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Chapter 1: Introduction 

In this dissertation, I present my research on variational typing, which is a the­

oretically sound and principled solution to the practical problem of type checking 

and type inference of software product lines. Variational typing offers extra in­

sights beyond its original problem territory, and it has been used to solve many 

long-standing problems. In the later part of this dissertation, I present one such 

application. 

This chapter motivates the needs of variational typing by investigating the 

challenges of typing software product lines. It also outlines the structure of this 

dissertation and presents the contributions of this work. 

1.1 Variational Programming and Challenges 

The idea of writing a set of related programs, rather than a single program, at 

a time is widely adopted in implementing software systems. There are several 

reasons for this. First, it helps to maximize the reuse of data structures and 

algorithms. Second, it saves costs to develop and test programs. Finally, it sig­

nificantly shortens time to market: picking a program from existing ones is much 

faster than developing a new one. 

This idea can be implemented through the use of software product lines [Pohl 
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int y; int y; int y; 
#ifdef A 
int x = 3; int x = 3; char x = ’3’; 
#else 
char x = ’3’; y = 7 + 5 + x; y = 7 + 5 + x; 
#endif 

y = 7 + 5 + x; 

(a) A simple VP. (b) Variant when A defined. (c) Variant when A undefined. 

Figure 1.1: A variational program with its variants. 

et al., 2005], generative programming [Czarnecki and Eisenecker, 2000], feature-

oriented software development [Apel and Kästner, 2009], and variational pro­

gramming [Erwig and Walkingshaw, 2013]. For example, Figure 1.1a presents a 

variational program (VP) implemented using C Preprocessor (CPP) [GNU Project, 

2009]. This VP implements a set of two programs, which are called variants. Vari­

ants can be generated from VPs by making configurations. For example, when 

the macro A is defined, the variant in Figure 1.1b is generated. Otherwise, if A is 

undefined, the variant in Figure 1.1c is generated. 

We can observe that with the single macro A the example VP can generate 

two variants. In general, with n independent macros, a VP can generate 2n vari­

ants. While this means that with one VP we can potentially generate a lot of 

variants satisfying different requirements, it’s also likely that the VP introduces 

unintended interactions [Abal et al., 2014; Nadi et al., 2013]. For example, con­

sider the following code, which is a snippet from Busybox [Kästner et al., 2012b]. 

The problem here is that when the macro ENABLE_FEATURE_PS_LONG is undefined, 

the variables now and uptime will not be declared. However, the code later always 
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refers to them, whether ENABLE_FEATURE_PS_LONG is defined or not. As a result, 

when ENABLE_FEATURE_PS_LONG is undefined, the code will cause a type error since 

it refers to undeclared variables. 

int ps_main(int argc, char **argv){ 
... 
#if ENABLE_FEATURE_PS_LONG 

time_t now = now; 
long uptime; 

#endif 
... 

puts("S UID PID PPID VSZ RSS TTY STIME TIME CMD"); 

now = time(NULL); 
uptime = get_uptime(); 

...

}


The question is, how can we detect this kind of problems in VPs, or better guar­

antee the correctness of all generated variants? A potential solution is to leverage 

the existing static analyses. While typically not equipped to deal with macros, any 

static analysis defined for single programs can be conceptually extended to vari­

ational programs by simply generating all program variants and analyzing each 

one individually. In practice, this is usually impossible due to the sheer number 

of variants that can be generated. As mentioned earlier, a variational program 

with n macros is likely to generate 2n variants. For this reason, this brute-force 

approach already fails when the variational program contains about 30 macros. 

Moreover, it is common for variational program to have hundreds of macros, for 
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example, SQLite1 contains about 300 macros, MySQL2 contains some 900 macros, 

and Linux contains about 10,000 macros. Thus, this strategy works only for the 

most simple variational programs. Sampling techniques can be used to improve 

the situation, but do not solve the problem in general [Devroey et al., 2014]. 

Efficiency is not the only problem of the brute-force strategy; there is also the 

issue of how to represent the results of analyses on variational software. Using the 

brute-force approach, one type error in the variational program can cause type er­

rors in a huge number of program variants. These errors will be reported in terms 

of particular variants rather than the actual variational source code. Similarly, 

the types inferred for a program variant will not correspond to the variational 

source code, limiting their use as a way to describe and understand the original 

variational program. 

1.2 Solution with Variational Typing 

This dissertation presents my solution to the aforementioned challenges through 

the idea of variational typing, which consists of both variational type checking 

and variational type inference. Many efforts have been made to address the ef­

ficiency problem by developing strategies that type check variational software 

directly, rather than individual program variants [Thaker et al., 2007; Kästner 

et al., 2012a; Kenner et al., 2010]. My work focuses on the more difficult problem 

of type inference, which differs from type checking in the following aspects. 

1https://www.sqlite.org/

2https://www.mysql.com/


https://www.sqlite.org/
https://www.mysql.com/
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1. Type representations. While the purpose of type checking is to determine if 

variational programs are well typed, that of type inference is to additionally 

infer the result types of variational programs. Thus, we need a representa­

tion of typing result. 

2. Underlying computations.	 While type checking requires only to check the 

equality of types, type inference involves the solving of type unification prob­

lems. 

3. Error vulnerabilities. It is easier to recover from type errors in type checking 

than in type inference because there is more type information available in 

type checking. 

An important result of variational type inference is that it assigns a type to 

a variational program if and only if it contains only well-typed variants. This 

has two important implications. First, in order to decide whether all variants 

of a VP are well typed, there is no need to generate all variants and type each 

individually. Instead, we can directly apply variational type inference to the VP. If 

the VP is well typed, then all the variants are well typed. Second, an unfortunate 

consequence of this is that variational type inference fails to reveal useful type 

information for VPs that may contain errors in only few variants. This implies 

that the inference algorithm can be employed only when the development of the 

whole VP is completed. However, a more natural way of developing a VP is first 

constructing the more important variants and gradually expanding the core parts 

to build the whole VP [Apel and Kästner, 2009]. 
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Figure 1.2: Foundations and applications of variational typing. This dissertation 
will focus on boxes with red lines. 

Legend : completed : in progress 

To address this issue, we develop an error-tolerant type system by introducing 

error types to quarantine type errors such that the typing process is not termi­

nated until the whole process is completed [Chen et al., 2012]. The inference 

result contains error types for variants that have type errors and plain types for 

other variants. The extended inference algorithm thus works for all VPs. 

Both the variational type inference and partial type inference algorithms are 

based on some foundational work. In Figure 1.2, we observe that the variational 

type inference algorithm relies on a variational unification algorithm, a notion of 

choice types, and a type equivalence relation. The partial type inference algorithm 

relies on a partial unification algorithm, a notion of error types, and an extended 

type equivalence relation. 



7 

As Figure 1.2 shows, variational typing includes another component: type-

based parametric analysis of VPs [Chen and Erwig, 2014a], which generalizes 

choice types and the variational unification algorithm to build a generalized type 

inference algorithm. More specifically, by annotating types with various kinds 

of information, we have designed a type-based static analysis lifting framework, 

which lifts static analyses for plain program to those for variational program. De­

signing specific static analyses for VPs has been an active research area. Many 

variational analysis algorithms have been proposed [Thüm et al., 2014], and each 

of them involves a considerable amount of work. Our lifting framework automates 

this lifting process for many static analyses. 

Note that in Figure 1.2, the x-axis doesn’t have a special meaning except for the 

“Foundations” category, where notions presented to the right are more powerful 

than those to the left. For example, both error types and annotated types subsume 

choice types. 

1.3 Variational Typing Applications 

As a relatively new research area, much of the work in variational analysis is 

driven by approaches and results from traditional program analysis. This can 

be seen, for example, in variational parsing [Kästner et al., 2011; Gazzillo and 

Grimm, 2012], type checking [Kästner et al., 2012b,a; Apel et al., 2010; Delaware 

et al., 2009b], dataflow analysis [Brabrand et al., 2012; Liebig et al., 2012], model 

checking [Classen et al., 2010, 2011; Cordy et al., 2012; Apel et al., 2013] and theo­
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rem proving [Delaware et al., 2011; Thüm et al., 2012]. Similarly, variational type 

inference is obtained by extending the machineries for traditional type inference 

to deal with variations. 

Interestingly, it turns out that the representations and methods developed for 

variational analysis can in turn be applied to improve traditional program anal­

ysis. Examples are shown in Figure 1.2 in the “Applications” category. In the 

following, I will briefly describe some of the applications that are completed. 

Type checking C++ Templates [Chen and Erwig, 2014d]. Despite the numer­

ous efforts in improving type checking of C++ Templates [Miao and Siek, 2010; 

Gregor et al., 2006; Järvi et al., 2006; Siek and Taha, 2006a; Reis and Strous­

trup, 2005; Garcia and Lumsdaine, 2009; Dos Reis and Stroustrup, 2006], no type 

safety guarantees are available of C++ Templates until they are instantiated and 

object programs are generated. We partially addressed this problem by develop­

ing a type system for a calculus that captures the essential capabilities of C++ 

Templates. With choice types, our solution uses a more precise characterization of 

types and thus a better utilization of type information within template definitions. 

Our type system guarantees that well-typed templates generate only well-typed 

object programs. 

Counter-factual typing [Chen and Erwig, 2014e]. In terms of error localiza­

tion, type checking and type inference algorithms suffer from an inherent preci­

sion problem. Debugging type errors for functional programs has been an active 

research area for the past three decades [Wand, 1986; Johnson and Walz, 1986; 

McAdam, 2002b; Lee and Yi, 1998, 2000; Yang, 2001; Wazny, 2006; Lerner et al., 
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2007; Choppella, 2002; McAdam, 2002a; Tip and Dinesh, 2001; Haack and Wells, 

2003; Heeren, 2005; Schilling, 2012], yet effectively locating and reporting type er­

rors remains a problem. Based on variational typing, we have developed counter-

factual typing that significantly increases error reporting precisions. 

Guided type debugging [Chen and Erwig, 2014c]. A distinctive feature of 

guided type debugging is that it allows users to specify a desired type for an ill-

typed expression. It then suggests changes that match the desired type while all 

the previous approaches propose changes based only on guessing. Compared to 

counter-factual typing, guided type debugging further increases error debugging 

efficiency. 

This dissertation will present the application of counter-factual typing in more 

detail. 

1.4 Contributions and Outline of This Dissertation 

In this section, I present the structure of the remainder of this dissertation and 

the contributions of this work along the way. 

Chapter 2 (Background) introduces some basic notions that will be used 

through out the dissertation, the basis upon which variational typing will be de­

veloped, and the constructs for representing variations. This chapter contains 

material from [Chen et al., 2014b]. 

Chapter 3 (Literature Review) collects research related to variational type in­

ference, partial type inference, and type error debugging. This chapter contains 
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material from [Chen et al., 2014b] and [Chen and Erwig, 2014e]. 

Chapter 4 (Variational Type Checking) introduces variational types and 

presents the rules for assigning variational types to variational expressions. This 

chapter contains material from [Chen et al., 2014b] and makes the following con­

tributions. 

1. A notion of variational types, which is an extension of type representations 

with variational constructs to express the result of variational type infer­

ence. 

2. A type system that maps variational expressions to variational types and 

related theorems that show that the type system is sound and complete. 

3. A type equivalence relation that underlies the proposed type system and a 

type rewriting relation that checks the equivalence of types, which is termi­

nating and confluent. 

Chapter 5 (Variational Unification) investigates the properties of variational 

unification problems and develops a variational unification algorithm. Variational 

unification problems are equational modulo the type equivalence relation intro­

duced in Chapter 4. Consequently, they are hard to solve. Variational unification 

is also one of the most important theoretical contributions of this work as it is 

used in many other applications. This chapter contains material from [Chen et al., 

2014b] and makes the following contributions. 

1. A proof that the variational type unification problem is decidable and uni­

tary. 
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2. A variational unification algorithm and a proof that the algorithm is sound, 

complete, and most general. 

Chapter 6 (Variational Type Inference) develops a variational type inference 

algorithm based on the variational unification algorithm presented in Chapter 5 

and studies its performance by comparing it with the brute-force approach. It also 

presents a qualitative analysis of the performance gain. This chapter contains 

material from [Chen et al., 2014b] and makes the following contributions. 

1. A type inference algorithm and a proof that the type inference algorithm is 

sound, complete, and principal. 

2. A performance evaluation that demonstrates the scalability of the varia­

tional type inference algorithm. 

Chapter 7 (Partial Variational Typing) presents an extension to make varia­

tional type inference error tolerant. While variational type inference computes 

types for variational programs that contain well-typed variants only, partial vari­

ational typing assigns a type to any variational program. We realize this extension 

by explicitly representing, introducing, and propagating type errors. This chapter 

contains material from [Chen et al., 2012] and makes the following contributions. 

1. An introduction of typing patterns that indicate which variants contain type 

errors. They also serve as a measurement for comparing result types and 

unifiers. 
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2. A proof about the existence of principal typing patterns for partial unifi­

cation problems, which implies that for any unification problem, there is 

some mapping (partial unifier henceforth) that introduces fewest type er­

rors. Also, it proves that partial unification is unitary. Moreover, these two 

aspects can be reconciled such that for any partial unification problem, there 

is a mapping (most general partial unifier henceforth) such that it introduces 

fewest errors and is most general. 

3. A partial variational unification algorithm that computes most general par­

tial unifiers, together with a proof about its soundness, completeness, and 

principality. 

4. An inference algorithm that computes partial types for partial programs 

such that for type-correct variants, the partial type contains principal types 

and for ill-typed variants, it contains a special type indicating a type error. 

Chapter 8 (Counter-Factual Typing) presents a method for improving type 

error debugging, an intensively studied research problem over the past three 

decades. 

Based on generating and filtering a comprehensive set of type-change sugges­

tions, counter-factual typing generates all (program-structure-preserving) type 

changes that can possibly fix the type error. These suggestions will be ranked 

and presented to the programmer in an iterative fashion. In some cases it also 

produces suggestions to change the program. In most situations, this strategy de­

livers the correct change suggestions quickly, and at the same time never misses 
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any rare suggestions. The computation of the potentially huge set of type-change 

suggestions is efficient since it is based on the variational type inference algorithm 

developed in Chapter 7, which efficiently reuses type information for shared parts. 

This chapter contains material from [Chen and Erwig, 2014e] and makes the fol­

lowing contributions. 

1. A type debugging method that covers all potential error locations and gen­

erates a type change or expression change suggestion for each erroneous 

location. 

2. A type system based on choice types plus a proof that the typing result en­

codes all potential type changes for any ill-typed expression. 

3. An implementation of a type inference algorithm that, based on partial vari­

ational unification, computes all change suggestions efficiently. 

4. A comparison of our approach with three other tools. Based on a large set of 

examples drawn from the literature, we show that our approach outperforms 

previous approaches. 

Chapter 9 (Conclusion) closes this dissertation with a summary of other appli­

cations of choice types, the most important contributions of this work, and direc­

tions for future research. 
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Chapter 2: Background 

This chapter introduces the foundations for presenting variational typing: the 

Hindley-Milner type system and the variation representation based on the choice 

calculus [Erwig and Walkingshaw, 2011]. 

2.1 Hindley-Milner Type System 

Hindley-Milner (HM) is a type system that assigns types to expressions written 

in lambda calculus with parametric polymorphism [Hindley, 1969; Damas and 

Milner, 1982]. The syntax for constructing expressions is given below. 

e ::= x Variable 
| λx.e Abstraction 
| e e Application 
| ν Constant 
| let x = e in e Polymorphism 

The first three constructs form the traditional lambda calculus [Barendregt et al., 

1992]. Lambda calculus, though simple, is Turing complete in the sense that 

it is as powerful as Turing machines in expressing computations [Davis, 2004]. 

Thanks to its simplicity and expressivity, lambda calculus is widely used in pro­

gramming language research. 

To simplify the presentation, we introduce the construct ν for referring to con­
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stants, for example, numerical values (1), boolean values (True), and so on. Note 

that the introduction of ν doesn’t increase the expressiveness of the lambda cal­

culus, which represents constants through encodings [Pierce, 2002]. The let con­

struct is very useful for writing complicated expressions by giving names to subex­

pressions. Each let expression let x = e in e� consists of three parts, the variable 

x, the binding e, and the body e� . 

The following table shows some expressions written in lambda calculus ex­

tended with pairs. 

Expressions Meanings of the expressions 

1 The numeric constant 1 

not The constant function to negate boolean values 

λx.x The identity function 

(λx.x) 1 Applying the identity function to 1 

not 1 Computing the negation of 1 

let f = λx.1 in (f 1,f True) Applying f to arguments of different types 

We observe that while not 1 is well formed, its evaluation will fail1. Thus, we 

need a mechanism to distinguish “good” expressions from “bad” expressions, which 

when evaluated will cause runtime errors. A most widely used such mechanism is 

type checking, or type inference when type annotations may be omitted. 

1The meaning of “evaluation” depends heavily on the semantics of reduction [Pierce, 2002]. 
Since the presentation of variational typing doesn’t rely on a formal definition of evaluation, we 
will not discuss it in this dissertation. 
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2.1.1 Type System 

The core part of a type checking algorithm is a type system that relates expres­

sions to types. A type system usually consists of two parts: the language for types, 

or types for short and the rules that assign types to expressions. HM has the 

following type syntax. 

τ ::= γ | a | τ → τ 

σ ::= τ | ∀a.τ 

The types are stratified into two layers: the monomorphic types, ranged over by 

τ, and the polymorphic types, ranged over by σ. We use γ to range over constant 

types, for example, Int and Bool. We use a to range over type variables. A type 

variable can be substituted with any monomorphic type. The function type τ1 → τ2 

characterizes a function that takes arguments of the type τ1 and returns values of 

the type τ2. The polymorphic types introduce type schemas ∀a.τ that allow type 

variables to be universally quantified. We use the notation a to denote a list of 

type variables. We extend this notation to other objects and relations. While a type 

variable in a monomorphic type can be instantiated only once, a type variable in a 

type schema can be instantiated an arbitrary number of times. For example, the 

type ∀a.a → a can be instantiated to Int → Int, Bool → Bool, and (Bool → Int) → 

(Bool → Int). From time to time, we need to collect all the free type variables in a 
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type. The following function FV(σ) implements this functionality. 

FV(γ) = ∅ 
FV(a) = {a} 

FV(τ1 → τ2) = FV(τ1) ∪ FV(τ2) 
FV(∀a.τ) = FV(τ) − a 

We use Γ to range over type assumptions, which are binary relations mapping 

expression variables to type schemas. The definition of FV extends naturally to Γ 

by collecting all the free type variables of the types in the codomain of Γ. We use 

θ to range over substitutions, which are binary relations mapping type variables 

to monomorphic types. The application of a type substitution to a type schema is 

written as θ(σ) and replaces free type variables in σ by the corresponding images 

in θ. The definition is as follows. 

θ(γ)
 γ= ⎧ ⎪⎨ ⎪⎩

θ(a) =


a if a ∉ dom(θ)


τ if a �→ τ ∈ θ


θ(τ1 → τ2) = θ(τ1) → θ(τ2) 
θ(∀a.τ) =∀a.θ/a(τ) 

The notation θ/a removes all the mappings a �→ τ in θ if a is in dom(θ). 

The rules for assigning types to expressions are presented in Figure 2.1. The 

typing relation has the judgment Γ �H e : τ, meaning that under the type environ­

ment Γ, the expression e has the type τ. 

The rule HM-CON states that if ν has the type γ, then the relation Γ �H ν : γ 

is satisfied. If the variable x has the type ∀a.τ1 in Γ, then x is said to have any 

type by instantiating type variables a in τ1. This fact is conveyed through the rule 
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Γ �H e : τ 

HM-CON HM-VAR HM-ABS 

ν is of type γ Γ(x) =∀a.τ1 τ = {a �→ τ�}(τ1) Γ, x �→ τ �H e : τ� 

Γ �H ν : γ Γ �H x : τ Γ �H λx.e : τ → τ� 

HM-APP 

Γ �H e1 : τ2 → τ Γ �H e2 : τ2 

Γ �H e1 e2 : τ 

HM-LET 

Γ, x �→ τ �H e : τ a = FV(τ) − FV(Γ) Γ, x �→ ∀a.τ �H e� : τ� 

Γ �H let x = e in e� : τ� 

Figure 2.1: Typing rules of HM. 

HM-VAR. Note that in the rule, we write {a �→ τ�} to form a new type substitution. 

To determine the type of the function λx.e, we first assume a type τ for x in e. If e 

has the type τ� under Γ and the assumption x �→ τ, then λx.e has the type τ → τ� . 

For example, to type λx.x, we first assume that x has the type a. With that, the 

body of the function x obviously has the type a. Thus, the function λx.x has the 

type a → a. 

The rule HM-APP deals with function applications. For a function application 

e1 e2 to be well typed, two conditions need to be satisfied. First, the function e1 

must have a function type. In the rule, we write the function type τ2 → τ. We call 

τ2 and τ the domain type and the return type of the function type, respectively. 

Second, the type of the argument e2 must match the domain type of the function. 

In the rule, we use two occurrences of τ2 to express this relation. If both conditions 

are satisfied, then the application has the type τ. 
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One specialty of let expressions is that they introduce parametric polymor­

phism, which means that one same piece of code may be used to deal with expres­

sions of different types. Without parametric polymorphism, the following expres­

sion is rejected although its evaluation will not cause any error. 

e = let f = λx.1 in (f 1,f True) 

Without parametric polymorphism, the subexpression f will have the type a → 

Int. When it’s first referred to in f 1, a needs to be instantiated to Int for f 1 to be 

well typed. This essentially makes f have the type Int → Int. This instantiation 

is effective in the whole body of the let expression. Now what happens if we want 

to type f True? We observe that f has the type Int → Int but True has the type 

Bool. According to HM-APP, f True is ill typed because Int doesn’t match Bool. 

What prevents e from being well typed? The problem is that we want to in­

stantiate the type variable a to two different types in the body of e. However, we 

can instantiate a type variable just once. Thus, to make e well typed, we need the 

ability of instantiating the type of f with different types. We can realize this by 

assigning f a polymorphic type ∀a.a → Int. Moreover, whenever we refer to f, we 

instantiate it independently. To type f 1 we instantiate a with Int. To type f True 

we instantiate a with Bool. We assign f a polymorphic type by universally quan­

tifying its type variable a. However, one caveat is that we shouldn’t generalize all 

type variables of the binding expression. Only type variables that don’t occur in 

the type environment can be generalized. 

This idea of typing let expressions is captured in the rule HM-LET, which pro­
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ceeds in three steps. First, retrieve the type of the binding. Second, generalize 

the retrieved type by universally quantifying certain type variables. Third, com­

pute the type of the body with the extended assumption that the variable has the 

generalized type. The overall type of a let expression is the type of its body. 

2.1.2 Type Inference 

Type inference solves the problems of inferring types for expressions without type 

annotations. In type checking, we have type information for each part of the ex­

pression. For example, in the expression succ 1, we know that the type of succ is 

Int → Int and that of 1 is Int. Since succ 1 is an application, we apply the HM-APP 

rule to type succ 1. We can check that both the premises of HM-APP are satisfied, 

thus succ 1 is well typed and has the type Int. In type inference, type information 

for some program parts is missing. For example, in the problem of typing the ex­

pression (e1 e2) e3 under the following assumptions, the type of e1 contains type 

variables, which need to be figured out to decide the type of the expression. 

e1 : (a → a) → b → b 
e2 : Int → Int 

e3 : Bool 

In general, type inference poses the following challenges. 

1. Solving equations involving unknown types. For the given example, we first 

need to decide whether e1 e2, the function of the whole expression, is well 

typed. Since e1 e2 is a function application, we try to apply the HM-APP rule 
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to derive its type. The problem is that the type of e1 contains type variables 

a and b, and we need to figure them out before we can apply rule HM-APP. 

The premises of the HM-APP rule specify the relation between the types of 

e1 and e2, leading to the following unification problem 

(a → a) → b → b = ? (Int → Int) → a1	 (2.1) 

where the type variable a1 is a placeholder denoting the result type of the 

function application e1 e2 if it is well typed. Our goal of solving this uni­

fication problem is to find a mapping θ such that the following relation is 

satisfied. 

θ((a → a) → b → b) = θ((Int → Int) → a1) 

Many solutions exist, and a potential solution is given below. 

θ1 = {a �→ Int, b �→ Int, a1 �→ Int → Int} 

We say that θ1 is a solution because when we apply it to both sides of the 

unification problem, they both become (Int → Int) → Int → Int. 

With θ1, the result type of e1 e2 is θ1(a1), which is Int → Int. Now if we 

apply e1 e2 to e3, we encounter a type error because the domain type Int 

doesn’t match the type of the argument, which is Bool. Thus, the expression 

(e1 e2) e3 is ill typed. However, the expression becomes well typed when 

using a different mapping. This leads to the second challenge below. 

2. Maintaining generality.	 In general, given a unification problem, finding a 

solution is insufficient. What we need is the best solution. The reason that 
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θ1 makes the expression (e1 e2) e3 ill-typed is that it is too restricted. Let’s 

investigate the situation with the following less restricted mapping. 

θ2 = {a �→ Int, a1 �→ b → b} 

It’s easy to verify that θ2 is also a solution for the unification problem (2.1). 

Moreover, with θ2, the result of e1 e2 is b → b. To type (e1 e2) e3, we have to 

solve the following additional unification problem. 

b → b = ? Bool → a2 (2.2) 

where the type a2 denotes the result type of applying e1 e2 to e3. For this 

unification problem, there is a unique solution presented below. 

θ3 = {b �→ Bool, a2 �→ Bool} 

With θ2 and θ3, the overall type of (e1 e2) e3 is Bool. 

Robinson’s unification algorithm addresses both challenges [Robinson, 1965]. 

Given two monomorphic types, it returns a most general unifier when the given 

types are unifiable. Given a unification problem, a unifier is a mapping that 

makes both sides of the unification problem the same. We use ξ to range over uni­

fiers. Since this work has a close relation with Robinson’s unification algorithm, I 

present it in Figure 2.2. 

The operation ◦ in Figure 2.2 composes two unifiers into one and is defined as 

follows. 

ξ2 ◦ ξ1 = ξ2 ∪ {a �→ ξ2(τ)|a �→ τ ∈ ξ1} 

It is easy to verify that for the unification problems (2.1) and (2.2), UR returns θ2 
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UR : (τL,τR) → ξ 

UR(a, a) = ∅ 

UR(a,τ) 
| a ∉ FV(τ) = {a �→ τ} 
| otherwise = fail 

UR(τ, a) = UR(a,τ) 

UR(τ,τ) = ∅ 

UR(τ1 → τ2,τ3 → τ4) = ξ ← UR(τ1,τ3) 
return UR(ξ(τ2),ξ(τ4)) ◦ ξ 

UR(τ1,τ2) = fail 

Figure 2.2: Robinson’s unification algorithm. 

and θ3, respectively. In general, UR is sound, complete, and most general [Robin­

son, 1965]. 

Based on Robinson’s unification algorithm, Damas and Milner [1982] devel­

oped the type inference algorithm W for their Hindley-Milner type system. Al­

gorithm W is the foundation for the variational type inference and partial varia­

tional type inference algorithms. We thus present it in Figure 2.3. The algorithm 

relies on the notion of fresh type variables, which are simply type variables that 

haven’t been used before. 

The algorithm is sound, complete, and principal for HM [Damas and Milner, 

1982]. For the example expression (e1 e2) e3 introduced in the beginning of this 

section, it is easy to verify that W computes Bool as the result type. 

We make two observations about algorithm W . First, the inference result of 

the left part of an expression has an impact on the inference of the right part, but 
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W : Γ × e → ξ × τ 

W (Γ, x) = 
∀a.τ ← Γ(x) 
return (∅, {a �→ b}(τ)) where b fresh 

W (Γ,λx.e) = 
(ξ,τ) ← W ((Γ, x �→ a), e) 
return (ξ,ξ(a → τ)) 

where a fresh 

W (Γ, e1 e2) = 
(ξ1,τ1) ← W (Γ, e1) 
(ξ2,τ2) ← W (ξ1(Γ), e2) 
ξ ← UR(ξ2(τ1),τ2 → a) 
return (ξ ◦ ξ2 ◦ ξ1,ξ(a)) 

where a fresh 

W (Γ, let x = e1 in e2) = 
(ξ1,τ1) ← W (Γ, e) 
a ← FV(τ) − FV(ξ1(Γ)) 
(ξ2,τ2) ← W (ξ1(Γ, x �→ ∀a.τ), e2) 
return (ξ2 ◦ ξ1,τ2) 

Figure 2.3: The type inference algorithm W . 

not vice versa. This is clear from the rule for the application e1 e2. The algorithm 

first infers the type of e1, and then infers the type for e2 under the updated en­

vironment. Second, the algorithm uses Robinson’s algorithm to solve unification 

problems. As Robinson’s algorithm is most general, it means that algorithm W 

places only necessary constraints on the subexpressions seen so far. These two 

facts have a huge impact on error localization when expressions are ill typed, as 

we shall see in Section 3.3. 
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2.2 Variation Representations 

This section presents a choice-based variation representation, the other impor­

tant component for presenting variational typing. Section 2.2.1 introduces the 

elements of the Choice Calculus. Section 2.2.2 presents lambda calculus with 

variation constructs. We call this language variational lambda calculus (VLC). 

Section 2.2.3 discusses the semantics of VLC by relating VLC expressions and the 

lambda calculus expressions they encode. 

2.2.1 Elements of the Choice Calculus 

The variation representation is based on Erwig and Walkingshaw’s work on the 

choice calculus [Erwig and Walkingshaw, 2011], a fundamental representation 

of software variation designed to improve existing variation representations and 

serve as a foundation for theoretical research in the field. The fundamental con­

cept in the choice calculus is the choice, a construct for introducing variation points 

in the code. Choices are associated with names, which are used to relate differ­

ent choices. Choices with the same name are synchronized and those with dif­

ferent names are independent. In this dissertation, we assume that all choices 

are globally scoped, although choice calculus comes with a dimension construct to 

structure choices [Erwig and Walkingshaw, 2011]. 

As an example, suppose we have two different ways to represent some part of 

a program’s state. In one version of the program the state is binary so we use a 

boolean representation; in another version of the program there are more possible 
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states, so we use integers. The decision of which state to use is static—that is, 

we make the decision before the program runs. In our code, when we initialize 

this part of the state, we have to somehow choose between these two different 

representations. This is expressed in the choice calculus as a choice. 

x = Rep〈True,1〉 
The two different alternatives are tagged with a name, Rep, that stands for the 

decision to be made about the representation. 

Now suppose we have to inspect the value of x at some other place in the 

program. We have to make sure that we process the values with a comparison 

operator of the right type, as indicated in the example below. 

if Rep〈not x,x < 1〉 then ... 

This choice ensures that not is applied if x uses the boolean representation and 

the numeric comparison is used when x is an integer. Here the choice’s name 

comes critically into play. Different choices in different parts of the program will 

be synchronized if they have the same name. This reflects the fact that we want 

to make the decision about the state representation once, then reuse this decision 

consistently throughout our code. 

So what is the type of x? It can be either Bool or Int, depending on the decision 

made for the dimension Rep. We can therefore express the type of x also using a 

choice. 

x : Rep〈Bool,Int〉 
Choices can have more than two alternatives, but all choices with the same name 

must have the same number of alternatives. Of course, a variational program can 

have choices with many different names, and these can be arbitrarily nested. 
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Like CPP, the choice calculus is principally agnostic about the language that 

is being annotated by choices. However, the choice calculus is a much more struc­

tured representation of variability than CPP since: 

(1) it annotates the abstract syntax tree, rather than the plain text of the concrete 

syntax, ensuring that all variants that can be generated are syntactically cor­

rect; 

(2) choices provide a more restricted and regular form of variability than arbitrary 

boolean conditions on macros; and 

(3) it ensures that variation points are consistent in the sense that all choices in 

the same dimension must have the same number of alternatives. 

2.2.2 Lambda Calculus with Variations 

The syntax of VLC is given in Figure 2.4. To simplify the presentation of typing 

and the equivalence rules, we restrict choices to the binary case. This is not a 

fundamental limitation since it is easy to simulate an n-ary choice by nesting 

n − 1 binary choices. 

The first five VLC constructs, variable, abstraction, application, constant, and 

let are as in HM. The choice construct is from the choice calculus and was ex­

plained in the previous subsection. 

Neither VLC nor the choice calculus provide direct support for optional expres­

sions. This is because the alternative model of variation is more general, although 
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e ::= x Variable 
| λx.e Abstraction 
| e e Application 
| ν Constant 
| let x = e in e Polymorphism 
| D〈e, e〉 Choice 

Figure 2.4: VLC syntax. 

in the case of VLC, it can sometimes lead to redundancy. For example, suppose we 

want to represent a choice between the function even or the function even applied 

to the constant 3. With explicit support for optionality via empty expressions, we 

might represent this as even A〈3,�〉, where � denotes an empty expression. How­

ever, notice that we can’t just include � anywhere we allow an expression—for 

example, the body of an abstraction cannot be empty. Therefore, rather than treat 

optionality specially, we require the scope of the choice to be expanded. So the 

above VLC expression would be represented as A〈even,even 3〉. 
If a VLC expression does not contain any choices (that is, it is a regular lambda 

calculus expression with constants), we say that the expression is plain. 

2.2.3 Semantics of Variational Lambda Calculus 

Conceptually, a VLC expression represents a set of related lambda calculus ex­

pressions. It is important to stress again that the choice calculus constructs in 

VLC describe static variation in lambda calculus expressions. That is, we will 

not extend the semantics of lambda calculus to incorporate choices. Rather, the 
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�ν�s = ν 

�x�s = x 
�λx.e�s = λx.�e�s 

�e1 e2�s = �e1�s �e2�s⎧ ⎨�el�s if s = D 
�D〈el , er〉�s = �er�s if s = D̃⎩

D〈�el�s,�er�s〉 otherwise 
�let x = e in e��s = let x = �e�s in �e��s 

Figure 2.5: Selection / variation elimination. 

semantics of a VLC expression is a mapping from configurations to plain lambda 

calculus expressions encoded in the VLC expression. 

To produce a plain variant, we must repeatedly eliminate dimensions of varia­

tion until we obtain an expression with no choices. For each dimension D, we can 

select either left or right, which will replace each choice in dimension D with its 

left or right alternative, respectively. We write �e�D to indicate choosing the left 

alternatives of all choices in dimension D and �e�D̃ to indicate choosing the right 

alternatives. We call D and D̃ selectors, and range over them with the metavari­

able s. Since each selection eliminates a dimension of variation, we also refer to 

this operation as variation elimination. The operation is defined in Figure 2.5. 

Most cases simply propagate the selection to subexpressions. The interesting case 

is for choices, where the choice is eliminated and replaced by one of its alternatives 

if the selector is of the corresponding dimension. 

We call a set of selectors a decision, and range over decisions with the 

metavariable δ. The semantics of VLC is then defined as a mapping from deci­
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sions to plain lambda calculus expressions. The definition is based on repeated 

selection with selectors taken from decisions, that is, �e�δ = ��. . .�e�s1 . . .�sn−1 �sn , 

where δ = {s1, s2, . . . , sn}. A decision that eliminates all choices in e is called com­

plete. 

We want the semantics to be “robust” in the sense that selection with a dimen­

sion that does not occur in e is well defined but does not eliminate any choice in e. 

Thus, for any given expression e, a selector in a decision δ can play two different 

roles when used in a selection. It can either be relevant and eliminate at least 

one choice from e or irrelevant and not change e. Since there are infinitely many 

irrelevant selectors for any expression e, we define the semantics in two concep­

tual steps. First, we construct a mapping with decisions containing only relevant 

selectors, and then extend it to account for irrelevant selectors. 

A decision δ is minimally complete with respect to an expression e if it satisfies 

the following two conditions: 

(a) �e�δ is plain, 

(b) ∀s ∈ δ : �e�δ−{s} is not plain. 

Condition (a) ensures that δ eliminates all variability in e (that is, δ is complete 

with respect to e), and condition (b) ensures that δ is minimal in the sense that it 

does not contain any irrelevant selectors. 

The semantics can now be defined by mapping all minimally complete deci­

sions to the plain expressions they select while allowing each decision to also in­

clude irrelevant dimensions. In the definition given below we use the function 
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|δ| = {|s| | s ∈ δ} (where |D| = | D̃| = D) to extract the set of dimensions underlying a 

set of selectors. 

[[e]] = {(δ ∪ δ� ,�e�δ) | δ is minimally complete wrt. e and |δ|∩ |δ�| = ∅} 

To illustrate this definition, we give the semantics of the expression 

A〈e1,B〈e2, e3〉〉 where e1, e2, and e3 are plain expressions, and where we use the 

shorthand notation {δ � e} to denote the set {(δ ∪ δ� , e) | |δ| �⊆ |δ�|}. 

[[A〈e1,B〈e2, e3〉〉]] = {{A} � e1} ∪ {{Ã,B} � e2} ∪ {{Ã, B̃} � e3} 

Note that due to the minimality constraint, dimension B does not appear in the 

decision of the first entry since it is irrelevant. 
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Chapter 3: Literature Review 

The work of variational typing and applications is related to many research ac­

tivities: type system design, type checking/inference of generated programs, type 

checking software product lines, and debugging type errors. This chapter collects 

the work related to the latter three activities. The work related to type system 

design will be discussed once variational typing is presented in Chapters 4 and 7. 

3.1 Type Checking Software Product Lines 

In the context of software product lines (SPLs), a lot of work has been done to 

improve the type checking of generated products and avoid the brute-force strat­

egy of typing each product individually. A main difference between my work and 

the work in this area is that I solve the type inference problem while previous 

work focused on the type checking problem. Variational type inference poses some 

particular challenges, for example, solving variational unification problems and 

locating variants containing type errors. We address these challenges in Chap­

ters 5 and 7. 

SPLs are usually implemented through two very different approaches: anno­

tative and compositional [Walkingshaw, 2014]. The annotative approach usually 

involves two languages: an object language for implementing software function­
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alities and a metalanguage for managing software variations. The name “annota­

tive” implies that the metalanguage is used directly to annotate the object code. 

This approach is very flexible since annotations can be attached to virtually any 

object language construct. Given an SPL, products are generated by evaluating 

its annotations. When an annotation is evaluated to true, its associated code is 

included in the resulting product. Instead, code corresponding to annotations that 

are evaluated to false is not included. In any case, the annotations are not part 

of the product. C Preprocessor (CPP) [GNU Project, 2009], the most widely used 

metalanguage for annotating source code, uses macros and #ifdef and related con­

structs to manage variation. Each macro is often referred to as a feature. Thus, 

selecting a feature means to define that macro and include the related code into 

the generated product. 

