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RANGE OF USEFULNESS OF BETHE'S
SEMIEMPIRICAL NUCLEAR MASS FORMULA

INTRODUCTIOK

The complicated experimental results on atomic nuclei
have been defying definite interpretation of the structure
of atomic nuclel for a long time:. Even though various
theoretical methods have been suggested, based upon the
particular aspects of experimental roluita, it has been
impossible to find a successful theory which suffices to
explain the whole observed properties of atomic nuclei.

In 1936, Bohr (3, p« 3l4li) proposed the liquid drop
model of atomic nuclel to explain the resonance capture
process of nuclear reactions. The experimental evidences
which support the liquid drop model are as follows:

1. Substantially constant density of nucleil

with radius
R = R, AY/3 (1)
where A is the mass number of the nucleus
and Ro is the constant of proportionality
with the value of (1.5 0.1) x 10" 3em.

2. Short range effect of nuclear force.
3., Fission by thermal neutrons of 0235 and other
odd-N nuclides.



li. Systematic variation of o decay energies

with the numbers of neutrons and protons.

The liquid drop model assumes that the atomic nucleus
behaves, in many respects, like a droplet of incompres-
sible matter. .

'Ho'cver, although the liquid drop model successfully
explains many nuclear characteristies, an independent-
particle model has been suggested by many people
(14, p. 1969), (12, p. 1766), (8, p. 1275) to explain
many nuclear properties such as nuclear angular momentum,
magnetic dipole moments, electric quadrupole moments,
islands of isomerism, relative parity of nuclear levels,
and frequency of stable isotones and isotopes.

It has been suggested (6, p. 625) that special numbers
of neutrons or protons in the nueleus form & particularly
stable configuration, and it is especially prominent for
the nuclei of 50 end 82 protons and for 50, 82, and 126
neutrons. (15, pe. 235) For accounting for these proper-
ties of atomic nuclei, the liquid drop model is inherently
insufficient.

Extensive investigations with regard to these aspects
have led to the realization of the exceptional properties
of atomic nuclei having 2, 8, 20, 28, 50, 82, and 126
protons or neutrons. These numbers are usually referred

to as nuclear magic'numborn.
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We know that atoms with 2, 8, 18, etec., electrons
are exceptionally stable, and we describe these configu-
rations as closed electron shells, By analogy with this
description, we deduce that nuclear shells are closed by
magic numbers of protons or neutrons.

If we agree with the nuclear closed shell model, we
shall arrive at the conclusion that when a new shell is
begun, the binding energy of the newly added nucleons
should be less than that of the preceding nucleons which
served to complete the preceding shell. This fact was
noticed early by Bethe in 1936 (2, p. 173). We should
thus expect that the 3d, 9th, 2l1st, 29th, S1st, 834, and
127th nucleon of a given kind is less strongly bound than
the 2d, 8th, 20th, 28th, 50th, 824, and 126th nucleon of
the same kind.

The purpose of thils paper is to investigate this as-
pect of atomic nuclei by means of the liquid drop model.
The theoretical results from the liquid drop model will
fail to predict accurately the binding energies of atomic
nuclei in the neighborhoods of closed shells, The liquid
drop model has b‘en developed with the use of the
so-called semiempirical nuclear mass formula, which was
first proposed by Woisizcker (19, pe 431) in 1935 and was
simplified later by Bethe (2, p. 165). Therefore, we are
going to investigate Bethe's form of the semiempirical
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nuclear mass formula by comparing theoretical results with
experimental data in terms of average binding energies and

binding energies of last nucleons,



NUCLEAR BINDING ENERGIES AND
SEMIEMPIRICAL MASS FORMULA
If we express the mass of a nucleus using atomic mass
units, the mass 1is very close to an integer which is the
mass number of the nucleus, However, the mass of a
nucleus is always less than the arithmetical sum of the
masses of constituent protons and neutrons, The difference
between these two values,
M(A,Z) - (ZMg + N M,),
(where M(A,Z) is the atomic mass, Z and N are the numbers
of protons and neutrons, and My and M, are the masses of
hydrogen atom and neutron) is supposed to be the binding
energy of the nucleus, Furthermore, dividing this mass
defect by the mass number of the nucleus, we get an
expression for average binding energy

B.E./A = M(A,Z) - (Z Mg + N ng__). (2)
A

which 1s supposed to be released by each nucleon to form
the nucleus. The functional relationship between the
average binding energy and the mass number is plotted in
Figure 1. This curve tells us a very significant fact
that the average binding energies are almost constant for
nuclei with A> 20, with the value of about 8 Mev.

