further 

simulation and study [145]. In the MORF generation framework, such clustering will 

support both feasibility and usefulness screening by creating a reduced list of 

representative molecules for intensive molecular simulations.  

While no clustering algorithm is clearly superior in all cases [146], Ward’s 

method [147] and the Jarvis-Patrick method [148] represent two successful and 

commonly used chemical clustering algorithms [146]. The electromechanical 

products in this study are clustered according to Ward’s method. Comparing the 

efficacy of different clustering algorithms is not considered in this paper. 

Design Repository 

Much as in drug design, externally valid function and structure data is the best 

way to evaluate structure-function correlations. The Design Repository [74] provides 

a convenient dataset to evaluate this correlation between structural fingerprints of 

engineered products and those products’ dynamic functionality. The Design 

Repository contains 184 products that have been reverse engineered both structurally 

and functionally. Most of these products are in the electromechanical domain, and for 

this study all products outside of this domain (e.g., biological systems) are omitted. 

This study makes use of DSMs for each of these products. Components in each DSM 
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are labeled according to their component taxonomy types [141], and components are 

not aggregated in order to preserve all connectivity information. 

Methodology 

This section demonstrates that an explicit representation of function is not needed 

to support electromechanical product generation, but that distinctly different dynamic 

function groups can be inferred from a structural representation that facilitates 

efficient solution space search. Because MORFs possess dynamic functions (as do 

electromechanical products), and because the MORF domain is similar to the drug 

design domain where fingerprinting approaches have already been successful in 

supporting molecular search, these results also demonstrate that the approach is valid 

in the MORF domain. The methodology begins with creating structural fingerprints 

for every product in the Design Repository. Pairwise similarity between every two 

products is then calculated, and the significance of several predefined functional 

groups of products is evaluated. 

Fingerprinting and Similarity 

Each product DSM is converted into a Daylight-style fingerprint: a uniform 

length (216) bit vector where small patterns of bits correspond to the presence of 

substructures. Given a set of path lengths, the algorithm extracts all paths of each 

length. Figure 21 shows an example of this process in which path lengths of one, two, 

and three are extracted from a small starting structure.  

The node labels A, B, and C could represent atoms in a molecule or components 

in an engineered product. For example, if this graph represented a system with three 

interlocking pieces of housing and no other components, these labels would be 
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Housing, Housing, and Housing. The actual system graphs analyzed from the Design 

Repository are much larger and more sparsely connected than the one in this example, 

with an average size of approximately 18 nodes. 

 

Figure 21. Extracting All Patterns of Length 1, 2, and 3 from a Simple Starting 

Structure 

Path lengths of one and four are used in this study; adding additional path lengths 

creates more patterns, which leads to prohibitively high-density fingerprints for very 

large systems. Two of these large systems were removed prior to analysis, resulting in 

a maximum bit density of 0.28 and an average bit density of 0.03. This density can be 

improved for large systems by using larger fingerprints (e.g., 232).  

Each component (graph node) in each of these paths is given a canonical label 

using a version of Morgan’s algorithm [149]. This canonical labeling allows the 
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detection of graph isomorphisms across subgraphs, regardless of orientation, by 

assigning the same canonical labels to all isomorphic graphs. This prevents Pattern 8 

in Figure 21 from being extracted as ABC in some systems and CBA in other 

systems. Morgan’s algorithm recursively calculates graph invariants for each node 

until all nodes have a different score or a convergence failure is detected. If the 

algorithm does not completely converge (i.e., there are ties), then a tiebreaker is 

needed. In the case of these electromechanical product DSMs, the tiebreak order is 

determined by alphabetical order of all possible component labels in the Design 

Repository’s component taxonomy. In molecular fingerprinting, the atomic number of 

nodes and the bond order of edges can both be used. A DSM is created for each of 

these paths, and the nodes are sorted in the newly created canonical order. 

Next, each path is hashed to a pattern of four bits in the fingerprint vector using a 

cyclic redundancy check (CRC) [150], a common fingerprinting hash function. The 

input to the hash is based on the node labels and their connectivity. CRC is 

advantageous because it can hash variable length patterns into fixed length outputs. 

The four CRC generator polynomials used to perform the hashing are 0x8d95, 

0x8fdb, 0x968b, and 0x9eb2 based on Koopman’s search for the optimal general 

purpose CRC polynomials in error detection applications [151]. The specific hashing 

functions are not as important as the concept that every pattern in every system 

(molecule or engineered product) is hashed in the exact same way. Any given 

substructure path will always correspond to the same set of bits in a fingerprint, 

which means that systems with large amounts of shared substructure will have similar 
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fingerprints. In this study, each unique path in each DSM is hashed to a unique 

pattern of bits in its fingerprint. 

For example, Figure 22 shows the patterns 1 and 8 from Figure 21 being hashed 

into a short 24 bit fingerprint using three arbitrary hash functions. The result of the 

three hashes is a uniquely identifying set of bits in the fingerprint. The combination of 

bits 1, 7, and 8 uniquely identify Pattern 1, while the bits 5, 7, and 12 uniquely 

identify Pattern 8. The 7th bit contains a collision, an incidental overlap of two 

patterns. Collisions introduce an acceptable level of error in exchange for the 

capability to efficiently search and match substructures. Optimizing the number of 

hash functions and the length of the fingerprint can help to mitigate the negative 

effects of collisions. 

The resulting fingerprints can be used directly to support screening operations 

(i.e., efficient library search for desired subgraphs), or pairwise distances between 

molecules can be calculated using the Jaccard coefficient. This distance measure 

gives the structural similarity between systems (electromechanical products or 

molecules), and can serve as the basis for a clustering algorithm [152].  

 

Figure 22. Hashing Each Pattern into a Fixed Length Fingerprint 
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Evaluation 

In order to evaluate the validity of Jaccard distance measures constructed from 

structural fingerprints of electromechanical products, the Mann-Whitney Rank Sum 

test is used. This test answers the question of whether the internal similarity for a 

given cluster of functionally similar products is significantly higher than the 

remaining population’s similarity to that set of products. In other words, for each set 

of functionally similar products, does the distance measure rate them as significantly 

more similar to each other than to the rest of the products in the repository? More 

generally, this question addresses whether the distance measure is valid for grouping 

systems with similar dynamic functionality. 

To answer this question, the following steps are taken. First, the full pairwise 

distance matrix between all products is calculated. Second, for each product, distance 

measures are converted to distance ranks. Third, for each set of functionally similar 

products (identified by human raters a priori), the distances between products in the 

functional group and all products in the data set are summed. This produces a single 

measure of the product’s overall similarity to the products in the predefined cluster.  

Table 15 shows this process for the functional group of beverage makers. The row 

labels include every product in the repository, while the column labels include only 

the six beverage makers. Each row of distance scores has been converted into 

similarity ranks. Each cell contains the rank value of a product’s similarity to one of 

the products in the prescribed function cluster. In the event of a tie, the average rank 

is taken.  
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For example, the product “black 12 cup deluxe coffee” (labeled as product A) is 

most similar to itself, second most similar to “black 12 cup economy coffee,” and 36th 

most similar to “black 4 cup regular coffee.” By comparison, the “b and d drill 

attachment” is 120th, 106th, and 88.5th most similar to these first three coffee makers. 

The total rank score is the sum of these individual values, which captures each 

product’s overall similarity to the six beverage makers. A low total rank score 

indicates high overall similarity to the products in the cluster. The smallest value in 

each row is excluded from this sum in order to control for the impact of comparing 

products within the cluster to themselves. For example, the similarity rank of 1 is 

excluded for “black 12 cup deluxe coffee,” as is the rank of 88.5 for the “b and d drill 

attachment.” This tends to increase the conservativeness of the test because it reduces 

the outside-of-cluster rank scores more than the within-cluster rank scores. 

Table 15. Product Rank Scoring Example 

   Product Name A B C D E F 
Total Rank 
Score 

A black 12 cup deluxe coffee 1 2 36 12 8 5 63 

B black 12 cup economy coffee 3 1 21 17 19 2 62 

C black 4 cup regular coffee 14 18 1 17 2 27 78 

D mr coffee iced tea maker 21 37 41.5 1 13 35 147.5 

E white 12 cup regular 8 34 6 9 1 26 83 

F white 4 cup economy coffee 3 2 28 14 11 1 58 

- b and d drill attachment 120 106 88.5 129 111 109 663.5 

- b and d dustbuster 106 75.5 75.5 81 72 79 489 

- b and d jigsaw 29.5 69 76 18 12 45 249.5 

  … … … … … … … … 

 

Lastly, the Mann-Whitney Rank Sum test is performed to compare the total rank 

scores of products within the cluster to the total rank scores of products outside of the 
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cluster. This test is used instead of a t-test because these rank scores are not normally 

distributed. This approach evaluates the quality of the distance measure independently 

of any specific clustering algorithm. 

Results and Discussion 

After removing all products without component DSM data, 143 products remain. 

The function groups and products in Table 16 were selected prior to any analysis. 

Each function group is characterized by a high level shared function, with the 

exception of two product families of power tools. The rationale for including these 

product families is that they generally share subfunctions such as modular docking 

capability or rotating a tool head. 

The significance of these product groupings is assessed using both the structural 

fingerprinting representation discussed previously and a functional similarity metric 

that uses latent semantic indexing to emphasize uniquely identified functions in a 

product [89]. This benchmark metric does not account for functional model topology; 

only the types and quantities of functions are observed.  

As shown in Table 17, the structural fingerprints perform as well as or better than 

the function similarity metric for grouping systems with similar functions. In 

structural fingerprinting, every grouping is significantly differentiated from the rest of 

the product population (p < 0.05). The functional similarity metric detects significant 

groupings for only the beverage makers, saws, and Black and Decker products. 
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Table 16. Human-Specified Function Groups 

Group Name Group Members 

Beverage Makers     'black 12 cup deluxe coffee' 
    'black 12 cup economy coffee' 
    'black 4 cup regular coffee' 
    'mr coffee iced tea maker' 
    'white 12 cup regular' 
    'white 4 cup economy coffee' 

Drills     'b and d drill attachment' 
    'delta drill' 
    'firestorm drill' 
    'mac cordless dril-driver' 
    'skil drill' 

Toothbrushes     'colgate motion toothbrush' 
    'crest toothbrush' 
    'oral b toothbrush' 

Saws     'b and d circular saw attachment' 
    'b and d jigsaw' 
    'b and d jigsaw attachment' 
    'delta circular saw' 
    'delta jigsaw' 
    'firestorm circular saw' 
    'firestorm saber saw' 
    'skil circular saw' 
    'skil jigsaw' 
    'versapak circular saw' 

Sanders     'b and d palm sander' 
    'b and d sander attachment' 
    'delta sander' 
    'dewalt sander' 
    'random orbital sander' 
    'versapak sander' 

Black and Decker 
Products 

    'b and d can opener' 
    'b and d circular saw attachment' 
    'b and d drill attachment' 
    'b and d dustbuster' 
    'b and d jigsaw' 
    'b and d jigsaw attachment' 
    'b and d mini router attachment' 
    'b and d palm sander' 
    'b and d power pack' 
    'b and d rice cooker' 
    'b and d sander attachment' 
    'b and d screwdriver' 
    'b and d sliceright'  

Firestorm Products     'firestorm battery' 
    'firestorm circular saw' 
    'firestorm drill' 
    'firestorm flashlight' 
    'firestorm saber saw' 
    'firestorm screwdriver' 

Vacuum Cleaners     'bissell hand vac' 
    'blowervac' 
    'bugvac' 
    'dirt devil vacuum' 
    'neato robotics vacuum cleaner' 
    'shopvac' 
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Each significant result indicates that a cluster’s internal similarity is significantly 

higher than its similarity to the rest of the products in the Design Repository. This 

outcome validates the fingerprinting representation for correctly detecting high 

similarity among each set of functionally similar electromechanical products. 

