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Chapter 1: Introduction 

It is estimated that there are nearly 80 million end-user programmers in the U.S. 

alone [83]. These individuals create programs for work or for hobby and use a variety 

of different languages and tools. One aspect of programming that often gets ignored 

until it becomes a problem by end-user programmers, and professional developers, is 

performance. Often, performance bugs are handled with a “Fix-it-later” approach 

[53][87], which can exacerbate the problems and make them more difficult to find and 

fix. 

To meet this challenge, the primary contribution of this thesis is Smell-Driven 

Performance Analysis (SDPA) which employs the idea of performance smells to detect 

potential performance problems in dataflow code, such as LabVIEW or Yahoo! pipes 

(both common end-user environments). SDPA can detect and notify users of smells 

as well as provide users the ability to easily and efficiently apply transformations 

that can fix the issues. An evaluation showed the transformations provided by SDPA 

nearly matched the performance improvements of expert optimizations, without the 

wait time of forums or the expense of professional support. Moreover, a user study 

showed that SDPA helped end-user programmers become over 3 times more efficient 

at debugging performance problems compared to the existing techniques. 
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1.1 Motivation 

Performance errors have been shown to be among the trickiest types of errors to debug. 

In particular, research [101] has shown that performance bugs take on average 32% 

more time to debug than non-performance bugs. In addition, these problems are also 

more likely to cause frustration during debugging [102]. 

It is perhaps because of this that many professional programmers employ the 

“Fix-it-later” approach when it comes to performance bugs [87]. In short, they tend 

to ignore these defects as they are hard to find, but this decision can make the entire 

development process take longer. Unfortunately, studies have shown that the cost of 

fixing performance problems increases the later on in the process they are addressed 

[7][103]. Being forced to fix a deferred performance error is 21 to 78 times more 

expensive than fixing it during design or when it is introduced. If the bug is not 

found until the program is deployed, the costs skyrocket to 29 to 1500 times more 

expensive [103]. This indicates that it is vital to identify these problems early in 

the programming process, but the tools available are often lacking, particularly for 

end-user programmers. 

End-user programmers, unlike professional software engineers, are people who cre

ate programs that they plan to use for an immediate purpose [83], and it is estimated 

that there are nearly 80 million in the U.S. alone. While professional software engi

neers have long known that the performance of a program can have a powerful effect 

on its value, many end-users spend little time thinking about long term quality at

tributes, such as performance [53]. However, that does not mean that performance is 
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unimportant to end-users. For example, empirical studies have revealed that scien

tists value performance so much that they take time to learn textual general-purpose 

languages such as C++ or Fortran for high-performance computing, in addition to 

domain-specific languages designed for high usability [12][46][82]. 

LabVIEW is one example of a programming language that has high usability but 

sometimes leads to programs with inadequate performance. National Instruments, the 

maker of LabVIEW, claims that LabVIEW is the “most widely used development en

vironment for instrument connectivity and [hardware] test application,” particularly 

among engineers and scientists [49]. An independent survey of LabVIEW users inves

tigated the reasons for this high level of adoption, and found that users appreciated 

LabVIEW primarily due to its visual dataflow language and secondarily due to its 

support for code reuse [95]. One respondent summarized, “The development time 

for LabVIEW is less than half that for C,” while another claimed to be “3X more 

productive than programming in C”. Yet at the same time, survey respondents some

times found LabVIEW performance to be inadequate. In particular, they mentioned 

that LabVIEW has no way to optimize usage of registers, memory, disk, and CPU. 

The researchers conducting the survey noted, “LabVIEW solves these problems by 

allowing the programmer to call code written in other languages”. In other words, 

the “solution” to the problem is to step outside LabVIEW. 

