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Chapter 1: Introduction 

The objective of this research is to offer a novel perspective on factors influencing re­

silience and safety of complex systems. Further, a framework is developed to analyze 

and evaluate system resilience during early stages of the design process. Specifically, 

the three research questions of this dissertation are: (1) Can resilience be assessed 

in the concept of evaluation phase of engineering design through exhaustive require­

ment verification and other analysis? (2) Can resilience be improved by changing 

the design topology? and (3) Can a high overhead cost associated with resilience be 

minimized through enhancing system redundancies? These questions are addressed 

in the following chapters. 

This dissertation is structured using the Manuscript Option: Chapters 3-6 are 

publications written throughout the last three years, submitted to various journals in 

Engineering Design. Each manuscript is preceded by a Heading Page that provides 

information on manuscript title, co-authors, journal name, and submission date. 

The State of the Art for each manuscript is summarized in the Chapter 2 Literature 

Review for completeness and ease of reference. 

1.1 Motivation 

In recent years, technological advancements and a growing demand for highly reli­

able complex engineered systems, e.g., aviation, power generation, transportation, 
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and health care have made the safety assessment of these systems ever more im­

portant. These systems are considered safety-critical and are required to perform 

more reliably in dynamically uncertain operational environments. Consequently, the 

development of systems with broader fault detection and diagnosis capabilities is 

vital for protecting lives, property, and continuity of service. Looking back at the 

Columbia space shuttle incident of 2003, it is evident that the illogical pursuit of 

the design mantra of better, cheaper, faster led to the decisions that eroded safety 

without realizing that the risks had dramatically increased [1]. In the aftermath of 

such catastrophic failure and similar major accidents, it has become apparent that 

complex systems design and development require both ultra-high safety and high 

performance. 

1.1.1 The Concept of Complex Systems 

Every time two or more elements, i.e., human, softwares, and engineered systems, 

perform together to achieve a common goal, a system is born. If all the components 

of the system do not perform as expected, the whole system may fail. Hence, even 

the smallest components in electronic, mechanical, and software systems, may be 

essential to the success of the system [2]. 

On the other hand, system of systems (SOS), or a complex system is a collection 

of other elements which themselves are distinct complex systems that interact with 

one another to achieve a common goal. The higher the number of systems, the higher 

the possibility of negative interaction occurrence, that is emergence. The reason for 



any specific system component. Pariès [3] categorizes these emergent properties into 

three distinct types. The subject of emergence has been researched extensively, and 

three types of emergence are identified: (1) normal emergence, (2) weak emergence, 

and (3) strong emergence. A system containing all three could be considered to be 

resilient. 

Possible to predict if all deterministic 
effects are understood and analysed

Expensive to predict.
(Causes are completely random) 

Complex Systems

Minimize the 
consequences of failures

Weak Emergence Strong Emergence 

Recover from 
failures

Resilient System

Prevents functional losses 
and disruptions

Normal Emergence 

3 

this is that (1) the systems constituting the SOS were designed independently and 

were not originally designed to work together, and (2) each system in the SOS may 

be of a different technology. 

The SOS performs functions and achieves results that can not be achieved by any 

specific component. More precisely, the performed functions are characterized by the 

behaviors that are emergent properties of the entire SOS and not the behavior of 

Figure 1.1: Resilience and Emergence in Systems.
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The three categories of emergence are depicted in Figure 1.1. Normal emergence is 

a system property, which results from multiple components or sub-systems working 

together to perform a required function. Hence, normal emergence is a desirable 

system behavior, while weak and strong emergence are considered undesirable and 

possibly catastrophic types of emergence. Pavard et al. [4] looks at an air traffic 

control system as a good example of normal emergence. In this system, Flight 

Management System (FMS), Instrument Landing System (ILS), and the air traffic 

controller cooperate together to create an emergent system. 

On the other hand, weak emergence is defined as an emergence that could be 

predicted and prevented if all the laws of physics are taken into the consideration and 

exhaustive simulation and verification is conducted. One example of weak emergence 

is the Mars Polar Lander as explained by Leveson [5]. In this accident, the Lander 

strut vibration was interpreted by software as a landing signal. Therefore, software 

shut down both engines, and the lander crashed into the planet. If the system, 

including software, physical system, and their interactions had been verified properly 

with exhaustive simulation of the vibration of the strut, then the catastrophic failure 

might never have happened. 

Lastly, strong emergence is one of the most difficult types of emergence to be 

identified. By nature, this type of emergence results from completely random factors 

and its source is often human. The Nagoya incident as described by Leveson [6] is 

one example of strong emergence. In this case, the pilot mistakenly sent a wrong 

command to the flight control system, which resulted in loss of passengers’ and pilot’s 

life. The important question to ask here is how the entire system, including aircraft 
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and pilot could have been more resilient and adaptable. 

1.1.2 The Concept of Resilience 

Madni [7] explains that resilience is a highly broad concept and is used frequently 

with different meanings in different fields. Depending on the system under design, i.e. 

business and economy, organizational safety, networks, resilience acquires different 

meanings. Hutchins [8] defines resilience in the context of economics and business, 

as the ability of the system to retain prosperity and employment in the face of 

economic decline caused by losing a powerful type of employer or local business. On 

the other hand, Luthar et al. [9] describe resilience in terms of network resilience as 

the ability of the network to continue providing service under adverse conditions. In 

his research, Luthar et al. [10] define psychological resilience as the ability of person 

to cope with catastrophe and stress. 

Blanchard et al. [11] recognize that resilience engineering is a relatively new con­

cept in the safety engineering discipline, which explicitly identifies and monitors 

risks. In this concept, risk and failure are viewed as an inability of the system to 

cope with the internal and external disturbances rather than a component malfunc­

tion or sub-system breakdown. In other words, a resilient system is required to 

recover from internal and external adverse factors including operational environment 

degradation. 

In this research, resilience is viewed as a system’s ability to cope with complex­

ity [12] and adapt to changes caused by emergence, either weak or strong. As depicted 
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Design Concepts

Learning Algorithm

Design Meets Safety Requirements

Complex Network

Failure Impact Analysis

Semi-Formal and Formal Verification  

H6
1

Engineering Targets

Application of Component Redundancy

Resilient System Design

Minimize the 
effect of adverse 
consequences 

Failure prediction 
& prevention

Recover 
from adverse 
consequences

Framework For Assessing And Improving The Resilience Of Complex Engineering Systems

Model Checking

0
1
1
1

1
0
1
1

1
1
0
1

1
1
1
0



















Design Matrix

Markov Chain

)(t
i )(  1 t

i

Epidemic Spreading

Figure 1.2: An Overview of The Proposed Approach. 

in Figure 1.1, resilience is characterized as a multi-faceted property of complex sys­

tems that (i) predicts and prevents functional losses and disruptions, (ii) minimizes 

the impact of failures, and (iii) recovers from disturbances. The result of this research 

provides a basis for incorporating risks into the design process of engineered systems 

and tools that proactively capture how the internal system’s interactions and envi­

ronmental factors affect system resilience. In particular, this proposal addresses the 
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following three objectives (Fig. 1.2), which will be discussed in detail in Chapters 4, 

5, and 6. 

1. Failure prevention in system design through effective anticipation of disruption 

based on exhaustive simulation and verification of safety requirements. 

2. Reduction of adverse consequences through identification of a design topology 

and physical system infrastructure that is more robust against failures. 

3. Recovery from disturbance through component redundancies while determining 

the least number of component redundancies that are required to tolerate and 

prevent catastrophic system failure. 

Contribution of Objective 1: The main technical challenge to prove the correct­

ness of the design with regards to its safety properties lies in the ability to devise 

reasoning methods and modeling approaches that handle complex behaviors. The 

assume-guarantee approach which is based on a compositional and hierarchical rea­

soning combined with a learning algorithm is able to simplify complex design verifi­

cation problems. The direct outcome of this objective is to automatically generate 

assumptions on the environment where component and (sub)system performances 

are guaranteed under these assumptions. The automatic generation of failure prop­

agation paths enables the system designers to better address the safety issues in the 

design. In addition, the second aim of this work is to determine whether exhaustive 

simulation is feasible by utilizing compositional reasoning and automata learning al­

gorithms. These algorithms are used to reduce the number of states to be inspected 

during verification. This is especially important where exhaustive simulation is too 

expensive and non-exhaustive simulation can miss critical safety violation. 



8 

Contribution of Objective 2: As engineered systems becoming more architec­

turally complex, the study of their tolerance to failures of components becomes in­

creasingly challenging. Abstracting such systems from the viewpoint of functions 

and behaviors seems to be an efficient method of modeling and analysis. There­

fore, to establish robustness during the conceptual design phase, the second research 

objective will utilize complex network theory in conjunction with spectral analysis. 

These methods provide valuable metrics to assess the capacity of systems to perform 

within the specified performance envelop despite disturbances to their operating en­

vironment. Therefore, a general and precise analytical model such as the Non-Linear 

Dynamical System (NLDS) model that uses a system of probability equations for ac­

curate characterization of failure propagation in complex networks will be used. The 

outcome of this objective is to identify those design components that are critical to 

a system and whose failure would cause shutdown of the overall system. In addition, 

an epidemic spreading model is developed to compare different conceptual design 

architectures in terms of their resiliency to failure propagation. This can be done by 

analyzing how a failure propagates through a system and then fixing failed compo­

nents to inhibit the propagation of the failure. The proposed model will determine 

the design architecture that is more resilient to specific component failures. 

Contribution of Objective 3: The goal of this research is to eliminate a single 

point of failure in the design, which was identified in Objective 2. This is achieved 

by adapting mechanisms such as component redundancy and fault tolerance. The 

application of component redundancy improves system reliability but also adds cost, 

weight, size, and power consumption. Therefore, it is vital to minimize the number 



9 

of redundancies. However, traditional methods for allocating redundancies demand 

complex mathematics and require large number of parameters that are not even 

available during early stages of the design process. This research utilizes the behav­

ioral specification of each component and subsystem to describe the overall structure 

of the design. Then, these specifications are analyzed to determine the least number 

of component redundancies that are required to tolerate and prevent catastrophic 

system failure. 

1.2 Intellectual Merit 

This research capitalizes on several gaps in existing literature and studies in the area 

of resilient system design. In this research, safety is characterized as an emerging 

behavior of the system that results from interactions among system components 

and subsystems, including software and humans. This is where designing a resilient 

system plays a crucial role in developing proactive design practice for exploiting 

insights on faults in complex systems. In this context, system failure is viewed 

as an inability of the system to adapt and recover from disruptions, rather than 

components’ and subsystems’ breakdown or malfunction. 

Importantly, this work presents a framework for assessing and improving the re­

silience of complex systems during the early design process. The framework comprises 

failure prediction and prevention techniques, analyzes the effect of design topology 

on the propagation of failures, and provides methodologies for system recovery from 

disruptions. The reason for these layers of analysis is to provide the system design­
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ers with a set of tools to support them to integrate safety and resilience where it is 

needed. 

1.3 Broader Impact 

From the design side, this research offers a uniform platform for both design engineers 

to verify a system design and for safety analysts to automate specific parts of safety 

assessment process. The major benefit of the proposed approach is in its ability 

to tightly integrate safety and design activities. The framework developed in this 

research can also be considered for safety and reliability analysis of complex systems 

such as human systems, finances, and power generation platforms. 

Potential users of the proposed framework are system designers and architectures 

designing a complex system. The framework is intended to assist these profession­

als to explore tradeoffs between different design solutions and evaluate safety and 

resilience of the system. 

1.4 Organization Of Dissertation 

Chapter 3 and 4 present a methodology for the verification of safety requirements 

for design of complex engineered systems. The proposed approach combines a 

SysML modeling approach to document and structure safety requirements, while an 

assume-guarantee technique is used for the formal verification purpose. The assume-

guarantee approach, which is based on a compositional and hierarchical reasoning 

combined with a learning algorithm, is able to simplify complex design verification 
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problems. The objective of the proposed methodology is to integrate safety into early 

design stages and help the system designers to consider safety implications during 

conceptual design synthesis, reducing design iterations and cost. The proposed ap­

proach is validated on the quad-redundant Electro-Mechanical Actuator (EMA) of a 

Flight Control Surface (FCS) of an aircraft. 

Chapter 5 and 6 describe a graph spectral approach to calculate the resilience 

of complex engineered systems. The resilience of the design architecture of complex 

engineered systems is deduced from graph spectra. This is calculated from adjacency 

matrix representations of the physical connections between components in complex 

engineered systems. Furthermore, we propose a new method to identify the most 

vulnerable components in the design and design architectures that are robust to 

transmission of failures. Non-linear dynamical system (NLDS) and epidemic spread­

ing models are used to compare the failure propagation mean time transformation. 

Using these metrics, we present a case study based on the Advanced Diagnostics and 

Prognostics Testbed (ADAPT), which is an Electrical Power System (EPS) devel­

oped at NASA Ames as a subsystem for the Ramp System of an Infantry Fighting 

Vehicle (IFV). 

Chapter 7 presents a novel safety specification and verification approach based on 

compositional reasoning and model checking algorithms. The behavioral specification 

of each component and subsystem is modeled to describe the overall structure of 

the design. Then, these specifications are analyzed to determine the least number 

of component redundancies that are required to tolerate and prevent catastrophic 

system failure. The framework utilizes Labelled Transition Systems (LTS) formalism 
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to model the behavior of components and subsystems. Furthermore, compositional 

analysis is used to reason about the components’ constraints (or assumptions) on 

their environments and the properties (or guarantees) of their outputs. A model 

of quad-redundant Electro-Mechanical Actuator (EMA) is constructed and, in an 

iterative approach, its safety properties are analyzed. Experimental results confirm 

the feasibility of the proposed approach for verifying the safety issues associated with 

complex systems in the early stages of the design process. 



Chapter 2: Literature Review 

Modern systems such as intelligent vehicle systems, air traffic management systems, 

and control systems for smart power grids are becoming increasingly more complex 

and challenging to manage. These systems are considered safety-critical [1] and are 

required to perform more reliably in dynamically uncertain operational environments. 

Consequently, the development of systems with broader fault detection and diagnosis 

capabilities is vital for protecting lives, property, and continuity of service [2, 3, 4]. 
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Figure 2.1: Techniques for Safety and Reliability Analysis of System Design.
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A number of failure analysis techniques have been developed over the years. 

This section reviews several of these common approaches for failure and reliability 

analysis during conceptual design of engineered systems. As depicted in Figure. 2.1, 

two distinct categories of methods are usually adopted to address safety analysis of 

system design. First, reliability-based approaches are based on identifying faults and 

their likelihood of occurring throughout the system life-cycle. The second category of 

techniques is based on undesirable system states and focus on identifying paths that 

reach that state and the likelihood of those paths. Hence, hazard-based techniques 

are system state centric whereas the reliability-based approaches are fault centric. 

This work explores the reliability-based and hazard-based perspectives and in­

corporates them into the concepts of emergence and resilience as a groundwork for 

establishing a framework to evaluate the balance between the two areas of risk mit­

igation. The following section will detail the traditional approach to system design 

to provide the context of this work. 

2.1 Reliability-based Techniques 

In order to focus on the design and safety requirements that satisfy the expected 

level of performance as well as failure and fault tolerance for all expected conditions 

and environments, reliability and safety analysis techniques are used. Reliability 

requirements include fault prevention, identification, and isolation. To satisfy these 

requirements, elimination of hazard, reducing the risk factor associated with failure, 

and decreasing the impact of failure to an acceptable level are necessary. 
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2.1.1 Verification Stage Approaches 

This group of reliability analysis methods is based on the symbolic logic of the 

conceptual models of failure scenarios within a design. The goal is to assess the 

probability of failure occurrence in the system design. One of these methods is the 

Reliability Block Diagram (RBD) [5], which divides the system into elements based 

on the functional model of the system design, where each system element is assigned 

a reliability factor. Then a block diagram of the elements in a parallel, series, or the 

combination of parallel and series is constructed. Each block represents a function 

or an event in the system and each element’s failure mode is assumed independent 

from the rest of the system. The reliability factor may or may not be available for 

all the system design elements and should be assigned by an expert which makes it 

subjective and hard to validate. 

The second popular method of reliability analysis, Failure Mode and Effect Anal­

ysis (FMEA) [6] is a bottom up approach that investigates failure modes of com­

ponents and their effects on the rest of the system. In practice this technique is 

supported by a top-down analysis to confirm the analytical resolution. FMEA pro­

vides an exhaustive analysis to identify the single point of failures and their effects 

on the rest of the system. The result of the analysis is used to increase reliability, 

incorporate mitigation into the design, and optimize the design. However, FMEA is 

very costly in terms of resources, particularly when implemented at the component 

level within complex systems. Also, occurrences of simultaneous failures and multi­

ple faults are not evaluated. The completeness and correctness of the analysis are 

very much dependent on the expert knowledge. 



16 

2.1.2 Design Stage Approaches 

The next category of reliability analysis techniques uses functional modeling to rep­

resent the system design for analysis. The Function Failure Design Method (FFDM) 

introduced by Tumer et al. [7, 8] is an example of such a method. FFDM can be 

used not only at the early stage of system design but throughout the design process 

by creating a relationship between system functionality to failure modes and product 

function to system design concepts. However, FFDM does not determine the "cause" 

of failure in the design and lacks the analysis to show the severity and detectability 

rankings of the failures. 

Risk in Early Design (RED) method presented by Grantham et al. [9, 10] is 

built upon the FFDM technique which formulates the functional-failure likeliness 

and consequence associated with each function failure. Nevertheless, Devendorf [11] 

attests that RED is not able to assist the designers in effective error proofing during 

the design process. The knowledge-based repository used by RED to provide relative 

failure information does not scale to other syntaxes. 

In order to overcome these limitations, other research efforts have drawn atten­

tion to the importance of failure cascades in reliability analysis. Tumer at al. [12] 

presented the Function-Failure Identification and Propagation (FFIP) approach for 

detecting functional failure during the early stages of system design by interleaving 

failure identification analysis with model based reasoning. The advantage of this 

approach over other failure analysis methodologies is the fault identification pro­

cess that is performed at the very early stages of design rather than after-the-fact 

approaches. In addition, Krus and Grantham-Lough [9] have developed a method 
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based on RED and FFDM for failure propagation mapping that relies on historical 

failure data and the functional model of the system. This technique analyzes the 

cascade of a failure along the designed flow path (energy, material, and signal). Fur­

ther, Hutcheson et al. [13] investigate the changes in component functionality during 

transition in the midst of critical mission events to analyze the effect of failure. In 

summary, significant amounts of research and effort has been conducted in order to 

integrate reliability analysis into the conceptual design stage. However, there is still a 

need for a theoretically sound and implementable reliability methodology to connect 

the output of the conceptual design and the reliability data required for reliability 

modeling. 

2.2 Hazard-based Techniques 

Hazard-based methodologies focus on system transitions which move from a haz­

ardous state to a failure state based on a set of initiating mechanisms. Therefore, 

the aim of hazard-based techniques is to identify the potential hazards and the mech­

anisms and sequences of events which can cause the system to transition to a failure 

state in the presence of those hazards. 

2.2.1 Verification Stage Approaches 

Another symbolic logic model is based on the Fault Tree Analysis (FTA) [14] which 

studies the failure propagation path from the point of start to the vulnerable com­

ponents and assigns a severity factor to each failure model. One of the benefits of 
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using FTA is its ability to analyze the probability of simultaneous occurrence of fail­

ure within a complex systems. On the other hand, the probabilistic evaluation of 

complex large systems could get computationally intensive. 

Also, the correct probabilistic evaluation requires significant amount of resources. 

Another form of symbolic logic modeling technique is known as Event Tree Analysis 

(ETA) [15] which differs from FTA analysis in a manner that covers both success and 

failure events. In this technique all types of events such as nominal system operations, 

faulty operations, and intended emerging behaviors are modeled. Still, calculating 

the probability of non-comparative failure or success is difficult to estimate and reach 

agreement on. 

2.2.2 Design Stage Approaches 

Another technique for safety analysis is Hazard and Operability Studies (HAZOP) [16] 

that is based on modeling the interaction flow between components and recognizing 

a hazard if components deviate from intended operation of design. A set of guide-

words are provided to help with identification of such deviations. However, from 

the context of safety analysis based on interaction between components and their 

intended environments, HAZOP is unable to produce repeatable hazard analysis of 

the same accident. The reason for this weakness lies in the highly dynamic and un­

predictable nature of interactions between different subsystems and their operational 

environment. Moreover, depending on the expertise and skills of the safety engineers 

the deviations can be identified differently. 
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Systems-Theoretic Accident Modeling and Processes (STAMP). In systematic 

models such as STAMP, accidents result from several causal factors that occur unex­

pectedly in a specific time and space [17]. Therefore, the system under consideration 

is not viewed as a static entity but as a dynamic process that is constantly adapting to 

achieve its goals and reacting to internal and environmental changes. Consequently, 

hazards are viewed as complex interactions between system components and their 

intended environments. The STAMP models are designed based on safety-related 

constraints and hazards are identified by violation of these safety constraints. There 

are many benefits in using STAMP models as the basis for hazard analysis of a 

complex system. However, Johnson et al. [18] state that the STAMP approach has 

two fundamental weaknesses: the lack of methodological guideline in implementing 

the constraint flaw taxonomy and the construction of control models in a complex 

system is complicated. In addition, [18] presents two independent studies of imple­

menting STAMP hazard analysis techniques on the mission interruption of the joint 

European Space Agency (ESA) and National Aeronautics and Space Administration 

(NASA) Solar and Heliocentric Observatory (SOHO). The hazard analysis from each 

study resulted in significantly different conclusion regarding the cause of failure in 

the system under study. 
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3.1 Introduction
 

In recent years, technological advancements and a growing demand for highly reliable 

complex engineered systems, e.g., space systems, aircrafts, and nuclear power plants 

have made the safety assessment of these systems ever more important. Moreover, 

the growing complexity of such systems has made it more challenging to achieve 

design solutions that satisfy safety and reliability requirements [1, 2, 3]. Hollnagel 

et al. [4] recognize the fact that safety violation in complex systems is not necessar­

ily a consequence of components’ malfunction or a faulty design. Rather it could 

be a result of a network of ongoing interactions between all the components and 

subsystems that introduce undesired behavior. For this reason, Baroth et al. [5] 

recommends the Prognostic and Health Management System (PHM) as a new tech­

nology to replaces the traditional build-in test (BIT) with intelligent prognostics 

tools to predict the occurrence of unexpected faults. However, given the local safety 

properties of each component, it is not a trivial matter to infer the safety and reli­

ability of the whole system [6]. Well-specified verification formalism and reasoning 

tools are needed to study the emerging behavior and to perform exhaustive verifica­

tion of safety properties. A series of safety standards emerged in recent years that 

recognize this issue and strongly recommended the use of formal verification methods 

to control the complexity of safety-critical systems, i.e., the international standard 

on safety related systems [7] and the SAE & EUROCAE standards in the avionic 

industry [8, 9]. However, these standards do not specify how to implement formal 

approaches throughout the design process. 

