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RESPONSE OF GUYED OFFSHORE TOWERS TO STOCHASTIC LOADS
IN THE PRESENCE OF STEADY CURRENT

CHAPTER I

INTRODUCTION

The need for fossil fuel has forced oil production into deeper

waters than ever before. Guyed offshore towers are structures that

offer an economical way for oil production in such deep waters.

Since they are compliant, they must be designed dynamically. The two

principal methods to investigate random dynamic loads on structures

are time simulations and frequency response methods. Frequency

domain methods are only applicable to linear systems while nonlinear-

ities can easily be included in time simulations. But time simula-

tions are very time consuming and interpretation of the results is

tedious.

In this work, which consists of two papers submitted for publi-

cation, guyed towers under stochastic loads due to wave action and

earthquakes and a uniform steady current are investigated. In chap-

ter II, the validity of the stochastic linearization is investigated

by comparing the displacement statistics from a time simulation of a

SDOF guyed tower to the displacement statistics of a linearized SDOF

system due to various combination of stochastic wave and earthquake

loadings. The analytical results are compared to wave tank model

tests (Sekita and Maruyanna, 1986) and to a large scale model that

was installed in the Gulf of Mexico (Finn and Young, 1978). No

experimental data of earthquake loading of guyed tower is currently
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available in the literature, so only analytical results from those

two methods is presented. The results compared fairly well between

those two methods as discussed in chapter II.

In chapter III, a MDOF model is developed and its response to

stochastic earthquake loads in the presence of a steady uniform cur-

rent investigated. Guyed towers are fairly soft and are designed to

rely upon their dynamic softness to reduce loadings. They will

therefore have more modal frequencies in the excitation frequency

range of earthquakes than conventional fixed offshore towers. The

statistics of the MDOF tower displacement are compared to the dis-

placements of the SDOF model developed in chapter II. The statistics

of the forces and moments are then calculated and the influence of

higher modes included in the MDOF towers are discussed.



3

CHAPTER II

RESPONSE OF GUYED OFFSHORE TOWERS TO STOCHASTIC LOADS:
TIME DOMAIN VS. FREQUENCY DOMAIN

ABSTRACT

The validity of the widely used stochastic linearization method

for analysing the response of guyed towers to stochastic loads is

investigated. The governing equation of a guyed tower has two

sources of nonlinearities, fluid-structure interaction and the

restoring force of the cables. In this study, a linearized single

degree of freedom model of a guyed tower is developed using stochas-

tic linearization approach. It is solved in the frequency domain,

giving the statistical response of the guyed tower. The results are

compared to the response statistics of a time simulation that fully

incorporates the nonlinearities of the cable system and the fluid-

structure interaction.

It is found that the results from the linearized model agree

reasonably well with the results from the time simulation of the

fully nonlinear system. The computer time using the stochastic

linearization approach is several order of magnitude less than for a

conventional time simulation method. It is therefore justifiable to

use this method in the early design stages of guyed towers.

INTRODUCTION

The guyed tower is one of the more promising structural concepts

for offshore oil production in deep waters. Many of these structures

will also be located in seismically active regions. It is therefore
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essential that their behavior under intense excitations be fully

understood. Due to the random nature of the loads, probabilistic

methods are more appropriate than deterministic methods for the anal-

ysis of guyed towers. Monte Carlo simulations are popular due to

their simplicity in implementation. But, extensive computer time is

required, huge amounts of data are generated and interpretation of

the results is tedious. 1-4 On the other hand, analyses in the fre-

quency domain are not as involved as in the time domain.

The primary aim of this paper is to investigate the validity of

the widely used stochastic linearization method for analysing the

response of guyed towers to stochastic loads. The governing equation

of a guyed tower has two sources of nonlinearities, fluid-structure

interaction and the restoring force of the cables. Therefore, it has

both nonlinear stiffness and damping. Emphasis is placed upon the

structural response under combined wave and earthquake loadings.

First, the nonlinear equations of motion are solved in the time

domain, fully incorporating the nonlinearities of the problem. Then

the equations of motion are linearized to allow solution in the fre-

quency domain using spectral techniques.

A conceptual design5'6 is shown in Figure 2.1. The tower is

long and slender and depends upon a group of guy lines for lateral

stability. Each guy line consists of a lead line, a clump weight and

a trailing line. The presence of the clump weights limits the maxi-

mum tensions in the cables. In survival sea states, the clump

weights leave the bottom and the system becomes softer, decreasing

the dynamic amplification factor.



FIGURE 2.1 Compliant guyed tower
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A guyed tower was first constructed as a one-fifth scale instru-

mented model. 7 It was located in 293 feet of water in the Gulf of

Mexico in 1978. Results of the model test confirmed the adequacy of

linearized analysis5 of this complex structure as a means of obtain-

ing peak loads. However, test data showed that simplified analysis

would not adequately describe the kinematic and dynamic responses of

the tower as a function of time.

Several authors have investigated the responses of guyed towers

subject to wave and current loading. The well known Morison equa-

tion, 8
including relative velocities and accelerations, was used to

calculate the wave forces on the structures. Hanna et al.9 analysed

the response of the guyed tower in the time domain, using a normal

mode superposition approach. Anagnostopoulos 10 used a similar

approach to investigate a fixed offshore structure.

A number of authors 11-14 have noted the importance of dynamic

mooring properties in determining the overall (deterministic) tower

response. Inclusion of the guyline dynamics prevents overestimation

of the maximum deck motions and underestimation of the maximum guy-

line tension that are apparent in decoupled analysis. Leonard and

Young 12 used a nonlinear finite element program with an implicit

Newmark's integration method to analyse the coupled response of com-

pliant structures. Wilson and Orgi1115 developed a model of a guyed

tower that incorporated the nonlinear stiffness of the cable array

and optimized the stiffness characteristics. The results indicated

that the peak tower rotations for storm conditions are very sensitive

to the damping ratio. Mo and Moan 2
compared various kinematic models
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for the fluid field in the splashing zone using a Monte Carlo

approach. They found that the subharmonic components generated due

to the nonlinearities in the drag force and sea elevation formulation

could contribute significantly to the structural response. Duttal6

investigated the the effect of flow dependent drag and inertia coef-

ficients and found it to be marginal. Sekita and Maruyanna 17 did

wave tank experiments with a 1/100 scale model. There measurements

compared reasonably well with analytical results obtained using

regular waves. They conclude that the effect of drag force coeffi-

cient is significant only in the area of resonant periods.

Due to the random nature of wave loading, it is appropriate to

use a frequency-domain analysis to determine the response of a com-

pliant offshore structure. But frequency-domain analysis is only

applicable to linear systems. The method of stochastic linearization

(equivalent linearization) is a widely used approximate method for

probabilistic analysis of nonlinear structural dynamics prob-

lems. 18-23 In the method of stochastic linearization it is assumed

that a solution can be obtained from linearized equations. The error

in the linearization, i.e. the difference between the linear and the

nonlinear equation, is then minimized in a suitable way. The usual

choice is to minimize the mean-square error. This procedure gives

implicit expressions for the equivalent linear coefficient. Smith

and Sigbjornsson 6 and Arockiasamy, et al. 24 evaluated the stochastic

structural response of a guyed tower subject to wave action. Smith

and Sigbjornsson used two basically different approaches, stochastic

linearization and an iterative approach and found them to give almost
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identical results. Eatock Taylor and Rajagopalan25 investigated the

influence of current on the wave induced dynamic response of offshore

structures. They concluded that linearized analysis can lead to

markedly different results from a more complete nonlinear analysis

and that the method of stochastic linearization appeared to provide

nonconservative results. They also concluded that it is important to

retain the nonlinear dependence of drag force on wave and current

velocity, in evaluating the load spectra of the equivalent linearized

structural system. That agrees with results by Gudmestad and

Conner26 who also investigated the effects of current on the non-

linear drag force and linearization methods.

The principal methods for analyses of earthquake responses of

offshore platforms are time history and response spectrum tech-

niques. A simple, acceptable way to incorporate the randomness of

earthquake motions is to model the ground accelerations as a white

noise. 27
Penzien, et al. 28 investigated the stochastic response of

fixed offshore towers to random sea waves and strong motion earth-

quakes. They concluded that a stochastic analysis should be carried

out to establish wave design loads and suggested that two earthquake

intensities should be used for design: one for which the tower

remains elastic and another allowing some inelastic deformations to

occur. Penzien29 outlined a method which allowed for the possibility

of yielding in the tower structure, and accounts for foundation-

structure interaction. Kirkley and Murtha30 presented a simple

method for adopting existing (land based) earthquake response tech-

niques to the analysis of offshore structures.
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Nair, et al. 31
investigated the seismic response of a fixed off-

shore platform, using spectrum and time history analyses. The accu-

racy of the SRSS (Square Root of the Sum of the Squares) method of

modal combination was found to be less than satisfactory in estimat-

ing individual peak values of member forces. But the accuracy of the

response spectrum technique as a design tool seems to be adequate.