These challenges are not unique to LabVIEW. Nardi lists HP VEE and Prograph 

as two other canonical examples of visual dataflow languages [68], where data in

put/output nodes are connected to one another via computation nodes and virtual 

dataflow “wires”. Scientists and engineers using these languages (e.g., [48][86]) also 
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encountered performance problems. To solve such problems such as these, scientists 

would often have to rewrite parts of the application in a completely different language, 

such as C, and link that code to the VEE application [48]. 

At times these problems arise because end-users lack the knowledge necessary 

to find or fix the problems that they encounter. In one example, a LabVIEW user 

contacted National Instruments for help with a poorly performing program. This 

program would at first run fine, but after 10-15 minutes of execution, it would slow 

down and eventually the computer would crash. To try and fix the problem, the user 

kept increasing the virtual memory size, until this solution was no longer viable, when 

he contemplated buying a completely new computer. After a brief code review with 

an AE Specialist at National Instruments, the program was found to be continually 

creating duplicates of a 650 MB array. Each duplicate caused the memory usage of 

the program to increase until the computer crashed. The user was unaware of this 

behavior of arrays and thought that the same copy of the array was used each time. 

Much of the research oriented towards end-user programmers has thus far focused 

on creating tools that aid in detecting functional errors [13][79][10][72], improving 

maintainability [14][33], and aiding reusability [25]. The research in maintainability 

and reusability, both quality attributes, shows that tools can be successful at getting 

end-users to think about the quality of their code. However, current research has 

not focused on code performance despite studies showing that end-users, particularly 

scientists [46], need well-performing code. There are many systems where when some

thing happens, or how fast code can execute is of utmost importance. For example, 

code written by a lab technician might need to read a signal every 100 milliseconds. 
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While the code might be correct, it could be written inefficiently and execute every 

250 milliseconds, thus missing the desired read time and limiting the usefulness of 

resulting data. End-users currently have very few options to debug such performance 

issues. 

Research has shown that for professional programmers, collaboration is often the 

key to solving performance problems. One study [102] showed that successfully-

debugged performance problems were more often the result of collaboration with 

other developers. In this study 47% of all performance bugs required collaboration 

before they could be fixed compared to only 25% of non-performance bugs. End-

users programmers who do not have access to other developers must seek help in 

other ways. 

One common method is to pay for customer support services. While this can be 

helpful, it is also expensive. The Standard Service Program for LabVIEW, which 

includes ongoing technical support and upgrades, costs several hundred dollars per 

year per user. [43]. This often means that end-users have to decide between paying 

several hundred dollars a year get access to professional help, or saving the money and 

trying to survive without it. Individual users who do not purchase the product, such 

as those in academia with a site license, do not have the option to pay for customer 

support and are left to seek other resources. 

Paying for this support does not guarantee satisfaction. While the metrics de

termining an effective call center are varied, studies have shown that understaffing, 

abandoned calls, and long call waiting times are the key issues that affect customer 

satisfaction [78][57]. When users have no choice but to call for support, this increases 
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the waiting time for everyone and potentially makes more users frustrated with the 

service. Providing tools that aid users in debugging performance programs could re

duce the number of calls. This in turn may reduce the stress on the support personnel 

and allow for better service to all customers. 

For those who choose to forgo paying for professional support, one common re

source is to post a question on a forum to try and get a quick and easy solution. 

Unfortunately, this too has problems. A quick survey of the National Instruments 

LabVIEW forum found that only 7.9% of 1290 randomly selected forum posts actu

ally had a correct solution provided by other forum users. Even when a solution was 

given, the average wait time was longer than 21 hours. These results indicate that 

there are a large number of people who are not getting the help that they need. This 

could create frustration among users and adversely affect their productivity and the 

performance of the programs they create. 

In short, end-user programmers need help with finding and fixing performance 

problems. The goal of this dissertation research is to meet this need. 

1.2 Approach 

The overall thesis of this research is that performance problems often appear in 

dataflow code structures that tools can semi-automatically detect and correct, thereby 

helping end-users find and fix performance problems in visual dataflow languages. 