Strategies for engineered system design emerges from a process of requirement 
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decomposition and transforming requirement models into the conceptual models [10, 

11]. Requirement models, noted R, capture the design problem being solved and 

conceptual models, noted S, represent the specific solution for the design problem. 

Therefore, the first step in specifying and formulating a complex system is to cap­

ture its requirements R and decompose it into the requirements of its sub-systems 

and components, noted R = {R1, R2, ..., Rn}. The second step is to create a rela­

tionship between design requirements and the system that consists of heterogenous 

sub-systems, i.e., electrical, mechanical, and software ..., noted S = {S1, S2, ..., Sm}. 

However, this relationship between the set of design requirements and the set of sub­

systems and components is a non bijective relationship. A commonly used formalism 

to address this problem is to focus on discrete event system dynamics. This formula­

tion is extended [12, 13, 14] by considering other system features such as structures 

and functions, so that the predicate (S1 ∧ S2 ∧ ... ∧ Sm ⇒ Design’s Objective) is 

preserved and satisfied throughout the design process. So the formulation can be 

summarized as below: 

⎧ 

Si ⇒ {Rk}k∈[1..n] Si satisfies a sub-set of⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ requirements. 

{Sk}k∈[1..m] ⇒ Ri Ri satisfied by sub-set of⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ sub-systems or components. 

The process of identifying and proving the correctness of these relationships with 

regards to design safety requirements is the objective of this paper. The remainder 

of this paper is structured as follows: section 2 discusses the system oriented ap­
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proaches and their ability in modeling multi-domain complex engineered system and 

being exploitable for safety analysis. Furthermore, formal verification methods and 

the definition of compositional reasoning and its commonly used terminologies and 

operators are introduced as a complementary technique to design requirement analy­

sis. In section 3 an overview of the step-by-step implementation of the compositional 

reasoning algorithm on the components of the design architectures is explained. Fur­

ther, section 3 outlines the application of the proposed methodology in the analysis 

and verification of the safety properties of the quad-redundant Electro Mechanical 

Actuator (EMA) system design. The paper ends with conclusion. 

3.2 Related Work 

Different standards, e.g., [15, 16] have defined system design as a multidisciplinary 

collaborative process that defines, develops, and verifies a system solution which 

satisfies different stakeholders’ expectations and meets public safety and acceptabil­

ity. Therefore, identification and analysis of the system requirements and designing 

a system according to the identified requirements are the two inter-correlated and 

complementary processes of system design. While these standards precisely specify 

the processes involved in the design of a safety critical systems, Lundteigen et al. [17] 

agree that they do not provide methods and tools for efficient design of complex en­

gineered systems. This highlights the need for appropriate methods and tools to 

support the integration of safety into the design solution. 



24 

3.2.1 SysML for Complex Engineered Systems 

Traditional methods and tools used by system engineering are mostly based on a 

formalism that capture a variety of system features, i.e., requirements engineering, 

behavioral, functional, and structural modeling, etc. Those with particular focus on 

requirements engineering are the Unified Modeling Language (UML) [18] to support 

various aspect of system modeling, Rational Doors [19] to express the requirements, 

and Reqtify [20] to trace the requirements through design and implementation. UML 

is developed by the Object Management Group (OMG) in cooperation with the In­

ternational Council of Systems Engineering (INCOSE). UML is an Object-oriented 

modeling language that allows hierarchical organization of system component mod­

els, which in turn results in easier reuse and maintenance of the system model. 

However, UML was originally developed for software engineers and its primary ap­

plication is software-oriented; therefore it does not meet all the system engineer’s 

expectations. For example, UML does not provide a notion to represent continuous 

flows exchanged within the system, i.e., Energy, Material, and Signal (EMS). The 

analysis of EMS flows are crucial in system design safety verification for identifying 

the failure propagation path and identifying the common failure modes. For this 

reason, the SysML profile was developed borrowing a subset of the UML language 

to meet the requirements of a general purposed language for system engineering. 

SysML is an efficient modeling language for constructing models of complex, 

multidisciplinary, and large-scale systems. SysML enables the designers of a complex 

system to model the system requirements, structures, behaviors, and parametric 

values for a more rigorous description of a system under consideration. Nevertheless, 
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the wide variety of notations provided by SysML lacks formal and detailed semantics 

required for requirements verification. The goal of this paper is to bridge the gap 

between semi-formal approaches, e.g., SysML and formal verification methods, e.g., 

model-checkers to provide the system designers an integrated method to manage and 

verify the safety properties of complex engineered systems. 

3.2.2 Model Checking and Formal Verification 

Model checking is one of the approaches to formal verification of finite state hard­

ware and software systems [21, 22]. In this approach, a design will be modeled as 

a state transition system with a finite number of states and a set of transitions. 

The design model is in essence a finite-state machine, and the fact that it is finite 

makes it possible to execute an exhaustive state-space exploration to prove that the 

design satisfies its requirements. Since there is an exponential relationship between 

the number of states in the model and number of components that make up the 

system, the compositional reasoning approach is used to handle the large state-space 

problem. The compositional reasoning technique decomposes the safety properties 

of the system into local properties of its components. These local properties are 

subsequently verified for each component. However, Barragan et al. [23] emphasizes 

the difficulty of transforming the global system requirements into multi-level sub­

system and component’s local safety properties that need to be verified by a model 

checker for the design of large scale complex engineered systems. More specifically, 

the decomposition of complex engineered systems into multi-domain sub-systems in­
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Figure 3.1: Quad-Redundant EMA Scheme. 

volving electrical, mechanical, and software components makes the refinement and 

traceability of the global safety properties very difficult. Therefore, a systematic 

approach is required to acquire abstract requirements along with safety properties, 

and map them to system components [24]. Following the work of many researchers, 

it is concluded that the early stages of system design are the most critical in ensuring 

that the designed system satisfies its safety requirements [25, 26, 27, 28], this paper 

aims at addressing this challenge using the system-oriented SysML-based modeling 

approach combined with formal verification technique. 
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3.2.3 Case Study 

As depicted in Fig. 3.1, a quad-redundant Electro-Mechanical Actuator (EMA) [29] 

for the Flight Control Surfaces (FCS) of an aircraft, developed in a program spon­

sored by NASA, is used to illustrate and validate the proposed approach. The 

positions of the surfaces, A, C, and D, in Fig. 3.2, are usually controlled using a 

quad-redundant actuation system. The FCS actuation system responds to position 

commands sent from the flight crew, B in Fig. 3.2, to move the aircraft FCS to the 

Figure 3.2: Basic Aircraft Control Surfaces. 

The EMAs are arranged in a parallel fashion; therefore, each actuator is required 

to tolerate a fraction of the overall load. To meet safety requirements, each actuator 

is required to take on the full expected load from the FCS in the extreme case where 

all three of the four actuators become non-operational. In addition, the design should 

also consider other issues such as the possibility of the actuators becoming jammed. 

If one actuator becomes jammed in this parallel arrangement, it will prevent the 

other ones from moving. Therefore, a mechanism to disengage faulty actuators from 

the rest of the system is required to avoid the faulty actuators from becoming dead­

weights. Once an EMA is disengaged from the system it cannot be re-engaged 
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Figure 3.3: Requirements Decomposition. 

Figure 3.4: Requirements Mapping. 

automatically. It is envisioned that this will happen on the ground, once the aircraft 

has landed. 

In order for the design to be reliable, additional redundancies in other compo­

nents of the system, such as load and position sensors are required. Thus, a fully 

quad-redundant scheme is envisioned, as depicted in Fig. 3.1. As illustrated, the de­

sign features redundancy in the EMAs and the sensor feedback signals. The position 

command is fed to the control loop, while the load from the FCS is shared by the 

EMAs. The individual load, current, and position response signals from each EMA 
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are used to perform separate diagnostics on each EMA. Therefore, faults are isolated 

to the individual actuators, which facilitates adaptive on-the-fly decisions on dis­

connecting degraded EMAs from the load. A dedicated diagnostics block performs 

actuator health assessments, and makes decisions on whether or not to disengage any 

faulty actuators from the flight control surface. The disengagement is made possible 

by mechanical linkages, which can be disconnected from the output shaft coupling. 

3.3 Methodology 

Design requirements are the specification of safety constraints initially defined in the 

design. Requirements are modeled at different levels of abstractions. For example, 

a higher level of abstraction is used when expressing the global system properties 

and a low level of abstraction is used when expressing the required features for each 

system component, i.e. the barriers and materials to be used. Managing this set of 

specifications is based on iterative decomposition and substitution of the abstract 

requirements by the requirements that are more concrete. 

3.3.1 Safety Requirements Modeling Using SysML 

A SysML requirement diagram enables the transformation of text-based requirements 

into the graphical modeling of the requirements which can be related to other mod­

eling elements. Fig. 3.3 depicts the decomposition of a single abstract requirement 

into several more explicit ones. A study by Blaise et al. [30] confirms the effectiveness 

of such diagrams to facilitate the structuring and management of requirements that 
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are traditionally expressed in natural languages. 

The next step in the requirement analysis phase consists of mapping the require­

ments to the corresponding system components or functions. System components 

are modeled as part of the structural design of a system. The structural design model 

corresponds to the system hierarchy in terms of systems and subsystems, which are 

modeled using the Block Definition diagram (BDD). SysML blocks are the best mod­

eling elements to model multi-disciplinary systems and are especially effective during 

system specification and design. They are effective because blocks are not only able 

to model logical or physical decomposition of a system, they also enable designers to 

define specification of software, hardware, or human elements. 

Fig. 3.4 illustrates how a single requirement can be satisfied by a set of sub­

systems and components. The requirement diagram is connected to the structure 

diagram by a cross connecting element known as satisfy. A requirement can be 

satisfied by a component or subsystem. Furthermore, the detailed modeling of sub­

systems and components are possible through the use of Internal Block Diagram 

(IBD). In addition, blocks are a reusable form of description that can be applied 

throughout the construction of system modeling if necessary. Another advantage of 

using blocks during the design process is their ability to include both structural and 

behavioral features, such as properties and operations that represent the state of the 

system and behavior that the system may display. 

Including properties as part of the requirement modeling is specifically impor­

tant when verifying safety requirements. As Madni. [31] demonstrated, safety is a 

changing characteristic of complex systems that, once integrated into the design, is 



are connected to one another. For example, al locate as a cross connecting principle 

in SysML is used to connect a behavior to a component in a structure diagram. 
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not preserved unless enforced throughout system operation. Hollnagel et al. [4] also 

confirms that safety is a feature that results from what a system does, rather than a 

characteristic that the system has. Therefore, the proof of safety is provided by the 

absence of failures and accidents. For this reason, "safety-proofing" a system design 

is never absolute or complete. Consequently, the proposed approach does not guar­

antee safe system operation, instead provides formal proof that certain very specific 

behavioral parameters will be achieved. It is for this reason that in this paper safety 

is viewed as a system property. 

A complete proof of safety is possible through a formal definition of different 

properties that are linked to each high-level abstract and low-level detailed require­

ments. Fig. 3.5 represents how a requirement, property, block, and behavioral model 

Figure 3.5: Requirements Traceability. 

In the proposed approach, individual components’ behavior in the system are 

modeled as Labeled Transition Systems (LTSs), LTSs basically represent a finite 

state system. The properties of the LTSs make it ideal for expressing the behavioral 

model of system components. The LTS model is expressed graphically, or by its 

alphabet, transition relation, and states including single initial state. The LTS of 
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the system is constructed from the LTS of its subsystems, and is verified against 

safety properties of the design requirements (Fig. 3.5). 

3.3.2 Safety Requirements Verification 

A model-based verification approach is proposed based on the behavioral models of 

design components, where behavioral specifications are associated with each compo­

nent. These specifications are then used to analyze the overall design architecture. 

In this approach, a design will be modeled as a state transition system with a fi­

nite number of states and a set of transitions. The design model is in essence a 

finite-state machine, and the fact that it is finite makes it possible to execute an 

exhaustive state-space exploration to prove that the design satisfies its requirements. 

Since there is an exponential relationship between the number of states in the model 

and number of components that make up the system, the compositional reasoning 

approach is used to handle the large state-space problem. The compositional reason­

ing technique decomposes the safety properties of the system into local properties 

of its components. These local properties are subsequently verified for each compo­

nent. The combination of these simpler and more specific verifications guarantees 

the satisfaction of the global safety of the overall system architecture design. It is 

important to note that, the safety requirements of the components are satisfied only 

when explicit assumptions are made on their environment. Therefore an assume-

guarantee [32, 33, 34, 35] approach is utilized to model each component with regards 

to its interaction with its environment, i.e, the rest of the system and outside world. 



Table 3.1: FSP Description of EMA 

EMA (recLoad → ApplyLoad → (allLoadsCompleted → 
| jam → block → Jammed)), 

Jammed (recLoad → Jammed 
| disengage → unblock → Disengaged), 

Disengaged (recLoad, allLoadsCompleted, timeout → 
gaged). 
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Since, the LTSs are based on graphical modeling, they can easily become unman­

ageable for large complex systems. Therefore, an algebraic notation known as Finite 

State Process (FSP) [36] is used to define the behavior of processes in a design. FSP 

is a specification language as opposed to a modeling language, with semantics defined 

in terms of LTSs. Every FSP model has a corresponding LTS description and vice 

versa. An example FSP and LTS model of the Electro Mechanical Actuator (EMA) 

unit of the quad-redundant EMA of Fig. 3.1 is provided in Table 3.1 and Fig. 3.6 

respectively. 

1 : = EMA 
2 : 
3 : = 
4 : 
5 : = Disen-

Figure 3.6: LTS Model of the EMA Subsystem. 

In the defined model, a EMA receives the load command from the controller and 

carries out the operation. The Electro Mechanical Actuator is modeled in Table 3.1 

with Jammed and Disengaged as part of its definition. If during the time of main­

taining the specified torque or load the EMA functions according to specification, 

the signal "al l loads are completed" is sent to the controller. Otherwise, the EMA is 

considered non-operational or jammed. In the jammed mode, the EMA is incapable 
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of maintaining the required load and prevents the rest of the EMAs from moving. 

Therefore, it needs to be disengaged from the system. 

After system modeling, the actual analysis of the models is carried out utilizing 

the AGR verification technique. In the assume-guarantee methodology, a formula 

contains a triple (A) M (P ), where M is defined as a component, P is a safety 

property, and A is an assumption or constraint on M ’s environment. The formula 

is proven correct if whenever M is a component within a system satisfying A, then 

the system also guarantees P . 

The simplest assume guarantee rule for checking a safety property P on a system 

with two components M1 and M2 can be defined as following [37, 35]: 
Rule ASym 

1 : (A) M1 (P ) 

2 : (true) M2 (A) 

(true) M1 I M2 (P ) 

The first rule is checked to ensure that the generated assumption restricts the envi­

ronment of component M1 to satisfy P . For example, the assumption A is that there 

is no Electromagnetic Interference (EMI) or Radio Frequency Interference (RFI) in 

the environment where component M1 operates; hence, P is satisfied. The second 

rule ensures that component M2 respects the generated assumption. For example, 

M2 will not generate any EMI and RFI while operating. If both rules hold then 

it is concluded that the composition of both components also satisfies property P 

((true) M1 I M2 (P )). 

In this research, the algorithm in [38] is used to automatically generate assume­
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Model Checking

Learning 
Algorithm 1. AiM1 P

2. trueM2 Ai

Ai

True

False

Failure Propagation Path – Strengthen the Assumption

P is satisfied in  ||

Failure?

False

True

P is violated in  ||
YesNo

Failure Propagation 
Path – Weaken the 
Assumption

Figure 3.7: An Overview of the Algorithm that Generates Assumptions. 

guarantee reasoning at the component, subsystem, and system level. The objective 

is to automatically generate assumptions for components and their compositions, so 

that the assume-guarantee rule is derived in an incremental manner. The framework 

of Figure 3.7 depicts the steps involved in performing automated assume-guarantee 

reasoning while generating the assumptions. If rule (1) is violated, it means that the 

assumption is too weak, so it does not prevent M1 from reaching its failure state. 

Based on the generated failure propagation path, the algorithm learns a new assump­

tion with more restriction on the environment which makes the assumption stronger 

than the previous one. The iteration continues until the first rule of (A) M1 (P ) is 

addressed. The next step is to check the second rule (true) M2 (A). If the rule still 

holds, then it is concluded that (true) M1 I M2 (P ). If the check fails, the algorithm 

performs analysis on the returned failure propagate path to determine the reason 

for the failure. If the analysis reveals that A is not the weakest assumption, i.e., 

elimination of both EMI and RFI is not necessary and only the elimination of EMI 
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suffices to satisfy P, then the learning algorithm will generate a new assumption. 

If the rules are not satisfied with the generated assumptions, it is concluded that 

(true) M1 I M2 (P ) violates the property P. 

3.4 Application On The Case Study 

In the case study of Fig. 3.2, the Flight Control Surface (FCS) must meet rigorous 

safety and availability requirements before it can be certified. The FCS has two types 

of dependability requirements: 

•	 Integrity : the FCSs must address safety issues such as loss-of control resulting 

from aircraft system failures, or environment disturbances. 

•	 Availability : the system must have a high level of availability. 

Therefore, it is critical for the FCS to continue operation without degradation fol­

lowing a single failure, and to fail safe or fail operative in the event of a related 

subsequent failure. The movement of the FCS is controlled by a quad-redundant 

EMAs. A block diagram of the quad-redundant EMAs is depicted in Fig. 3.8. As 

seen from the figure, the model consists of an EMA block which is an hierarchical 

representation of four independent EMAs. Each EMA is modeled via the Internal 

Block Definition diagram (IBD). The individual EMA legs receive the common po­

sition command, but act independently of each other and share the flight control 

surface load among themselves. 

Fig. 3.9 depicts a set of high-level requirements. To facilitate the verification 

process, each level of requirements are associated with a formal Finite State Process 
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Figure 3.8: Structural Model of the Quad-redundant EMAs. 

(FSP) using property stereotype in SysML, meaning that satisfying property P1 is 

the same as satisfying properties P1.1, P1.2, and P1.3. 

The next phase consists of identifying the design architecture (Fig. 3.8), including 

sub-systems and components to map each requirement to a traceable source. As 

depicted in Fig. 3.4, requirements mapping are made possible by using the satisfy 

relationship to link a single or set of blocks to one or more requirements. The 

requirements mapping of quad-redundant EMAs is presented in Table. 3.2. 

In order to transform the requirements and the design architecture presented in 

Fig. 3.8 into a finite model, we use Finite State Process (FSP). As an example, 

consider the following FSP model of a control ler subsystem of the quad-redundant 

EMAs: The controller gets the load command from the command unit and actively 

regulates the current to each EMA at every time step. The difference between the 
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Figure 3.9: Quad-redundant EMAs High-Level Requirements. 

external load and the total actuator load response is used to accelerate or decelerate 

the output shaft. If the controller perceives that the output shaft position response 

is falling behind the commanded position, it will increase the current flow to the 

EMAs. As depicted in Table 3.3, in the FSP description of the controller, a repetitive 

behavior is defined using a recursion. In this context, recursion is recognized as a 

behavior of a process that is defined in terms of itself, in order to express repetition. 

The partial LTS model of the controller is depicted in Fig. 3.10. The control ler 

performs action <getLoad[l..4]>, and then behaves as described by <C ontroller[l]>. 
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Table 3.2: Requirement Mapping.
 

Requirement Component(s) 

Safety Requirement 1 quad-redundant EMAs 
Safety Requirement 1.2 quad-redundant EMAs 
Safety Requirement 1.2.1 Diagnostics 
Safety Requirement 1.2.2 
Safety Requirement 1.2.3 

EMAs 
Controller, Position Sensor, and Shaft 

Table 3.3: FSP Description of Controller 

1 : Controller = (getLoad[l:L] → Controller[l]), 
2 : Controller[t:L] = (timeout → Controller 
3 : | sendLoad→allLoadsCompleted→getShaftPosition[x:Positions] 
4 : →if (x ≥ t) then (missionComplete→Controller) 
5 : else Controller[t]). 

C ontroller[l] is a process whose behavior offers a choice, expressed by the choice 

operator "|". C ontroller[l] initially engages in either <timeout> or <S endLoad>. 

The action <timeout> is performed when all actuators fail, otherwise <S endLoad> 

is utilized. Subsequently, after sending the required load to each EMA, feedback 

signals are sent to inform the controller of completion of tasks by labeling the action 

with <al l Loads Completed >. This results in the controller to perform the action 

<get Shaft Position>. At this stage, the controller compares the new position with 

the required shaft position, if the shaft has reached the required position then the 

<mission is completed >. Otherwise, the behavior is repeated until the shaft reaches 

the required position. 