This paper uses a time domain analysis to calculate the overall

nonlinear global response to wave and earthquake loading of a guyed

tower modeled as a single degree of freedom system. Time domain

analysis has the disadvantage of being computationally expensive. An

equivalent linear single degree of freedom system was developed. It

was solved in the frequency domain, giving the statistical response

of the guyed tower with less computer time than conventional time

domain methods. A single degree of freedom system was adopted in

this work, to minimize the computational effort involved with a multi

degree of freedom system and to focus on the comparison of the two

methods. Assuming the response of the guyed tower to be stationary

and ergodic with respect to certain moments (weakly stationary), the

statistics of the response can be calculated from a single time his-

tory. 32
The Monte Carlo method will therefore not be used, i.e. it

is not necessary to calculate a set of time histories.

SYSTEM MODELING

The structure is assumed to be a rigid truss of length L with a

pivot at the sea floor. The motion of the model is confined in a

plane. Finn and Young observed that the motion of a 1/5 scale test
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tower in the gulf of Mexico exhibited elliptical motion in the hori-

zontal plane, but dominant in one direction.

The cables were modeled as nonlinear springs with a static force

- displacement curve as shown in Figure 2.2. Several authors11-14

have noted the importance of incorporating the dynamic mooring pro-

perties in determining the tower response and guyline tension.

Inclusion of the guyline dynamics prevents overestimation of the max-

imum deck motion and underestimation of the maximum guyline ten-

sion. But since the focus of this work is on the comparison of

results from the stochastic linearization method to a fully nonlinear

time simulation, exclusion of the guyline dynamics is immaterial to

that comparison.

With the deck mass, My, lumped at a point and the truss mass, m,

distributed uniformly per unit length, the equation of the tower

rotation, e, about the base is derived from consideration of summa-

tion of moments on the free body shown in Figure 2.3:

Itwr e + Ctwr 9 + Ktwr 8 = - Ig Xg + Mnl + MD + MI (1)

where

I
t

= Mp L
2 +Mc z

C
2

A. Ca
+mL3/3 +pd 3

/3 (2)A-LW

Ktwr = Klzk + Fbzb + Fbtd2/2 - M
p
gL-Mc g zc - mgL2/2 -Fs Kz, (3)

Ig = MyL + Mczc + mL2/2 + p AtwrCad 2/2 (4)

Mnl Kn1(1 - e-clIel) (5)
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FIGURE 2.3 Guyed tower model and free body diagram
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The terms I
twr' C

t
and K

t
are the linear inertia, damping and

stiffness of the tower; is is an inertia term associated with the

ground acceleration X ; Mni is the moment due to nonlinearities in

the static cable stiffness; MD and MI are the moments due to the

fluid velocity and acceleration respectively; Mc is a concentrated

mass located at z
c
above the sea floor; p is the density of sea

water; Atwr is the equivalent inertial area of the tower; Ca the

added mass coefficient; and d is the water depth. The terms K1 and

K
nl are the horizontal linear and nonlinear stiffness contributions

of the cable system; zk is the location of the guyline attachment to

the tower; Fs is the vertical force due to the cable system; and cl

is a scaling factor for the cable nonlinearities. The term Fb is the

vertical force due to buoyancy tanks located at zb; Fbt is the buoy-

ancy force per unit length of the tower; and g is the acceleration of

gravity.

HYDRODYNAMIC LOADING

The wave force, dF, on an element of length ds at a location s

above the sea floor is calculated using a generalized form of the

Morison equation:33

where

dF(s) = 0.5p CdDtwriV(s)+ S (s,t)1(V(s)41(s,t)) ds

+ pAtwr(1 +Ca)11(s,t)ds - pAtwrCa( e( t)s+Xg( t) )ds (6)

i(s,t) = u(s,t) - 8(t)s - kg(t) (7)
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Cd is the drag coefficient; Dtwr is the equivalent drag diameter of

the tower; V(s) is a steady current and u(s,t) is the horizontal

particle velocity due to waves. The interaction of waves and current

was neglected in this work and the current simply superimposed on the

waves. Integrating over the water depth (to the mean water level)

gives the moment due to drag and inertia of the fluid and the added

mass (included in Its andand Ig shown previously):

d

MD = 0.5p CdDtwr f 1V+81 (V+i)s ds (8)
0

d

MI = p Atwr(l+Ca) f u s ds (9)
0

Here, the arguments of V(s), 6(s,t) and u(s,t) have been dropped for

convenience. The wave kinematics are evaluated using Airy's linear

wave theory. 33 Therefore,

cosh ks p(t)
u(s,t) w

sinh kd

cosh ks u(d,t)
cosh kd

(10)

where w is the wave frequency and k is the wave number defined by the

dispersion equation

w2/g = k tanh kd (12)

Similarly,

u(s,t) -
cosh ks u(d,t)
cosh kd (13)

The moment due to fluid acceleration, MI, can then be integrated

in closed form to give:

MI = pAtwr(l+Ca)
u(d,t)

(kdsinh(kd)-cosh(kd)+1)
k cosh(kd)

(14)
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The moment due to relative fluid velocity, MD, in equation (8)

can then be calculated numerically by evaluating quantities at dis-

crete stations si (i = 0,...,M) in the interval 0 < s < d and then

integrating numerically by the trapizoid rule using M intervals

where

M-1
MD = 0.5p Cd Dtwr( 0.5(si+1-si_I)M'(si)

i=0

+0.5(sm-sm_1)1P(sm)) (15)

W(si) = IV(si)+13(si,t)1 (V(si)4(si,t)) si (16)

For random waves the wave amplitude is assumed to be a super-

position of simple harmonics. Using a method proposed by Borgman1,34

and modified by Wilson,35 one can simulate fluid accelerations and

velocities for random waves from Pierson-Moskowitz wave spectra.

The wave height, n(t), can be written as

N
n(t) = 2 1 (s(w'

n
)8w'

n
)
0.5

cos(k'nX - w' nt + On)
n=1

(17)

where s(W) is the two sided amplitude spectrum, 8w'n = wn - wn_l and

w' (wn wn-1 )/2. n are independent random numbers uniformly

distributed over the interval 0 to 2w and k'n is defined by the dis-

persion equation:

w'
n
2/g = k' n tanh k'

nd (18)

If wn are equally spaced between 0 and wmax, then n(t) will

repeat itself with period 2w/wi. One way of avoiding this periodic-

ity is to select the set of wn using the cumulative spectrum:



w
Sc(w) = 2 f s(t)dt

0

but, since

s(b,n) (Sc(wn) - Sc(wn-1)) /2

16

(19)

(20)

the periodicity is avoided if the wn is chosen such that (Sc(wn) -

S
c
(w
n-1 ))/2 = a

2
is constant', and wn defined as the solution of

Sc ( wn) = N S
c m( w )ax (21)

The one sided amplitude spectra proposed by Pierson-Moskowitz is

of the form:

where

S(w) = A exp(-541
ww-

A = a g2

B = 8 (---11--) 4

wind

(22)

(23)

(24)

andand a=8.1 103 and 8=0.74 are empirically determined constants, g is

the acceleration of gravity and Uwind is the reference wind veloc-

ity. The cumulative spectrum is then:

(.4

Sc(w) f

A
5

exp (B----4 )dw'
0 w'

A
exP

(-B

44B
w

The amplitude and wn are then determined by

(25)

(26)
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a2 = Sc(c0)/N = A/(4B) (27)

wn = ( B/(1n(N/n)+B/w4max) ) 0.25

N
n(t) = H/2 cos(k'nx - w'nt + On)

n=1

(28)

(29)

where H/2 = a V/. Using Airy's linear wave theory, 33 the horizontal

partical velocity u(x,t) and acceleration u(x,t) can be calculated

from the simulated random surface profile:

where

N

u = H/2 1 w' n G(s) cos( k'
nx - w' nt + On)

n=1

N
u = H/2 y w'

n
2
G(s) sin(k'

n
x - w' nt + On)

n=1

(30)

(31)

G(s) = cosh k'ns / sinh k'nd (32)

Assuming that the free surface elevation is Gaussian, and that

linear wave theory is valid, one finds the partical velocity and

acceleration to be Gaussian also. Their power spectrum densities are

given by:

Suu(w) = (6) G(s))
2

S
nn

(w)

S.(w) = (w
2
G(s))

2
Snn(w)

(33)

(34)

Their cross spectral density is zero so the velocity and acceleration

are statistically independent.
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EARTHQUAKE LOADING