Tools and methods were developed to find patterns in the code that are known to 

cause performance problems. Once these patterns have been detected, transforma



7 

tions and suggestions are provided to users to help them fix the detected issues. 

Chapter 3 discusses the general approach in detail, as well as nine specific claims 

about the approach’s effectiveness, usefulness, and generalizability. Chapter 4 details 

Smell-Driven Performance Analysis (SDPA) which develops the idea of performance 

smells, gathered from experts, to detect potentially problematic code in dataflow 

programs. This method was designed to work in graphical, dataflow driven languages 

and was initially implemented in LabVIEW [44]. Code smells are heuristics that help 

find areas of the code that can be improved. They were originally designed to check 

for maintainability issues [29], and this idea has been modified in this research to find 

performance problems. 

Simply detecting the smells may not always be enough as it is possible that not all 

detected smells will impact the performance of the program. Removing false positives 

from the information provided to users can make the tool more accurate. To achieve 

this, SDPA was enhanced by adding the ability to profile a program. Smell-Aided 

Profiling (Section 4.4) allows users to profile the areas in the code that have smells 

in them. 

Once problems have been detected and isolated, semi-automatic transformations 

(Chapter 5) are provided to help users fix the problems. Some transformations can 

be applied with the click of a button, while others require input from the user to be 

fully applied. 

The effectiveness and usefulness of these ideas were evaluated through three stud

ies (Chapter 6). The first of these tested SDPA on a corpus of real world LabVIEW 

programs that were known to have performance problems as well as solutions pro
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vided by experts. This study evaluated metrics such as the prevalence of detected 

smells (6.1.1), the impact of the transformations (6.1.5), and the impact of the tool 

compared to experts (6.1.6). The other two studies were user studies that investi

gated how well the tools helped users find (6.2) and fix (6.3) performance problems. 

Together these evaluations showed that the approach aided users in finding and fixing 

performance problems in a dataflow language. 

Finally, these ideas were generalized to show that they are not limited to Lab-

VIEW. Chapter 7 details how SDPA and transformations were implemented in an

other dataflow language, Yahoo! Pipes [38], to detect performance problems and 

apply transformations to fix the problem. A set of four smells were collected from 

pervious research [34][59][90][100]. The prototype was then evaluated to determine if 

smells could be detected and the impact of those smells. This evaluation revealed an 

average performance improvement of 29% in terms of execution time. 

1.3 Contributions 

The overall contribution of this Thesis is Smell-Driven Performance Analysis (SDPA), 

which gives end-users the ability to quickly find and fix performance problems in 

dataflow code by detecting performance smells and providing transformations to fix 

the detected issues. The process of creating SDPA resulted in following specific 

contributions: 

•	 The concept of Performance Smells. Code smells have primarily been used in 

related work to detect maintainability issues in code. This work modifies this 
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concept and creates performance code smells, which can detect performance 

problems. 

•	 An efficient algorithm to detect performance smells. SDPA relies on being able 

to detect issues quickly and effectively. Interrupting the user to run a smell 

detector would likely annoy the user. The algorithm used for SDPA runs in 

the background while the user is programming and can provide results quickly 

when the user requests them. 

•	 The concept of Smell-Aided Profiling. The ma jority of profilers are only able to 

detect that there is an issue, but pinpointing what the issue is and where it is 

located can be problematic. By using the detected smells to aid profiling, hot 

spots can be filtered and solutions can be given based on the smells in a given 

area. 

•	 Semi-automatic smell-driven performance transformations. These help end-

users quickly and efficiently fix the problems found by SDPA. The transfor

mations in this dissertation in part rely on user guidance and information to be 

fully applied. This system helps guide users through the process by providing 

information and asking specific questions. 

•	 A user interface that can notify users of the smells that have been detected and 

provide the necessary information for users to correct the code. 