After modeling the behavior of each component and sub-system, the design is 

described by a composition expression. In the context of system design engineering, 

the term composition is similar to the coupled model. The coupled model defines 
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getLoad[4] sendLoad

timeout

allLoadsCompleted getShaftPosition[4]

missionCompleted

getShaftPosition[0..3]

Figure 3.10: LTS Model of the Controller Subsystem. 

how to couple several component models together to form a new model, similarly, 

composition groups together individual state machines. Such an expression is called 

a parallel composition, denoted by "I". The "I" is a binary operator that accepts two 

LTSs as an input argument. In the joint behavior of the two LTSs, the transition can 

be performed by any of the LTS if the action that labels the transition is not shared 

with the other LTS. Shared actions have to be performed concurrently. Table 3.4 

depicts the FSP of the joint behavior of EMA and control ler. The composed LTS 

model of the two subsystems consists of 161 states and 62 transitions. The shared 

action between the two models is the <sendLoad> action from the controller and the 

<recLoad> action from the EMA, therefore, these two are required to be performed 

synchronously. In order to change action labels of an LTS, the relabeling operator 

"/" is used, e.g., { recLoad / sendLoad }. 

Table 3.4: Parallel Composition of EMA (Table 3.1) and Controller (Table 3.3) 

1 : I Leg = ( EMA I Controller ) / { recLoad / sendLoad }. 

Table 3.5 presents some of the state transitions (or sequence of actions) produced 

by the composed model. Two possible executions under the EMA’s nominal and 

faulty conditions are considered. In nominal mode, the EMA receives a request from 



41 

a controller to provide two unit loads. At each time step, EMA performs one unit
 

load and repeats until the output shaft reaches the required position that is when 

the <missionC omplete> actions is performed. In the failed mode, initial actions 

are the same as in nominal mode until an EMA jams. The jammed EMA blocks the 

rest of the system from moving until it is disengaged. The process is followed by the 

<U nblock> action which unblocks the shaft allowing the rest of the system to be 

freed. By this time, the EMA has provided one unit load before being disconnected 

from the rest of the system. Since, the <S haf tP ositionI S > shows the current 

position of the shaft being one instead of two, the EMA is required to perform one 

more unit of load. However, the disengaged EMA is incapable of doing so resulting 

in a <timeout>. The <timeout> occurs only when there are no EMAs to perform 

the required load. 

Table 3.5: Leg Subsystem: Two Possible Transitions 

EMA: Nominal Mode EMA: Failure Mode 
1 : ctrl_getLoad.2 1 : ctrl_getLoad.2 
2 : EMA_recLoad 2 : EMA_recLoad 
3 : EMA_performLoad 3 : EMA_performLoad 
4 : LoadsCompleted 3 : EMA_jam 
5 : ShaftPositionIs.1 4 : Shaft_block 
6 : EMA_recLoad 5 : EMA_Disengage 
7 : EMA_performLoad 6 : Shaft_Unblock 
8 : LoadsCompleted 7 : LoadsCompleted 
9 : getShaftPosition.2 8 : ShaftPositionIs.1 
10 : EMA_performLoad 9 : timeout 
11 : missionComplete – 

So far, we provided the basis for decomposing and modeling the system based 

on the modular description of the design components and subsystems. In the next 

phase, the process of expressing the desired safety properties in terms of a state 
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machine or LTS is described. The advantage is that both the design and its require­

ments are modeled in a syntactically uniform fashion. Therefore, the design can be 

compared to the requirements to determine whether its behavior conforms to that of 

the specifications. In the context of this work, the properties of a system are modeled 

as safety a FPS. A safety FPS contains no failure states. In modeling and reason­

ing about complex systems, it is more efficient to define safety properties by directly 

declaring the desired behavior of a system instead of stating the characteristics of a 

faulty behavior. In a FSP, the definition of properties is distinguished from those of 

subsystem and component behaviors with the keyword property. 

Based on the requirement decomposition model of Fig. 3.9, the composition model 

of the properties P1.1, P1.2, and P1.3 is presented by the following generic (or 

parameterized) safety property with the following constants and a range definitions 

is used: 

• const N =4 \\ number of faulty EMAs 1 

• const M =4 \\ number of EMAs 

• range EMAs = 1..M \\ EMA identities 

In order to prevent the system from reaching the catastrophic event of <timeout>, 

it is essential to complete the mission and provide the required loads based on the 

command signal. The property of Table 3.6, maintains a count of faulty EMAs with 

the variable f . To model the fact that every command signal must be followed by 

a <missioncomplete>, property P1, the processes in lines 3 and 8 are required to 

1by default is set to 4 but it can be redefined during the instantiation process. 
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constrain the number of faulty EMAs (f ) to a number defined by the parameter of 

the property (e.g. N=4 ). 

Table 3.6: FSP Model of Safety Property 

1 : property 
2 : Fault_Tolerance(N=4) = Jammed[0], 
3 : Jammed[f : 0..M] =(when(f ≤ N)commandLoad[L] → CompleteMission[f] 
4 : |when (f>N) commandLoad[L] → Jammed[f] 
5 : |d[EMAs].jam → Jammed[f+1] 
6 : |missionComplete → Jammed[f]), 
7 : CompleteMission[f:0..M] = (missionComplete → Jammed[f] 
8 : |when (f<N ) d[EMAs].jam → CompleteMission[f+1] 
9 : |when (f= =N) d[EMAs].jam → Jammed[f+1]). 

If the above property is predefined with N = 2, permitting only two out of four 

EMAs to fail during the system operation, the verification algorithm of Fig. 3.7 

verifies that the safety property is satisfied. The composed LTS model consists of 

242 states, however the verification algorithm reduced the number of states to 10733. 

The same result is obtained with three EMAs failing (e.g. N=3 ). 

However, when the property is instantiated allowing four EMAs to fail, the safety 

analysis verifies that the property is violated and a failure propagation path is pro­

duced. Therefore, the generic safety property modeled in Table 3.6 verifies that the 

system never reaches the failure condition of total loss if and only if N ≤ M-1 where 

N is the number of faulty EMAs and M is the total number of EMAs. 

From the result of case study: the characterization of the system architecture by 

its subsystems and components improves requirements specification, tracking, and 

modeling. In addition, the FSP annotation of the failure behavior of each of com­

ponent, and the system level safety analysis based on components’ interaction lead 

to achieving a manageable verification procedure. As the compositional reasoning 
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approach significantly reduces the number states to be explored, exhaustive checking 

of the entire state space is made feasible without the need for a exhaustive search. 

This is especially important where the exhaustive simulation is too expensive and 

non-exhaustive simulation can miss the critical safety violation. 

3.5 Conclusion 

There is a growing demand for formal methods and tools that facilitate the specifica­

tion and verification of complex engineered systems design. Also, safety standards for 

the design of safety-critical systems strongly recommend the use of formal verification 

approach as part of the certification process. However, these standards do not spec­

ify how formal approaches can be implemented. Alternatively, system engineering 

semi-formal techniques for elicitation and structuring the requirements of complex 

engineered systems are essential part of the design for electing the conceptual design 

that satisfies the identified requirements. 

In this paper, we have proposed a system modeling and verification approach that 

combines these apparently contradictory views. The semi-formal SysML techniques 

based on requirement and block diagrams combined with formal verification meth­

ods based on the assume-guarantee reasoning are used to prove that the behavior 

of sub-systems and components satisfies the design requirements. The proposed ap­

proach is based on the mapping between the hierarchical decomposition model of the 

requirements and properties to be satisfied, functions and behaviors to be realized, 

and sub-systems and components to be implemented. 
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The future work will continue in verifying more sophisticated system, while taking 

into consideration safety properties that are formulated using the temporal operators, 

i.e., until, before, or after. More complex temporal properties will be tested. In the 

case of temporal properties, satisfying the system property is not always equivalent to 

satisfying a local composition of sub-properties. The modified verification algorithm 

will use linear temporal logic (LTL) as a specification formalism. 
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4.1 Introduction 

With increasing complexity in the design of complex engineered systems such as 

aerospace, maritime, nuclear, and major civil infrastructure systems, the cost and 

time required for design and development are growing at an unsustainable rate. 

For instance, Boeing and Airbus experienced significant delays and cost overruns in 

delivering their latest 787 Dreamliner jet and A380 superjumbo projects [1]. The 

underlying causes were cited as issues in the A380 design and production, which 

resulted in a variety of glitches such as engine blow-up, failure of the backup brakes, 

and discovery of cracks on the wings of the planes. Boeing 787 Dreamliner faced 

similar issues, as described in the national transportation safety board reports of the 

fire incident in the auxiliary power unit (APU) on a Japan Airlines 787 flight from 

Boston on Jan. 2013. The report concluded that a design flaw might be the root 

cause of the fire. In another case, a Japan Airline Dreamliner flight from Boston 

faced a considerable delay after a fuel leak resulting from a faulty valve. The design 

flaws and equipment malfunction cost $5 Billion for Boeing on top of the $1 Billion 

compensation claim from airlines, such as United Airlines and Air India. 

Therefore, in order to improve the design and development process, manufactur­

ing companies are increasingly relying on simulations to understand the unexpected 

behavior of the design to improve both robustness and performance of system. [2], 

and to enable the Verification and Validation (V&V) of system design. V&V are 

techniques used for confirming that a design satisfies its requirements and performs 

its intended functions [3]. Therefore, system verification and validation are critical 

to reduce design faults and facilitate effective and efficient design changes. 
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Plant et al. [4] define verification as the process of evaluating whether or not a 

design complies with requirement specifications. On the other hand, validation is 

defined as the process of identifying whether the mathematical models sufficiently 

represent the reality with regard to decisions that have to be made during the design 

and development process. These decisions consist of requirement validation and 

design validation. The goal of requirement validation is to confirm that the system 

requirements are sufficiently correct, consistent, and complete to achieve reliability 

and safety to meet the needs of stakeholders within the design and development 

constraints, i.e., schedule and cost. 

Based on his research, Foster [5] concluded that verification process consumes over 

60% of the design time. With the magnitude of modern design spaces combined with 

increasing design complexity, the verification process takes even longer. In addition 

to longer verification time which results in project cost increase, a survey conducted 

by Collett International Research Inc. [6] revealed that the traditional verification 

approaches do not cover all possible behaviors of a system; that is, they are not 

able to find all violations of a system specification. Therefore, this paper focuses 

exclusively on the design verification to provide proof that the design satisfies the 

safety requirements. The main functionalities provided by the proposed approach 

include automatic failure injection based on a database of predefined failure modes, 

automatic generation of fault trees, and exhaustive safety property verification with 

the help of model checking algorithms. 

The remainder of this paper is structured as follows: Section 2 presents the 

background and related research on failure analysis techniques in the early stages 
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of system design, while discussing their strengths and weaknesses. In addition, the 

definition of assume-guarantee reasoning and its commonly used terminologies and 

operators are addressed in Section 2. In Section 3 an overview of the step-by-step 

implementation of the assume-guarantee reasoning algorithm on the components 

of the design architectures is explained. Section 4 outlines the application of the 

proposed methodology in the analysis and verification of the safety properties of the 

satellite electrical power system design. The paper ends with conclusions and future 

work. 

4.2 Background 

A variety of modeling approaches and tools are used in industry or in academia, e.g., 

AADL [7], Modelica [8], Ptolemy [9], MATLAB/Simulink [10], SysML [11]. These 

tools are used to model the functionality and architecture of the system design, then 

simulation is carried out to verify the design. However, most of the simulation ex­

periments are designed to evaluate a limited set of scenarios in order to deal with 

the system complexity. The effects of this informal and incomplete verification is 

the possibility that a non-tested scenario could result in unexpected behavior and 

catastrophic system failure. To address the incomplete verification of designs via sim­

ulation, formal methods have been proposed to increase the confidence level. Formal 

verification enables the evaluation of safety properties at different levels of abstrac­

tions,( i.e., component, sub-system, system), guaranteeing the systems’ behavior in 

every possible scenario. 

The main objective of the verification process is to make sure that the design 



complies with safety requirements. In order to satisfy most regulatory guidelines and 

safety standards, designers must develop a safety case to prove the safety justification 

of a design. These cases should represent al l potential hazards and appropriate steps 

be taken to rectify the situation. These types of safety documents usually include 

safety specifications, results of failure and risk analysis, verification approach, and 

results of all the verification activities. Figure 4.1 depicts the general view of the 

verification process. 
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Figure 4.1: Verification Process In Engineered System Design. 

4.2.1 Verification Based On Formal Methods 

In [12], Henzinger et al. cover the advantages that formal verification offers over the 

above approaches. In formal verification, system designers construct a precise math­

ematical model of the system under design, so that extensive analysis is carried out 

to generate proof of correctness. One of the well-established methods for automatic 

formal verification of the system is model checking, where a mathematical model of 

a system is constructed and verified with regards to specified properties. In model 

checking, the desired properties are defined in terms of temporal logic [13]. The 

defined logical formulae are then used to prove that a system design meets safety re­
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quirements and specifications. A model checker to establish assume-guarantee prop­

erties of components is called assume-guarantee reasoning (AGR) [14, 15, 16, 17]. 

In the assume-guarantee reasoning (AGR) method the system properties are verified 

and modeled with respect to the assumptions on the environment where compo­

nent and (sub)system performances are guaranteed under these assumptions. The 

assumption generation methodology uses compositional and hierarchical reasoning 

approaches via a compositional reachability analysis (CRA) [18] technique. CRA 

incrementally composes and abstracts the component models into subsystem and, 

ultimately, a high-level system models. Based on the assume-guarantee reasoning 

(AGR) paradigm, assume-guarantee can be defined as a pair of assumptions and 

guarantees which formally describe: 

1. The context in which the system design is assumed to be used. 

2. The requirements which the system design demands to guarantee correct oper­

ation. (It is important to note that "guaranteeing the correct operation in an 

assumed environment" is only possible with a specified probability. In this con­

text "guarantee" does not mean that system will always survive the assumed 

environment without any failures, it means that system will survive at the 

probability level in which one specifies, i.e, .9999). 

Assume-guarantee reasoning has been widely used in the computer science literature 

as a means for software verification. As a mathematical foundation for representing 

the engineering requirements, this approach can be used for verification of complex 

engineered system design. Additionally, the work focuses on safety property specifi­

cation and design verification at multiple abstraction layers. 
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As discussed in the previous section, abstraction and composition are the two 

most used principles in any system verification methodology for handling the com­

plexity and analysis of engineered systems. When verifying complex systems, dif­

ferent approaches (e.g., model-based methods) use hierarchical abstraction layers 

such as functional, structural, and behavioral models to represent the system under 

study. A functional model is a representation of all the necessary functions that 

the system must contain in order to meet the design requirements. Kurtoglu et 

al. [19, 20] present a framework for developing a functional model for the hardware 

components, while Wang et al. [21] suggest object oriented programming for modu­

larization and functional modeling of the software components. Functional models 

provide the required information about the flow of EMS and data between compo­

nents throughout the system design. In functional modeling [22, 23], the EMS flows 

and functions are modeled using nouns and verbs respectively, e.g., store electric­

ity, actuate electricity, etc. The functional model of the design is developed based 

on the hierarchical structure of functions and flows. Next, the structural model as 

a suitable design solution is developed. The structural model describes different 

system components and the EMS flow relationship between them. Using different 

design solutions within the complex system design process, various design concepts 

for a system are developed. While all design concepts share the same functional 

description, they are implemented differently. They are different in structure and 

behavior. Finally, the behavioral model of a component contains the nominal and 

failure states of the component, including transitions leading to these states. The 

behavioral model results from the relationship between input/output flows and the 
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underlying first principles. Once the behavioral models of the component are devel­

oped, they are incorporated into the Labeled Transition Systems (LTSs) model by 

mapping them with their respective LTSs transitions. 

4.3 Methodology 

The contribution of this paper is developing an automated design verification frame­

work to prove the correctness of the complex engineered system design with regards 

to its functional and safety properties. The proposed framework provides informa­

tion on the property violation of the composed components during conceptual design, 

while identifying the failure propagation behavior. The automatic generation of fail­

ure propagation paths enables the system designers to better address the safety issues 

in the design. 

4.3.1 System Modeling 

In the proposed approach, finite-state model of a system is analyzed to ensure satis­

faction of safety properties that assure a desired system behavior. Finite-state model 

is a representation of the system behavior that is generated in the form of Finite State 

Process (FSP) [24]. FSP is an algebraic notation that is used to describe the compo­

nent’s behavior (Table 4.1). System designers create the FSP models which designed 

to be machine readable, and thus provides an ideal language to specify abstract model 

of the component’s behavior or function. The developed FSP is then used through 

a modeling tool such as the Labelled Transition System Analyzer (LTSA) [25] to 
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Figure 4.2: Parallel Composition of Primitive Component and its Safety Property in 
LTS Format 
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provide compilation of FSPs into a Labelled Transition System (LTS) [26, 25]. The 

LTS model is expressed graphically by its alphabet, transition relation, and states 

including single initial state (Fig. 4.2). The LTS of the system is constructed from 

the LTS of its subsystems, and is verified against safety properties of the design 

requirements. In this research, the model checking algorithm is integrated as part 

of the LTSA tool which performs exhaustive execution of all system’s behavior to 

determine if the safety property is violated or not. The LTSA takes advantage of 

the method called compositional reachability analysis (CRA) and creates a reach-

ability graph for the system which contains information about the safety values of 

each state. A safety property then is checked by analyzing the reachability graph, 

searching for paths on which the safety property is violated. Labelled Transition 

Systems (LTS) T is defined as: 

A set S of states 

A set L of actions 

A set → of transitions from one state to another. 

An initial state s0 ∈ S 

T = (S, L, →, s0). 

4.3.2 Parallel Composition of LTSs 

In this section the parallel composition operator [27] and the composition mechanism 

that assists with compositional modeling of the component models are explained. 
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The parallel composition operator enables both associative and commutative compo­

sition; therefore the order of LTSs models that are composed together is insignificant. 

The parallel composition operator, denoted by "I", is a binary operator that accepts 

two LTSs as an input argument. Based on the definition of this operator, composed 

LTSs interact by synchronizing on common actions (i.e., exchange of EMS) shared in 

their FSP models with interleaving of the remaining actions. Designing interacting 

components with LTSs is therefore sensitive to the selection of action names. In 

addition, parallel composition is based on the model instantiation which is defined 

by constructing a copy of a LTS model where each transition label is prefixed by the 

name of the instance. 

4.3.3 Electrical Power System Design 

Validation of the proposed verification framework is through application to an Elec­

trical Power System (EPS) which is designed to provide power to selected loads. In 

an aerospace vehicle these loads usually include subsystems such as the propulsion, 

avionics, and thermal management systems. The basic functionality that EPS is 

required to provide is common to many aerospace applications such as power stor­

age, power distribution, and operation of loads [28]. Fig. 4.3 displays the existing 

design of the EPS, containing a power source connected through a series of relays 

to an inverter and several loads consisting of a large fan, a Direct Current (DC) 

resistor and a Alternating Current (AC) resistor. In order to create an integrated 

health management environment a sensor suite is designed to enable monitoring of 

currents, voltages, and temperatures through out the circuit. A series of four AC or 
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DC voltage sensors and three current transmitters measure the voltage and current 

at different points throughout the circuit. Fig. 4.5 depicts a functional model of the 

EPS, which serves as the baseline architecture for this research. Fig. 4.3 displays the 

Modelica [29] representation of the EPS design. 

In the EPS test-bed, the power source component that is denoted by a circle 

may have the operational modes on and off. The on-mode has the functional action 

of generating power, which can also result in over-current spikes. As illustrated 

in Fig. 4.3, the generated spike affects the AC resistor, fan, and DC resistor that 

are denoted by circles on the right hand side of the figure. These components are 

vulnerable to the spike generated by the power source. Thus, safety properties are 

needed to protect these vulnerable components and ensure the proper operation of 

the whole system. The safety properties define the types of failure that a component 

is vulnerable to and must be checked to ensure the failure state is not reached. As 

depicted in Fig. 4.3, there are three different paths 1. { A, B, C }, 2. { A, B, D }, 

and 3. { A, E } in which the generated spike from the power source can reach the 

three vulnerable components; these are considered design flaws [30]. 

4.3.4 Reusable Models and Binding Interfaces 

In the proposed system modeling approach, each component defines a scope for the 

transition in its behavioral model (e.g., an instance of the resistor is defined by the 

use of the command res:resistor ). Instantiation permits the reuse of LTSs during 

system modeling through multiple instantiations, e.g., Alternating Current (AC) and 

Direct Current (DC) resistors behave in a similar fashion under the influence when 
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Figure 4.3: Structural Model of the EPS 

the power received from the environment exceeds the resistor’s ability to dissipate 

the heat and therefore the resistor can be used for both components.) Instantiation 

creates unique labeling of transitions in the LTS models (e.g., each transition in 

the AC resistor’s behavioral model is labeled with a prefix of "ACres." and each 

transition in the DC resistor’s model is labeled with a prefix of "DCres." 

In order to create the compositional model of the circuit breaker and AC re­

sistor, an instance of the circuit breaker is defined by the use of the command 

cb:CircuitBreaker that is composed with the previously defined instance ACres. How­

ever, the two LTSs do not have any alphabet in common so no synchronization is 

possible. For this reason, the binding between the two models is created by the use 

of the command ACres.inflow/cb.outflow. The binding leads to a model where the 

circuit breaker’s output current is recognized as the AC resistor’s input current. As 

a result, the new label ACres.inflow, is substituted with the old label, cb.outflow. 

With the binding command in place, the synchronization takes place and the LTSs 
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components have a common action to communicate. 

In our context, properties are modeled as safety LTSs. A safety LTS is a LTS 

that contains no failure states. When checking a property P, an error LTS denoted 

Perr is created, which identifies possible violations with the failure state. 

4.3.5 Verification Process 

The contribution of this paper is developing an automated design verification frame­

work to prove the correctness of the complex engineered system design with regards 

to its functional and safety properties. The proposed framework provides informa­

tion on the property violation of the composed components during conceptual design, 

while identifying the failure propagation behavior. The automatic generation of fail­

ure propagation paths enables the system designers to better address the safety issues 

in the design. Fig. 4.4 depicts the relationship between system models and the verifi­

cation framework that either provides the proof of correctness or failure propagation 

information. 

The main steps to apply the assume-guarantee reasoning (AGR) framework are sum­

marized as follows: 

1. A functional model is generated as a representation of all the necessary func­

tions that the system must contain in order to meet the design requirements is 

used to create the structural model of the system. 