Fprom the liquid drop model we can deduce the fact
that those nucleons which are visualized as being at the

nuclear surface have fewer near neighbors than nucleons
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which are deep within the nuclear volume. We can expect
a deficit of binding energy for these surface nucleons,
and the deficit of total binding energy will be propor-
tional to the surface area of the nucleus. So, we can
conclude that the total binding energy of the nucleus will
partly decrease in proportion to the surface area which 1s
also proportional to Az/3 by equation (1).

We know from the experimental facts that the only
known long-range force in nuclei is the coulomb repulsion
between protons. So, we again assume that there is a
deficit of binding energy due to the disruptive coulomb

force., This deficit will be proportional to 22/11/3,
where A1/3 is proportional to the radius of the nucleus

by equation (1).

Another deficit in binding energy depends on the
isotopic number (N-Z) and is proportional to (N-Z)2/A.
Among the lightest elements there is a clear tendency for
the number of neutrons and protons to be equal. This
means that the nuclear binding becomes weak for the nucleus
of large isotopic number. In rough apﬁfoximation, we can
set this deficit of binding energy due to symmetry effect
to be proportional to (N-Z)z/h, because the symmetry
effect diminishes as A becomes large. This conclusion
was also deduced from the study of nuclear forces.

(2, pe 157)
With the above properties of nuclear binding energies



Weizsacker (19, p. 45l) derived an expression for the
total mass (energy) of a nucleus as a function of Z and
N; and following his idea, Bethe (2, p. 165) derived the
following form for the total mass of a nucleus which is

simpler than Welzsacker's:
M(Z,N,A) = Z Mg+ NMy, - « A + B (N-2)%/a
o 4273, g. (e2/R,) 22/a1/3 ' ()

where o , B and a’ are empirical constants having
dimensions of energy. The first two terms in this formula
are evidently the sum of the masses of the constituent
nucleons, and the following terms respectively represent
volume energy, asymmetry, surface energy, and coulomb
repulsion energy effects.

This formula has been tested with experimental values
of nuclear masses, and also the physical significance of
the formula has been investigated extensively (L, p. L26),
(1, pe 393), (9, pPe 293). So, we have now the following
modern version of Bethe's semiempirical nuclear mass
formula:

M(Z,N,A) = WgZ + MoN = & A + @ (N-2)2/A

o7 42/3 ¢ z(z-1)Y/3 + § (5)
- 36 1'3/'*

where J for even-A even-Z

36 A'B/h for even-A odd-Z

0 for odd-A



in milli mass unit.
Fpom the semiempirical mass formula (5) we can deduce
the theoretical expression for average binding energy as

follows:

B.E./A = M(Z,N,A) - (HHZ + Hﬂ %
A

o+ p(N-2)2/a2 + IAV3 ¢ 2(z-1)/a/3 + &,
(6)

A somewhat more detalled view of nuclear forces is
given by the variations in the binding energy of the "last"
proton or neutron in a group of nuclides (7, p. 302). The
energy required to remove one neutron from the nucleus
(Z,N) 1is called the neutron separation energy, S,, and can
be written

Sn(2,N) = M(Z,N-1) + M, - M(Z,N) (7)

where M(Z,N) is the atomic mass of the nuclide, and
M(Z,N-1) is the atomic mass of the lighter isotope which
results when one neutron is removed from the nucleus
(Z,N)e In terms of binding energies, the neutron sepa-
ration energy S,(Z,N) is the increment in total nuclear
binding energy when one neutron is added to the lower
isotope, (Z,N=1), thus

Bn(Z,N) = 8,(%,N) = B.E.(Z,N) - B.E.(Z,N-1). (8)
For this reason, the neutron separation energy is called

the "binding energy of the last neutron." The binding
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energy of the last proton is also defined by
By(Z,N) = S,(2,N) = M(Z-1,N) + My - M(Z,N)
= B,E.(Z,N) - B.E.(2~-1,N). (9)
In a similar say we may define the binding energy

of any nuclear subgroup x(z,n) by (10, p. 57)
By(Z,N) = M(Z-z, Nen) + My(z,n) - M(Z,N). (10)

Nucleon separation energies are the nuclear analogues

of the first ionization potentials of atoms,



11

RESEARCH PROCEDURE

To investigate the usefulness of the semiempirical
nuclear mass formula, we proceeded with the following two
methods:

l. Compare the variations of average binding
energies from experimental results with the
values from semiempirical mass formula.