•	 A description of how this work might be generalized to other data flow lan

guages. This dissertation demonstrates how to take SDPA and implement a 

small prototype for another dataflow language. This provides the framework to 

create tools for other similar languages. 
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Chapter 2: Related Work 

The objective of the proposed research is to help end-user programmers to find and 

fix performance problems in their code, with a specific focus on visual dataflow lan

guages. Related work has investigated ways to use design critics, code smells, and 

log analyzers to check for a variety of problems in programs such as maintainabil

ity, correctness and performance. In addition, once these problems have been found, 

there has been research on the best way to apply fixes include code refactoring and 

program transformation. However, currently there are no methods that check the 

performance of dataflow code using a combination of static and dynamic analysis and 

provide possible transformations to the user that will allow them to easily fix the 

problem. 

2.1 Approaches for Finding Problems in Code 

Before problems can be fixed, they must first be found. There are two main categories 

of approaches for finding problems. One kind of approach is to dump large amounts 

of data on the programmer, who is then required to find the problem revealed by 

the data. The second is to perform some analysis to generate some guidance to 

the programmer, and in some cases even to specifically identify potential problems 

automatically. The subsections below describe these methods with a specific emphasis 
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on tools and methods related to performance problems. 

2.1.1	 Approaches that require programmers to sift through data to 

find performance problems 

The most basic method for helping programmers to find performance problems is 

log analysis, which records data about the activity of a program during runtime 

and presents that data to the programmer. For visual programming languages, a 

typical example of a basic logging program is the Desktop Execution Trace Toolkit 

[41], which performs dynamic code analysis on a LabVIEW program to give users 

low-level insight into the code execution. The results provide a chronological view 

of the VI events, queue operations, reference leaks, memory allocation, unhandled 

errors, and subVI execution. A user can also highlight individual events to obtain 

additional information such as the call chain or double-click on events to highlight 

the corresponding ob ject on the block diagram. The results of a trace are shown in 

Figure 2.1. 

Tools such as this provide an overwhelming amount of data to the user, and often 

the results include every operation that has been run. This means that any potential 

problems get buried in the large amount of output that is provided. For example, 

imagine that the performance issue arises only when a loop is running. The trace 

results will not only show timing and memory information for the loop, it also shows 

the information about every other node in the VI. To actually recognize a performance 

issue, a user would have to scroll through every item in the log to determine if it is 
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Figure 2.1: Sample output of the Desktop Execution Trace Toolkit 

problematic. 

More advanced logging tools still dump large amounts of data on the user, but 

they provide different visualizations of that data than the tabular layout shown in 

Figure 2.1. Given the rising importance of parallel programming in science [11], many 

of these tools are focused on presenting data from parallel programs. For example, 

one tool analyzes the log of a MapReduce program and then visualizes it in terms 

of MapReduce-specific behaviors [91]. Another option is to summarize the trace logs 

and generate reports with hotspot visualizations [30]. Just because a program spends 

much time in a certain area, however, does not mean that that amount of time is 

“too much” or actually a performance problem. The programmer is still expected to 

look at visualizations and judge whether a real performance problem even exists. 

There are other tools that take this data dump and attempt to filter it to reduce 

the amount of work for the developer and attempt to draw out some conclusions. 

One tool, DISTALYZER [67], analyzes the logs from distributed systems. It uses 
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using machine learning techniques to compare system behaviors extracted from the 

logs (both good and bad logs) and infers connections between system components 

and performance so that it can summarize the relationship between these two. 

While these filtering tools do reduce the amount of information provided to users 

they still lack the capacity to pinpoint specific errors and instead can simply detect 

that something has happened, and provide perhaps a vague idea of where it might 

have occurred. 

In contrast, the tools created in this dissertation do not require end-user program

mers to sift through large amounts of data or visualizations to track down performance 

problems, thereby potentially saving programmers a great deal of time - particularly 

for programmers who lack the skill or experience needed to interpret program logs or 

visualizations. 