The time history of a ground acceleration during a strong motion

earthquake is characterized by a noise-like function. Furthermore,

no two earthquakes at the same location are identical. Therefore,

ground motions induced by an earthquake may be modeled as a random

process. Several methods have been proposed to simulate free surface

accelerations. 36
'
37

The earliest attempts were to simulate the

accelerations as a stationary white noise. 38 But an earthquake is

nonwhite in that its spectral density is not uniform with respect to

frequency. It is also nonstationary since its statistics are time

dependent. Kanai 39 and Tajimi40 initially proposed the widely used

filter transfer function:

4
w + 4c

2
w

2
w
2

IH (w)12
g g

al
(w

2
- w

2
)
2
+ 4c

2
w
g

2
w
2

g

(35)

were wg and ;g are the characteristic ground frequency and ground

damping ratio. Kanai suggested 5w rad/s for wg and 0.6 for Cg as

being representative for firm ground condition. The power spectral

density function for the filtered process is then

Sal(w) = IH
al
(012 So (36)

where S
o

is constant (PSD of white noise). Nonstationarity can be

introduced by multiplying the stationary process by a deterministic

envelope function. 41,42,37
The envelope function is used to repre-

sent the initial build-up phase and final die-down phase of a realis-

tic earthquake acceleration. Philippacopoulos and Wang43 presented

some seismic inputs that may be used for nonlinear structures. They
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where generated from recorded earthquakes and produce maximum non-

linear response.

A stationary Kanai-Tajimi earthquake spectra was used in this

research. It was modified to make the variance of the ground veloc-

ity finite.38 A high pass filter transfer function of the form:

1H
a2

(w)i
2 w

4

(w
1

2
- w

2
)
2
+ 4c

1

2
w
1

2
w
2

(37)

is used in this research. The constants wi and cl are selected to

obtain the required filter characteristics. The power spectral den-

sity of the final process is then:

S.. (w) = IHa2(w) 12 IHal(w)12 So
Xg

A direct method to obtain the simulated stationary process,

(38)

X (t), is to lump the area under the PSD curve at equal frequency

intervals dw and let these areas equal one half the squared amplitude

of a set of discrete harmonics:38

SO

A
i
2
/2 = (S- (-wi) + S.. (wi)) Ow

Xg Xg

Xg (t) = E (4S_ (coi )60°.5sin(wit + +i)
Xg

(39)

(40)

where .i is a random number uniformly distributed between 0 and 2w.

This method is similar to the one used to simulate the wave height.
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LINEARIZATION

The governing equation, equation (1), contains two nonlinear

terms, in the drag, MD given by equation (15) and in the cable force

Mni given by equation (5). In order to use a spectral approach,

these two terms need to be linearized. The stochastic linearization

technique replaces the original nonlinear system with an equivalent

linear system based on a certain optimization criterion. The non-

linear drag in equation (1) is asymmetric, i.e. MD(4) * MD(6). It

is assumed that e(t) consists of a deterministic (constant) offset,

e
o
, and a zero mean random process e(t), i.e.

e(t) = 00 + e(t) (41)

The way chosen here to linearize equations (5) and (15) is to

separately linearize the stiffness and drag terms, such that the

expected values of the square of the differences between the linear

and nonlinear terms are minimum

61i 1V411("ii) ai bi 61 i=1,...,M (42)

=/4_,ni -c-e0 (43)

where the arguments of V(s) and 6(s,t) have been dropped for conven-

ience. The terms Si and Mn1 are defined by equations (7) and (5),

respectively. The coefficients ai, bi, c and e are selected such

that

< 61i
2> = minimum

<6
2
2
> = minimum

(44)

(45)
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where <...> represents the expected value operator. For a zero mean

Gaussian random process, the expected value can be calculated accord-

ing to

co 2

x dx1 r f(x) exp(
2I,

<f(x)>
717T-27-r)

2a

were a is the standard deviation of x.

Hence

Minimizing <61i2> with respect to ai and bi, one obtains

(46)

a 2

3a
<6

li
> = 0 (47)

al,
<6

li

2
> = 0 (48)

ai = < IV +SiI(V +gi) >

bi = < IV +SiI(V +gi)gi >/< 142 >

(49)

(50)

The mathematical expectations can be evaluated analytically to yield,

after some manipulations

(a
2 v2) Vai kv

V2
+ )727.7r7 V a exp(--=2-)

2a.

8i

( V2b
i
= V erf

(a A: /(8/w)
a

41.

exp
k2a

Si

where a is the standard variation of Bi. Similarly, for <622> to

be minimum,

(51)

(52)
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a 2

<62 >

Ti <62
2

>
0

22

(53)

(54)

c "n1(0) (55)

e = oini(e) ew 2e > (56)

Substituting the linearized expressions equations (51), (52),

(55) and (56), into the governing equation, equation (1) and

rearranging, one obtains

where

A A A

I
t
wrO +C

twr
9 + Kt e +K

tWT
e
0

Igx +c+ee
g

+ C
I
Ea

iai
+ Cl Ea ibigi + g(w) 11(d,t)

C1 = 0.5 p Cd Dtwr

0.5(s. - s )s
1+1 i-1 i

a
1

0.5(s
m

- s
m-1

)s
m

i < M

i = M

(kdsinh(kd)- cosh(kd) +1)
g(w) = pA

t
wr(l+C

a
)

k2cosh(kd)

(57)

(58)

(59)

(60)
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Equation (57) has to be satisfied in an average sense. Taking the

expected value of equation (57) results in:

KtwrOo c + C1 Eaiai (61)

The mean tower offset becomes

00 = (c C1 EaradiKtmT (62)

Substituting back in the values for Si from equation (7) and for 00

from equation (62), one can write equation (57) as

where

I e+
eq

e+ K
eq
e. Ixci

tut, gg gg

+ f(w) u(d,t) + g(w) u(d,t) (63)

Keq KtWT e (64)

Ceq = Cl Ea ibisi + Ct (65)

Cg= C Eba. (66)

f(w) = C1 Eaibicosh(ksi)/cosh(kd) (67)

The linearized coefficients, Keq, Ceq and Cg depend upon 80 and

the variance of
Si

and e . The problem is therefore implicit, i. e.

values ofa have to be guessed initially, then calculated and com-

pared to the guesses. The variance of Si can be calculated several

ways. The way chosen here is from the expected value operator
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a 2 = <(ui - 8 si - ig)2> (68)
ii

x
2= a

u .

2
+ s

i
a

2
+ a - 2 s

i
<u

i
0> - 2<X

g
e> (69)

1 i

2

g
0

where
<uiJ.

k > = 0 since u
i

and Xg have been assumed to be uncor-

related. The calculation of the first three terms in equation(69) is

relatively straight forward.

The variances a and a can be calculated according tou
2

i
i

2

g

cosh(ks )
2

2
a f w2 S (w)dw
u

0 sinh(kd)
2 nn

a = f S (w)dw = f w S_ (w)dw
k

2

g -. i

2

g cto Xg

where S
nn

(w) is the Pierson-Moskowitz spectrum and S.. (w) is the

Xg
modified Kanai-Tajimi acceleration spectrum.

The variance of the angular velocity of the tower, a 2
is:

0

a2
= f S

.
(w)dw = f w

2
(w) dw

where the power spectral density of the tower displacement can be

obtained using equation (63)

S,,(w) = IH
1
WI 2

Sxg(w) + IH
2
(01 2

Su(w)

2Iw - j Cw
H

1
(w)

(K
eq

- I
t
wrw

2
)
2
+ jC

eq
w

H
2
(0 = f(w) g( (0)

(X
eq

-
t
wrw

2
)
2
+ jc

eq
w

(70)

(71)

(72)

(73)

(74)

(75)



where j =

The two cross terms in equation (69) can be calculated using

several approaches. The one chosen here is to use the unit impulse

response function. First, consider <y>. For a stationary

processes, it can be shown that

A .
<u.18> <u.0>

From equation (63), the stationary response of 8(t) is given by

8(t) = f h(t-T)e(T)dT + f h(t-T)w(T)dT

25

(76)

(77)

where e(t) is the force due to earthquake and w(t) is the force due

to wave loads

w(t) = f(w) u(d,t) + g(w) u(d,t) (78)

e(t) = -I - C
gXg gg

Then since e(t) and u(t) were assumed to be independent, we have

(79)

<ui8> = f h(T)<w(t-T)ui(t)>di (80)

Equation (80) can be evaluated by making use of the autocorrela-

tion function and integral transforms as follows. The autocorrela-

tion function is defined as:

Euu(T) = <u(t)u(t+.0> (81)