In the compositional approach, only one language is used to implement SPLs. 

However, such a language is often obtained by extending an existing language 

with certain constructs for achieving high compositionality, for example, mixins 

[Bracha and Cook, 1990; Batory et al., 2004], aspects [Elrad et al., 2001; Mezini 

and Ostermann, 2003, 2004], and refinements [Apel et al., 2010]. An SPL is usu­

ally decomposed into the mandatory code base and the optional component fea­

tures. Products are generated by choosing certain features and applying them to 

the code base. The ordering of applying features is significant. 

Usually, each SPL is also associated with a feature model specifying the rela­

tionships between its features. The feature model can be described through a use 

of feature diagrams [Kang et al., 1990] or logics [Batory, 2005; Schobbens et al., 
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2006]. A feature model describes what products are valid. For example, a feature 

model that contains the constraint A ⇒ B says that any product that includes the 

feature A must also include the feature B. The purpose of type checking software 

product lines is to ensure that all valid products are type correct. 

3.1.1 Type Checking Annotative Software Product Lines 

Kästner et al. [2012a] describe a type system for SPLs implemented in Colored 

Featherweight Java (CFJ). In CFJ, parts of a Featherweight Java (FJ) program 

can be “colored”, marking them as optional and associating them with a particular 

feature. FJ fulfills a role in object-oriented language research similar to lambda 

calculus in functional language research. The following code presents a minimal 

FJ program, which defines a class named Database. The class includes a field 

storage of the type Storage. It also includes a method named insert. 

class Database{

Storage storage;


void insert(Object key, Object data, Txn txn){

storage.set(key, data, txn.getLock()) ;


}

}


CFJ programs are very similar but allow certain parts to be optional [Kästner 

et al., 2012a]. However, instead of adding annotations to code fragments di­

rectly, they use an annotation table AT to map each optional code fragment to 

an annotation. Annotations can be viewed as propositional formulas over fea­

tures. Figure 3.1 presents a CFJ program, which we name DB. Instead of writing 
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class Database{ 
Storage storage; 

void insert(Object key, Object data 
,Txn txn Transactions 

){ 
storage.set(key, data 

,txn.getLock() Transactions 
); 

} 
} 

class Txn{...} Transactions 

class Storage{ 
boolean set(Object key, Object data, Txn txn) {...} Persistent 

} 

Figure 3.1: A CFJ program named DB. 

down an explicit annotation table, I directly attach annotations to optional code 

by putting them at the end of the corresponding lines. For example, the annota­

tion PERSISTENT means that the method set of Storage is present only when the 

feature PERSISTENT is chosen in generating the product. If we wrote AT explicitly, 

it would contain the entry AT(Storage.set) = PERSISTENT. 

Assume that the feature model associated with DB contains the single con­

straint TRANSACTIONS ⇒ PERSISTENT. Two valid products may be generated. The 

first product with TRANSACTIONS selected is presented in Figure 3.2. This product 

includes the code associated with either TRANSACTIONS or PERSISTENT. 

The second product, given in Figure 3.3, contains the code associated only with 

PERSISTENT. 



36 

class Database{ 
Storage storage; 

void insert(Object key, Object data 
,Txn txn){ 

storage.set(key, data 
,txn.getLock() ); 

} 
} 

class Txn{...} 

class Storage{ 
boolean set(Object key, Object data, Txn txn) {...} 

} 

Figure 3.2: The product generated from DB with TRANSACTIONS selected. 

We can observe that while the first product is well typed, the second product 

contains a type error. The reason is that the insert method invokes set with 

two arguments while set requires three arguments. Another reason is that the 

method set refers to the undefined class Txn. One of the goals of the type system 

developed by Kästner et al. [2012a] is to catch such kinds of errors. 

Their type system thus is a combination of the type system for FJ and a path 

analysis that checks whether elements that are referred to are reachable. Besides 

normal type checking, each typing rule also deals with reachability checking and 

annotation propagation. For example, the rule for typing variable references in 

CFJ consists of two parts, denoted with different background colors. The first part 

that has white background is inherited from the rule for typing variables in FJ. 

The second part that has light gray background deals with path reachability. The 
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class Database{ 
Storage storage; 

void insert(Object key, Object data){ 
storage.set(key, data); 

} 
} 

class Storage{ 
boolean set(Object key, Object data, Txn txn) {...} 

} 

Figure 3.3: The product generated from DB with TRANSACTIONS unselected. 

A� in the first premise specifies the annotation that makes the variable x available. 

The second premise states that to access the variable x in the current context, its 

associated annotation A must be tighter than the annotation of x. This idea is 

expressed through the logical implication A → A� . The conclusion says that with 

the current annotation A and the type environment Γ, x has the type C. 

x: C with A� ∈ Γ A → A� 

A;Γ � x: C 

There has also been some work on statically checking variational C programs 

containing CPP annotations. Initial work in this area was done by [Aversano 

et al., 2002] who demonstrate the widespread use of conditionally declared vari­

ables with potentially different types and the difficulty in ensuring that they are 

used correctly in all variants. As a solution, they propose the construction of an ex­

tended symbol table that contains conditions under which each symbol is defined 

and the corresponding type. [Kenner et al., 2010; Kästner et al., 2012b] provide 
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a working implementation of essentially this approach in TypeChef1, although it 

currently ensures only that symbol references are satisfied in all variants and that 

no symbols are redefined. TypeChef ’s ultimate goal is to be able to efficiently en­

sure the type correctness of all variants of CPP-annotated C programs, which be­

comes promising with the work of variability-aware parsing [Kästner et al., 2011; 

Gazzillo and Grimm, 2012]. There is a huge amount of engineering overhead in 

such a project, not related to variational type systems, because of CPP’s highly un­

structured variation representation. A macro’s setting can change several times 

throughout a single run of the C preprocessor, making it much more difficult to 

even determine which code corresponds to a particular variant. 

3.1.2 Type Checking Compositional Software Product Lines 

Thaker et al. [2007] present an approach for type checking SPLs based on the safe 

composition of type-correct modules [Delaware et al., 2009a,b]. This is given as a 

tool implemented in the AHEAD framework for feature-oriented software develop­

ment [Batory et al., 2004], where each feature is implemented in a separate mod­

ule. These modules can then be selectively composed into products, and the set of 

all such possible products forms an SPL. Safe composition of features is achieved 

in two steps. In the first, each module is compiled and checked to see whether it 

satisfies a lightweight global consistency property. After that, constraints between 

particular modules are checked. 

1http://ckaestne.github.io/TypeChef/ 

http://ckaestne.github.io/TypeChef/
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Other work on ensuring the type correctness of generated products within the 

compositional approach include the work of [Apel and Hutchins, 2008], which de­

scribes feature composition formally with a new calculus, and the work of [Chae 

and Blume, 2008], which ensures that the types of composed features will match. 

While CFJ provides type checking support for annotative variation in Feath­

erweight Java, Feature Featherweight Java (FFJ) [Apel et al., 2008] and 

FFJPL [Apel et al., 2010] provide type checking support for compositional vari­

ation in the language. The goal of these languages is to explore the flexibility of 

class refinement and module composition and to ensure the type correctness of 

whole software product lines. 

In FFJPL, each feature has its own module implementing the functionalities 

of that feature. Figure 3.4 shows as an example the EC SPL in FFJPL. We observe 

that EC includes four features, and correspondingly, four modules. A key concept in 

FFJ is class refinement, indicated by the keyword refine in the code. When a class 

C1 refines another class C2, all fields in C1 will be merged into C2 when no name 

conflicts occur during the merging. Otherwise, the refinement fails. The rule for 

merging methods consists of three parts. (1) Methods are merged together when 

they have pairwise different names. (2) If two classes share the same signature 

for some method and that method is specified with the override modifier in C1, 

the method in C1 will replace the one in C2 during merging. (3) Merging fails for 

all other cases. 
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EmailClient 
class Msg extends Object{ 

String serialize(){... } 
} 
class Trans extends Object{ 

boolean send(Msg msg){... } 
} 

Text 
refine class Trans{ 

Timer tmr; 
Unit receive(Msg msg){ 

return Display().render(msg); 
} 

} 
class Display{ 

Unit render(Msg msg) {...} 
} 

Mozilla 
refine class Display{ 

override Unit render(Msg msg) {...} 
} 

Safari 
refine class Display{ 

override Unit render(Msg msg) {...} 
override colorful(Msg msg) {...} 

} 

Feature model: 
EMAILCLIENT ⇒ TEXT 

TEXT ⇒ MOZILLA ∨ SAFARI 

MOZILLA ⇒¬SAFARI 

SAFARI ⇒¬MOZILLA 

Figure 3.4: An email client SPL named EC in FFJPL. 
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class Msg extends Object{ 
String serialize(){... } 

} 

class Trans extends Object{ 
boolean send(Msg msg){... } 
Timer tmr; 
Unit receive(Msg msg){ 

return Display().render(msg); 
} 

class Display{ 
Unit render(Msg msg) {...} /*The method is from the Mozilla module*/ 

} 

Figure 3.5: The product generated from EC with MOZILLA selected. 

According to the feature model in Figure 3.4, the SPL presented in that fig­

ure can generate two different products. The first product, with the presence of 

the MOZILLA feature, is given in Figure 3.5. We have merged fields and methods 

according to the refinement merging rule described above. 

While the first product is well typed, the second product that includes the fea­

ture SAFARI is ill typed. We present part of the second product in Figure 3.6, which 

makes it clear why it’s ill typed. 

The problem is that while the module SAFARI tries to refine the class Display 

by overriding the method colorful, that method is missing in the original Display 

class defined in the module TEXT. The work of FFJPL is to prevent such kinds of 

errors. For the SPL in Figure 3.4, FFJPL reports a type error. 
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Text 
... 
class Display{ 

Unit render(Msg msg) {...} 
} 

Safari 
refine class Display{ 

override Unit render(Msg msg) {...} 
override colorful(Msg msg) {...} 

} 

Figure 3.6: The product generated from EC with SAFARI selected. 

3.2 Type Checking Generated Programs 

In VLC, program variation is managed by using the annotative choice constructs. 

Program variation can also be expressed using program generation or metapro­

gramming techniques, for example, MetaML [Taha and Sheard, 2000], Template 

Haskell [Sheard and Peyton Jones, 2002], C++ Templates [Austern, 1998], and 

many others [Fähndrich et al., 2006; Huang and Smaragdakis, 2008, 2011]. In 

this section, we will focus on their type checking aspect. 

While the original goal of MetaML is to optimize program execution [Taha 

and Sheard, 2000], its metaprogramming mechanisms also supports program cus­

tomization and generation. In particular, MetaML provides three constructs for 

managing program generation. 

1. The bracket operator (<>) prevents code reduction2 inside brackets. For ex­

2Code reductions can be understood as computations. 
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ample, the subexpression 2+3+4 in <2+3+4> during reduction shouldn’t be 

reduced to 9. The expression <e> is called a piece of code. 

2. The escape operator (~) splices a piece of code into its surrounding context. It 

works by enabling reductions of escaped expressions inside brackets. Specif­

ically, if we have e=<...~f ...>, then the reduction of e will cause that of f. 

Moreover, if ~f reduces to <f1>, then f1 will be spliced together with the code 

surrounding ~f inside e. For example, the reduction of 

<2+~(if true then <3> else <1>)+4> 

yields the expression <2+3+4>. The evaluation of the if expression produces 

<3>, and 3 is used to produce the larger resulting expression. 

3. The run operator forces an execution of a delayed computation, which is rep­

resented as a code expression. For example, the expression run <2+3+4> eval­

uates to 9. 

The MetaML expressions are typed, and this ensures that all generated pro­

grams are well typed. Code types are introduced to assign types to expressions. 

For example, when e has the type Int, <e> will have the type <Int>. If we extend 

the type system defined in Section 2.1.1 with code types, the following relations 
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hold. We use the notation \x.x to denote the identity function λx.x. 

Γ �H2 : Int


Γ �H<2> : <Int>


Γ �H<<2>> : <<Int>>


Γ �H run <<2>> : <Int>


Γ �H<\x.x> : <Int → Int>


Γ �H run <\x.x> : Int → Int


With these three operators and the type system, we can build the following 

program, which has the type <Bool> → <Int>. 

vp1 x = <~(if ~x then <succ> else <\x.x+2>) 1> 

We observe that the argument to vp1 can only be <true> or <false>3. When the 

argument is <true>, the expression <succ 1> is generated. Otherwise, the expres­

sion <(\x.x+2) 1> is generated. To make this process more explicit, we show the 

evaluation steps of run (vp1 <false>) as follows. 

run (vp1 <false>) = run (<~(if ~<false> then <succ> else <\x.x+2>) 1>) 

= run (<~(if false then <succ> else <\x.x+2>) 1>) 

= run (<~(<\x.x+2>) 1>) 

= run (<(\x.x+2) 1>) Object program is generated 
= (\x.x+2) 1 

= 3 

MetaML’s type system is limited in the sense that an expression may be re­

jected by the type system although all generated expressions are well typed. For 

3We use the MetaML convention of writing boolean values, which begin with lower case letters. 
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example the following very similar expression is not typable in MetaML. 

vp2 x = <~(if ~x then <succ> else <even>) 1> 

With vp2, we can potentially generate two programs. When the argument is <true> 

and <false>, the generated program is <succ 1> and <even 1>, respectively. We 

observe that both generated programs are well typed, although vp2 is rejected by 

MetaML. 

This limitation is, however, not due to the design of MetaML itself, but a re­

flection of the limitations of static type systems in general. In other words, this 

limitation of MetaML is inherited from that of ML, which is statically typed and 

requires the branches of if expressions to have the same type. We further observe 

that MetaML uses ML’s if expressions to realize program generation. Therefore, 

code alternatives in MetaML must have the same type. 

Template Haskell [Sheard and Peyton Jones, 2002] implements metaprogram­

ming in a very different manner: it introduces more language constructs and uses 

a different type checking mechanism. In particular, type checking in Template 

Haskell is delayed until after object programs are generated, abandoning the 

static typing paradigm [Shields et al., 1998]. This model results in a language that 

is more flexible, yet has fewer type correctness guarantees. In Template Haskell, 

it is easy to implement the vp2 program introduced earlier, but it is also easy to 

write programs that generate ill typed programs. 

The design of Template Haskell is, to a large extent, inspired by C++ Tem­

plates [Austern, 1998; Abrahams and Gurtovoy, 2004]. Thus, they share many 
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properties: both of them enjoy great flexibility but delay type checking until af­

ter programs are generated. C++ Templates enable software variation through 

template instantiations. By instantiating templates with different arguments, 

different program variants can be generated. 

For example, Figure 3.7 implements the earlier introduced vp1 in C++ Tem­

plates. The main function vp1c returns the function succ if it is instantiated with 

true and returns succ2 otherwise. The last line calls the returned functions. Note 

that in vp1c<true>()(1), the first pair of parentheses is used to call the function 

vp1c and the subexpression (1) invokes the function returned in the first function 

call. 

int succ(int v) { return v + 1 ; } 
int succ2(int v){ return v + 2 ; } 

typedef int (*PII)(int); 

template<bool v> 
PII vp1c(){ 

if(v) 
return succ; 

else 
return succ2; 

} 

cout << vp1c<true>()(1) << vp1c<false>()(1); 

Figure 3.7: A C++ Template program generates two programs with the same type. 

While we can’t implement vp2 in the same way, we can implement it through a 

use of class templates and their specializations [Abrahams and Gurtovoy, 2004]. 

One of its potential implementation is given in Figure 3.8. The code first defines 
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a class template, which is then specialized with different template arguments. 

While the notation of the function call in the last line is peculiar, the code doesn’t 

contain any typos. 

int succ(int v) { return v + 1 ; } 
bool even(int v) { return v%2 == 0; } 

typedef int (*PII)(int); 
typedef bool (*PIB)(int); 

template<bool v> //Class template for vp2c 
struct vp2c{ 

int operator()(){ return 1; } 
}; 

template<> 
struct vp2c<true>{ //Specialized for true 

PII operator()(){ return succ; } 
}; 

template<> 
struct vp2c<false>{ //Specialized for false 

PIB operator()(){ return even; } 
}; 

cout << vp2c<true>()()(1) << vp2c<false>()()(1); 

Figure 3.8: A C++ Template program generates two programs with different types. 

While the code vp2c<true>()() is executed, the function succ is returned. Sim­

ilarly, the execution of vp2c<false>()() returns the function even. The code in Fig­

ure 3.8 demonstrates the flexibility of C++ Templates. In addition, C++ Templates 

provide a static type reflection mechanism [Garcia, 2008] that allow metapro­

grams to query the type information of template parameters. These features allow 
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C++ to achieve both maximum reusability and efficiency. 

However, since the complete type information of the template parameters is 

not available statically, full type checking is delayed until after a particular pro­

gram variant is generated [Stroustrup, 1994]. This means that it’s not possible to 

statically type check all program variants without generating each one. 

In the following example, there is a type error in the expression return 

powN<N-1>(m)*m because powN<N-1>(m) is of type int and m is of type string. How­

ever, the statement return powN<N-1>(m)*m will not be type checked until the func­

tion powN is instantiated since the expression powN<N-1>(m) uses the template pa­

rameter N. Therefore, the detection of the type error will be unnecessarily delayed. 

template<int N> 
int powN(string m){ 

return powN<N-1>(m)*m; 
} 

Thus, although powN is accepted by C++, no instantiation exists to generate well-

typed programs. 

The model of delayed type checking has led to serious usability problems [Gre­

gor et al., 2006]. Despite huge efforts devoted to address this issue [Reis and 

Stroustrup, 2005; Dos Reis and Stroustrup, 2006; Gregor et al., 2006; Siek and 

Taha, 2006a; Garcia and Lumsdaine, 2009; Miao and Siek, 2010; Chen and Erwig, 

2014d], no satisfying solution has been proposed. Järvi et al. [2006] conclude that 

to achieve modular type checking for C++ templates, either the use or implemen­

tation of specialization must be constricted. 

SafeGen [Huang et al., 2005] and MorphJ [Huang and Smaragdakis, 2008, 

2011] provide a way to create generic Java classes whose methods are generated 
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by iterating over the fields and methods of other classes. This is particularly suited 

for defining wrappers and proxies for existing classes. Method definition in Mor­

phJ consists of two parts: (1) the iteration pattern that determines which meth­

ods will be matched, and the resulting method name, return type, and argument 

types, and (2) the method body, which may refer to pattern-matching variables 

defined in the iteration pattern. MorphJ checks that the operations applied to 

pattern-matching variables are supported by assumptions introduced in the iter­

ation pattern. This is very similar to C++ concepts, which describe constraints on 

template parameters [Gregor et al., 2006]. Both approaches ensure that generated 

classes will be well-typed if they are instantiated with arguments that satisfy the 

assumptions/constraints. 

Many other techniques have been developed for ensuring the generation of 

well-formed and well-typed programs in mainstream object-oriented languages. 

Fändrich et al. [2006] propose a pattern-matching and template-based approach 

for writing reflective code in C#. Work on Maven [Goldman et al., 2010] and subse­

quent work [Disenfeld and Katz, 2012] has addressed the problem of ensuring that 

specified behaviors are achieved after complex aspect-weaving operations. Finally, 

expanders [Warth et al., 2006] provide a new language construct for updating the 

methods and fields of an existing Java class in a non-invasive way. This work 

achieves modular type checking by statically scoping the usage of expanders. 
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3.3 Debugging Type Errors 

Generating informative and helpful type error messages remains a challenge for 

implementing type inference algorithms. The difficulty of locating real error 

causes in W [Damas and Milner, 1982] attributes to the way type inference is 

implemented. As already mentioned in Section 2.1.2, W tends to create a left-to­

right bias in locating type errors [Heeren et al., 2003a; Hage and Heeren, 2009]. 

Consider, for example, the following very simple expression rank4. This expression 

is ill typed because it tries to apply the parameter f to values of different types, 

which is prevented in HM5. 

one = 1::Int 
rank f = (f True, f one) 

The type inference algorithm in the Glasgow Haskell Compiler (GHC) 7.86 is an 

extension of algorithm W . If we load the expression rank into GHC, we receive the 

following message. We observe that the identified error cause is one, rather than 

True, which is in fact equally likely a cause of the type error. 

Couldn’t match expected type ’Bool’ with actual type ’Int’ 
In the first argument of ’f’, namely ’one’ 
In the expression: f one 

While this message demonstrates a potential problem with error localization, it 

is not the only problem with type error diagnosing in general. In particular, the 

generated error messages usually contain compiler jargon that are hard to digest 

4The expression is so named because it is ill typed in type system with rank-1 polymorphism 
but is well typed with higher-rank polymorphism. 

5We focus on the discussion of debugging type errors in HIndley-Milner type system. 
6www.haskell.org/ghc/ 

www.haskell.org/ghc/
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by those that are unfamiliar with type inference implementation details. To il­

lustrate, consider the following example palin, which checks whether a list is a 

palindrome [Stuckey et al., 2003]. The first equation for fold contains a type error 

and should return z instead of [z]. 

fold f z [] = [z] 
fold f z (x:xs) = fold f (f z x) xs 
flip f x y = f y x 
rev = fold (flip (:)) [] 
palin xs = rev xs == xs 

For this example, GHC produces the following error message.7 

Occurs check: cannot construct the infinite type: t ~ [t] 
Expected type: [[t]] 

Actual type: [t] 
Relevant bindings include 

xs :: [t] (bound at Palin.hs:5:7) 
palin :: [t] -> Bool (bound at Palin.hs:5:1) 

In the second argument of ’(==)’, namely ’xs’ 
In the expression: rev xs == xs 

Hugs98 8, another modern Haskell compiler, displays the following message. 

*** Expression : rev xs == xs 
*** Term : rev xs 
*** Type : [[a]] 
*** Does not match : [a] 
*** Because : unification would give infinite type 

We observe similar error messages from both compilers since they implement the 

standard type inference algorithm. While technically accurate, both the error 

messages point to the wrong error cause and explain the type error in terms of 

7For presentation purposes, we have slightly edited the outputs of some tools by changing their 
indentation and line breaks. 

8http://www.haskell.org/hugs/ 

http://www.haskell.org/hugs/
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unification failure. In fact, the hardness of explaining type inference failure was 

recognized [Wand, 1986; Johnson and Walz, 1986] soon after algorithm W [Damas 

and Milner, 1982] had been developed. It has since prompted numerous research 

efforts from different perspectives [McAdam, 2002b; Lee and Yi, 1998, 2000; Yang, 

2001; Wazny, 2006; Lerner et al., 2007; Choppella, 2002; McAdam, 2002a; Tip 

and Dinesh, 2001; Haack and Wells, 2003; Heeren, 2005; Schilling, 2012]. In the 

following, I will briefly review these efforts by grouping different approaches ac­

cording to major features they share. Beyond the Hindley-Milner type system, 

the problem of debugging type errors has also been studied in security program­

ming [Weijers et al., 2014], type classes [Heeren and Hage, 2005], and Generic 

Java [El Boustani and Hage, 2011, 2010]. 

3.3.1 Reporting Single Locations 

Both the examples rank and palin demonstrate a left-to-right bias of inference 

algorithm W . Many approaches have tried to eliminate this bias. Examples are 

algorithms M [Lee and Yi, 2000], G [Eo et al., 2004], W SYM and M SYM [McAdam, 

2002b], and U AE and IEI [Yang et al., 2000]. While algorithm W processes 

nodes in tree representations from left to right, algorithm M [Lee and Yi, 2000] 

uses a top-down fashion. Algorithm G [Eo et al., 2004] is a generic one that is 

parameterized over the way the nodes are traversed. Therefore, M and W can be 

viewed as instances of G . Algorithm W SYM is a modification of W by changing its 

rule for processing applications. For both the function and the argument, W SYM 
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returns a type and a substitution. These two substitutions are then merged. 

In the following, we show the locations reported by various algorithms for the 

rank example. 
M

rank f = ( f True, f one ) 

W 

W SYM and M SYM 

All these algorithms interpret the place of unification failure as the source 

of the type error. A very different approach has been taken by Johnson and 

Walz [1986], who used a maximum-flow technique to determine the most likely 

cause of the type error when type conflicts arise in a set of type equations. Specif­

ically, when a type variable has to be unified with two conflicting types, the type 

variable is mapped to a disjunction of these two types, and the typing process con­

tinues. The conflict is eventually resolved by something like “usage voting”, that 

is, whatever type a variable is unified with most often, will be selected. 

3.3.2 Slicing Type Errors 

In contrast to approaches that blame type errors on single locations, many slicing 

approaches have been developed to identify a set of possible error locations [Tip 

and Dinesh, 2001; Haack and Wells, 2003; Schilling, 2012]. The basic idea is to 

find all program positions that contribute to a type error and exclude those that 

do not. For example, the Skalpel9 type error slicer for SML [Haack and Wells, 

2003] produces the following result. (We have translated the program into ML for 

9www.macs.hw.ac.uk/ultra/skalpel/ 

www.macs.hw.ac.uk/ultra/skalpel/
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Skalpel to work.) 

fun fold f z [] = [z] ; 
| fold f z (x::xs) = fold f (f (z,x)) xs ; 

fun flip f (x,y) = f (y, x) ; 
fun rev xs = fold ( (flip op ::)) [] xs ; 
fun palin xs = rev xs = xs ; 

For rank, it produces the following slice. 

val one = 1 : int ; 
fun rank f = (f true,f one) ; 

Skalpel finds type error slices in two steps. First, it generates labeled constraints 

for programs such that constraint solving failure can be linked back to programs. 

Second, it finds a minimal unsolvable constraint set if the generated constraints 

couldn’t be solved successfully. A significant difference of its constraint generation 

process compared with other inference algorithms is that to represent the result 

type of a subexpression, it creates a fresh variable and a constraint between that 

fresh variable and the result type. This ensures that all subexpressions involved 

in the type error will be included in the slice. However, this strategy also causes 

the slice to include unnecessary subexpressions. For example, the variables de­

fined for passing around an erroneous expression will be included in the slice. As 

we can see from the example, Skalpel includes most program parts in the slice. 

Some techniques have been developed to minimize the possible locations con­

tributing to a type error. One example is the Chameleon Type Debugger,10 which 

produces the following output. 

10ww2.cs.mu.oz.au/~sulzmann/chameleon/. Since Chameleon doesn’t offer a type diagnosis 
option anymore, the result is reproduced directly from [Stuckey et al., 2003]. 

ww2.cs.mu.oz.au/~sulzmann/chameleon/
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fold f z [] = [z] ;

fold f z (x:xs)= fold f (f z x) xs ;

flip f x y = f y x ;

rev = fold (flip (:)) [] ;

palin xs = rev xs = xs ;


Chameleon is based on constraint handling rules and identifies a minimal set 

of unsatisfiable constraints, from which the corresponding places in the program 

contributing to the type error are derived. 

Following this idea of showing fewer locations, a more aggressive strategy is 

taken by SHErrLoc11, which analyzes all the constraints and identifies the con­

straint that is most likely to cause the error by using Bayesian methods [Zhang 

and Myers, 2014]. For the palin example, it outputs the following message. 

One typing error is identified 

Expressions in the source code that appear most likely

to be wrong (mouse over to highlight code):


x [loc: 4,7-8]

a [loc: 6,30-31]

x [loc: 4,28-29]

z [loc: 3,13-14]

[z] [loc: 3,15-20] 

For the rank example, SHErrLoc produces the following message, which lists three 

potential locations that may cause the type error. These locations correspond to 

the code one (the second occurrence), 1 :: Int, and True, respectively. 

Constraints in the source code that appear most likely to be wrong: 

(variable)t_aHE == (variable)t_aHS [loc: program.hs:4,20-23]

Int == (variable)t_aHE [loc: program.hs:3,6-12]

Bool == (variable)t_aHN [loc: program.hs:4,12-16]


11http://www.cs.cornell.edu/projects/SHErrLoc/ 

http://www.cs.cornell.edu/projects/SHErrLoc/


56 

Neubauer and Thiemann [2003; 2004] developed a type system based on discrim­

inative sum types to record the causes of type errors. Specifically, they place two 

non-unifiable types into a sum type. Their system returns a set of sources related 

to type errors. Thus, it can be viewed as an error slicing approach. However, 

compared to other slicing approaches, it is not guaranteed that the returned set 

of locations is minimal. On the other hand, error locations reported by their ap­

proach may contain program fragments that have nothing to do with type errors. 

For example, a variable used for passing type information will be reported as a 

source of type errors if it is unified once with some sum types during the type 

inference process. 

3.3.3 Producing More Informative Messages 

The approaches presented so far only show error locations. Approaches that pro­

duce more informative error messages have also been developed. 

Many approaches have focused on identifying and explaining the causes of type 

conflicts. Wand [1986] records each unification step so that they can be tracked 

back to the failure point. Duggan and Bent [1995] on the other hand record the 

reason for each unification that is being performed. Beaven and Stansifer [1994] 

and Yang [2000] produce textual explanation for the cause of the type errors. 

While these explanation techniques can be useful in many cases, there are 

also potential downsides. First, the explanation can become quite verbose and 

repetitive, and the size grows rapidly as the program size increases. Second, the 
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explanation is inherently coupled to the underlying algorithm that performs the 

inference. Thus, knowledge about how the algorithms work is often needed to 

understand the produced messages. Third, the explanations usually lead to the 

failure point, which is often the result of biased unification and not the true cause 

of the type error. Finally, although a potential fix for the type error may lurk in 

the middle of the explanation chain, it’s not always clear about how to exploit it 

and change the program. 

Helium12 is developed to assist beginners to learn Haskell. A declared focus of 

Helium is to generate good error messages [Heeren et al., 2003c; Heeren, 2005]. 

Helium locates type errors in several steps. First, it builds a type graph to repre­

sent the constraints about typing relations among different parts of the program. 

When constraint solving fails, it will search through the type graph to discover 

a constraint whose removal will make the constraint solving successful. Helium 

finds the most suspicious constraint based on some heuristics [Hage and Heeren, 

2007]. 

Another distinct feature of Helium is that it frequently makes use of what it 

calls sibling functions [Heeren et al., 2003b]. Siblings are pairs of functions which 

are in some way similar or offer related functionality. Example of this include 

(:) and (++), as well as max and maximum which find the maximum of two values 

and the maximum in a list of values, respectively. Literals can also be considered 

siblings, such as the string and character versions of a single letter ("c" and ’c’) 

or the floating point and integer versions of a number. On example of using the 

12www.cs.uu.nl/wiki/bin/view/Helium/WebHome 

www.cs.uu.nl/wiki/bin/view/Helium/WebHome
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sibling functions to produce error messages is shown below. If we type "abc":"def" 

into the Helium interactive window, we will receive the following message. 

Type error in constructor 
expression : : 

type : a -> [a] -> [a] 
expected type : String -> String -> b 

probable fix : use ++ instead 

We observe that Helium suggests to use (++) over (:) to fix the type error. For the 

palin example introduced earlier, Helium generates the following message. We 

observe that the reported error location is incorrect. 

(5,19): Type error in infix application

expression : rev xs == xs

operator : ==


type : a -> a -> Bool 
does not match : [[b]] -> [b] -> c 

because : unification would give infinite type 

For the rank example, Helium, like algorithm W , blames f one as the error cause. 

Instead of changing type checkers or compilers, Seminal [Lerner et al., 2006, 

2007] improves error reporting by searching for a well-typed program that is simi­

lar to the ill-typed program. Seminal mainly consists of two steps. First, it locates 

a type error through top-down removal. Specifically, if a program is ill typed, Sem­

inal tries to remove each top-level expression to check whether the removal of that 

expression will eliminate the type error. If this succeeds for a top-level expression, 

then seminal recursively searches within that expression. Second, for the located 

expressions, it performs constructive changes at that location. Examples of such 

changes are the removal of an argument from a function call, swapping the or­

dering of arguments to function calls, and so on. After new expressions are con­

structed, each one is type checked. Seminal then suggests changes to the users 
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(* List.combine : ’a list -> ’b list -> (’a * ’b) list *) 
(* List.map : (’a -> ’b) -> ’a list -> ’b list *) 
(* List.filter : (’a -> bool) -> ’a list -> ’a list *) 

let map2 f aList bList = 
List.map (fun (a, b) -> f a b) 

(List.combine aList bList) 

let lst = map2 (fun (x, y) -> x + y) [1;2;3] [4;5;6] 

let ans = List.filter (fun x -> x==0) lst 

-- The following message is produced by Seminal 
Try replacing fun (x, y) -> x + y 
with fun x y -> x + y 
of type int -> int -> int 
within context let lst = 

map2 (fun x y -> x + y)

[1;2;3] [4;5;6]


Figure 3.9: An ill typed Ocaml program and the corresponding message produced 
by Seminal. 

by ordering all the programs that passed type checking using some heuristics. 

Seminal tries to find as many errors as possible. 

In Figure 3.9, we present an ill typed OCaml program together with the error 

message generated by Seminal. In the figure, the computation of lst contains a 

type error. The problem is that the first argument to map2 has a wrong type. While 

defining map2, the parameter f is expected to be an uncurried function. However, 

at the call site, map2 is passed in a curried function. We observe that Seminal 

generates a useful message for fixing the type error. 

For the palin example introduced earlier, Seminal suggests the corrective 
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File "Palin.ml", line 8, characters 21-27: 
This expression has type ’a list list but is 
here used with type ’a list 
Relevant code: rev xs 

File "Palin.ml", line 8, characters 15-17: 
Try replacing 

xs == (rev xs) 
with 

( == ) (xs, (rev xs)) 
of type 

’b list * ’b list list -> bool 
within context 

let palin xs = ( == ) (xs, (rev xs)) ;; 

Figure 3.10: Seminal’s error message for palin. 

change shown in Figure 3.10. Unfortunately, the suggested error location is not 

correct (according to [Stuckey et al., 2003]), and although the suggested change 

will eliminate the type error, it changes the wrong code (the suggested change of 

partially applying == to the pair of differently typed lists turns palin’s type into ’a 

list -> ’a list * ’a list list -> Bool.) 

Compared to other approaches, interactive approaches give users a better un­

derstanding about the type error or why certain types have been inferred for cer­

tain expressions. Consequently, several approaches to interactive type debugging 

have been pursued. 

The ability to infer types for unbound variables enable a type debugging 

paradigm that is based on the idea of replacing a suspicious program snippet by 

a fresh variable [Bernstein and Stark, 1995]. If such replacement leads to a type 

correct program, then the error location has been identified. However, the original 



61 

system proposed by Berstein and Stark requires users to do these steps manually. 

Later, Braßel [2004] automated this process by systematically commenting out 

parts of the program and running the type checker iteratively. Since type chang­

ing is based on unification, it can again introduce the bias problem. Also, it is 

unclear how to handle programs that contain more than one type error. 

Through employing a number of different techniques, Chitil [2001], Neubauer 

and Thiemann [2003], and Stuckey [2003; 2006] have developed tools that al­

low users to explore a program and inspect the types for any subexpression. 

Chameleon [Stuckey et al., 2003; Wazny, 2006] also allows users to query how the 

types for specific expressions are inferred. All these approaches provide a mech­

anism for users to explore a program and view the type information. However, 

none of them provides direct support for finding or fixing type errors. 
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Chapter 4: Variational Type Checking 

In this chapter I present a type system for VLC. I introduce a representation of 

variational types in Section 4.1 and give typing rules for relating variational types 

to VLC expressions in Section 4.2. The type system is based on the definition of an 

equivalence relation on variational types defined in Section 4.3. In order to test for 

type equivalence, we have to identify a representative instance from each equiv­

alence class. This is achieved through a set of terminating and confluent rewrite 

rules. This technical aspect is provided in Section 4.4. Finally, in Section 4.5 I 

present one of the main results, which says that the typing of expressions is pre­

served over selection. 

4.1 Variational Types 

As the example in Section 2.2.1 demonstrates, describing the type of variational 

programs requires a similar notion of variational types. The representation of 

variational types for VLC is given in Figure 4.1. The meanings of constant types, 

type variables, and function types are similar to other type systems. We extend 

the notion of plainness to types, defining that plain types contain only these three 

constructs. Non-plain types contain choice types to represent variation in types, 

just as choices represent variation in expressions. Choice types often (but do 
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φ ::= γ Constant Type 
| a Type Variable 
| φ → φ Function Type 
| D〈φ,φ〉 Choice Type 

σ ::= φ Variational Type 
| ∀a.φ Type schema 

Figure 4.1: VLC types. 

Γ ::= ∅ | x �→ σ,Γ 
θ ::= ∅ | a �→ φ,θ 

Figure 4.2: VLC type environments and substitutions. 

not always) correspond directly to choice expressions; for example, the expression 

D〈2,True〉 has the corresponding choice type D〈Int,Bool〉. 
The function FV(σ) for collecting free type variables is the same as the one 

defined in Section 2.1.1 plus the following rule for dealing with choice types. 

FV(D〈φ1,φ2〉) = FV(φ1) ∪ FV(φ2) 

We define type environments and type substitutions in Figure 4.2. The appli­

cation of a type substitution to a type schema is the same as the one defined in 

Section 2.1.1 plus the following rule for dealing with choice types. 

θ(D〈φ1,φ2〉) = D〈θ(φ1),θ(φ2)〉 

Note that we do not consider variational polymorphic types. This is not 

a problem since we can always lift quantifiers out of choices. For instance, 

D〈∀a.φ1,∀β.φ2〉 can be transformed to ∀a1β1.D〈φ� 
1,φ� 

2〉 with a1 ∉ FV(φ1) and 
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Γ �V e : φ 

VC-CON VC-ABS 

ν is a constant of type γ Γ, x �→ φ1 �V e : φ 

Γ �V ν : γ Γ �V λx.e : φ1 → φ 

VC-VAR VC-APP 

Γ(x) =∀a.φ1 φ = {a �→ φ�}(φ1) Γ �V e1 : φ1 Γ �V e2 : φ2 φ1 ≡ φ2 → φ 

Γ �V x : φ Γ �V e1 e2 : φ 

VC-LET 

Γ, x �→ φ �V e : φ a = FV(φ) − FV(Γ) Γ, x �→ ∀a.φ �V e� : φ� 

Γ �V let x = e in e� : φ� 

VC-CHC 

Γ �V e1 : φ1 Γ �V e2 : φ2 

Γ �V D〈e1, e2〉 : D〈φ1,φ2〉 

Figure 4.3: VLC typing rules. 

β1 ∉ FV(φ2), and φ� 
1 = {a �→ a1}(φ1) and φ� 

2 = {β �→ β1}(φ2). 

In the next section we define the mapping from VLC expressions to variational 

types. 

4.2 Typing Rules 

The association of types with expressions is determined by a set of typing rules, 

given in Figure 4.3. 