2. The structural model is used as a resource to gather information about the 

different system components and the Energy, Material, and Signal (EMS) flow 
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Figure 4.4: An Overview of the Proposed Verification Process. 

relationship between them to create a database of their failure states and safety 

properties and the behavioral models. 

3. Once the behavioral models of the component are developed, they are incorpo­

rated into the Finite State Processes (FSP) by mapping the behavior models 

with their respective FSPs’ transitions. 

4. The Labeled Transition System (LTS) of the system is automatically con­

structed from the FSP models that are developed by design engineers. 

5. The LTSs are incrementally analyzed and abstracted through the use of a 

reachability graph to determine whether the safety property is violated. 

6. If the failure state of the component is reached, then the failure propagation 

path is provided. 
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Figure 4.5: Functional Model of the Electrical Power System. 

The AGR paradigm requires exact identification of the component properties, which 

in this case are defined based on the failed states, of the components and (sub)systems. 

In order to identify the failed states the effects of incoming EMS flows on the op­

eration of the components is analyzed and two generic states of nominal and failed 

are defined. The component’s state is recognized as nominal when a component is 

operating with the performance and functionality intended by the system designer. 

On the other hand, failure state is defined as a component functioning in a way 

that was not intended by the designer. 

4.3.6 The LTSA Tool 

The Labeled Transition System Analyzer (LTSA) [31, 25] is an automated tool that 

supports Compositional Reachability Analysis (CRA) [18] of a software system based 

on its architecture. In general, the conceptual design of a complex engineered sys­

tem has a hierarchical structure and is modular [32]. CRA incrementally computes 

and abstracts the behavior of composite components based on the behavior of their 

immediate children in the hierarchy. The input language "FSP" of the tool is a 

process-algebra style notation with Labeled Transition Systems (LTS) semantics. 

A property is also expressed as an LTS, but with extended semantics, and is 
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treated as an ordinary component during composition. Properties are combined with 

the components to which they refer. They do not interfere with system behavior 

unless they are violated. In the presence of violations, the properties introduced 

may reduce the state space of the (sub)systems analyzed. As in our approach, the 

LTSA framework treats components as open systems that may only satisfy some 

requirements in specific contexts. By composing components with their properties it 

postpones analysis until the system is closed, meaning that all contextual behavior 

that is applicable has been provided. 

4.4 Case Study 

Continuing with the EPS design concept, the development of LTSs implies direct 

mapping between the functional model (Fig. 4.5) and the structural architecture 

(Fig. 4.3) of the system, in which specific component or (sub)system is selected to 

implement the functional requirements in the actual system design. For example, 

in Fig. 4.3 the component "inverter" implements function "condition electricity" of 

Fig. 4.5. 

In order to construct the LTS model of the EPS design, all internal state transi­

tions of the components are presented in the Finite State Processes (FSP) language. 

The constant variables(factors that do not change during the course of this experi­

ment) and ranges are defined as follows: 

const Low = 0 

const Medium = 1 

const Spike = 2 
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const Open = 1 

const Close = 0 

range CUR = Low..Spike 

The notations 0,1, and 2 are used to denote low, medium, and spike currents in the 

EPS components, respectively. 

4.4.1 Primitive Components and Properties 

As depicted in Table 4.1 all internal state transitions of the primitive components 

are presented in the FSP language. Each component’s nominal behavioral model 

is incorporated into the FSP code, therefore the resulting model contains no failure 

state. For example, while the AC resistor is in the operational mode (Table 4.1), 

two transitions are possible, which are specified using the "OR" logical operator "|" . 

These two transitions are defined as: 1- the current input into the AC resistor which 

is in the range of low or medium and the resulting output current also in the low 

or medium range 2- the current in-flow to the AC resistor is spiking which results 

in the state of "burn". If the resistor is in the state of burn, no matter what input 

current level to the AC resistor, there is no output current past the AC resistor. 

The failure modes of components are represented by Perr . The error LTSs are con­

structed to represent all the faulty transitions that lead to failure states. In order 

to model the failure mode of the three vulnerable components discussed in design 

architecture of Fig. 4.3, a generic property named Perr is defined for all three com­

ponents as below: 

property Perr = STOP + burn. 
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Table 4.1: EPS Components and their FSP Models
 

EPS System 
Component Mode FSP Model 
Battery nominal (inflow[v:CUR] → outflow[v] → Battery) 
Current Sensor nominal (inflow[v:CUR] → outflow[v] → Current Sensor) 
Voltage Sensor nominal (inflow[v:CUR] → outflow[v] → Voltage Sensor) 
Relay nominal (inflow[v:CUR] → if (Open) then 

(outflow[v] → Relay 
else Relay)) 

Inverter nominal (inflow[v:CUR] → outflow[v] → Inverter) 
AC Resistor nominal Operational = 

failure (inflow[v:CUR] → outflow[v] → Operational 
| inflow[Spike] → burn → BURNED), 
Burned = (inflow[CUR] → Burned) 

DC Resistor nominal same as AC Resistor 
failure 

Fan nominal same as AC Resistor 
failure 

The LTSA tool represents failure state by -1 as it is depicted in Fig. 4.2 in the com­

positional model of the AC resistor with its property that is reached by the illegal 

transition of acres.burn. 

4.4.2 Compositional Model 

In order to create the compositional model of the EPS system, the order of com­

positions is decided based on the functional model of the design (Fig. 4.5). Table 

4.2 represents the compositional model of the EPS system for two types of com­

ponents. Those components that operate in nominal mode such as "battery" and 

"currentsensor240 " in module18 are composed by the creation of binding between 

them. The binding is modeled by the EMS flow between the two components which 

is represented by the use of the command cs240.inf low/bat2.outf low. The binding 

leads to the compositional model where the battery’s output flow is recognized as 

currentsensor240’s input flow. The second types of components are those with fail­

ure states, which are required to be composed with their defined properties before 
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Figure 4.6: Parallel Composition in LTS Format 

they can be considered for composition with other components, e.g., module1 through 

module3 in Table 4.2. 

Also it is important to note that the FSP language supports component instan­

tiation, which is defined by constructing a copy of a model where each transition 

label is prefixed by the name of the instance. As a result, each component defines a 

scope for the transition in its behavioral model. For example, in the compositional 

modeling of the EPS system, the instances of the vulnerable model are copied and 

reused for the AC resistor, DC resistor, and Fan, because of their similar behavior 

with regard to over current spike. Instantiation creates unique labeling of transitions 

in the LTSs. As illustrated in Fig. 4.2, each transition in the AC resistor model is 

labeled with a prefix of "acres.###". Once the primitive components, their prop­

erties, and the compositional models are created, the LTSA tool is used to compile 

the models from FSP code into the LTS models (Fig. 4.2). 
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Table 4.2: Composition of the EPS components
 

EPS System Compositional Model 
� M odule1 = (acRes:(Vulnerable � Perr )). 
� M odule2 = (fan:(Vulnerable � Perr )). 
� M odule3 = (dcRes:(Vulnerable � Perr )). 
� M odule4 = (rel272:Relay) / acRes.inflow/rel272.outflow. 
� M odule5 = (rel275:Relay) / fan.inflow/rel275.outflow. 
� M odule6 = (cs267:CurrentSensor) / rel272.inflow/cs267.outflow. 
� M odule7 = (cs267:CurrentSensor) / rel275.inflow/cs267.outflow. 
� M odule8 = (vm256:VoltMeter) / cs267.inflow/vm256.outflow. 
� M odule9 = (inv2:Inverter) / vm256.inflow/inv2.outflow. 
� M odule10 = (rel284:Relay) / dcRes.inflow/rel284.outflow. 
� M odule11 = (vm281:VoltMeter) / rel284.inflow/vm281.outflow. 
� M odule12 = (cs281:CurrentSensor) / vm281.inflow/cs281.outflow. 
� M odule13 = (vm242:VoltMeter) / inv2.inflow/vm242.outflow. 
� M odule14 = (vm242:VoltMeter) / cs281.inflow/vm242.outflow. 
� M odule15 = (rel244:Relay) / vm242.inflow/rel244.outflow. 
� M odule16 = (vm240:VoltMeter) / rel244.inflow/vm240.outflow. 
� M odule17 = (cs240:CurrentSensor) / vm240.inflow/cs240.outflow. 
� M odule18 = (bat2:Battery) / cs240.inflow/bat2.outflow. 

4.4.3 Compositional Verification 

In order to verify the properties of the EPS system, the LTSA "compositional" algo­

rithm is used. This algorithm implements assume-guarantee reasoning in a learning 

framework to prove that the properties are satisfied or violated. The advantage of 

using model checking and automata learning algorithm is its ability to perform CRA 

in an exhaustive manner to search for violations of design properties. In addition, 

the LTSA algorithm uses a specific form of learning algorithm based on minimiza­

tion and abstraction, which dramatically reduces the number of state spaces required 

for analysis. For example, if the two modules of the EPS LTSs, e.g, module18 and 

module17 are analyzed in a monolithic manner (I Test = (M odule18 I M odule17) the 

state space of this composition results in 16 states with 27 transitions as illustrated 

in Fig. 4.6. Eventually, the full monolithic composition of the EPS design results in 

approximately 232 × 109 states, however, with the proposed method in this paper, 

the compositional analysis is completed in 2 seconds. 
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The result of EPS compositional verification concluded by the AGR for the design 

of Fig. 4.3 was that the "system and environment are incompatible". The 

reason for this conclusion is that the EPS design represented in Fig. 4.3 assumes 

normal operating condition for the system. In normal condition, all three susceptible 

components receive nominal voltage and current, while any variation in load and 

distribution has an effect on the system. Therefore, the analyzed design is not 

considered fault tolerant. 

In addition to verifying the desired properties of the system design, the pro­

posed methodology automatically computes the required assume-guarantee pair for 

each component in the design to prove the global properties of the design under 

consideration. There are cases where no assume-guarantee pair is generated by the 

verification algorithm because there is no environment in which the design can be 

implemented safely. Fig. 4.7 represents the assume-guarantee pairs generated by 

the AGR for each system element in the design, which implies that each compo­

nent guarantees to output current flow of low or medium (0 or 1) iff they receive 

current in-flow of low or medium. In the case of detecting safety violation in the 

system design, the verification framework returns a counterexample, which provides 

information of the failure propagation path. Only one counterexample is necessary 

to prove that the design violates its properties. In the case of EPS design, the 

failure propagation path starts from "battery" propagating through different compo­

nents such as C urrentS ensor240, V oltM eter240, Relay244, V oltM eter242, I nverter2, 

V oltM eter256, C urrentS ensor267, Relay272 and reaching the "AC resistor" causing 

it to burn. The "inflow.2 " represents the existence of the spike in the incoming and 

outgoing current flow in each component. 
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Figure 4.7: Assume-Guarantee Pair for the EPS Design of Fig. 4.3. 

Figure 4.8: Model of the EPS with Circuit Breaker. 

4.4.4 Design Based On The Result Of Verification 

In order to correct the design flaws mentioned above, it is required to add circuit 

breakers to the design as modeled in Fig. 4.8 to prevent the spike reaching the three 

vulnerable components. The circles highlight the circuit breakers used to protect the
 

AC resistor, fan, and DC resistor from an over-current spike. The operation of the
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circuit breaker is similar to that of an electrical switch, which is designed to protect 

an electrical circuit from damage caused by overload or short circuit (Table 4.3). 

Therefore, the integration of circuit breakers in the design architecture of Fig. 4.8 

prevents the resistors and fan from burning. The following equation represents the 

assume-guarantee reasoning rule of triple type: 

1. <{0..1}> AC Resistor <No Burn> 

2. <true> C ircuitBreaker <{0..1}> 

<true> AC Resistor I Circuit Breaker <No Burn> 

(1) <{0..1}> AC resistor <No Burn> is proven correct if circuit breaker satis­

fies the assumption that in-flow current to the AC resistor is always {0..1}, resulting 

in guaranteeing property No Burn. 

The compositional model of the modified design is represented in Table 4.4. The 

Table 4.3: FSP Code for Circuit Breaker 

Circuit Breaker 
Component Mode LTS Model 
Circuit 
Breaker 

nominal (inflow[v:CUR] → if ( v < Spike) then 
(outflow[v] → CircuitBreaker) 
else CircuitBreaker) + {outflow[Spike]} 

full monolithic composition of the modified EPS design results in 19 × 1012 states, 

however, with the proposed method in this paper, the compositional analysis is com­

pleted in 2.5 seconds. The result of verification is successful, implying that the 

"system and environment are compatible" and all the design safety requirements are 

met. 
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Table 4.4: Composition of the EPS components
 

EPS System Compositional Model 
� M odule1 = (acRes:(Vulnerable � Perr )). 
� M odule2 = (fan:(Vulnerable � Perr )). 
� M odule3 = (dcRes:(Vulnerable � Perr )). 
� M odule4 = (rel272:Relay) / acRes.inflow/rel272.outflow. 
� M odule5 = (rel275:Relay) / fan.inflow/rel275.outflow. 
� M odule6 = (cs267:CurrentSensor) / rel272.inflow/cs267.outflow. 
� M odule7 = (cs267:CurrentSensor) / rel275.inflow/cs267.outflow. 
� M odule8 = (cb266:CircuitBreaker) / cs267.inflow/cb266.outflow. 
� M odule9 = (vm256:VoltMeter) / cb266.inflow/vm256.outflow. 
� M odule10 = (inv2:Inverter) / vm256.inflow/inv2.outflow. 
� M odule11 = (cb262:CircuitBreaker) / inv2.inflow/cb262.outflow. 
� M odule12 = (rel284:Relay) / dcRes.inflow/rel284.outflow. 
� M odule13 = (vm281:VoltMeter) / rel284.inflow/vm281.outflow. 
� M odule14 = (cs281:CurrentSensor) / vm281.inflow/cs281.outflow. 
� M odule15 = (cb280:CircuitBreaker) / cs281.inflow/cb280.outflow. 
� M odule16 = (vm242:VoltMeter) / cb262.inflow/vm242.outflow. 
� M odule17 = (vm242:VoltMeter) / cb280.inflow/vm242.outflow. 
� M odule18 = (rel244:Relay) / vm242.inflow/rel244.outflow. 
� M odule19 = (vm240:VoltMeter) / rel244.inflow/vm240.outflow. 
� M odule20 = (cs240:CurrentSensor) / vm240.inflow/cs240.outflow. 
� M odule21 = (cb236:CircuitBreaker) / cs240.inflow/cb236.outflow. 
� M odule22 = (bat2:Battery) / cb236.inflow/bat2.outflow. 

It is important to note that the generated assume-guarantee pairs, as depicted in 

Table 4.5, restrict the current-inflow of low and medium, [0, 1], for a smaller number 

of components, compared to the previous design which was analyzed in Fig. 4.7. The 

reason for this is that the circuitbreaker266 detects a fault condition and interrupt 

current flow from reaching the two vulnerable components (AC resistor and fan) in 

the top branch, while the circuitebreaker280 protects the lower branch. Therefore, 

any components before these two circuit breakers can accept the in-flow current 

of low, medium, and spike. This is a good indication of the weakest assumptions 

generated by the proposed framework, guiding the designers in their understanding 

of the design requirements. Based on the generated assumptions the two circuit 

breakers (236 and 262) are not required and therefore can be eliminated from the 

design. 



V olt M eter281 [0, 1] [0, 1] 
DC Resistor [0, 1] [0, 1] 

The second alternative design architecture of the EPS system with removed cir-

cuit breakers has been verified as a safe design. Tables 4.6 illustrates the assume-

guarantee pair generated for each design component. 
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Table 4.5: Generated Assume-Guarantee Pair of Fig. 4.8
 

For EPS Design of Fig. 4.8 
Component Assumption Guarantee 
Battery [0, 1, 2] [0, 1, 2] 
C ircuit Breaker236 [0, 1, 2] [0, 1] 
V olt M eter240 [0, 1, 2] [0, 1, 2] 
C urrent S ensor240 [0, 1, 2] [0, 1, 2] 
Relay244 [0, 1, 2] [0, 1, 2] 
V olt M eter242 [0, 1, 2] [0, 1, 2] 
C ircuit Breaker262 [0, 1, 2] [0, 1] 
I nvertor2 [0, 1, 2] [0, 1, 2] 
C ircuit Breaker266 [0, 1, 2] [0, 1] 
V olt M eter265 [0, 1] [0, 1] 
C urrent S ensor267 [0, 1] [0, 1] 
Relay272 [0, 1] [0, 1] 
Relay275 [0, 1] [0, 1] 
AC Resistor [0, 1] [0, 1] 
F an [0, 1] [0, 1] 
C ircuit Breaker280 [0, 1, 2] [0, 1] 
C urrent S ensor281 [0, 1] [0, 1] 
Relay284 [0, 1] [0, 1] 

Figure 4.9: Verification Time of Monolithic Composition Vs. AGR Approach. 

As illustrated, the generated assume-guarantee pair is critical in choosing alter­

native design solutions and migrating between different design architectures with 

relatively small effort. In addition, the generated assume-guarantee pair enables the 
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Table 4.6: Generated Assume-Guarantee Pair (Remove Unnecessary Circuit Break­
ers) 

Improved EPS Design 
Component Assumption Guarantee 
Battery [0, 1, 2] [0, 1, 2] 
AC Resistor [0, 1] [0, 1] 
V olt M eter240 [0, 1, 2] [0, 1, 2] 
C urrent S ensor240 [0, 1, 2] [0, 1, 2] 
Relay244 [0, 1, 2] [0, 1, 2] 
V olt M eter242 [0, 1, 2] [0, 1, 2] 
I nvertor2 [0, 1, 2] [0, 1, 2] 
C ircuit Breaker266 [0, 1, 2] [0, 1] 
V olt M eter265 [0, 1, 2] [0, 1, 2] 
Relay272 [0, 1] [0, 1] 
C urrent S ensor267 [0, 1] [0, 1] 
Relay275 [0, 1] [0, 1] 
F an [0, 1] [0, 1] 
C ircuit Breaker280 [0, 1, 2] [0, 1] 
C urrent S ensor281 [0, 1] [0, 1] 
Relay284 [0, 1] [0, 1] 
V olt M eter281 [0, 1] [0, 1] 
DC Resistor [0, 1] [0, 1] 

system designers to trace the requirements throughout the design architecture. The 

behavior of the system design is described in an assume-guarantee style specification: 

a component guarantees certain set of behaviors, given that its environment follows 

certain assumptions. 

In addition, a performance case study is conducted by comparing the perfor­

mance results of the proposed verification approach with a monolithical approach 

(Fig. 4.9) which represents linear growth for the proposed verification process, while 

an exponential growth is predicted for the monolithical verification process. 

4.5 Conclusion and Future Work 

In this paper represents system design requirements using a formal technique that 

allows for verification of these requirements from the early stages of system design 

by automatic execution of the specifications. This is especially important in proving 
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the correctness of the system design, where it is critical to guarantee that the known 

interactions between system components do not violate any safety properties. Most 

often high level system design requirements are decomposed into component and 

(sub)system requirements which logically map to the architectural decomposition of 

the system. Therefore, proof of correctness through pre-verification of system com­

ponents and compositional reasoning is made possible. The aim of compositional 

reasoning is to improve scalability of the design verification problem by decomposing 

the original verification task into subproblems. The simplification is based on the 

assume-guarantee reasoning that results in approximating the requirements which a 

component and (sub)system places on its operational environment to satisfy safety 

properties. The case study of the EPS design demonstrated the capability of the pro­

posed verification methodology to perform virtual integration of system elements and 

proving system-level requirements from the constraints allocated on the components. 

As a result, a class of design flaws has been uncovered because of an integration fail­

ure that occurs when system components satisfy their requirements in isolation but 

not at the system-level. 

The proposed approach models the behavior of composite components using LTS 

models of the primitive components and their safety properties, which are based on 

the structural model provided by the Modelica model of the system design. In ad­

dition, a fully automated compositional verification technique is used to determine 

the correctness of the design with regards to its requirement and generate pairs of 

assume-guarantee using a learning algorithm. Experimental results showed the ef­

fectiveness of the compositional reasoning approach in reducing the complexity of 
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the verification process by using modularity and abstraction. In addition, we showed 

how a deductive verification tool such as LTSA combined with LTS models can be 

used for verification of finite-state hardware system designs. The compositional ver­

ification helps in breaking a large complex system design into smaller parts whose 

ŞverificationŤ can be checked in order to prove that the safety property of the com­

ponents and the (sub)system holds. The assume-guarantee approach which is based 

on a learning algorithm [14], produces and refines assumptions depending on failure 

propagation paths and queries, the verification process is assured [14] to terminate. 

In addition, the algorithm returns counterexamples which include failure propaga­

tion information in the early stages of conceptual design. Another advantage of the 

proposed approach for verification of engineered systems is its independence from 

human intervention and expert user in devising the appropriate assume-guarantee 

pair. The experiment in this paper provided strong evidence in favor of this line of 

research. 

The future work will focus on the design verification and analysis of complex 

engineered systems with software controlling the hardware. The design of such sys­

tems requires collaboration between experts from different design domains. There­

fore, there is a pressing need for considering the complex interdependencies among 

components and (sub)systems during system design and formally defining their inter­

acting behavior. These interacting behaviors are important since there are possible 

cases where these systems have conflicting requirements or objectives, therefore, un­

derstanding and verifying these underlying interactions is crucial. 