For a stationary process, ensembled averages are independent of time,

thus



dR
uu

= <u(t-T)u(t)>
di

d
2
R
uu

di
2

(T) = - 4(t-T):1(0>

The autocorrelation function can also be expressed as an inverse

Fourier transform of the power spectral density

R
uu

(T) = f S
u
(w)ejwTcho

-02

R
uu

(T) = f jw Su(w)eJ TdO)
-op

2
d R

2

uu
( T) = r s ej catch°

Aai u

Therefore

CO
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(82)

(83)

(84)

(85)

(86)

<u(t-T)11(0> = f jw Su(w)ejwTdw (87)

<u(t-T)il(t)> =
632 j wTdw

Substituting equation (78) into equation (80) and using the

results from equations (87) and (88), one obtains

cosh(ksi)
.

cosh(kd)
<u0> = 1 f(w) jwS

u
(w) f h(T)ejwTdwdT

(88)

= cosh(ksi)

+ f g(w) cosh(kd)
w Su(w)_f f h(T)eiwTdwdT (89)

-02 u _0,
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The integral involving h(t) can be evaluated using an integral trans-

form

(K
eq
-I

twr
w2) + j 41/Ceq

f h(T)e
jWT

dr =
(K
eq

-I
t
wrw

2
)
2
+(wC

eq
)
2CO

(90)

Substituting this into the above equation, noting that Su(w), f(w),

g(w) and cosh(ksi) are even functions with respect to w and using the

relation from equation (76) one obtains

cosh(ksi) w
2
Su(w) dwco

<u e> = c
eq

f f(w)
cosh(kd)

-03 (K -I w
2

)
2
+(wC )

2

eq t eq

w

w2 ) S dwco cosh(ksi)
- f g(w) cosh(kd)

(K
eq

-I
twrw )

2 (Keq-Itwr

eq

The last cross term in equation (69) can be evaluated similarly:

e> <i

<X 0> = f h(r)<e(t-r)X (t)dr
-0,

since w(t) and X (0 are uncorrelated

co co

<X 0> = - Ig f h(t) f S Tdwdr
Xg

-co -co

(91)

(92)

(93)

+ Cg f h(t) f j Su (w)eiumdwdr (94)
-co to

Since the power spectrum is an even function of w, the cross term can

be written as



e> =
(K

eq
-I

twrw2)SXg
(w)dw

g-=
f

(K
eq

-I
twr

w
2 2
) +(wC

eq
)2

co S (w)dw
-ccf Xg

2 2
g (K

eq
-I

t
wrw

2
) +(wC

eq
)
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(95)

Now we can evaluate a. in equations (51) and (52): first,

0
i

assume a and 0; next calculate the linearization coefficients,
6

2

ai, bi, c
i
and e and from them, an improved value of a 2 and 0; con-

tinue this iteration process until satisfactory convergence of a

i
and 0 is obtained.

Solution Procedure

The time domain solution was done using a fourth order Runge-

Kutta algorithm. 44 The forces along the tower were integrated using

a Simpson rule. The tower was assumed to be at rest initially, i.e.

0(0) = 6(0) = 0. The time step was varied according to maximum load-

ing frequency. It was approximately ot=0.1 Tmin were min = 2"max

and wmax is the maximum frequency of the simulated wave field. It

was taken as three times the frequency where the PSD-spectrum is max-

imum. For a Pierson-Moskowitz power spectrum, that frequency is:

w
o

= 0.877 g/Uwind (96)

The mean and variance of the tower offset was then calculated

and compared to the ones obtained by the frequency domain procedure.
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Solving the equations in the frequency domain required an itera-

tion on e
o
and a . Initially e

o
was assumed to be 0 and the vari-

ance of Si was approximated by:

2
a = a

2
+ ax

2

u.
(97)

When solving for a range of wind velocities, the previous values

of a
2

and e
o
were used as initial guesses. Knowing those, the

ai's and bi's could be calculated from equations (51) and (52), giv-

ing Ceq and Cg and the steady force due to the current. Then the

a 2 andthecrossterms<u.e> and <ex > are evaluated by using equa-

dons (72), (89) and (95). Those integrations are done with Simpsons

rule from 0 to wmax and then the remainder, from wmax to = is inte-

grated by a 15 point Gauss-Lagurre procedure.44 The maximum fre-

quency, wmax, is three times the frequency of maximum spectral den-

sity for the waves.

RESULTS

To validate the solution procedures described in the previous

sections the results from the time domain solution and the frequency

domain solution were compared to each other and experimental results

and examples reported in the literature for validation.

Example 1: Wave Tank Model Test

Sekita and Maruyanna 17
carried out a wave tank model test of a 1/100

scale guyed tower, pin-end connected to the sea bottom. The system

properties are listed in Table 2.1. The cable used in the experiment

behaved as a hardening spring rather than as a soft-stiff-soft spring
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Table 2.1. Tower specifications.

Example 1 Example 2 Example 3

M tWT kg/m 2.06 104 2.23 103 3.70 104

Mplf kg 0 6.80 103 6.80 106

F
spg N 0 105 107

Fbtwr N/m 0 1.61 104 2.92 105

L
t m 200 100 480

Lspg m 140 84 442

K
1 N/rad 7.620 107 8.40 106 5.79 108

Knl N/rad 1.905 10
7

1.18 107 -4.34 108

CtWT 0.05 0:03 0.01

Dtwr m 8.0 6.80 35.0

Atwr
2

12.6 1.41 26.3

Ca 1.0 1.0 1.0

Cd 1.0 0.6 0.7

wn rad/s 0.302 0.576 0.234

Ta s 20.8 10.9 26.9
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characteristic of guyline cables. The results are presented as the

ratio of the maximum tower offset at location 180 m above the bottom

(full scale values used as in reference 17) to the wave height vs.

wave period for regular waves (single wave). For random waves, the

ratio of the standard variation of the tower offset to twice the

standard variation of the wave amplitude is used:

where

x/11 = 180

a
e

2a
n

2 f

a = j S
nn

(w) dw = oU
wind

4
/(413g

2
)

0

(98)

(99)

S
nn

(w) is the Pierson-Moskowitz spectrum as defined by equation (22)

and a
0
is the standard deviation of the tower rotation. The period

of the significant wave height can be estimated as suggested by

Bretschneider: 45

=
(4/5)0.25

(100)

were w
o

is the frequency where the PSD is maximum. The surge

response of the tower to a 10 m high waves are plotted in Figure

2.4. As can be seen, there is close agreement between the analytical

solutions and the experimental results for wave periods away from the

natural period of the structure. But realistic guyed towers will be

designed to have the first natural frequency lower than the main fre-

quency of the waves. The results near the natural frequency of the

tower are very sensitive to the drag coefficient used. A damping

ratio of 5% of the critical value was used in addition to the hydro-
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dynamic damping to account for the structural damping of tower and

the damping due to the guylines. Figure 2.5 shows the results for

random waves. The frequency domain solution compares very well with

the experimental results.

Example 2: Large Scale Model

Finn and Young 7 discussed tests results of a large scale model

of a guyed tower installed in the Gulf of Mexico. They reported

measured tower motions from two major storms. The significant wave

heights from those two storms were 2.7 m (8.9 ft) and 2.2 m (7.2

ft). Figure 2.6 shows a simulated wave profile with significant wave

height equal to 2.2 m. The significant wave height is calculated as:

Hs = 4 an 2 (a/B)0.5Uwind
2
/g (101)

Significant wave height of 2.2 m corresponds to a 10.1 m/s wind. The

specifications of the test tower are listed in Table 2.1. Time simu

lation of the tower response to that wave record is shown in Figure

2.7. The maximum displacement of the tower was measured7 as 0.69 m

which compares reasonably well with the 0.58 m response obtained with

the time simulation. Note that the same wave profile was not used,

only one with the same significant wave height. Wishahy and

Arockiasamy46 analysed this tower using the finite element method.

By using the same wave profile as reported by Finn and Young 7 (Hs=2.2

m), they computed maximum deck displacements of 0.65 m and 0.56 m for

beam and truss element models respectively. The standard deviation

of the tower offset was calculated using the frequency domain

method. The results are shown in Figure 2.8. The standard deviation
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from time simulations with significant wave heights 2.2 m and 2.7 m

(corresponding to wind velocity of 10.1 m/s and 11.3 m/s) are also

shown in the figure. Estimating the maximum displacement as 3ox, the

maximum displacement calculated by the frequency domain method

becomes 0.57 m and 1.2 m compared to 0.58 m and 1.1 m as obtained by

the time simulation.