Repeating this result for many sets of products validates fingerprinting as an accurate 

means of detecting functional similarity in the Design Repository. This result is 

extrapolated as evidence that features in structural fingerprinting are correlated to 

function in other sets of electromechanical products and dynamic molecules. 

Table 17. Mann-Whitney Rank Sum Test Results 

  

 
Product Group 

p-values 

  
Functional 
Similarity 

Structural 
Fingerprint 
Similarity 

  

Functional 
Groups 

Beverage Makers (6) 1.5009e-04 3.9035e-05 

Drills (5) 0.1611 0.0317 

Toothbrushes (3) 0.2538 0.0033 

Saws (10) 0.0319 7.4516e-06 

Sanders (6) 0.3648 0.0358 

Vacuum Cleaners (6) 0.1162 0.0011 

Product 
Families 

Black and Decker Products (13) 1.5214e-03 2.2914e-05 

Firestorm Products (6) 0.0879 0.0120 

  

Clustering 

A clustering algorithm is needed to convert the full pairwise similarity matrix into 

clusters of components with high internal similarity. This paper does not compare the 

efficacy of different clustering algorithms, though the results of hierarchical 

agglomerative clustering using Ward’s method with an arbitrary cutoff of 20 clusters 

are presented here for discussion. A sample of these clusters is given in Table 18. 
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Many of these clusters have a clear interpretation. For example, cluster 6 contains 

several vacuum cleaners (including one that was mistakenly omitted from the human-

generated list of vacuums), a hair dryer, and several power tools. All of these products 

except for the power pack contain an electric motor assembly, and most of these 

assemblies drive fans or blades. The functionality of this group is split between 

guiding fluids and separating materials. 

Cluster 14 also has a clear interpretation. All products except the bumble ball and 

the water pump contain motorized blade assemblies for separating materials. Upon 

closer inspection, the impeller inside the water pump is (erroneously) modeled as a 

motorized blade, accounting for its similarity to the other products in its group. 

Notably, some of the large clusters are difficult to interpret. For example, cluster 4 

contains power tools, kitchenware, and a few digital products. Most of these products 

share subassemblies that control fluid flow, but little else. Difficulty interpreting 

clusters is a common weakness of clustering algorithms, though it is encouraging that 

many clusters in this example have a clear interpretation. 

In contrast to these large clusters, the interpretations of clusters 8, 10, and 15 are 

very clear. These clusters respectively contain two coffee makers, two electric 

toothbrushes, and two nail drivers that use air pressure along with (erroneously) a 

tube cutter. Upon closer inspection, many of the components in the tube cutter and 

mini air nailer were not assigned component taxonomy labels in the Design 

Repository, leading to small DSMs, and resulting in very sparse fingerprints with a 

few incidentally matched bits. This highlights an important (though unsurprising) 

weakness: systems with very little information are difficult to characterize and 
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differentiate from other systems. These results suggest that this approach works best 

for graphs of similar sizes above a minimum size threshold. 

Table 18. Example Clusters using Ward's Method 

Cluster #4 
air hawg toy plane 
alcohawk digital alcohol detector 
apple usb mouse 
b and d can opener 
b and d circular saw attachment 
b and d jigsaw attachment 
cotton candy machine 
craftsman nextec multi tool 
dirt devil vacuum 
dremel multi max 
first shot nerf gun 
health o meter digital scale 
skil drill 
skil jigsaw 
snowcone maker 
stir chef 
tractor sprinkler 
walker 

Cluster #6 
b and d dustbuster 
b and d power pack 
b and d sliceright 
bissell hand vac 
bugvac 
delta nail gun 
dewalt sander 
eyeglass cleaner 
firestorm circular saw 
firestorm drill 
hair trimmer 
supermax hair dryer 
versapak circular saw 
 

Cluster #8 
black 12 cup economy coffee 
white 4 cup economy coffee 

Cluster #10 
colgate motion toothbrush 
oral b toothbrush 

Cluster #14 
b and d jigsaw 
delta jigsaw 
juice extractor 
mini bumble ball 
presto salad shooter 
vibrating razor 
water pump 

Cluster #15 
bosch brad nailer 
grip right mini air nailer 
ridgid tube cutter 
 

 

More generally, this clustering example demonstrates that in the absence of any 

functional information, it is possible to group systems with similar functions. 

However, any given clustering algorithm introduces additional ambiguity, and it must 

be tuned for a specific domain. In the context of a MORF design problem, this 

enables techniques such as similarity-based sampling and fragment mining that 
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maximize the value of each computationally expensive simulation and facilitate the 

development of predictive models. 

Fragment mining 

After clusters of similar candidates have been identified, they can be mined for 

fragments to (1) populate a database of starting seeds for use in the generative phase 

and (2) inform the development of a QSAR-style model. After testing the vacuum 

cluster for validity, fragment substructure mining for largest common subgraph was 

performed using Subdue [153]: a graph based unsupervised learning system. Mining 

each cluster separately greatly reduces the computational expense of finding common 

subgraphs. Figure 23 shows a common substructure in the vacuum group, and such 

fragments may be useful seeds for the automated design of new vacuum cleaners. The 

presence of shared substructures in a cluster is guaranteed because fingerprint 

similarity detects groups with high amounts of shared structural information, but 

determining what those substructures are requires this additional step. The expected 

size of such fragments is directly proportional to the size of the total population and 

inversely proportional to the size of its parent cluster. Fragments that come from 

small clusters will be larger (and frequently less valid) than fragments that come from 

large clusters because small clusters are created using stricter similarity cutoffs. 

Increasing the population size will also increase fragment size and validity (at 

additional computational expense) because it increases the number of similar 

candidates. Finding the optimal population and cluster cutoffs will be a matter of 

tuning a specific algorithm for a specific context. 
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Figure 23. Vacuum Cleaner Structural Fragment 

In the case of vacuum cleaners, this common substructure could be entered into a 

library to provide reference structural patterns for removing debris with air pressure. 

Such reference patterns could serve as starting seeds for new candidate generation, or 

be used to automatically evaluate new candidates (e.g., Fragment-Based QSAR). In 

the case of MORF design, an identical process can be used to extract structural 

fragments from clusters with interesting simulated behavioral characteristics. 

Application to MORF Design 

The envisioned MORF generation framework is broadly divided into two stages 

as shown in Figure 24. The first stage consists of undirected exploration to generate a 

coarse predictive model relating MORF behavior to structure. The second stage is a 

materials design task involving a domain expert and a set of functional requirements. 

It should be emphasized that this framework is a work in progress, and does not exist 

in working form at the time of publication. 

The exploratory stage begins with generating a large number of candidate 

structures using graph grammar rules. Next, these candidates are screened for 
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feasibility using computationally inexpensive metrics such as synthetic accessibility 

and activation energy. Third, molecules are fingerprinted and clustered as described in 

the electromechanical product example. Fourth, a representative subset of molecules 

is selected using similarity-based sampling. These molecules undergo more expensive 

molecular dynamics simulations. In addition to more accurate feasibility information, 

the outcomes of these simulations will provide simple behavioral measures such as 

changes in unit cell volume, overall changes in dimensions, work performed, and the 

ways in which the photoisomerizing forces interact with the geometric constraining 

forces. These behavior parameters are then correlated with structural fingerprints to 

produce a QSAR-style regression model. Additionally, common substructures are 

extracted from groups of molecules that have similar performance values across 

several behavior metrics. These substructures provide necessary information for 

constructing a fragment based QSAR-style of model. As the MORF domain matures 

and fragments are frequently used to serve the same behaviors and functions, this 

approach will facilitate the creation of a component taxonomy of MORF fragments. 

From the results of the exploratory stage, a Quantitative Structure-Behavior 

Relationship model (QSBR model) can be constructed and updated, with the goal of 

relating structures and key substructural fragments to the behaviors that they produce. 

At this stage it is not known whether a traditional regression model based on 

structures in their entirety, a fragment-based model, or a combination of the two will 

be most effective. Armed with this QSBR model, a materials designer would be able 

to start with a set of specific functional requirements, transform these requirements 

into desired behaviors, and then computationally explore structures in the solution 
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space that are most likely to satisfy these behaviors. The results of this exploration 

will serve to update the predictive models and guide the selection of candidates to 

synthesize. 

 

Figure 24. Envisioned MORF Generation Framework 

Conclusions and Future Work 

This paper explored a method to facilitate efficient solution space exploration 

using the structural fingerprinting representation. It was demonstrated that structural 

fingerprints of electromechanical products are correlated with their functions. 

Solution candidates were clustered using these fingerprints, and representative 

fragments were extracted from the functionally distinct cluster of vacuum cleaners. 

These fragments represent structural backbones of solutions with different 
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functionality. Together these results suggest a feasible method for exploring a solution 

space of dynamic functionality. 

Efficient exploration of the solution space is a major challenge in both molecular 

design and engineering design. Creating a computational framework for MORF 

generation requires techniques for efficiently exploring the solution space in a way 

that is predictive of MORF functionality. This study contributes to this goal by 

demonstrating that structural fingerprinting, which is already known to be a facilitator 

of efficient solution space exploration, is also correlated with labels of dynamic 

function. 

The results demonstrate a correlation between structural fingerprints of eight 

groups of electromechanical products and those products’ shared functions. This 

correlation provides evidence that structural fingerprints are a viable representation 

for inferring clusters of systems with distinctly different functionality. This result 

suggests that fingerprints could be valuable to support the automated design of both 

MORFs and electromechanical systems.  

In library design tools such as the Design Repository, fingerprints will provide a 

fast way to search for products based on a desired component substructure without 

performing costly subgraph search. The Design Repository also contains functional 

models, and these functional models can also be represented as graphs. Fingerprints 

of functional models will similarly enable efficient search for products with a desired 

set of function chains. Additionally, this approach is scalable to very large design 

libraries. All that is required is a tool for consistently generating (1) fingerprints of 

products in the repository, and (2) fingerprints for substructure search queries.  
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In automated design tasks wherein a large number of candidate solutions are 

created, fingerprinting and clustering provide tools to reduce the complexity of 

evaluation as well as to guide the algorithms that generate solution candidates. Given 

that function is correlated with structural fingerprints, clustering similar products 

reduces the complexity of two different types of concept evaluation. For evaluation 

tasks that require expensive computation, representative solutions from each cluster 

can be evaluated, just as in drug design. For evaluation tasks that require human 

interpretation, clustering can reduce the size of the search space and facilitate 

interactive exploration as described in [128]. Using fingerprints to support these 

clustering operations eliminates the need to specify a dictionary of important features 

while preserving topological information. Additionally, common substructure 

fragments in these well-performing clusters can be used as seeds for generating 

additional concept variants in the same solution neighborhood. 