2, Calculate the binding energies of the last
neutrons and protons from the masses of
nuclides and compare these values with
average binding energies from semi-
empirical mass formula.

For the flrst procedure, i1t was very important to
obtain the exact values of the masses of as many nuclides
as possible. For thls purpose, we used the atomic mass
table by Trigg (18) for most of the calculations., Other
tables (17, p. 639), (5, p. 370) were also used. The
method of getting experimental values of average binding
energies was very simple. Equation (2) was simply used
with

Mg = 1.008146 atomic mass unit

M, = 1.,008986 atomic mass unit,
and the experimental values of average binding energies

were calculated for 171 nuclei. Most of these nuclel were
stable,
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The second step of the investigations was to calculate

the theoretical average binding energies by using the
semiempirical mass formula - equation (6). The main
problem of this procedure was to determine the semiempiri-
cal constants which appeared in equation (6). The deter-
mination of the semiempirical constants has been made by
many people (7, p. 383), (10, p. 287) in various ways.
The following table collects the evaluations of the semi-

empirical constants in milli-mass units:

TABLE I
SEMIEMPIRICAL CONSTANTS

& 40 § £
Bethe (1936) 14,885  83.770 14.176 0.623
Fermi (1945) 15.04 83. 1.0 0.627
Feenberg (1947) 15.035 77.755 14.069 0.627
Fowler (1947) 16.432  96.872 17.989 0.7
Metropolis-

Reitwiesner (1950) 15.0825 82.970 14.0 0.627
Green (1954) 16.918 101.78 19.120 0.763
Evans (1955) 15.1l 81.6 13.96 0.64
Halliday (1955) 15.04 83. 13.35  0.627

From the above table, the last four sets of constants
were examined because we should have exact values of the
masses of nuclides in determining some of the semiempirical

constants and we could admit only recent data on the atomic
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masses.

Among the last four sets, Green avolded the conven=-
tional practice of determining §&§ from the coulomb-energy
difference of light mirror nuclei, and determined all
four energy coefficlents from a least-squares adjustment
to the mass data for ( -stable nuclides. (7, p. 383)
This procedure leads to a larger value for £ . So, we
omitted his values from our consideration in determining
the constants., The semiempirical constants were determined
from the values of MotrOpolia-Roitwoiaﬁor. Evans, and
Halliday as follows:

X ¢ = = Since their three values were spread

with almost equal widths, it seemed
best to take mean value of those three,
The mean value fell in the center of

the total range.

48+ = - Two values were 83, and Evans had 81.6t 3,6,
Since 83 was within the range of un-
certainty of the Evans' value, we took

83.

Y « = = Since their distribution was not
unique, we again took the mean of

those three,



§, = = Two values were 0,627 and Evans had
0.6 £ 0,02, Since the double value
0.627 was within the range of un-
certainty of the Evans' value, we
took 0.627.
In addition to this consideration, it was also noticed
that they used the masses of proton and neutron
Mg = 1.008142
M, = 1.008982.
However, their values differed from our new values by only
four-~thousandths in milli-mass units; therefore, these
differences seemed to be negligible for the final values
of the semiempirical constants.
From the above arguments, the following values were
accepted for the calculation:
o = 15,088 m.m,u.
4 = 83 MeMmele
¥ = 13,77 memeu.
$ = 0,627 mum.u.
To get accurate data, Standard Mathematical Tables, pub-
lished by Chemical Rubber Publishing Company were used -
particularly for the values of 11/3 and Ah/3.
To calculate the binding energies of the last nucleon,
equations (7) and (9) were used. Since we do not have so

many data on the isotopie nuclear masses, it was very hard
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to calculate enough data to study the binding energies
of the last nucleon. In particular, a number of data
for the nuclei in the neighborhood of magic numbers were
badly needed. So, the unknown nuclear masses in these
regions were calculated from decay energies, experimental
data from ( ¢ ,n) thresholds, (n, Y ) reactions, and
(d,p) reactions. (13, p. 4B81), (11, p. 362)

For instance, the binding energy of the last neutron
for L1139 was calculated from the value of Bn139, the .
decay energy of Bal39 (3,5 Mev), and the decay energy of
1al38, (11, p. 361) It has been reported (16, p. 303)
that a 1-Mev ¢ -ray occurs in the K-capture of Ln138;
thus, this represents a lower limlt to the decay energy.
Then the binding energy of the last neutron in Lal39 is

B, (57, 82) & 5.2 + (3.5 t+ 1.0) = 9,7 (Mev).