In future work, it is intended to expand the approach discussed in this paper to 
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examine the learning algorithm and its generated assumptions to determine the most 

reliable design architecture of the redundant systems. In addition, it is our goal to 

investigate different aspects of fault tolerant system design requirements while taking 

into account automatic injection of multiple failures and reasoning about different 

types of recovery strategies. 
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5.1 Introduction 

Conceptual design is the earliest stage in the overall process of engineering system 

design. Past research efforts [1, 2, 3, 4, 5], have recognized the significance of utilizing 

fault-tolerance analysis during the conceptual design phase. However, anticipating 

component failure rates and system performance is difficult as detailed knowledge of 

system components and their performance criteria are not yet available. Therefore, 

it is important to develop fault-tolerance engineering tools that can be used during 

the early design of complex systems because of the inherent uncertainty in the per­

formance of individual components and their interaction effects during the product 

life cycle cost [6]. Robustness in this context means operation of the system within 

the designed performance variance under all ranges of environmental conditions ex­

perienced in the field. For the engineered system to be robust, the design of the 

system is required to be robust, meaning that the system is able to function under 

the full range of environmental conditions that may be experienced during system 

operation [7]. Resiliency is recognized as maintaining system functions despite the 

existence of failures [8]. This differs from traditional definitions of robustness because 

resiliency deals with the functional response of a system. As designers, it is important 

to be sure that these systems are able to perform the functions they were designed to 

perform; something that robustness does not strictly deal with. Instead, robustness 

correlates to the ability of a system to produce performance characteristics despite 

the presence of these internal and external stimuli. Complete functionality of a com­

plex engineered system does not necessarily have to be maintained for the system to 

be considered robust. 
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The main purpose of system reliability analysis is to determine the weakness of 

a design and to quantify the impact of component failures. The resulting analy­

sis provides a numerical rank to identify which components are more important to 

system reliability enhancement or more critical to system failure. Design reliability 

analysis methods introduced in the research literature, such as the Function-Failure 

Design Method (FFDM) [9], the Functional Failure Identification and Propagation 

(FFIP) [10], and decomposition-based design optimization [11, 12] have begun to 

adopt graph-based approaches to model the function of the component and the flow 

of energy, material, and signal (EMS) between them. This work extends this idea 

to demonstrate the effect of the design architecture on the robustness of the system 

being designed. 

In the past several years, scientific interest has been devoted to modeling and 

characterization of complex systems that are defined as networks. Such systems 

consist of simple components whose interactions are very basic, but their large-scale 

effects are extremely complex, (e.g., protein webs, social communities, Internet). Nu­

merous research studies have been devoted to the effect of network architecture on 

the system dynamics, behavior, and characteristics. Since, many complex engineered 

systems can be represented by their internal product architecture, their complexity 

is dependent on the heterogeneity and quantity of different components as well as the 

formation of connections between those components. Because of this, system prop­

erties can be studied by graph-theoretic approaches. Complex networks are modeled 

with graph-based approaches, which are effective in representing components and 

their underlying interactions within complex engineered systems. 
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Research findings by Ash et al. [13] suggest that modular systems are less robust 

even though their individual components are designed with high robustness. Modu­

larity describes the topology of a system or network. Modularity in a system is rather 

straight-forward. A system is modular if components or subsystems can be isolated 

from the greater system without compromising the structure of the rest of the system. 

For instance, a modular system topology is one that allows a component or subsys­

tem to be removed without first removing many others. Networks are a little more 

difficult. A network is said to be modular if there are high concentrations of high 

connectedness in the network separated by low connectedness between ’modules’. 

Bagrow et al. [14] confirm these finding and further explain that the high robustness 

of modular systems is only possible if the components’ failure can be isolated to their 

modules. Furthermore, Hölttä et al. [15] prove that while the hierarchical modular 

structure improves the system’s robustness, excessive use of modularity results in 

loss of performance. On the other hand, there are studies [6, 16] that support the 

increase of modularity in the design of complex engineered systems. Therefore, in 

order to design a robust system and to recommend or oppose the modular physical 

system architecture it is utterly important to understand the architectural properties 

of complex engineered systems and the effect of design architecture topology on the 

propagation of failures within a complex engineered system. 

In this research, we adopt approaches from graph theory and social network anal­

ysis to understand the robustness of the design architecture of a complex engineered 

system. Specifically, this paper shows the relationship between graph spectral the­

ory eigenvalue analysis and how optimizing (or altering) the graph of a system will 
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change system connectedness, thereby changing the robustness of the system. To 

accomplish this objective, the network model of a safety-critical engineered system 

in the context of complex network theory is constructed. Its network properties are 

calculated to determine system robustness. Constructive design architecture change 

recommendations are made to optimize the system robustness. 

5.2 Background 

Eliminating the likelihood of failures, and should failures occur, ensuring the contin­

ued operation of the system within a safe performance envelop until repairs can be 

made, are of paramount importance in mission critical complex engineered systems. 

To avoid the failures of critical components, setting aside the problem of identifying 

critical components, the engineering design literature recommends techniques such as 

Failure Mode Effects Analysis (FMEA) [17] or a Function-Failure Design Method [9] 

among many. While these techniques have proven useful where knowledge of fail­

ure modes and effects can be predicted, their most significant weaknesses are that 

they can neither readily handle interaction effects of failures nor identify the most 

vulnerable components without significant prior knowledge. While methods such as 

the FFIP technique address this issue [10], significant expertise of engineers and a 

knowledge base of previous products are still required. 

In contrast to techniques relying on prior knowledge, the network topology anal­

ysis and biological concepts of resilience hold promise for addressing this problem in 

the engineering design domain. The study of network topologies provides interest­
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ing insights into the way that complex engineered systems are designed. Numerous 

studies [18, 19] have attempted to measure the resilience of complex networks. In the 

design of networks, the design philosophy is not to predict that failures will occur, 

but, rather, to design with the knowledge that failures will occur - that is, that nodes 

will fail and external ’attacks’ on the network may happen. The challenge for the 

network designer is to ensure that the network continues to operate, or fails grace­

fully, even under such circumstances. The results of these efforts conclude that many 

complex systems exhibit a surprising degree of tolerance against failure in a specific 

class of networks called scale-free networks [20]. A scale-free network is an inhomo­

geneous network in nature, meaning that a significant number of nodes have very 

few connections while a small number of particular nodes have many connections. 

The inhomogeneous feature of a scale-free network allows for higher failure tolerance 

under random failure of nodes, but the network is more vulnerable to failure when 

the most highly connected nodes fail [21, 22, 23, 24]. In the case of designing resilient 

complex engineered systems, the design architecture can be modeled as a complex 

network and their resilience optimized by ensuring that critical components (nodes) 

are less vulnerable to failure while preserving the interconnectedness of interdepen­

dent components. 

There are two concepts that are most relevant: contagion spread and failure tol­

erance. A contagion spreads by altering the states of nodes, which is not dissimilar 

from the situation of a degraded flow from a component altering the performance 

of interdependent components. Usually, this is described as degradation in system 

performance, and robust systems are those that maintain performance within a tight 
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tolerance despite perturbations. However, engineered system designs are naturally 

different from models such as the internet and World Wide Web representations of 

complex networks. As a result, the appropriate network representation is critical to 

the success of modeling engineered system design, since the representation affects the 

accuracy and efficiency of the calculation for system modularization and optimiza­

tion. In order to evaluate different system design architectures for any given design 

problem, the graph theoretic formulation must not depend on any particular design 

architecture. Therefore, a general and precise analytical model such as a Non-Linear 

Dynamical System (NLDS) that uses a system of probability equations [?] for accu­

rate modeling of viral propagation in complex networks can be used to investigate 

the behavior of failure propagation in complex engineered systems. This approach 

examines the propagation behavior via a number of stochastic contact trials per unit 

time, where the infection expands at a constant rate from an initially infected vertex. 

In addition, existing research literature on the analysis of disease epidemic spread­

ing [25, 26, 27] and dynamics of information spreading in social networks [28, 29] are 

focused on modeling the failure propagation in complex engineered systems. Despite 

the fact that the two models share similar features, they are very different. For 

example, the disease-spreading model is based on the physical contact between indi­

viduals in a social network. Many factors such as biological characteristics of both 

the carrier and infectious agent play an important role in the mathematical model 

of the spread. However, information spreading is possible through non-physical con­

tact and via the use of communication infrastructures, also the decision of whether 

information should be spread to more individuals or not is made by individuals. 
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Consequently, the paper focuses on the epidemic spreading of diseases, and these 

types of models inspire the proposed model. 

5.3 Methodology 

The initial part of the research focuses on producing synthetic networks that model 

real-world system design. In order to evaluate each design, a Modelica-based struc­

tural model [30] is created and converted into a graph representation of the system’s 

design architecture. The network is modeled by a connected graph G = (V ,E) which 

is a collection of vertices V (also called nodes) with edges E between them. In this 

context, components of complex engineered systems are modeled as nodes of the 

graph and the connections between these components are the graph edges. These 

graph representations are then be used as a tool to convert each design into an ad­

jacency matrix of nodes (components) and edge connections. Assuming A signifies 

the adjacency matrix of an engineered system under study with n components, A is 

defined as follows: 

Aij =
 

⎧ ⎪⎪⎨ ⎪⎪⎩ 

1 ∀ [(i,j) | (i = j) and (i,j) ∈ Λ]
 
(5.1)
 

0 otherwise
 

where Λ symbolizes the set of components. A is a square symmetric matrix with 

diagonal entries of zero. the edge connections between components can be defined 

topologically or by Energy, Material, and/or Signal (EMS) relations. A topologically 

defined graph has components which are connected with physical justifications. For 
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example, if two components are physically connected together within a design, they 

are connected within the graph. EMS related connectivity rules describe the energy, 

material, and/or signal flows between components. Therefore, if two design compo­

nents share a flow variable (or a flow relationship), they would be "connected" within 

the graph and represented with a "1" within an adjacency matrix. 

In addition, a degree matrix called D is used to define the number of connections 

associated with a specific node, or component and is defined based on the following: 

Dij =
 

⎧ ⎪⎪⎨ ⎪⎪⎩ 

di degree of component i when i = j 
(5.2)
 

0 when i = j
 

Dij is an n × n diagonal matrix where di is the degree of the vertex i recognized as 

the total number of edges that touch the vertex. Hence, every engineered system can 

be represented elegantly by graphical models. Then, the Laplacian matrix is defined 

as L = D − A.
 ⎧ ⎪⎪⎪⎪⎪⎪⎨ ⎪⎪⎪⎪⎪⎪⎩ 

di when i = j 

Lij = −1 when i = j and i is adjacent to j (5.3) 

0 otherwise
 

The Laplacian matrix is a square, symmetric, and positive semi-definite matrix. As 

a result, it has nonnegative eigenvalues which are ranked using an index in ascending 

order: 

λ1 ≤ λ2 ≤ . . . ≤ λn (5.4) 

In reviewing the literature in algebraic graph theory [31, 32, 33], the second smallest 

eigenvalue of the Laplacian matrix has appeared as a critical parameter for robustness 
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Figure 5.1: Even though both graphs have the same degree sequence, the graph on 
the left is considered weakly connected. On the left the algebraic connectivity equals 
0.238 and on the right 0.925. 

properties of dynamic systems that operate as networks. The second smallest eigen­

value of a Laplacian matrix is known as the algebraic connectivity. The algebraic 

connectivity describes the average difficulty to isolate an individual node (compo­

nent) from the rest of the system (Fig. 5.1). Because the algebraic connectivity of a 

graph increases with increasing node and edge connectivity, a higher algebraic con­

nectivity will result in an increased number of paths between nodes. This inherently 

means that networks with higher algebraic connectivity are more robust [32]. Addi­

tionally, another such parameter exists in the literature called spectral radius. In the 

review of literature from network theory, the spectral radius is the largest eigenvalue 

of the adjacency matrix [34]. Jamakovic et al. [34] conclude that a smaller spectral 

radius results in higher system resiliency against failure propagation throughout the 

system compared to other networks of similar average node degree. As this value 

is based on the evaluation of the eigen-spectrum of a single, unique characteristic 

equation, it is important to note that the value is not useful unless it is compared 

to another graph of similar size. It does not have a defined range of values. The 

spectral radius provides a high level analysis to compare two or more graphs. 

The number of modules present in a network is determined using the eigenvalues 
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of the adjacency matrix representation of the design [35, 36]. To determine the num­

ber of modules, the eigenvalues of the adjacency matrix are ordered in descending 

order. The differences between the ordered eigenvalues define the number of modules 

in the system. If k corresponds to an eigenvalue of the adjacency matrix, the max­

imum difference is between the kth and kth + 1 eigenvalue. The number of modules 

is the k value where that difference is the greatest. Given the relative quantity of 

modules within a design, this information can be used for insight into the robustness 

of a given design topology as well as the resilience to attack propagation for a specific 

design. 

The following constraints are defined while modeling the system under design: 

1. A component is not connected to itself, meaning that the diagonal of the ad­

jacency matrix is a diagonal of zeros. 

2. A system is represented as a connected system, therefore there is no isolated 

component (or set of components) with no connections to any other compo­

nents. 

5.3.1 Maximizing the Design Robustness 

This section demonstrates the effect on the design architecture from maximizing the 

algebraic connectivity for system robustness. A random, generic system is repre­

sented as a network. This system is not meant to describe possible real-world system 

architectures, but rather to show how changes in network topology manifest in graph 

analysis metrics. A genetic algorithm is developed to iterate through a random net­
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work and change the connections between nodes (components) within an adjacency 

matrix. This is done by maximizing the algebraic connectivity of the network in 

each iteration. Each generation (iteration) represents a system architecture that 

experiences binary cross-over and mutation events to produce the next generation. 

The system under design is modeled in binary values with values of 1 representing 

a connection between two components, and 0 otherwise. The developed algorithm 

performs evaluations on a binary bit string of characters, which represent the con­

nections between two components. Even though the Laplacian matrix is used to 

define the algebraic connectivity, the adjacency matrix is manipulated in order to 

iterate through the design space. The design space is defined by combinations of 

generic system components, where each component is capable of having a connec­

tion with any other component. This results in all possible system design candidate 

architectures including some infeasible architecture. The evaluation process is com­

puted on a sequence of design variables, where every possible connection between 

one component and another is a design variable, represented in a binary string of 1 

or 0 characters similar to the following: 

Design = [10110101010101111000...] (5.5) 

For a more conventional problem, such as a design problem with defined design 

variables such as length, width, height, mass, etc., the algorithm manipulates the 

string so that the binary address of the design variables is changed from generation 

to generation. This is especially useful for a discrete problem that contains only 

a handful of possible design architectures. Fig. 5.2 depicts the steps of the algo­
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Figure 5.2: Algorithm steps for computing the resiliency of the system under design. 

rithmic process to compute the algebraic connectivity of the system under design. 

The maximization of the algebraic connectivity in the genetic algorithm produces 

adjacency matrices with higher component degrees, representing a higher average 

number of connections per component and therefore a higher algebraic connectivity, 

as expected. 

5.3.2 Design Topology and Its Effect on Failure Propagation 

The second part of the research determines how design architecture affects the propa­

gation of failures throughout an engineered system. System robustness and resistance 

to topological failure propagation help to describe how a complex engineered system 

responds to internal and external stimuli. 

The cascading failure is modeled as a Contact Process (CP), introduced by Har­
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ris [37], and has wide applications in engineering and science [38, 39]. A typical CP 

starts with a component in its failure mode, which affects the neighboring compo­

nents at a rate that is proportional to the total number of faulty components. For 

such a system with n components, given any set of initially faulty components, the 

propagation of failure between components exists in a finite amount of time. This 

paper presents a reasoning method based on the length of time that the failure prop­

agation is active in the system. With this information, system architectures can be 

identified which are resilient to the transmission of failures. 

Spectral radius has thus far been presented as a quantity capable of producing 

insights into network resilience to propagating attacks. This metric is based off 

an evaluation of the network topology as a whole rather than the individual nodes 

providing avenues for attack propagation. In essence, the spectral radius metric does 

not capture a network’s inherent ability to ’bottle-neck’ failures with local topology. 

The following network propagation models allow for this type of analysis. 

5.3.2.1 Non-Linear Dynamical System (NLDS) Modeling 

The NLDS propagation model provides an indication for the length of time to full 

propagation according to the graph layout defined by an adjacency matrix. In the 

proposed model, a universal failure cascading rate β (0 ≤ β ≤ 1) for each edge 

connected to a faulty component is defined. The model is based on discrete time-

steps Δt, with Δt → 0 . During each time interval Δt, a faulty component i infects 

its neighboring components with probability β. 
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The proposed solution for solving a full Markov chain is exponential in size. In 

order to overcome this limitation, it is assumed that the states of the neighbors of 

any given component are independent of one another. Therefore, the non-linear 

dynamical system of 2N variables is reduced to one with only N variables for the 

full Markov chain which can be replaced by Equation (5.8). This makes the large 

design problems solvable with closed-form solutions. Notice that the independence 

assumption is empirically very close to the full Markov chain [40] and does not place 

any constraints on the design network topology. 

The probability that a component i is failed at time t is defined by pi(t) and 

the probability that a component i will not be affected by its neighbors in the next 

time-step is denoted by ζi(t). This holds if either of following happens: 

1. each neighbor is in its nominal state. 

2. each neighbor is in its failed state but does not transfer the failure with prob­

ability (1 - β). 

With the consideration of small time-steps (Δt → 0), the possibility of multiple 

cascades within the same Δt is small and can be ignored. 

ζi(t) = 
� 

(pj (t − 1)(1 − β) + (1 − pj (t − 1))) (5.6) 
j: neighbor of i 

= 
� 

(1 − β ∗ pj (t − 1)) (5.7) 
j: neighbor of i 

In the above formula (5.6), it is assumed that pj (t − 1) are independent from one 

another. 



Failed (F ). A nominal component i is currently nominal, however can be affected 

(with probability 1 − ζi (t)) by one of its faulty neighbors. It is important to note 

that ζi (t) is dependent on the following: 

1. The failure birth rate β. 

2. The graph topology around component i. 

)(t
i )(  1 t
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As illustrated in Fig. 5.3, each component at time-step t, is either Nominal (N ) or
 

Figure 5.3: Transition Diagram of the Nominal-Failed (NF) Model. 

The probability of a component i become faulty at time t is defined by pi(t): 

1 − pi(t) = (1 − pi(t − 1))ζi(t) i = 1...N (5.8) 

The above equation can be solved to estimate the time evolution of the number of 

faulty components (ηt), given the specific value of β and a graph topology of the 

conceptual design, as follows: 
NN 

ηt = pi(t) (5.9) 
i=1 
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5.3.2.2 Epidemic Spreading Model (SFF) 

In this approach, the theoretical model is based on the concept that each component 

in the complex system design can exist in a discrete set of states. The failure prop­

agation changes the state of a component from nominal to failure or from failure to 

fixed. As a result, the model is classified as a susceptible - failed - fixed (SFF) model, 

in which components only exist in one of the three states. The design state fixed 

prevents the component from failing by the same cause. The densities of susceptible, 

failed, and fixed components, S(t), ρ(t), and F(t) , respectively, change with time 

based on the normalization condition. 

The proposed methodology is based on the universal rate (µ) in which the failed 

components are fixed in the design, whereas susceptible components are affected by 

the failure at a rate (λ ) equal to the densities of failed and susceptible components. 

In addition, k ¯ is defined as a the number of contacts that each component has per 

unit time. It is important to note that the assumption made in this proposed model 

is based on the fact that the propagation of failure is proportional to the density of 

the faulty components. Therefore, the following differential equations can be defined: 

dS 
kρS= −λ ̄  (5.10)

dt 
dρ 

kρS= −µρ + λ ̄  (5.11)
dt 

dF = µρ (5.12)
dt 

In order to estimate S(t), the initial conditions of F(0) = 0 (no design fix is imple­

mented yet), S(0) r 1 (almost all the components are in their nominal or susceptible 
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modes) , and ρ(0) r 0 (small number of faulty components exist in the initial de­

sign) is assumed. Therefore the following can be obtained for S(t): 

kρF(t)S(t) = e −λ ̄  (5.13) 

In order to address the contact process in an engineered system, a general connec­

tivity distribution P(k) is defined for each design network. At each time step, each 

nominal or susceptible component is affected with probability λ, in the case of be­

ing connected to one or more faulty components. At the same time, every faulty 

component is repaired in the system design so they are resilient against a similar 

failure. It is assumed that the designers of the system fix the faulty components 

with probability µ. Because every component in an engineered system has different 

degrees of connectivity (k), the time evolution of ρk(t), Sk(t), and Fk(t) which are 

the density of faulty, susceptible, and fixed components with connectivity k at time 

t is considered and analyzed. Therefore the Equation in (5.13) can be replaced by 

the following: 

Sk(t) + ρk(t) + Fk(t) = 1 (5.14) 

As a result, the global variables such as ρ(t), S(t), and F (t) are expressed by an
 

average over the different connectivity classes; i.e., F (t) =  k P (k)Fk(t).
 

The above equations combined with initial conditions of the system design at t = 0
 

can be defined and evaluated for any complex engineered system.
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5.4 Case Study 

The paper explores the design space for two case studies to demonstrate the features 

of graph spectral theory on complex engineered system design. The Advanced Di­

agnostics and Prognostics Testbed (ADAPT) is designed based on the requirement 

to generate, store, distribute, and monitor electrical power in an exploration vehi­

cle. The Electrical Power System (EPS) testbed developed at NASA Ames Research 

Center is used as an example to describe the spectral analysis process while the 

Ramp System of an Infantry Fighting Vehicle (IFV) is used to provide comparisons 

between designs. Additionally, two failure propagation models are implemented on 

the Infantry Fighting Vehicle (IFV) network models in an effort to examine their 

topological structure for resilience to failure propagation. These models, the Non-

Linear Dynamical System Model and the Epidemic Spreading model, are presented 

with two cases of different failure origins, a highly connected component (an electri­

cal ground node) and a minimally connected component (an electrical circuit breaker 

node). 

5.4.1 Graph Spectral Theory 

Spectral graph approaches were utilized on the ADAPT testbed and the IFV ramp 

networks. This analysis includes an evaluation of network robustness from algebraic 

connectivity, overall network resilience to propagations from spectral radius, and an 

evaluation of modularity. 
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Figure 5.4: Model of the existing electrical power system design architecture. 

5.4.1.1 ADAPT Electrical Power System (EPS) 

Fig. 5.4 displays the Modelica [30] representation of an existing design of an EPS [41]. 