While these results suggest the value of a fingerprinting approach to support 

computational search, they require verification and validation in the MORF design 

context. In future work, the fingerprinting approach presented here will be applied in 

the MORF generation framework to catalog feasible candidate structures.  These 

fingerprints will serve as the basis for calculating similarity, forming clusters, and 

selecting representative candidates for molecular dynamics simulations during a 

search. The most feasible results from each run will be used to inform a predictive 

QSAR-style model that relates molecule structure to important behavior 

characteristics in the MORF domain. During usefulness screening, these 

representations will likewise support similarity screening, clustering, and the eventual 
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visualization of each cluster’s behavioral characteristics. Further, different clustering 

algorithms must be assessed and tuned for their ability to produce meaningfully 

different groups of candidate structures in this context. Fragment mining from these 

clusters will create new seeds with known behavior properties in order to generate 

new candidates with similar behavior. After this framework is implemented it will be 

possible to conduct experiments with respect to verifying, validating, and tuning the 

search process. 
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Abstract 

This manuscript presents the Analogy Fingerprinting algorithm for quickly 

matching a large number of strong analogies to a given design problem. Analogy 

Fingerprinting uses path-based molecular fingerprinting from drug design to enable 

large-scale matching according to the structure mapping theory of analogy. The body 

of this article presents the algorithm, including its relationships to analogy theory and 

molecule search, and its potential impact on design. The paper concludes with a brief 

validation experiment that demonstrates the effectiveness of Analogy Fingerprinting 

for retrieving good analogies when combined with one of the three similarity 

measures examined.  

Introduction 

A key challenge for software that aims to automatically generate good design 

analogies is to surprise the designer with high quality ideas that had not yet been 

considered. In order to meet these requirements, it is necessary to search a large 

solution space. The alternative is to manually specify a narrow search space, which by 

definition also reduces the novelty associated with an analogy from that space. For 

example, a designer is unlikely to ask for every possible analogy between their 

problem and the domain of carpentry unless they already suspect a strong conceptual 

connection. If the designer is confident that carpentry contains a good analogy, then 

half of the analogy matching challenge is already solved. 

This type of design analogy search is challenging to perform on this massive 

scale. The search must span many different sources of information, and consequently 

this information will be in a wide variety of forms. For example, a typical catalog of 
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design information might include an artifact’s overall and constituent functions, 

constituent components, dimensions, constraints, use case information, and/or various 

types of requirements. The challenge associated with analogical matching based on 

these information categories is that, outside of a small subset of potential analogical 

solutions that exist in engineering databases, most potential analogies are not 

explicitly described in neatly organized categories. Instead, potential solutions are 

often described in natural language, in sources such as in scientific publications, 

textbooks, and patents. (Although one may argue – convincingly – that the language 

used in patents is hardly “natural,” it is not neatly organized in the manner of a design 

database.) As a consequence, there is a need for algorithms that are capable of 

distilling key conceptual relationships from this noisy data – and then performing 

matching – on a large scale. 

A concept map [154] is a type of information representation that models a set of 

concepts and the relationships between them. Concept maps provide a convenient 

representation for performing large scale analogical matching because – while they 

have the necessary relationship structure – they can be generated from a wide variety 

of sources. Representations such as natural language descriptions, databases, and 

technical specifications can all be represented as a set of key concepts and the 

relationships between them. For example, the entity-relationship style of most 

databases requires little-to-no processing to convert into a concept map, and there 

exist a variety of methods for converting natural language passages into concept maps 

(e.g., natural language processing and human computation [96, 112, 155]). This work 
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assumes that a scalable method or set of methods has been used to create large library 

of concept maps from this zoo of potential information sources. 

The Analogy Fingerprinting algorithm presented in this paper leverages the 

molecular fingerprinting algorithm from drug design to address the challenge of high-

speed analogy matching on a large scale. Given a set of potential analogy candidates 

encoded according to their internal conceptual relationships (i.e., concept maps), the 

algorithm matches a design problem to its most plausible analogies. In terms of 

matching, Analogy Fingerprinting attempts to satisfy the structure mapping [3] 

criterion – that an analogy between two domains is strong because of matching 

relationships between entities in those domains. In simple terms, this means that there 

is a mapping between the domains’ relationship structures. 

The remainder of this paper is structured as follows. First, a brief overview of the 

related work discusses analogy formation and relevant drug design techniques. The 

next section describes the Analogy Fingerprinting algorithm and its application to 

design. The following sections present an explanatory example of the Analogy 

Fingerprinting, results of the effectiveness of several similarity measures, and a brief 

discussion of the method’s validity. 

Background 

This section describes related concepts and work in the areas of analogy, graph 

theory, molecular fingerprinting, and fingerprint similarity. 

Analogy 

Designers often base new solutions on old solutions using a process called design 

by analogy [43-45, 84]. The principle that analogy takes place between networks of 
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concepts and the relationships in each network is widely agreed upon [4]. For 

example, Gentner’s structure mapping theory [3] states that analogical mapping 

occurs between a source domain and a target domain. Each domain is represented as a 

structured set of concepts and relationships. An analogy is formed when relationships 

can be mapped from source to target. The strength of the analogy increases as the 

number and structural matching of the relationships increase. If one relationship 

causes another, this increases the strength of the relationship further. An example 

given by Gentner [3] draws an analogy between the solar system and the Rutherford 

model of the atom. An electron revolves around a nucleus, while a planet revolves 

around the sun. An electron is less massive than a nucleus while a planet is less 

massive than the sun. Each of these relationships strengthens the alignment between 

the planetary domain and the atomic domain. The Analogy Fingerprinting algorithm 

presented in this paper matches design analogies based on the structural alignment of 

such relationships. 

Computationally finding such mappings is important because, while analogy 

formation is indicative of expert designer performance [2], it is challenging for a 

designer to effectively index and retrieve a large number of potential analogy 

candidates [48]. 

Graph Theory 

A fundamental concept that supports the Analogy Fingerprinting algorithm is that 

many very different types of information can be represented as a graph. Briefly, a 

graph is a set of information comprised of nodes (also called vertices) and edges (also 

called arcs). Relevant to this work are molecular graphs and concept map graphs. A 
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molecular graph describes the bonds (represented as edges) connecting different 

atoms (represented as nodes). A concept map graph represents the relationship 

(represented as edges) between different concepts (represented as nodes). One of the 

challenges solved in this paper is that of converting an algorithm designed to operate 

on molecular graphs to one that works on concept map graphs. 

Another challenge solved by Analogy Fingerprinting relates to the speed of 

search. Graph substructure search is an NP-complete problem [139]. In contrast, 

fingerprint search has linear time complexity [139]. The majority of computation in a 

fingerprint search is done as a preprocessing step – converting the graph into a 

fingerprint. As a consequence, a designer (both human and computational) can 

examine a significantly larger size of the search space on demand than by using graph 

search directly.  

Molecular Fingerprinting 

Molecular fingerprinting is an algorithm designed to aid in the rapid screening of 

drug molecules in drug design applications.  

What problems it solves 

The molecular fingerprinting algorithm addresses several problems in 

computational drug design. First, it takes the complex information stored in a 

molecular graph and transforms it into a representation that can be screened rapidly – 

it is more efficient to search for substructures in a fingerprint than in a molecular 

graph. Second, these fingerprints can be used to rapidly calculate structural similarity 

between two molecules. Third, a population of fingerprints and performance data can 

be formulated into a predictive model that relates the presence or absence of 
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substructures to their various types of performance. Such models are commonly 

called Quantitative Structure-Activity Relationship Models or Quantitative Structure-

Property Relationship Models (QSAR or QSPR). The algorithm presented in this 

paper leverages the first two of these approaches. 

How it works 

There are several types of fingerprinting algorithms, but they all use a hashing 

function to map substructure data into bits in a fixed length vector. Structural key 

fingerprints rely on a prescribed set of substructure types; the presence or absence of 

each substructure is captured in a bit position that corresponds to that substructure 

[139]. In situations where it is impractical to select a set of graph features beforehand, 

an alternative approach is to generate an impromptu set of features as fingerprinting 

occurs. Path-based fingerprints do not rely on a prescribed vocabulary, instead 

hashing all paths of a specific length (typically from 2-7) into a set of bits in a fixed-

length binary vector [139]. For example, Figure 25 shows a single graph substructure 

being hashed into a single bit. For a molecular substructure search query involving 

path-based fingerprints, the search query is fingerprinted and then compared to every 

fingerprint in a searchable set. The search returns every molecule that contains all of 

the same bits as the search query. Other applications use fingerprints to calculate 

similarity between molecules. Other types of fingerprinting algorithms, such as 3D 

molecular fingerprints, are outside the scope of this work. 

A common approach to generating the fingerprint is to first represent each path as 

a hashable entity. Molecules can be represented in a myriad of ways; one of which is 

the SMILES string [156]. SMILES strings capture complex molecular graph 
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information into compact strings, which can then be hashed into a fixed-length binary 

vector. Each path is hashed into several bits using a Cyclic Redundancy Check (CRC) 

– an algorithm that was originally designed to ensure that a digital message has not 

been altered [150]. CRC is desirable because it hashes into a fixed length (which is 

necessary for comparing two different fingerprints) and can be calculated quickly. In 

brief, a CRC uses a generator polynomial and a binary representation of the hashable 

item to repeatedly perform polynomial division. The remainder after performing this 

process serves as that item’s hash. A set of multiple generator polynomials can be 

used to create unique pattern of bits for each path. 

 

Figure 25. Simple Structure Hashing 

The process of hashing into multiple bits stems from Bloom filters [143] – 

probabilistic data structures which were initially designed to speed up hard drive 

access times by checking for the absence of a desired file’s unique signature. Hashing 

each entity into multiple bits generates a pattern with a much higher probability of 

being unique than with a single hash, thus reducing the likelihood of a false positive. 

In other words, using multiple hashes reduces the probability of collisions between 

two different pieces of data by reducing the likelihood that all of their hashes are the 

same. An optimal number of hashes results in the lowest probability of total collisions 
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between two patterns, and is dependent on the number of entities being hashed and 

the size of the bit vector.  

The Bloom filter approach aligns perfectly with the goals of molecular search. 

Both approaches aim to quickly narrow the field of candidate hard drive 

locations/molecules, and both are guaranteed to return every match (along with a 

false positive rate dictated by the probability of collisions). 

Why it works 

A key advantage of path-based fingerprinting is its content-agnostic approach to 

representing substructures. A fingerprint can be created for any graph, regardless of 

content and domain. Such an algorithm can index and search any information that can 

be represented as a graph, but this is not the only advantage of the approach. 

In addition to their content-independence, path-based fingerprints provide a built-

in weighting scheme based on fragment size – large fragments are weighted more 

heavily than small fragments. This is largely due to the way in which they capture the 

overwriting substructure of molecules. For example, ethanol (Figure 26) can be 

represented using the SMILES string CCO (two Carbons and an Oxygen connected in 

a linear path) based on its hydrogen-depleted molecular graph (Figure 27). A simple 

path-based fingerprint of ethanol would capture the paths for CC, CO, and CCO – 

three bits of information rather than one (Figure 28). A search query for the path CCO 

would match on all three of these bits (100% match), while a query for CC or CO 

would match only one out of three (33% match).  
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Figure 26. Ethanol Molecular Graph 

 

Figure 27. Hydrogen-Depleted Ethanol Molecular Graph used to produce SMILES 

String 

 

Figure 28. Ethanol Graph Path Hashes using a Single Fictional Hashing Function 

As the size of the path increases, so does the amount of information it captures. 