All the calculated data were converted from atomic

mass unit to Mev by using
1 am.u. = 931,16 Mev,

and the differences of average binding energies between
experimental and theoretical values were evaluated for
all nuclei. To see the variation of the binding energiles
of the last nucleon, the calculated values were compared
with the theoretical average binding energies from the
semiempirical formula.,

The results of the first comparison between experi-

mental and theoretical average binding energies were
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plotted in Figures 2 and 3. In Figure 2, the differences
between experimental and theoretical average binding
energies were plotted as a function of the number of
neutrons; and in Figure 3, the differences were plotted
as & function of the number of protons,

The results of comparison between binding energies
of the last neutron and average binding energies showed
that there were three distinguishable parts in the
neighborhood of the neutron magic numbers of 50, 82, and
126, So, each of these regions was plotted respectively
in Pigures lj, 5, and 6.
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RESULTS

From Figure 2 we can see that differences between
experimental and theoretical average binding energiles
take values from -0.7 Mev to 0.1 Mev, so that the maxi-
mum range of deviation is almost 0.8 Mev. The deviation
is quite large for the nuclei with neutron number of less
than 20, but the range of deviation becomes quite small
for the nuclei with neutron numbers of more than 30.
This means that the semiempirical nuclear mass formula
is unusable for the nuclel in which the number of
noutroqp is less than 20,

It was a very interesting fact that we could find
several peaks in Figure 2 for the neutron numbers of
20, 28, 50, 82, and roughly 126. It means that the
experimental average binding energy becomes relatively
large when the number of neutrons reaches a magie
number, This 1s the direct proof of Elsasser's pro-
posal in which he suggested that special numbers of
nucleons in the nucleus form a particularly stable
configuration (6, p. 635).

It was also found that the deviation curve drops
down after the peaks around the magic numbers of neutrons.
The semiempirical mass formula cannot predict this sort
of periodical phenomenon on average binding energies,

Figure 3, in which the deviations between experimental
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and theoretical average binding energies were plotted
against the number of protons, shows a shape similar to
Figure 2. It was again very irregular in the region of
the numbar.of protons less than 20, but peaks at the pro-
ton numbers of 20, 28, and 82 were very clear. This time
the magic number of 50 protons did not appear clearly.
This also showed peaks for the nuclei of L2, 48, and Sk
protons.,

In Figurea 4, 5, and 6, the deviations of the binding
energy of the last neutrons were plotted against the
number of neutrons for the regions of 50, 82, and 126
neutrons. It was very noticeable that the binding energy
of the last neutron usually teakes on larger value than
the theoretical average binding energy for the nuclei
having even numbers of neutrons, and it is less than the
theoretical average binding energy for the nuclei having
odd numbers of neutrons. For 126 magic neutrons, the
deviation was negative even for even-neutron nuclei; but
the even-neutron nuclel gave larger values than odd-neutron
nuclel through the whole region.

In Figure L, we can see a very definite discontinuity
of the even-neutron curve at the magiec 50 neutrons. The
rapid drop of more than 3 Mev was observed for the even-
neutron curve at 52 neutrons, and it even becomes negative
for 5l neutrons. The odd-neutron curve takes on rela-

tively small values for the number of neutrons less
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than 50, but the discontinuity was not so clear.

In Figure 5, both the even and odd curves showed
very definite discontinuities at the magiec number of 82.
The even-neutron curve continued to decrease until N = 75,
but it increased very rapidly in the region 75 < N < 82,
The sharp maximum takes place exactly at N = 82, and here-
after the curve decreases about 2 Mev while two more
neutrons are added.

In this region the odd-neutron curve shows a very
clear peak at N = 81; it decreases about 2 Mev by N = 83;
and it goes down 2 more Mev by N = 85, After this, the
curve increases again.

In Figure 6, where the deviations of the binding
energy of the last neutron from the average binding energy
were plotted for the region of N > 110, w? can see that
the even-neutron curve takes uniform values and finally it
drops about 2.5 Mev at the neutron number of exactly 126,
The odd-neutron curve also shows & very sharp peak in the
neighborhood of 126 neutrons. The drop after the magie
number of neutrons was of the order of 5 Mev.