The VC-CON rule is a trivial rule for mapping constant expressions to type 

constants. The VC-ABS, VC-VAR, and VC-LET typing rules for typing abstractions, 
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variable references, let expressions, respectively, use the type environment Γ and 

are the same as in Figure 2.1 for HM. 

The VC-APP rule, however, differs from the standard definition. Given an ap­

plication e1 e2, it is typically required that if e2 : φ2 then e1 : φ2 → φ. But this is too 

rigid in the presence of variation since there are many cases where e1 or e2 are not 

exactly equal but are still compatible due to the presence of choice types. Instead 

we require that the type of e1 be equivalent to a function of the appropriate type, 

using the type equivalence relation ≡. The definition of type equivalence, and a 

more concrete motivation for the more permissive VC-APP rule will be provided in 

Section 4.3. 

The VC-CHC rule states that the type of a choice is a choice type in the same di­

mension, where each alternative in the choice type is the type of the corresponding 

alternative in the choice expression. 

4.3 Type Equivalence 

In this section we return to the discussion of the VC-APP rule from Section 4.2. 

This rule is similar to the standard rule for typing application in lambda calculus, 

except that requiring type equality between the type of the argument and the 

domain type of the function is too strict. We demonstrate this with the following 

example. 

succ A〈1,2〉 
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The LHS of the application, succ, has type Int → Int; the RHS, A〈1,2〉, has type 

A〈Int,Int〉. Since Int �= A〈Int,Int〉, the VC-APP typing rule will fail under a type-

equality definition of the ≡ relation. This suggests that equality is too strict a 

requirement since all of the individual variants generated by the above expression 

(succ 1 and succ 2) are perfectly well typed (both have type Int). 

Although the types Int and A〈Int,Int〉 are not equal, they are still in some 

sense compatible, and are in fact compatible with an infinite number of other types 

as well. In this section we formalize this notion by defining the ≡ type equivalence 

relation used to determine when function application is well typed. The example 

above can be transformed into a more general rule that states that any choice 

type D〈φ1,φ2〉 is equivalent to type φ if both alternative types φ1 and φ2 are also 

equivalent to φ. This relationship is captured formally by the choice idempotency 

rule, C-IDEMP, one of several type equivalence rules given in Figure 4.4. 

Besides idempotency, there are many other type equivalence rules concerning 

choice types. The F-C rule states that we can factor/distribute function types and 

choice types. The C-C-SWAP rules state that types that differ only in the nesting of 

their choice types are equivalent. The C-C-MERGE rules reveal the property that 

outer choices dominate inner choices. For example, D〈D〈1,2〉,3〉 is semantically 

equivalent to D〈1,3〉 since the selection of the first alternative in the outer choice 

implies the selection of the first alternative in the inner choice. 

The remaining rules are very straightforward. The FUN rule propagates equiv­

alence across function types, defining that two function types are equivalent if 

their argument and result types are equivalent. Similarly, the CHOICE equiva­
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FUN 
φ� 

l ≡ φ� 
r φl ≡ φr 

F-C 
D〈φ1,φ2〉→ D〈φ� 

1,φ� 
2〉 ≡ D〈φ1 → φ� 

1,φ2 → φ� 
2〉 

φ� 
l → φl ≡ φ� 

r → φr 

C-C-SWAP1 
D�〈D〈φ1,φ2〉,φ3〉 ≡ D〈D�〈φ1,φ3〉, D�〈φ2,φ3〉〉 

C-C-SWAP2 C-C-MERGE1 
D�〈φ1, D〈φ2,φ3〉〉 ≡ D〈D�〈φ1,φ2〉, D�〈φ1,φ3〉〉 D〈D〈φ1,φ2〉,φ3〉 ≡ D〈φ1,φ3〉 

CHOICE 
C-C-MERGE2 � �φ1 ≡ φ1 φ2 ≡ φ2D〈φ1, D〈φ2,φ3〉〉 ≡ D〈φ1,φ3〉 � �D〈φ1,φ2〉 ≡ D〈φ1,φ2〉 

C-IDEMP SYMM TRANS 
φ1 ≡ φ φ2 ≡ φ REFL φ ≡ φ� φ ≡ φ� φ� ≡ φ�� 

φ ≡ φ 
D〈φ1,φ2〉 ≡ φ φ� ≡ φ φ ≡ φ�� 

Figure 4.4: Variational type equivalence. 

lence rule propagates equivalence across choice types, defining that two choice 

types are equivalent if both of their alternatives are equivalent. The REFL, SYMM, 

and TRANS rules make type equivalence reflexive, symmetric, and transitive, re­

spectively. 

The important property of equivalent types is that they represent the same 

mapping from super-complete decisions to plain types. A super-complete decision 

on types φ1 and φ2 is a decision that is complete for both φ1 and φ2; that is, it 

resolves both potentially variational types into plain types. Making a selection on 

types is the same as making a selection on expressions. As with expressions, we 

define selection in irrelevant dimensions to be idempotent, for example, �Int�s = 
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Int. This is crucial since super-complete decisions will often result in selection 

in dimensions that do not exist in one type or the other. The semantics function 

[[·]] for types is defined in the same way as for expressions, as a mapping from all 

complete decisions to the plain types they produce through the process of selection. 

The following lemma states that a super-complete decision on two equivalent 

types produces the same plain type. 

Lemma 1 (Type equivalence property) φ1 ≡ φ2 =⇒ ∀δ ∈ S : (δ,φ1
� ) ∈ [[φ1]] ∧ 

(δ,φ� 
2) ∈ [[φ2]] =⇒ φ1 

� = φ� 
2, where S is the set of all super-complete decisions on φ1 

and φ2. 

The proof of Lemma 1 relies on a simpler lemma that states that type equivalence 

is preserved over selection. 

Lemma 2 (Type equivalence preservation) If φ1 ≡ φ2, then �φ1�s ≡ �φ2�s. 

A proof sketch for this lemma is given in Appendix A. Using Lemma 2, we can now 

prove Lemma 1. 

PROOF of Lemma 1. By induction over the size of δ, from Lemma 2 it follows that 

φ1 ≡ φ2 implies �φ1�δ ≡ �φ2�δ. Since δ is complete for both types, neither �φ1�δ nor 

�φ2�δ will have any choice types. By examining the four equivalence rules that 

do not include choice types (FUN, REFL, SYMM, TRANS), it is clear that these types 

must be structurally identical. � 



69 

S-F-ARG S-F-RES 
φl � φ� 

l φr � φ� 
r 

φl → φr � φ� 
l → φr φl → φr � φl → φ� 

r 

S-F-C-ARG S-F-C-RES 

D〈φ1,φ2〉→ φ � D〈φ1 → φ,φ2 → φ〉 φ → D〈φ1,φ2〉 � D〈φ → φ1,φ → φ2〉 

S-C-SWAP1 
D � D� 

D�〈D〈φ1,φ2〉,φ3〉 � D〈D�〈φ1,φ3〉, D�〈φ2,φ3〉〉 

S-C-SWAP2 
D � D� 

D�〈φ1, D〈φ2,φ3〉〉 � D〈D�〈φ1,φ2〉, D�〈φ1,φ3〉〉 

S-C-DOM1 S-C-DOM2 
�φ1�D = φ� 

1 φ1 �= φ� 
1 �φ2�D̃ = φ� 

2 φ2 �= φ� 
2 

D〈φ1,φ2〉 � D〈φ1
� ,φ2〉 D〈φ1,φ2〉 � D〈φ1,φ2

� 〉 

S-C-ALT1 S-C-ALT2 
� � S-C-IDEMP φ1 � φ1 φ2 � φ2 D〈φ,φ〉 � φ 

D〈φ1,φ2〉 � D〈φ1
� ,φ2〉 D〈φ1,φ2〉 � D〈φ1,φ2

� 〉 

Figure 4.5: Variational type simplification. 

4.4 Type Simplification 

Each equivalence class contains an infinite number of types. For example, we can 

always trivially expand a type φ into an equivalent choice type D〈φ,φ〉. In order 

to facilitate checking whether two types are equivalent, we identify one represen­

tative from each equivalence class as a normal form and define rewriting rules to 

achieve this normal form. Two types are then equivalent if they have the same 

normal form. 
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We define the type simplification relation � to rewrite a type into a simpler 

one and use the reflexive, transitive closure of this relation � ∗ to transform a type 

into normal form. The type simplification rules, shown in Figure 4.5, are derived 

from the type equivalence rules in Figure 4.4. 

The FUN equivalence rule leads to two rewriting rules, S-F-ARG and S-F-RES, 

which simplify the domain and result of a function type, respectively. Likewise, 

the S-F-C-ARG and S-F-C-RES rules are derived from the F-C equivalence rule, and 

distribute a choice type over the domain or result of a function type, respectively. 

The two S-C-SWAP simplification rules are derived from the two C-C-SWAP 

equivalence rules, but each adds an additional premise that ensures choice types 

will be nested according to a known ordering relation � on dimension names. 

Thus, if φ is in normal form and A � B, then no choice type A〈. . .〉 will appear 

within an alternative of a choice type B〈. . .〉 in φ. 

Picking a good ordering relation is important for efficiency since the S-C-SWAP 

rules each duplicate part of the type. In the worst case, the normalization 

process could lead to an exponential blow up in the size of the type. For ex­

ample, if we assume a lexicographic ordering for �, then normalizing the type 

D〈C〈B〈A〈· · ·〉, · · ·〉, · · ·〉,φ〉, will lead to φ being duplicated eight times. One way to 

deal with this problem is to determine � heuristically, for example, by initially 

performing a depth-first traversal of one of the types we are comparing (before 

converting it into normal form), then using its nesting of choices as �. This will 

ensure that we only perform the necessary choice-swaps in the other type. Another 

approach (which can be combined with the heuristic approach) is to share, rather 
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than duplicate, the common part when swapping choice types. This requires solv­

ing the common subexpression problem, for which there are some efficient algo­

rithms [Downey et al., 1980; Nelson and Oppen, 1980]. Since performance is not 

our primary focus here, our unification algorithm uses a variant of the first ap­

proach, only swapping choices as needed during the decomposition process. 

The remaining rewriting rules are straightforward. Like the S-F-ARG and 

S-F-RES rules, the S-C-ALT rules are focused adaptations of the CHOICE equiv­

alence rule, one simplifies the left alternative of a choice type, the other sim­

plifies the right. The S-C-DOM rules follow less directly from the corresponding 

C-C-MERGE equivalence rules. They reuse the selection operation from the se­

mantics to more immediately eliminate any dominated choice types. Finally, the 

S-C-IDEMP rewriting rule is derived from the C-IDEMP equivalence rule, but is 

somewhat stricter since it requires the two alternatives to be structurally equal. 

By repeatedly applying type simplification until no rewrite rule matches, we 

achieve a type in normal form. Types in normal form satisfy the following criteria: 

1. Choice types are maximally lifted over function types.	 For example, the type 

A〈Int → a,a → Bool〉 is in normal form, while A〈Int, a〉→ A〈a,Bool〉 is not. 

2. The	 type does not contain dominated choices. For example, the type 

A〈A〈Int,Bool〉,a〉 is not in normal form. It can be simplified to A〈Int, a〉, which 

is in normal form. 

3. The nesting of choices adheres to the ordering relation � on their dimension 

names. 
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B〈A〈φ1,φ2〉, A〈φ1,φ2〉〉 
�A〈B〈φ1, A〈φ1,φ2〉〉,B〈φ2, A〈φ1,φ2〉〉〉 (S-C-SWAP1) 
�A〈B〈φ1,φ1〉,B〈φ2,φ2〉〉 (S-C-DOM) 
�A〈φ1,B〈φ2,φ2〉〉 (S-C-IDEMP/S-C-ALT1) 
�A〈φ1,φ2〉 (S-C-IDEMP/S-C-ALT2) 

Figure 4.6: Example transformation into normal form. 

4. The type contains no choice types with equivalent alternatives. 

5. Finally, a function type is in normal form if both its domain and result types 

are in normal form; a choice type is in normal form if all its alternatives are in 

normal form. 

Figure 4.6 shows an example transformation of the type B〈A〈φ1,φ2〉, A〈φ1,φ2〉〉 
into its corresponding normal form A〈φ1,φ2〉 (we assume A � B). Note that in 

the application of the S-C-SWAP1 rule, we arbitrarily chose to swap the nested 

choice in the first alternative. We could have also applied S-C-SWAP2, or applied 

S-C-IDEMP to the alternatives of the A choice type. An important property of the 

� ∗ relation, however, is that our decisions at these points do not matter. No 

matter which rule we apply, we will still achieve the same normal form. This is 

the property of confluence, expressed in Theorem 1 below. 

Theorem 1 (Confluence) If φ � ∗ φ1 and φ � ∗ φ2, then there exists a φ� such 

that φ1 � ∗ φ� and φ2 � ∗ φ� . 

A rewriting relation is confluent if it is both locally confluent and terminating. 

These properties are expressed for the � ∗ relation below, in Lemmas 3 and 4. 
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From these two lemmas, Thorem 1 follows directly. 

Lemma 3 (Local confluence) For any type φ, if φ � φ1 and φ � φ2, then there 

exists some type φ� such that φ1 � ∗ φ� and φ2 � ∗ φ� . 

The proof of this lemma is given in Appendix A. 

Lemma 4 (Termination) Given any type φ, φ � ∗ φ� is terminating. 

We give an informal proof of termination here to convince the reader. A formal 

proof based on a counting mechanism is presented in Appendix A. 

PROOF SKETCH. The � ∗ relation will terminate when we reach a normal form 

(as defined by the criteria listed above) because an expression satisfying these 

criteria will not match any rule in the � relation, by construction. Therefore, we 

must show that these criteria will be satisfied in a finite number of steps. 

Trivially, the two S-C-DOM rules eliminate dominated choices, and the 

S-C-IDEMP rule eliminates equivalent alternatives, in a finite number of steps. 

The S-F-C-RES and S-F-C-ARG lift choice types over function types, and no rule 

can lift function types back out. The S-C-SWAP1 and S-C-SWAP2 rules define a 

similar one-way relation for choice nestings, according to the � relation on choice 

names. Thus, we can see that all rules make progress toward satisfying one of the 

criteria, and that, in isolation they can achieve this in a finite number of steps. 

A potential challenge to termination arises via the duplication of type subex­

pressions in the S-F-C and S-C-SWAP rules. For example, the right alternative φ3 

of the original choice type is duplicated in the application of the S-C-SWAP1 rule. 
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However, observe that these can only create a finite amount of additional work 

since the rules otherwise make progress as described above. � 

A terminating rewriting relation is by definition normalizing. Since rewriting is 

both confluent and normalizing, any variational type can be transformed into a 

unique normal form [Baader and Nipkow, 1998, p. 12]. We write norm(φ) for the 

unique normal form of φ. We capture the fact that a normal form represents an 

equivalence class by stating in the following theorem that two types are equivalent 

if and only if they have the same normal form. 

Theorem 2 φ ≡ φ� ⇔ norm(φ) = norm(φ�). 

PROOF. This follows from Theorem 1, the fact that � ∗ is normalizing, and the 

observation that the ≡ relation is the symmetric, reflexive, and transitive closure 

of �. � 

This is the essential result needed for checking type equivalence. 

4.5 Type Preservation 

An important property of the type system is that any plain expression that can be 

selected from a well-typed variational expression is itself well typed, and that the 

plain type of the variant can be obtained by the same selection on the variational 

type. This result can be proved with the help of the following lemma, which states 

that variational typing is preserved over a single selection. 

Lemma 5 Γ �V e : φ =⇒ e is plain or ∀s : Γ �V �e�s : �φ�s. 
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PROOF. The proof is based on induction over the typing rules. We show only the 

cases for the VC-APP rule and the VC-CHC rule. The cases for the other rules 

can be constructed similarly. Also, we write the typing judgment Γ �V e : φ more 

succinctly as e : φ when the environments are not significant. 

We consider the VC-APP rule first. Assume that e e� : φ, then we must show 

that �e e��s : �φ�s. We do this through the following sequence of observations. 

1. e : φ�� , e� : φ�, and φ�� ≡ φ� → φ by the definition of VC-APP 

2. �e e��s = �e�s �e��s by the definition of �·�s 

3. �e�s : �φ���s and �e��s : �φ��s by the induction hypothesis 

4. �φ���s ≡ �φ� → φ�s by 1 and Lemma 2 

5. �φ���s ≡ �φ��s →�φ�s by 4 and the definition of �·�s 

6. Therefore, �e e��s : �φ�s by 2, 3, 5, and the definition of VC-APP 

For the VC-CHC rule, assume that D〈e1, e2〉 : D〈φ1,φ2〉. Then we must show 

that �D〈e1, e2〉�s : �D〈φ1,φ2〉�s. There are two cases to consider: either s represents 

a selection in choice D, or it does not. 

If s represents a selection in choice D, the proof follows directly from the in­

duction hypothesis and the definitions of selection on expressions and types. For 

example, if s selects the first alternative in D, then selecting the first alterna­

tive on both sides of the typing relation leaves us with �e1�s : �φ1�s, which is the 

induction hypothesis. 

If s does not represent a selection in D, then applying selection to each side 

of the typing relation yields D〈�e1�s,�e2�s〉 : D〈�φ1�s,�φ2�s〉. Since �e1�s : �φ1�s and 
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�e2�s : �φ2�s by the induction hypothesis, the claim follows through a direct appli­

cation of the VC-CHC rule. � 

By induction it follows that for any set of selectors δ that yields a plain expression 

from e, δ also selects the corresponding plain type from φ. Therefore, the fol­

lowing theorem, which captures the type preservation property described at the 

beginning of this section, follows directly from Lemma 5. 

Theorem 3 (Type preservation) If Γ �V e : φ and (δ, e�) ∈ [[e]], then Γ �V e� : φ� 

where (δ,φ�) ∈ [[φ]]. 

With Theorem 3, the type of any particular variant of e can be easily selected 

from its inferred variational type φ. For example, suppose ∅,Γ �V e : φ with φ = 

A〈B〈φ1,φ2〉,φ3〉, then the type of e� = ��e�A�B̃ is ��φ�A�B̃ = φ2. 

Type preservation demonstrates that the type system is correct. We must also 

show that it is complete. That is, if every plain variant encoded by a variational 

expression e is type correct, then our type system will assign a variational type to 

e. The completeness property is stated in the following theorem. 

Theorem 4 (Completeness) If ∀(δ, e�) ∈ [[e]], ∃φ� such that Γ �V e� : φ�, then ∃φ 

such that Γ �V e : φ. 

This theorem can be proved by a simple induction over the structure of e, with the 

help of the following lemma. 
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Lemma 6 If D is a dimension used in a choice in e, and ∃φ1 such that Γ �V �e�D : 

φ1, and ∃φ2 such that Γ �V �e�D̃ : φ2, then ∃φ such that Γ �V e : φ. 

PROOF. This follows from induction over the structure of e and the typing deriva­

tions of �e�D and �e�D̃ . � 

4.6 Related Work 

This section addresses work related to choice types, type normalization, and the 

implementation of variational type checking. Work related to other aspects of this 

dissertation is presented in Chapter 3. 

Choice types are in some ways similar to variant types [Kagawa, 2006]. Vari­

ant types support the uniform manipulation of a heterogeneous collection of types. 

A significant difference between the two is that choices (at the expression level) 

contain all of the information needed for inferring their corresponding choice 

types. Values of variant types, on the other hand, are associated with just one la­

bel, representing one branch of the larger variant type. This makes type inference 

very difficult. A common solution is to use explicit type annotations; whenever 

a variant value is used, it must be annotated with a corresponding variant type. 

Typing VLC expressions does not require such annotations. 

Choice types are also somewhat similar to union types [Dezani-Ciancaglini 

et al., 1997]. A union type, as its name suggests, is a union of simpler types. For 

example, a function f might accept as arguments the union of types Int and Bool. 

Function application is then well typed if the argument’s type is an element of the 
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union type. Thus, f could accept arguments of type Int or type Bool. The biggest 

difference between union types and choice types is that union types are compar­

atively unstructured. In VLC, choices can be synchronized, allowing functions to 

provide different implementations for different argument types, or for different 

sets of functions to be defined in the context of different argument types. With 

union types, an applied function must be able to operate on all possible values of 

an argument with a union type. A major challenge in type inference with union 

types is union elimination, which is not syntax directed and makes type inference 

intractable. Therefore, as with variant types, syntactic markers are needed to 

support type inference. 

Type conditions are an extension to parametric polymorphism in the presence 

of subtyping that have been studied in the contexts of both the Java generics 

system [Huang et al., 2007] and C++ templates [Dos Reis and Stroustrup, 2006]. 

They can be used to conditionally include data members and methods into a class 

only when the type parameters are instantiated with types that satisfy the given 

conditions (for example, that the type is a subtype of a certain class). Often this 

can be used to produce similar effects to the C Preprocessor, but in a way that can 

be statically typed. Type conditions differ from VLC in that they capture a much 

more specific type of variation, namely, conditional inclusion of code depending on 

the type of a class’s type parameters; in contrast, VLC can represent arbitrary 

variation. Type conditions also have a quite coarse granularity, varying only top-

level methods and fields. A feature, relative to VLC, is that different variants of 

the same code (class) can be used within the same program (by instantiating the 
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class’s type parameters differently). 

When a new type system is designed or when new features are added to an ex­

isting system, a new unification algorithm and type inference algorithm must be 

coined for the new system, and the correctness of the new system and algorithms 

have to be demonstrated. As evidenced by this dissertation, this is quite a lot of 

work. To reduce this burden and promote reuse, Odersky and Sulzmann [1999; 

2001; 2008] have proposed HM(X), a general framework for type systems with 

constraints, including a type inference algorithm that computes principal types 

that satisfy these constraints. By instantiating X to different extensions, different 

type systems can be generated from HM(X). For example, X can be instantiated 

to polymorphic records, equational theories, and subtypes. Variational type in­

ference cannot be implemented within HM(X), however, and we cannot therefore 

reuse its algorithms and proofs. This is because HM(X) requires constraints to 

satisfy a regularity property that does not hold in variational type inference. The 

regularity property states that two sides of any equational theory must have the 

same free variables, but this is not true in VLC’s type system because of choice 

domination. For example, A〈A〈a, b〉, c〉 ≡ A〈a, c〉 but {a, b, c} �= {a, c}. 

Some aspects of the type system presented in this chapter can be simulated 

by dependent types [Xi and Pfenning, 1999]. However, there are limitations of 

this approach. For one, type inference with dependent types is undecidable. Most 

dependent type systems also require programmers to supply complex type anno­

tations or construct proof terms to support type checking [Paulin-Mohring, 1993; 

Xi and Pfenning, 1999; Fogarty et al., 2007; Norell, 2007]. This is a significant 
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burden that our type system does not impose. A more restricted version of choice 

types could also be implemented with phantom types and GADTs [Johann and 

Ghani, 2008]. However, GADTs cannot express arbitrary choice types since the 

type of each alternative would be constrained by the requirement that the result 

type of each branch of a GADT must refine the data type being defined. 

Related to our process of variation type normalization, [Balat et al., 2004] 

present a powerful normalizer for terms in lambda calculus with sums. They 

make use of a similar transformation for eliminating dead alternatives. Our type 

normalizer differs from theirs in two technical details. First, choices in VLC are 

named, and choices with different names are treated differently. Their normalizer 

makes no such distinction among sums, making it essentially equivalent to VLC 

in which all choices are in the same dimension. Second, the order of choice nest­

ing is significant in our normalization, whereas the order of sum nesting is not in 

theirs. 
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Chapter 5: Variational Unification 

A type inference algorithm relies heavily on its underlying unification algorithm, 

for example, algorithm W relies on Robinson’s unification algorithm UR . For vari­

ational type inference, we need to solve unification problems of variational types 

that respect the semantics of choice types and allow a less strict typing for function 

applications. The equational theory is defined by the type equivalence relation in 

Figure 4.4. We call this unification problem choice type (CT). The properties of 

the CT-unification problem are described in Section 5.1, while the unification algo­

rithm that solves it is presented in Section 5.2. In Section 5.3 we formally evaluate 

the correctness of the unification algorithm, and we analyze its time complexity 

in Section 5.4. 

5.1 The Choice Type Unification Problem 

If we view a choice as a binary operator on its two subexpressions, then CT’s equa­

tional theory contains both distributivity (introduced by the C-C-SWAP rule) and 

associativity (which follows from the C-C-MERGE rules). Usually, this yields a uni­

fication problem that is undecidable [Anantharaman et al., 2004]. CT-unification, 

however, is decidable. The key insight is that a normalized choice type cannot con­

tain nested choice types in the same dimension, effectively bounding the number 
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of choice types a variational type can contain. 

To get a sense for CT-unification, consider the following unification problem. 

A〈Int, a〉 ≡? B〈b, c〉 (5.1) 

Several potential unifiers for this problem are given below. In each mapping, type 

variables other than a, b, and c are assumed to be fresh. 

ξ1 = {a �→ Int, b �→ Int, c �→ Int} 
ξ2 = {b �→ A〈Int, a〉, c �→ A〈Int,a〉} 
ξ3 = {a �→ B〈Int, d2〉, b �→ Int, c �→ A〈Int, d2〉} 
ξ4 = {a �→ B〈d2,Int〉, b �→ A〈Int, d2〉, c �→ Int} 
ξ5 = {a �→ B〈d1, d2〉, b �→ A〈Int, d1〉, c �→ A〈Int, d2〉} 
ξ6 = {a �→ B〈A〈d5, d1〉, A〈d6, d2〉〉, b �→ B〈A〈Int, d1〉, d3〉, c �→ B〈d4, A〈Int, d2〉〉} 

These mappings are unifiers since, after applying any one of these mappings to 

the types in problem (5.1), the types of the LHS and RHS of the problem are 

equivalent. We observe that ξ6 is the most general of these unifiers. In fact, it is 

the most general unifier (mgu) for this CT-unification problem. This means that 

by assigning appropriate types to the type variables in ξ6, we can produce any 

other unifier. For example, composing ξ6 with 

{d5 �→ d1, d6 �→ d2, d3 �→ A〈Int, d1〉, d4 �→ A〈Int, d2〉} 

yields ξ5, which is in turn the most general among the first five unifiers. 

Although ξ6 is more general than ξ5, if we apply either one to the types 

in problem (5.1), then simplify dominated choices, we will get the same result. 

Therefore, it may seem that the generality provided by ξ6 is superficial. But in 

fact, ξ6 solves strictly more unification problems than ξ5. For instance, assume 
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e1 : A〈Int, a〉 → c → c, e2 : B〈b, c〉, and e3 : B〈Bool,Int〉. Using ξ5 the expression 

e1 e2 has type A〈Int, d2〉→ A〈Int, d2〉 , so the expression e1 e2 e3 will be ill typed 

since A〈Int, d2〉 does not unify with B〈Bool,Int〉. On the other hand, if we use ξ6, 

then e1 e2 has type B〈d4, A〈Int, d2〉〉→ B〈d4, A〈Int, d2〉〉, so the expression e1 e2 e3 

is type correct since the unification problem B〈d4, A〈Int, d2〉〉 ≡? B〈Bool,Int〉 has 

the mgu {d2 �→ B〈l, A〈m,Int〉〉, d4 �→ B〈Bool, k〉}, where k, l and m are fresh type 

variables. 

An equational unification problem is said to be unitary if there is a unique 

unifier that is more general than all other unifiers [Baader and Snyder, 2001]. 

This is important to make type inference feasible since we need only maintain the 

unique mgu throughout the inference process. 

It is not immediately obvious that CT-unification is unitary. Usually, equa­

tional unification problems with associativity and distributivity are not unitary. 

However, the same bounds that make CT-unification decidable (that is, the nor­

malization process that ensures, via the S-C-DOM rules that there are no nested 

choices in the same dimension) also make the problem unitary. Specifically, choice 

dominance ensures that a CT-unification problem can be decomposed into a finite 

number of simpler unification problems that are known to be unitary. Further­

more, the mgus of these subproblems can be used to construct the unique mgu of 

the original CT-unification problem. 

That the CT-unification problem is unitary is captured in the following theo­

rem. 

Theorem 5 Given a CT-unification problem U, there is a unifier ξ such that for 
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any unifier ξ�, there exists a mapping θ such that ξ� = θ ◦ ξ. 

The proof of this theorem relies on definitions from the rest of this section and 

so is delayed until Appendix B. We give a high-level description of the argument 

here. 

A CT-unification problem encodes a finite number of plain subproblems, where 

a plain unification problem is between two plain types. For example, problem (5.1) 

encodes the plain subproblems Int ≡? b, Int ≡? c, a ≡? b, and a ≡? c since A and B 

are independent dimensions that can be selected from independently. In principle, 

solving a variational unification problem requires solving all of the plain unifica­

tion problems it encodes. One challenge of CT-unification is that different plain 

subproblems may share the same type variables, and these may be incorrectly 

mapped to different types when solving the different subproblems. However, CT-

unification problems whose plain subproblems share no common type variables 

are easy to solve. We just generate all of the plain subproblems, solve each of 

them using the traditional Robinson unification algorithm [Robinson, 1965], then 

take the union of the resulting set of unifiers as the solution to the original prob­

lem. 

The basic structure of the argument that CT-unification is unitary is therefore 

to demonstrate that: 

1. We can transform any CT-unification problem U into an equivalent unification 

problem U �, such that the plain subproblems of U � share no type variables. 

This can be done through the process of type variable qualification, described 
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in Section 5.2. 

2. These subproblems are plain and therefore themselves unitary. 

3. We can construct a unique mgu for U from the mgus of the individual subprob­

lems of U � . This is achieved through the process of completion, also described 

in Section 5.2. 

Of course, we do not actually solve CT-unification problems by solving all of 

the corresponding plain subproblems separately since it would be very inefficient. 

However, type variable qualification and completion do play a role in the actual 

algorithm, which is developed and presented in the next subsection. 

5.2 Variational Unification with Qualifications 

This section will present our approach to unifying variational types. Since there 

is no general algorithm or strategy for equational unification problems [Baader 

and Snyder, 2001], we begin by motivating our approach. Consider the following 

example unification problem. 

A〈Int, a〉 ≡? A〈a,Bool〉 (5.2) 

We might attempt to solve this problem through simple decomposition, by uni­

fying the corresponding alternatives of the choice types. This leads to the unifi­

cation problem {Int ≡? a, a ≡? Bool}, which is unsatisfiable. However, notice that 

{a �→ A〈Int,Bool〉} is a unifier for the original problem (through choice domination), 

so this approach to decomposition must be incorrect. 
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The key insight is that there is a fundamental difference between the type 

variables in the types a, A〈a,φ〉, and A〈φ, a〉, even though all three are named 

a. A type variable in one alternative of a choice type is partial in the sense that 

it applies only to a subset of the type variants. In particular, it is independent 

of type variables of the same name in the other alternative of that choice type. 

In example (5.2), the two occurrences of a can denote two different types because 

they cannot be selected at the same time. The important fact that a appears 

in two different alternatives of the A choice type is lost in the decomposition by 

alternatives. 

We address this problem with a notion of qualified type variables, where each 

type variable is marked by the alternatives in which it is nested. A qualified type 

variable a is denoted by aq, where q is the qualification and is given by a set of 

selectors (see Section 4.3), rendered as a lexicographically sorted sequence. For ex­

ample, the type variable a in B〈φ1, A〈a,φ2〉〉 corresponds to the qualified type vari­

able aAB̃. Likewise, the (non-qualified) unification problem in example (5.1) can 

be transformed into the qualified unification problem A〈Int, aÃ〉 ≡? 
q B〈bB, cB̃〉, and 

the problem in example (5.2) can be transformed into A〈Int, aÃ〉 ≡? 
q A〈aA,Bool〉. 

In addition to the traditional operations of matching and decomposition used in 

equational unification, our unification algorithm uses two other operations: choice 

type hoisting and type variable splitting. These are needed to transform the types 

being unified into more similar structures that can then be matched or decom­

posed. 

Hoisting is applied when unifying two types that have top-level choice types 
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with different dimension names. To illustrate, consider the following unification 

problem. 

A〈B〈Int,Bool〉, aÃ〉 ≡? 
q B〈aB,Bool〉 

We cannot immediately decompose this problem by alternatives since the dimen­

sions of the top-level choice types do not match. However, this problem can be 

solved by applying the C-C-SWAP1 rule to the LHS, thereby hoisting the B choice 

type to the top. 

B〈A〈Int,aAB˜ 〉, A〈Bool, aÃB̃〉〉 ≡? 
q B〈aB,Bool〉 

Notice that we must add a qualification to all of the duplicated type variables that 

were originally in the alternative opposite the hoisted choice type, but are now 

nested beneath it, such as the aÃ variable in the example. Now we can decompose 

the problem by unifying the corresponding alternatives of the top-level choice type. 

Splitting is the expansion of a type variable into a choice type between two 

qualified versions of that variable. It is used whenever decomposition cannot pro­

ceed and the problem cannot be solved by hoisting. For example, to decompose 

the problem a ≡? 
q A〈aA,Int〉, we first split a into the choice type A〈aA, aÃ〉, then 

decompose by alternatives. To decompose the problem A〈Int,aÃ〉 ≡? 
q B〈Int, bB̃〉, 

we can split either aÃ into a choice in B or bB̃ into a choice in A. In either case, 

we must then apply hoisting once before the problem can be decomposed by alter­

natives. 

Figure 5.1 presents an example in which split and hoist are used to prepare a 

qualified unification problem for decomposition. Note that after decomposition, we 
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A〈Int, aÃ〉 ≡? 
q B〈bB, cB̃〉 

split↓ 
A〈Int,B〈a ˜ AB̃〉〉 ≡? 

q B〈bB, cB̃〉AB, a ˜
hoist↓ 

B〈A〈Int, aAB˜ 〉, A〈Int, aÃB̃〉〉 ≡? 
q B〈bB, cB̃〉 

A〈Int, aAB˜ 〉 ≡? 
q bB 

A〈Int, aÃB̃〉 ≡? 
q cB̃

Figure 5.1: Example of qualified unification. 

do not need to split bB into a choice in A because bB is isolated and occurs on only 

one side of the subtask; instead we can return the substitution {bB �→ A〈Int, a ÃB〉} 
for this subtask directly. Likewise for cB̃ in the second subtask. 

To solve a unification problem U , we solve the corresponding qualified unifi­

cation problem Q, then transform the solution of Q, σQ , into a solution for U , 

σU . Each mapping a �→ φ in σU is derived through a process called completion 

from the related subset of mappings in σQ , {aq1 �→ φ1, . . . ,aqn �→ φn}. Each quali­

fied mapping aqi �→ φi describes a leaf in a tree of nested choice types that makes 

up the resulting type φ. Building and populating this tree is the goal of comple­

tion. For example, given the qualified mappings {aA �→ Int, aAB ˜ �→ b, aÃB̃ �→ Bool}, 

completion yields the unqualified mapping a �→ A〈Int,B〈b,Bool〉〉. When the qual­

ified mappings do not describe a complete tree, the completion process introduces 

fresh type variables to represent the unconstrained parts of the type. For exam­

ple, given the qualified mappings {aA �→ Int, aÃB̃ �→ Bool}, completion yields the 

unqualified mapping a �→ A〈Int,B〈c,Bool〉〉, where c is a fresh type variable. 

Formally, we define completion by folding the helper function comp, defined 
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comp(Dq,φ, D〈φ1,φ2〉) = D〈comp(q,φ,φ1),φ2〉 
comp( ˜ = D〈φ1,comp(q,φ,φ2)〉Dq,φ, D〈φ1,φ2〉) 

comp(Dq,φ,φ�) = D〈comp(q,φ,φ�), fresh(φ�)〉 
comp( ˜ �) = D〈fresh(φ�),comp(q,φ,φ�)〉Dq,φ,φ

comp(�,φ, a) = φ 

Figure 5.2: Helper function used in the completion process. 

in Figure 5.2, across the mappings in σQ . This function produces a partially com­

pleted type given (1) a type variable qualification q, (2) the type to store at the path 

described by q, and (3) the type that is being completed. The definition of comp 

relies on top-down pattern matching on the first and third arguments (� matches 

the empty qualification), and on a second helper function fresh that renames every 

type variable in its argument type to a new, fresh type variable. 

In the first two cases of comp, if the partially completed type already contains 

a choice type in the dimension D referred to by the first selector in the qualifica­

tion, the function consumes the selector and propagates the completion into the 

appropriate alternative. Note that these choice types will have been created by 

a previous invocation of comp on a different qualification, as we’ll see below. In 

the third and fourth cases, the partially completed type does not already contain 

a choice type in D, so we create a new one and propagate the completion into the 

appropriate branch, freshening the type variables in the duplicated alternative. 

In these first four cases, we traverse and create a tree structure of choice types. 

This relies on the fact that selectors are sorted in the qualification q, avoiding the 

creation of choice types in the same dimension. However, it is possible that types 
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stored at the leaves of this tree will contain choice types in dimensions created by 

comp; these can be eliminated by a subsequent normalization step. 

Finally, the completion of a �→ φ from {aq1 �→ φ1, . . . , aqn �→ φn} is defined as 

follows. 

φ = comp(q1,φ1,comp(q2,φ2, . . . comp(qn,φn, b) . . . )) 

The initial argument to the folded completion function is a fresh type variable b, 

and the order in which we process the qualifications q1, . . . , qn does not matter. 

Also note that, although comp is not specified for all argument patterns, the com­

pletion process cannot fail on any unifier produced by our unification algorithm. 

This is because we do not produce mappings for “overlapping” qualified type vari­

ables (see the discussion of occurs later in this section). 

The final and most important piece of the variational-type-unification puzzle 

is the algorithm for solving qualified unification problems. The definition of this 

algorithm, vunify, is given in Figure 5.3. In this definition, we use p to range 

over plain types (which do not contain choice types), and g to range over ground 

plain types, which do not contain choice types or type variables. We also assume 

that D1 �= D2 and use φL and φR to refer to the entire LHS and RHS of the unifi­

cation problem, respectively. Cases marked with an asterisk represent two sym­

metric cases. That is, the definition of vunify∗(φ,φ�) implies the definition of both 

vunify(φ,φ�), as written, and a dual case vunify(φ� ,φ) = vunify(φ,φ�). 