Every new bit carries with it the possibility for a successful match or a failed match. 

The overall effect is that a path-based fingerprint weights large substructures more 

heavily than small substructures. Eq. 4 describes this relationship for path-based 
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fingerprints of linear substructures starting at length two and going up to the length of 

the substructure, where L is the length of the substructure’s path and B(L) is the total 

number of bits that the substructure has in its fingerprint.  

 

 
𝐵𝑝𝑎𝑡ℎ(𝐿) =

𝐿2 − 𝐿

2
 Eq. 4 

 

Ring substructures are weighted more heavily. Cyclic substructures allow more 

unique paths using the same number of nodes. For example, the path ABCD contains 

exactly one four-node path. A ring made from the four nodes ABCD contains four 

unique paths: ABCD, BCDA, CDAB, and DABC. Directionality is irrelevant – the 

subgraph described by ABCD is the same as the subgraph described by DCBA. Ring 

substructures follow the relationship given in Eq. 5 

 

 𝐵𝑟𝑖𝑛𝑔(𝐿) = 𝐿2 − 𝐿 Eq. 5 

 

As a consequence, ring substructures are favored more heavily than linear 

substructures in a path-based fingerprint. 

Similarity Measures 

Given two fingerprints, it is often desirable to calculate their similarity. Drug 

design provides many different similarity measures for this purpose, but this work 

will examine just two: Jaccard similarity and Russell/Rao similarity. Additionally, a 

third approach to calculating similarity – the Membership similarity measure – is 

developed and tested based on the specific requirements of analogy matching. 



160 

 

Table 19 presents convenient abbreviations for describing similarity measures. 

Each similarity measure is described in terms of shared presence or absence of bits in 

each fingerprint.  

Table 19. Similarity Measure Contingency Table Shorthand 

 Fingerprint B Bits Present Fingerprint B Bits Absent 

Fingerprint A Bits Present a b 

Fingerprint A Bits Absent c d 

 

For example, “a” in Table 19 represents the total quantity of bits shared by both 

Fingerprint A and Fingerprint B, while “c” represents the total quantity of bits that are 

absent from Fingerprint A but present in Fingerprint B. 

Jaccard similarity (Eq. 6) [157] is commonly used in drug design applications 

[144], and has been demonstrated as a strong general-purpose similarity measure 

when compared against other metrics [140]. This measure counts the ratio of shared 

bits to the total number of bits in both fingerprints. Bit positions that are absent from 

both fingerprints are ignored. The main drawbacks of Jaccard similarity are its 

tendency to give low similarity scores when the query fingerprint is very small, and 

its bias toward specific similarity values [144].  

 

 𝐽(𝐴, 𝐵) =
𝑎

𝑎 + 𝑏 + 𝑐
 Eq. 6 

 

A second similarity measure, the Russell and Rao similarity measure (Eq. 7) [158] 

is also tested in this work due to its favorable performance in molecular search [159]. 
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 𝑅(𝐴, 𝐵) =
𝑎

𝑎 + 𝑏 + 𝑐 + 𝑑
 

Eq. 7 

 

A third similarity measure – related more closely to screening rather than 

calculating similarity – is also tested. The initial design goal of fingerprinting was to 

quickly screen a library of molecules for the presence or absence of a given 

substructure, as in a Bloom filter. This type of search has two outcomes; either a 

candidate matches all bits in a query (indicating that the substructure is very likely to 

be present in its entirety) or it doesn’t (indicating that the substructure is definitely not 

present). The remaining population of matching candidates is very likely to contain 

the substructure, though this is not guaranteed due to the probabilistic nature of 

fingerprint searching (i.e., the potential presence of collisions).  

The Membership similarity measure builds on this idea to determine how closely 

a given search query matches this 100% membership criterion. Membership 

similarity of a candidate C inside of a search query Q is defined according to Eq. 8. A 

query whose every bit is accounted for in a search candidate is a 100% match for a 

substructure in that candidate. The results section shows that the membership 

similarity measure is the most performant of the three measures examined in this 

study. 

 

 𝑀(𝐶, 𝑄) =
𝑎

𝑎 + 𝑏
 

Eq. 8 
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Notably, this metric is not a true similarity measure because M(C,Q) and M(Q,C) 

will produce different results. However, it is useful for comparing the extent to which 

members in a set of candidates satisfy the Bloom filter style of membership criterion 

beyond a simple pass/fail. In the context of design, it is useful for finding the analogy 

candidates that most closely address all or part of a given problem. 

The Analogy Fingerprinting Algorithm 

The Analogy Fingerprinting Algorithm section begins by discussing the 

algorithm’s goals, its relationship to molecular fingerprinting, its application to 

design, its impact on design. The core of the section describes the algorithm’s 

mechanics and presents an explanatory example. 

Goals 

The goal of Analogy Fingerprinting is to provide a fast way to retrieve high-

quality analogies by matching their relationship structures to a given problem domain. 

Put simply, the algorithm is designed to match design problems with relevant 

analogies. Because conceptual relationships play a key role in analogy formation, the 

algorithm operates on concept map representations of design information. A concept 

map describing a design problem’s main concepts – whether those concepts are 

requirements, desired functionality, constraints, or any other key information – serves 

as a search query. Each existing solution (i.e., potential analogy) is similarly 

represented as a concept map of the key domain concepts that allow an artifact to 

solve a problem. If a design problem shares many key conceptual relationships with a 

potential solution – regardless of what type of information comprises those 
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relationships – then the solution satisfies the structure mapping criterion for a good 

analogy. 

Relationship to Molecular Fingerprinting 

Molecular fingerprinting is an approach to encoding the structural information of 

molecules into a form that is easily searchable. The path-based approach to 

fingerprinting is content-agnostic; the interesting types of structural information need 

not be specified beforehand. In path-based molecular fingerprinting, the types and 

connectivity of atoms in a molecular graph are hashed into fingerprint bits. This 

approach takes advantage of the finite number of possible atoms. 

Concept maps differ from molecular graphs in that (1) edges are labeled, (2) edge 

labels are important while node labels are not important, (3) multiple edges between 

nodes are possible, (4) edges are directional, and (5) there is no generally agreed-

upon taxonomy of labels (in this case this means that there is no standard taxonomy 

of relationships between concepts). 

To accommodate these differences, the following changes are made to the 

fingerprinting algorithm. (1,2) Edge labels are promoted to labels of their preceding 

nodes. Node labels are ignored for fingerprinting the analogical structure map of a 

concept map, but can be used as part of a separate process to assess semantic 

similarity between concept maps. (3) In the case that multiple edge labels are 

promoted into the same node, that node is duplicated once for each new label. All 

edge connections are identical for all of these duplicate nodes. (4) In addition to 

simplifying the promotion of edge labels to node labels, edge directionality is 

captured by extracting paths following only outward edges. (5) Natural language edge 
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labels are promoted into a predetermined relationship classification prior to 

fingerprinting. 

Application to Design 

In the design literature, a key principle of conceptual design is to consider many 

different alternatives before selecting a concept to develop (e.g., [38, 160]). 

Techniques like brainstorming, C-Sketch [161], mind mapping [162], and many more 

are all used to address this goal. Any technique that can provide a wide variety of 

conceptual design inspiration that is relevant to a problem, while also minimizing the 

designer’s time investment, is a valuable conceptual design tool. Analogy 

Fingerprinting supports this process with a large library of concept map fingerprints. 

A designer can then make rapid queries for existing systems – both engineered and 

natural – that possess an analogical alignment to the problem at hand. 

In order to do so, the designer formulates their design problem space as a concept 

map. This process is non-trivial; it requires a good understanding of the problem. The 

designer must decide on the most important information elements across many 

different abstract categories (e.g., requirements, functionality, constraints, known 

issues, and more), and then must model the conceptual relationships between them. 

Including superfluous information in this model can change the result because any 

fingerprint search weighs all information evenly, regardless of content. As a 

consequence, the designer must consider the impact of each addition to the model. 

Constructing several models can mitigate the impact of model construction details. 

A second challenge is similar to one faced in functional modeling. A valuable 

functional model describes what something should do, not what it shouldn’t do. For 



165 

 

example, a roof should “stop liquid” rather than “not leak.” To perform an analogy 

fingerprint search, the designer should construct a concept map in the desired state. 

For example, a concept map can describe a design situation in which a leaky roof 

should be replaced with a non-leaky roof. This concept map should contain an 

assertion like “roof stops rain” rather than “rain bypasses roof” or “water enters 

dwelling.” In contrast, if this leakiness is a required operational constraint (maybe the 

designer wants to use the rain to water indoor plants), then “roof stops rain,” “rain 

bypasses roof,” and “water enters dwelling” might all be included as important 

functional requirements. 

This concept map serves as a search query. This search query is fingerprinted and 

compared to fingerprints of every potential analogy in the knowledgebase using a 

binary similarity measure. This produces a similarity ranking of existing systems to 

be presented to the user. 

Design Impact 

This style of approach – in which a designer specifies conceptual 

interrelationships between many types of design specifications (e.g., requirements, 

functions, constraints) – has the potential to improve design outcomes in several 

ways.  

The first advantage is an improvement in the breadth of high-quality solutions 

considered. The algorithm represents analogical structure in a way that is quickly and 

easily searched. Matching conceptual structure maps leads to high-quality analogies, 

while the high speed of search improves the breadth of analogies that may be 

considered. 
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The second advantage is that fewer design iterations are needed to converge to a 

valid solution. A typical engineering design process thrives on iteration. Each 

iteration costs resources, but provides valuable information. For example, scrum 

[163] and similar design processes produce many quick prototypes in short sprints. 

These design sprints reduce uncertainty of design outcomes – such as requirement 

satisfaction and subsystem interactions – that are difficult to predict. In contrast, a 

major advantage of a strong design analogy is its inherent validity – the analogous 

object already solves a relevant problem, and its behaviors and challenges are 

generally understood based on real-world performance. In contrast, a new design 

from first principles lacks the validity from this built-in real-world testing. The 

algorithm facilitates analogical matching on the conceptual features that are most 

important to the designer. This matching provides conceptual suggestions that 

inherently require less testing and iteration because the validity of the base system is 

already known. 

The third advantage relates to handling complexity. There is a heuristic in 

complex systems architecting that suggests “doing the hard part first” [164]. Every 

design decision reduces the decision space for every subsequent design decision. The 

goal behind doing the hard part first is to mitigate the compound difficulties of 

solving difficult challenges in the face of restrictions imposed by past design 

decisions. This approach provides a framework for a designer to identify and confront 

difficult challenges across multiple levels of abstraction and subsystems early in the 

design process. An appropriate analogy or set of analogies that address these difficult 

challenges can be identified early in a design process. 
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How the Algorithm Works 

Each concept map is a directional multigraph; a graph where edges are directional 

and parallel edges are allowed. Each edge is labeled with a relationship. Each edge 

relationship must be described using a fixed vocabulary. For example, the Functional 

Basis [15] and Component Taxonomy [42] provide restricted vocabularies for 

describing electromechanical functions and components. The periodic table provides 

a restricted vocabulary for describing atoms. ConceptNet [113] and BioP-C [155] 

provide restricted vocabularies for describing general relationships. 