2.1.2	 Tools and Methods that detect that a problem but do not guide 

programmers to its cause or fix 

The tools discussed in this subsection primarily focus of detecting what has happened, 

not why it is happening. For example, a method might notice that there is exces

sive garbage collection or memory use and be able to notify the user that this has 

happened, but not why it happened. 

Two tools [51][71] look for anomalous behavior in the execution. Ganesha [71] 

aims to diagnose faults transparently (in a black-box manner) in MapReduce systems, 

by analyzing Operating System level metrics. It uses the fact that fault free nodes 
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will have similar behavior, so it looks for asymmetric behavior to identify that a 

problem may be present. MACEPC [51] tests distribute systems by first determining 

the expecting behavior and then comparing the resulting behavior. Any anomalous 

executions indicate a potential performance problem. 

Two tools [28][32] work on filtering information from the stack to inform users 

of potential problems. The first such tool, X-TRACE [28] tries to help developers 

better understand the performance of their system by using extensions to the existing 

protocol stack to trace the flow of messages across protocol layers, networks and 

applications. The other tool StackMine [32], mines callstack traces for information 

and then applies pattern matching and clustering to try and discover abnormal uses 

of CPU consumption or when a program is waiting too long to perform and action. 

Two other tools [3][35] attempt to find the potential root cause of performance 

problems, focusing on configuration and human errors. X-Ray [3] applies binary in

strumentation to monitor applications as they execute. It then attributes performance 

costs at a fine grained level, which it calls a block (e.g. instructions, system calls). It 

then uses dynamic information flow tracking to estimate the likelihood that a block 

was executed due to a performance problem. Performance regression Root Cause 

Analysis (PRCA) [35] uses unit tests to continuous monitor the program. When a 

regression in performance is found, it can indicate that something has changed and 

indicate which version in the revision history is problematic. 

PIP [80] is a technique for finding bugs in distributed systems. It requires users to 

annotate their programs along with providing expected behavior. It then is able to 

compare the actual behavior and expected behavior to expose potential performance 
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problems and structural flaws. 

Another tool, Lag Hunter [47], is designed to find lag errors in widely deployed 

systems. It does this by gathering run time data from many different users. It then 

analyzes this data to find times when the user experienced noticeable lag. These 

instances can be reported to developers as potential performance problems, but it 

does not pinpoint the cause of the problems . 

All of these tools are able to detect that there is a problem, but they lack the ability 

to give users any assistance at clarifying the cause or even finding the problem. In 

addition, they all require many executions to find potential problems, which end-user 

programmers would likely find cumbersome or impractical. They are of limited use, 

therefore, in providing a starting point for solving the problem. 

2.1.3	 Methods and tools that guide programmers to potential prob

lems in non dataflow code 

One approach for helping programmers find problems and their respective causes is for 

a tool designer to collect expert wisdom about program problems, and then to create 

tools that analyze programs (statically or dynamically) for those problems. Such a 

tool is often called a “design critic”, and each tool has a set of internal rules that a 

tool that it uses to detect issues. The specific heuristics used differ from tool to tool, 

but some common heuristics involve the use of “code smells” [29] or “antipatterns” 

[9][54]. 

The most well-developed tools in this area, which have already made it into indus
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trial practice, incorporate heuristics for finding potential maintainability problems in 

object-oriented code (e.g., [66][84][93]) Some of the code smells for ob ject oriented 

programming are excessively long methods or excessively large classes. Tools inform 

programmers about apparent problems via a standalone application [93], via a dia

log window within the IDE [84], or via annotations inserted alongside the code [65]. 

Different heuristics will be required to find performance problems in dataflow code 

rather than maintainability problems in ob ject-oriented code, but the lessons from 

this related research did help guide this work. In particular, of these three methods 

for informing programmers about maintainability problems, the third provides the 

most direct visual association between potential problems and the related code, so 

a similar method was tried for displaying alerts to programmers about performance 

problems in the user interface for this work. 