The definition of vunify will be explained in detail below. The algorithm re­

lies on several helper functions. The function hoist implements a deep form 
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vunify : (φL,φR) → ξ 

vunify(p, p�) = UR(p, p�) (1) 

vunify∗(aq, D〈φ1,φ2〉) = vunify(D〈aDq,a D̃q〉, D〈φ1,φ2〉) (2) 

vunify(D〈φ1,φ2〉, D〈φ� 
1,φ� 

2〉) = ξ1 ← vunify(φ1,φ� 
1) (3) 

ξ2 ← vunify(ξ1(φ2),ξ1(φ� 
2)) 

return ξ1 ◦ ξ2 

vunify∗(D1〈φ1,φ2〉,D2〈φ� 
1,φ� 

2〉) | D2 ∈ chcs(φL) = vunify(hoist(φL, D2),φR) 

vunify∗(D1〈φ1,φ2〉,D2〈φ� 
1,φ� 

2〉) 
(4) 

(5) 
| splittable(φL) �= ∅ ∧ 

D2 ∉ chcs(φL) = aq ← splittable(φL) 
ξ ← {aq �→ D2〈aD2 q, aD̃2 q〉} 
return vunify(hoist(ξ(φL), D2),φR) 

vunify(D1〈φ1,φ2〉, D2〈φ� 
1,φ� 

2〉) (6) 
| splittable(φL) = ∅ ∧ D2 ∉ chcs(φL) ∧ 
splittable(φR) = ∅ ∧ D1 ∉ chcs(φR) = vunify(D2〈φL,φL〉,φR) 

vunify∗(g, D〈φ1,φ2〉) = ξ1 ← vunify(g,φ1) (7) 
return ξ1 ◦ vunify(g,ξ1(φ2)) 

vunify∗(φ → φ� , D〈φ1,φ2〉) = vunify(D〈φ → φ� ,φ → φ�〉, D〈φ1,φ2〉) (8) 

vunify(φ1 → φ2,φ� 
1 → φ� 

2) = ξ ← vunify(φ1,φ� 
1) (9) 

return ξ ◦ vunify(ξ(φ2),ξ(φ� 
2)) 

vunify∗(aq,φ → φ�) | occurs(aq,φR) = fail 
| otherwise = {aq �→ φR} 

(10) 

Figure 5.3: The qualified unification algorithm. 

of the C-C-SWAP rule. It takes as arguments a choice type φ and a dimension 

name D of a (possibly nested) choice type in φ, returning a type equivalent to 

φ but with a D choice type at the root. For example, hoist(A〈B〈a,Int〉,Bool〉,B) 

yields B〈A〈a,Bool〉, A〈Int,Bool〉〉. The function chcs(φ) returns the set of dimen­

sion names of all choice types in φ. The function splittable returns the type vari­
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ables that can be split into a choice type. A variable is splittable if the path 

from itself to the root consists only of choice types; that is, there are no func­

tion types between the root of the type and the type variable. For example, 

splittable(A〈Int → b, c〉) = {c}. The final helper function, occurs, performs an oper­

ation similar to an occurs check, described in the final case below. 

Finally, we can describe each case of the vunify algorithm as follows. 

(1) When unifying two plain types, we defer to Robinson’s unification algorithm 

UR presented in Figure 2.2. 

(2) To unify a type variable with a choice type, we split the type variable as de­

scribed earlier in this section. 

(3) To unify two choice types in the same dimension, we decompose the problem 

and unify their corresponding alternatives. 

(4) To unify two choice types in different dimensions, we try to hoist a choice type 

so that both types are rooted by a choice in the same dimension. 

(5) If this is impossible, then a splittable type variable is split into a choice in that 

dimension, which can then be hoisted. 

(6) To unify two choice types in different dimensions, where there is no splittable 

type variable, we partially decompose the problem by unifying each alterna­

tive of one choice type with the other choice type. 

(7) To unify a ground plain type	 g with a choice type, we again decompose the 

problem, unifying g with each alternative of the choice type. 
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(8) To unify a function type with a choice type in dimension D, we first expand 

the function type into a choice type in D, similar to the splitting operation on 

type variables. We then decompose the problem by alternatives. 

(9) To unify two function types, we unify their corresponding argument types and 

return types, composing the results. 

(10) Finally, to unify a type variable with a function type, a process similar to an 

occurs check is needed. The operation occurs(aq,φ) returns true if there exists 

a type variable aq� in φ such that q ⊆ q� . This ensures that we do not assign 

overlapping type variables to different types, supporting the completion of a 

qualified unifier back into an unqualified unifier. 

5.3 Correctness of the Unification Algorithm 

In this subsection we collect several results to demonstrate the correctness of the 

qualified unification algorithm. 

We begin by observing that the operations of decomposition, splitting, and 

hoisting form the core of the algorithm. In the following lemmas we establish 

the correctness of these operations. First, we show that the decomposition by al­

ternatives of a qualified unification problem is correct. 

Lemma 7 (Decomposition) Let φL = D〈φ1,φ2〉 and φR = D〈φ1
� ,φ� 

2〉. Then φL ≡? 
q 

φR is unifiable iff φ1 ≡? 
q φ1 

� and φ2 ≡? 
q φ2 

� are unifiable. Moreover, if the problem 

is unifiable, then ξ1 ∪ ξ2 is a unifier for φL ≡? 
q φR, where ξ1 and ξ2 are unifiers for 
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φ1 ≡? 
q φ1 

� and φ2 ≡? 
q φ2

� , respectively. 

PROOF. Observe that qualified type variables with the same variable name but 

different qualifiers are treated as different type variables. Therefore, given a 

choice type D〈φl ,φr〉, it is always the case that FV(φl) ∩ FV(φr) = ∅, by the def­

inition of qualification. Specifically, the qualifier of every type variable in φl will 

contain the selector D, while the qualifier of every type variable in φr will contain 

the selector D̃. Since this property holds for both choice types in the lemma, the 

unification subproblems do not share any common type variables and are there­

fore independent. � 

Next we show that splitting a type variable is variable independent. This means 

that when more than one type variable is splittable, we will achieve an equivalent 

unifier no matter which type variable we choose to split. 

Lemma 8 (Variable independence) Let φL = D1〈φ1,φ2〉 and φR = D2〈φ1
� ,φ� 

2〉. 
Assume aq, br ∈ splittable(φL), where qualifiers q and r do not contain selectors 

in dimension D2. Let θa = {aq �→ D2〈aD2 q, aD̃2 q〉} and θb = {br �→ D2〈bD2 r, bD̃2 r〉}. 
Then vunify(θa(φL),φR) = vunify(θb(φL),φR). 

PROOF. After splitting a type variable aq (or br) in φL, the newly formed choice 

type must be hoisted to the top so that the unification problem can be decomposed 

by alternatives. After applying this series of hoists, we obtain a new type φ� 
L with 

a choice type in dimension D2 at the top level. The lemma depends crucially on 

the fact that no matter which type variable we split, φ� 
L will be the same, and 

therefore the result of the unfication will be the same. This is true because the 
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D1〈aq, D3〈φ1, br〉〉 ≡? 
q D2〈φ2,φ3〉 

split↓ 
D1〈D2〈aD2 q, aD̃2 q〉, D3〈φ1, br〉〉 ≡? 

q D2〈φ2,φ3〉 
hoist↓ 

D2〈D1〈aD2 q, D3〈φ1, bD2r〉〉, D1〈aD̃2 q, D3〈φ1, bD̃2r〉〉〉 ≡? 
q D2〈φ2,φ3〉 

D1〈aq, D3〈φ1, br〉〉 ≡? 
q D2〈φ2,φ3〉 

split↓ 
D1〈aq, D3〈φ1, D2〈bD2r, bD̃2r〉〉〉 ≡? 

q D2〈φ2,φ3〉 
hoist↓ 

D1〈aq, D2〈D3〈φ1, bD2r〉, D3〈φ1, bD̃2r〉〉〉 ≡? 
q D2〈φ2,φ3〉 

hoist↓ 
D2〈D1〈aD2 q, D3〈φ1, bD2r〉〉, D1〈aD̃2 q, D3〈φ1, bD̃2r〉〉〉 ≡? 

q D2〈φ2,φ3〉 

Figure 5.4: Demonstration of variable independence. 

process of hoisting the new D2 choice type will essentially cause every other type 

variable in φL to be split in dimension D2. This process is described below. 

By the definition of splittable, the path from the top of φL to aq (or br) con­

sists of only choice types. For each choice type Di〈. . .〉 along this path, we must 

apply hoist once in order to lift the D2 choice type outward one level. Without 

loss of generality, assume that the D2 choice type is in the left alternative, so 

Di〈D2〈φ1,φ2〉,φ3〉. After applying hoist, we have D2〈Di〈φ1,φ3〉, Di〈φ2,φ3〉〉. Since 

φ3 was copied into both alternatives of the D2 choice type, every type variable in 

the first φ3 will be qualified by D2 while every type variable in the second φ3 will 

be qualified by D̃2. In this way, the process of hoisting the D2 choice type to the 

top level will cause every other type variable to be split into two type variables 

qualified by selectors for dimension D2. � 
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The process described in the proof of Lemma 8 is illustrated in Figure 5.4 with 

a small example. In this example, φL = D1〈aq,D3〈φ1, br〉〉 and φR = D2〈φ2,φ3〉, 
where q does not contain qualifiers in D2 or D3 and r does not contain a qualifier 

in D2. In the top case, we split aq in dimension D2, while in the bottom, we split 

br. Observe how type variables are copied and qualified when a choice type is 

hoisted over them. 

Just as it does not matter which splittable type variable we choose, it does not 

matter which dimension we choose to split it in, as long as the type variable is not 

already qualified by that dimension. 

Lemma 9 (Choice independence) Let φL = D1〈φ1,φ2〉 and φR = D2〈φ� 
1,φ� 

2〉. 
Assume Dm, Dn ∈ chcs(φR) and aq ∈ splittable(φL), where qualifier q does not 

contain selectors in Dm or Dn. Let θ1 = {aq �→ Dm〈aDmq, aD̃  mq〉} and θ2 = {aq �→ 

Dn〈aDnq, aD̃ nq〉}. Then vunify(θ1(φL),φR) = vunify(θ2(φL),φR). 

PROOF. Assume without loss of generality that we split aq in dimension Dm. If 

Dm = D2, we can make progress by hoisting the newly created choice type in Dm to 

the top of φL and decomposing the resulting unification problem by alternatives. 

Otherwise, we will have to also hoist the choice in Dm to the top of φR , then 

decompose. Either way, this will result in at least two new type variables, aDmq� 

(in the left decomposition of φL) and aD̃  mq�� (in the right decomposition of φL). 

Since q did not contain a selector in Dn, there is no choice type on the path from 

aq to the root of φL, so neither q� nor q�� will contain a selector in Dn, which might 

otherwise have been introduced during the hoisting process. However, since a 
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choice type in Dn still exists in at least one of the two subproblems, we will have 

to split one or both of aDmq� and aD̃  mq�� in dimension Dn in order to complete the 

unification. Therefore, since we must eventually split the original aq in both Dm 

and Dn, proving choice independence is equivalent to proving that the order in 

which we perform these splits does not affect the unification result. 

Suppose we perform both splits before doing any decompositions. If we split 

aq in Dm first and then Dn, aq will be replaced by the type φa below. If we split 

aq in Dn and then Dm, it will be replaced by the type φ� 
a. 

φa = Dm〈Dn〈aDmDnq,aDmD̃ nq〉, Dn〈aD̃  mDnq, aD̃  mD̃ nq〉〉 
φ� 

a = Dn〈Dm〈aDmDnq,aD̃  mDnq〉, Dm〈aDmD̃ nq, aD̃  mD̃ nq〉〉 

It is easy to see that φa ≡ φ� 
a by the equivalence rules in Figure 4.4. We can 

transform φa into φ� 
a by applying the C-C-SWAP rules to each alternative, then 

applying the C-C-MERGE rules to eliminate the dominated choice types. Since φa 

and φ� 
a are equivalent, then φ� 

L = {aq �→ φa}(φL) and φ�� 
L = {aq �→ φ� 

a}(φL) are also 

equivalent, so the results of unifying φ� 
L ≡? 

q φR and φ�� 
L ≡? 

q φR will be the same. � 

The process described in the proof of Lemma 9 is illustrated in Figure 5.5. In this 

example, φL = D1〈aq,φ1〉 and φR = D2〈φ2, D3〈φ3,φ4〉〉, where the qualifier q does 

not contain qualifiers in dimensions D2 or D3. In the top case we split aq into a 

choice type in dimension D2, eventually yielding three unification subproblems. 

In the bottom case we split aq in dimension D3, eventually yielding four subprob­

lems. (The vertical ellipses in each of these derivations represent further splitting 

the type variable in dimension D3, hoisting this choice to the top level, and decom­



98 

D1〈aq,φ1〉 ≡? 
q D2〈φ2, D3〈φ3,φ4〉〉 

split↓ 
D1〈D2〈aD2 q, aD̃2 q〉,φ1〉 ≡? 

q D2〈φ2, D3〈φ3,φ4〉〉 
hoist↓ 

D2〈D1〈aD2 q,φ1〉, D1〈aD̃2 q,φ1〉〉 ≡? 
q D2〈φ2, D3〈φ3,φ4〉〉 

D1〈aD2 q,φ1〉 ≡? 
q φ2 

� 
D1〈aD̃2 q,φ1〉 ≡? 

q D3〈φ3,φ4〉 
. . . 

D1〈aD̃2D3 q,φ1〉 ≡? 
q φ3 

D1〈aD̃2D̃3 q,φ1〉 ≡? 
q φ4 

D1〈aq,φ1〉 ≡? 
q D2〈φ2, D3〈φ3,φ4〉〉 

split↓ 
D1〈D3〈aD3 q, aD̃3 q〉,φ1〉 ≡? 

q D2〈φ2, D3〈φ3,φ4〉〉 
hoist↓ 

D3〈D1〈aD3 q,φ1〉, D1〈aD̃3 q,φ1〉〉 ≡? 
q D2〈φ2, D3〈φ3,φ4〉〉 

↓hoist 

D3〈D1〈aD3 q,φ1〉, D1〈aD̃3 q,φ1〉〉 ≡? 
q D3〈D2〈φ2,φ3〉, D2〈φ2,φ4〉〉 

D1〈aD3 q,φ1〉 ≡? 
q D2〈φ2,φ3〉 

� 
D1〈aD̃3 q,φ1〉 ≡? 

q D2〈φ2,φ4〉 
. . . . . . 

D1〈aD2D3 q,φ1〉 ≡? 
q φ2 D1〈aD2D̃3 q,φ1〉 ≡? 

q φ2 

D1〈aD̃2D3 q,φ1〉 ≡? 
q φ3 D1〈aD̃2D̃3 q,φ1〉 ≡? 

q φ4 

Figure 5.5: Demonstration of choice independence. 

posing by alternatives.) However, observe that the subproblem on the left branch 

of the top case is equivalent to the two subproblems in the bottom case that have 

φ2 on their RHS. In order to obtain the subproblems in the bottom case, we can use 

choice idempotency to rewrite φ2 to D3〈φ2,φ2〉, then decompose by alternatives. 

Since the hoisting operation only restructures a type in a semantics-preserving 

way, its correctness is obvious. 



99 

Our unification algorithm is terminating through decomposition that eventu­

ally produces calls to Robinson’s unification algorithm (which is terminating). The 

only challenge to termination is that the splitting of type variables introduces new 

choice types to the types that are being unified. However, two facts ensure that 

this does not prevent termination: (1) a variable can only be split into a choice type 

whose dimension occurs in the type being unified against and (2) immediately af­

ter a split is performed the new choice type is hoisted and decomposed, producing 

two subtasks that are each smaller than the original task. 

The qualified unification algorithm is sound, meaning the mappings it pro­

duces always unify its arguments. It is also complete and most general, which 

means that if the two types are unifiable, then the algorithm will return the most 

general mapping that unifies them. We express each of these results in the follow­

ing theorems. 

Theorem 6 (Soundness) If vunify(φ1,φ2) = ξ, then ξ(φ1) ≡ ξ(φ2). 

Theorem 7 (Complete and most general) 

If ξ(φ1) ≡ ξ(φ2), then vunify(φ1,φ2) = ξ� where ξ = ξ�� ◦ ξ� for some ξ�� . 

A proof of Theorem 6 is given in Appendix B. 

In order to prove the correctness of CT-unification, we must relate the above 

theorems on qualified unification to the problem of variational unification. To 

do this, we must first establish the relationships between the comp function, the 

qualifiers, the unification problem, and the qualified unification problem. 
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The following lemma states the expectations for the comp function, which 

transforms a mapping from a single qualified type variable into a mapping from 

an unqualified type variable to a partially completed type. The lemma is proved 

in Appendix B, demonstrating that comp is correct. 

Lemma 10 Given a mapping {aq �→ φ�}, if φ = comp(q,φ� , b) is the completed type 

(where b is fresh), then �φ�q = �φ��q. More generally, given {aq1 �→ φ1, . . . , aqn �→ 

φn}, if φ = comp(q1,φ1,comp(q2,φ2, . . . comp(qn,φn, b) . . . )), then for every qi ∈ 

{q1 . . . qn}, we have �φ�qi = �φi�qi . 

PROOF. We can prove the first part of this theorem by structural induction on 

the qualifier q. The base case, where q is the empty qualifier �, is trivial since 

comp(�,φ� , b) = φ� . We show the inductive case below for q = Dq� (the case for 

˜ �q = Dq� is a dual). Note that the induction hypothesis is �comp(q ,φ� , b)�q� = �φ��q� . 

�φ�q = �comp(Dq� ,φ� , b)�Dq� by assumption 
= �D〈comp(q� ,φ� , b), fresh(b)〉�Dq� definition of comp 
= ��comp(q� ,φ� , b)�D�q� definition of repeated selection 
= ��comp(q� ,φ� , b)�q� �D selector ordering is irrelevant 
= ��φ��q� �D induction hypothesis 
= �φ��q selector ordering is irrelevant 

We can prove the second part by induction on the mapping of qualified type vari­

ables, using the result from the first part and the observation that comp is com­

mutative, for example, comp(q1,φ1,comp(q2,φ2, b)) ≡ comp(q2,φ2,comp(q1,φ1, b)). 

Using this result, we can prove the correctness of the completion process. Given a 
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solution to a qualified unification problem, completion produces a solution to the 

original unqualified version. The lemma below states the expectation of comple­

tion with respect to the selection semantics. It is also proved in Appendix B. 

Lemma 11 (Completion) Given a CT-unification problem φL ≡? φR and the cor­

responding qualified unification problem φ� 
L ≡? 

q φ
� 
R, if σQ is a unifier for φ� 

L ≡? 
q φ

� 
R 

and σU is the unifier attained by completing σQ, then for any super-complete deci­

sion δ, �σU (φL)�δ ≡ �σQ(φ� 
L)�δ and �σU (φR)�δ ≡ �σQ(φ� 

R)�δ. 

Completion also preserves principality since the comp function adds fresh type 

variables everywhere except at the leaf addressed by the path q (maximizing gen­

erality), and the principal type inferred during qualified unification is inserted 

directly at q. 

The following theorem generalizes Lemma 11, stating that through qualifica­

tion and completion, we can solve CT-unification problems. We call this process 

variational unification. 

Theorem 8 Given a CT-unification problem U and the corresponding qualified 

unification problem Q, if σQ is a unifier for Q, then we can attain a unifier σU for 

U through the process of completion. 

Variational unification is sound, complete, and most general since the underly­

ing qualified unification algorithm has these properties and since completion pre­

serves principality. 
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5.4 Time Complexity 

Solving the unification problem U consists of three steps: (1) transforming U into 

the corresponding qualified unification problem Q, (2) solving Q with the qualified 

unification algorithm vunify, and (3) transforming the qualified unifier into the 

variational unifier through completion. To determine the time needed to solve U , 

we will consider the time complexity of each step in turn. As before, we use φL and 

φR to denote the LHS and RHS of U . We use σU and σQ to denote the unifier for 

U and Q, respectively. The size of a type φ, denoted by |φ|, is the number of nodes 

in its AST (as defined by the grammar in Section 4.1). We assume that |φL| = l 

and |φR | = r. The size of a unification problem is the sum of the sizes of the types 

being unified. 

The process of transforming U to Q qualifies each type variable in U . This 

can be achieved by a top-down traversal of the ASTs of φL and φR . Thus, the 

complexity of this process is O(l + r). Note that the resulting qualified problem Q 

is the same size as the original U . 

For the second step of solving Q, we do a worst-case complexity analysis. For 

simplicity, assume that the internal nodes of φL and φR are all choice types. Then 

the worst case for unification is when chcs(φL) ∩ chcs(φR) = ∅. When φL and φR 

have no choices in common, we proceed by (1) splitting a type variable in one of 

the types, say φL, into a choice type in the dimension of the root choice of the other 

type, φR ; (2) hoisting the new choice type to the root of φL; and (3) decomposing the 

problem by alternatives. Splitting and hoisting the new choice type increases the 
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size of the LHS to 1+2l: 1 for the new choice type plus 2l for the copy of φL in each 

alternative with extended qualifications on its type variables. The splitting and 

hoisting process can be performed in O(l) time by introducing the new choice type, 

copying φL into each alternative, and then traversing each alternative, qualifying 

the type variables accordingly. 

After decomposing the problem by alternatives, we are left with two smaller 

subproblems φL1 ≡? φR1 and φL2 ≡? φR2. We know that |φL1 | = |φL2 | = |φL| sinceq q 

φL1 and φL2 are just copies of φL with different type variable qualifiers. More­

over, |φR1 |+ |φR2 | = |φR |− 1 since φR1 and φR2 are the left and right branch of the 

root node of φR , respectively. The split-hoist-decompose process will be recursively 

applied to the subproblems φL1 ≡? 
q φR1 and φL2 ≡? 

q φR2. After two more decomposi­

tions, there will be four unification subproblems. Since there are (r − 1)/2 internal 

nodes, there will be (r − 1)/2 decompositions, and since each decomposition takes 

O(l) time, the whole decomposition takes O(l · (r − 1)/2) time. 

We can also observe that each decomposition by alternatives creates two sub­

problems from one. This will result in (r + 1)/2 subproblems, one from the decom­

position corresponding to each choice node in the tree. Based on the decomposition 

process, each resulting subproblem is either of the form φ� 
L ≡? 

q g or φ� 
L ≡? 

q aq, where 

φ� 
L differs from φL only in type variable qualifications, g is a ground type, and aq 

is a qualified type variable. Based on cases (2) and (7) of the unification algorithm, 

each final subproblem therefore takes O(|φ� 
L|) = O(|φL|) = O(l) to solve. Thus the 

time needed to solve all subproblems is O(l · (r + 1)/2). 

Summing the time needed for decomposition, O(l·(r−1)/2), and the time needed 
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for solving the resulting unification problems, O(l · (r + 1)/2), the time complexity 

of solving Q is O(lr). 

Finally, we consider the complexity of the third step of the unification process, 

transforming the solution σQ for Q into a solution σU for U through the process 

of completion. Again, we perform a worst-case analysis. Completion is performed 

by folding the mappings in σQ with the function comp. We can establish an upper 

bound on the number of mappings in σQ by following the decomposition process in 

the previous step and counting the number of potential type variables. At the end 

of this process we have at most (r − 1)/2 subproblems of the form φ� 
L ≡? 

q φ. Each 

φ� 
L is of size l and contains at most (l + 1)/2 type variables at the leaves; each φ is 

either a type variable or a ground plain type. Therefore, after some simplification, 

σQ contains at most (1/2)(r − 1)(l + 1) mappings. 

If we think of the completion process as incrementally building up a tree of 

nested choices that describe the result type φ, then each mapping aqi �→ φi ∈ σQ 

essentially describes a leaf in that tree. Applying comp to such a mapping consti­

tutes traversing φ according to the path described by qi, possibly generating at 

most one new choice type and one new type variable (if this is the first traversal 

along this path) at each step of the way; this takes O(|qi|) time, where |qi| is the 

length of the qualifier. The length of the qualifier is in turn bounded by the total 

number n of dimensions present in the unification problem. An upper bound on 

n can be expressed in terms of l and r as (l − 1)/2 + (r − 1)/2 since there is at most 

one dimension name for each internal node in the original types φL and φR . Fi­

nally, since a single completion step takes time O(n) = O(l +r) and we will perform 
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O(lr) completion steps (one for each mapping), the total time for completion is 

O(l2r + lr2). 

Summing these three steps, we see that the completion step dominates the 

others, so the unification of variational types takes cubic time, in the worst case, 

with respect to the size of the types. When unifying types that contain choice 

types in the same dimension, we can expect the complexity of unification to be 

much lower. 
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Chapter 6: Variational Type Inference 

This chapter presents a variational type inference algorithm in Section 6.1 and a 

study of performance gain of variational type inference over the brute-force strat­

egy of type inference in Section 6.2. 

6.1 An Inference Algorithm 

Although the unification algorithm for VLC differs significantly from Robinson’s 

unification algorithm, the type inference algorithm is only a simple extension of 

algorithm W for HM [Damas and Milner, 1982]. We call this algorithm vinfer and 

its type is given below. 

vinfer : Γ × e → ξ × φ 

The function takes two arguments: the type environment Γand the expression to 

type. It returns a type substitution and the inferred type. The cases of the vinfer 

algorithm can be derived from the typing rules in Section 4.2. The cases for choices 

and applications are given below. 

On a choice, we determine the alternative types in the result by inferring the 

type of each alternative expression. Note that we apply the mapping produced by 

inferring the type of e1 to the typing environment used to infer the type of e2. This 

ensures that the result types and mappings will be consistent. Finally, the result 
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vinfer(Γ, D〈e1, e2〉) = 
(ξ1,φ1) ← vinfer(Γ, e1) 
(ξ2,φ2) ← vinfer(ξ1(Γ), e2) 
return (ξ2 ◦ ξ1,D〈φ1,φ2〉) 

vinfer(Γ, e1 e2) = 
(ξ1,φ1) ← vinfer(Γ, e1) 
(ξ2,φ2) ← vinfer(ξ1(Γ), e2) 
ξ ← vunify�(ξ2(φ1),φ2 → a) where a fresh 
return (ξ ◦ ξ2 ◦ ξ1,ξ(a)) 

Figure 6.1: The variational type inference algorithm. 

mapping is just a composition of the mappings produced during type inference of 

the two alternatives. 

The vinfer algorithm types applications as in W , except replacing the unifica­

tion algorithm with our own variational unification algorithm (and propagating 

the additional environments). We use vunify� to represent the combined qualifi­

cation, unification, and completion process. That is, first the type variables in φ1 

and φ2 are qualified, then vunify is invoked on the transformed types, and finally 

the resulting mapping is completed to produce ξ, the solution to the original un­

qualified unification problem. The remaining cases are similarly straightforward. 

Abstractions, λ-bound variables, and let expressions are exactly as in W . 

The following theorem expresses the standard property of soundness for the 

variational type inference algorithm. 

Theorem 9 (Type inference is sound) vinfer(Γ, e) = (ξ,φ) =⇒ ξ(Γ) �V e : φ. 

PROOF. The vinfer algorithm is directly derived from the typing rules and based 

on algorithm W , which is sound. The only challenge to soundness comes from 
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the divergence from W on applications, where we replace the standard unification 

algorithm with vunify� . However, since variational unification is also sound per 

Theorem 8, this property is preserved. � 

The type inference algorithm also has the principal type property, which follows 

from Theorems 7 and 8. 

Theorem 10 (Type inference is complete and principal) For every mapping 

ξ and type φ such that ξ(Γ) �V e : φ, there exists a ξ� and φ� such that vinfer(Γ, e) = 

(ξ� ,φ�) where ξ = ξ�� ◦ ξ� for some ξ�� and φ = ξ���(φ�) for some ξ��� . 

These results are important because they demonstrate that properties from other 

type systems can be preserved in the context of variational typing. 

6.2 Performance Evaluation 

For any static variation representation (such as the choice calculus) applied to a 

statically-typed object language, there exists a trivial typing algorithm: generate 

every program variant, then type each one individually using the non-variational 

type system of the object language. We call this the “brute-force” strategy. There 

are two significant advantages of a more integrated approach using variational 

types. The first is that we can characterize the variational structure of types 

present in variational software—this is useful for aiding understanding of vari­

ational software and informing decisions about which program variant to select. 

The second is that we can gain significant efficiency improvements over the brute-

force strategy. Due to the combinatorial explosion of program variants as we add 
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new dimensions of variation, separately inferring or checking the types of all pro­

gram variants quickly becomes infeasible. In this section we describe how vari­

ational type systems, and our type system for VLC in particular, can increase 

the efficiency of type inference for variational programs, making typing possible 

for massively variable systems. We do this in two ways: by analytically charac­

terizing the opportunities for efficiency gains, and by demonstrating these gains 

experimentally. 

6.2.1 Analytical Characterization of Efficiency Gains 

Although we have considered only binary dimensions so far, we assume in this dis­

cussion that the variational type system has been extended to support arbitrary 

n-ary dimensions. While this extension is not interesting from a technical perspec­

tive, it is important for practical use and accentuates the potential for efficiency 

gains. 

An important observation is that the worst-case performance of any variational 

type system is guaranteed to be no better than the brute-force strategy, assuming 

the variation representation is sufficiently general. Consider the following VLC 

expression. 

A〈B〈e1, e2〉,B〈e3, e4〉〉 

If e1, e2, e3, and e4 contain no common parts that can be factored out, there 

is simply no improvement to be made over the brute-force strategy. We must 

type each of the four expressions separately, and the type of each one provides no 
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insight into the types of others. Fortunately, we expect there to be many more 

opportunities for improvement in actual software. In this section, we describe 

the two basic ways that variational typing can save over the brute-force strategy, 

characterizing the efficiency gains by each. Since these patterns are expected to 

be ubiquitous in practice, variational typing can likewise be expected to be much 

more efficient. 

The first opportunity for efficiency gains arises because choices capture varia­

tion locally. This allows the type system to reuse the types inferred for the com­

mon context of the alternatives in a choice. Suppose we have a choice D〈e1, . . . , en〉 
in a non-variational context C. Conceptually, a context is an expression with a 

hole; we can fill that hole with the choice above to produce the overall expression, 

which we write as C[D〈e1, . . . , en〉]. Our algorithm types the contents of C only 

once, whereas the brute-force strategy would type each C[ei] separately, typing C 

a total of n times. While the work performed on C by our algorithm is constant, the 

extra work performed by the brute-force strategy obviously grows multiplicatively 

with the size of each new dimension of variation. We can maximize the benefits of 

choice locality gains by ensuring that choices are maximally factored. Erwig and 

Walkingshaw [2011] say that such expressions are in choice normal form, and they 

provide a semantics-preserving transformation to achieve this desirable state. 

The second, more subtle opportunity involves the typing of applications be­

tween two choices, for example, A〈e1, . . . , en〉 B〈e� 1, . . . , e� m〉. Since the brute-force 

strategy considers every variant individually, it must unify the type of every al­

ternative in the first choice with the type of every alternative in the second choice, 
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for a total of n · m unifications. The ability to see all variants together provides 

substantial opportunity for speed-up if several alternatives in either choice have 

the same type. For example, if the alternatives of the choice in dimension A have 

k < n unique types and the alternatives of the choice in B have l < m unique types, 

then the type inference algorithm must invoke unification at most k·l times. Since 

we expect it to often be the case that all alternatives of a choice have the same type 

(consider varying the values of constants, the names of variables, or only the im­

plementation of a function), this offers a dramatic opportunity for efficiency gains. 

6.2.2 Experimental Demonstration 

In this section we continue the efficiency discussion through a series of three ex­

perimental demonstrations of the performance of our variational type inference 

algorithm, vinfer. First, we illustrate the savings described in the analytical eval­

uation. Second, we describe a degenerate scenario that induces poor performance 

in vinfer, but show that it can still exploit sharing to perform better than the 

brute-force algorithm. Third, we demonstrate the performance of vinfer on large 

and complex, randomly generated expressions. These experiments are not in­

tended as a rigorous or real-world experimental evaluation of the variational type 

inference algorithm, but as a vehicle to further the discussion. 

The experiments are based on a Haskell prototype that implements the ideas 

and algorithms presented in Chapters 4, 5, and 6. The prototype consists of three 

parts: the variational type normalizer, the equational unification algorithm, and 
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the type inference algorithm. The prototype implements most of the features de­

scribed in these three chapters. One exception is that the second opportunity for 

efficiency gains, described in the previous subsection, is exploited only in the spe­

cial case when all variants of a choice have the same type. 

6.2.2.1 Illustration of Efficiency Gains 

In this part, we will be referring to the expressions and results in Figure 6.2. The 

leftmost column names each expression and the next column defines it. The dims 

column indicates the number of different choice names in the expression. The 

variants column indicates the total number of variants, which can be calculated 

by multiplying the arity of each of the dimensions. The timing results are given 

in the final three columns. The one column indicates the time needed to infer 

the type of a single program variant. This is intended as a reference point for 

comparison with the other two timing results. The brute column gives the time 

to infer the type of each variant separately using the brute-force strategy, and vlc 

gives the time taken by vinfer to infer a variational type for the expression. 

All times are calculated within our prototype. In the absence of variation 

(when inferring types for one and brute), the prototype reduces to a standard im­

plementation of algorithm W . The typing environment is seeded with boolean and 

integer values that map to constant types Bool and Int, and several simple func­

tions like id, not, succ, and even that map to the expected types. The function if 

has type Bool → a → a → a. 
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expression dims variants one brute vlc


e1 A〈λx.3,λx.true〉 B〈3,5〉 2 4 2.6 10.2 10.1 
e2 A〈λx.3,λx.true〉 B〈3,5,7,9〉 2 8 2.5 20.4 10.2 
e3 if true e1 e� 1 4 16 21.2 334.7 34.3 

e4 A〈B〈succ,λx.true〉,B〈λx.3,not〉〉 B〈3,true〉 2 4 2.6 10.1 15.7 
e5 id id id e4 2 4 31.9 125.1 63.0 
e6 if true e4 e� 4 4 16 24.0 380.5 55.0 

Figure 6.2: Running times of type inference strategies on several examples. Each 
test was run 200,000 times on a 2.8GHz dual core processor with 3GB of RAM. All 
times are in seconds. 

The first group of expressions demonstrates some basic relationships between 

the number and arity of dimensions and the potential efficiency gains of vari­

ational type inference. In e1 we present a simple unification problem with an 

opportunity for sharing (both alternatives of the B choice have type Int). Since 

the number of variants is so small, the overhead of vinfer negates the gains made 

by sharing, and the algorithm performs equivalently to the brute-force strategy. 

However, this quickly changes as we add variants and additional context. In e2 we 

have doubled the number of variants by increasing the number of alternatives in 

the B dimension from 2 to 4. While the running time for the brute-force strategy 

correspondingly doubles, variational type inference does not since the new alter­

natives can also be shared. Finally, in e3 we double the number of dimensions 

to increase the number of variants by a factor of four. The expression e� 1 is iden­

tical to e1, except with unique dimension names. This example also adds some 

additional, unvaried context (if True). Now we can see the exponential explosion 

of the brute-force strategy (which must also type the common context 16 times), 
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while vinfer scales essentially linearly with respect to the size of the expression. 

We can also observe that the ratio of overhead for vinfer, relative to the reference 

single-variant inference time, decreases as we increase the size of the expression. 

In the second group we begin with a more complex variational structure with 

no opportunities for sharing, e4. As expected, vinfer performs worse than brute-

force due to the overhead. With e5, however, we demonstrate how even a very 

small amount of common context can tip the scale back in vinfer’s favor. If we 

again duplicate the initial expression and rename the dimension names, as in 

e6, we introduce an opportunity for sharing, allowing vinfer to scale nicely while 

brute-force does not. 

6.2.2.2 Cascading Choice Problem 

In this part, we analyze the impact of a difficult case for our algorithm that we 

call cascading choices. This occurs when we have a long sequence of choices, each 

in a different dimension, connected by applications. If there are few opportunities 

for sharing, the result type produced from the first unification can be expanded by 

the second, third, and so on, potentially building up a result type exponentially 

and making each successive unification more expensive than the last. 

Figure 6.3 demonstrates the performance of vinfer and the brute-force algo­

rithm on expressions designed to induce the cascading choice problem. In the left 

graph, the x-axis indicates the number of dimensions in the expression, and the 

y-axis gives the running time on a logarithmic scale. The leftmost expression with 
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Figure 6.3: Performance comparison for the cascading choice problem. 

14 dimensions has 16384 variants and produces a result type with 14335 different 

variants. We can observe that the running time of vinfer is exponential with re­

gard to the number of dimensions. However, it still performs slightly better than 

the brute-force strategy because it takes advantage of the few opportunities for 

sharing available. 

While vinfer is sensitive to the number of dimensions in expressions inducing 

the cascading choice problem, it is less sensitive to the overall size of the expres­

sion. This is in stark contrast to the brute-force strategy, as illustrated in the right 

graph in Figure 6.3. Here, we fix the length of cascading choices at 21 but increase 

the size of the expression by making the alternatives in each choice more complex. 

The x-axis shows this size (in number of AST nodes) and the y-axis shows the run­

ning time in seconds. We observe that the brute-force strategy grows sharply as 

the size of the alternatives increases since each will be typed several times. This 

additional work will be shared in vinfer, however, and so the running time grows 

much less (increasing from 338 seconds to 461). 
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size dims nc/nd na/s nesting cascading one brute vlc

569 27 5.38 0.070 11(1) 11(1) 0.0011 148504 0.52 

3505 57 6.61 0.279 12(1) 11(2) 0.0236 - 0.57 
8153 168 6.21 0.250 12(4) 12(4) 0.0583 - 2.14 
9429 215 6.67 0.218 12(7) 12(5) 0.0510 - 3.16 
29481 681 6.87 0.210 12(25) 12(17) 0.154 - 10.16 
61345 1434 7.05 0.203 12(56) 12(37) 0.321 - 21.67 
213521 4983 7.03 0.203 12(183) 12(119),13(3) 1.10 - 76.98 
429586 10002 7.08 0.202 17(2),12(287) 19(1),12(229) 2.17 - 142.33 

Figure 6.4: Running times of type inference for large expressions (in seconds). 

6.2.2.3 Performance on Large Expressions 

Finally, in Figure 6.4, we demonstrate the efficiency of type inference on several 

large, randomly generated expressions. These expressions are generated in sev­

eral steps. First, we add several functions and their corresponding types to an 

initial environment. Then we manually build up a library of small (potentially 

variational) expressions and add these to the environment. We use these seeded 

expressions as building blocks for randomly constructing larger expressions by 

picking a random function from the environment, picking random arguments that 

will satisfy its type, possibly changing the dimension names, then joining these 

expressions with applications. Finally, we add this new expression back into the 

environment and repeat until the environment contains expressions of the desired 

size and complexity. 