From the above investigations, we can see in general
that the appearances of magic numbers are so prominent that
it is almost impossible to ignore the periodicity of the
atomic nuclei., The liquid drop model cannot say anything
about this periodicity, and it can be thoroughly understood
from the above investigation that the theoretical prediction
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of nuclear binding energies from the semiempirical nuclear
mass formule 1s very poor in the neighborhood of magic
numbers.

In Figure 7 the deviation of the binding energy of
the last proton was plotted against the number of protons;
however, the investigation of this graph shows that the
magic properties for protons are uncertain from the view-
point of nuclear binding energies. It would perhaps
result from the fact that we have too many isotopes so
that the detailed analysis for a particular number of
protons is almost impossible.
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CONCLUSIONS

The following conclusions have been reached from the
preceding investigations of the semiempiricel nuclear mass
formula for nuclear binding energies:

l. It is unavoidable for one to conclude that

the periodical magic properties of atomic
nuclei are essential in interpreting the

Qtruoturo of atomic nuclei.

2. The semiempirical mass formula, together
with the liquid drop model of atomic nuclei,
is entirely incapable of explaining these
magic properties. If the semiempirical mass
formula is the final theoretical deduction
in studying atomic nuclei, some additional
factors must be included in the semiempirical
mass formula so that it can predict accurately

the magic properties of atomic nuclei.

3. The semiempirical mass formula is very

incorrect for light nueclel.

. The difference in the binding energy of the
last neutron between odd and even neutron
nuclides is very definite. Usually the

binding energy of the last neutrons for the
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even-neutron nuclei is larger than that

of the odd-neutron nuclei, This is another
evidence of the fact that nucleons form
relatively stable configurations by pairing
with each other.

The semiempirical mass formula must be
developed further if we insist on the
correctness of the liquid drop model of the
atomic nucleus, Mathematically, the semi-
empirical mass formula has the form of a
series expansion of a funcetion of two
variables., If we can find the explicit
form of such a function, we should be able
to determine a few more terms than the

formula we now have. However, the physical

significance of such procedures 1s obscure.
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NUCLEAR BINDING ENERGIES IN MEV
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(Continued)

: - —
Ele~ (BE/A) (BE/A) Bp B, (BE/A)exp. - (3275) (BE?A)
ment o N A exp, _ theor, (BE/A) theor. theor. theor.
Ll 8 8.78 10, 1.70
Kr 36 lltg g 8.70 B.?h 70&2 "000‘.‘. - 1.28
8 8.72 8.74 10. 4L -0.,03 1.70
Eg 8 8.71 8.71 : 0
Rb 37 85 8.19 8073 6.80 "0.01* - 1.93
L8 86 B8.71 B'E 9.78 -0.03 1.05
9 8 8.70 8. 2 8- 3 -0012 - 0.39
0 8 8.73 8072 7.88 100 7 0.01 e 0.8!‘. 2.15
Y 9 50 89 B8.71 8.70 g. 6 11.70 0.01 - 1.24 3.00
zr 0 50 90 8.71 B.Zg . 1 0.01 b 0009
g; gé 3.70 g. .$ﬁ 0.01 - 1.hﬁ
: .70 .70 . 0 0.0
% 9 8016 a.za "0.02
9 8.63 8.65 -0,02
Nb 1 52 93 8.67 8.68 6.19 -0,01 - 2.49
Mo L2 50 92 B.gg 8.65 13.10 0.02
52 9 8. 8.60 7.68 0.06 - 0-93
5 9 8.65 a.zs 8.00 -0.10 - 0.75
96 8'6 a. Z 8027 -0.02 - o.[‘.o
5 9 8. 806 7.62 -0.02 - 1.03
Ru Iy 52 9 8.60 8.61 -0.01
s 98 8.62 8.57 0.05
P& L6 59 105 8.60 6.65 - 1.95 %
Ag 47 60 107 B8.50 8.58 -0.08
62 109 8.51 8.58 2.01 -0.07 - 6.57



(Continued)