An alternative option (and the one taken in the example presented later in this 

paper) is to use WordNet [90] to promote natural language relationship labels into a 

high-level taxonomy of relationships. This algorithm repeatedly promotes the root 

word of each relationship label into its hypernym until the label is so general that it 

cannot be promoted again. In the case of multiple possible hypernyms, the algorithm 

selects the one that is most frequently used. For example, the verb “transform” has 

seven possible word senses. The first of these is selected and promoted to its 

hypernym of “change.” This word sense of “change” does not have any further 

hypernyms, and so “change” is the final label given to this relationship. The verb 

“convert” follows a similar path to the same top hypernym. The end effect is that two 

concept maps – one containing the assertion “X changes Y” and another containing 

the assertion “A converts B” – will match each other on this feature. It is also possible 

to represent concept maps at lower levels of abstraction by first promoting every edge 

to its top hypernym and then backtracking by a fixed number of hops. 
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This generalized approach to normalizing concept maps provides an advantage 

that is synergistic with path-based fingerprinting. Path-based fingerprinting 

circumvents the need for a predefined set of patterns, just as hypernym promotion 

bypasses the need to predefine a fixed relationship vocabulary. 

Starting with this restricted vocabulary concept map, several transformations must 

occur before a fingerprinting algorithm can be applied (summarized in Figure 29). In 

the case of molecular fingerprinting, edges are unlabeled and undirected. Molecular 

fingerprinting captures the connectivity between the various types of atoms. In order 

to apply a similar fingerprinting algorithm to concept maps; the directionality, 

potential parallelism, and edge labels must be represented in a manner that makes it 

possible to capture every chain of relationships. The end goal is to preserve the 

graph’s connectivity such that extracting every path of a fixed set of lengths captures 

the full variety of relationship structures in a concept map. 

Starting with a concept map with a restricted vocabulary of relationships, each 

edge’s relationships label is shifted onto its predecessor node. As in structure 

mapping, relationships between concepts are important, while the concepts 

themselves are not. Each node with multiple outward edges (and thus more than one 

of these new edge label properties) is duplicated, complete with all of its inward and 

outward edges. Next, all paths of lengths two through five are extracted from the 

graph. The path extraction step preserves directionality information by following only 

outward edges when creating paths. No single node can be in a path more than once. 

Similarly, a node and its duplicate are not permitted to appear in the same path. Each 

of these paths represents a single point of information in a potential match. If two 
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concept maps share a large percentage of paths constructed in this manner, then those 

concept maps have high analogical similarity according to the structure mapping 

definition. 

1. Begin with a concept map represented as a directional multigraph 

2. Convert edge labels (relationships) to a fixed vocabulary 

3. Promote each edge label to an attributes of its preceding node 

4. For each node with multiple outward edges, split that node and duplicate all 

inward edges 

5. Extract all paths of lengths 2 to 5 from the concept map graph 

6. Hash each of these paths into a set of bits in the fingerprint 

Figure 29. Analogy Fingerprinting Algorithm 

Following this path extraction, fingerprint hashing can continue in a manner 

identical to molecular fingerprinting. All paths of lengths 2-5 are extracted from the 

graph, and only outward edges are traced in order to preserve directionality 

information. Each of these paths is hashed into a 232 bit fingerprint using 14 different 

cyclic redundancy check [150] polynomials to create a pattern of 14 different bits for 

each path. 

The selection of these numbers of path lengths and hash functions was done based 

on tuning on a limited data set rather than rigorous study, but it is trivial to show that 

a reasonable fingerprint size and number of hash functions can be used to index a 

very large number of concept maps with a very small probability of false positives. 

The optimal number of hash functions to minimize the error rate is given by Eq. 9 

[165], where m is the filter size and n is the number of elements being indexed. 

 

 𝑘 =
𝑚

𝑛
ln (2) Eq. 9 
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Assuming 100 million concept maps are being indexed into a 232 bit fingerprint, 

the optimal number of hash functions is 29 – resulting in a 1.1e-9 probability of false 

positives. Even with 14 hash functions, this probability is estimated at a negligible 

1.7e-8, given by Eq. 10 [166]. 

 

 𝑝 ≈ (1 − 𝑒−𝑘𝑛 𝑚⁄ )
𝑘

  Eq. 10 

 

Every available concept map is fingerprinted in this manner to create a quickly 

searchable analogy library. A designer can then formulate a concept map, fingerprint 

it using the same algorithm, and quickly retrieve relevant analogies. 

Example 

This section presents a simple example of the algorithm using the analogy 

between the planetary model of the atom and the planets themselves. 

Figure 30 (left) shows a concept map of the planetary domain, and Figure 30 

(right) shows a concept map of the atomic domain.  

The first step in the algorithm is to promote every relationship into a restricted 

relationship vocabulary, as shown in Figure 31. This example generates this 

vocabulary automatically and organically, using WordNet to promote every 

relationship into its most probable top-level hypernym. Each relationship is 

represented by a WordNet Synset: a data type that includes the word, its part of 

speech, and its word sense.  
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Figure 30. Concept Maps for Planetary Domain and Atomic Domain 

For example, the relationship “attracts” is automatically promoted to Synset 

“move.v.02.” This Synset refers to the verb “move,” defined in WordNet as, “[to] 

cause to move or shift into a new position or place, both in a concrete and in an 

abstract sense.” In contrast, “move.v.01” is defined as, “[to] change location; move, 

travel, or proceed, also metaphorically.” The verb “attracts” clearly refers to an entity 

causing another entity to move rather than an entity’s own movement, and the word 

sense “move.v.02” correctly captures this distinction.  

 

Figure 31. Hypernyms of all Concept Map Relationships 
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The next step is to remove relationships that express property information, as 

shown in Figure 32. According to structure mapping theory, relationship information 

is significantly more important than attribute information. As a simple heuristic, the 

algorithm removes any relationships whose top hypernym is “be.v.01.” This specific 

sense of the word “be” – which expresses that something is a property or attribute of 

something else – is defined in WordNet as, “have the quality of being; (copula, used 

with an adjective or a predicate noun). 

 

Figure 32. Concept Maps without Attribute Information 

After a concept map’s relationship vocabulary has been normalized and its 

property descriptors have been pruned, each relationship is promoted onto its 

preceding node. For example, in Figure 32 (left), the relationships “move.v.02” and 

“travel.v.01” flow from planet to sun. Both of these are promoted onto the preceding 

node, replacing “planet” with a list of all outgoing relationships. After doing so, due 

to the simplicity of the example, the two concept maps are identical. 

 

Figure 33. Concept Maps with Relationships Promoted onto Nodes 

move.v.02, travel.v.01

(planet)

bigger.s.01, move.v.02

(sun)

move.v.02, travel.v.01

(electron)

bigger.s.01, move.v.02

(nucleus)
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Next, each node with multiple relationship labels is duplicated while preserving 

its old connections. For example, the top node in Figure 33 (left) – formerly the 

“planet” node – is split into a “move.v.02” node and a “travel.v.01” node as shown in 

Figure 34 (left). Both of these nodes maintain their connections to the node 

containing “bigger.s.01” and “move.v.02” (formerly “sun”). This node is also split, 

resulting in the graphs shown in Figure 34. The old labels on each of these nodes are 

shown in this figure in order to clarify the path extraction phase, but these node labels 

from the original graph are not actually used by the algorithm. 

 

Figure 34. Concept Maps After Splitting Nodes 

The next step is to extract all nonrepeating paths within a specified range of 

lengths. Nodes that have the same old label cannot be repeated. Because there are 

only two nodes (electron and nucleus), the graph does not contain any paths greater 

than length two. All of these paths are shown in Figure 35. Next, a string 
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representation of each of these paths is hashed into a unique pattern of bits. Figure 35 

depicts the hash results by showing the pattern of bit positions in a 32-bit vector that 

corresponds to each path. For this example, 14 different hash seeds are used to 

produce a unique signature of 14 bits for each path. 

 

Figure 35. All Paths for Planetary Domain Concept Map 

Assumptions 

The Assumptions section discusses the assumed content and abstraction of 

concept maps used by the Analogy Fingerprinting algorithm. 

What’s in a Concept Map? 

An implicit (and important) assumption in this method is that every concept map 

contains the most meaningful information related to the concept of interest. Each 
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concept map is modeled at a level that is most conducive to describing the 

phenomenon of interest. I.e., while every conceptual domain exists at many levels of 

abstraction, it is described according to its most salient features. 

If a concept is modeled in great detail at low level, then it is assumed that this 

description is the most meaningful. Search queries for relevant analogies will describe 

the design situation at the desired abstraction level. If a query and a potential analogy 

are modeled at different levels of abstraction, then it is assumed that the potential 

analogy is not the focus of the current search query. 

For example, a passage describing photosynthesis might contain relationships 

between various mechanisms that comprise the process. A more general passage 

about plant survival characteristics may only mention photosynthesis as part of a 

larger goal. The general passage would be more likely to match a survival problem, 

while the photosynthesis passage would be more likely to match an energy problem. 

Mixed Abstraction 

An issue with the graph-based approach to representing knowledge models is the 

difficulty of expressing high order relationships between groups of concepts. For 

example, an entire process (e.g., annealing) may be treated as either a group of 

distinct steps or as a single atomic unit. For some reasoning tasks it may be useful to 

say that the entire process produces the end result, while for others it may be more 

useful to understand that the final step leads to the end result. Annealing is a heat 

treatment process wherein a metal is heated to a specific temperature and then cooled 

at a specific rate. This process can be used to relax internal stresses in a metal. The 

overall process of annealing and the internal subprocess of cooling could both be 
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modeled as leading to the end result. A comprehensive method for analogy matching 

must accommodate all levels of abstraction. 

While the current work does not address this challenge, the concept map 

representation is capable of doing so. A single node in a concept map is loosely typed; 

it can represent any type of information, and can even contain entire subgraphs. 

Inserting such a node into a concept map and relating it to the other concepts in a 

graph can express high-order relationships across mixed levels of abstraction. The 

challenge of recursively fingerprinting and retrieving such nested relationships across 

mixed levels of abstraction is left to future work. 

Validation Experiment 

As is often the case in design research, new techniques are seldom introduced and 

validated simultaneously – true validation requires long term in situ testing, 

observation, and ultimately acceptance by educators and practitioners. The Validation 

Experiment section describes an experiment that addresses the value of Analogy 

Fingerprinting in a single design situation. The section is broadly divided into two 

subsections – the first subsection describes the construction of the experiment and the 

second subsection describes the analyses and results. 

Approximating a Design Analogy Situation 

Validation of the algorithm was performed with students in a graduate-level 

biologically-inspired design course. The students were presented with a design 

prompt and each student constructed a concept map of a desired solution. These 

concept maps are used as queries for testing the efficacy of matching analogy 

fingerprints. The design prompt describes a design context in which three separate 
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problems exist relating to temperature sensitivity, vulnerability to predators, and 

energy efficiency. After creating these concept maps, the students were introduced to 

existing biologically-inspired design approaches that deal with the type of weakly-

specified information that appears in concept maps. 