Modelica is a language for hierarchical object oriented modeling of engineered sys­

tems, which was developed through an international effort. The EPS model contains 

a power source connected through a series of relays to an inverter and several loads 

consisting of a large fan, a direct-current (DC) resistor and an alternating current 

(AC) resistor. A series of four AC or DC voltage sensors and three current transmit­

ters measure the voltage and current at different points throughout the circuit. The 

Modelica representation of the system is converted to a network representation as 

described in Section 3. The generated network is used to convert the system into an 

adjacency matrix of nodes (components) and edge connections. Including the elec­

trical ground, the EPS system consists of twenty-five nodes or "components". These 

nodes and edges define the connectedness of the system, or the design architecture 

of the system. 
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The first step is to create the adjacency matrix of the network representation
 

of the EPS system. The first row depicts the battery and its connections to other 

components in the system. The first column of the first row is represented by a 

set of zeros, since the battery is not connected to itself. The second column of the 

first row is assigned one representing the battery’s connection to the circuit breaker. 

Therefore, each row in the matrix represents a component in the design and each 

column signifies the component’s connections with other components in the system. 

Then the degree matrix and Laplacian matrix for the EPS, which resulted from 

Equations (2) and (3) are created. A table of the eigenvalues resulting from the 

adjacency matrix and the Laplacian matrix can be found in Table 5.1. 

Table 5.1: Eigenvalues generated in EPS Design Architecture 

Adjacency Matrix Eigenvalues 
-3.236 
-2.196 
-1.978 
-1.902 
-1.574 
-1.319 
-1.222 
-1.074 
-0.808 
-0.727 
-0.455 
-0.204 
0.000 
0.349 
0.397 
0.745 
0.802 
1.084 
1.281 
1.353 
1.538 
1.824 
1.931 
2.068 

Spectral Radius −→ 3.324 

Laplacian Matrix Eigenvalues 
1.457E-15 

Algebraic Connectivity −→ 0.247 
0.338 
0.479 
0.535 
0.659 
0.669 
0.899 
1.152 
1.219 
1.540 
2.010 
2.264 
2.412 
2.640 
2.920 
2.930 
3.533 
3.908 
3.947 
4.066 
4.505 
4.596 
5.211 
9.324 

From the eigenvalues of the adjacency matrix, a spectral radius of 3.324 is com­
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puted. As stated previously, this number is not directly usable without a comparison 

to other designs. However, as this example is meant to show the process of converting 

a complex engineered system model to a network, the implications of the spectral 

radius will be discussed further with the comparison of the ramp models. 

Table 5.2: Spec EPS Design Architecture 

EPS System Results 
EPS Design ID Nodes Min Node 

Deg. 
Max Node 
Deg. 

Avg Node 
Deg. 

Spectral 
Radius 

Alg. 
Conn. 

Modules 

1 25 1 8 2.4800 3.3243 0.2473 11 

As seen from Table 5.4, nearly half of the components within the EPS system 

are also modules. Since many electrical components can only be connected in cer­

tain configurations, the possible system design space is limited. The analyzed EPS 

has components connected in both series and parallel connections, with the parallel 

connections representing electrical modules. Alternatively, the algebraic connectiv­

ity of the system is rather high when compared to the Ramp designs, as discussed 

in the next section. This is mainly due to the properties of an electrical circuit. 

The EPS is modeled with a ground as a component within the system graph. An 

electrical ground must exist and be connected to the proper components in order to 

complete the circuit. As a result, circuits tend to be interconnected, which increases 

the average node degree of the graph and the algebraic connectivity. However, this 

relationship does not always apply. As will be seen in a Ramp design case study, a 

high average node degree does not always correspond directly to an increased alge­

braic connectivity. Some systems contain subsystems, which are independent of the 

overall system, but highly interconnected within their own subsystems (high average 

node degree). Therefore, if the rest of the system is sparsely connected, the isolated 
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area of high interconnectedness drives the average node degree of the system up, 

while the algebraic connectivity remains low as it relates to the Laplacian of the 

overall system. 

5.4.1.2 Ramp System of the Infantry Fighting Vehicle (IFV) 

To demonstrate the benefits and scalability of using spectral graph theory on complex 

engineered systems, a ramp system of the Infantry Fighting Vehicle (IFV) is modeled 

and analyzed next. The modeled ramp is located at the rear of the IFV and used for 

the speedy exit and entry of the troops and the power-operated ramp is also fitted 

with a door. A hierarchical Modelica ramp model consists of an EPS, a mechanical 

ramp subsystem, a controller subsystem, and a crew subsystem. 

Graph spectral analysis was conducted on three different design architectures of 

the ramp system. Fig. 5.5, and Fig. 5.6 illustrate the design options. Each design 

implemented in Modelica is a system of subsystems. Therefore, every "component" 

seen in the designs is actually a system of components making up a larger nodal 

percentage of the system as a whole. Each design consists of at least a unique EPS 

and mechanical subsystem. In addition, each design has modeled troops entering, 

exiting, and residing within the vehicle. 
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Figure 5.5: First and Second Ramp System Design Architectures 

Figure 5.6: Third Ramp System Design Architecture with Design.
 



designs for use with both propagation models. Included is the design identification 

number to be used during the analysis, the number of nodes (components) contained 

within each design, the minimum degree, the maximum degree, the average degree, 

and the number of modules. 
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The graph representations of the three ramp designs are shown displayed in 

Fig. 5.7. In addition, Table 5.3 provides pertinent information concerning the three 

Figure 5.7: Graph Representation of the Ramp Design 1, 2, and 3
 

Table 5.3: Spec Ramp Design Architectures
 

Ramp System Design Properties 
Ramp 
De­
sign 
ID 

Nodes Min Node Deg. Max Node 
Deg. 

Avg Node 
Deg. 

Spectral 
Radius 

Alg. Conn. Modules 

1 33 1 6 2.3030 2.8106 0.0479 10 
2 48 1 7 2.3750 2.9474 0.0481 34 
3 70 1 10 2.3714 3.3899 0.0295 47 

Each ramp design is analyzed for failure propagation by evaluating the design 

architecture for the length of time to full propagation (NLDS) and for the breadth of 
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propagation (SFF) when a failure is introduced. The third ramp design consists of 

the highest number of modules, yet has the lowest algebraic connectivity. This is an 

important insight, as it is commonly known that modularity in complex engineered 

systems is useful for system construction and maintainability, but the isolation of 

failures into a single module typically makes the system less robust, as shown. 

5.4.2 Failure Propagation Models 

Two failure propagation models are used to explore the design space of the ramp 

system of an infantry-fighting vehicle (IFV) to demonstrate resilience against cas­

cading failure. Three complete ramp system designs will be assessed with a non-linear 

dynamical system propagation model (NLDS) and an epidemic spreading model. 

Table 5.4: Initial Faulty Components in the Ramp Designs 

The Node Number of the Faulty components in Design Graphs 
Faulty Compo­
nents 

Ramp Design 
#1 

Ramp Design 
#2 

Ramp Design 
#3 

Circuit Breaker 
Ground 

5 
23 

17 
38 

16 
51 

Table 5.4 provides the information for failure origin utilized in this simulation. 

Node numbers have been provided which correlate to the node numbers used in 

Fig. 5.7. 

5.4.2.1 Non-Linear Dynamical System Model (NLDS) 

In order to gauge the degree of failure propagation in the design architectures (Fig. 5.7), 

an initial set of components in a state of failure is defined so the failure can propagate 

along the underlying graph structure of the architecture. For the sake of compari­
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son, each topology has been compared twice, once with an initially failed, minimally 

connected component and once with a highly connected component. Additionally, 

in order to compare different architectures, each cascade is set to originate from the 

internal EPS subsystem, or electrical power system of each conceptual design. Specif­

ically, a minimally connected circuit breaker and a highly connected ground terminal 

are selected as the failure origins. As it can be seen in Fig. 5.8 the population of the 

infected components with respect to time is the same for all three different design 

ramps. In the EPS sub-system of each ramp design, the circuit breaker has two 

connected components that can be infected. Therefore, all three designs propagate 

similarly until a component is failed which can cause a drastic increase in infected 

population size. This occurred near the sixth time step for each design. For in­

stance, when the failure reaches the ground node of the EPS, the failure is able to 

spread much more quickly because the ground node is the most highly connected 

component in each design. The result confirms the expectation that a more highly 

connected component propagates failure to neighboring component more quickly, 

while a minimally connected component, such as a circuit breaker, results in slower 

failure propagation. As can be directly observed from Fig. 5.9, a failure originating 

from a more highly connected component (in this case the EPS ground) propagates 

much more rapidly. The NLDS model proves that more highly connected compo­

nents spread a failure much faster. Therefore, nodal hubs, or very modular areas of 

a design are more detrimental to the rapid spread of a failure. However, simply hav­

ing modular design structures does not suggest an inadequacy in resilience towards 

failure cascades. As can be seen from Table 3, a large percentage of the components 
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Figure 5.8: Time Evolution of Faulty Components’ Population Size (Origin of Failure: 
Circuit Breaker). 

Figure 5.9: Time Evolution of Faulty Components’ Population Size (Origin of Failure: 
Ground). 

within each design are considered modular hubs. An important design aspect to 

note, however, is that there was no significant evidence for either initial failure state 

to suggest that one ramp design was more resilient to failure cascades than any oth­

ers. This is based on the assumption that cascading time defines resilience and not 

infected population size. When the same, minimally connected circuit breaker has 

failed in each design, the time to full propagation for each design is approximately 

fourteen time steps. When the ground terminal is initially failed, the time to full 

propagation is approximately eight time steps. Additionally, the shape of each re­
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lationship, representing the progression of failed population size, does not indicate 

any design being more resilient to failure propagations. 

5.4.2.2 Epidemic Spreading Model (SFF) 

Unlike the NLDS model, the SFF epidemic spreading model is based on the idea 

that failure propagation can be stopped by fixing the faulty components. The SFF 

model operates by the spread of a failure from an initially failed component just as 

the NLDS model does. However, the SFF model is not a probabilistic model that is 

solely dependent on the architecture of an adjacency matrix as the NLDS model is. 

Instead, the SFF model requires a time step dependent simulation of the spread of a 

component failure. As with the NLDS model, a time step is regarded as sufficiently 

close to zero so that only the current population of failed components transmit a 

failure. 

Each "faulty" component has an opportunity to infect a neighboring susceptible 

component in the next time step. In one time step, a component infects its connected 

neighbors according to a uniform failure probability. The simulation run for the SFF 

model was conducted at λ = 10%. After a component has had an opportunity to 

infect its neighbors, the infected component would then be fixed in the conceptual 

design to resist the same failure according to the probability of failure removal µ 

= 10%. A repaired component is either considered faulty without the ability to 

transfer the failure to the neighboring components or is susceptible but resistant to 

the failures of its connected neighbors. Therefore, the cascading failure could be 
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Figure 5.10: Time Evolution of Faulty Components Density for Three Conceptual 
Ramp Design (Origin of Failure: Circuit Breaker). (The k value is the indicative 
of the degree of the components followed by the number of components within that 
data set.) 

stopped with the provision that enough faulty components become repaired in the 

design before they are able to fully propagate the failure. That is, propagations can 

be halted if all transmission routes are blocked by repaired components. The same 

designs were used with the epidemic spreading model as were used with the NLDS 

model. Additionally, the same initial failure conditions were used. An EPS circuit 

breaker was initially failed as a minimally connected component. A ground node was 

then initially used to propagate the failure as a highly connected component. Fig. 8 

shows the epidemic spreading graphs for an initially failed circuit breaker within the 

EPS for each ramp design. 

The same designs were used with the epidemic spreading model as were used 

with the NLDS model. Additionally, the same initial failure conditions were used. 

An EPS circuit breaker was initially failed as a minimally connected component. A 

ground node was then initially used to propagate the failure as a highly connected 

component. Fig. 5.10 shows the epidemic spreading graphs for an initially failed 

circuit breaker within the EPS for each ramp design. 
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Figure 5.11: Time Evolution of Faulty Components Density for Three Conceptual 
Ramp Design (Origin of Failure: Ground). 

In order to compare the time evolution of faulty component density in the three 

different conceptual ramp designs, a component with an equal number of connections 

from the EPS subsystems of the ramps is chosen as an initial faulty component. The 

reason for this is the fact that SFF failure propagation is based on connections, 

therefore the results must be reported in terms of faulty component density. As it 

is depicted in Fig. 5.10, each data set is representative of a set of components with 

the same degree, e.g., ramp 1: red colored data set represents six components in the 

system design with only three connections. Therefore, each set of components has a 

failure density ranging from 0 to 1; 0 means that no components of that degree are 

infected and a 1 means that every component of that degree being infected. Fixed 

components are not considered faulty. Consequently, a plot of faulty component den­

sity fluctuates intermittently between 0 and 1, but eventually settles at 0 as all failed 

components are fixed in the system design. In the legend of each graph, a k value is 

given which is indicative of the degree of the components followed by the number of 

components within that data set. When a minimally connected component, such as 

a circuit breaker, is chosen as a failure origin, it is compared to an initially infected 
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highly connected component, such as a ground, and the failure spreads more slowly, 

as expected. 

Fig. 5.11 illustrates the simulation results for an initially failed, highly connected 

ground terminal. The plots present more immediate increases in infection density, 

regardless of component degree when a highly connected component is failed initially. 

However, once the initial infection has passed, and the failure density begins to 

subside, the reduction of infection density is not dependent on architecture. This is 

because a stopped failure is repaired according to a uniform probability. This failure 

is not then passed between connected components. 

5.5 Discussion 

The first ramp design consisted of the fewest number of components. Each ramp 

design was highly modular, especially the third design, which is the most modular 

EPS. The third ramp design is a good example of why looking at the average node 

degree and algebraic connectivity independently is an unreliable exercise. As can be 

seen from the results in Table 2, the first two ramp designs are very similar. This 

is not the case with the third ramp design, which has a smaller algebraic connectiv­

ity with more modules. This is due to the third EPS design used with that ramp 

variant. When compared to the other two EPS designs, the third design has an alge­

braic connectivity half that of the other two. In addition, the third EPS design has 

more components than the others with a similar average node degree. However, the 

maximum node degree of the third design was greater than the other EPS variants. 
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Upon further examination, the third EPS design is found to have many components 

that are only connected to two components, one which supplies electrical current and 

one that receives current, making it simpler to make a component independent from 

the rest of the system. Additionally, a limited number of components are connected 

to many others. This small number of components is what drives the average node 

degree of the system up; making each EPS design appear similar by average node 

degree. However, because the algebraic connectivity is a measure of the difficulty in 

making a component independent of the rest of the system, the algebraic connectiv­

ity of the third ramp design remains low because of the number of components that 

have a fewer number of connections. The low algebraic connectivity is consistent 

with the recommendation for modular physical system architectures that may have 

the unintended downside of making the systems less tolerant to failure. 

After both models were applied to each of the three ramp designs, the NLDS 

model did not show any relevant evidence to suggest that any one ramp design (graph 

layout) was more resilient to propagations than the others. However, conclusions 

can still be drawn from the results and are discussed below. The length of time to 

full propagation was not significantly different between designs. The NLDS model 

can adequately identify those design components that are critical to a system and 

whose failure would cause shutdown of the whole system, as can be seen by the 

differences in failure origins. Conversely, the SFF model can be used to compare 

different conceptual design architectures for resilience to propagation. This can be 

done by analyzing how a failure propagates through a system and then fixing failed 

components to inhibit the propagation of the failure. The SFF model determined 
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that ramp design 3 was more resilient to specific nodal attacks, as both simulations 

indicated a similar infection breadth. This result is consistent with the observation of 

spectral analysis, since the design 3 is more modular compared to the other designs. 

Therefore, it has a high robustness only because the failure of components can be 

isolated to its module. 

A couple of telling conclusions can be drawn from the result of the case study. 

Firstly, the NLDS models showed that connectivity plays a major role in how fast 

an epidemic spreads. A few components with a higher degree increase the speed 

of infection throughout a system. This was conclusively shown because the third 

ramp design, having a few nodes with a higher degree than the other designs, will 

propagate a failure faster. Secondly, larger systems will lessen the impact of random 

or targeted attacks. The ramp system designs showed this because the normalized 

percentage of failure began to equalize between components with fewer connections 

and components with more connections that were used as failure origins when the 

system size increased. Both conclusions provide insight into design architectures that 

can be more resilient to failures. 

5.6 Conclusion and Future Work 

Establishing robustness during the conceptual design phase is a difficult yet impor­

tant aspect to the design of engineered systems. Utilizing complex network theory 

in conjunction with spectral analysis has provided useful insight into the design of 

robust complex engineering systems. Spectral analysis provides valuable metrics in 

quantifying certain aspects of complex networks. These metrics are algebraic con­



110 

nectivity, modularity, and spectral radius. As stated in this paper, the algebraic 

connectivity represents the difficulty in making one node independent of the rest of 

the system. A higher algebraic connectivity denotes increase in components’ connec­

tivity and higher robustness of the overall system. Because of the close correlation 

between complex networks and complex engineered systems, algebraic connectivity 

is a good metric to be considered to determine the resilience of the architecture of 

complex systems. To determine the resiliency characteristics of complex engineered 

systems, two case studies involving complex engineered systems were analyzed using 

spectral analysis. Utilizing the algebraic connectivity as the main analysis metric, 

both case studies provided evidence for the validity of using graph spectral theory 

on complex engineered systems. 

Further, in the second part of the research based on the two propagation models, a 

Non-Linear Dynamical System (NLDS) model and an epidemic spreading model are 

developed for use during the early design of complex systems. From the two models, 

equations are provided to model the propagation characteristics of failures in complex 

engineered systems. The NLDS propagation model provides an indication for the 

length of time to full propagation according to a graph layout. The SFF epidemic 

spreading model provides an indication of the extent of a cascade according to a 

graph layout. While both models provide an indication into properties relating to 

failure propagation, they both require the accurate modeling of a complex engineered 

system as a graph. This is no trivial task. Because the graph of a system is dependent 

on how connections are defined, it becomes increasingly important to develop a 

standard methodology for modeling. In this paper, the ramp designs were modeled 
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based on physical connectivity. To more accurately analyze these propagations, 

additional research would analyze the effect on a complex engineered system if its 

graph were created using different, and perhaps more complicated metrics of design 

dependency. Such justifications could include expanded physical connections that 

are inclusive of secondary component interactions. They do not necessarily have 

a physical connection interface and may be produced as a consequence of system 

operation. This could include heat, noise, and vibration related interactions, among 

others. In addition, justifications related to energy, material, and signal (EMS) flows 

would be a necessary next addition to analyze these models for applicability with 

complex engineered systems. EMS flow relations would create connections between 

components that share a flow. For instance, two components would be connected 

as a part of a thermodynamic process if the same working fluid travels from one 

component to the other. 

Analyzing multiple adjacency matrices created with various connection justifi­

cations per design would provide a more complete look at a design’s resilience to 

propagations. This would add computational expense in the analysis of the design 

and designer effort to create the matrices. An automated method to create the 

adjacency matrices would solve this issue; however, this would require an interface 

between a design tool such as a CAD suite and a matrix creator. In order to validate 

the use of these models, performance data of an engineered system that is operat­

ing in a state of failure is a necessary next step. By analyzing the time dependent 

response of a system under failure, the propagation properties predicted by these 

models can be verified. 
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6.1 Introduction 

In recent years, technological advancements and a growing demand for highly reliable 

complex engineered systems, e.g., space systems, aircrafts, and nuclear power plants 

have made the safety assessment of these systems ever more important. Moreover, 

concurrently, the complexity of such systems makes it more challenging to achieve a 

design solutions that satisfy safety requirements of such complex systems. Traditional 

safety analysis techniques such as Failure Model and Effect Analysis (FMEA) [1], and 

Fault Tree Analysis (FTA) [2] are accepted methods that have been applied to predict 

the safety of system design. However, these methods require detailed knowledge of 

the system under design and can only be performed at the later stages of the design 

process. This late analysis results in missed opportunities for integrating the safety 

requirements at the early stages, while also causing extra effort and cost to modify 

the design at the later stages. Other limitations of FMEA and FTA include being 

significantly time consuming, expensive, and error-prone since the safety analysis are 

performed manually. 

In order to predict the safety of such systems, within both the design the­

ory [3, 4, 5] and systems engineering [6, 7] communities, model-based approaches 

have been proposed to address some of the shortcomings and limitations of the tra­

ditional methods, e.g., moving from textual definition to computable, reusable, and 

verifiable models. Among the advantages of the Model-Based Systems Engineering 

(MBSE) approach according to Bozzano et al. [8] is the ability to automate some 

parts of requirement verification and safety analysis. This is achieved through au­

tomatic generation of failure propagation paths, generating consistent results, and 
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most importantly, providing the ability to integrate design and safety process around 

a central system model. 

Based on these advantages, this paper presents a model-based safety specification 

and verification approach applying compositional reasoning and model checking algo­

rithms. In addition, this paper describes an approach commonly used with complex 

networks to study the failure propagation in an engineered system design. The goal 

of the research is to synthesize and illustrate system design characteristics that re­

sults from possible impact of the underlying design methodology based on cascading 

failures. Further, identifying the most vulnerable component in the design or system 

design architectures that are resilient to such dissemination of failures provide addi­

tional property improvement for resilient design. Furthermore, it addresses the issue 

of formally specifying and formulating the design architecture that is resilient to com­

ponent failures by exploiting redundancy. The application of component redundancy 

improves system reliability but also adds cost, weight, size, and power consumption. 

Therefore, it is vital to minimize the number of redundancies. The safety analysis 

and verification process proposed in this research examines the number of choices to 

determine a best way to incorporate redundancy into the design. It is assumed that 

the impact of failure on the system is known and it is guaranteed that the system is 

able to correctly satisfy its design requirements in spite of the occurrence of such a 

fault with the proper use of component redundancy. 

The remainder of this paper is structured as follows: section 2 presents the 

background and related research on failure analysis techniques in the early stages of 

system design, while discussing their strengths and weaknesses. In addition, the defi­
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nition of compositional reasoning and its commonly used terminologies and operators 

are addressed in section 2. In section 3 an overview of the step-by-step implemen­

tation of the compositional reasoning algorithm on the components of the design 

architectures is explained. Section 3 describes the proposed modeling methodolo­

gies: 1- Non-linear dynamical system model, and 2- Epidemic spreading analysis 

models. Further, section 4 outlines the application of the proposed methodology in 

the analysis and verification of the safety properties of the quad-redundant Electro 

Mechanical Actuator (EMA) system design. The paper ends with conclusions and 

future work. 