Example 3: Guyed Tower in 457 m Water Depth:

The two methods were also compared using a guyed tower model

similar to the one used by Finn 5 and Dutta. 16 The response of this

tower to waves, earthquakes, current and combination of these loads

was investigated. The parameters used to specify the earthquake

spectrum defined by equations (35), (37) and (38) where wg = 15.7

rad/s and g = 0.6 as suggested by Kanai39 for firm ground condition;

wl = 0.4 rad/s and cl = 0.9; So = 0.004267 m2/s3 (0.04593 ft2/s3)

which corresponds to a class of earthquakes having an average inten-

sity similar to the N-S component of the 1940 El Centro earth-

quake.47 The frequency, col, and damping, ci, were selected such that

the standard deviation of the ground velocity would be approximately

0.14 m/s. Then the maximum ground velocity can be approximated as

=g ,max 3 (103)

= 0.42 m/s (17 in/s) (104)

which is the maximum ground velocity of the N-S component of the 1940

El Centro earthquake obtained by Berge and Housner 48 by integrating

the acceleration record. The power spectral densities of the ground
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acceleration and velocity are shown in Figures 2.9 and 2.10, respec-

tively.

Figures 2.11 and 2.12 show the standard deviation of the tower

rotation with and without an earthquake loading. The frequency

domain solution compares very well with the time simulation for both

cases in the absence of current. When current is superimposed on the

waves, the standard deviation of the response decreases in the fre-

quency domain solution, but increases slightly in the time domain

solution. This discrepancy may be due to overestimation of the drag-

coefficient in the frequency domain. Adding the current will signif-

icantly increase the damping ratio of the system, as can be seen in

Figure 2.13. Also, for high wind speeds and current, the nonlinear-

ities in the system increase. For wind speeds above 20 m/s, the wave

forces are dominant and the effects of the earthquake and current on

the standard deviation of the response are marginal. The mean tower

offset has been plotted in Figure 2.14. It is clear that the results

obtained by the two approaches are in close agreement. The softening

effect of the nonlinear cable system can be seen in Figure 2.15. The

natural frequency decreases for higher wind speeds since the ampli-

tude of the tower increases. That is the advantage of guyed towers,

since the frequency of the peak wave energy approaches the natural

frequency of the tower for high wind speeds. The natural frequency

of the tower moves therefore away from the peak energy in the

waves. The earthquake lowers the natural frequency slightly, while

the current has major effects.
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CONCLUSION

In this study, a linearized single degree of freedom model of a

guyed tower was developed using the stochastic linearization

approach. It was solved in the frequency domain, giving the statis-

tical response of the guyed tower. The results were compared to the

response statistics of a time simulation that fully incorporated the

nonlinearities of the cable system and the fluid-structure inter-

action.

It was found that the results from the linearized model agree

reasonably well with the results from the time simulation of the

fully nonlinear system. Both models were in good agreement with

experimentally observed results. The computer time using the sto-

chastic linearization approach is several order of magnitude less

than for a conventional time simulation method. Considering other

uncertainties in analysing guyed towers (selection of drag and

inertia coefficients, specifying earthquake spectrum) it is justi-

fiable to use this method in the early design stages of guyed towers.
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CHAPTER III

EFFECTS OF CURRENTS ON THE STOCHASTIC RESPONSE TO EARTHQUAKES OF
MDOF MODELS OF GUYED OFFSHORE TOWERS

ABSTRACT

The dynamic response of a multiple degree of freedom (MDOF)

guyed offshore towers to stochastic earthquake loads and a steady

uniform current is investigated. The nonlinear cable stiffness and

the fluid-structure interaction were linearized using the stochastic

linearization method. To investigate the importance of higher modes

on the stochastic forces and moments of the guyed tower, numerical

results for several load cases are presented and discussed. The dis-

placement statistics from the MDOF linear analysis were compared to

the statistics of an equivalent single degree of freedom (SDOF) time

simulation that fully incorporated the nonlinearities of the struc-

ture. The increased damping of the structure with increasing current

was found to significantly reduce the stochastic forces and moments

of the structure.

INTRODUCTION

The primary aim of this paper is to investigate the response of

MDOF guyed towers to earthquake loads in the presence of a steady

ocean current. Guyed offshore towers are generally softer than con-

ventional fixed platforms, so they will have more frequencies in the

excitation range of an earthquake than fixed platforms. It is there-

fore important to know the effect of higher modes on the forces and

moments of a guyed tower.
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In recent years, the guyed tower has becomefeasible for off-

shore oil production in water depths ranging from 200-400 m. A

sketch of a guyed towerl is shown in Figure 3.1. The tower is long

and slender and depends upon a group of guy lines for lateral stabil-

ity. Each guy line consists of a lead line, a clump weight and a

trailing line. The presence of the clump weights limits the maximum

tensions in the cables.

Some guyed towers may be located in seismically active

regions. Earthquakes are therefore a critical design consideration

for guyed towers. Due to the random nature of the wave and earth-

quake loads, probabilistic methods are more appropriate than deter-

ministic methods for the analysis of guyed towers. Monte Carlo simu-

lations are popular due to their simplicity in implementation. But,

extensive computer time is required, huge amounts of data are gen-

erated and interpretation of the results is tedious.1-3 On the other

hand, analyses in the frequency domain are not as involved as in the

time domain, and are therefore preferable. However, they are only

applicable to linear systems.

The governing equation of an offshore guyed tower has two main

sources of nonlinearities, fluid-structure interaction and the

restoring force of the cable system. Therefore, it has both non-

linear stiffness and damping. The equations of motion can be linear-

ized to allow solution in the frequency domain using spectral tech-

niques.

The present paper presents an equivalent linear multiple degree

of freedom system that was developed using the stochastic lineariza-
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tion method. It was solved in the frequency domain, giving the sta-

tistical response of the guyed tower with less computer time than

conventional time domain methods. A MDOF system should be used to

obtain accurate statistics of tower forces and moments. A SDOF sys-

tem may give reasonable displacement statistics for the first mode,

but it is not suitable to obtain forces and moments due to higher

modes. The effects of current on the standard deviation of the

response statistics are investigated by means of numerical examples.

PREVIOUS WORK

Several authors4-12 have investigated and conducted parametric

studies on the responses of guyed and fixed offshore towers subject

to wave and current loading in the time domain. Some of them have

retained the dynamic cable properties of the mooring system. Inclu-

sion of the guyline dynamics prevents overestimation of the maximum

deck motions and underestimation of the maximum guyline tension that

are apparent in decoupled analysis. Sekita and Maruyanna13 conducted

wave tank experiments with a 1/100 scale model. Their measurements

compared reasonably well with analytical results obtained using regu-

lar waves. They conclude that the effect of drag force coefficient

is significant only in the area of resonant periods.

Since earthquakes are random in nature, it is appropriate to use

a frequency-domain analysis to determine the dynamic response of

structures due to earthquake loading. But frequency-domain analysis

is only applicable to linear systems. The method of stochastic line-

arization is a widely used approximate method for probabilistic anal-

ysis of nonlinear structural dynamics problems.14-17 The error in
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the linearization, i.e. the difference between the linear and the

nonlinear equation, is minimized in a suitable way. The usual choice

is to minimize the mean-square error. This procedure gives implicit

expressions for the equivalent linear coefficients. Brynjolfsson and

Leonard 18
used a SDOF system to investigate the validity of the sto-

chastic linearization method by comparing the displacement statistics

due to combined stochastic earthquake, wave and current loads from a

nonlinear time simulation to the results of a linearized model

obtained in the frequency domain.. They conclude that the stochastic

linearization gives a reasonable good agreement to the fully non-

linear time simulation. Smith and Sigbjornsson19 evaluated the sto-

chastic structural response of a guyed tower subject to wave

action. They used two basically different approaches, stochastic

linearization and an iterative approach and found them to give almost

identical results. Some authors have investigated the effects of

current on the hydrodynamic drag force in waves. Eatock Taylor and

Rajagopalan 20 and Gudmestad and Connor 21
obtained different results

than Wu 11
when they assumed that the velocity of the fluid particle

is much greater than the structural velocity. That assumption may

not be valid for compliant offshore structure.

The two most commonly used methods for analysing the earthquake

response of structures are time history and response spectrum tech-

niques. Nair, et aid investigated the seismic response of a fixed

offshore platform, using spectrum and time history analyses. They

found the accuracy of the response spectrum technique as a design

tool to be adequate. Kirkley and Murtha22 presented a simple method
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for adopting existing (land based) earthquake response techniques to

the analysis of offshore structures.

Penzien, et al. 23,24 investigated the stochastic response of

fixed offshore towers to random sea waves and strong motion earth-

quakes using the stochastic linearization method and the response

spectrum method. They found the two methods to give similar results

for lower period towers, but that the difference between the results

increase with the period of the structure.