The table reports the running time for many large expressions. It gives the 

size of each expression as the number of AST nodes and the number of contained 

dimensions. Each dimension is binary, so an expression with nd dimensions will 
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describe 2nd total variants. The next four columns characterize the composition 

and structure of the expression. We indicate the ratio nc/nd of choices to dimen­

sions, and the ratio na/s of application nodes to the size of the expression. In 

general, we would expect a higher ratio of application nodes to present a greater 

challenge for the inference algorithm (since unification must be invoked more of­

ten). The column nesting indicates the deepest choice-nestings in the expression, 

where dp(n) indicates that the nesting depth dp occurs n times. Similarly, the col­

umn cascade indicates the longest occurrences of cascading choices, as described 

above. In the last three columns we give the time required to infer the type of 

a single variant, to infer the types of all variants using the brute-force strategy, 

and to infer a variational type using vinfer. Note that it is impossible to apply the 

brute-force approach to all but the first of these expressions. 

These results demonstrate the feasibility of variational type inference on very 

large expressions. Our results for type inference are consistent with those for type 

checking demonstrated by [Thaker et al., 2007]. While usually much larger in size, 

we would expect real-world software to be considerably less complex. For example, 

in an analysis of real variational software implemented with the AHEAD frame­

work [Batory et al., 2004], [Kim et al., 2008] found a maximum nesting depth of 

just 3 and an average depth of 1.5. 
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Chapter 7: Partial Variational Typing 

The type system presented in Chapter 4 possesses an important desirable result: 

well-typed variational programs generate only well-typed plain programs. This re­

sult also holds in the reverse order. If all plain programs of a variational program 

are well typed, then the variational program itself is well typed. However, what 

can be said about variational programs that contain ill-typed program variants? 

For an illustration, assume we want to type the expression A〈even,not〉 1. 

Figure 7.1 attempts to show the derivation tree of typing this expression. 

However, it fails because there is no φ such that the type of the function, 

A〈Int → Bool,Bool → Bool〉 is equivalent to Int → φ. Thus, no typing rule in Fig­

ure 4.3 applies, and we fail to derive any type information for this expression. We 

observe that the variational type system presented in Chapter 4 can be improved. 

Although part of A〈even,not〉 1 is ill typed, one of its plain expressions even 1 is 

well typed. 

This chapter presents an extension of the type system introduced in Chapter 4 

to deliver desirable results for partially well-typed variational programs by intro­

ducing an error type written as ⊥. In the case of the expression A〈even,not〉 1, it 

returns the variational type A〈Bool,⊥〉, denoting that the variant even 1 has the 

type Bool and the variant not 1 contains a type error. 

The addition of error types is a non-trivial extension to the type system and in­
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VC-VAR VC-VAR 
(even,Int → Bool) ∈ Γ (not,Bool → Bool) ∈ Γ 

Γ � even : Int → Bool Γ � not : Bool → Bool

VC-CHC


Γ � A〈even,not〉 : A〈Int → Bool,Bool → Bool〉

·
· · · Γ � 1 : Int A〈Int → Bool,Bool → Bool〉 �≡ Int → φ· 

VC-APP 
Γ � A〈even,not〉 1 :? 

Figure 7.1: Fail to type the expression A〈even,not〉 1 under the assumption Γ = 
{(even,Int → Bool), (not,Bool → Bool)}. 

ference algorithm presented in Chapter 4 through Chapter 6. In particular, there 

are many subtle implications for the unification of variational types. In the case 

Figure 7.1, the location of the error is obvious. However, often there are many 

possible candidates for the type error, depending on how we infer the surround­

ing types. The goal is to assign errors such that as few variants as possible are 

considered ill typed, that is, to find a type that is most defined. This goal is in addi­

tion to the usual goal of inferring the most general type possible. It is not obvious 

whether these two qualities of types are orthogonal. In this chapter we will show 

that they are, and we present an inference algorithm that identifies most-defined, 

most-general types. 

The rest of this chapter is organized as follows. 

1. In Section 7.1, I introduce the notion of an error type so that we can assign 

a type to any variational expression, although it may contain variants that 

are ill typed. Section 7.1 also presents the concept of typing patterns, which 

indicate which variants of a variational program are well typed, and an as­
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sociated more-defined relation for comparing them. 

2. In Section 7.2, I present typing rules for dealing with type errors. In partic­

ular, I have to deal with unbound variables and type mismatches in function 

applications. I also present the type preservation theorem (Theorem 11), 

which formally establishes the relationship between a variational type iden­

tified by the type system and the set of types or type errors produced by the 

brute-force approach. 

3. In Section 7.3, I study the properties about the problem of unifying varia­

tional types containing type errors. Most significantly, I show that for any 

unification problem, there is a mapping that produces the most-defined re­

sult type (Theorem 12), and that among such mappings, there is a unique 

mapping that produces the most-general result type (Theorem 13). In the 

same section, I present a partial variational unification algorithm that pro­

duces unifiers that result in most-defined, most-general types. I show that 

the unification algorithm is sound and complete (Theorems 14 and 15). 

4. In Section 7.4, I present an error-tolerant variational type inference algo­

rithm, which is sound and complete (Theorems 16 and 17). 

5. Section 7.5 presents experiments that demonstrate that the overhead to sup­

port error-tolerant type inference is minor and that the algorithm offers 

significant performance improvements over the brute-force approach. The 

evaluation results also reveal an interesting relationship between the dis­
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φ ::= γ Constant Type 
| a Type Variable 
| φ → φ Function Type 
| D〈φ,φ〉 Choice Type 
| ⊥ Error Type 
| � OK Type 

σ ::= φ Partial Type 
| ∀a.a Type Schemas 

Figure 7.2: Partial variational types for VLC. 

π ::=⊥ | � | D〈π,π〉 

Figure 7.3: Syntax of typing patterns. 

tribution of type errors in an expression and the time it takes to infer a type 

for that expression. 

7.1 Error Types and Typing Patterns 

The type syntax extended with error types is presented in Figure 7.2. Compared 

to the types for variational programs in Figure 4.1, we have two new type con­

structs. The error type, ⊥, represents a type error and can appear anywhere in 

a variational type. We say that a variational type is partial if it contains one or 

more error types and complete otherwise. The symbol � is used to represent an 

arbitrary complete type that also contains no type variables, that is, a type that 

is monomorphic and error free. This abstraction is only used in typing patterns, 

which are described in Figure 7.3. 
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A typing pattern is a variation type consisting only of ⊥, �, and choice types 

and is used to describe which variants of an expression are well typed and which 

contain type errors. For example, the typing pattern π = A〈�,B〈�,⊥〉〉 indicates 

a type error in the variant corresponding to the decision {Ã, B̃}, and not in any 

other variants. A single typing pattern corresponds to an infinite number of par­

tial variational types. Some types corresponding to π include: A〈Int,B〈Bool,⊥〉〉, 
A〈Int,Bool〉→ B〈Int, A〈Bool,⊥〉〉, and A〈Int,B〈Bool,⊥〉 → B〈Int,⊥〉〉. In these ex­

amples, the constant and function types are irrelevant—all that matters is that 

selecting {Ã, B̃} produces a type containing errors, and that all other type variants 

are complete. 

Typing patterns are not really types in the traditional sense, but rather an 

abstraction of variation types that indicate where the errors are in the variation 

space. They are useful for determining which types are more defined than others 

(that is, which contain errors in fewer variants) and play a crucial role in the 

unification of partial types (see Section 7.3.2). We conflate the representation of 

variational types and typing patterns because they behave similarly and doing 

so allows us to reuse a lot of technical machinery. In the rest of this section, we 

employ typing patterns to define a few operations that will be used throughout 

this chapter. 

We begin by defining a reflexive, transitive relation for determining which typ­

ing patterns are more defined than others, given in Figure 7.4. All typing patterns 

are more defined than ⊥ and less defined than �. Note that one typing pattern is 

not more defined than another by simply having fewer occurrences of error types. 
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π � π π � ⊥ � � π
π � 

π � 

π1 

D〈π1

π 

,π

� 

2〉 
π2 

π1 � π π2 � π π1 � π1 π2 � π2 

D〈π1,π2〉 � π D〈π1,π2〉 � D〈π1,π2〉 

Figure 7.4: The more-defined relation on typing patterns. 

For example, the pattern A〈B〈⊥,�〉,B〈�,⊥〉〉 is trivially more defined than ⊥. 

Next, we consider the masking of types with patterns. Given a pattern π and a 

type φ, masking π � φ potentially adds error types to φ according to the position of 

error types in π. We have only three cases for this operation since typing patterns 

have only three constructs, as shown in Figure 7.3. 

� � φ = φ 

⊥ � φ =⊥ 

D〈π1,π2〉 � φ = D〈π1 � �φ�D ,π2 � �φ�D̃〉 

For example, masking type Int → A〈Bool,Int〉 with the typing pattern A〈�,⊥〉 
yields the type A〈Int → Bool,⊥〉. 

The intersection of two typing patterns π and π�, written π⊗π�, is a pattern that 

is well typed in exactly those variants that are well typed in both π and π� . For 

example, given patterns A〈�,⊥〉 and B〈⊥,�〉, their intersection is A〈B〈⊥,�〉,⊥〉, 
which indicates that the only well-typed variant corresponds to the decision {Ã, B̃}. 

Intersection is just a special case of masking, where the masked type is a typing 

pattern: π ⊗ π� = π � π� . 

The dual of intersection is pattern union. The union of two typing patterns π 
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and π�, written π ⊕ π�, is well typed in those variants that are well typed in either 

π or π�, or both. 

�⊕ π =� 

⊥⊕ π = π 

D〈π1,π2〉⊕ π = D〈π1 ⊕�π�D ,π2 ⊕�π�D̃〉 

For example, the union of A〈�,⊥〉 and B〈⊥,�〉 is A〈�,B〈⊥,�〉〉. 
Note that the above definitions are all left biased with regard to the nesting 

order of choices and the structure of the resulting type. This bias can be eliminated 

through the normalization process described in Chapter 4, which can be applied 

unaltered to typing patterns. 

In the typing process we often need to check whether two types match, for 

example, to check that the domain type of a function matches the type of the ar­

gument it is applied to. Rather than a simple boolean response, we can use typing 

patterns to provide a more precise account, indicating in which variants the types 

match (�) and in which they do not (⊥). In Figure 7.5, we define this matching 

operation, which has the type �� : φ×φ → π. In the definition, we assume both ar­

guments are in normal form. However, this is only assumed for presentation pur­

pose; in our type checker �� is implemented as part of the unification algorithm, 

and the arguments do not need to be in normal form. For example, matching 

Int → A〈Bool,⊥〉 �� B〈Int,⊥〉 → Bool produces the typing pattern A〈B〈�,⊥〉,⊥〉. 
This operation is used in the typing of applications, as we’ll see in the next sec­

tion. 
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φ �� φ =� 
φ1 → φ1 

� �� φ2 → φ2 
� = φ1 �� φ2 ⊗ φ1 

� �� φ2 
� 

D〈φ1,φ2〉 �� D〈φ1
� ,φ2

� 〉 = D〈φ1 �� φ1
� ,φ2 �� φ2

� 〉 
D〈φ1,φ2〉 �� φ = D〈φ1 �� φ,φ2 �� φ〉 
φ �� D〈φ1,φ2〉 = D〈φ1,φ2〉 �� φ 

⊥ �� φ = φ �� ⊥=⊥ 
φ �� φ� =⊥ (otherwise) 

Figure 7.5: The operation of matching two types. 

7.2 Partial Variational Type Checking 

The association of partial variational types with VLC expressions is determined 

by a set of typing rules, given in Figure 7.6. A VLC typing judgment has the 

form Γ �⊥ e : φ, which states that expression e has type φ in the context of Γ. 

We observe that most rules are the same as in Figure 4.3 for typing variational 

expressions. One specialty here is that we explicitly assign an error type to any 

unbound variables so that we don’t terminate the typing process. The focus here 

is on the E-APP rule for typing applications, extending it to support partial types. 

Previously this rule required that the left argument be equivalent to a function 

type whose argument type is unifiable with the type of the parameter value. In 

the presence of partial types, we can relax these requirements, introducing error 

types (rather than failing) when they are not satisfied. 

There are essentially two ways that error types can be introduced: (1) if we 

cannot convert the type of the left argument φ1 into a function type φ� 
2 → φ�, and 

(2) if φ� 
2 does not match the type of the parameter φ2. The introduction of errors 
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Γ �⊥ e : φ 

E-CON E-VAR E-UNBOUND 
ν is a constant of type γ Γ(x) =∀a.φ1 φ = {a �→ φ�}(φ1) x ∉ dom(Γ) 

Γ �⊥ ν : γ Γ �⊥ x : φ Γ �⊥ x : ⊥ 

E-ABS E-CHC 

Γ, x �→ φ� �⊥ e : φ Γ �⊥ e1 : φ1 Γ �⊥ e2 : φ2 

Γ �⊥ λx.e : φ� → φ Γ �⊥ D〈e1, e2〉 : D〈φ1,φ2〉 

E-APP 
Γ �⊥ e1 : φ1 Γ �⊥ e2 : φ2 φ2 

� → φ� = ↑(φ1) π = φ2 
� �� φ2 φ = π � φ� 

Γ �⊥ e1 e2 : φ 

E-LET 
Γ, x �→ φ �⊥ e : φ a = FV(φ) − FV(Γ) Γ, x �→ ∀a.φ �⊥ e� : φ� 

Γ �⊥ let x = e in e� : φ� 

Figure 7.6: Typing rules mapping VLC expressions to partial types. 

in the second case is handled by matching the two types using the �� operation 

to produce a typing pattern π, then masking the result type φ with π. In the first 

case, we employ a helper function ↑, which lifts a function type to the top level, 

introducing error types as needed. 

↑(φ1 → φ2) = φ1 → φ2 

↑(D〈φ1 → φ� 
1,φ2 → φ� 

2〉) = D〈φ1,φ2〉→ D〈φ1
� ,φ2

� 〉 
↑(D〈φ1,φ2〉) = ↑(D〈↑(φ1),↑(φ2)〉) 

↑(φ) =⊥→⊥ (otherwise) 

For example, ↑(A〈Int → Bool,Bool → Int〉) = A〈Int,Bool〉 → A〈Bool,Int〉, while 

↑(A〈Int → Bool,Int〉) must introduce error types to lift the function type to the 

top: A〈Int,⊥〉 → A〈Bool,⊥〉. 
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To illustrate the typing of an application, consider the expression e1 e2, where 

e1 : A〈Int → Bool,Bool → Bool〉 and e2 : Int. Applying ↑ to the type of e1 

and simplifying the result type yields the type A〈Int,Bool〉→ Bool. Matching 

A〈Int,Bool〉 �� Int produces the typing pattern A〈�,⊥〉, which we use to mask 

the result, A〈�,⊥〉 � Bool, producing the type of the application: A〈Bool,⊥〉. 
The previous VC-APP rule emerges as a special case of E-APP. When e1 is a 

function type whose argument type matches the type of e2, then matching returns 

� and masking doesn’t alter the return type. 

The correspondence between variational types and VLC expressions is estab­

lished inductively through the process of selection. Given that e : φ, if e is plain, 

then φ is a plain type or ⊥. If e is not plain, then we can select a tag from e to 

produce e� : φ�, and φ� can be obtained by a corresponding selection from φ. The 

inductive step is captured in the following lemma. 

Lemma 12 (Variation elimination) 

Γ �⊥ e : φ =⇒ ∀ s : Γ �⊥ �e�s : �φ�s 

PROOF. The proof for this lemma is very similar to that for Lemma 5 and is 

omitted here. � 

By induction it follows that a sequence of selections that produces a plain expres­

sion can be used to select a corresponding plain or error type. This results in the 

following theorem. 

Theorem 11 (Type preservation) If Γ �⊥ e : φ and (δ, e�) ∈ [[e]], then Γ �⊥ e� : φ� 

where (δ,φ
�) ∈ [[φ]]. 
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This theorem demonstrates the soundness of the type systems since it establishes 

that from the type of a variational program we can obtain the type of each pro­

gram variant it contains. We had similar type preservation results in Chapter 4, 

but they applied to only well-typed variational programs. The results here are 

stronger since they apply to any variational programs. 

7.3 Partial Variational Unification 

Having extended the type system to work with and produce partial types, we now 

turn to the more challenging problem of inferring variational types containing 

type errors. By far the most difficult piece is partial type unification. In Sec­

tion 7.3.1 we will describe the specific challenges posed. In particular, the unifica­

tion algorithm must yield unifiers that produce types that are both most general 

and most defined, two qualities that are not obviously orthogonal. In Section 7.3.2 

we show that such unifiers exist, and in Section 7.3.3 we present an algorithm for 

computing unifiers. 

7.3.1 Reconciling Type Partiality and Generality 

To support partial type inference, we must extend variational type unification to 

produce and extend mappings containing error types, and to identify mappings 

that are somehow best. 

As a running example, consider the application e e� where e : φ = 
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i θi φi = θi(φ) φ� 
i = θi(φ�) 

1 {a �→ Ch} A〈In,Bo〉 → Ch B〈In,Ch〉 
2 {a �→ In} A〈In,Bo〉 → In B〈In,In〉 
3 {a �→ Bo} A〈In,Bo〉 → Bo B〈In,Bo〉 
4 {a �→ A〈In,Bo〉} A〈In,Bo〉 → A〈In,Bo〉 B〈In, A〈In,Bo〉〉 
5 {a �→ B〈b, A〈In,Bo〉〉} A〈In,Bo〉 → B〈b, A〈In,Bo〉〉 B〈In, A〈In,Bo〉〉 
i 
1 

θi 
{a �→ Ch} 

πi = arg(φi) �� φ� 
i 

A〈B〈�,⊥〉,⊥〉 
Ri = πi � res(φi) 
A〈B〈Ch,⊥〉,⊥〉 

2 {a �→ In} A〈�,⊥〉 A〈In,⊥〉 
3 {a �→ Bo} A〈B〈�,⊥〉,B〈⊥,�〉〉 A〈B〈Bo,⊥〉,B〈⊥,Bo〉〉 
4 {a �→ A〈In,Bo〉} A〈�,B〈⊥,�〉〉 A〈In,B〈⊥,Bo〉〉 
5 {a �→ B〈b, A〈In,Bo〉〉} A〈�,B〈⊥,�〉〉 A〈B〈b,In〉,B〈⊥,Bo〉〉 

Figure 7.7: Some mappings for φ = A〈Int,Bool〉 → a and φ� = B〈Int,a〉, with the 
typing patterns and result types (Ri) they produce. 

A〈Int,Bool〉 → a and e� : φ� = B〈Int, a〉. Usually we would find the most general 

unifier (mgu) for the problem A〈Int,Bool〉 ≡? B〈Int, a〉, but in this case the two 

types are not unifiable since there is a type error in the {Ã,B} variant. So what 

should we map a to? The mapping we choose should be most general in the usual 

sense, but it should also be most defined, yielding types with type errors in as few 

variants as possible. In this subsection we will explore the interaction of these 

two properties. 

In Figure 7.7 we list several mappings we might choose to partially unify φ 

and φ� in our example. In the table, the type constants Bool, Char, and Int are 

shortened for space reasons. Each mapping is identified by a θi, for example, 

θ2 = {a �→ Int}. We also give the result of applying each mapping to each of the two 

types as φi and φ� 
i, the typing pattern πi that results from matching the argument 

type of φi to φ� 
i, and the result type generated by masking the result type of φi 
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(a) θi by � (b) πi by � (c) θi by �,�


Figure 7.8: Orderings among patterns, result types, and mappings.


with πi. Note that we use the functions arg and res to access, respectively, the 

argument and result types of a function type. 

Figure 7.8 visualizes the more-general and more-defined relationships among 

mappings and typing patterns. The relations are defined for elements connected 

by lines, and the element higher in the graph is considered more general or more 

defined. 

The first thing to note is that the standard more-general relation, �, is not 

very helpful in selecting a mapping. A mapping θ is more general than θ�, written 

θ � θ� if ∃θ�� such that θ� = θ�� ◦ θ. But this relationship is only defined on one pair 

of our five mappings: θ5 � θ4 (since {b �→ A〈Int,Bool〉} ◦ θ5 = θ4). Since we are not 

restricted to mappings that are valid unifiers, there are many more possibilities, 

and many will not be ordered by the more-general relation. 

More useful is the more-defined relation (see Section 7.1) on the match-

produced typing patterns, for which many relationships are defined, as seen in 

Figure 7.8b. Using this metric, we can rule out mappings θ1, θ2, and θ3 because 

they will produce types with errors in more variants than the mappings θ4 and θ5. 

The problem is that θ4 and θ5 produce the same pattern. 
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The solution, of course, is to use both metrics together, as demonstrated in 

Figure 7.8c. The solid lines between mappings correspond to more-defined rela­

tions between the generated typing patterns, and the dotted line corresponds to 

the more-general relation between the mappings directly. This reveals θ5 as the 

most-defined, most-general mapping. At this point it is not clear whether this 

convergence was a quirk of our example or whether these properties will always 

converge in this way. In the next section we will tackle the general case, and show 

that a most-defined, most-general mapping always exists. 

7.3.2 Most-General Partial Unifiers 

In Section 7.3.1, we have illustrated how unification with partial types requires 

the integration of two partial orderings of types, � and �. In this section, we intro­

duce the necessary machinery that enables unification to deal with this situation 

in general and produce most general partial unifiers. 

In the following we consider a general unification problem of the form U = 

φL ≡? φR . For a given mapping θ, we write U :: θ for the typing pattern θ(φL) �� 

θ(φR) that results from θ and U . When we say that π is a typing pattern for U , 

we mean that there is some θ such that π = U :: θ. With FV(U) we refer to all 

type variables in U , and we use dom(θ) to denote the domain of θ. We use �θ�U to 

normalize θ with respect to the variables in U , that is, �θ�U is obtained from θ by 

renaming type variables such that dom(�θ�U ) = FV(U). 

Finally, we extend selection to apply to unification problems and mappings, 
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that is, �U�s = �φL�s ≡? �φR�s and �θ�s = {(a,�φ�s) | (a,φ) ∈ θ}. We write θ|V for the 

restriction of θ by a set of variables V , which is defined as θ|V = {(a,θ(a)) | a ∈ V }. 

The first three lemmas state that selection extends in a homomorphic way 

across several operations. 

Lemma 13	 �φL �� φR�s = �φL�s �� �φR�s 

The proofs for this and the following lemmas are very simple and similar to that 

for Lemma 2 and are omitted here. 

Lemma 14	 �φL ⊕ φR�s = �φL�s ⊕�φR�s 

�φL ⊗ φR�s = �φL�s ⊗�φR�s 

�π � φ�s = �π�s � �φ�s 

�φL → φR�s = �φL�s →�φR�s 

We also have a similar result for type substitution.


Lemma 15 �θ(φ)�s = �θ�s(�φ�s)


The next lemma says that the computation of typing patterns can be decomposed


by using selection. 

Lemma 16 �U :: θ�s = �U :: �θ�s�s = �U�s :: �θ�s


PROOF. The proof for the first part is as follows. Let π = U :: θ and π� = U :: �θ�s,
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then 

�π�s = �θ(φL) �� θ(φR)�s 

= �θ(φL)�s �� �θ(φR)�s by Lemma 13 
= �θ�s(�φL�s) �� �θ�s(�φR�s) by Lemma 15 

�π��s = ��θ�s(φL) �� �θ�s(φR)�s 

= ��θ�s(φL)�s �� ��θ�s(φR)�s by Lemma 13 
= ��θ�s�s(�φL�s) �� ��θ�s�s(�φR�s) by Lemma 15 
= �θ�s(�φL�s) �� �θ�s(�φR�s) 

The proof for the second part is analogous. � 

Lemma 17 (Typing patterns have a join) If π1 and π2 are typing patterns for 

U, then so is π1 ⊕ π2. 

PROOF. Assume θ1 and θ2 are the mappings such that π1 = U :: θ1 and π2 = U :: θ2. 

The proof consists of several cases. For each case, we construct a mapping θ3 such 

that U :: θ3 = π1 ⊕π2, which we denote as π3. We show the proof for the case where 

π1 = D〈π11,π12〉 and π2 = D〈π21,π22〉 and there is no � relation between π1 and π2. 

The proofs for other cases are simpler or can be transformed into this case. We 

assume that θ1 and θ2 are already normalized with respect to U . We can consider 

several cases. 

First, if we assume π21 � π11 and π12 � π22, we let 

θ3 = {(a, D〈�θ2(a)�D ,�θ1(a)�D̃〉) | a ∈ FV(U)} 
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for which we observe the following. 

U :: θ3 = D〈�U :: θ3�D ,�U :: θ3�D̃〉 
= D〈�U�D :: �θ3�D ,�U�D̃ :: �θ3�D̃〉 Lemma 16 
= D〈�U�D :: �θ1�D ,�U�D̃ :: �θ2�D̃〉 construction 
= D〈�U :: θ1�D ,�U :: θ2�D̃〉 Lemma 16 
= D〈π21,π12〉 
= π1 ⊕ π2 def. of ⊕ 

Second, the case for π11 � π21 and π22 � π12 is analogous. 

Third, if there is no � relation between π21 and π11 or π12 and π22, we let U1 = 

�U�D , U2 = �U�D̃ , θ11 = θ1|FV(U1), θ12 = θ1|FV(U2), θ21 = θ2|FV(U1) and θ22 = θ2|FV(U2). 

By induction, we can construct a mapping θ31 from θ11 and θ21 for U1 such that 

U1 :: θ31 = π11 ⊕ π21. Likewise, we can construct a mapping θ32 from θ12 and θ22 

for U2 such that U2 :: θ32 = π12 ⊕ π22. We can now build θ3 based on θ31 and θ32 as 

follows. For each type variable a ∈ FV(U) we define θ3 as follows. 

θ3(a) =


⎧ ⎪⎪⎪⎪⎪⎪⎪⎨ ⎪⎪⎪⎪⎪⎪⎪⎩


D〈θ31(a),θ32(a)〉 if a ∈ FV(U1) ∧ a ∈ FV(U2) 

θ31(a) if a ∈ FV(U1) 

θ32(a) if a ∈ FV(U2) 

Proving that U :: θ3 = D〈π31,π32〉 = D〈π11,π12〉⊕ D〈π21,π22〉 is similar to the proof 

for the previous case. � 

Combining this lemma with the rule � � π we can conclude that for any unifica­

tion problem, there is an upper-bound typing pattern, which we call the principal 

typing pattern. 

Theorem 12 (Existence of principal typing patterns) For every unification 
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problem U there is a mapping θ with π = U :: θ, such that π � π� for any other 

mapping θ� with π� = U :: θ� . 

We call a mapping that leads to the principal typing pattern a partial unifier and 

use η to denote partial unifiers. We call mappings that are not partial unifiers 

“non-unifiers” for short. Based on these definitions, the first example in Sec­

tion 7.3.1 has the principal typing pattern π4 and partial unifiers θ4 and θ5. 

Theorem 12 only shows the existence of partial unifiers, but does not say any­

thing about how many partial unifiers exist and how they are possibly related. It 

turns out that partial unifiers can be compared with respect to their generality 

and for each unification problem there is a most general partial unifier (mgpu) of 

which all other partial unifiers are instances. 

Theorem 13 (Partial unification is unitary) For every unification problem U 

there is one partial unifier η of such that any other partial unifier η� for U is an 

instance of it, that is, η � η� . 

The proof strategy is similar to that for Theorem 12, although more complex. 

Given any two partial unifiers, we can construct a new partial unifier that is more 

general than the old ones. 

Figure 7.9 summarizes the notions presented in this section, where we show 

the mappings (θ), typing patterns (π), partial unifiers (η) and their relation for the 

unification problem A〈Int, a〉 ≡? B〈Bool, b〉. We use +π to denote the composition 

of mappings defined by Lemma 17 and use +η to denote the composition of partial 

unifiers to get a more general partial unifiers. There are three layers of mappings 
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partitioned by their corresponding typing patterns. The layers that are higher 

have more defined typing patterns. For the typing patterns that are less defined 

than the principal typing pattern, only one mapping is shown for each typing 

pattern. 

The highest layer depicts the relations between partial unifiers, where we use 

dashed line to denote the more general relation and use solid lines to denote the 

composition of partial unifiers to get a more general unifier. For example, from η2 

and η3 we get η7, which can also be reached by composing η3 and η4. By composing 

η7 and η6, we get η8, the mgpu of the unification problem. Note that for space 

reasons the figure doesn’t include all partial unifiers. Also, for simplicity, some 

relations are omitted. For example, the more general relation between η3 and η6 

and the +η relation between η4 and η5 to get η6 are omitted. 

7.3.3 A Partial Variational Unification Algorithm 

In Section 7.3.2 we showed that for each partial unification problem, there is a 

unique mgpu that produces the corresponding principal typing pattern. In this 

section, we show how to compute each of these by extending the process described 

in Section 5.2. We do this first by example, then give the algorithm directly. 

Consider the unification problem A〈Int, a〉 ≡? B〈Bool, b〉. We begin, as de­

scribed in Section 5.2, by transforming this into the corresponding qualified unifi­

cation problem shown at the top of Figure 7.10. Since the top-level choice names 

don’t match, we choose a type variable and apply the split-hoist strategy (first two 
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+π

Figure 7.9: Typing pattern, mappings, partial unifiers and their relations for the 
unification problem A〈Int, a〉 ≡? B〈Bool, b〉. 

steps) in order to decompose by alternatives (third step). This gives us the two 

subproblems at the fourth level from the top. When a plain type is unified with a 

choice type, we can decompose it by unifying the plain type with each alternative. 

This is demonstrated in the left branch, which yields two smaller subproblems, 

one of which, Int ≡? Bool, reveals a type error. 
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A〈Int, aÃ〉 ≡? B〈Bool, bB̃〉 
↓split 

A〈Int, aÃ〉 ≡? B〈Bool, A〈bAB̃, bÃB̃〉〉 
↓hoist 

A〈Int, aÃ〉 ≡? A〈B〈Bool, bAB̃〉,B〈Bool, bÃB̃〉〉 

Int ≡? B〈Bool, bAB̃〉 
aÃ≡?B〈Bool, bÃB̃〉 

∗Int ≡? Bool∗ Int ≡? bAB̃

Figure 7.10: Qualified unification resulting in a type error. 

This decomposition contains all of the information needed to construct both 

the mgpu and the principal typing pattern. We construct the mgpu by composing 

the mappings generated at the end of every successful branch of the unification 

process. In this case, there were two successful branches, giving the following 

mgpu. 

{aÃ �→ B〈Bool, bÃB̃〉, bAB̃ �→ Int} 

We construct the principal typing pattern by observing which branches of the 

decomposition fail and succeed. In this case, the branch corresponding to the 

first alternative in both A and B failed, yielding the principal error pattern 

A〈B〈⊥,�〉,�〉. 
As the final step, we use completion to produce the solution to the original 

(unqualified) unification problem. 

{a �→ A〈c,B〈Bool, d〉〉, b �→ B〈 f , A〈Int, d〉〉} 
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Figure 7.11 gives the partial unification algorithm. It accepts a qualified uni­

fication problem φL ≡? φR and returns a principal typing pattern π and a mgpu 

η. We show only the cases that differ significantly from the qualified unification 

algorithm presented in Section 5.2. 

The algorithm relies on several helper functions. The functions chcs(φ) and 

splittable are introduced in Section 5.2. The function sdims(vq,φ) returns the 

set of dimension names not present in q but present in the qualifications of type 

variables that are more specific than vq. We say that up is more specific than 

vq if u = v and p can be written as qp� for some nonempty p� . For example, 

sdims(aA, aAB̃ → Int) = {B}. 

We will work through the cases of the punify algorithm, from top to bottom. In 

the body of the algorithm and in these descriptions, φL and φR are used to refer to 

the first and second arguments of punify, respectively. We first consider a couple 

of base cases. Attempting to unify any type and an error type yields an empty 

mapping and the fully undefined typing pattern ⊥. This defines the propagation 

of errors. When unifying two plain types, we defer to Robinson’s unification algo­

rithm UR introduced in Figure 2.2. If it succeeds, we return the unifier and the 

fully defined typing pattern �. If it fails, we return the empty mapping and ⊥. 

When unifying a ground plain type g (a type that does not contain choice 

types or type variables) with a choice type, we just unify g with both alterna­

tives. This is seen in the second decomposition in Figure 7.10. The first decom­

position is by alternatives, which is performed when unifying two choices in the 

same dimension; this is captured in the fourth case of punify. Note that we do 
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punify : φ × φ → π × η 

punify(⊥,φ) = (⊥,∅) 

punify(p, p�) 
| UR(p, p�) =⊥ = (⊥,∅) 
| otherwise = (�,UR(p, p�)) 

punify(g, D〈φ1,φ2〉) = punify(D〈g, g〉, D〈φ1,φ2〉) 
punify(D〈φ1,φ2〉, D〈φ� 

1,φ� 
2〉) = 

(π1,η1) ← punify(φ1,φ� 
1) 

(π2,η2) ← punify(φ2,φ� 
2) 

return (D〈π1,π2〉,η1 ◦ η2) 

punify(D1〈φ1,φ2〉, D2〈φ� 
1,φ� 

2〉) 
| D2 ∉ chcs(φL) ∧ splittable(φL) = ∅ ∧ 

D1 ∉ chcs(φR) ∧ splittable(φR) = ∅ 
= punify(φL, D1〈φR ,φR〉) 

punify(vq,φ� 
1 → φ� 

2) 
| vq ∈ FV(φR) = (⊥,∅) 
| D ∈ sdims(vq,φR) = punify(D〈vDq, v ̃Dq〉,φR) 
| otherwise = (�, {vq �→ φR}) 

punify(φ1 → φ2,φ� 
1 → φ� 

2) = 
(π1,η1) ← punify(φ1,φ� 

1) 
(π2,η2) ← punify(η1(φ2),η1(φ� 

2)) 
π ← π1 ⊗ π2 
return (π,η1 ◦ η2) 

Figure 7.11: Partial unification algorithm. 

not need to apply the mapping η1 to φ2 and φ� 
2, as we might expect, because 

(FV(φ1) ∪ FV(φ� 
1)) ∩ (FV(φ2) ∪ FV(φ� 

2)) = ∅ due to type variable qualification. We 

then compose the corresponding unifiers and combine the error patterns with a 

choice type. 

The fifth case considers the unification of two choice types in different dimen­
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sions with no splittable type variables. This is not fully unifiable and so would 

usually represent failure. However, with partial unification we can proceed by at­

tempting to unify all combinations of alternatives in order to locate the variants 

that contain errors. For example, A〈Int,Bool〉 ≡? B〈Int,Bool〉 produces the typ­

ing pattern A〈B〈�,⊥〉,B〈⊥,�〉〉. We reuse our existing machinery by duplicating 

φR and putting it in a choice type that will be decomposed by alternatives in the 

recursive execution of punify. 

Although I don’t show all the cases of unifying a qualified type variable against 

other types, I do show the trickiest case of unifying a type variable with a function 

type in the sixth case in Figure 7.11. There are three sub-cases to consider: (1) If 

vq occurs in φR , the unification fails. (2) If vq does not occur in φR but a more 

specific type variable vqr does, then some variants may still be well typed. So, we 

create a new unification problem by adding a dimension D from r to the qualifi­

cation of vq, then splitting the new variable vDq in the D dimension. (3) Finally, 

if v does not appear in any form in φR , then we simply map vq to φR . Note that 

the decomposition of the unification problem is such that if there is any vp in φR , 

then either vp = vq or vp is more specific than vq. 

Finally, we consider the unification of two function types. We unify the corre­

sponding argument types and result types and compose the mappings. The result­

ing typing pattern is the intersection of the patterns of the two subproblems since 

the result will be well typed only if both the argument and result types agree. 

We conclude by presenting some important properties of the unification algo­

rithm. The first result is that the partial unification algorithm is terminating 
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through decomposition that eventually results in either the propagation of type 

errors, or calls to the UR algorithm, which is terminating. There are two cases 

that do not decompose, but rather grow the size of the types being unified, and 

so pose a threat to termination. The first is the splitting of type variables. The 

second is the fifth case shown in Figure 7.11. Both of these cases introduce a new 

choice type and duplicate one of their arguments. These cases do not prevent ter­

mination, however, for two reasons. First, both cases are followed immediately by 

a decomposition that produces two subproblems smaller than the original prob­

lem. Second, the number of new choice types that can be introduced is bounded 

by the overall number of dimensions in the unification problem. This follows from 

the property of choice domination and the fact that we eliminate a dimension from 

consideration with each decomposition by alternatives. 

In Section 5.4, we did an in-depth time complexity analysis of the variational 

unification algorithm. We showed that if the size of φL and φR are l and r respec­

tively, then the time complexity of variational unification is O(lr(l + r)). Since the 

computation of typing patterns in the unification algorithm does not exceed the 

time for computing partial unifiers, the run-time complexity is still O(lr(l + r)) for 

the partial unification algorithm. 

The partial unification algorithm is also sound and complete. These facts are 

expressed in the following theorems. We use punify� to refer to the entire three-

part unification process described in Section 5.3 (qualification, qualified unifica­

tion, completion). 

Theorem 14 (Partial unification is sound) Given the unification problem 
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φ1 ≡? φ2, if punify�(φ1,φ2) = (π,η), then η(φ1) �� η(φ2) = π. 

Theorem 15 (Partial unification is complete, most defined, and most general) 

Given the unification problem φ1 ≡? φ2, if θ(φ1) �� θ(φ2) = π, then 

punify�(φ1,φ2) = (π� ,η) such that π� 
� π and if π� ≡ π then there exists some θ� 

such that θ = θ� ◦ η. 

The proofs for these two theorems are omitted here since they are very similar to 

those for Theorems 6 and 7, respectively. 

7.4 Partial Variational Type Inference 

Although the partial unification algorithm is quite complicated, the inference al­

gorithm itself is simple. We define it as an extension of algorithm W (Figure 2.3) 

and show the most interesting case below. 

pinfer : Γ × e → η × φ


pinfer(Γ, e1 e2) =

(η1,φ1) ← pinfer(Γ, e1)

(η2,φ2) ← pinfer(η1(Γ), e2)

(π,η) ← punify�(η2(φ1),η2(φ2) → a) where a fresh

φ ← π � η(a)

return (η ◦ η2 ◦ η1,φ)


The algorithm takes two arguments: a type environment and an expression. It 

returns a partial unifier and the inferred partial type. Traditionally, inferring the 

result of a function application consists of four steps: (1) infer the type of the func­

tion, (2) infer the type of the argument, (3) unify the argument type of the function 
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with the type of the argument, and (4) instantiate the result type of the function 

with the returned unifier. Our algorithm adds just one more step: we must mask 

the result type according to the typing pattern returned by partial unification, in 

order to introduce error types for the cases where traditional unification would 

fail. 

The remaining cases can be derived from the typing rules in Section 7.2. Vari­

ables and abstractions are treated as in W . For a choice we infer the type of each 

alternative and build a corresponding choice type. 