6.2 Background 

The first step in specifying and formulating a complex systems design requires mod­

eling and reasoning about its behavioral and functional characteristics. A commonly 

used formalism [7, 9, 10, 11, 12] to model and reason about complex systems design 

promotes the notion of functional decomposition. Decomposition represents efforts 

to break the design problem into smaller design elements and identify possible solu­

tions to the design problem. Therefore, the required functionality of the system can 

be modeled before an actual design solution is implemented. Once the functional re­

quirements of the design are identified, each function can be represented as an input 

flow, output flow, and internal behavioral states. Further, in the work of Bhatta et 

al. [13], the internal behavior of each function is modeled as a series of state tran­

sitions. However, Cellier et al. [14] recognize that these types of explicit modeling 
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of input to output transactional representation are not appropriate for modeling the 

behavior of a complex engineered system design. Instead, several modeling platforms 

such as Modelica [15], Simulink [16], and bond graph related modeling [17] have been 

proposed to abstract the behavior of the component of the design independent from 

the rest of the system. Then, these models of components are automatically assem­

bled to characterize the complete system. These types of approaches are known as 

component-based or object-oriented modeling which are based on the decomposition 

of the design into its constitutive elements. 

While there are promising modeling techniques for abstraction and decomposition 

of complex systems’ characteristics, there are few methods to prove the correctness 

of the design with regards to its safety requirements. One of the first approaches 

to formally map failures to functional losses and model the effect of failure on sys­

tem design was the Function Failure Design Method (FFDM) [18, 19]. Since the 

FFDM is dependent on the historical failure propagation data, the approach is lim­

ited to analysis of the impact of a single fault. Therefore, the Risk in Early Design 

(RED) [20, 21] and Failure Propagation Analysis [22] methods were developed to 

overcome the limitation of FFDM approach. Finally, the Function-Failure Identifi­

cation and Propagation (FFIP) [17] framework was developed to identify functional 

failure with the use of model-based reasoning methods. FFIP has proven to be effec­

tive in failure analysis and reducing the risk of failures; however, the FFIP framework 

is not proposed as a verification method, where the safety requirements are defined 

and analyzed to prove that a design satisfies them. 

In addition, conventional techniques primarily deal with formulations of func­
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tional structures and conceptual design generation in response to system functional 

requirements. In most cases, these methodologies do not take into consideration 

the details of physical components, despite the fact that reliability research and in­

dustrial practice consider the detailed architecture of the physical components as a 

required input in the reliability analysis procedure [23]. 

In the past several years, scientific interest has been devoted to modeling and 

characterization of complex systems that are defined as networks [24, 25]. Such 

systems consist of simple components whose interactions are very basic, but their 

large-scale effects are extremely complex, (e.g., protein webs, social communities, In­

ternet). Numerous research studies have been devoted to the effect of network archi­

tecture on the system dynamics, behavior, and characteristic. Since, many complex 

engineered systems can be represented by their internal product architecture, their 

complexity is dependent on the heterogeneity and quantity of different components 

as well as the formation of connections between those components. Because of this, 

system properties can be studied by graph-theoretic approaches. Complex networks 

are modeled with graph-based approaches which are effective in representing com­

ponents and their underlying interactions within complex engineered systems. The 

vertices, representing the components of the product, are connected by a set of edges 

to denote the direct interaction between any pair of components [26, 27]. 

Within the framework of complex networks, studies have mainly concentrated 

on the spread of viruses in computer science [28, 29] and the spread of infections in 

complex population networks [30]. Of particular importance is the research devoted 

to the conditions under which failures spread quickly. Further, Boschetti et al. [31] 
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suggest that a graph theoretic formulation of complexity can be adopted to cap­

ture the structural design information in the system. Specifically, this is applicable 

to the connectedness of engineered systems. In order to evaluate different system 

design architectures for any given design problem, the graph theoretic formulation 

must not depend on any particular structure in the system design topology. Most 

introduced models in complex network literatures are designed to fit to a particu­

lar topological graph structure such as power-law, BA, and homogeneous; however, 

the two proposed models in this research have the benefit of being independent of 

any structural topology. Therefore, a general and precise analytical model such as 

a Non-Linear Dynamical System (NLDS) model that uses a system of probability 

equations [29] for accurate modeling of viral propagation in complex networks can be 

used to investigate the behavior of cascading failure in complex engineered systems. 

This approach examines the propagation behavior via a number of stochastic contact 

trials per unit time, where the infection expands at a constant rate from an initially 

infected vertex. 

While the above approaches mostly concentrate on improving the design reliabil­

ity through fault avoidance, application of component redundancy is another popular 

technique to improve reliability of the system design. Based on the literature review 

presented by Aspinwall [32], the vast majority of research efforts [33, 34] on reliability 

optimization, especially those focusing on a determination of optimal component re­

dundancies require detailed knowledge of components, e.g., components’ failure rates. 

Other redundancy optimization methodologies are based on weight coefficients [35] 

to allocate redundancy on the components of the system. Minimization of design 
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cost subject to safety constraints [36] or maximization of design reliability under 

cost constraint [37] are examples of different sets of approaches. However, at the 

early stages of the design, selection of specific components has not been completed, 

therefore, components’ cost, weight, or failure rate is unknown at this point. The 

only information available to the system designers at the conceptual level includes 

functions, behaviors, and a basic design structure. 

In this paper, a model-based safety approach is proposed based on the behavioral 

models of design components, where behavioral specifications are associated with 

each component. These specifications are then used to analyze the overall design 

architecture. In this approach, a design is modeled as a state transition system with 

a finite number of states and a set of transitions. In addition, a support language is 

provided to specify a realistic yet simple fault models. Furthermore, a tool support is 

provided to automatically compose the fault models into the nominal system models 

for safety analysis. 

6.3 Methodology 

The proposed framework relies on constructing a finite model of a design and checking 

it against its desired safety properties. The design model is in essence a finite-state 

machine, and the fact that it is finite makes it possible to execute an exhaustive 

state-space exploration to prove that the design satisfies its requirements. Since 

there is an exponential relationship between the number of states in the model and 

number of components that make up the system, the compositional reasoning ap­
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proach is used to handle the large state-space problem. The compositional reasoning 

technique decomposes the safety properties of the system into local properties of 

its components. These local properties are subsequently verified for each compo­

nent. The combination of these simpler and more specific verifications guarantees 

the satisfaction of the global safety of the overall system architecture design. It is 

important to note that, the safety requirements of the components are satisfied only 

when explicit assumptions are made on their environment. Therefore an assume-

guarantee [38, 39, 40, 41, 42] approach is utilized to model each component with 

regards to its interaction with its environment, i.e, the rest of the system and out­

side world. 

Next in the proposed framework, each design is converted to system-level graph 

representation. These graph representations are then is used as a tool to convert 

each design into an adjacency matrix of nodes (components) and edge connections. 

Subsequently, Non-Linear Dynamical System (NLDS) and epidemic spreading algo­

rithms are used to analyze the propagation of failure in complex engineered system 

design. 

The proposed framework integrates safety by planning and anticipating for unex­

pected failures and disruptions. From this perspective, safety is considered a dynamic 

feature of the system that requires constant reinforcement and support on an ongo­

ing basis. It is important to recognize that safety is a feature that results from what 

a system does, rather than a characteristic that system has. Therefore, the proof 

of safety is only conveyed by the absence of failures and accidents. For this reason, 

the safety-proofing a system design is never absolute or complete. However, in this 
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Figure 6.1: An Overview of The Proposed Approach. 

research, the proposed framework biases the odds in the direction that ensures safe 

system operation by 1- Predicting and preventing adverse consequence 2- Minimiz­

ing the adverse consequences, and 3- Recovering from adverse consequences. Fig. 6.1 

represents and overview of the approach which will be discussed in detail in the next 

section. 
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6.3.1 System Design Verification 

We follow a modular and incremental approach for behavioral modeling and verifica­

tion of a complex system design. The design architecture is used to organize a system 

in terms of its subsystems, components, and their interactions. Consequently, the 

general structure of a system is a graph in which its leaves are primitive components 

and the rest are composite components. A primitive component describes behav­

ior instead of structure and has no substructure. On the other hand, a composite 

component inherits its behavior from its sub-components. 

The behavioral modeling requirements are motivated by the quad-redundant 

Electro-Mechanical Actuator (EMA) [43] of a Flight Control Surface (FCS) of an 

aircraft which is developed in a program sponsored by NASA. The positions of the 

FCSs are usually controlled using a flight control surface actuation system. The FCS 

actuation system responds to position commands sent from the flight crew to move 

the aircraft FCS to the command positions. In this case study, this movement is ef­

fected via quad-redundant actuators (Fig. 6.2) that are coupled to the flight control 

surfaces. The EMAs are arranged in a parallel fashion; therefore, each actuator is 

required to tolerate a fraction of the overall load. 

Figure 6.2: Quad-Redundant EMAs: Load-Summing/Parallel Mode. 
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6.3.1.1 Modeling Behavior 

In order to transform the requirements and the design architecture presented in the 

previous section into a finite model we use finite labelled transition systems (LTS). 

The LTS model is expressed graphically by its alphabet, transition relation, and 

states including single initial state. Labelled Transition Systems (LTS) such as T is 

defined as: 

T = (S, L, →, s0). 

A set S of states 

A set L of actions 

A set → of transitions from one state to another. 

An initial state s0 ∈ S 

As an example consider the following LTS model of a command unit subsystem of 

the quad-redundant EMAs: 

{commandLoad[1..4],{missionComplete,resetShaft,timeout}} 

Fig. 6.3 represents this model graphically. State 0 corresponds to the command unit 

resetting the output shaft of the FCS before sending any load command to the EMAs. 

By performing the action <commandLoad[1..4] >, the command unit requests a range 

of load values between 1 to 4 from EMAs. Then, the command unit expects two 

possible responses <{timeout and missionComplete}>. The <mission is completed > 

event occurs when EMA(s) have maintained the specified load to the FCS throughout 

the mission. On the other hand, the <timeout > event occurs in the case where all 

four EMAs have failed to provide the required load. 
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resetShaft

{timeout,missionComplete}

commandLoad[1]

commandLoad[2]

commandLoad[3]

commandLoad[4]

{timeout,missionComplete}

{timeout,missionComplete}

{timeout,missionComplete}

Figure 6.3: LTS Model of the Command Unit Subsystem. 

Table 6.1: Syntax and Informal Semantics Of The FSP
 

FSP Notation 
a → P Action prefix Action a behaves as described by P 
a→ P|b 
→ Q 

Choice After an initial action is performed subsequent be­
havior is described by P if the first event was a or 
by Q if the event was b 

P I Q Parallel Composition Composition of P and Q where composed LTSs in­
teract by synchronizing on common actions shared 
in their alphabets with interleaving of the remaining 
actions. 

/ Relabelling Change the names of action labels. This is usually 
done to ensure that composed processes synchronizes 
on the correct actions. 

This type of graphical modeling, however, could easily become unmanageable for 

large complex systems. Therefore, an algebraic notation known as Finite State Pro­

cess (FSP) [44] is used to define the behavior of processes in a design. FSP is a 

specification language as oppose to modeling language with semantics defined in 

terms of LTSs. The FSP basic operators are represented in Table 6.1. Every FSP 

model has a corresponding LTS description and vice versa. The LTS CommandUnit 

represented in Fig. 6.3 can be expressed in FSP as shown in Table 6.2. 
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Table 6.2: FSP Description of Command Unit 

FSP Notation 
1 : CommandUnit = (resetShaft → commandLoad[L] → {timeout, 
2 : missionComplete} → CommandUnit). 

After modeling the commandUnit the next primitive component to be modeled 

is the control ler subsystem. The controller gets the load command from the com­

mand unit and actively regulates the current to each EMA at every time step. The 

difference between the external load and the total actuator load response is used to 

accelerate or decelerate the output shaft. If the controller perceives that the output 

shaft position response is falling behind the commanded position, it will increase the 

current flow to the EMAs. As depicted in Table 6.3, in the FSP description of the 

controller, a repetitive behavior is defined using a recursion. In this context recursion 

is recognized as a behavior of a process that is defined in terms of itself, in order to 

express repetition. 

Table 6.3: FSP Description of Controller 

FSP Notation 
1 : Controller = (getLoad[l:L] → Controller[l]), 
2 : Controller[t:L] = (timeout → Controller 
3 : | sendLoad→allLoadsCompleted→getShaftPosition[x:Positions] 
4 : →if (x ≥ t) then (missionComplete→Controller) 
5 : else Controller[t]). 

The partial LTS model of the controller is depicted in Fig. 6.4. The control ler 

performs action <getLoad[l..4]>, and then behaves as described by <C ontroller[l]>. 

C ontroller[l] is a process whose behavior offers a choice, expressed by the choice 

operator "|". C ontroller[l] initially engages in either <timeout> or <S endLoad>. 

The action <timeout> is performed when all actuators fail, otherwise <S endLoad> 

is utilized. Subsequently, after sending the required load to each EMA, feedback 



the required shaft position, if the shaft has reached the required position then the 

mission is completed >. Otherwise, the behavior is repeated until the shaft reaches 

the required position. 
getLoad[4] sendLoad

timeout

allLoadsCompleted getShaftPosition[4]

missionCompleted

getShaftPosition[0..3]
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signals are sent to inform the controller of completion of tasks by labeling the action
 

with <al l Loads Completed >. This results in the controller to perform the action 

<get Shaft Position>. At this stage, the controller compares the new position with 

<

Figure 6.4: LTS Model of the Controller Subsystem. 

Next in the modeling process is the Electro Mechanical Actuator unit, which 

receives the load command from the controller and carries out the operation. The 

Electro Mechanical Actuator is modeled in Table 6.4 with Jammed and Disengaged as 

part of its definition. If during the time of maintaining the specified torque or load the 

EMA functions according to specification, the signal <"al l loads are completed" > is 

sent to the controller. Otherwise, the EMA is considered non-operational or jammed. 

In the jammmed mode, the EMA is incapable of maintaining the required load and 

prevents the rest of the EMAs from moving. Therefore, it needs to be disengaged 

from the system. Fig. 6.5 presents the LTSA model of the EMA subsystem including 

the failure mode of <jam> in state (3) and its following consequences. 

The next subsystem to be modeled is the Diagnostic Block, which performs ac­

tuator health assessments, and makes decisions on whether or not to disengage any 

faulty actuators from the flight control surface. Each time an EMA is in its fail­



| jam → block → Jammed)), 
Jammed (recLoad → Jammed 

| disengage → unblock → Disengaged), 
Disengaged (recLoad, allLoadsCompleted, timeout → Disengaged). 

recLoad performLoad jam block disengage unblock

allLoadsCompleted, 
recLoad, timeout

recLoad

allLoadsCompleted
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Table 6.4: FSP Description of EMA 

FSP Notation 
1 : EMA = (recLoad → performLoad → (allLoadsCompleted → EMA 
2 : 
3 : = 
4 : 
5 : = 

Figure 6.5: LTS Model of the EMA Subsystem. 

ure mode of <j am>, the diagnostic block performs the <disengage> action and 

disengages the faulty EMAs from the rest of the system. Table 6.5 represents the 

FSP model of the diagnostics subsystem and Fig. 6.6 depicts the corresponding LTS 

model of the diagnostics subsystem. 

Table 6.5: FSP Model of Diagnostics for The Redundant EMAs 

FSP Notation 
1 : Diagnostics = [e : EMAs].jam → [e].disengage → Diagnostics 

Finally, the last subsystem to be modeled is the shaft. The overall shaft dynamics, 

which represent the motion of all of the four EMAs, are represented by a single block. 

As illustrated in Table 6.6, the shaft model keeps track of the position of the output 

shaft while each EMA performs a load. At each simulation step the current position 

of the output shaft is compared with the command position to make sure that the 

required position is reached by the output shaft. The S haf t[0..4] is a process whose 

behavior offers a choice of <load, block, positionIs, or reset >. The block action occurs 
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Figure 6.6: LTS Model of The Diagnostics Subsystem. 
when one of the EMAs is in its failure mode and causes the shaft to become non-

operational or <Blocked >. On the other hand, the <positionI s> action is utilized 

when the controller requires to receive information about the current position of the 

shaft. The <reset> action occurs when the command unit sends the reset signals 

to the shaft. 

The Blocked process in the shaft subsystem represents the failure mode of the 

shaft. Whenever the diagnostic performs a <disengage> operation on an EMA, the 

<unblock > action is performed. 

Table 6.6: FSP Description of The Shaft 

FSP Notation 
1 : Shaft = Shaft[0], 
2 : Shaft[p : Positions] = (load → if (p < MAXPosition) then Shaft[p+1] 
3 : else Shaft[p] 
4 : | block → Blocked[p][1] 
5 : | positionIs[p] → Shaft[p] 
6 : | reset → Shaft), 
7 : Blocked[p : Positions][b : EMAs] = (load → Blocked[p][b] 
8 : | when (b > 1) unblock → Blocked[p][b-1] 
9 : | when (b == 1) unblock → Shaft[p] 
10 : | when (b < M) block → Blocked[p][b+1]). 
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6.3.1.2 Composition 

In this research it is assumed that the design is described by a composition expres­

sion. In the context of system design engineering, the term composition is similar 

as coupled model. Coupled model, defines how to couple several component mod­

els together to form a new model, similarly, composition groups together individual 

state machines. Such an expression is called a parallel composition, denoted by "I". 

The "I" is a binary operator that accepts two LTSs as an input argument. In the 

joint behavior of the two LTSs, the transition can be performed by any of the LTS 

if the action that labels the transition is not shared with the other LTS. Shared 

actions have to be performed concurrently. Table 6.7 depicts the FSP of the joint 

behavior of EMA and control ler. The composed LTS model of the two subsystems 

consists of 161 states and 62 transitions. The shared action between the two models 

is the <sendLoad> action from the controller and the <recLoad> action from the 

EMA, therefore, these two are required to be performed synchronously. In order to 

change action labels of an LTS, the relabeling operator "/" is used, e.g., { recLoad / 

sendLoad }. 

Table 6.7: Parallel Composition of EMA (Table 6.4) and Controller (Table 6.3) 

FSP Notation 
1 : I Leg = ( EMA I Controller ) / { recLoad / sendLoad }. 

As a result, the composed model consists of the following actions: 

{{al lLoadsCompleted, block, disengage}, 

getLoad[1..4], getShaftPosition[0..4], 

{jam,missionComplete,performLoad, 
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recLoad,timeout,unblock}} 

As described, composed LTSs interact by synchronizing on common actions shared 

in their FSP models with interleaving of the remaining actions. Also, it is important 

to note that the parallel composition operator enables both associative and commu­

tative composition; therefore the order of LTS models that are composed together is 

insignificant, e.g., ILeg=(Controller I EMA). Table 6.8 presents some of the state 

Table 6.8: Leg Subsystem: Two Possible Transitions 

EMA: Nominal Mode EMA: Failure Mode 
1 : ctrl_getLoad.2 1 : ctrl_getLoad.2 
2 : EMA_recLoad 2 : EMA_recLoad 
3 : EMA_performLoad 3 : EMA_performLoad 
4 : LoadsCompleted 3 : EMA_jam 
5 : ShaftPositionIs.1 4 : Shaft_block 
6 : EMA_recLoad 5 : EMA_Disengage 
7 : EMA_performLoad 6 : Shaft_Unblock 
8 : LoadsCompleted 7 : LoadsCompleted 
9 : getShaftPosition.2 8 : ShaftPositionIs.1 
10 : EMA_performLoad 9 : timeout 
11 : missionComplete – 

transitions (or sequence of actions) produced by the composed model. Two possible 

executions under the EMA’s nominal and faulty conditions are considered. In nom­

inal mode, the EMA receives a request from a controller to provide two unit loads. 

At each time step, EMA performs one unit load and repeats until the output shaft 

reaches the required position of two that is when the <missionC omplete> actions 

is performed. In the failed mode, initial actions are the same as nominal mode until 

an EMA jams. The jammed EMA blocks the rest of the system from moving until 

it is disengaged. The process is followed by the <U nblock> action which unblocks 

the shaft allowing the rest of the system to be freed. By this time, the EMA has 

provided one unit load before being disconnected from the rest of the system. Since, 
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the <S haf tP ositionI S> shows the current position of the shaft being one instead of
 

two, the EMA is required to perform one more unit of load. However, the disengaged 

EMA is incapable of doing so resulting in a <timeout>. The <timeout> occurs only 

when there are no EMAs to perform the required load. 

Another example of a compositional model is the composition of the shaft model. 

Composition implements the motion of all four shafts that are connected on one side 

to the four EMAs, and on the other side to the output shaft of the Flight Control 

Surface (FCS). As illustrated in Table 6.9, the actions of the shaft are relabeled so 

that the <load> becomes <[1..4].load>. This results in identification of actions for 

each EMA, e.g., <[1].load> (EMA#1 is loading) or <[2].block> (EMA#2 is block­

ing). Table 6.9: FSP Description of The Redundant Shaft 

FSP Notation 
1 : I RedShaft = Shaft / { [e:EMAs].load / load, 
2 : [e:EMAs].block / block, 
3 : [e:EMAs].unblock / unblock}. 

The next hierarchy of the compositional model is based on the composition of the 

two compositional models of the leg and redundant shaft and two primary compo­

nents of diagnostic, and command unit (Table 6.10). This compositional approach 

reflects an organization of the design components in a hierarchical structure. 