SYSTEM MODELING

A SDOF system can be used to obtain fairly accurate statistics

of the tower displacements, 18
but a MDOF system is necessary to

obtain accurate tower forces and moments. 25 The motion of the guyed

tower model used in this work is confined in a plane. The current is

assumed to be in the same direction as the earthquake, which is a

conservative assumption. A schematic diagram of an example tower

used in this analysis can be seen in Figure 3.2. The example tower

was discretized into nine beam elements with uniform properties and

geometry along the tower. A representative commercially-available

finite element program 26 was used to model the tower and generate the

stiffness and mass matrices. The linearized geometric stiffness27

was included in this analysis by utilizing a general stiffness ele-

ment. The base of the tower is fixed against translation, but has a

rotational stiffness. Other nodes have x-y translation and rotation

about the z axis. In the dynamic analysis of the linearized MDOF

system, the Guyan reduction procedure28 was used to reduce the
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degrees of freedom to x translation only. The structural mass matrix

is therefore fully populated.

The cables were modeled as nonlinear massless spring with a

static force-displacement curve as shown in Figure 3.3. The line-

arized stiffness of the cable element was calculated using the sto-

chastic linearization method. The dynamics of the cable system were

neglected in this work.

With the deck mass, Milo, lumped at a point and the mass of the

truss, m, uniformly distributed per unit length, the nonlinear equa-

tion of motion for the guyed tower can be written as:24

where

Nvi{x} [ctwr] 60 mtwri{x}
[rte]luxg

[Knl(x)]{x}
[CO{11/ -X -Igi(V -Xg)}

EM = [M
t

M
a

]

[Ma] = P Ca ["el

[51] = 0.5 p Cd [Ae]

cl,nnixn1
)K

n1,nn
= c

2,nn (1 - e

(1)

(2)

(3)

(4)

{x}, {21} and {x} are the horizontal tower displacement, velocity and

acceleration; [Mtmr], [Ctmr] and [Ktur] are the linear portions of

the structural mass, damping and stiffness matrices of the tower;

[M
a ] is the diagonal added mass matrix from the Morison equation;29

(1) is a vector filled with one's; xg and xg are the ground velocity
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and acceleration; [Kni(x)] is the diagonal nonlinear cable stiffness

(one element in present study); n is the node where the cable is con-

nected to the tower; [Ch] is the diagonal drag matrix and V is the

steady current; p is the density of sea water; Ve and Ae are the

equivalent inertial volume and projected area of the tower; Ca and Cd

are the added mass and the drag coefficients, respectively; and cl

and c
2
are constants that determine the cable nonlinearities. They

were determined by fitting equation (4) to force-displacement curves

for 20 cables obtained by catenary equations.12

EARTHQUAKE LOADING

The ground motions induced by an earthquake may be modeled as a

random process. The earliest attempts were to simulate the accelera-

tions as a stationary white noise. 25 But an earthquake is nonwhite

since its spectral density is not uniform with respect to frequen-

cy. Kanai" and Tajimi31 initially proposed the widely used filter

transfer function:

4
w + 4c

2
w

2
w
2

III (w)I2 = g g g
g (w

g

2
-w

2
)
2
+ 4c

2
w
g

2
w
2

g

(5)

were wg and Cg are the characteristic ground frequency and ground

damping ratio. Kanai suggested 5w rad/s for wg and 0.6 for Cg as

being representative for firm ground condition. The power spectral

density (PSD) function for the filtered process is then

S.. (w) = Ill
g
(01 2

S
0x x

g g

where S
0 is constant (PSD of white noise). A zero mean ergodic

Gaussian process is used in this research as the stochastic model for

(6)



the ground acceleration, with a stationary Kanai-Tajimi earthquake

spectra. The spectrum was modified to make the variance of the

ground velocity finite.25 A high pass filter transfer function of

the form:

1E1(012 =
w
4

(w
1

2
-w

2
)
2
+

1

2
w
1

2
w
2
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(7)

is used in this research. The constants w1 and are selected to

obtain the required filter characteristics. The power spectral den-

sity of the final process is then:

S.. .. (w) = IH
1
WI 2

in
g
(WI 2

S
0x x

g g

LINEARIZATION

The governing equation, equation (1), contains two nonlinear

terms, in the drag force and in the cable stiffness [Kra] given by

equation (4). In order to use a spectral approach, these two terms

need to be linearized. The stochastic linearization technique

replaces the original nonlinear system with an equivalent linear sys-

tem based on a certain optimization criterion. The way chosen here

to linearize equation (1) is to separately linearize the stiffness

and drag terms, such that the expected values of the square of the

differences between the linear and nonlinear terms are minimum.

It is assumed that {x(t)} consists of a deterministic (constant)

(8)

offset, {xo}, and a zero mean random process {x(t)}, i.e.

{x(t)} = {xo} + {x(t)} (9)



Then the difference between the linear and nonlinear terms can be

expressed as

where
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{61} = {1V-41(V-A)} {a} + [b]{A} (10)

{62 } = [K
nl

(x)]{x} - {c} - [e]{x}

{i} = {X} + {3c }

is the absolute velocity of the structure. The coefficients {a },

[b], {c} and [e] are selected such that

<{6
1
}T {6

1
}> = minimum

<{62 }
T
{6

2
}> = minimum

(12)

(13)

(14)

where <...> represents the expected value operator. For a zero mean

Gaussian random process, the expected value can be calculated accord-

ing to

W

<f(x) =
1

f f(x) exp(- 0.5x2 /a2) dx
ait275:.

where a is the standard deviation of x.

Minimizing <{61} T{61} with respect to {a} and [b], one obtains

(15)

k
<"1/ {61} 0

a
<1.5

1
}
T
{6

1
}> = 0

ab
km

Since 6 1k only depends upon
k

[b] becomes diagonal and

(16)

(17)
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(18)

(19)

The mathematical expectations can be evaluated analytically to yield,

after some manipulations

2 .ak = (a. + Vk
2
) erf (Vk/(a.

Bk Bk

0.5 2
2))+ (2/x) V a exp (-Vk /(2a

k k

(20)

b
kk

= V
k

erf (V
k 112
/(a + (8/0

0.
5a exp (-V

k
2
/(2a

2
)) (21)

k k k

where a is the standard variation of i
k

. Similarly, for

T ik
{82}-{82> to be minimum,

a
<{tS

2

T
{15

2
}> = 0 (22)ac

k

<{82}T {82}> = 0 (23)ae
km

Hence, after some manipulations

{c} = <[Kni(x)] {x} (24)

<{x}{x}
T
>[e]

<{[Knl(x)i{x)
{x}T

> (25)

In this work, [Knl(x)] has only one element, so equations (24) and

(25) can be rewritten as

cn <Knl,nn(xn)xn> (26)
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enn = < Ktl,nn(xn)xn x
n
>/<x

n
2
> (27)

where n is the node of cable attachment to the tower. More general-

ly, Atalik and Utku32 have shown that under certain general condi-

tions on [Khi(x)], that

where

e = _1_ F >
in

km ax k (28)

{F(x)} = [Kl(x)]
{x} (29)

Substituting the linearized expressions, equations (20), (21),

(26) and (27), into the governing equation, equation (1), and

rearranging, one obtains

[Mv] {x} + [0twr]{,1} + [Ktwr]{x} = - [Mv] {1}xg - {c} - [e] {x}

+ [Ch] {a} - [Ch][b]({;} + {1}31g) (30)

Equation (30) has to be satisfied in an average sense: Taking its

expected value, one obtains

[Ktwr] {x0}
{c} [Ch] {a}

The mean tower offset becomes

{x0} [Ktwr] -1( -{c} [Ch] {a})

(31)

(32)

Substituting back in the values for {x0} from equation (32), one can

write equation (30) as

EV{x}+[Ceq]{x}+[Keq]{x} = -.[Mv] {xg} -[Cg]bld



where

[Keg] = [Ktwr] + [e]

[ceg] = [Ctwr] + [Ch][b]

[C ] = [Ch] [b]
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(34)

(35)

(36)

The linearized matrices, [Keq], [Ceq] and [Cg] depend upon {x0}

and the variance of al and {x}. The problem is therefore implicit,

i. e. values of {a.} and {x0} have to be guessed initially, then cal-
8

culated and compared to the guesses.

UNCOUPLED EQUATIONS OF MOTION

The classical normal mode superposition is used to calculate the

response statistics of the structure

{x} = [CM (37)

where [0] is the modal matrix determined from the undamped homogene-

ous form of equation (33) and {Y} is the generalized modal coordinate

vector. Substituting equation (37) into equation (33) and premulti-

plying by [0]T, one obtains

where

[M *] {Y} + [C0]{} + [K*] {Y} = {p *} (38)

[M *] = [0]T[Mv][§]

[K*] = [0]
T
[Keq ][0]

(39)

(40)
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{p *} . -[0] T [Mv] {1}xg - [0]
T
[Cg] (1),:g
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(41)

(42)

The generalized mass and stiffness matrices, [M*] and [K*], will

be diagonal due to orthogonality of normal modes, but the generalized

damping matrix, [C0], will not satisfy the orthogonality condition,

since it includes the damping from the fluid structure interaction.