Ele- (BE/A) (BE/A) B B, (BE/A)exp. - (BE/A) (BE/A)
ment 2 N exp. theor. P (BE/A)theor. theor. theor.
cd 58 106 8. 8.50 0.04
L 60 108 B.?; 8.57 13.55 -0,02 .98
62 110 8.55 B;EZ 12.65 -0,02 l;.08
6 111 8.5 8.5 7.23 -0.03 - 1'83
6 112 8.5 8.56 2;23 -0.02 0.67
6 11 8.52 8.55 °78 -0.02 - 1.82
6 1 8.53 8.55 8.9 -0.02 0.41
68 11 8.51 8.5 -0.02
In b9 6 113 8.52 8. 6.10 -0.02 - 2.45
6 115 8.52 8.5h 7.19 -0.02 - 1.35
Sn 50 62 112 8.51 8.53 =0.02
6 1 8.52 8.53 8.56 -0,02 0.03
6 11 8.51 8.53 -0.01
23 117 8051 8.52 7.20 “‘0.01 - 1.317
118 8.51 8.52 9.06 -0,01 0.534
70 120 8.50 8.50 8.95 0 0.45
72 122 8.9 8. 0.01
74 124  8.47 8.45 0.02
Sb 51 70 121 8.48 8.149 5.71 -0.01 - 2.78
zg 123 8.48 8.47 T.12 0 - 1.36
Te 52 120 8.4 8.50 -0.02
70 122 &. B. 8.21 -0-02 - 0.28
¢ A 8.46 8. 6.74 -0.02 - 1.21;{;:
. B.hz 8.48 7.79 2.11 -0.01 - 0.69 0.63
73 125 8.4 8.46 .67 -0.01 - 1.79



(Continued)

-

- Bn-
Ele- (BE/A) (BE/A) Bp Bp (BE/A)exp. - (BE/A) (BE/A)
ment 7 N A exp, theor, (BE/A)theor, theor., theor.
7 126 8,46 8.46 8.74 0 0.28
S 0.02
I s3 74 127 8.44, 8.4  6.58 -0.01 - 1.87
Xe sﬁ 7 132 8.43 8.41 8.91 0.01 0.49
80 132 8.4 8.39 0.0
82 136 8.4o 8.35 . 0.0
Ba 56 80 136 8.4o0 8.40 0.01
TR b G gE
La 57 82 139 8.30 8.36 461 9.7 0 - 3.76 1.3}
Ce 5; 32 1h9 8.38 3.36 11.50 g.gg 0.02 3.13 o
1 03 . - .
8 12 8.36 B.3E 0.01 - 0.62
Pr 9 82 11 8.36 8.35 0.02
Nd 0o 85 1 8.29 8.32 2.97 -0.03 - 5.35
62 82 1 8.31 8.31 0
% 2 o - 338
1 1 8.05 .0ly - 2.01
o 123 18& 8.05 2.62 - 0.42
e 8o HE X
Ir 171 1 191 7.87 7:92 -11.60 ) -0.12 -19.8
Pt 78 n %33 %733 ;'39 -1ﬁ'13 :g'%é e 4+
11 194 7.94 7.97 21.46 -0.0l 13.49

he



(Continued)

Ele- (BE/A) (BE/A) B B (BE/A)exp. = (3271) (BE/A)
ment Z. N A exp. theor, P (BE/A) theor, theor, theor,
117 195 7.93 7.96 6.13 -0,03 - 1,83
118 196 7.93 7.96 -0.0
” ! 120 196 7-81 7.95 "'00
Au ?9 118 19 ?o 7 7.95 = 3.87 -0, "‘11.82
Hg 80 116 19 7.90 7.95 0,05
121 201 7.go 7.92 -0,02
1 204 7.88 7.90 -0,02
T 81 122 20 7.79 7.91 =0,12
12 20 7'30 6. g - 1,36
1 20 7.80 7. g 9.81‘. Zo "‘0.10 1.9'+ b 0. 1
12 206 7.8 .23 - 1.65
12 23& 7.88 6.32 - 0.91
12 2 7.88 3. = ll..OZ
12 209 7.86 5,08 - 2.78
129 210 7.85 3.00 - .85
Pb 82 122 20 7.83 7.30 28.72 -0,02 20.82
1 20 708 70 g 26-].].0 8.15 "0.01 18.51 0026
12 zgg 7.88 748 6.78 -0.01 - 0,10
12 2 7.87 7.88 T+34 -0.01 - 0.53
12 209 7.BZ 3.87 - 14,00
1 210 7.8 5+20 - 2.66
Bi 83 126 209 7.86 7.87 4.79 yann =0.01 - 3.08 - o.hg
131 214 748 3.3 - Lyt
Th 90 232 7.63 7.70 -0.07
U 92 12 234 7.61 7.70 -0.09
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(Continued)

B, & -
Ele- (BE/A) (BE/A) B B {BE/A eXp. - (BE?A) (BE/A)
ment X A exp. theor. P n BE/A)theor. theor. theor,
43 235 7.60 7.69 5.95 -0.09 - 1.75

i 3 s k& ~0.09 i
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