Context 

A research organization owns capsules containing scientific instrumentation for 

measuring climate data across the world. They want to deploy these capsules in the 

arctic tundra of the North Pole. Unfortunately, their current design suffers from the 

challenges of the arctic tundra climate: 

 Some of the instruments in the capsule are sensitive to low temperatures. 

 Polar bears have been known to destroy these capsules. The scientists 

speculate that one of the electromagnetic signals emitted by the instruments is 

attracting the bears. 

 Each capsule is accompanied by a solar array that powers all of its 

instruments. Unfortunately, sunlight in the tundra is insufficient for large 

portions of the year, causing many of these capsules to become inactive.  

 

Problem Statement 

Given this context, create a concept map of what an artifact that solves the problem 

should be. A concept map captures the important concepts in a domain, as well as 

how those concepts are related to each other. You should consider the structural and 

functional aspects of a solution, but you are not limited to just these. Other possible 

aspects include constraints, user needs, or reasonable assumptions. 

Figure 36. Design Prompt for Concept Map Creation 

Figure 37 shows an example of a query concept map. As with the other concept 

maps in the data set, the experimenter manually condensed multiple-word 

relationships into single-word relationships (e.g., “quantified by” becomes 

“quantifies” and the directionality changes). Additionally, part of speech tags were 

added to support automatic hypernym promotion, and adverb phrases such as “is in” 

(e.g., “capsule is in ground”) are reduced to the root adverb (e.g., “in”) and tagged as 

adverbs accordingly. 
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Figure 37. Sample Query Concept Map 

These concept maps were fingerprinted and used as search queries against two 

sets of seven concept maps that were labeled a priori as either good analogies or bad 

analogies. The good analogies were selected based on the biological systems that the 

students suggested as good analogies after the concept mapping activity. The bad 

analogies were selected from the biology domain by the first author. The only criteria 

for the bad analogies were that they are available in the AskNature database of 

biological systems [167] and that the biological system of interest has little 
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conceptual overlap with any of the subproblems given in the design prompt (in the 

judgment of the author). The author created all of the concept maps in both sets 

manually using the steps enumerated in Figure 38.  

1. Identify and read a passage describing the biological system.  

2. Identify the main strategy described in the passage. 

3. Identify the most meaningful words and phrases in the passage.  

4. Using the most meaningful words and phrases as nodes, construct 

relationships to describe the content of the strategy. 

Figure 38. Concept Map Creation Algorithm 

Table 20 lists the resulting analogy candidates, with examples of bad and good 

analogy candidates in Figure 39 and Figure 40 respectively. It should be noted that an 

automatic algorithm for converting natural language to concept maps would produce 

a more authentic test of analogy fingerprints, and creating these concept maps 

manually somewhat idealizes the assessment. As a consequence of this idealization, 

the current experiment assesses analogy fingerprint matching without the noise 

introduced by imperfections in any specific NLP or human computation algorithm. 

Table 20. Good and Bad Analogy Candidates 

Good Analogies Bad Analogies 

Heliotropic Flowers Ant and Anti-Bacterial Fungus Relationship 

Photosynthesis Ant Nest Rebuilding Behavior 

Polar Bear Fur Biopolymer Fermentation 

Porcupine Quills Caddisfly Glue 

Porpoise Blubber Jiggled Mud Construction Technique 

Snake Dens Sponge Growth 

Whale Blubber Vine Structure 
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Figure 39. Bad Analogy Sample – Leafcutter Ants' Symbiotic Relationship with 

Streptomyces Bacteria 

 

 

Figure 40. Good Analogy Sample – Porcupine Quills 

After removing concept maps created by nonnative English speakers (which 

would introduce unwanted noise into the results), ten concept maps produced by six 

students remain. The density, number of nodes, and number of edges for each of these 

concept maps are shown in Figure 41, where density 𝑑 is defined according to Eq. 11, 
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with 𝑚 representing the number of edges and 𝑛 representing the number of nodes. 

The averages for each of these quantities are 0.1800, 9.8 nodes, and 13.2 edges 

respectively. By comparison, these average values for the good analogy set are 

0.2995, 6.6 nodes, and 8.6 edges; and for the bad analogy set these values are 0.2968, 

6.4 nodes, and 9.3 edges. Three Mann-Whitney U Tests comparing the good and bad 

analogy sets return p-values of 0.80, 1.0, and 0.54 for these three graph descriptors, 

suggesting no obvious differences between the construction of the good and bad 

analogy test sets. 

 

Figure 41. Summary Graph Descriptors for every Query Concept Map 

 

 𝑑 =
𝑚

𝑛(𝑛 − 1)
 Eq. 11 

 

Notably, no single concept map in the test set created by the students addresses all 

three of the subproblems described in the design prompt, while each potential “good” 

analogy addresses exactly one subproblem. For example, the concept map in Figure 

37 contains the assertion “polar bear destroys capsule.” This phrase adequately 

summarizes the problem, but does not contain any design intent to prevent the 
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capsule’s destruction (e.g., “protective device deters polar bear”). As a consequence, 

for any given query from this test set, some of the “good” analogies are actually bad 

matches. The end result is that the “good” group contains some false positives for 

every search query, increasing the conservativeness of any test designed to evaluate 

the retrieval rate of the algorithm.   

Analogy Fingerprinting Effectiveness – Analyses and Results  

In order to test the quality of results retrieved from analogy fingerprints, each of 

these concept maps was fingerprinted using the Analogy Fingerprinting algorithm. 

Next, using each of the ten human-generated concept maps as a query, similarity 

scores were calculated between each query and each potential analogy. A higher 

similarity score indicates a better match between query and potential analogy source 

than does a low similarity score. A one-tailed Mann-Whitney U Test was used to 

compare the ranks of the two groups, addressing the question of whether the good 

analogies rank significantly higher than the bad analogies. More precisely, this test 

rank-orders every similarity score, and then determines whether the mean of the ranks 

from the good analogy group is significantly different from the mean of the ranks 

from the bad analogy group. This nonparametric test is appropriate because it makes 

no assumptions about normality. The results of this test for each similarity measure 

are presented in Table 21. 

Table 21. Results of Mann-Whitney U Test for Several Similarity Measures 

Similarity Measure p-value 

Jaccard 0.2202 

Membership 0.0414 

Russell/Rao 0.2736 
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The results in Table 21 suggest that the two traditional similarity measures 

(Jaccard and Russell/Rao) do not adequately prioritize the good analogies. However, 

a single analogy is rarely a complete solution to a problem. Instead, an analogy (or 

part of an analogy) often solves one sub-problem. This phenomenon, known as 

compound analogy, was observed and documented in the context of biologically-

inspired design [168]. In the context of a concept map, a compound analogy is an 

analogical system that slots into a part (i.e., subgraph) of the overall problem’s 

concept map. In light of this knowledge, it is reasonable to suspect that measuring the 

degree to which a potential analogy fits into a query map is an effective means of 

performing analogy matching. The Membership similarity measure addresses this 

type of atomic solution-to-problem matching. The p-value below the significance 

level of  = 0.05 for the Membership similarity measure supports the hypothesis that 

Membership similarity is an effective means for retrieving atomic analogies to match 

a problem. A one-tailed Welch’s t-test (which does not assume equal variances within 

both sets of similarity values) further supports the significant result for Membership 

similarity (p=0.0344). 

In the context of this experiment, these results show that Membership similarity 

ranks good analogies higher than bad analogies. The results also suggest that applying 

Analogy Fingerprinting to a novel design task enables retrieval of good analogies 

when the Membership similarity measure is used. Future work is needed to determine 

the algorithm’s performance under various conditions including different concept 

map generation algorithms, different information sources, different domains, larger 

sample sizes, and additional types of similarity measures. 
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A second view of the results is given by calculating precision (Eq. 12) – a 

commonly used measure for assessing information retrieval algorithms [85] that 

provides a simple but useful way to assess such an algorithm’s performance. 

Precision is defined as the ratio of true positives (tp) to the total sum of true positives 

and false positives (fp).  

 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑡𝑝

𝑡𝑝 + 𝑓𝑝
 Eq. 12 

 

In order for precision to be meaningful in the context of this experiment, it is 

necessary to specify a cutoff to distinguish between analogies that are retrieved and 

not retrieved. Precision at K (P@K) [169] calculates precision for the top K results in 

a given information retrieval task, and provides an easily interpretable way to assess 

search results that are meant for a human user. Figure 42 plots the P@K for all values 

of K based on Membership similarity scores. In the case of ties, false positives are 

ranked above true positives. By its nature, P@K scores are most meaningful for low 

values of K, where K corresponds to the number of results that a user might be 

expected to examine before accepting a good result or constructing a new query.  The 

plot also shows the level at which the algorithm has no discriminatory power. In this 

experiment there are an equal number of good and bad analogy candidates, which 

means that a precision of 0.5 is no better than random.  
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Figure 42. Precision at K for Membership Similarity 

The plot shows that Analogy Fingerprinting has good precision for small values of 

K, which is desirable for a search algorithm with human-interpreted search results. 

Furthermore, the top 15-20 results have acceptable precision, with subsequent results 

providing insufficient confidence of high quality. For example, assuming a single user 

created every concept map query in the test set, and then performed an Analogy 

Fingerprint search against the “good” and “bad” analogy search groups, this plot 

shows that 80% of the top ten search results would be relevant analogies. Ultimately, 

these results imply that while there are many combinations of queries and good 

analogies that do not return high similarity scores, the topmost results of an Analogy 

Fingerprinting query are likely to be of high quality.  The conditions under which the 
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algorithm fails to match high-quality analogies (e.g., the subproblem corresponding to 

a good analogy is not adequately described in a query) – as well as mitigation 

strategies for each – are left to future work. 

Conclusions 

This paper presented the Analogy Fingerprinting algorithm for indexing concept 

maps. Given a fingerprinted library of engineered and natural systems, Analogy 

Fingerprinting enables fast searching to find the most relevant design analogies in the 

library. The speed comes directly from the well-understood properties of Bloom 

filters, while structure mapping theory and the significant results obtained in the 

validation experiment support the relevance of retrieved analogies using this method. 

As a consequence, Analogical Fingerprinting may provide designers with an effective 

option to overcome common analogy-forming shortcomings – such as poorly encoded 

knowledge, insufficient experience, and difficulty creating mental links across 

domains [48] – while reaping the benefits of considering a wide range of potential 

conceptual solutions. Considering many alternatives is a core principle of conceptual 

design that is known to improve design outcomes, and it follows that Analogy 

Fingerprinting represents a fast way for designers to improve their design outcomes. 
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Conclusions 

Holistically, these manuscripts examine information abstractions in the context of 

design by analogy. The first manuscript finds new (currently poorly recognized) ways 

to abstract design information to support computational analogy search. The second 

manuscript demonstrates human computation and Games with a Purpose (GWAPs) as 

viable and scalable approaches to gathering abstract design information. The third and 

fourth manuscripts evaluate and extend an algorithm for characterizing graph-based 

system abstractions. The third manuscript demonstrates the algorithm’s value for 

searching large quantities of design structure information, while the fourth manuscript 

demonstrates its usage in large-scale analogy search. 