The coupling can be removed by a procedure similar to equivalent lin-

earization as outlined by Penzien and Kaul 24 . Define a generalized

diagonal damping matrix, [C*], such that

where

Then

{63}T{s3}
(43)

{63} = [C0]{i} - [C*] 0) (44)

* <{o
3
}T {6

3
}> = 0

< (7 cOkjij ck*
Yk)Yk>

j=1

N c <ii >
Okj j k

k
j1"

2
=1 <Yk >

This gives a set of uncoupled equations

(45)

(46)

(47)

[M *] {Y} + [C*]{Y) + [K*] {Y1 = {p *} (44)



since [M*], [C*] and [K *] are diagonal. To fully describe the lin-

earized system, lad, {ax }, {x0} and <Ykii> need to be evaluated.
8

RESPONSE STATISTICS

To evaluate the statistics of the various response quantities,

it is convenient to define an arbitrary response quantity, z(t),

which is related to the normal coordinates, {Y}, through a set of

known coefficients, {Z}

N
z(t) = Zk Yk

k=1

Then the autocorrelation function for z(t) is

N N
R
zz
(T) =1 1ZkZXY

k
(t)Y (t+T)>

j
k=1 j=1

j

but Y
k(t) can be written as

where

t

Y
k
(t) = f P

k
*(T) h

k
(t-T)dT

ex13(k. t) sin(wakt)
hk(t) -

wdk mk*

wk 1(77711-17

4)dk wk(1 -'k
2)

4k ck*/(2 mk* mk)
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(49)

(50)

(51)

(52)

(53)

(54)

(55)

Substituting equation (51) into equation (50) one obtains after some

manipulations
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Rzz(T)
zkz. f f hk(eimi(epitp *p*(T+81e2)delde2 (56)

k=1 j=1 -00 k j

The cross correlation function for the generalized forces can be

obtained from equation (42)

where

Pk*(t) (Pk Xg (t) qk )1g(t))

Pk DOTK){1}

qk =
T
[Cg1(1)

(57)

(58)

(59)

The cross correlation function for the loads can then be written as

Rp *(T) = (T) + pkqjR.. (T) + pjqkR. (T)
k j x x x x x x

g g g g g g

+ qkqjR. (T)

xgxg

Substituting equation (60) into equation (56) and taking the

Fourier transform of the resulting equation , one obtains

N N

Szz(w) 7 7
zkz4 iik(w)lyw) (pkpjs_ .. (w) +

k=1 j=1 x x
g g

+ p q.S_ (w) + p.q S (60 + q (1.S (w)k j j k k j
S;

x x x x x
g g g g g

(60)

(61)

The cross spectral densities can be evaluated from the ground accel-

eration spectrum, equation (8)

S (a)
12

S.. .. (co)

X
g
X
g

w x x
g g

(62)
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S
.

,.. (w) = iw S (w) (63)
x x x x
g g g g

S.. (w) = -iw S (w) (64)
x x x x
g g g g

where i = -1). The power spectrum of the process z(t) is therefore

fully defined in terms of the ground acceleration spectrum. The var-

iance of z(t) is obtained by integrating equation (61):

CO

a
zz

2
= f S

zz
(w) dw

CO

Equation (61) and subsequently equation (65) can be used to

(65)

evaluate the parameters a. and a. . According to equation (37), one
0k

x
k

can write x
k

as

N
xk(t) = 0 Y.

kj jj.1
(66)

The variance of the relative velocity,a , can be evaluated sim-

kilarly. From equation (12)

SO

and

Ak = xk + 3cg (67)

S

A

(w) = S. (w) + S (w) + S (w) + S (w) (68)
A

A A
X
g

X
g

1 1
k k XkXk XkXg XgXk

a
2

= f S (w) dw

61131(
-C 601k

(69)
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The first two terms in equation (68) can be determined by using equa-

tions (65) and (62). The cross spectral density, S. (w) can be

XkXg

evaluated using a method similar to that used to evaluate Szz(w).

(t) = XY.(t); (t+T)>
XkXg j=1 g

Using equation (51) for Yj(t), one obtains

N
R, (t) <fh(8)P *(t-0); (t+T)de>
x
k g j1 kj j j

N CO

(70)

(71)

R (T) =
.

Ok
j
< f h(8)(p R- .. (T+8)+q R .. (t+T))de (72)

x
k
;
g

J=1 -m J x x x x
g g g

So

N
fS. (w) = fkj Ty w) S.. (w) tp + q

"
)

j=1 x xXkXg g g

and since

S (w) = (w)
. XgXk
XkXg

one obtains

N
S = 7 o . R.(w) S- - (w) (p.- qkj j

to

;
g
x
k

j=1 x x
g g

(73)

(74)

(75)

The generalized damping coefficient is evaluated according to equa-

tion (47). The expected value of <f. > can be calculated by same3 k



methods as described previously. The cross correlation of the time

derivatives of a stationary random processes satisfies

R (T) = d (t)i.(t+T)
Yj'ik

k 3

d
2

= R... (T)
2 Y.Y

dT 3 k
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(76)

(77)

But the autocorrelation function is the inverse Fourier transform of

the power spectral density, so

_ (T) = f S
Y.Y

(w) eiWT dw
Y.Y3 k -co 3 k

2 m

Ry.y (T) = i W
2

Sy.y (w) e
iwT

dw
ddT 3 k -co 3 k

Combining equations (77) and (79), one obtains

co

R (T) = f w2 SYj
kY(w)

e
icor

dw
i.i

k
COi

<i.3 (0i
k
(0> - f w2 SYY(w) dw

...00 j k

But SYjYk(w) can be evaluated by equation (61)

S,., (w) = E.(w) Hk(w) (p p
k S- .. 3

(w) + p.q
k S.. (w)

LiLk j
x x x x
g g g g

+ Pois. .. (w) + yks.
. (w))X X X X

(78)

(79)

(80)

(81)

(82)

g g g g

Using the procedures described above for a general response

quantity, z(t), one develops all the equations needed to evaluate the



tower response statistics. The elastic forces due to the random

response are 25

{f} = [Keq]{x)
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(83)

= [Keq][0]{Y} (84)

Using the orthogonality relations of modal coordinates, one can write

equation (84) as

= [Mv][0][wil2]{Y} (85)

= [B]{Y} (86)

where [wi2 i] is a diagonal matrix with the natural frequency of mode n

squared in column n. The shear force is then the summation of the

elastic forces minus the reaction force due to the cable system

{fs} [L1] {f} [Kcable][°{Y}

= [11] {Y}

(87)

(88)

where [1,1] is a lower triangular matrix filled with l's and [K
cable]

is the equivalent stiffness of the cable system (one element in the

present study). The moments can be calculated similarly by integrat-

ing the shear forces along the tower. That gives

{MO = [B] {Y} (89)

Equation (65) can then be used to calculate the statistics of the

shear forces and moments.
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SOLUTION PROCEDURE

The procedure described so far is implicit, since the linearized

matrices depend upon the statistics of the response. The standard

deviation of the absolute velocity, {a.}, the steady tower offset,
B

{x0}, and the cable stiffness have to be estimated initially and then

compared to calculated values. This is repeated until convergence

(relative error less than 0.0001 in the present study), usually in

less than 5 iterations. The variance of the absolute velocity was

assumed to be very small (105) at the start of the iteration, {x0}

was assumed to be zero and the cable system was assumed to be linear

([Kni(x)] = [0]). In examples where results were available from con-

siderations of other currents, previous values were used as initial

guesses for different currents. The mass and stiffness matrices,

natural frequencies, mode shapes and the static displacements where

calculated using a commercially available finite element program,26

which is representative of the class of linear finite element pro-

grams. Then the steady forces, the statistics of the response and

the nonlinear contribution of the cable system where calculated with

another program and the stiffness of the cable system modified

accordingly. In each iteration the stiffness changes and it is

therefore necessary to re-calculate new mass and stiffness matrices,

natural frequencies, mode shapes and static displacements in each

iteration. The integration of the power spectral density is per-

formed with Simpsons rule from 0 to 10 rad/s and then the remainder,
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from 10 rad/s to co is integrated by a 15 point Gauss-Lagurre proce-

dure.33

EXAMPLE PROBLEMS

The responses of the previously described guyed tower to a

strong motion earthquake in the presence of steady uniform currents

were investigated. The values of the current used in this work was

0, 0.3, 0.6 and 1.0 m/s. The parameters used to specify the earth-

quake spectrum defined by equations (5), (7) and (8) were wg = 15.7

rad/s and cg = 0.6 as suggested by Kanai 30 for a firm ground condi-

tion; wi = 0.4 rad/s and ci = 0.9; S0 = 0.004267 m2/s 3
(0.04593

ft 2/s 3) which corresponds to a class of earthquakes having an average

intensity similar to the N-S component of the 1940 El Centro earth-

quake. 24 These values of wi and ci give the standard deviation of

the ground velocity approximately as 0.14 m/s. Then the maximum

ground velocity can be approximated as

= a.x
g,max

3
xg (90)

= 0.42 m/s (17 in/s) (91)

which is the maximum ground velocity of the N-S component of the 1940

El Centro earthquake obtained by Berge and Housner 34 by integrating

the acceleration record. The specifications of the tower used in

this analysis are similar to the ones used by Dutta12 and Mo and

Moan/ and are listed in Table 3.1. The first four natural frequen-

cies, in the absence of current, are 0.273, 1.48, 5.07 and 10.8 rad/s
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Table 3.1. Tower specifications.