The following theorems state that our type inference algorithm is sound and 

complete and has the principal typing property. In the following, the symbol � 

represents a more-defined, more-general relation on variational types. That is, 

φ� � φ means that for every corresponding pair of (plain) variants V � and V from 

φ� and φ, respectively, either V � � V or V =⊥. 

Theorem 16 (Partial Type inference is sound) 

If pinfer(Γ, e) = (η,φ), then η(Γ) �⊥ e : φ. 

Theorem 17 (Partial Type inference is complete and principal) 

If η(Γ) �⊥ e : φ, then pinfer(Γ, e) = (η� ,φ�) such that η = θ ◦ η� for some θ and φ� � φ. 

Due to the close relation of pinfer and vinfer, the proofs for these theorems closely 

resemble those for Theorems 9 and 10. Thus, we omit the proofs for them here. 

These results mean that, for any syntactically correct VLC expression, we can 

infer the most general type, containing type errors in as few variants as possible, 

all without type annotations. 
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7.5 Performance Evaluation 

In this section we empirically evaluate the efficiency of partial type inference in 

a variety of ways. To do this, we have developed a prototype in Haskell that im­

plements the contents of this chapter. The prototype consists of three parts: a 

normalizer for variational types, the equational partial unification algorithm de­

scribed in Section 7.3.3, and the type inference algorithm described in Section 7.4. 

In the first experiment, we measure the additional cost of the extensions de­

scribed in this chapter, relative to Chapter 6. To measure this overhead effec­

tively, we intentionally induced our worst-case performance through the cascad­

ing choice problem. Cascading choices are long sequences of applications, where 

each expression is a choice in a different dimension. If the types of all alterna­

tives are different, no solution can perform better than the brute-force strategy. 

The overhead of our prototype on such examples (all well-typed, with between 14 

and 21 dimensions) was about 30% of the running time of the non-error-tolerant 

prototype described in Chapter 6.2. 

In the second experiment, we study how the distribution of errors in an ex­

pression affects the efficiency of partial type inference. The graph in Figure 7.12 

shows the running time of the prototype on a cascading choice problem with 21 

dimensions, seeded with errors. The horizontal axis indicates the percentage of 

variants that were seeded with type errors, and the different lines represent dif­

ferent distributions of these errors. Errors can be spread evenly throughout the 

expression, clustered together, distributed randomly, or introduced at the end of 
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Figure 7.12: Running time of prototype by error distribution. 

the expression. An interesting phenomenon is that, while the running time at first 

increases as we introduce errors (due to the costs of maintaining and applying er­

ror patterns), in three of the four curves the running time decreases sharply as the 

error density increases. This is because additional errors introduce opportunities 

for reduction through choice idempotency (D〈⊥,⊥〉=⊥) that are usually denied in 

cascading choice expressions. As expected, this feature is most pronounced when 

errors are clustered and least pronounced when they are spread evenly. When 

errors are introduced at the end of the expression, this opportunity never arises 

since all the work has already been done. 

Finally, in the third experiment, we demonstrate the efficiency and effective­

ness of partial type inference in finding type errors, relative to the brute-force 

approach (implemented as a prototype in the same way as our own). The results 
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size dims variants errors 
spread 

brute (%) vlc (s) 
clustered 

brute (%) vlc (s) 
702 22 216 100 100♣ 0.62 100♥ 0.57 

3719 22 216 100 14.90 1.09 4.10 1.02 
976 24 217 200 100♦ 0.71 100♠ 0.68 

5327 24 217 200 0.50 2.26 39.85 2.17 
8412 24 217 200 0.05 3.79 0.00 3.65 
1163 27 221 400 27.05 0.76 4.90 0.71 
1745 33 225 500 0.42 1.31 0.00 1.19 
2079 37 229 500 0.04 1.44 2.98 1.33 
3505 57 240 1000 0.08 1.82 0.21 1.74 
9429 215 2165 1000 0.00 4.31 0.01 4.16 

61345 1434 2892 2000 0.00 31.45 0.99 29.44 
213521 4983 23073 5000 0.02 104.61 0.00 99.37 
429586 10002 27455 10000 0.00 183.75 0.10 172.52 

♣ 648 s ♦ 2700 s ♥ 639 s ♠ 2645 s 

Figure 7.13: A comparison of the performance of the brute-force approach and our 
inference algorithm on large expressions containing seeded type errors. The errors 
are either distributed evenly or clustered within the expression. Our inference 
algorithm caught 100% of the errors in all cases, so we show only the time taken 
to do so. The running time of the brute-force approach was capped at one hour 
(3600 s). For the cases that completed before this cap was reached, we give the 
running time as a footnote. For cases that did not complete, we ran each test 10 
times starting from a random variant, and averaged the results. 

are presented in the table in Figure 7.13. Each row represents an artificially con­

structed expression that varies in the indicated number of dimensions. The size 

of each expression is given by the number of AST nodes. The expressions are 

constructed such that not all dimensions are independent (some dimensions are 

nested within choices), so the number of variants each expression represents is 

also given. 

In each expression, we manually seeded the indicated number of errors ac­
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cording to two different distributions: errors may be spread evenly throughout 

the expression or clustered together. Thus, each row actually represents two ex­

pressions with different error distributions that are otherwise identical. Errors 

are counted relative to the variational expression, not the variants they occur in. 

For example, if the expression err produces a type error, then A〈err,B〈1,2〉〉 is con­

sidered to contain just one type error even though that error is expressed in two 

variants ({A,B} and {A, B̃}). 

Finally, for each expression we give the percentage of errors caught and total 

running time in seconds (run on a 2.8GHz dual core processor with 3GB RAM) 

of the brute-force approach and our inference algorithm, respectively. Often the 

problem is intractable for the brute-force approach, so we cap the running-time 

at one hour and count the number of errors caught up to this point. Because of 

this cap, and especially when errors are clustered, there is a potential for bias in 

which variants the brute-force algorithm looks before the time limit is reached. 

To mitigate this, we ran each brute-force test 10 times, starting from random 

variants, and averaged the results. Note that for presentation reasons we do not 

list the percentage of errors found for our algorithm since this value is always 

100%. Similarly, we do not list the running time of the brute-force approach since 

this is the full 3600 seconds in all but a few cases, which are indicated by footnotes. 

From the results in Figure 7.13 we observe that our algorithm scales well as 

the size, variability, and number of errors in an expression increases. Our algo­

rithm is also more reliable for detecting errors since the ability to completely type 

the expressions means that it is not sensitive (in this regard) to the distribution 
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of errors, and we do not have to consider issues like which variant the algorithm 

starts with. 

Collectively, these results demonstrate the feasibility of error-tolerant type in­

ference on large, complex expressions. In practice, we expect real software to be 

considerably less complex (from a variational perspective) than the expressions 

examined in this section, and very unlikely to induce worst-case scenarios. As al­

ready mentioned, some real-world studies have suggested an average choice nest­

ing depth of just 1.5 [Kim et al., 2008]. However, it is possible that variational 

complexity is artificially limited by the inadequacy of current tools, which this 

work directly addresses. 

7.6 Related Work 

This section collects work related to error types. Chapter 3 presents a more com­

prehensive discussion of the work related to other aspects of this dissertation. 

Although they share a name, our notion of partial types differs from the work of 

Thatte [1988]. Thatte’s partial types provide a way to type certain objects that are 

not typable with simple types in lambda calculus, such as heterogeneous lists and 

persistent data. They are more similar to our typing patterns. Thatte’s “untyped” 

type Ω represents an arbitrary well-typed expression, similar to our � type, while 

his inclusion relationship on partial types (≤) is similar to our more-defined rela­

tionship on patterns (�). Type inference with Thatte’s partial types was proved 

decidable [O’Keefe and Wand, 1992; Kozen et al., 1992], a property that holds for 
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our type system also. 

Top and bottom types in subtyping [Pierce, 2002] are also similar to the types 

� and ⊥ used in typing patterns. Moreover, the subtyping relationship plays a 

similar role to that of � on typing patterns. For example, all types are subtypes 

of the top type, which corresponds to the fact that all typing patterns are less or 

equally defined as � (similar for ⊥ and the bottom type). However, the purpose 

of these type bounds is quite different. The top and bottom types are introduced 

to facilitate the proofs of certain properties and the design of type systems, for 

example, in bounded quantification [Pierce, 1997], whereas the � and ⊥ types are 

used as parts of larger patterns to track which variants are well- and ill-typed, 

and to mask result types accordingly. 

Our work is also related to the work of Siek et al. on gradual typing [Siek and 

Vachharajani, 2008; Siek and Taha, 2006b]. The goal of that work is to integrate 

static and dynamic typing into a single type system. They use the symbol ? to 

represent a type that is not known statically (that is, it is a dynamic type). This is 

similar to our ⊥ type in partial types and typing patterns, particularly in the way 

it is used to determine a notion of informativeness. A type is less informative if it 

contains more ? types (or rather, if more of the type is subsumed by ? types). This 

relation is similar to an inverse of our more-defined relation on typing patterns, 

where a pattern becomes less defined as it is subsumed by ⊥ types. The biggest 

difference between this work and our own is that ⊥ types represent parts of a 

variational program that are statically known to be type incorrect, whereas the 

parts of a program annotated with ? types may still be dynamically type correct. 
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Also, their system isolates ? types as much as possible with respect to a plain type, 

while we allow ⊥ types to propagate outward in plain types, but contain ⊥ types 

to as few variants as possible. This is best demonstrated by the fact that (if we 

extend the notion of definedness to partial types) ⊥ is equally defined as ⊥→ Int, 

but ? is strictly less informative than ? → Int. 
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Chapter 8: Counter-Factual Typing 

Changing a program in response to a type error plays an important part in mod­

ern software development. However, the generation of good type error messages 

remains a problem for highly expressive type systems. Existing approaches of­

ten suffer from a lack of precision in locating errors and proposing remedies. In 

Section 3.3, I reviewed numerous efforts aiming at improving type error debug­

ging, including reordering of unification [Yang et al., 2000; Lee and Yi, 2000; Eo 

et al., 2004; McAdam, 2002b], type error slicing [Tip and Dinesh, 2001; Haack and 

Wells, 2003; Neubauer and Thiemann, 2003; Schilling, 2012; Zhang and Myers, 

2014; Pavlinovic et al., 2014], and suggesting changes [Lerner et al., 2006, 2007; 

Heeren et al., 2003c; Heeren, 2005]. 

The shortcomings with approaches based on reordering unifications are that 

they tend to miss the real cause of type errors, convey the errors in compiler jar­

gon, and don’t tell the user how to fix errors. While giving reasons for the failure 

of unification might be useful for experienced programmers and type system ex­

perts, such error messages still require some effort to manually reconstruct some 

of the types and solve unification problems. 

One of the problems of the approaches based on reordering unifications is that 

they commit to a single error location, because in some cases the program text 

does not contain enough information to confidently make the right decision about 
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the correct error location. This has led to a number of program slicing approaches 

that try to identify a set of possible error locations instead. However, showing too 

many program locations involved in the type error diminishes the value of the 

slicing approach because of the cognitive burden put on the programmer to work 

through all marked code and to single out the proper error location. 

On the other end of the single-vs.-many location spectrum we find approaches 

that, like GHC or Hugs, follow Johnson and Walz’s idea of finding the most likely 

erroneous location and try to add explanations or suggestions for how to correct 

the error. Offering change suggestions is, however, a double-edged sword: While 

it can be very helpful in simplifying the task of fixing type errors, it can also be 

sometimes very misleading, and frustrating when the suggested change doesn’t 

work. As shown in Section 3.3, both Helium [Heeren, 2005] and Seminal [Lerner 

et al., 2007], two state-of-the-art change-suggesting tools, fail to correctly locate 

the error location for the palin example. 

The task of debugging type errors seems to be an inherently ambiguous under­

taking, because in some situations there is just not enough information present 

in the program to generate a correct change suggestion. Consider, for example, 

the expression not 1. The error in this expression is either not or 1,1 but without 

any additional knowledge about the purpose of the expression, there is no way to 

decide whether to replace the function or the argument. This is why it is gener­

ally impossible to isolate one point in the program as the source of a type error. 

1It could also be the case that the whole expression is incorrect and should be replaced by 
something else, but we ignore this case for now. 
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This fact provides a strong justification for slicing approaches that try to provide 

an unbiased account of error situations. On the other hand, in many cases some 

locations are more likely than others, and specifically in larger programs, infor­

mation about the context of an erroneous expression can go a long way of isolating 

a single location for a type error. 

Thus, a reasonable compromise between slicing and single-error-reporting ap­

proaches could be a method to principally compute all possible type error loca­

tions (together with possible change suggestions) and present them ranked and 

in small portions to the programmer. At the core of such an approach has to be 

a type checker that produces a complete set of type changes that would make the 

program type correct. 

In this chapter I present a method for counter-factual change inference, whose 

core is a technique to answer the question “What type should a particular subex­

pression have to remove type errors in a program”. In Sections 8.1 and 8.2, I 

give a high-level view of this method, called counter-factual typing, from a con­

ceptual and technical perspective, respectively. In Section 8.3, I discuss the core 

of the proposed approach, a type system that infers a set of type-change sugges­

tions. Section 8.4 and 8.5 deal with the implementation aspects, including an 

inference algorithm that implements the type system described in Section 8.3, a 

set of heuristics for ranking potential change suggestions, and a method for deduc­

ing expression changes from type changes. Note that the implementation relies 

on partial variational unification discussed in Section 7.3. I have evaluated a pro­

totype implementation by comparing it with three closely related tools and found 
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that counter-factual typing can generate correct change suggestions more often 

than the other approaches. This evaluation is described in Section 8.6. 

8.1 Systematic Identification of Type Errors 

It involves a lot of computations to find all potential error causes and find a change 

suggestion for each identified location. To keep the complexity manageable we 

only produce so-called atomic type changes, that is, type changes for the leaves 

of the program’s abstract syntax tree. This helps avoid the introduction of too 

exotic or too extreme changes. Consider, for example, the non-atomic type change 

suggested by Seminal for the palin program (page 60), which seems to be not 

realistic. Or consider changing a whole program to a value of type Bool or Int, 

which always works but is hardly ever correct. 

However, errors that are best fixed by non-atomic expression changes are 

quite common. Examples are the swapping of function arguments or the addition 

of missing function arguments. The identification of such non-atomic program 

changes is not ruled out by the approach taken and can actually often be achieved 

by deducing expression changes from type changes. 

To increase the readability, I reproduce the palin example below, which was 

first introduced in Section 3.3. 

fold f z [] = [z] 
fold f z (x:xs) = fold f (f z x) xs 
flip f x y = f y x 
rev = fold (flip (:)) [] 
palin xs = rev xs == xs 
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Rank

1 

2 
3 
4 
5 

Loc Code

(1,19) (:) 

(5,22) xs 
(5,12) rev 
(5,19) (==) 
(4,7) fold 

Change code of type To new type Result type 
a -> [a] -> [a] a -> [b] -> a [a] -> Bool 
[z] z 
[a] [[a]] [a] -> Bool 
[a] -> [[a]] [a] -> [a] [a] -> Bool 
[a] -> [a] -> Bool [[a]] -> [a] -> b [a] -> b 
t1 t2 [a] -> Bool 

Figure 8.1: Ranked list of single-location type and expression change sugges­
tions inferred for the palin example. Note that our prototype represents [z] as 
(:) z []. The types t1 and t2 in the table are (a -> b -> a) -> a -> [b] -> [a] 
and ([a] -> a -> [a]) -> [b] -> [a] -> [a], respectively. 

For this example, Figure 8.1 shows a ranked list of all (single-location) type 

changes, computed by our prototype, that can fix the type error. The correct 

change ranks first in our method. Note that this is not a representation intended 

to be given to end users. We rather envision an integration into a user interface in 

which locations are underlined and hovering over those locations with the mouse 

will pop up windows with individual change suggestions. In this dissertation I 

focus on the technical foundation to compute the information required for imple­

menting such a user interface. 

Each suggestion is essentially represented by the expression that requires a 

change together with the inferred actual and expected type of that expression. 

(Since we are only considering atomic type changes, this expression will always be 

a constant or variable in case of a type change, but it can be a more complicated 

expression in case of deduced expression change.) We also show the position of 

the code in the program2 and the result types of the program if the corresponding 

2We have added the line and column numbers by hand since our prototype currently works on 
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change is adopted. This information is meant as an additional guide for program­

mers to select among suggestions. 

The list of shown suggestions is produced in several steps. First, we generate 

(lazily) all possible type changes, that is, even those that involve several locations. 

Note that sometimes the suggested types are unexpected. For example, the sug­

gested type for fold is ([a] -> a -> [a]) -> [b] -> [a] -> [a] although (a -> b 

-> a) -> a -> [b] -> a would be preferable. This phenomenon can be generally 

attributed to the context of the expression. On the one hand, the given context 

can be too restrictive and coerce the inferred type to be more specific than it has to 

be, just as in this example the first argument flip (:) forces fold to have [a] -> 

a -> [a] as the type of its first argument. On the other hand, the context could 

also be too unrestrictive. There is no information about how fold is related to [] 

in the fourth line of the program. Thus, the type of the second argument of fold is 

inferred as [b]. This imprecision can’t be remedied by exploiting type information 

of the program. 

Second, we select those type changes that involve only one location. We present 

those first to the programmer since these are generally easier to understand and 

to adopt than multi-location change suggestions. Should the programmer reject 

all these single-location suggestions, two-location suggestions will be presented 

next, and so on. 

Third, in addition to type-change suggestions, we also try to infer some non­

atomic expression changes from type changes. In general, only the programmer 

abstract syntax and doesn’t have access to the information from the parser. 
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who wrote the program knows how to translate required type changes into expres­

sion changes. However, there are a number of common programming mistakes, 

such as swapping or forgetting arguments, that are indicated by type-change sug­

gestions. Similar to Seminal, our prototype identifies these kind of changes that 

are mechanical and do not require a deep understanding of the program seman­

tics. In our example, we infer the replacement of [z] by z, because the expected 

type requires that the return type be the same as the first argument type. We thus 

suggest to use the first argument, that is z, to replace the application (:) z []. 

Note however, that we don’t infer a similar change for the fifth type change 

because fold is partially applied in the definition, and we have no access to the 

third argument of fold. Had the rev function been implemented using an eta-

expanded list argument, say xs, we would have also inferred the suggestion to 

change fold (flip (:)) [] xs to xs. 

Note also that we do not supplement type-change suggestions with atomic ex­

pression changes. For example, in the second suggestion, we do not suggest to 

replace xs by [xs]. There are two reasons for this. On the one hand, we believe 

that, given the very specific term to change, the inferred type, and the expected 

type, the corresponding required expression change is often easy to deduce for a 

programmer. On the other hand, suggesting specific expression changes requires 

knowledge about program semantics that is in many cases not readily available 

in the program. Thus, such suggestions can often be misleading. 

Finally, all the type-change suggestions are ranked according to a few simple, 

but effective complexity heuristics. 
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8.2 Identifying Type Errors Through Variational Typing 

The main idea behind counter-factual typing is to systematically vary parts of 

the ill-typed program to find changes that can eliminate the corresponding type 

error(s) from the program. It is infeasible to apply this strategy directly on the 

expression level since there are generally infinitely many changes that one could 

consider. Therefore, we perform the variation on the type level. Basically, we ask 

for each atomic expression e the counter-factual question: What type should e have 

to make the program well typed? 

The counter-factual reasoning is built into the type checking process in the 

following way. To determine the type of an expression e we first infer e’s type, say 

φ. But then, instead of fixing this type, we leave the decision open and assume e to 

have the type D〈φ, a〉, where D is a fresh name and a is a fresh type variable. By 

leaving the type of e open to revision we account for the fact that e may, in fact, be 

the source of a type error. By choosing a fresh type variable for e’s alternative type, 

we enable type information to flow from the context of e to forge an alternative 

type φ� that fits into the context in case φ doesn’t. If φ does fit the context, it is 

unifiable with φ�, and the choice could in principle be removed. However, this is 

not really necessary (and we, in fact, don’t do this) since in case of a type-correct 

program, we can find the type at the end of the typing process by simply selecting 

the first option from all generated choices. 

Let us illustrate this idea with a simple example. Consider the expression 

e = not 1. If we vary the types of both not and 1, we obtain the following typing 
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judgments. 

not : A〈Bool → Bool,a1〉 
1 : B〈Int,a2〉 

where a1 and a2 represent the expected types of not and 1 according to their re­

spective contexts. To find the types a1 and a2, we have to solve the following 

unification problem. 

A〈Bool → Bool, a1〉 ≡? B〈Int, a2〉→ a3 

where a3 denotes the result type of the application and ≡? denotes that the unifica­

tion problem is solved modulo the type equivalence relation mentioned in Section 

4.3 rather than the usual syntactical identity. 

Another subtlety of the unification problem is that two types may not be unifi­

able. In that case a solution to the unification problem consists of a so-called par­

tial unifier, which is both most general and introduces as few errors as possible. 

The unification algorithm developed in Section 7.3 achieves both these goals. 

For the above unification problem, the following unifier is computed. The gen­

erality introduced by a6 and a7 ensures that only the second alternatives of choices 

A and B are constrained. 

{a1 �→ A〈a6,B〈Int,a4〉→ a5〉, 
a2 �→ B〈a7, A〈Bool,a4〉〉, 
a3 �→ A〈Bool,a5〉} 

Additionally, the unification algorithm returns a typing pattern that characterizes 

all the viable variants and helps to compute the result type of the varied expres­
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sion. In this case we obtain A〈B〈⊥,�〉,�〉. Based on the unifier and the typing 

pattern, we can compute that the result type of the varied expression of not 1 

is φ = A〈B〈⊥,Bool〉, a5〉. From the result type and the unifier, we can draw the 

following conclusions. 

•	 If we don’t change e, that is, we select A and B from the varied expression, 

the type of the expression is ⊥ (the variant corresponds to A and B in the 

result type), which reflects the fact that the original expression is ill typed. 

•	 If we vary not to some other expression f , that is, if we select variant Ã and 

B from the variational result type, the result type will be a5. Moreover, the 

type of f is obtained by selecting Ã and B from the type that a1 is mapped 

to, which yields Int → a5. In other words, by changing not to an expression 

of type Int → a5, not 1 becomes well typed. In the larger context, a5 may be 

further constrained to have some other type. 

•	 If we vary 1 to some expression g, that is, if we select A and B̃ from the 

variational type, then the result type becomes Bool. 

•	 If we vary both not to f and 1 to g, which means to select Ã and B̃, the result 

type is a5. Moreover, from the unifier we know that f and g should have the 

types a4 → a5 and a4, respectively. 

This gives us all atomic type changes for the expression not 1. The combination 

of creating variations at the type level and variational typing provides an efficient 

way of finding all possible type changes. 
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8.3 Type-Change Inference 

This section presents the type system that generates a complete set of atomic cor­

rective type changes. After defining the syntax for expressions and types in Sec­

tion 8.3.1, I present the typing rules for type-change inference in Section 8.3.2. In 

Section 8.3.3 I investigate some important properties of the type-change inference 

system. 

8.3.1 Syntax 

We consider a type checker for lambda calculus with let-polymorphism. To sim­

plify the presentation, I collect the syntax for expressions, types, and meta envi­

ronments for the type system in Figure 8.2. Note that we use the same notations 

as we did in earlier chapters. 

We use l to denote program locations, in particular, leaves in ASTs. We assume 

that there is a function �e( f ) that returns l for f in e. For presentation purposes, 

we assume that f uniquely determines a location. We may omit the subscript e 

when the context is clear. The exact definition of �(·) does not matter. 

We use the choice environment Δ to associate choice types that were gener­

ated during the typing process with the corresponding location in the program. 

Operations on types can be lifted to Δ by applying them to the types in Δ. 
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Expressions e ::= ν Constant 
|
|
|
|
| 

x 
λx.e 
e e 
let x = e in e 
if e then e else e 

Variable 
Abstraction 
Application 
Polymorphism 
Conditional 

Monotypes τ ::= γ Type constant 
| a Type variable 
| τ → τ Function type 

Variational types φ ::= τ Monotype

| ⊥ Error type

| D〈φ,φ〉 Choice type

| φ → φ Function type


Polymorphic types σ ::= φ Variational type 
| ∀a.φ Polymorphic type 

Type environments Γ ::= ∅ | Γ,x �→ σ

Substitutions θ ::= ∅ | θ,a �→ φ


Choice environments Δ ::= ∅ | Δ,(l,D〈φ,φ〉)


Figure 8.2: Syntax of expressions, types, and environments. 

8.3.2 Typing Rules 

Figure 8.3 presents the typing rules for inferring type changes. The typing judg­

ment is of the form Γ � e : φ|Δ and produces as a result a variational type φ that 

represents all the typing “potential” for e plus a set of type changes Δ for the 

atomic subexpressions of e that will lead to the types in φ. 

Since we are only interested in atomic changes during this phase, we only vary 

the leaves in the AST of programs, which are constants and variable references. 
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Γ � e : φ|Δ


CON VAR 

ν is of type γ D fresh Γ(x) =∀a.φ1 D fresh φ = {a �→ φ�}(φ1) 

Γ � ν : D〈γ,φ〉|{(�(ν), D〈γ,φ〉)} Γ � x : D〈φ,φ2〉|{(�(x),D〈φ,φ2〉)} 

UNBOUND ABS 
x ∉ dom(Γ) D fresh Γ, x �→ φ � e : φ�|Δ 

Γ � x : D〈⊥,φ〉|{(�(x), D〈⊥,φ〉)} Γ � λx.e : φ → φ�|Δ 

LET 
Γ, x �→ φ � e : φ|Δ a = FV(φ) − FV(Γ) Γ, x �→ ∀a.φ � e� : φ�|Δ� 

Γ � let x = e in e� : φ�|Δ ∪ Δ� 

APP 
Γ � e1 : φ1|Δ1 Γ � e2 : φ2|Δ2 φ2 

� → φ� = ↑(φ1) π = φ2 
� �� φ2 φ = π � φ� 

Γ � e1 e2 : φ|Δ1 ∪ Δ2 

IF 

(Γ � ei : φi|Δi)i:1..3 

π1 = φ1 �� Bool π2 = φ2 �� φ3 φ = π1 � (π2 � φ2) 

Γ � if e1 then e2 else e3 : φ|Δ1 ∪ Δ2 ∪ Δ3 

Figure 8.3: Rules for type-change inference. 

This is reflected in the typing rules as we generate fresh choices in rules CON, 

VAR, and UNBOUND. In each case, we place the actual type in the first alternative 

and an arbitrary type in the second alternative of the choice. When an unbound 

variable is accessed, it causes a type error. We thus put ⊥ in the first alternative 

of the choice. 

The rules ABS and LET for abstractions and let-expressions are very similar to 

those in other type systems except that variables are bound to variational types. 
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The rule APP for typing applications is very similar to the application rule dis­

cussed in Section 7.2. The only difference is that the rule here keeps track of the 

information for Δ. 

The IF rule employs the same machinery as the APP rule for the potential 

introduction of type errors and partially correct types. In particular, the condition 

e1 is not strictly required to have the type Bool. However, only the variants that 

are equivalent to Bool are type correct. Likewise, only the variants in which both 

branches are equivalent are type correct. 

8.3.3 Properties 

In this section I investigate some important properties of the type-change infer­

ence system. I show that it is consistent in the sense that any type selected from 

the result variational type can be obtained by applying the changes as indicated 

by that selection. I also show that the type-change inference is complete in find­

ing all corrective atomic type changes. Based on this result I also show that the 

type-change inference system is a conservative extension of HM. 

We start with the observation that type-change inference always succeeds in 

deriving a type for any given expression and type environment. 

Lemma 18 Given e and Γ, there exist φ and Δ such that Γ � e : φ|Δ. 

The proof of this lemma is obvious because for any construct in the language, even 

for unbound variables, there is a corresponding typing rule in Figure 8.3 that is 

applicable and returns a type. 
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Δ ⇓ Δ� 

Δ ⇓ Δ� ∃τ : D〈φ〉 ≡ τ Δ ⇓ Δ� ¬∃τ : D〈φ〉 ≡ τ 
∅ ⇓ ∅ 

Δ, (l, D〈φ〉) ⇓ Δ� Δ, (l, D〈φ〉) ⇓ Δ� , (l, D〈φ〉) 

� � _ : φ × s → φ 

�τ�s = τ 
�φ1 → φ2�s = �φ1�s →�φ2�s 

�⊥�s =⊥ 

�B〈φ〉�A = B〈�φ�A〉 if A �= B 
�B〈φ〉�Ã = B〈�φ�Ã〉 if A �= B 

�B〈φ1,φ2〉�B = �φ1�B 
�B〈φ1,φ2〉�B̃ = �φ2�B̃

Figure 8.4: Simplifications and selection. 

Next, we need to simplify Δ in the judgment Γ � e : φ|Δ to investigate the prop­

erties of the type system. Specifically, we define a simplification relation ⇓ in 

Figure 8.4 that eliminates idempotent choices from Δ. Note that the sole purpose 

of simplification is to eliminate choice types that are equivalent to monotypes, or 

equivalently, remove all positions that don’t contribute to type errors. Thus, there 

is no need to simplify types nested in choice D in Figure 8.4. Also, we formally 

define the selection operation �φ�s in Figure 8.4. 

Next we want to establish the correctness of the inferred type changes. For­

mally, a type update is a mapping from program locations to monotypes. The in­

tended meaning of one particular type update l �→ τ is to change the expression at 

l to an expression of type τ. We use ω to range over type updates. A type update 

is given by the locations and the second component of the corresponding choice 
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CON-C 
ν is of type γ VAR-C 

Γ;ω �C ν : ω(ν)||γ 
Γ;ω �C x : ω(x)||{a �→ τ}(Γ(x)) 

APP-C

Γ;ω �C e1 : τ1 → τ Γ;ω �C e2 : τ1


Γ;ω �C e1 e2 : τ 

IF-C 
Γ;ω �C e1 : Bool Γ;ω �C e2 : τ Γ;ω �C e3 : τ 

Γ;ω �C if e1 then e2 else e3 : τ 

Figure 8.5: Rules for the type-update system. 

types in the choice environment. We use ↓· to extract that mapping from Δ. The 

definition is ↓Δ = {l �→ τ2 | (l, D〈τ1,τ2〉) ∈ Δ}. (For the time being we assume that all 

the alternatives of choices in Δ are monotypes; we will lift this restriction later.) 

For example, with Δ = {(l, A〈Int,Bool〉)} we have ↓Δ = {l �→ Bool}. 

The application of a type update is part of a type update system that is defined 

by the set of typing rules shown in Figure 8.5. These typing rules are identical 

to an ordinary Hindley-Milner type system, except that they allow to “override” 

the types of atomic expressions according to a type update ω that is a parameter 

for the rules. We only show the rules for constants, variables, applications, and 

conditionals since those for abstractions and let expressions are obtained from 

the HM ones in the same way as the application rule by simply adding the ω 

parameter. We write more shortly ω(e) for ω(�(e)), and we use the “orelse” notation 

ω(e)||τ to pick the type ω(e) if ω(e) is defined and τ otherwise. 
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The rules CON-C and VAR-C employ a type update if it exists. Otherwise, the 

usual typing rules apply. Rule APP-C delegates the application of change updates 

to subexpressions since we are considering atomic change suggestions only. 

We can now show that by applying any of the inferred type changes (using the 

rules in Figure 8.5), we obtain the same types that are encoded in the variational 

type potential computed by type-change inference. We employ the following addi­

tional notation. We write Δ.2 for the decision of selectors D̃ for each choice D〈〉 in 

Δ. For example, {(�1, A〈Int,Bool〉), (�2,B〈Bool,Int〉)}.2 = {Ã, B̃}. Formally, we have 

the following result. (We assume that Δ has been simplified by ⇓ in Figure 8.4 and 

the alternatives of choices in Δ are plain, as mentioned before.) 

Theorem 18 (Type-change inference is consistent) For any given e and Γ, if 

Γ � e : φ|Δ and there is some τ such that �φ�Δ.2 = τ, then Γ;↓Δ �C e : τ. 

PROOF. A detailed proof is given in Appendix C. � 

Moreover, the type-change inference is complete since it can generate a set of type 

changes for any desired type. 

Theorem 19 (Type-change inference is complete) For any e, Γ and ω, if 

Γ;ω �C e : τ, then there exist φ, Δ, and a typing derivation for Γ � e : φ|Δ such that 

↓Δ = ω and �φ�Δ.2 = τ. 

PROOF. A detailed proof is given in Appendix C. � 

The introduction of arbitrary alternative types in rules CON, VAR, and UNBOUND 

are the reason that type-change inference is highly non-deterministic, that is, for 
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any expression e we can generate an arbitrary number of type derivations with 

different type potentials and corresponding type changes. 

Many of those derivations don’t make much sense. For example, we can derive 

Γ � 5 : A〈Int,Bool〉|Δ where Δ = {(�5(5), A〈Int,Bool〉)}. However, since the expres­

sion 5 is type correct, it doesn’t make sense to suggest a change for it. 

On the other hand, the ill-typed expression e = not (succ 5) can be typed in 

two different ways that can correct the error, yielding two different type poten­

tials and type changes. We can either suggest to change succ to an expression of 

type Int → Bool, or we can suggest to change not into something of type Int → 

a1. The first suggestion is obtained by a derivation for Γ � e : A〈⊥,a1〉|Δ1 with 

Δ1 = {(�e(not), A〈Bool → Bool,Int → a1〉)}. The second suggestion is obtained by a 

derivation for Γ � e : B〈⊥,Bool〉|Δ2 with Δ2 = {(�e(succ),B〈Int → Int,Int → Bool〉)}. 
Interestingly, we can combine both suggestions by deriving a 

more general typing statement, that is, we can derive the judgment 

Γ � e : A〈B〈⊥,Bool〉,B〈a1, a2〉〉|Δ3 where 

Δ3 = {(�e(not), A〈Bool → Bool,B〈Int → a1,a3 → a2〉〉), 
(�e(succ),B〈Int → Int, A〈Int → Bool,Int → a3〉〉)} 

We can show that the third typing is better than the first two in the sense that 

its result type (a) contains fewer type errors than either of the result types and (b) 

is more general. For example, by selecting {A, B̃} from both result types, we obtain 

⊥ and Bool, respectively. Making the same selection into the third result type, we 

obtain Bool. Likewise, when we select with {Ã,B}, we get the types a1, ⊥, and a1, 

respectively. For each selection, the third result type is better than either one of 
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the first two. 

In the following we show that this is not an accident, but that we can, in fact, 

always find a most general change suggestion from which all other suggestions 

can be instantiated. 

First, we extend the function ↓ to take as an additional parameter a set of 

selectors δ. We also extend the definition to work with general variational types 

(and not just monotypes). 

↓δΔ = {l �→ �φ2�δ | (l, D〈φ1,φ2〉) ∈ Δ ∧ D̃ ∈ δ} 

Intuitively, we consider all the locations for which the second alternative of the 

corresponding choices are chosen. We need to apply the selection �φ2�δ because 

each variational type may include other choice types that are subject to selection 

by δ. 

Next we will show that type-change inference produces most general type 

changes from which any individual type change can be instantiated. We observe 

that type potentials and type changes can be compared in principally two differ­

ent ways. First, the result of type-change inference φ|Δ can be more defined than 

another result φ�|Δ�, which means that for any δ for which �φ��δ yields a monotype 

then so does �φ�δ. Second, a result φ|Δ can be more general than another result 

φ�|Δ�, written as φ ≤ φ�, if there is some type substitution θ such that φ� = θ(φ). 

(Similarly, we call a type update ω1 more general than another type update ω2, 

written as ω1 ≤ ω2, if dom(ω1) = dom(ω2) and there is some θ such that for all l 

ω2(l) = θ(ω1(l)). 
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Since we have these two different relationships between type changes, we have 

to show the generality of type-change inference in several steps. 

First, we show that we can generalize any type change that produces a type 

error in the resulting variational type for a particular selection when there is an­

other type change that does not produce a type error for the same selection. In the 

following lemma, we stipulate that the two typings Γ � e : φ1|Δ1 and Γ � e : φ2|Δ2 

assign the same choice name to the same program location. 

Lemma 19 (Most defined type changes) Given e and Γ and two typings 

Γ � e : φ1|Δ1 and Γ � e : φ2|Δ2, if �φ1�δ = ⊥ and �φ2�δ = τ, then there is a typing 

Γ � e : φ3|Δ3 such that 

• �φ3�δ = �φ2�δ and for all other δ� �φ3�δ� = �φ1�δ� .


• ↓δΔ3 = ↓δΔ2 and ↓δ� Δ3 = ↓δ� Δ1 for all other δ� .


PROOF. A detailed proof is given in Appendix C. � 

Next we show that given any two type changes, we can always find a type change 

that generalizes the two. 

Lemma 20 (Generalizability of type changes) For any two typings 

Γ � e : φ1|Δ1 and Γ � e : φ2|Δ2, if neither �φ1�δ ≤ �φ2�δ nor �φ2�δ ≤ �φ1�δ holds, 

there is a typing Γ � e : φ3|Δ3 such that 

• �φ3�δ ≤ �φ1�δ, �φ3�δ ≤ �φ2�δ and for all other δ� , �φ3�δ� = �φ1�δ� .


• ↓δΔ3 ≤ ↓δΔ1, ↓δΔ3 ≤ ↓δΔ2 and for all other δ� , ↓δ� Δ3 = ↓δ� Δ1.
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PROOF. A detailed proof is given in Appendix C. � 

We can now combine and generalize Lemmas 19 and 20 and see that type-change 

inference can always produce most general typings with minimal change sets. 

This is an important result, captured in the following theorem. 

Theorem 20 (Most general and error-free type changes) Given e and Γ and 

two typings Γ � e : φ1|Δ1 and Γ � e : φ2|Δ2, there is a typing Γ � e : φ3|Δ3 such that 

for any δ, 

• if �φ1�δ =⊥ and �φ2�δ = τ, then �φ3�δ = τ and ↓δΔ3 = ↓δΔ2. 

• if �φ2�δ =⊥ and �φ1�δ = τ, then �φ3�δ = τ and ↓δΔ3 = ↓δΔ1. 

• if �φ1�δ = τ1 and �φ2�δ = τ2, then �φ3�δ ≤ τ1 and �φ3�δ ≤ τ2. Moreover, 

↓δΔ3 ≤ ↓δΔ1 and ↓δΔ3 ≤ ↓δΔ2. 