Manuscript 1 Conclusions 

Manuscript 1 examines the similarity abstractions that designers use when 

creating conceptual design analogies. As other work has shown, abstract functional 

similarity can improve retrieval of design analogies. This work examines other types 

of abstract similarity that can facilitate computational analogy retrieval. The results of 

this work provide evidence suggesting a variety of abstractions to support schema-

based design analogies. The key findings include: (1) that flow behavior is a 

commonly used type of abstract similarity for drawing analogical connections, and 

(2) that there was no significant difference detected in the types of similarity used to 

inform compound and single analogies. Notably, while flow behavior was exhibited 

as a common connection between domains in this study, there exists no established 

flow behavior abstraction to support database-driven DBA.  
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In general terms, these results provide insights into the types of high-value mental 

shortcuts and processes that commonly facilitate analogy formation. As they relate to 

industry, the results inform the creation of CAD tools and knowledge management 

techniques to help novice designers see conceptual connections between institutional 

design knowledge and existing design challenges. This may be useful not only for 

helping novice designers to perform more like experts, but also for helping companies 

interested in developing a dynamic and innovative product lineup to explore 

nonobvious cross-domain solutions and strategies. 

The results of this study show no significant difference between the types of 

similarity used to draw compound and single analogies. This suggests that the value 

of different types of similarity with respect to forming analogical connections is 

independent of the generative goal. Whether expanding the breadth of the concept 

pool (single analogy) or improving concept fidelity and problem understanding 

(compound analogy), different types of abstract similarity are equally useful. 

This study also resulted in several inconclusive observations about common types 

of internal knowledge queries, the frequencies of various concept generation 

categories, and the prevalence of direct reuse as a preliminary design strategy. 

Potential areas for future work include studying these areas in more detail; mining the 

collected data for further correlations; and investigating the relationship of concept 

quality to concept generation process, direction of reasoning, and the presence or 

absence of analogy. 

All three directions of analogical reasoning occurred frequently in this study: 

function-to-form, form-to-form and flow-to-form. This suggests that function, flow, 
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and form information should all play roles in similarity-based analogy retrieval. Of 

these, similarity between flows through a system is both prevalent in the results and 

missing from the categorizations in the reviewed literature. 

For example, common analogies observed in the results of this study include 

paper-processing devices (e.g., printers, printing presses, and junk mail folders) and 

sheet metal rollers. One way of abstracting this problem is by function. A search 

query of “shape material” could be used to retrieve metal rollers, but likely not 

printers. While printers change the shape of paper, the design intent of a printer has 

little to do with this behavior. The starting and ending shapes are also the same; so 

state-based methods may also have difficulty detecting this behavioral similarity. 

Paper shares more literal similarity with towels than with sheet metal, yet all three 

undergo processes that could be used to flatten or fold something. There are 

properties of paper and sheet metal that relate to their “flattenability;” their emergent 

behavior under specific conditions. Many designers in this study inferred from these 

properties (and from observed behaviors of paper and metal) that paper and sheet 

metal are sufficiently similar to cloth that similar mechanisms will produce similar 

flattening behavior in both.  

The results of this study suggest that a designer could leverage flow behavior 

abstraction (e.g., “foldability” and “flattenability”) to search for systems that interact 

with things possessing desired (e.g., towel-like) behavioral properties. More 

generally, abstracting the behavioral properties of flows (in addition to system 

functions) can be a valuable approach to finding analogical connections, especially 

when the analogy search is guided computationally. This approach provides a simple 
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search heuristic to improve the quantity of potential high quality analogies for a 

designer to consider. Because analogy is a major component of design, this will 

improve design outcomes. 

Manuscript 1 Impact 

The observed importance of flow information agrees with the semantic network 

view of knowledge definition; that concepts are best defined by their related concepts. 

This result suggests new ways to catalog and mine design data. Similarity searching 

within existing libraries can be performed not just on the artifacts themselves, but also 

on the flows that interact with those artifacts. This practice will improve the outcomes 

of computational design support that relies on similarity searching, such as in 

knowledge management systems. 

The indiscernible difference between similarity types in single and compound 

analogies suggests that the same tools and techniques can be used to support both 

types of design approaches. More generally, this result supports the notion that single 

and compound analogies follow the same cognitive mechanisms. This result impacts 

developers of analogical support tools and researchers who study analogy. The former 

will benefit from the understanding that separate capabilities are not required to 

support both types of analogy, while the latter will benefit from this new knowledge 

to design studies of compound analogy. 

These conclusions support the value of mixed-abstraction concept maps 

(containing relationships to describe functions, forms, and flows) as a means to 

support analogical matching. Unfortunately, computational support for analogy 

matching requires a large library of candidates, and such concept maps are not readily 
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available. In order to address this issue, manuscript 2 assesses a scalable technique for 

generating a large set of concept maps. 

Manuscript 2 Conclusions 

Manuscript 2 presents and assesses a Game with a Purpose (GWAP) for collecting 

computable knowledge about biological phenomena for the purpose of aiding 

biologically inspired design. The assessment addresses the external validity of 

individual assertions collected by the GWAP. Humans assess these assertions for 

correctness, and these ratings are used to identify potential directly measureable 

indicators of high correctness assertions. Additionally, manuscript 2 identifies factors 

affecting the game’s entertainment value and potential design features to address 

shortcomings in this area. The results of this study suggest that a GWAP approach has 

strong potential to collect valid biology knowledge into a semantic network format 

that can support biologically inspired design tools. More generally, the manuscript 

demonstrates that GWAPs represent a viable technique to support information 

retrieval tasks in design research and practice. 

Notably, the correctness of unfiltered BioP-C assertions was rated as significantly 

better than random and significantly worse than the theoretical maximum, indicating 

that some of the information produced by BioP-C is correct. Additionally, a 

statistically significant negative correlation was found between statement correctness 

and the number of hints created in a game session, which supports a simple and 

effective filtering operation. Raters' agreement with whether BioP-C assertions are 

true tends to fall between "neither agree nor disagree" and "agree," pointing to the 

ambiguity of many assertions collected using the current framework. This highlights a 
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limitation of the current work, and suggests that future work is needed to (1) identify 

additional player behaviors and session metadata that indicate assertion correctness 

and (2) refine the game design to encourage these desirable behaviors. 

The game itself uses a limited set of general relationships, but better classification 

will be possible as confidence in general relationship types grows. For example, more 

detailed relationships can be defined as subclasses of the high level relationships 

based on existing taxonomies of biology and engineering knowledge. Any number of 

strategies could support this change. These strategies might include additional 

mechanisms within the current game design, such as dynamic limitation of available 

game relationships based on BioP-C’s previously collected data. Alternatively, 

separate game environments could support filtering existing assertions and gathering 

player-specified relationships.  

The validation of this work has revealed the delicate design tradeoff between 

entertainment value and information quality. Complicated tasks produce better data, 

but there exists a complexity threshold past which players will not enjoy the game. 

There may exist a Pareto frontier representing the non-dominated set of tradeoffs 

indicating the limits of what can be learned from a human algorithm in this context, 

but it is unlikely that BioP-C v0.3 has reached this point. In order to understand the 

potential of this approach, future work in this area should aim to quantify this 

tradeoff, establish where these limits exist, and supply heuristics relating game design 

to information requirements. 
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Manuscript 2 Impact 

The research presented in manuscript 2 supports human computation and games 

with a purpose as viable means to address the scalability issue of processing natural 

language when the accuracy of natural language processing techniques is insufficient. 

The key results of this publication are the following: 

1. Human computation provides a viable alternative method to natural 

language processing for collecting design information in a computable 

form. 

2. Assertion quality can be inferred from the metadata produced during 

information collection. 

The direct impact of this work comes as a proof-of-concept for a scalable method 

to collecting design abstractions from natural language. The feasibility of this 

capability enables computational design support that relies on the types of knowledge 

– such as concept maps – that can be collected from natural language text.  

More broadly, human computation and GWAPs have the potential to aid design 

research in other ways. For example, online surveys are a common method to gather 

human inputs modeling consumer preference (e.g., [170]). These surveys have the 

disadvantage of requiring an external incentive, such as monetary compensation. In 

addition to the obvious financial drawback of collecting data in this way, the incentive 

does not necessarily align with the researchers’ goal of producing high-quality data. 

While some participants may be intrinsically motivated, and researchers have 

techniques for screening out bad data, this situation is far from ideal. If there exists a 

method that can improve the intrinsic motivation of research participants – while 
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producing very little garbage data – it is worthwhile to pursue development of that 

method. GWAPs and human computation present an opportunity to collect high 

quality design research data without compromising the need for large sample sizes. 

One obvious challenge in this context is the high effort required to develop a human 

computation task. Such a task (or library of tasks) would need to be extensible to a 

wide variety of research goals – much as the content of a survey can be changed in 

order to study different topics – in order to represent a feasible alternative to existing 

data collection methods. 

Assuming that there exists a scalable method for producing design abstraction 

relations (like that shown in manuscript 2), the question arises of how best to use this 

information. In other words, in what ways can a large library of design information 

improve the process of design? One answer to this question lies in the field of drug 

design – a field that uses large libraries of abstracted structure data to help design new 

drugs. Manuscript 3 evaluates one such drug design technique in a context of 

electromechanical design abstractions, and extrapolates its value into other design 

domains. 

Manuscript 3 Conclusions 

Manuscript 3 explores a method to facilitate efficient solution space exploration 

using the structural fingerprinting representation. It is demonstrated that structural 

fingerprints of electromechanical products are predictive of their functions. Solution 

candidates are clustered using these fingerprints, and representative fragments are 

extracted from the functionally distinct cluster of vacuum cleaners. These fragments 

represent structural backbones of solutions with different functionality. Together these 
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results suggest a feasible method for exploring a solution space of dynamic 

functionality. 

Efficient exploration of the solution space is a major challenge in both molecular 

design and engineering design. This work evaluates the viability of molecular 

fingerprinting for the purpose of describing systems poorly understood design 

domains. One such domain is that of Metal Organic Responsive Frameworks 

(MORFs), a theoretical type of shapeshifting material that changes shape 

stochastically in response to light. Creating a computational framework for on-

demand invention of new MORFs requires techniques for efficiently exploring the 

solution space in a way that is predictive of MORF functionality. This study 

contributes to this goal by demonstrating that structural fingerprinting, which is 

already known to be a facilitator of efficient solution space exploration, is also 

predictive of functionality that results from dynamic behavior. 

The results demonstrate a correlation between structural fingerprints of eight 

groups of electromechanical products and those products’ shared functions. This 

correlation provides evidence that structural fingerprints are a viable representation 

for inferring clusters of systems with distinctly different functionality. This result 

suggests that fingerprints could be valuable to support the automated design of not 

only electromechanical systems, but also systems in poorly understood domains – 

such as MORFs.  

Furthermore, in library design tools such as the Design Repository, fingerprints 

will provide a fast way to search for products based on a desired component 

substructure without performing costly subgraph searches. The Design Repository 
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also contains functional models, and these too can be represented as graphs. 

Fingerprints of these functional models will similarly enable efficient search for 

products with a desired set of function chains. Additionally, this approach is scalable 

to very large design libraries. All that is required is a tool for consistently generating 

(1) fingerprints of products in the repository, and (2) fingerprints for substructure 

search queries.  

In automated design tasks wherein a large number of candidate solutions are 

created, fingerprinting and clustering provide tools to reduce the complexity of 

evaluation as well as to guide the algorithms that generate solution candidates. Given 

that functional similarity can be predicted from structural fingerprints, clustering 

similar products reduces the complexity of two different types of concept evaluation. 