M
p 6.80 106 kg

m 3.70 104 kg/m

K
1 1.648 106 N/m

cl 0.045 1/m

c
2 1.324 10 6

N/m

EI 4.905 1013 N m2

0.05

Ae 35.1 m2/m

V
e 26.3 m3/m

Ca 1.0

Cd 0.7
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( periods: 23, 4.3, 1.2 and 0.58 s). The corresponding mode shapes

can be seen in Figure 3.4.

The steady tower displacement due to the current and the stand-

ard deviation of the tower displacements due to an earthquake can be

seen in Figures 3.5 and 3.6, respectively. Results from a time simu-

lations of a nonlinear SDOF model 18
are also plotted on the same

graphs. The linearized MDOF model compares fairly well with the non-

linear SDOF model.

The effect of current is to reduce the standard deviation of the

displacements, but increase the steady offset. The steady offset

increases approximately as the current velocity squared, as expected

from the Morison's equation. When a current of 1 m/s is superimposed

on the structure, then the standard deviation of the tower displace-

ment is reduced about 40% compared to the standard deviation in the

absence of current. The standard deviation of the displacement

decreases because of increased hydrodynamic damping of the system

with increasing current, as can be seen in Figure 3.7. There are

shown the total modal damping of the first four modes. The total

modal damping consists of the structural damping in addition to the

hydrodynamic damping. Structural damping of 5% was assumed for each

mode. The effect of current on the damping of the second mode is

quit significant. The hydrodynamic damping of the second mode

increases from 1.4% of critical in the absence of current to 12.5%

for 1 m/s current.

The effect of stochastic earthquake loads and current on the

equivalent cable stiffness are shown in Figure 3.8. The earthquake



FIGURE 3.4 First four mode shapes for idealized guyed tower.
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reduces the linear cable stiffness by 4% in the absence of current,

but when a 1 m/s current is added, the linear stiffness drops about

20%. That affects the natural frequency of the first mode which

drops 9% compared to the linear frequency (nonlinear effects

ignored). The higher modes do not change significantly with this

change in the cable stiffness.

The moments throughout the tower due to the steady current are

shown in Figure 3.9. The maximum moment increases with steady cur-

rent since the steady drag forces are approximately proportional to

the current velocity squared and the cable stiffness become softer

with increasing tower offset.

The standard deviations of the shear forces are plotted in

Figure 3.10. The maximum values occur at the base of the tower and

at the cable attachment to the tower. The distribution of standard

deviation of the moments obtained from these shear forces are shown

in Figure 3.11. The presence of current reduces the standard devia-

tions of the moments since damping of the structure is increased. If

the maximum tower moment due to the earthquake is estimated as the

steady moment plus or minus three standard deviations, then it is

apparent that the steady moment is also important since they are of

the same order of magnitude. So even though the standard deviation

of the moment drops from 249.0 MN m with no current to 171.5 MN m

with 1 m/s current, the absolute maximum moment remains about the

same, 747 MN m and 771 MN m respectively.

The moment at the tower base was also compared to a SDOF non-

linear time simulation. The frequency domain solution gave consis-
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tently higher moment at the base than the SDOF system. That Ls prob-

ably due to higher mode contributions to the rotation at the base.

Figures 3.12, 3.13 and 3.14 show the power spectral density of

the tower displacement and the tower moments at the middle and the

base of the tower. The displacement is mainly due to the first mode,

the pendulum mode, but there is also a contribution from the second

mode. Higher modes did not contribute significantly to the tower

displacement. The moment at the center is governed by the second

mode, the bending mode, with some contribution from the first mode.

The peak of the power spectral density function for the first mode is

an order of magnitude less than for the second mode as can be seen

from Figure 3.13. The peaks for the third and fourth mode are then

two order of magnitudes less than for the second mode. The moment at

the base is mainly due to the first mode, with some contributions

from the second mode as mentioned previously.

CONCLUSION

In this study, a linearized multiple degree of freedom model of

a guyed tower was developed using the stochastic linearization

approach. It was solved in the frequency domain, giving the statis-

tical response of the guyed tower due to a strong motion earthquake

and a steady uniform current. The displacement statistics were com-

pared to the statistics of a SDOF time simulation that fully incor-

porated the nonlinearities of the cable system and the fluid-

structure interaction.

It was found that the displacement statistics from the MDOF

linearized model agree reasonably well with the results from the time
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simulation of the fully nonlinear SDOF system. The steady current

was found to have a significant effect on the statistics of the

forces and moments on the tower. It reduces the moments since the

damping of the first two modes increases significantly with increas-

ing current. However, the maximum moment on the tower was found to

be similar with and without a steady current, since the steady moment

increases with current but the standard deviation of the moment de-

creases with current. The first four modes of vibration in the MDOF

model contributed to the force and moment statistics of the struc-

ture. It is therefore necessary to include at least four modes of

vibration when calculating the forces and moments of a guyed tower

due to stochastic earthquake loads. The computer time using the sto-

chastic linearization approach is several order of magnitude less

than for a conventional time simulation method. Considering other

uncertainties in analysing guyed towers (selection of drag and

inertia coefficients, specifying earthquake spectrum) it is economi-

cal to use this method in the early design stages of guyed towers.

Further research is needed to include the effects of the verti-

cal component of the ground displacement. It might have significant

effect on the structure and cause buckling in some members of the

structure. Also, since ground velocity is an important parameter

when calculating the loads on an offshore structure, further research

should be devoted to investigate the power spectral density of the

ground displacements, to accurately represent the PSD of the ground

velocity. And, as always, there is a need for comparison of the ana-
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lytical results with model tests to achieve further knowledge about

the uncertainties involved in the mathematical formulation.
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CHAPTER IV

CONCLUSION

In chapter II, the validity of the stochastic linearization

method was investigated by comparing the displacement statistics due

to stochastic wave and earthquake loads of a fully nonlinear time

simulation of a single degree of freedom system to a linearized model

of a guyed tower solved in the frequency domain. It was found that

the results from the linearized model agree reasonably well with

results from the time simulation of the fully nonlinear system. Both

models were in good agreement with experimentally observed results.

After verifying that the linearized model gave good results for

a SDOF guyed towers, a multiple degree of freedom model of a guyed

tower was developed using the stochastic linearization approach. It

was then solved in the frequency domain, giving the statistical

response of the guyed tower due to a strong motion earthquake. The

effect of a steady uniform current on the tower response was also

investigated. To verify the MDOF model, the displacement statistics

were compared to the statistics of a SDOF time simulation that fully

incorporated the nonlinearities of the cable system and the fluid- -

structure interaction.

It was found that the results from the MDOF linearized model

agreed reasonably well with the results from the time simulation of

the fully nonlinear SDOF system. The steady current was found to

have significant effect on the statistics of the forces and moments

on the tower. It reduces the standard deviation of the moments since
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the damping of the system increases with increasing current. The

hydrodynamic damping affected only the first three modes signifi-

cantly. In this research, the first four modes of vibration contrib-

uted to the forces and moments of the tower to stochastic earthquake

loads.

The SDOF model is adequate for predicting statistics of dis-

placements, but a MDOF model is needed to accurately predict statis-

tics of maximum moments in the tower.

The computer time using the stochastic linearization approach is

several order of magnitude less than for a conventional time simula-

tion method. Considering other uncertainties in analysing guyed

towers (selection of drag and inertia coefficients, specifying earth-

quake spectrum) it is economical to use this this method in the early

design stages of guyed towers.

Further work is needed to include the dynamics of the cables in

the dynamic analysis, to accurately predict the maximum tension in

each individual cable. The nonlinearities of each individual cable

segment can be treated in a similar manner as the nonlinearities of

the cable system described in chapter III. The vertical component of

the ground motion has also been excluded from this analysis. It

might have significant effect on the structure and cause buckling in

some members of the structure.

The uncertainities involved in the analytical formulation would

be, as always, best evaluated from experimental measurements of model

towers.
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