PROOF. By construction, we delegate the actual construction process to the one 

described in the proof for Lemma 19 or that for Lemma 20. In particular, given two 

typings, only one of the three cases as mentioned in the theorem can occur. First, 

if �φ1�δ =⊥ and �φ2�δ = τ, we use the idea presented in the proof for Lemma 19 to 

construct the new typing. The second case is a dual case of the first case, where 

�φ2�δ =⊥ and �φ1�δ = τ. We proceed as we do in the first case but swap φ1 and φ2, 

and also Δ1 and Δ2. Finally, if �φ1�δ = τ1 and �φ2�δ = τ2, we use the construction 

process described in the proof for Lemma 20 to construct the new typing. In each 

case, the proof follows directly from Lemma 19 or Lemma 20. � 

From Theorems 19 and 20 it follows that there is a typing for complete and prin­

cipal type changes. We express this in the following theorem, where we write 
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ω1 ≤ ω2 if dom(ω1) = dom(ω2) and ∀l : l ∈ dom(ω1) ⇒ ω1(l) ≤ ω2(l). 

Theorem 21 (Complete and principal type changes) Given e and Γ, there is 

a typing Γ � e : φ|Δ such that for any ω if Γ;ω �C e : τ, then there is some δ such that 

�φ�δ ≤ τ and ↓δΔ ≤ ω. 

PROOF. Based on Theorem 19, if Γ;ωi �C e : τi then there is a typing and some δ 

such that Γ � e : φi|Δi with �φi�δ = τi and ↓δΔi = ωi. For different τis, we may get 

different φis and Δis. Based on Theorem 20, there is a typing Γ � e : φ|Δ that is 

better than all typings with φis and Δis. The result holds. � 

Finally, there is a close relationship between type-change inference and the HM 

type system. When type-change inference succeeds with an empty set of type 

changes, it produces a non-variational type that is identical to the one derived 

by HM. This result is captured in the following theorem, where the judgment 

Γ �H e : τ is introduced in Section 2.1.1 expressing that expression e has the type 

τ under Γ in HM type system. 

Theorem 22 For any given e and Γ, Γ;∅ �C e : τ ⇐⇒ Γ �H e : τ. 

PROOF. The proof is a straightforward induction over the typing relation in Fig­

ure 8.5 and Figure 2.1. � 

Based on Theorem 18, Theorem 19, Theorem 22 and the fact that ↓∅ = ∅, we can 

infer that when a program is well typed, the type change-inference system and 

the HM system produce the same result. 
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Theorem 23 Γ � e : τ|∅ if and only if Γ �H e : τ. 

PROOF. Based on Theorem 18, Γ � e : τ|∅ implies that Γ;∅ �C e : τ, which implies 

Γ �H e : τ according to Theorem 22. Meanwhile, Γ �H e : τ implies Γ;∅ �C e : τ ac­

cording to Theorem 22. Based on Theorem 19, Γ � e : τ|∅ holds. � 

Note that Γ � e : τ|∅ implies that Γ � e : φ|Δ, φ ≡ τ, and Δ ⇓ ∅. This theorem 

also implies that type-change inference will never assign a monotype to a type-

incorrect program. 

8.4 Implementation 

This section presents an algorithm for inferring type changes. We will discuss 

properties of the algorithm as well as strategies to bound its complexity. 

Given the partial type unification algorithm presented in Section 7.3, the in­

ference algorithm is obtained by a straightforward translation of the typing rules 

presented in Figure 8.3. We present this algorithm in Figure 8.6, where we show 

the cases for variable references, applications, and if expressions. The cases for 

abstractions and let expressions can be derived from W by simply adding the 

threading of Δ. 

For variable reference, the algorithm first tries to find the type of the variable 

in Γ and either instantiates the found type schema with fresh type variables or 

returns ⊥ if the variable is unbound. After that, a fresh choice containing a fresh 
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cft : Γ × e → η × φ × Δ 
cft(Γ, x) = 
φ� ← inst(Γ(x)) return ⊥ when x is unbound 
φ ← D〈φ� ,a〉 where D and a fresh 
return (∅,φ, {(�(x),φ)}) 

cft(Γ, e1 e2) = 
(η1,φ1,Δ1) ← cft(Γ, e1) 
(η2,φ2,Δ2) ← cft(η1(Γ), e2) 
(η3,π) ← punify(η2(φ1),η2(φ2) → a) where a fresh 
φ ← π � η3(a) 
η ← η3 ◦ η2 ◦ η1 
return (η,φ,η(Δ1 ∪ Δ2)) 

cft(Γ,if e1 then e2 else e3) = 
(η1,φ1,Δ1) ← cft(Γ, e1) 
(η� ,π�) ← punify(φ1,Bool) 
(η2,φ2,Δ2) ← cft(η� ◦ η1(Γ), e2) 
(η3,φ3,Δ3) ← cft(η2 ◦ η�η1(Γ), e3) 
(η4,π4) ← punify(η3(φ2),φ3,) 
η ← η4 ◦ η3 ◦ η2 ◦ η� ◦ η1 
return (η,π� � (π4 � η4(φ3)),η(Δ1 ∪ Δ2 ∪ Δ3)) 

Figure 8.6: An inference algorithm implementing counter-factual typing. 

type variable is returned. The variable then has the returned choice type with the 

inferred type in the first alternative and the type variable in the second. 

For typing if expressions, we use the algorithm punify(φ1,φ2) developed in 

Section 7.3 for partial unification. In addition to a partial unifier a typing pattern 

is generated to describe which variants are unified successfully and which aren’t 

(see Section 7.1). Otherwise, the algorithm follows in a straightforward way the 

usual strategy for type inference. 

We can prove that the algorithm cft correctly implements the typing rules in 

Figure 8.3, as expressed in the following theorems. 
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Theorem 24 (Type-change inference is sound) Given any e and Γ, if 

cft(Γ, e) = (η,φ,Δ), then η(Γ) � e : φ|Δ. 

At the same time, the type inference is complete and principal. We use the aux­

iliary relation φ1 � φ2 to express that for any δ, either �φ2�δ =⊥ or �φ1�δ ≤ �φ2�δ. 

Intuitively, this expresses that either the corresponding variant in φ1 is more gen­

eral or more correct. We also define Δ1 � Δ2 if for any (l,φ1) ∈ Δ1 and (l,φ2) ∈ Δ2 

the condition φ1 ≤ φ2 holds. 

Theorem 25 (Type-change inference is complete and principal) If 

η(Γ) � e : φ|Δ, then cft(Γ, e) = (η1,φ1,Δ1) such that η = θ1 ◦ η1 for some θ1, 

Δ1 � Δ, and φ1 � φ. 

From Theorems 20 and 25 it follows that our type-change inference algorithm 

correctly computes all type changes for a given expression in one single run. 

During the type-change inference process, choice types can become deeply 

nested and the size of types can become exponential in the nesting levels. For­

tunately, this occurs only with deep nestings of function applications where 

each argument type is required to be the same. For example, the func­

tion f : a → a → . . . → a is more likely to cause this problem than the functions 

g : a1 → a2 → . . . → an and h : γ → γ → . . . → γ because only the function f requires 

all argument types to be unified, which causes choice nesting to happen. 

To keep the run-time complexity of our inference algorithm under control, we 

eliminate choices beyond an adjustable nesting level that satisfy one of the follow­

ing conditions: (A) choices whose alternatives are unifiable, and (B) choices whose 
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alternatives contain errors in the same places. These two conditions ensure that 

the eliminated choices are unlikely to contribute to type errors. There are cases 

in which this strategy fails to eliminate choices, but this happens only when there 

are already too many type errors in the program, and we therefore stop the infer­

ence process and report type errors and change suggestions found so far. 

This strategy allows us to maintain choices whose corresponding locations are 

likely sources of type errors and discard those that aren’t. Note, however, that this 

strategy sacrifices the completeness property captured in Theorem 25. We have 

evaluated the running time and the precision of error diagnosis against the choice 

nesting levels (see Section 8.6). We observed that only in very rare cases will the 

choice nesting level reach 17, a value that variational typing is able to deal with 

decently (Section 6.2). 

Finally, we briefly describe a set of simple heuristics that define the ranking of 

type and expression changes. 

(1) We prefer places that have deduced expression changes (see Section 8.5) be­

cause these changes reflect common editing mistakes [Lerner et al., 2007]. 

(2) We favor changes that are lower in the abstract syntax trees because changes 

at those places have least effect on the context and are least likely to introduce 

exotic results. 

(3) We prefer changes that have minimal shape difference between the inferred 

type and the expected type. For example, a change that doesn’t influence the 

arities of function types is ranked higher than a change that does change ari­
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ties. 

8.5 Deducing Expression Changes 

While it is generally impossible to deduce expression changes from type changes, 

there are several idiosyncratic situations in which type changes do point to likely 

expression changes. These situations can be identified by unifying both types of 

a type change where the unification is performed modulo a set of axioms that 

represent the pattern inherent in the expression change. 

As an example, consider the following expression.3 

zipWith (\(x,y) -> x+y) [1,2] [3,4] 

Our type change inference suggests to change zipWith from its original type (a -> 

b -> c) -> [a] -> [b] -> [c] to something of type ((Int,Int) -> Int) -> [Int] 

-> [Int] -> d. Given these two types, we can deduce to curry the first argument 

to the function zipWith to remove the type error. (At the same time, we substitute 

d in the result type with Int.) Overall, our approach suggests to change \(x,y) -> 

x+y to \x y -> x+y. 

By employing unification modulo different theories, McAdam [2002a] has de­

veloped a theory and an algorithm to systematically deduce changes of this sort. 

We have adopted this approach (and extended it slightly) for deducing expression 

changes, such as swapping the arguments of function calls, currying and uncurry­

ing of functions, or adding and removing arguments of function calls. 

3This example is adapted from [Lerner et al., 2007], where zipWith is called map2. 
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The extension is based on a simple form of identifying non-arity-preserving 

type changes. Such a change is used to modify the types, then McAdam’s approach 

is applied, and the result is then interpreted in light of the non-arity-preserving 

type change as a new form of expression change. As an example, here is the 

method of identifying the addition or removal of arguments to function calls. In 

this case, the differences in the two types to be unified will lead to a second-level 

type change that pads one of the types with an extra type variable. For example, 

given the inferred type τ1 → τ3 and the expected type τ1 → τ2 → τ3, we turn the 

first type into a → τ1 → τ3. The application of McAdam’s approach suggests to 

swap the arguments. Also, a is mapped to τ2. Interpreting the swapping sugges­

tion through the second-level type change of padding, we deduce the removal of 

the second argument. 

Besides these systematic change deductions, we also support some ad-hoc ex­

pression changes. Specifically, we infer changes by inspecting the expected type 

only. For example, if the inferred type for f in f g e is b -> c while the expected 

type is (a -> b) -> a -> c, we suggest to change f g e to f (g e). 

Another example are situations in which the result type of an expected type 

matches exactly one of its (several) argument types. In that case we suggest to 

replace the whole expression with the corresponding argument. This case applies, 

in fact, to the palin example, where the type change for (:) is to replace a -> [a] 

-> [a] by a -> [b] -> a. We therefore infer to replace (:) z [], which is [z], by 

z because the first argument type is the same as the return type. Another case 

is when in expression f g h the expected type for f is (a -> b) -> a -> b. Then 
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we suggest to remove f from the expression. There are more such ad-hoc changes 

that are useful in some situations, but we will not discuss them here. 

In Section 8.7 we will compare our method with McAdam’s original. Here we 

only note that the success of the method in our prototype depends to a large degree 

on the additional information provided by type-change inference, specifically, the 

more precise and less biased expected types that are used for the unification. 

8.6 Evaluation 

To evaluate the usefulness and efficiency of the counter-factual typing approach, 

we have implemented a prototype of type-change inference and expression-change 

deduction in Haskell. (In addition to the constructs shown in Section 8.3.1 the pro­

totype also supports some minor, straightforward extensions, such as data types 

and case expressions.) We compare the results produced by our CF typing tool to 

Seminal [Lerner et al., 2006, 2007], Helium [Heeren et al., 2003c; Heeren, 2005], 

and GHC. There are several reasons for selecting this group of tools. First, they 

provide currently running implementations. Second, these tools provide a similar 

functionality as CF typing, namely, locating type errors and presenting change 

suggestions, both at the type and the expression level. We have deliberately ex­

cluded slicing tools from the comparison because they only show all possible loca­

tions, and don’t suggest changes. 

For evaluating the applicability and accuracy of the tools we have gathered a 

collection of 121 examples from 22 publications about type-error diagnosis. These 
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papers include recent Ph.D. theses [Yang, 2001; McAdam, 2002a; Heeren, 2005; 

Wazny, 2006] and papers that represent most recent and older work [Schilling, 

2012; Lerner et al., 2007; Johnson and Walz, 1986]. These papers cover many dif­

ferent perspectives of the type-error debugging problem, including error slicing, 

explanation systems, reordering of unification, automatic repairing, and interac­

tive debugging. Since the examples presented in each paper have been carefully 

chosen or designed to illustrate important problem cases for type-error debugging, 

we have included them all, except for examples that involve type classes since our 

tool (as well as Seminal) doesn’t currently support type classes. This exclusion 

did not have a significant effect. We gathered 8 unique examples regarding type 

classes involved in type errors discussed in [Stuckey et al., 2003; Wazny, 2006]. 

Both GHC and Helium were able to produce a helpful error message in only 1 

case. Otherwise, the examples range from very simple, such as test = map [1,10] 

even to very complex ones, such as the plot example introduced in [Wazny, 2006]. 

We have grouped the examples into two categories. The first group (“with 

Oracle”) contains 86 examples for which the correct version is known (because it 

either is mentioned in the paper or is obvious from the context). The other group 

(“ambiguous”) contains the remaining 35 examples that can be reasonably fixed 

by several different single-location changes. For the examples in the “with Oracle” 

group, we have recorded how many correct suggestions each tool can find with at 

most n attempts. For the examples in the “ambiguous” group, we have determined 

how often a tool produces a complete, partial, or incorrect set of suggestions. For 

example, for the expression \f g a -> (f a, f 1, g a, g True), which is given 
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86 examples with Oracle 
1 2 3 ≥ 4 never 

35 ambiguous examples 
complete partial incorrect 

CF typing 
Seminal 
Helium 
GHC 

67.4 80.2 88.4 91.9 8.1 
47.7 54.7 58.1 59.3 40.7 
61.6 - - 61.6 38.4 
17.4 - - 17.4 82.6 

100.0 0.0 0.0 
40.0 25.7 34.3 
0.0 100.0 0.0 
0.0 34.3 65.7 

Figure 8.7: Evaluation results for different approaches over 121 collected exam­
ples (in %). 

in [Bernstein and Stark, 1995], Helium suggests to change True to something of 

type Int. While this is correct, there are also other changes possible, for example, 

changing f 1 to f True. Since these are not mentioned, the result is categorized 

as partial. 

Figure 8.7 presents the results for the different tools and examples with uncon­

strained choice nesting level for CF typing. Note that GHC’s output is considered 

correct only when it points to the correct location and produces an error message 

that is not simply reporting a unification failure or some other compiler-centric 

point of view. We have included GHC only as a baseline since it is widely known. 

The comparison of effectiveness is meant to be between CF typing, Seminal, and 

Helium. 

The numbers show that CF typing performs overall best. Even if we only con­

sider the first change suggestion, it outperforms Helium which comes in second. 

Taking into account second and third suggestions, Seminal catches up, but CF 

typing performs even better. 

In cases where Helium produces multiple suggestions, all suggestions are 

wrong. For CF typing 21 out of the 58 correct suggestions (that is, 36%) are ex­
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pression changes. For Seminal the numbers are 20 out of 41 (or 51%), and for 

Helium it is 15 out of 52 (or 29%). This shows that Seminal produces a higher rate 

of expression change suggestions at a lower overall correctness rate. 

Most of Helium and Seminal’s failures are due to incorrectly identified change 

locations. Another main reason for Seminal’s incorrect suggestions is that it intro­

duces too extreme changes. In several cases, Seminal’s change suggestion doesn’t 

fix the type error. 

Most cases for which CF typing fails are caused by missing parentheses. For 

example, for the expression print "a" ++ "b" [Lerner et al., 2007], our approach 

suggests to change print from the inferred type a -> IO () to the type String -> 

String or change (++) from the expected type [a] -> [a] -> [a] to the inferred 

type IO () -> String -> String. Neither of the suggestions allows us to deduce 

the regrouping of the expression. 

To summarize, since the examples that we used have been designed to test 

very specific cases, the numbers do not tell much about how the systems would 

perform in everyday practice. They provide more like a stress test for the tools, 

but the direct comparison shows that CF typing performs very well compared with 

other tools and thus presents a viable alternative to type debugging. 

With the help of variational typing, we can generate all the potential changes 

very efficiently. The running time for all the collected examples is within 2 sec­

onds. Figure 8.8 shows the running time for both our approach and Seminal for 

processing the reported examples. For each point (x, y) on the curve, it means 

that x% of all examples are processed in y seconds. The running time for our ap­
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proach is measured on a laptop with a 2.8GHz dual core processor and 3GB RAM 

running Windows XP and GHC 7.0.2. The running time for Seminal is measured 

on the same machine with Cygwin 5.1. The purpose of the graph is simply to 

demonstrate the feasibility of our approach. 

Second, we have evaluated how increasing levels of choice nestings affect the 

efficiency of the inference algorithm and how putting a limit on maximum nest­

ing levels as described in Section 8.4 can regain efficiency at the cost of precision. 

For this purpose, we have automatically generated large examples, and we use 

functions of types like a → a → . . . → a to trigger the choice elimination strate­

gies discussed in Section 8.4. We first generated 200 type correct examples and 

then introduced one or two type errors in each example by changing the leaves, 
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Figure 8.9: Limits on choice nesting trade efficiency for precision. 

swapping arguments and so on. Each example contains about 60000 nodes in its 

abstract syntax tree representation. 

Figure 8.9 presents the running time and precision against choice nesting lev­

els for these generated examples. A change suggestion is considered correct if it 

fixes a type error and appears among the first four changes for that example. Pre­

cision is measured by dividing the number of examples that have correct change 

suggestions over the number of all examples. From the figure we observe that a 

nesting level cut-off between 12 and 18 achieves both high precision and efficiency. 
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8.7 Related Work 

We presented a large body of work related to error debugging in Section 3.3. This 

section discusses the work that shares certain commonalities with counter-factual 

typing. 

In deducing expression changes from type changes, we have used (an extension 

of) McAdam’s technique [McAdam, 2002a]. Since his approach is based on the 

algorithm W , it suffers from the bias of error locating mentioned above. Moreover, 

his approach doesn’t have access to the precise expected type, which helps in our 

approach to ensure that deduced expression changes will not have an impact on 

the program as a whole. 

Like error slicing approaches [Tip and Dinesh, 2001; Haack and Wells, 2003; 

Schilling, 2012], counter-factual typing is complete in not missing any potential 

change. However, the changes we present to users involve fewer locations. Usu­

ally, users have to focus on only one location. Another important difference is 

that our approach provides a change suggestion for each identified potential error 

source. 

Counter-factual typing relies on the fact that each choice type can represent 

many types, allowing us to reason about many changes simultaneously. Simi­

lar to choice types, sum types can also encode many types. Neubauer and Thie­

mann [2003] developed a type system based on discriminative sum types to record 

the causes of type errors. Specifically, they place two non-unifiable types into a 

sum type. Technically, named choice types provide more fine-grained control over 
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variations in types than discriminative sum types. While sum types are unified 

component-wise, this is only the case for choice types of the same name. Each al­

ternative in a choice type is unified with all the alternatives in other choices with 

different names. Also, their system returns a set of sources related to type er­

rors. Thus, it can be viewed as an error slicing approach. Moreover, the approach 

doesn’t provide specific change locations or change suggestions. 

CF typing and Seminal [Lerner et al., 2006, 2007] could both be called “search 

based”, although the search happens at different levels. While CF typing explores 

changes on the type level, Seminal works on the expression level directly, which 

makes it impossible for Seminal to generate a complete set of type-change sug­

gestions. Given an ill-typed program, Seminal first has to decide where the type 

error is. Seminal uses a binary search to locate the erroneous place. This way of 

searching causes Seminal to make mistakes in locating errors when the first part 

of the program itself doesn’t contain a type error but actually triggers type errors 

because it’s too constrained. For example, the cause of the type error in the palin 

example discussed in Section 3.3 is the fold function, which is itself well typed. 

As a result, Seminal fails to find a correct suggestion. 

Once the problematic expression is found, Seminal searches for a type-

corrected program by creating mutations of the original program. For example, 

by swapping the arguments to functions, currying or uncurrying function calls, 

and so on. Compared to our change deduction approach, this has both advantages 

and disadvantages. In some cases, it can find a correct change while our approach 

fails to do so, as, for example, in the missing-parentheses problem discussed in 
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Section 8.6. On the other hand, its power to generate arbitrarily complicated 

changes can lead to bizarre suggestions, such as the suggestion to change xs == 

(rev xs) to (==) (xs,(rev xs)). 
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Chapter 9: Conclusions and Future Work 

Besides the work presented in this dissertation, I have also explored other appli­

cations of choice types. I briefly present these applications in Section 9.1. Sec­

tion 9.2 summarizes main contributions of my work at a high level and discusses 

directions for future work. 

9.1 Other Applications 

The concept of choice types has applications in a variety of areas. I will briefly 

discuss three of those, guided type debugging (Section 9.1.1), lazy typing (Sec­

tion 9.1.2), and an analysis lifting framework (Section 9.1.3). 

9.1.1 Guided Type Debugging 

An important shortcoming with previous change-suggesting approaches, includ­

ing our counter-factual typing approach discussed in Chapter 8, is that they focus 

solely on removing type errors but disregard users’ intended result types. Con­

sider, for example, the expression e = foldl (:) []. There is a type error in this 

expression because the type of (:) is a->[a]->[a], but to make the program well-

typed it should have the type a->b->a. 

For this expression, Helium suggests to change (:) to (++), which is perfect 
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when the intended type is [[a]]->[a]. However, it is very likely that the expres­

sion is intended to compute the reverse of the input list, and thus it should be of 

type [a]->[a]. In this case, the error message can’t help. Worse, following the 

change suggestion will cause more problems in the expression. 

Counter-factual typing suggests two potential changes to remove the type er­

ror. First, it suggests to change (:) to something of type [a]->b->[a], so that the 

result type will be [b]->[a]. Second, it suggests to change foldl to something of 

type (a->[a]->[a])->[b]->c, so that the result type will be c. Given the expected 

type [a]->b->[a] of (:) and the result type [b]->[a] of e, it is still unclear about 

how to perform the change such that the result program has the type [a] -> [a]. 

The user has to solve the unification problem of [b]->[a] against [a]->[a] and 

derive that the type of (:) should be [a]->a->[a]. From there, the user has to 

further deduce to change (:) to flip (:), which is again nontrivial. 

We have developed a method, called guided type debugging, to automate this 

process [Chen and Erwig, 2014c]. Figure 9.1 presents two debugging sessions 

with guided type debugging for the expression e. We observe that the messages 

generated are guided by the user input. 

To make the debugging process simple, guided type debugging only requires 

users to declaratively specify their intended result types, which is no harder than 

writing type annotations, something they do very often. Based on their inten­

tions, we compute all erroneous locations and their expected types, rank them, 

and present the suggestions to users in that order. 

Guided type debugging can improve the precision of suggesting type changes 
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What is the expected type of e? What is the expected type of e? 
[a] -> [a] [[a]] -> [a] 

Potential fixes: Potential fixes:

1 change (:) to (flip (:)). 1 change (:)

2 change foldl from type a -> [a] -> [a]


from type (a -> b -> a) -> to type [a] -> [a] -> [a] 
a -> [b] -> a 2 change foldl 

to type (a -> [a] -> [a]) -> from type (a -> b -> a) -> 
b -> [a] -> [a] a -> [b] -> a 

There are no other one-change fixes. to type (a -> [a] -> [a]) -> 
Show two-change fixes? (y/n) b -> [[a]] -> [a] 

There are no other one-change fixes. 
Show two-change fixes? (y/n) 

Figure 9.1: Two examples of guided type debugging. The target type for e is [a] 
-> [a] (left) and [[a]] -> [a] (right). User inputs are shown in italics. 

for ill-typed programs at a low cost. We have tested the method and compared it 

with CF typing on 86 programs, which were collected from 22 publications (see 

Section 8.6 for details). With guided type debugging we can now find the correct 

suggestions with the first attempt in 83% of the cases, which was 67% in CF typ­

ing. We can fix 90% of the cases with at most two attempts, an improvement of 

10% over CF typing. At the same time guided type debugging adds never more 

than 0.5 seconds to the computing time. 

9.1.2 Lazy Typing 

Prior to counter-factual typing, we explored the idea of lazy typing [Chen and 

Erwig, 2014b]. We exploited the fact that choice types can represent uncertainty 

to delay typing decisions. Specifically, if branches (in if and case expressions) 
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have incompatible types, then we generally don’t know which type to favor. By 

placing the conflicting types for the branches into a choice type and by continuing 

the typing process we can avoid a premature, uninformed decision and gather 

information about the context to decide which branch has the correct type. We 

then can report other branches as type incorrect. 

As an example, consider the following function to compute Fibonacci numbers. 

This program contains a type error since the return types of case alternatives for 

the function f are different. 

f x = case x of

0 -> [0]

1 -> 1


fib x	 = case x of

0 -> f x

1 -> f x

n -> fib (n-1) + fib (n-2)


For this example, lazy typing reports the following error and corresponding type 

change suggestion. 

(2,13): Type error in expression: 
[0]


Of type: [Int]

Should have type: Int


Lazy typing works the best when (1) at least one branch is compatible with 

the context, (2) the context consistently favors the same branch, and (3) there 

is enough information from the context to resolve the uncertainty in choice types. 

Lazy typing and CF typing share the common idea of representing uncertainty 

about types using choice types. Other than that, the two approaches are funda­

mentally very different. First, CF typing generates a complete set of changes, 
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while lazy typing only tries to identify the most likely change. Moreover, CF typ­

ing suggests the expected type for the expression identified. Lazy typing only does 

this in some rare cases. Second, CF typing points to very specific change location 

while lazy typing has only branch-level granularity. Third, CF typing deduces 

expression-level changes, lazy typing works on the type level only. 

Based on the observation that lazy typing and Helium [Heeren, 2005] perform 

well in different situations, we have looked into the question of combing both ap­

proaches to produce better error messages [Chen et al., 2014a]. By analyzing 

their respective strengths and weakness, we have identified a strategy of combing 

them to increase the precision of error reporting. Our evaluation of 1069 unique 

ill-typed programs out of a total of 11256 Haskell programs reveals that this com­

bination strategy enjoys a correctness rate of 79%, which is an improvement of 

22%/17% compared to using lazy typing/Helium alone. 

9.1.3 Type-Based Parametric Analyses 

We have also used choice types to develop a program analysis lifting framework 

that transforms type-based static analyses for plain programs into those for vari­

ational programs [Chen and Erwig, 2014a]. In contrast, most previous variational 

analyses are created by manually lifting analyses for plain programs. For exam­

ple, the variability-aware module system [Kästner et al., 2012b] is the result of lift­

ing the module system proposed by Cardelli [1997], the variability-aware dataflow 

analysis [Brabrand et al., 2012] is the result of lifting the traditional intraproce­
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dural dataflow analysis [Nielson et al., 1999], and our variational type inference 

algorithm is the result of lifting the traditional inference algorithm W [Damas and 

Milner, 1982]. 

Each lifting consists of the following steps, all of which are nontrivial. 

1. Introduce variability to data structures used in the traditional analysis to 

represent the value for a set of programs. In type checking feature-oriented 

product lines [Apel et al., 2010], plain types are expanded to sets of types. In 

variational dataflow analysis [Brabrand et al., 2012], value sets for the tra­

ditional dataflow analysis are expanded to functions from features to value 

sets. In our variational type inference algorithm, types are made variational 

through the use of choice types. The notion of choice is also adopted in [Käst­

ner et al., 2012b] to perform variational type checking for C programs and 

in [Liebig et al., 2013, 2012] to conduct type checking and dataflow analysis 

for large-scale variational programs. 

2. Adapt the traditional analysis to work with variationalized data structures. 

In variational type inference, typing rules, the unification algorithm, and the 

type inference algorithm are made variational. In variational model check­

ing [Classen et al., 2010, 2011], symbolic encodings are made variational to 

deal with featured transition systems. In variational type checking [Kästner 

et al., 2012b] and variational dataflow analysis [Liebig et al., 2012], analyses 

are extended to deal with the variability introduced through choices. 

3. Prove the correctness of the lifted analysis. Among different properties, the 
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most important one is that variation elimination commutes with the analy­

sis. More specifically, if a variational analysis yields the variational result 

vr for the variational program vp, and if applying a selection to vp and vr 

yields the plain program p and the plain result r, then the plain analysis 

will produce r when applied to p. This property is presented and proved in 

most papers. A similar proof was absent in [Brabrand et al., 2012], but was 

later presented in [Brabrand et al., 2013]. 

4. Demonstrate the scalability of the lifted analysis by comparing its perfor­

mance with the brute-force approach, which generates and analyzes each 

program individually. This part is present in almost all contributions. 

This process is not only complicated, but also error prone. For example, the im­

plementation of FFJPL, which is described in more depth in Section 3.1, contains a 

bug [Chen and Erwig, 2014a]. Instead, our analysis lifting framework transforms 

static analyses to those for variational programs with correctness guarantees and 

a bounded performance slowdown. 

9.2 Main Contributions and Future Directions 

This dissertation presents my work on variational typing and one of its applica­

tions. Compared to other more tool-oriented solutions, my work makes the follow­

ing contributions. 

1. It presents two type inference algorithms for solving the problem of typing 
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variational programs. The first algorithm works for variational programs 

when all encoded plain programs are well typed, and the second algorithm 

is a generalization of the first one and works for all variational programs. 

Experimental results show that both algorithms run exponentially faster 

than the brute-force strategy. 

2. It studies the properties of the variational unification problem and presents 

a sound, complete, and most general unification algorithm. Similar contri­

butions are also made for the partial variational unification problem. Both 

algorithms have many applications other than typing variational programs. 

3. It presents solutions to many problems beyond typing variational programs, 

including increasing type safety guarantees of C++ Templates and improv­

ing the precision of type error debugging. 

4. It creates a synergy between traditional analysis and variational analysis. 

Previous research has generalized traditional analyses to variational analy­

ses. This thesis is the first to utilize techniques from variational analyses for 

traditional analyses, which led to improved type error debugging methods. 

The work presented in this dissertation represents two very different lines of 

research. The goal of the first line is to improve the efficiency of activities re­

lated to creating, maintaining, and using variational programs. The second line, 

instead, focuses on using knowledge of variational analyses to improve the preci­

sion and usability of static analyses. Here are some possible directions for future 
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work, some are common to both lines of research while others are relevant to a 

particular line. 

Both variational typing and its applications have focused on the Hindley-

Milner type system so far. In recent years, we have seen many development of 

more advanced type system features, for example, qualified types, rank-N poly­

morphism [Peyton Jones et al., 2007], generalized algebraic data types [Vytiniotis 

et al., 2011], dependent types [Xi and Pfenning, 1999], and so on. It is interest­

ing to investigate how choice types interact with them. This research has many 

practical implications. First, the heavy use of CPP macros has raised many con­

cerns about useability and stability of Haskell code.1 Extending the full-fledged 

Haskell type system with variations allows us to reason about the type correct­

ness of Haskell libraries and improve their stability. Second, the introduction of 

these advanced features complicate the already difficulty problem of debugging 

type errors. It is interesting to see how counter-factual typing generalizes to type 

systems with these features. 

While numerous approaches have been proposed to analyze and understand 

variational programs, the support for changing them is still primitive [Atkins, 

1998; Kästner, 2010; Walkingshaw and Ostermann, 2014]. They either don’t allow 

programmers to change views of certain configurations or have a limited strategy 

of propagating changes of views to source code. A potential application of varia­

tional typing here is to support more advanced strategies for propagating changes, 

for example, maximizing sharing while maintaining type correctness of all the 

1https://mail.haskell.org/pipermail/haskell-cafe/2015-January/117683.html 

https://mail.haskell.org/pipermail/haskell-cafe/2015-January/117683.html
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plain programs. 

While static analyses are good at checking whether programs satisfy certain 

properties, they are limited at telling where the sources of errors are and how 

to fix errors. It seems promising to generalize counter-factual typing to deliver 

more informative messages when static analyses fail. Research questions in this 

direction include locating parsing errors, fixing security violations, and blaming 

contract and effect violations. 

Compared to other tool-oriented approaches targeting the problem of typing soft­

ware product lines, my language-oriented solution is more fundamental. While 

practical approaches have the advantage of being immediately useful, a theoret­

ical solution is likely to reveal the underlying principles of an area and have the 

benefit of applying these principles to solve problems in other areas. For example, 

without variational unification (Chapter 5) and error-tolerant variational type in­

ference (Chapter 7), the work of counter-factual typing (Chapter 8) wouldn’t have 

been possible. Beyond solving the problem of typing variational programs, the 

more fundamental contribution of this work is initiating a new research area for 

improving usability of static analyses through variational analyses. 
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Appendix A: Proofs for Chapter 4 

Lemma 2 (Type equivalence preservation) If φ1 ≡ φ2, then �φ1�s ≡ �φ2�s. 

PROOF. The proof of this lemma proceeds by case, demonstrating that for each 

equivalence rule defined in Figure 4.4, if we apply the same selector s to both the 

LHS and the RHS of the rule, the resulting expressions are still equivalent. We 

demonstrate this for only a few cases; but the other cases can be treated similarly. 

First, we consider the F-C rule. There are two sub-cases to consider: Either 

the dimension of the choice type matches that of the selector, or it does not. We 

consider the sub-case where the dimension name does not match first. 

�D〈φ1 → φ� 
1,φ2 → φ� 

2〉�s = D〈�φ1�s →�φ� 
1�s,�φ2�s →�φ� 

2�s〉 selection in LHS 
≡ D〈�φ1�s,�φ2�s〉→ D〈�φ� 

1�s,�φ� 
2�s〉 by the rule F-C 

�D〈φ1,φ2〉→ D〈φ1
� ,φ2

� 〉�s = �D〈φ1,φ2〉�s →�D〈φ1
� ,φ2

� 〉�s selection in RHS 
= D〈�φ1�s,�φ2�s〉→ D〈�φ1

� �s,�φ2
� �s〉 by definition 

For the sub-case where the dimension name matches, there are two further sub-

cases, depending on whether we are selecting the first or second alternatives in 

dimension D. Below we show the case for s = D̃ (selecting the second alternatives). 

The case for s = D is dual to this. 

�D〈φ1 → φ� 
1,φ2 → φ� 

2〉�D̃ = �φ2 → φ� 
2�D̃ selection in LHS 

= �φ2�D̃ →�φ2�D̃ by definition 
�D〈φ1,φ2〉→ D〈φ1

� ,φ2
� 〉�D̃ = �D〈φ1,φ2〉�D̃ →�D〈φ1

� ,φ2
� 〉�D̃ selection in RHS 

= �φ2�D̃ →�φ� 
2�D̃ by definition 
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Next we consider the C-C-SWAP2 rule. Here there are three cases to consider: s 

makes a selection in dimension D, in dimension D�, or in some other dimension. 

The case for when s makes a selection in D follows. 

�D�〈φ1, D〈φ2,φ3〉〉�D̃ = D�〈�φ1�D̃ ,�D〈φ2,φ3〉�D̃〉 selection in LHS 
= D�〈�φ1�D̃ ,�φ3�D̃〉 by definition 

�D〈D�〈φ1,φ2〉, D�〈φ1,φ3〉〉�D̃ = �D�〈φ1,φ3〉�D̃ selection in RHS 
= D�〈�φ1�D̃ ,�φ3�D̃〉 by definition 

The second case is a dual to this, and the third case can be proved in a similar way 

as the first case for the F-C rule. The proofs of the remaining rules proceed in a 

similar fashion. � 

Lemma 3 (Local confluence) For any type φ, if φ � φ1 and φ � φ2, then there 

exists some type φ� such that φ1 � ∗ φ� and φ2 � ∗ φ� . 

The proof requires the ability to address specific positions in a variational type. 

A position p is given by a path from the root of the type to a particular node, where 

a path is represented by a sequence of values L and R, indicating whether to enter 

the left or right branch of a function or choice type. The root type is addressed by 

the empty path �. We use φ|p to refer to the type at position p in type φ. For 

example, given φ = Int → A〈Bool,Int〉, we can refer to the component types of φ in 
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the following way. 

φ|� = Int → A〈Bool,Int〉 
φ|L = Int 

φ|R = A〈Bool,Int〉 
φ|RL = Bool 

φ|RR = Int 

We use φ[φ�]p to indicate the substitution of type φ� at position p in type φ. For 

example, given the same φ as above, φ[Bool]R = Int → Bool. We use P (φ) to refer 

to the set of all positions in φ. 

We also need a way to abstractly represent the application of a simplification 

rule. We use l � r to represent an arbitrary simplification rule from Figure 4.5. 

We represent applying that rule somewhere in type φ by giving a position p and 

a substitution ξ indicating how to instantiate it. Before we apply the rule, it must 

be the case that φ|p = ξ(l). The result of applying the rule will be φ[ξ(r)]p. As 

example, given φ = Int → A〈Bool,Bool〉, we can apply the S-C-IDEMP rule (l = 

A〈x, x〉, r = x) at p = R with the substitution ξ = {x �→ Bool}, resulting in φ� = 

Int → Bool (note that we assume the dimension name in the simplification rule is 

instantiated automatically). 

PROOF. Given type φ, assume that some rewrite rule l1 � r1 can be applied at 

position p1 with substitution ξ1, and another rewrite rule l2 � r2 can be applied 

at position p2 with substitution ξ2. Then φ1 = φ[ξ1(r1)]p1 and φ2 = φ[ξ2(r2)]p2. 

Then we must show that there is always a φ� such that φ1 � ∗ φ� and φ2 � ∗ φ� . 

There are three cases to consider. 

First, the two simplifications are parallel. This occurs when neither p1 or p2 is 
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Figure A.1: Proof of local confluence. 

a prefix of the other. It represents simplifications that are in different parts of the 

type and therefore independent. The proof for this case is shown in the left graph 

in Figure A.1. If we apply l1 � r1 first, we can reach φ� by next applying l2 � r2, 

and vice versa. This situation is encountered, for example, when we must choose 

between the S-F-ARG and S-F-RES rules. Intuitively, it does not matter whether 

we first simplify the argument type or result type of a function type. The situation 

is also encountered when choosing between the S-C-DOM1 and S-C-DOM2 rules, 

and the S-C-ALT1 and S-C-ALT2 rules. 

Second, one simplification may contain the other. This occurs when p1 is a 

prefix of p2 and ξ2(l2) is contained in the range of ξ1 (the case where p2 is a prefix 
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of p1 is dual). For example, consider the following type φ. 