For evaluation tasks that require expensive computation, representative solutions 

from each cluster can be evaluated, just as in drug design. For evaluation tasks that 

require human interpretation, clustering can reduce the size of the search space and 

facilitate interactive exploration (e.g., as described in [128]). Using fingerprints to 

support these clustering operations eliminates the need to specify a dictionary of 

important features while preserving topological information. Additionally, common 

substructure fragments in these well-performing clusters can be used as seeds for 

generating additional concept variants in the same solution neighborhood. 

While these results suggest the value of a fingerprinting approach to support 

computational search, they require verification and validation in the MORF design 

context. In future work, the fingerprinting approach presented here will be applied in 

the MORF generation framework to catalog feasible candidate structures.  These 
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fingerprints will serve as the basis for calculating similarity, forming clusters, and 

selecting representative candidates for expensive simulations during a search. The 

most feasible results from each run will be used to inform a predictive QSAR-style 

model that relates molecule structure to important behavior characteristics in the 

MORF domain. During usefulness screening, these representations will likewise 

support similarity screening, clustering, and the eventual visualization of each 

cluster’s behavioral characteristics. Further, different clustering algorithms must be 

assessed and tuned for their ability to produce meaningfully different groups of 

candidate structures in this context. Fragment mining from these clusters will create 

new seeds with known behavior properties in order to generate new candidates with 

similar behavior. After this framework is implemented it will be possible to conduct 

experiments with respect to verifying, validating, and tuning the search process. 

Manuscript 3 Impact 

The results of manuscript 3 demonstrate a viable high-throughput strategy for 

relating two abstraction layers (in this case, function and form). The easily computed 

structural information is used to infer less easily computed behavioral information, 

which supports high-throughput functional screening. This strategy is well validated 

in drug design, and manuscript 3 demonstrates its value in other domains. 

Researchers in the area of computational design synthesis will be able to leverage 

these results to design search algorithms that enable rapid large-scale solution space 

exploration. Such algorithms are needed to support the development of a rapid digital 

design and manufacturing infrastructure – especially in the area of complex systems 

design, where search spaces are very large.   
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The domain independence of this search algorithm begs the question: in what 

other ways can this algorithm provide design value? Manuscript 4 addresses this 

question by extending the high volume screening strategy in manuscript 3 into the 

domain of conceptual analogy matching. 

Manuscript 4 Conclusions 

Manuscript 4 presents the Analogy Fingerprinting algorithm for indexing concept 

maps. Given a fingerprinted library of engineered and natural systems, Analogy 

Fingerprinting enables fast searching to find the most relevant design analogies in the 

library. The speed comes directly from the well-understood properties of Bloom 

filters, while structure mapping theory and the significant results obtained in the 

validation experiment support the relevance of retrieved analogies using this 

algorithm. As a consequence, Analogy Fingerprinting can provide designers with an 

effective option to overcome common analogy-forming shortcomings – such as 

poorly encoded knowledge, insufficient experience, and difficulty creating mental 

links across domains [48] – while reaping the benefits of considering a wide range of 

conceptual solutions. Considering many alternatives is a core principle of conceptual 

design that is known to improve design outcomes, and it follows that Analogy 

Fingerprinting represents a fast way for designers to improve their design outcomes. 

Manuscript 4 Impact 

This manuscript contributes to the development of an intuitive design by analogy 

method. Novice designers’ analogy retrieval abilities are limited because their mental 

models are poorly organized and narrow in scope. This definition also includes expert 

designers in cases when specialized knowledge of conceptually distant fields (such as 
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biology) is required to draw a design analogy, and these distant fields can be valuable 

analogy sources. This dissertation supports using a mixture of weakly typed 

information (in the form of mixed-abstraction concept maps) and large scale 

computational matching to support designers with narrow and poorly organized 

mental models. Additionally, Baya [171] finds that fluid handling of “all types of 

information” is critical during conceptual design. Unlike a prescriptive framework of 

design knowledge (e.g., [171]), the Analogy Fingerprinting design method uses 

concept maps to computationally augment conceptual design analogy search. Thus, a 

conceptual design method that uses Analogy Fingerprinting is likely to provide 

valuable computational support during conceptual design. 

Based on the results of the Analogy Fingerprinting validation, a revised Analogy 

Fingerprinting Design methodology might contain the following steps: 

1. Generate a concept map of the most important concepts in the problem 

domain. 

2. Insert and delete concepts and relationships from the concept map to 

model an abstract solution (e.g., remove unwanted functions or 

components, add new functions, or add new constraints). 

3. Use the modified concept map as a query against an existing fingerprint 

library. 

4. Repeat steps 1-3 until a satisfactory quantity of concepts has been 

collected. 

The method could be further extended by implementing a semantic similarity 

check, which would enable secondary sorting based on surface similarity. Such a 
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technique would provide a method of fine-tuning the analogical distance of results – 

analogies with high semantic similarity are likely to be from a conceptually similar 

domain, while analogies with low semantic similarity are likely to be from a 

conceptually different domain. 

Analogy Fingerprinting represents a departure from the spreading activation 

algorithm used by Liu and Singh to find analogies within ConceptNet [113]. While 

the spreading activation approach benefits from the weighted edges aggregated from 

many inputs, it returns matches based on the strength of the overall connections (node 

weights and number of parallel paths) between two nodes – effectively a measure of 

similarity rather than analogy. A second matching algorithm is then needed to confirm 

the mapping of relationship structures. Analogy Fingerprinting forgoes the similarity 

search aspect of the analogy search, instead keeping each individual system 

description separate. The separate analogy fingerprints of each system description can 

be quickly assessed for their relationship structures’ mappability onto any given 

query. 

Key Contributions 

To summarize, this dissertation presents three major thrusts focused on 

understanding design analogies, preparing analogy candidate information, and 

matching analogy candidates to design problems. Within these thrusts, this 

dissertation contributes to a greater understanding of 

 the abstractions used by designers during conceptual design. 

 the use of human computation to support conceptual design activities, 

specifically with respect to information gathering. 
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 large scale solution screening using a variety of weakly typed abstractions. 

All of these contributions are made specifically within the context of design by 

analogy. 

Impact on Design 

The very first manuscript (manuscript 0) addresses the impact of function-based 

research on education and industry. A key takeaway from this manuscript is that in 

order to impact design practice, research outcomes must possess simplicity, 

flexibility, and direct applicability to a practical problem. The research presented in 

this dissertation culminates in the Analogy Fingerprinting method, which 

demonstrates all of these crucial aspects. 

Simplicity 

Analogy Fingerprinting enables a designer to find solution analogies using the 

easy-to-create descriptive framework of concept mapping. 

Concept maps were created with the goal of documenting meaningful learning of 

science concepts in students [172]. They are also used to promote meaningful 

learning in new domains [173] – students document their own understanding of a 

domain, which allows the students and their teachers to examine and modify their 

knowledge structures. Concept maps are routinely created for domains in which the 

creator is not an expert, which supports concept mapping as an easy-to-use tool for 

describing design problems. 

The simplicity of Analogy Fingerprinting comes from two places: (1) its usage of 

these easily created concept map representations as the human generated input, and 

(2) the direct computability of these concept maps to perform analogy search. As a 
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consequence, the designer’s workflow consists of just two steps: (1) create a concept 

map of the design problem and (2) select feasible analogical solutions from the 

Analogy Fingerprinting search results. Given these factors Analogy Fingerprinting is 

simple enough to be used by designers of a wide variety of skills levels and 

knowledge sets.  

Flexibility 

Flexibility reflects a common characteristic of successful design tools – such as 

Failure Modes and Effects Analysis – that require very little training and can be 

adapted to a wide array of specific purposes. Flexibility is a strength of the Analogy 

Fingerprinting design method, especially with respect to the way in which designers 

formulate analogy queries. The concept mapping formalism has very few unbreakable 

rules, and the content of each concept map need only be restricted to natural language 

(i.e., symbolic concepts must be described in terms that can be communicated 

through speech – a very modest restriction).  As a consequence, any designer should 

be able to create a concept map to address their problem domain with little training. 

This concept map can then be used to automatically generate valuable feedback about 

alternative conceptual solutions.  Due to the low effort required to generate a list of 

alternative concepts, and the domain independence of the approach, the method is 

flexible enough to be applied to a wide variety of design processes. 

More generally, the flexibility allowed by concept mapping enables an alternative 

approach to design. Traditional design approaches emphasize the importance of 

making design decisions independently of their expected implementation. This 

practice of maintaining solution independence during early design stages (e.g., 
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requirements generation and functional decomposition) improves the likelihood of 

generating a higher quantity and quality of concepts [38, 160]. However, many 

designers exhibit a tendency to skip functional analysis exactly because most of the 

results will be poor, in spite of the fact that it increases the likelihood of finding better 

solutions [160]. Compounding this issue is the fact that many potential abstract 

solutions can be perceived as obviously violating physical constraints, which prevents 

their consideration. It can be challenging to consider this coupling between 

abstractions without allowing implementation details (e.g., component selection) to 

dominate abstract reasoning (e.g., functional analysis). As a consequence, it is 

valuable to provide methods that allow designers the freedom to maintain solution 

independence while considering multiple layers of abstraction.  

Analogy Fingerprinting enables a designer to maintain this solution independence 

while still considering multiple types of abstraction at the same time. For instance, 

Analogy Fingerprinting enables search for analogous systems that contain both 

functional and compositional correspondents. If a design problem requires that a 

system must have the overall functionality of X, and the system must contain two 

subsystems that have subfunctions Y and Z, this information can be captured in a 

concept map and searched according to its Analogy Fingerprint. A successful search 

results in a design concept that matches these general functional and implementation 

details. This allows the designer to maintain solution abstraction in a concept search 

while increasing the likelihood of finding a high quality match. Assuming a 

sufficiently large concept library, the designer need not have any prior knowledge of 

the potential search results in order to find a match. This mitigates bias in the 
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designer’s reasoning during the early stages of design – when the analysis of 

alternative concepts matters most – while providing a basic framework to reduce the 

amount of iteration required to arrive at a high quality solution concept. 

Application to an Existing Problem 

This work applies directly to the problem of concept development and selection – 

a process that can lead to costly mistakes if not adequately performed. For example, a 

Government Accountability Office study of 32 Department of Defense acquisition 

projects found that most of them did not conduct a “robust assessment of 

alternatives.” Within this sample, projects that did not examine a wide range of 

concepts were more likely to experience high cost or schedule growth [174].  It is 

because of this effect that many standard engineering design texts teach the 

importance of concept development and selection (e.g., [38, 40, 160, 175]). The work 

in this dissertation provides a directly applicable solution to one aspect of this 

problem – it enables designers to consider many alternatives for relatively low 

cognitive effort. Additionally, it enables a design team to consider alternative 

concepts that fall outside the realm of the team’s breadth of expertise. In doing so, the 

research presented in this dissertation enables the creation of tools and methods that 

lead to improved design outcomes through the consideration of more alternatives. 

Given a population of design teams that uses such a tool – given widely accepted 

importance of conceptual design – it is likely that such teams will experience reduced 

cost and schedule overruns, and thus improved design outcomes.   
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