So far, we provided the basis for decomposing and modeling the system based 

on the modular description of the design components and subsystems. In the next 

section, the process of expressing the desired safety properties in terms of a state 

machine or LTS is described. The advantage is that both the design and its require­

ments are modeled in a syntactically uniform fashion. Therefore, the design can be 
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Table 6.10: FSP Description of Quad-Redundant EMA System
 

FSP Notation 
1 : IRedSystem= (shaft:RedShaft I d:Diagnostics 
2 : Ileg[EMAs]:LegIcommandUnit) 
3 : /{shaft.positionIs / leg[EMAs].getShaftPosition, 
4 : commandLoad / leg[EMAs].getLoad, 
5 : d[i:EMAs].jam / leg[i].jam, 
6 : leg[i:EMAs].disengage / d[i].disengage, 
7 : shaft[i:EMAs].block / leg[i].block, 
8 : shaft[i:EMAs].unblock / leg[i].unblock, 
9 : shaft[i:EMAs].load / leg[i].performLoad, 
10 : legsRecLoad / leg[EMAs].recLoad, 
11 : allLoadsCompleted / leg[EMAs].allLoadsCompleted, 
12 : missionComplete / leg[EMAs].missionComplete, 
13 : timeout / leg[EMAs].timeout.} 

compared to the requirements to determine whether its behavior conforms to that 

of the specifications. 

6.3.1.3 Safety LTS And Safety Property 

In the context of this work, the properties of a system are modeled as safety LTSs. 

A safety LTS contains no failure states. In modeling and reasoning about complex 

systems, it is more efficient to define safety properties by directly declaring the desired 

behavior of a system instead of stating the characteristics of a faulty behavior. In a 

Finite State Process (FSP), the definition of properties is distinguished from those 

of subsystem and component behaviors with the keyword property. For example, the 

following model is constructed to state the safety requirements of the quad-redundant 

EMAs. 
Table 6.11: FSP Description of The Safety Requirement 

FSP Notation 
1 : property 
2 : SafeOpn = (commandLoad[t:L] → missionComplete → SafeOpn). 



The <safeOpn> property of Table 6.11, expresses the desired system behavior that 

any <commandLoad[1..4]> action eventually shall be followed by a <missionC omplete> 

action. As it is depicted in Fig. 6.7, while translating the FSP notation of a prop-

0 1 2 3 4-1

commandLoad[4]

commandLoad[3]

commandLoad[2]

commandLoad[1]

missionComplete

missionComplete

missionComplete

missionComplete

missionComplete

commandLoad[1..4]

commandLoad[1..4]

commandLoad[1..4]

commandLoad[1..4]
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Figure 6.7: The LTS Model Of The Safety Operation Property.
 

erty, the verification algorithm automatically generates the transitions that violate
 

the properties within the LTS model. For example, at state {0}, the occurrence
 

of <missionC omplete> without previously performed <commandLoad> leads to a
 

failure state. Another example is the consecutive execution of the <commandLoad>.
 

The LTS of Fig. 6.7 is recognized as an error LTS with the failure state of -1.
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6.3.2 Reliability Analysis in Complex Networks 

Assuming A signifies the adjacency matrix of an engineered system under study with 

n components, A is defined as follows: 

Aij =
 

⎧ ⎪⎪⎨ ⎪⎪⎩ 

1 ∀ [(i,j) | (i = j) and (i,j) ∈ Λ]
 
(6.1)
 

0 otherwise
 

where Λ symbolizes the set of components. A is a square symmetric matrix with 

diagonal entries of zero. 

The graph layout can be determined in any number of different methods. As 

discussed earlier, the edge connections between components can be defined topologi­

cally or by Energy, Material, and/or Signal (EMS) relations. A topologically defined 

graph has components which are connected with physical justifications. For exam­

ple, if two components are physically connected together within a design, they are 

connected within the graph. EMS related connectivity rules describe the energy, ma­

terial, and/or signal flows between components. Therefore, if two design components 

share a flow variable (or a flow relationship), they would be "connected" within the 

graph and represented with a "1" within an adjacency matrix. 

6.3.2.1 Non-Linear Dynamical System (NLDS) Modeling 

The NLDS propagation model provides an indication for the length of time to full 

propagation according to the graph layout defined by an adjacency matrix. In the 

proposed model, a universal failure cascading rate β (0 ≤ β ≤ 1) for each edge 
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Figure 6.8: Overview of Non-Linear Dynamical System Model. 

connected to a faulty component is defined. The model is based on discrete time­

Model3.pdf steps Δt, with Δt → 0 . During each time interval Δt, a faulty component i infects 

its neighboring components with probability β. 

Fig. 6.8 illustrates an overview of the step required to analyze the propagation of 

failure in complex engineered system design using the Non-Linear Dynamical System 

(NLDS) Model. 

6.3.2.2 Epidemic Spreading Model 

Fig. 6.9 depicts an overview of the steps required to analyze the propagation of failure 

in a complex engineered system design using the epidemic spreading model. In this 

approach, the theoretical model is based on the concept that each component in the 
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Figure 6.9: Overview of Susceptible - Failed - Fixed (SFF) Model. 

complex system design can exist in a discrete set of states. The failure propagation 

changes the state of a component from nominal to failure or from failure to fixed. 

As a result, the model is classified as a susceptible - failed - fixed (SFF) model, in 

which components only exist in one of the three states. 

The proposed methodology is based on the universal rate (µ) in which the failed 

components are fixed in the design, whereas susceptible components are affected by 

the failure at a rate (λ ) equal to the densities of failed and susceptible components. 

In addition, k ¯ is defined as a the number of contacts that each component has per 

unit time. It is important to note that the assumption made in this proposed model 

is based on the fact that the propagation of failure is proportional to the density of 
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the faulty components. 

Two failure propagation models are used to demonstrate the resilience of a quad-

redundant Electro Mechanical Actuator (EMA) design against cascading failure. The 

design is analyzed for its resilience to propagation by evaluating the design for length 

of time to full propagation (NLDS) and for the breadth of propagation (SFF) when 

a failure is introduced. 

In order to gauge the resilience to propagation by each designed system, an initial 

set of components in a state of failure is defined so the failure can propagate along the 

underlying graph structure from these components. For the sake of comparison, each 

design has been compared twice, once with an initially failed minimally connected 

component and once with a highly connected component. Specifically, a minimally 

connected temperature sensor and a highly connected EMA engine are selected as 

the failure origins. 

As it can be seen in Fig. 6.10 the population of the infected components with 

respect to time is different for the two experiments. In the left hand side of Fig. 6.10, 

the defect at the origin of failure in EMA engine caused a drastic increase in infected 

population size. This occurred near the second time step for quad-redundant EMA 

design. In this case, the failure is able to spread much more quickly because the EMA 

engine node is the most highly connected component in this design. The result con­

firms the expectation that a more highly connected component propagating failure 

to neighboring component more quickly, while a minimally connected component, 

such as a sensor, results in slower failure propagation. 

The NLDS model proves that more highly connected components spread a failure 



138 

Figure 6.10: Time Evolution of Faulty Components’ Population Size (Origin of Fail­
ure: (Left Picture: EMA Engine) and (Right Picture: Sensor)). 

much faster. Therefore, nodal hubs, or very modular areas of a design are more 

detrimental to the rapid spread of a failure. 

Unlike the NLDS model, the SFF epidemic spreading model is based on the idea 

that failure propagations can be stopped by fixing the faulty components. The SFF 

model operates by the spread of a failure from an initially failed component just as 

the NLDS model does. However, the SFF model is not a probabilistic model that is 

solely dependent on the architecture of an adjacency matrix as the NLDS model is. 

Instead, the SFF model requires a time step dependent simulation of the spread of a 

component failure. As with the NLDS model, a time step is regarded as sufficiently 

close to zero so that only the current population of failed components transmit a 

failure. 

Each "faulty" component has an opportunity to infect a neighboring susceptible 

component in the next time step. In one time step, a component infects its connected 

neighbors according to a uniform failure probability. The simulation run for the SFF 
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model was conducted at λ = 10%. After a component has had an opportunity to 

infect its neighbors, the infected component would then be fixed in the conceptual 

design to resist the same failure according to the probability of failure removal µ 

= 10%. A repaired component is either considered faulty without the ability to 

transfer the failure to the neighboring components or is susceptible but resistant to 

the failures of its connected neighbors. Therefore, the cascading failure could be 

stopped with the provision that enough faulty components become repaired in the 

design before they are able to fully propagate the failure. That is, propagations can 

be halted if all transmission routes are blocked by repaired components. 

The same designs were used with the epidemic spreading model as were used with 

the NLDS model. Additionally, the same initial failure conditions were used. A tem­

perature sensor was initially failed as a minimally connected component. An EMA 

engine node was then initially used to propagate the failure as a highly connected 

component. Fig. 6.11 shows the epidemic spreading graphs. 

In the SFF algorithm, the failure propagation is based on connections, therefore 

the results must be reported in terms of faulty component density. As it is depicted 

in Fig. 6.11, each colored data set is representative of a set of components with 

the same degree e.g. red colored data set represents 62 components in the system 

design with only three connections. Therefore, each set of components has a failure 

density ranging from 0 to 1; 0 representing that no components of that degree are 

infected and a 1 representing every component of that degree being infected. Fixed 

components are not considered faulty. Consequently, a plot of faulty component 

density fluctuates intermittently between 0 and 1, however eventually settles at 0 as 
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Figure 6.11: Time Evolution of Faulty Components Density for The quad-redundant 
EMA design (Origin of Failure: (Left Picture: EMA Engine) and (Right Picture: 
Sensor)). 

all failed components are fixed in the system design. When a minimally connected 

component, such as a temperature sensor, is chosen as a failure origin, it is compared 

to an initially infected highly connected component, such as an EMA engine, the 

cascade spreads much slower, as expected. 

The left hand side of Fig. 6.11, illustrates the simulation results for an initially 

failed, highly connected EMA engine. The plots present more immediate increases in 

infection density, regardless of component degree when a highly connected component 

is failed initially. However, once the initial infection has passed, and the failure 

density begins to subside, the infection density is reduced. This is because a stopped 

failure gets repaired probabilistically according to a uniform rate. 
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6.3.3 Design Analysis 

In order to produce an architecture that can be used to verify all the required design 

functionalities, the behavioral model of the system is composed with the defined 

safety properties. For example, the <S af eOpn> property of Fig. 6.7 is composed 

with the target system of Table 6.10. Then the verification algorithm analyzes all 

execution paths of the composed model to ensure the specified property holds for all 

executions of the system. The violation of linear-time safety properties is indicated 

by finite path fragments that end in a failure state. Therefore, all finite traces 

of the system are tested to ensure that they satisfy the safety requirements. The 

system satisfies the safety property if and only if the failure state is not reachable 

in (SafeOpn I RedundantSystem). When the design satisfies the property, then 

the composition of SafeOpn I RedundantSystem behaves similar to the behavioral 

model of the redundant system. Therefore, the composition does not affect the 

system behavior. However, when a safety property is violated, a failure propagation 

path consists of series of actions that lead to failure state is generated. 
Table 6.12: FSP Model of Safety Property And System 

FSP Notation 
1 : ICheckSafeOpn = (SafeOpn I RedundantSystem). 

In the case of the <S af eOpn> property, the verification algorithm had detected 

a property violation. Table. 6.13 represents the sequence of actions that lead to the 

failure state. 

After resetting the output shaft, the command unit sends a request for two units 

of load. Later in the process, the diagnostics subsystem identifies a jammed actuator 

causing shaft #1 to be blocked. As it is presented in line #25, the overall position of 
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Table 6.13: Trace To Property Violation
 

1 : shaft.reset 
2 : commandLoad.2 
3 : legsRecLoad 
4 : shaft.1.load 
5 : d.1.jam 
6 : shaft.1.block 
7 : shaft.2.load 
8 : shaft.3.load 
9 : shaft.4.load 
10 : leg.1.disengage 
11 : shaft.1.unblock 
12 : d.2.jam 
13 : shaft.2.block 
14 : leg.2.disengage 

15 : 
16 : 
17 : 
18 : 
19 : 
20 : 
21 : 
22 : 
23 : 
24 : 
25 : 
26 : 
27 : 
28 : 

shaft.2.unblock 
d.3.jam 
shaft.3.block 
leg.3.disengage 
shaft.3.unblock 
d.4.jam 
shaft.4.block 
leg.4.disengage 
shaft.4.unblock 
allLoadsCompleted 
shaft.positionIs.1 
timeout 
shaft.reset 
commandLoad.1 

the output shaft connected to the Flight Control Surface (FCS) is reported one. After 

the load provided by shaft #1, the loads from other three shafts are not performed 

due to the fact that shaft #1 has blocked the system. After disengaging leg #1, the 

system returns to the operational mode. However, at this point the diagnostic block 

detects that the remaining actuators have also failed causing a <timeout> to occur. 

The second load command is sent by the controller to reach the required position of 

two, yet, sending the second load command before a <missionC omplete> results in 

violation of <S af eOpn> property. 

It can be concluded from the result of the verification that the failure of all four 

EMAs leads to catastrophic system failure. However, it is possible to extend the LTS 

model of <S af eOpn> to constrain the number of failures in a way that the system 

never reaches the catastrophic failure. For example, in the case of quad-redundant 

EMAs, the system can tolerate up to three failures without reaching the catastrophic 

failure condition. This way, system designers can impose a new requirement of the 

form "if up to N number of EMAs fail then the catastrophic failure condition shal l 
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not occur.". To achieve this, the following generic (or parameterized) safety property 

with the following constants and a range definitions is used: 

• const N =4 \\ number of faulty EMAs 1 

• const M =4 \\ number of EMAs 

• range EMAs = 1..M \\ EMA identities 

In order to prevent the system from reaching the catastrophic event of <timeout>, 

it is essential to complete the mission and provide the required loads based on 

the command signal. Therefore, the events of interest are the sent command sig­

nal, the jammed actuators, and the completion of the mission. Consequently, as 

depicted in the LTS model of Fig. 6.12 <F ault_T olerance> property contains 

{<commandLoad[1..4],d[1..4].jam, and missionComplete>} actions. The property 

of Table 6.14, maintains a count of faulty EMAs with the variable f . To model 

the fact that every command signal must be followed by a <missioncomplete>, the 

processes in line #3 and 8 are required to constrain the number of faulty EMAs (f ) 

to a number defined by the parameter of the property (N ). 

Table 6.14: FSP Model of Fault Tolerance Property 

1 : property 
2 : Fault_Tolerance(N=4) = Jammed[0], 
3 : Jammed[f : 0..M] =(when(f ≤ N)commandLoad[L] → CompleteMission[f] 
4 : |when (f>N) commandLoad[L] → Jammed[f] 
5 : |d[EMAs].jam → Jammed[f+1] 
6 : |missionComplete → Jammed[f]), 
7 : CompleteMission[f:0..M] = (missionComplete → Jammed[f] 
8 : |when (f<N ) d[EMAs].jam → CompleteMission[f+1] 
9 : |when (f= =N) d[EMAs].jam → Jammed[f+1]). 

1by default is set to 4 but it can be redefined during the instantiation process. 
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Figure 6.12: LTS Model Of The Fault Tolerance Property. 

As can be seen in the compositional model of Table 6.15, the <F ault_T olerance> 

property is predefined with N = 2. Therefore, permitting only two out of four EMAs 

to fail during the system operation. Safety analysis using the LTS analyzer verifies 

that the safety property is satisfied. The composed LTS model of Table 6.15 con­

sists of 242 states, however the verification algorithm reduced the number of states 

to 10733. The same result is obtained with three EMAs failing. However, when 

Table 6.15: Compositional Model Of The System And Safety Property 

1 : IExtend_CommandUnit=(Fault_Tolerance(2)ICommandUnit) 
2 : /shaft.reset/resetShaft. 
3 : ICheck_Property =(Extend_CommandUnitIRedundantSystem). 

the property is instantiated allowing four EMAs to fail, the safety analysis verifies
 

that the property is violated and a failure propagation path similar to the one in
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Table 6.13 is produced. Therefore, the generic safety property modeled in Table 6.14 

verifies that the system never reaches the failure condition of total loss if and only 

if N ≤ M-1 where N is the number of faulty EMAs and M is the total number of 

EMAs. 

From the result of case study: the characterization of the system architecture 

by its subsystems and components, the FSP annotation of the failure behavior of 

each of them, and the system level safety analysis based on components’ interaction 

lead to achieving a manageable verification procedure. As compositional reasoning 

approach significantly reduces the number states to be explored, exhaustive checking 

of the entire state space is made feasible. This is especially important where the 

exhaustive simulation is too expensive and non-exhaustive simulation can miss the 

critical safety violation. Furthermore, this type of safety analysis are very helpful 

during the early stages of the design because they provide the required information 

to implement the appropriate level of component redundancies. It is important to 

note that, even though the application of component redundancy improves system 

reliability, it also adds cost, weight, size, and higher power consumption. 

6.4 Conclusion and Future Work 

This paper presented a new combination of compositional verification and model 

checking based approach for system design safety analysis. The aim of compositional 

reasoning is to improve scalability of the design verification process by decomposing 

the original verification task into subproblems. The simplification is based on the 

assumption that a design can be described by a composition expression that groups 
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together individual state machines, while its requirements are also modeled in a 

syntactically uniform fashion. Then the system model is compared to its safety 

requirements and design specifications to verify that its behavior conforms to that of 

the specifications. The proposed methodology is verified to be effective for the safety 

assessment of the early definition of an engineered system design. It offers a uniform 

platform for both design engineers to verify a system design and for safety analysts 

to automate specific parts of safety assessment process. The major benefit of the 

proposed approach is in its ability to tightly integrate safety and design activities. 

The main functionalities provided by the approach include automatic failure injection 

based on a database of predefined failure modes, e.g., automatic failure of actuators 

one after another, automatic generation of fault trees, and exhaustive safety property 

verification with the help of model checking algorithms. 

In addition, we have illustrated modeling and verification using generic safety 

properties. The approach can be generalized to any relative complex system de­

sign component where redundancy of similar components indicate an opportunity 

for parameterized reuse of requirement models in the verification process. As it is 

illustrated, the generic <F ault_T olerance(N)> property constituted a configurable 

process of safety verification analysis to determine whether a failure has occurred. 

This is specifically important for verifying the safety properties of dynamic engineered 

systems, where the component’s failure characteristics are dependent on the interac­

tion with the rest of the system and the outside world. The generic safety property 

formulation accommodates this ongoing design requirements change process. 

In future work, we intend to take into consideration a specified mission time and the 
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average life which is the estimated time until component or system fail. Also, the 

more complex redundancy problem will be analyzed within a larger design model 

where the scalability of the system can be validated. In addition, it is our goal to 

investigate different aspects of fault tolerant system design requirements while taking 

into account automatic injection of multiple failures and reasoning about different 

types of recovery strategies. 
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Chapter 7: Epilogue
 

In this research, resilience is addressed from different viewpoints and a framework 

is presented that enables the design of resilient systems. Resilience design is consid­

ered an ability to design a system that is able to predict and prevent failure through 

exhaustive verification and by using appropriate learning algorithms. Secondly, re­

silience design is characterized as part of a physical infrastructure of the design that 

is robust and has the ability to survive disruptions. Lastly, through the resilience 

design approach, systems are designed to recover from disruptions by attempting to 

return to the pre-disruption state. 

In addition, this research clarifies the difference between safety and resilience. 

Safety is characterized as an emerging behavior of the system that results from 

interactions among system components and subsystems, including software and hu­

mans. This is where designing a resilient system plays a crucial role in developing 

a proactive design practice for exploiting insights on faults in complex systems. In 

this context, system failure is viewed as an inability of the system to adapt and 

recover from disruptions, rather than components’ and subsystems’ breakdown or 

malfunction. 

Importantly, this work presented a framework for assessing and improving the re­

silience of complex systems during the early design process. The framework comprises 

failure prediction and prevention techniques, analysis the effect of design topology 
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on the propagation of failures, and provides methodologies for system recovery from 

disruptions. The reason for these layers of analyzes is to provide the system design­

ers with a set of tools to support them to integrate safety and resilience where it is 

needed. 

This work presented a compositional verification approach and its novel applica­

tion in the area of system design and verification through pre-verification of system 

components and compositional reasoning. The aim of compositional reasoning is to 

improve scalability of the design verification problem by decomposing the original 

verification task into subproblems. Also, two propagation models, a Non-Linear Dy­

namical System (NLDS) model and an epidemic spreading model, are studied to be 

used during the early design of complex systems. From the two models, equations are 

provided to model the propagation characteristics of failures in complex engineered 

systems. The NLDS propagation model provides an indication for the length of time 

to full propagation according to a graph layout. The Susceptible-Failed-Fixed (SFF) 

epidemic spreading model provides an indication of the extent of a cascade according 

to a graph layout. 

Future work will extend the existing verification technique to include systems that 

exhibit probabilistic behavior. The approach will be based on the multi-objective 

probabilistic model checking. Properties of these models are formally defined as prob­

abilistic safety properties. Furthermore, the behavioral modeling and the automata 

learning algorithms require modification to support non-deterministic systems. It is 

also necessary to explore symbolic implementation of the algorithms for increased 

scalability. 
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In addition this work presented a new technique for analysis of failure propaga­

tion in early design based on the design architecture. Future work will analyze the 

effect on a complex engineered system if system graph were created using different, 

and perhaps more complicated justifications. Such justifications could include ex­

panded physical connections that are inclusive of secondary component interactions. 

They do not necessarily have a physical connection interface and may be produced 

as a consequence of system operation. This could include heat, noise, and vibra­

tion related interactions, among others. In addition, justifications related to energy, 

material, and signal (EMS) flows would be a necessary next addition to analyze 

these models for applicability with complex engineered systems. EMS flow relations 

would create connections between components that share a flow. For instance, two 

components would be connected as a part of a thermodynamic process if the same 

working fluid travels from one component to the other. Analyzing multiple adjacency 

matrices created with various connection justifications per design would provide a 

more complete look at a designŠs resilience to propagations. This would add com­

putational expense in the analysis of the design and designer effort to create the 

matrices. An automated method to create the adjacency matrices would solve this 

issue; however, this would require an interface between a design tool such as a CAD 

suite and a matrix creator. In order to validate the use of these models, mode and 

effects analysis and functional criticality level of components will be taken into the 

consideration and with the use of of an engineered system that is operating in a state 

of failure should be analyzed by means of Bayes Decision Function to assess risk. By 

analyzing the time dependent response of a system under failure, the propagation 
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properties predicted by these models can be verified. 
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