φ = A〈B〈Int,Bool〉,C〈Int,Int〉〉 

We can apply the S-C-SWAP1 rule, A〈B〈x, y〉, z〉 � A〈B〈x, z〉,B〈y, z〉〉, at position 

p1 = � with the substitution ξ1 = {x �→ Int, y �→ Bool, z �→ C〈Int,Int〉}. Or we can 

apply the S-C-IDEMP rule, C〈w,w〉 � w, at position p2 = R with the substitution 

ξ2 = {w �→ Int}. Note that ξ2(l2) = D〈Int,Int〉, which is in the range of ξ1. The 

proof for this example is illustrated in the right graph of Figure A.1, the labels 

(1) and (2) indicate the number of times the associated rule must be applied. In 

general, if the variable at l1|p2 occurs m times in l1 and n times in r1, then we 

need to apply the l2 � r2 rule n times in the left branch of the graph and m 

times in the right branch. Intuitively, this case arises when the simplifications 

are conceptually independent, but one is nested within the other. If we apply the 

outer simplification first, it may increase or decrease the number of times we must 

apply the inner one (and vice versa). Many combinations of rules can lead to this 

situation. 

Third, the simplifications may critically overlap. This occurs when p1 is a 

prefix of p2 and there is some p ∈ P (l1) such that l1|p is not a variable and 

ξ1(l1|p) = ξ2(l2). For example, consider the following type φ. 

φ = C〈A〈Int,Bool〉,B〈Bool,Int〉〉 

Then both S-C-SWAP1 and S-C-SWAP2 are applicable at p1 = p2 = �. To prove that 

our choice between these rules doesn’t matter, we need to compute the critical 

pairs between the two rules and decide the joinability of all such critical pairs 
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[Baader and Nipkow, 1998]. If all critical pairs are joinable, then the two rules 

are locally confluent, otherwise they are not. The critical pairs are computed as 

follows. Given any p ∈ P (l1) such that l1|p is not a type variable, compute the 

mgu for l1|p ≡? l2 as ξ, then ξ(r1) and ξ(l1)[ξ(r2)]p form a critical pair. We show 

the proof process for the two S-C-SWAP rules below. 

First, we rewrite these rules in the following way, so they do not share any type 

variables. (We also instantiate the dimension names and eliminate the premises.) 
S-C-SWAP1 S-C-SWAP2 

C〈A〈x, y〉, z〉 � A〈C〈x, z〉,C〈y, z〉〉 C〈k5,B〈k4, k6〉〉 � B〈C〈k5, k4〉,C〈k5, k6〉〉 

When p = �, the unification problem is C〈A〈x, y〉, z〉 ≡? C〈k5,B〈k4, k6〉〉. The com­

puted mgu ξ is given below, where all previously undefined type variables are 

fresh. 

ξ = {x �→ C〈A〈k5, b〉, c〉, y �→ C〈A〈d, k5〉, k1〉, z �→ C〈k2,B〈k4, k6〉〉} 

The critical pair consists of the following two types. 

1. A〈C〈C〈A〈k5, b〉, c〉,C〈k2,B〈k4, k6〉〉〉,C〈C〈A〈d, k5〉, k1〉,C〈k2,B〈k4, k6〉〉〉〉 
2. B〈C〈k5, k4〉,C〈k5, k6〉〉 

This pair is joinable by simplifying the first component of the pair into the second, 

as demonstrated below. 

A〈C〈C〈A〈k5, b〉, c〉,C〈k2,B〈k4, k6〉〉〉, 
C〈C〈A〈d, k5〉, k1〉,C〈k2,B〈k4, k6〉〉〉 

= A〈C〈k5,B〈k4, k6〉〉,C〈k5,B〈k4, k6〉〉〉 S-C-DOM1 and S-C-DOM2 
= C〈k5,B〈k4, k6〉〉 S-C-IDEMP 

= B〈C〈k5, k4〉,C〈k5, k6〉〉 S-C-SWAP2 
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When p = L, the unification problem is A〈x, y〉 ≡? C〈k5,B〈k4, k6〉〉, and the com­

puted mgu ξ is given below. 

ξ = {x �→ A〈C〈k5,B〈k4, k6〉, a〉〉, y �→ A〈b,C〈k5,B〈k4, k6〉〉〉} 

The critical pair consists of the following two types. 

1. A〈C〈A〈C〈k5,B〈k4, k6〉,a〉〉, z〉,C〈A〈b,C〈k5,B〈k4, k6〉〉〉, z〉〉 
2. C〈B〈C〈k5, k4〉,C〈k5, k6〉〉, z〉 

This pair is joinable by simplifying both components into the type C〈k5, z〉, as 

demonstrated below. 

A〈C〈A〈C〈k5,B〈k4, k6〉, a〉〉, z〉, 
C〈A〈b,C〈k5,B〈k4, k6〉〉〉, z〉 

= A〈C〈k5, z〉,C〈k5, z〉〉 S-C-DOM1 and S-C-DOM2 
= C〈k5, z〉 S-C-IDEMP 

C〈B〈C〈k5, k4〉,C〈k5, k6〉〉, z〉 
= C〈B〈k5, k5〉, z〉 S-C-DOM1 and S-C-DOM2 
= C〈k5, z〉 S-C-IDEMP 

The proofs for other critically overlapping rules can be constructed similarly. � 

Lemma 4 (Termination) Given any type φ, φ � ∗ φ� is terminating. 

PROOF. To support this proof, we use a tuple (ad, (ur,ra),dd, ic) to measure how 

normalized a type is. When this tuple is (0, (0,0),0,0), the type is fully normalized 

and no rule in Figure 4.5 can be applied. Otherwise, the type is not fully normal­

ized and some rule applies. We then divide all the rules in Figure 4.5 into four 

groups and show that the first group decreases ad, the second group decreases the 
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pair (ur,ra) without increasing ad, the third group decreases dd without increas­

ing ad or (ur,ra), and the fourth group decreases ic without increasing any other 

component of the tuple. 

The components of (ad, (ur,ra),dd, ic) are defined as follows. 

(1) The component ad denotes the number of choice types that are nested directly 

or indirectly in arrow types. For example, ad = 3 for the type A〈B〈τ1,τ2〉,τ3〉→ 

C〈τ4,τ5〉. 

(2) The pair (ur,ra) captures nested choice types that violate the ordering con­

straint � on dimension names. The component ur denotes the unique pairs of 

inverted dimension names, while ra is the total number of nested choices that 

violate this constraint. There are some subtleties to computing these values, 

which are described below. 

(3) The component dd denotes the number of dead alternatives—alternatives that 

cannot be selected because of choice domination. 

(4) Finally,	 ic denotes number of idempotent choice types—choice types where 

both alternatives are the same. 

To compute the pair (ur,ra), we cannot just count the number of inverted choice 

types directly since the process of hoisting can mask intermediate progress if rep­

resented in this way. For example, given the type φ = C〈B〈φ1,φ2〉, A〈φ3,φ4〉〉, an 

application of S-C-SWAP1 yields φ� = B〈C〈φ1, A〈φ3,φ4〉〉,C〈φ2, A〈φ3,φ4〉〉〉, in which 

the choice type in B has been correctly hoisted above the choice type in C. How­

ever, φ contains just 2 inverted dimension names (C �� B and C �� A) while φ� 
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contains 2 unique inversions (B �� A and C �� A) and 4 total inversions (since both 

unique inversions appear twice). Thus, the naive measure fails to capture the 

progress made transforming φ to φ� and in fact suggests that we regressed despite 

having resolved one of the original inversions. Therefore, we instead compute ur 

as (a) the number of unique inversions, plus (b) the binomial coefficient n 
2 where 

n is the number of unique inversions involving the root choice type. This addi­

tional component captures the combinations of inversions that could be created 

during the hoisting process. We compute ra in the same way but without limiting 

ourselves to unique inversions. Using this metric, the transformation of φ to φ� 

reduces (ur,ra) from (3,3) to (2,4). 

Now we divide the rules in Figure 4.5 into four groups. Since the rules 

S-F-ARG, S-F-RES, S-C-ALT1 and S-C-ALT2 are congruence rules, they have no 

direct effect on the normalization metric. We divide the remaining rules as fol­

lows. 

1. The first group contains the rules S-F-C-ARG and S-F-C-RES. Whenever one 

of these rules is applied, an arrow type is pushed into a choice type, reducing 

ad. 

2. The second group contains the rules S-C-SWAP1 and S-C-SWAP2. Applying 

these rules will not increase ad since swapping choices will not generate 

new choice types and will not push choice types into arrow types. Applying 

these rules will either decrease ur or leave ur unchanged and decrease ra. 

For example, applying S-C-SWAP1 to φ = C〈B〈· · ·〉, A〈· · ·〉〉 leads to the type 
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φ� = B〈C〈· · · , A〈· · ·〉〉,C〈· · · , A〈· · ·〉〉〉. Assume that when computing ur for φ, 

parts (a) and (b) are n1 and n2, respectively, where n2 = n
2
3 . This means 

that n1 is the total number of unique inversions in φ and n3 is the number 

of unique inversions involving dimension C. Similarly, when computing ur 

for φ�, assume parts (a) and (b) are n� 
1 and n� 

2, respectively, where n� 
2 = n3 .2 

Then n� 
1 can be computed as follows: 

n� 
1 =−1 previously C �� B, now B is hoisted out 
+ n23 number of choices nested in A that were inverted with B 
+ n1 remaining nestings are unchanged 

Since B � C, the choices inverted with C in φ may be no longer inverted 

with B in φ�. Thus, n� 
3 ≤ n3 − 1 since B is no longer nested in C. Therefore, 

n� 
2 ≤ n

2
3 . Moreover, since there are n3 choices in φ inverted with C, there 

are no more than n3 − 1 choices in A that are inverted with C. Combining 

this with the fact that B � C, there are then fewer than n3 − 1 choices that 

are inverted with C in φ�. So we have n23 ≤ n3 − 1. 

The change of ur from φ to φ�, denoted as ρ, can be computed as follows, 

ρ = n1 + n2 − n� 
1 − n� 

2 
≥ n1 + C2 

n3 
− n� 

1 − C2 
n3−1 

= (n1 − n1 + 1 − n23) + (C2 
n3 

− C2 
n3−1) 

= (1 − n23) + (n3 − 1) 
= n3 − n23


≥ 1


Thus, after hoisting, ur decreases at least by 1. The proof for the case that 
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n2 ≤ 2 is simple and is omitted here. 

When φ is a part of a larger type, then there are two cases. First, if the 

larger type does not have B nested in C elsewhere, then it is clear that ur 

will decrease by at least 1 for the larger type. Otherwise, if B is nested in 

C elsewhere, then ur may stay the same. However, we can prove that ra 

decreases at least by 1 similarly to the case for ur shown in detail above. 

Intuitively, ra decreases because swapping B out of C has removed the re­

versed pair between C and B. 

3. The third group includes the rules S-C-DOM1 and S-C-DOM2. Applying the 

rules in this group will not increase ad since they don’t create new choices 

and they don’t push down choice types into arrows. Applying them also 

doesn’t increase (ur,ra) since choice orderings are not swapped. Whenever 

one of the two rules is applied, at least one dead alternative is removed. 

Thus, the rules will only decrease dd. 

4. The fourth and final group contains the rule S-C-IDEMP. Applying this rule 

will remove a choice whose alternatives are the same, therefore it may de­

crease ad, (ur,ra), or dd, but it can never increase these values. Whenever 

this rule is applied, at least one idempotent choice will be eliminated. There­

fore, it strictly decreases ic. 

If we define an ordering relation on (ad, (ur,ra),dd, ic) based on the ordering rela­

tion of each component, where the components are ordered from most-significant 

(ad) to least (ic), then we have demonstrated that the metric (ad, (ur,ra),dd, ic) is 
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strictly decreasing by applying the simplification rules. This process terminates


when (ad, (ur,ra),dd, ic) reaches (0, (0,0),0,0), completing the proof. �
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Appendix B: Proofs for Chapter 5 

Theorem 5 Given a CT-unification problem U, there is a unifier ξ such that for 

any unifier ξ�, there exists a mapping θ such that ξ� = θ ◦ ξ. 

In the following, we use U and Q to denote unification problems. We use φL 

and φR to denote the LHS and RHS of U , and φ� 
L and φ� 

R to denote the LHS and 

RHS of Q. We use FV(U) to refer to all of the type variables in U . We also extend 

the notion of selection to unification problems and mappings by propagating the 

selection to the types they contain, as defined below. 

�φL ≡? φR�s = �φL�s ≡? �φR�s 

�ξ�s = {(a,�φ�s) | (a,φ) ∈ ξ} 

The following lemma states that selection further extends over type substitution 

in a homomorphic way. 

Lemma 21 (Selection extends over substitution) �ξ(φ)�s = �ξ�s(�φ�s) 

PROOF of Lemma 21. The proof is based on induction over the structure of φ and 

ξ. We show the proof only for the most interesting cases where φ is a choice type, 

and where φ is a type variable mapped to a choice type in ξ. 
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1. Given φ = D〈φ1,φ2〉, assume s = D̃ (the case for s = D is dual). 

�ξ(φ)�s = �ξ(D〈φ1,φ2〉)�D̃ by definition 
= �D〈ξ(φ1),ξ(φ2)〉�D̃ type substitution 
= �ξ(φ2)�D̃ selection 
= �ξ�D̃(�φ2�D̃) induction hypopethesis 
= �ξ�D̃(�D〈φ1,φ2〉�D̃) selection 
= �ξ�s(�φ�s) 

2. Given φ = a, assume ξ(a) = D〈φ1,φ2〉 and s = D̃ (again s = D is dual). Given 

ξ, we write ξ[a = φ] to denote that ξ maps a to φ. 

�ξ�s(�φ�s) = �ξ�D̃(�a�D̃) by definition 
= �ξ�D̃[a = �φ2�D̃](a) selection 
= �φ2�D̃

�ξ(φ)�s = �ξ(a)�D̃ by definition 
= �D〈φ1,φ2〉�D̃ by assumption 
= �φ2�D̃ = �ξ�s(�φ�s) 

The remaining cases can be constructed similarly. � 

From Lemma 21, it follows by induction that the same result holds for deci­

sions as for single selectors: �ξ(φ)�δ = �ξ�δ(�φ�δ). Combining this with Lemma 2 

(selection preserves type equivalence), we see that if ξ is a unifier for U , then 

�ξ(φL)�δ ≡ �ξ(φR)�δ for any δ. This is the same as saying that if ξ(φL) �≡ ξ(φR), 

then ∃δ : �ξ(φL)�δ �≡ �ξ(φR)�δ. A direct consequence of this result is that 

if δ is super-complete (it eliminates all choice types in φL, φR , and ξ) and 

�ξ�δ(�φL�δ) ≡ �ξ�δ(�φR�δ), then ξ is a unifier for U . 

PROOF of Theorem 5. Using the type splitting algorithm described in Section 5.2, 

we can transform U into Q such that for all super-complete decisions δ1,δ2, · · · ,δn, 
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if δi �= δ j, then FV(�Q�δi ) ∩ FV(�Q�δ j ) = ∅. 

Each subproblem �Q�δi corresponding to a super-complete decision δi is 

plain. Therefore, we can obtain (via Robinson’s algorithm) an mgu ξi such that 

�ξi(φ� 
L)�δi ≡ �ξi(φ� 

R)�δi . Let ξ be the disjoint union of all of these mgus, that is, � 
ξ = i∈{1.. n} ξi. 

Since the type variables in each subproblem are different, for each subproblem 

we have �ξ(φ� 
L)�δi ≡ �ξ(φ� 

R)�δi . Then based on the discussion after Lemma 21, ξ 

is a unifier for φ� 
L ≡? 

q φ
� 
R . Moreover, it is most general by construction since each 

ξi is most general. Based on Theorem 8 (variational unification is sound) and 

Lemma 10 (comp is correct and preserves principality), the completion of ξ is the 

mgu for U , which proves that variational unification is unitary. � 

Theorem 6 (Soundness) If vunify(φ1,φ2) = ξ, then ξ(φ1) ≡ ξ(φ2). 

PROOF. The proof is by induction on the structure of φ1 and φ2. To make the 

proof easier to follow, we step through each case of the vunify algorithm, briefly 

describing why the theorem holds for each base case, or why it is preserved for re­

cursive cases. For many cases, correctness is preserved by vunify being recursively 

invoked on semantically equivalent arguments. 

1. Both types are plain.	 The result is determined by the Robinson unification 

algorithm, which is known to be correct [Robinson, 1965]. 

2. A qualified type variable aq and a choice type. Correctness is preserved since 

aq ≡ D〈aDq, a D̃q〉. 
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3. Two choice types in the same dimension. Decomposition by alternatives is cor­

rect by the inductive hypothesis and Lemma 7. 

4. The next three cases consider choice types in different dimensions.	 They pre­

serve correctness for the following reasons. 

(a) Hoisting is semantics preserving. 

(b) Splitting is variable independent by Lemma 8. 

(c) Splitting is choice independent by Lemma 9. 

5. The next two cases consider unifying a choice type with a non-choice type. Cor­

rectness is preserved in both cases since the recursive calls are on semantically 

equivalent arguments, by choice idempotency. 

6. Two	 function types. Given the inductive hypotheses, ξ(φ1) ≡ ξ(φ� 
1) and 

ξ(φ2) ≡ ξ(φ� 
2), we can construct ξ((φ1 → φ2)) ≡ ξ((φ� 

1 → φ2
� )) by an application of 

the FUN equivalence rule in Figure 4.4. 

7. The last case considers a qualified type variable aq and a function type φ → φ� . 

If the occurs check fails, the theorem is trivially satisfied since the condition 

of the implication is not met. If it succeeds, the theorem is satisfied by the 

definition of substitution. 
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Appendix C: Proofs for Chapter 8 

Theorem 18 (Type-change inference is consistent) For any given e and Γ, if 

Γ � e : φ|Δ and there is some τ such that �φ�Δ.2 = τ, then Γ;↓Δ �C e : τ. 

PROOF. We consider two different cases. In the first case, Δ = ∅. According to 

the definition of ⇓, this indicates that no changes have been made in the typing 

process for Γ � e : φ|Δ. In this case, the assumption �φ�Δ.2 = τ simplifies to φ = τ. 

Thus, the theorem itself simplifies to Γ � e : τ|∅ ⇒ Γ;∅ �C e : τ. This holds trivially 

since both type systems are the same as HM when no changes happen. 

In the second case, Δ �= ∅. This indicates that changes happened during the 

typing process. We prove this case through a structural induction over the typing 

relation defined in Figure 8.3. 

Case CON: We have e = ν and Γ � ν : D〈γ,τ〉|{(�(ν), D〈γ,τ〉)} for a fresh choice D 

since alternatives of choices are plain. The type update in this case is 

ω = ↓Δ = ↓{(�(ν), D〈γ,τ〉)} = {ν �→ τ}. 

Our goal is to prove Γ;ω �C ν : τ. Based on the structure of e, the only rule 

that applies in Figure 8.5 is CON-C. The proof follows directly as ω changes 

ν to τ. 

Case VAR: The proof for this case is very similar to that for case CON and is omit­

ted here. Note that the instantiation of φ1 in rule VAR is irrelevant as the 
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instantiation is overridden by the change. 

Case APP: We need to show that 

Γ � e1 e2 : φ|Δ ⇒ Γ;↓Δ �C e1 e2 : �φ�Δ.2 

with the following induction hypotheses. 

Γ � e1 : φ1|Δ1 ⇒ Γ;↓Δ1 �C e1 : �φ1�Δ1.2 

Γ � e2 : φ2|Δ2 ⇒ Γ;↓Δ2 �C e2 : �φ2�Δ2.2 

Additionally, φ is computed by φ1 and φ2 through a use of the APP rule. Let 

↑(φ1) = φ1l → φ1r, then we have the following relation. 

τ = �φ�Δ.2 

= �φ1l �� φ2 � φ1r�Δ.2 

= �φ1l�Δ.2 �� �φ2�Δ.2 � �φ1r�Δ.2 By Lemma 14 

According to the definitions of �� and � (see Section 7.1), we have 

�φ1l�Δ.2 = �φ2�Δ.2 (C.1) 
�φ1r�Δ.2 = τ. (C.2) 

Combing the fact that ↑(φ1) = φ1l → φ1r with the equations (C.1) and (C.2), 

we have �↑(φ1)�Δ.2 = �φ2�Δ.2 → τ. Based on the definition of ↑, we have the 

following relation. 

�φ1�Δ.2 = �φ2�Δ.2 → τ (C.3) 

From Γ;↓Δ1 �C e1 : �φ1�Δ1.2, we have Γ;↓Δ �C e1 : �φ1�Δ1.2 because compared 

to Δ1, Δ contains additional information that only has impact on typing e2. 

From Γ;↓Δ �C e1 : �φ1�Δ1.2, we have Γ;↓Δ �C e1 : �φ1�Δ.2 because �φ1�Δ1.2 al­
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ready yields a plain type, and expanding the decision Δ1.2 to Δ.2 will not 

change the result. Overall, we have 

Γ;↓Δ1 �C e1 : �φ1�Δ1.2 ⇒ Γ;↓Δ �C e1 : �φ1�Δ.2 (C.4) 

Similarly, we have 

Γ;↓Δ2 �C e2 : �φ2�Δ2.2 ⇒ Γ;↓Δ �C e2 : �φ2�Δ.2 (C.5) 

From equations (C.3) and (C.4), we have 

Γ;↓Δ1 �C e1 : �φ1�Δ1.2 ⇒ Γ;↓Δ �C e1 : �φ2�Δ.2 → τ (C.6) 

From equations (C.5) and (C.6), the typing rule APP-C, and the induc­

tion hypotheses, we have Γ;↓Δ �C e1 e2 : τ. Since τ = �φ�Δ.2, we have 

Γ;↓Δ �C e1 e2 : �φ�Δ.2, completing the proof. 

The case for the rule ABS is straightforward and those for rules LET and IF are 

similar to that for rule APP and are therefore omitted here. � 

Theorem 19 (Type-change inference is complete) For any e, Γ and ω, if 

Γ;ω �C e : τ, then there exist φ, Δ, and a typing derivation for Γ � e : φ|Δ such that 

↓Δ = ω and �φ�Δ.2 = τ. 

PROOF. Again, we consider two cases. In the first case, ω = ∅, which means no 

changes have been applied. Thus, Γ;∅ �C e : τ implies that the expression e under 

Γ is well typed. When typing using the rules in Figure 8.3, we make the second 

alternative the same as the first alternative for all choices. In other words, we 

create idempotent choices only. The theorem holds trivially in this case. 
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In the second case, ω �= ∅. We prove the lemma through a structural induction 

over the typing relation in Figure 8.5. 

Case CON-C: We have e = ν. Since ω �= ∅, it must be of the form ω = {ν �→ τ}. We 

construct the typing relation as Γ � ν : D〈γ,τ〉|{(�(ν), D〈γ,τ〉)}, where γ is the 

type of ν and D is a fresh choice. It’s simple to verify that ↓{(�(ν), D〈γ,τ〉)} = 

{ν �→ τ} and �D〈γ,τ〉�D̃ = τ. 

Case VAR-C: The proof of this case is the same as that for case CON-C and is omit­

ted here. The only difference is that we are dealing with a variable reference 

rather than a constant. 

Case APP-C: We need to show that 

Γ;ω �C e1 e2 : τ ⇒ Γ � e1 e2 : φ|Δ with ↓Δ = ω and �φ�Δ.2 = τ 

with the following induction hypotheses. 

Γ;ω �C e1 : τ1 → τ ⇒ Γ � e1 : φ1|Δ with ↓Δ = ω and �φ1�Δ.2 = τ1 → τ 

Γ;ω �C e2 : τ1 ⇒ Γ � e2 : φ2|Δ with ↓Δ = ω and �φ2�Δ.2 = τ1 

We can split Δ into Δ1 and Δ2 such that they contain the change information 

for e1 and e2, respectively. With that, we have the following relations. 

Γ;ω �C e1 : τ1 → τ ⇒ Γ � e1 : φ1|Δ1 with �φ1�Δ1.2 = τ1 → τ


Γ;ω �C e2 : τ1 ⇒ Γ � e2 : φ2|Δ2 with �φ2�Δ2.2 = τ1


Since Δ1.2 ⊆ Δ.2 and �φ1�Δ1.2 = τ1 → τ, we have �φ1�Δ.2 = τ1 → τ. We have


a similar result regarding φ2. Based on them, we arrive at the following
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relations. 

Γ;ω �C e1 : τ1 → τ ⇒ Γ � e1 : φ1|Δ1 with �φ1�Δ.2 = τ1 → τ 

Γ;ω �C e2 : τ1 ⇒ Γ � e2 : φ2|Δ2 with �φ2�Δ.2 = τ1 

Let ↑(φ1) = φ1l → φ1r. We compute �φ�Δ.2 as follows. 

�φ�Δ.2 = �φ1l �� φ2 � φ1r�Δ.2 

= �φ1l�Δ.2 �� �φ2�Δ.2 � �φ1r�Δ.2 By Lemma 14 
= τ1 �� τ1 � τ By relation between �φ1�Δ.2,φ1l ,and φ1r 

=� � τ 

= τ 

This shows that �φ�Δ.2 = τ. Based on induction hypotheses, ↓Δ = ω, complet­

ing the proof. 

We can prove the cases for other rules in Figure 8.5 similarly. � 

Lemma 19 (Most defined type changes) Given e and Γ and two typings 

Γ � e : φ1|Δ1 and Γ � e : φ2|Δ2, if �φ1�δ = ⊥ and �φ2�δ = τ, then there is a typing 

Γ � e : φ3|Δ3 such that 

• �φ3�δ = �φ2�δ and for all other δ� �φ3�δ� = �φ1�δ� .

• ↓δΔ3 = ↓δΔ2 and ↓δ� Δ3 = ↓δ� Δ1 for all other δ� .


PROOF. We construct a typing Γ � e : φ3|Δ3 so that both items in the lemma are 

satisfied. To construct a typing using the rules in Figure 8.3, we need to designate 

the second alternatives of the freshly created choices and the mappings for in­

stantiating type schemas. Once they are decided, the typing is determined for the 

given e and Γ. The construction is based on a structural induction over the typing 
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relation in Figure 8.3. We prove a stronger lemma by dropping the conditions that 

�φ1�δ =⊥ and �φ2�δ = τ. 

Case CON: We need to further consider two sub-cases. Assume φ1 = D〈γ,φ� 
1〉 and 

φ2 = D〈γ,φ2
� 〉, where γ is the type of the constant ν. Note that φ1 and φ2 

determine the contents of Δ1 and Δ2, respectively. 

(1)	 D̃ ∈ δ. Let φ3 = D〈γ,φ� 
3〉 where φ� 

3 = expand(δ,φ� 
1,φ2

� ). Here 

expand(δ,φ� 
1,φ2

� ) builds a type φ such that �φ�δ = φ2 
� and �φ�δ� = φ� 

1 for 

all other δ�. This function is formally defined as follows. 

expand(Dδ,φ� 
1,φ� 

2) = D〈expand(δ,φ� 
1,φ� 

2),φ� 
1〉 

expand(D̃δ,φ� 
1,φ� 

2) = D〈φ� 
1,expand(δ,φ� 

1,φ� 
2)〉 

expand(D,φ� 
1,φ� 

2) = D〈φ� 
2,φ� 

1〉 
expand(D̃,φ� 

1,φ� 
2) = D〈φ� 

1,φ� 
2〉 

Given a decision, we write sδ to single out an arbitrary selector s from 

that decision and bind the remaining to δ.


With the constructed φ3 we can verify that �φ3�δ = �φ� 
3�δ = φ2 

� = �φ2�δ


and �φ3�δ� = �φ� 
3�δ� = φ� 

1 = �φ1�δ� for all other δ�. Since φ3 determines Δ3,


verifying the second item of the lemma follows directly from that of the


first item.


(2)	 D̃ ∉ δ. Let φ3 = φ1. When D̃ ∉ δ, we have both �δ�φ1 = γ and �δ�φ2 = γ, 

which means that the change doesn’t affect the decision δ. Thus, we 

don’t need to change the type of ν. We can verify that �φ3�δ = ν = �φ2�δ 

and �φ3�δ� = ν = �φ1�δ� for all other δ� . 
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Case VAR: The proof is similar to that of case CON and is omitted here. 

Case APP: For this case we don’t need to construct anything but only have to show 

that the lemma is preserved over applying the APP rule. The induction hy­

potheses are 

Γ � e1 : φ11|Δ11 Γ � e2 : φ12|Δ12 Γ � e1 e2 : φ1|Δ1


Γ � e1 : φ21|Δ21 Γ � e2 : φ22|Δ22 Γ � e1 e2 : φ2|Δ2


Γ � e1 : φ31|Δ31 Γ � e2 : φ32|Δ32 Γ � e1 e2 : φ3|Δ3


�φ31�δ = �φ21�δ �φ31�δ� = �φ11�δ� ↓δΔ31 = ↓δΔ21 ↓δ� Δ31 = ↓δ� Δ11 

�φ32�δ = �φ22�δ �φ32�δ� = �φ12�δ� ↓δΔ32 = ↓δΔ22 ↓δ� Δ32 = ↓δ� Δ12 

We need to show that 

�φ3�δ = �φ2�δ �φ3�δ� = �φ1�δ� ↓δΔ3 = ↓δΔ2 ↓δ� Δ3 = ↓δ� Δ1 

In the following we show �φ3�δ = �φ2�δ with the assumptions that ↑(φ31) = 

φ31l → φ31r and ↑(φ21) = φ21l → φ21r. 

�φ3�δ = �φ31l �� φ32 � φ31r�δ 

= �φ31l�δ �� �φ32�δ � �φ31r�δ By Lemma 14 
= �φ31l�δ �� �φ22�δ � �φ31r�δ By induction hypothesis 
= �φ21l�δ �� �φ22�δ � �φ21r�δ By Lemma 14 and induction hypothesis 
= �φ21l �� φ22 � φ21r�δ By Lemma 14 
= �φ2�δ 

We can prove �φ3�δ� = �φ1�δ� similarly. Since Δ3 = Δ31 ∪ Δ32 = Δ21 ∪ Δ22 = Δ2, 

we have ↓δΔ3 = ↓δΔ2. 

The proofs for other cases are very similar to the case APP and are omitted here. 
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We use an example to illustrate the proof process. We consider constructing the 

new typing for the example expression e = not (succ 5) under the following typ­

ings. 

Γ � e : φ1|Δ1 φ1 = A〈⊥,a1〉 Δ1 = {(�(not), A〈Bool → Bool,Int → a1〉) 
(�(succ),B〈Int → Int,Int → Int〉)} 

Γ � e : φ2|Δ2 φ2 = B〈⊥,Bool〉 Δ2 = {(�(not), A〈Bool → Bool,Bool → Bool〉) 
(�(succ),B〈Int → Int,Int → Bool〉)} 

We consider δ = {A, B̃} and observe that �φ1�δ =⊥ and �φ2�δ = Bool. We construct 

Γ � e : φ3|Δ3 as follows. For not, the choice created is A. Since Ã ∉ {A, B̃}, the type 

for not is A〈Bool → Bool,Int → a1〉, the type for not in Δ1. For succ, the created 

choice is B. Since B̃ ∈ {A, B̃}, the type of succ, written as φsucc, can be computed 

as follows. 

φsucc = B〈Int → Int,expand({A, B̃},Int → Int,Int → Bool)〉 
= B〈Int → Int, A〈expand(B̃,Int → Int,Int → Bool),Int → Int〉〉 
= B〈Int → Int, A〈B〈Int → Int,Int → Bool〉,Int → Int〉〉 
= B〈Int → Int, A〈Int → Bool,Int → Int〉〉 

The type for 5 is always Int. Now that we have specified types for not, succ, and 

5, we compute φ3 = A〈B〈⊥,Bool〉,a1〉. The content for Δ3 is easy to construct, and 

we omit it here. It is easy to verify that �φ3�{A,B̃} = Bool = �φ2�{A,B̃} and that for 

all other δ� we have �φ3�δ� = �φ1�δ� . We can verify that the relation given in the 

lemma holds for Δ1, Δ2, and Δ3. 

Lemma 20 (Generalizability of type changes) For any two typings 

Γ � e : φ1|Δ1 and Γ � e : φ2|Δ2, if neither �φ1�δ ≤ �φ2�δ nor �φ2�δ ≤ �φ1�δ holds, 

there is a typing Γ � e : φ3|Δ3 such that 
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• �φ3�δ ≤ �φ1�δ, �φ3�δ ≤ �φ2�δ and for all other δ� , �φ3�δ� = �φ1�δ� .


• ↓δΔ3 ≤ ↓δΔ1, ↓δΔ3 ≤ ↓δΔ2 and for all other δ� , ↓δ� Δ3 = ↓δ� Δ1.


The proof strategy is similar to that for proving Lemma 19. However, there is 

a subtlety here compared to that proof. In proving Lemma 19 we take something 

directly from the second typing and merge it into the first to get the third without 

any changes. This strategy is insufficient here. We use two examples to illustrate 

the problem, both regarding the expression not 1. 

In the first example, we remove the type error with the following potential 

typings. 

Γ � not 1 : φ1|Δ1 φ1 = A〈⊥,Int〉 Δ1 = {(�(not), A〈Bool → Bool,Int → Int〉)} 
Γ � not 1 : φ2|Δ2 φ2 = A〈⊥,Bool〉 Δ2 = {(�(not), A〈Bool → Bool,Int → Bool〉)} 

We observe that these typings have different result types and neither is more 

general than the other. We know that there must exist a third typing that gives 

a more general result type. The type that is more general than both Int and 

Bool is a type variable, say a. We can achieve this result type by changing not 

to something of type Int → a. This change can be derived by looking at the types 

that not is changed to in both typings. The type of not is changed to Int → Int and 

Int → Bool, respectively. A type that is more general than the both is Int → a. 

In general, however, we need to accommodate the impact of changing the type 

for some subexpression on the typing of the whole expression. In the second ex­

ample, we use the following typings to remove the type error in not 1. 
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Γ � not 1 : φ1|Δ1 φ1 = A〈⊥,Int〉 Δ1 = {(�(not), A〈Bool → Bool,Int → Int〉), 
(�(1),B〈Int,Int〉)} 

Γ � not 1 : φ2|Δ2 φ2 = B〈⊥,Bool〉 Δ2 = {(�(not), A〈Bool → Bool,Bool → Bool〉) 
(�(1),B〈Int,Bool〉)} 

We consider δ = {Ã, B̃} and observe that �φ1�δ = Int and �φ2�δ = Bool. Now in or­

der to get a more general typing for the expression with a being the result type, 

we need to change the types assigned to subexpressions not and 1. First, how 

should we change the type for not? Since these two typings assign it Int → Int 

and Bool → Bool, respectively, a more general type is of the form a1 → a. In other 

words, we assign a1 → a to not. Now how about the type for 1? These two typings 

change it to Int and Bool, respectively. We may be tempted to assign it an arbi­

trarily more general type, for example a3. However, this change will make not 1 

ill typed because the domain type of the function, a1, doesn’t match the type of the 

argument, a3. We should instead assign 1 the type a1, taking the fact that not has 

changed to a1 → a into account. 

In summary, while we need to generalize the types for certain subexpres­

sions during the construction process, we should perform it consistently among 

all subexpressions. To simplify the presentation, we assume that there exists a 

function postgene(l,τ) that returns the type for the location l in e after general­

ization. We usually omit the subscript when the context makes it clear what e is. 

When no constraints have been seen so far for l in e, postgene(l,τ) returns a type 

that has the same structure as τ except that primitive types are replaced by fresh 

type variables. Otherwise, it returns the type that satisfies the type constraints 
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among subexpressions. For example, consider again e = not 1. For e, we have 

postgen(�(not),Int → Int) = a1 → a2. Since we haven’t seen any constraints for 

not, we assign a fresh type variable to each Int. For 1, we need to consider the 

constraint between not and 1, and we have postgen(�(1),Int) = a1. In static typing, 

the constraints among all subexpressions are easy to derive. Thus, the function 

postgene(l,τ) is easy to compute and the definition is omitted here. 

PROOF of Lemma 20. The proof is by constructing a new typing based on the given 

typings so that both conditions of the lemma are satisfied. 

Case CON: Assume e = ν, φ1 = D〈γ,φ� 
1〉, and φ2 = D〈γ,φ� 

2〉, where γ is the type of 

ν. We further consider two sub-cases. 

(a)	 D̃ ∈ δ. Let φ3 = D〈γ,expand(δ,φ� 
1,postgen(�(ν)))〉 and Δ3 = {(�(ν),φ3)}. 

We can easily verify that both conditions of the lemma hold. 

(b)	 D̃ ∉ δ. Let φ3 = φ1 and Δ3 = Δ1. We simply don’t make any change 

because changing ν will not affect the result selected with δ. 

Case VAR: The proof is similar to that for CON and is omitted here. 

Case APP: We show the proof for the first condition about the relation among φ1, 

φ2, and φ3. Since the proof about relations among Δ1, Δ2, and Δ3 is almost 

the same as in proof for Lemma 19 and is rather simple, we omit it here. We 

have the following induction hypotheses. 
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Γ � e1 : φ11|Δ11 Γ � e2 : φ12|Δ12 Γ � e1 e2 : φ1|Δ1 

Γ � e1 : φ21|Δ21 Γ � e2 : φ22|Δ22 Γ � e1 e2 : φ2|Δ2 

Γ � e1 : φ31|Δ31 Γ � e2 : φ32|Δ32 Γ � e1 e2 : φ3|Δ3 

�φ31�δ ≤ �φ11�δ �φ31�δ ≤ �φ21�δ �φ31�δ� = �φ11�δ� 
�φ32�δ ≤ �φ12�δ �φ32�δ ≤ �φ22�δ �φ32�δ� = �φ12�δ� 

We need to show that 

�φ3�δ ≤ �φ1�δ �φ3�δ ≤ �φ2�δ �φ3�δ� = �φ1�δ� 

In the following, we show �φ3�δ ≤ �φ1�δ with the assumptions that ↑(φ31) = 

φ31l → φ31r and ↑(φ21) = φ21l → φ21r. 

�φ3�δ = �φ31l �� φ32 � φ31r�δ 

= �φ31l�δ �� �φ32�δ � �φ31r�δ By Lemma 13 
=� � �φ31r�δ By definition of postgen 
= �φ31r�δ 

≤ �φ11r�δ By induction hypothesis 
= �φ1�δ By a similar reasoning for φ11r 

We can prove �φ3�δ ≤ �φ2�δ and �φ3�δ� = �φ1�δ� similarly. 

The proof for other rules is similar to that for APP and is omitted here. � 
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