In addition to tools that directly search a program for maintainability code smells, 

some research has attempted to add on to these smells in novel ways. Two tools 

[50][60] have rules for both good and bad smells. Another [1] tries to define a risk and 

severity for a subset of the code smells to try and estimate the potential consequences 

and help users focus on the worst smells. Another tool, DECOR [64] allows users 

to check for code smells as well as define their own maintainability smells. A final 

tool, IPLASMA [61], detects deviations for good code smells to try and detect design 

flaws. While these systems do extend the idea of code smells, they still do not provide 

heuristics to detect performance problems in dataflow code. 

Heuristics have also been used to find correctness problems in spreadsheets. Spread

sheets users struggle with many correctness and maintainability problems [16] and 
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often have difficulty being able to solve the problems they encounter [15]. Researchers 

have developed heuristics for spreadsheets by soliciting expert spreadsheet experts for 

heuristics [21], and by adapting the maintainability-focused ob ject-oriented heuristics 

(above) for use in finding correctness problems in spreadsheets [2][36]. Tools based on 

these heuristics output a list of smells to a separate file, requiring the programmer to 

map back to the related portions of spreadsheets. Empirical studies show that these 

heuristics show promise for finding correctness problems [2][20][21][36]. The smells 

that are used to detect correctness problems in spreadsheets tend to look for elements 

specific to spreadsheets. For example, the Middle Man smells in [36] tries to detect 

formulas that only gather data and then pass then on to other cells or worksheets. 

This smell tends to complicate the structure of the spreadsheet and reduces the qual

ity. This thesis focuses on finding performance problems in dataflow code, rather 

than correctness problems in spreadsheets. 

A few tools include heuristics for finding performance problems in object-oriented 

systems via dynamic analysis. For example, one paper presents an approach that 

analyzes logs to detect performance problems in enterprise applications built using 

component based frameworks [73]. The tool is focused on detecting patterns that 

affect large internet-enabled enterprise systems rather than programs that end-users 

might create, which means that the heuristics are specific to those kinds of applica

tions. For example, one heuristic detects when Java session beans, which are used to 

implement process logic or workflow for business entities, are being overused in an 

application. Other tools find problems due to poor cache use [75], race conditions 

[8][24][27], memory leaks [98], or loop inefficiencies [69]. Another Tool [4] gives users 
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the ability to create small scripts that can check their programs for data races and 

poor memory system behavior. 

Several tools provide heuristics for finding readability and performance problems 

in object-oriented systems via static analysis. These include LINT [45] and CodeAd

visor [23], which check for coding style issues that can impact readability and even 

correctness, such as variables being used before being set, conditions that are con

stant, and calculations whose result is likely to be outside the range of values that 

can be represented in the type used. Other tools, such as Java Critiquer [77] and 

LISP-CRITIC [26], check for performance problems. For example, the LISP-CRITIC 

includes heuristics to detect the need for replacing compound calls of functions with 

simple calls to more powerful functions, or to detect dead code. All of these tools rely 

on textual pattern matching methods such as regular expressions for expressing and 

running heuristics. Although some of these heuristics might be conceptually relevant 

to dataflow code (such as checking for opportunities to combine operations into single 

operations), an entirely different non-textual method will be required for expressing 

and evaluating the heuristics. 

There are also a set of tools that use both static and dynamic checking to determine 

correctness of ob ject-oriented code, primarily through the generation of test cases. 

One recent example [85] combines the results from three distinct bug finding tools, 

two of which provide static analysis, and one which uses dynamic analysis to generate 

test cases. Each of the distinct tools was run on a set of 105 java classes and then the 

results were analyzed to determine how many of the bugs were found. The results 

showed that combining static and dynamic analysis was able to find more of the bugs 
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in the code. While this is a good result, this method is not actually integrating the 

different tools; it is simply applying static and dynamic analysis separately and then 

looking at the results of both. In addition, this is focused on test case generation, 

rather than performance and wouldn’t apply to the work discussed in this thesis. 

There are several tools that use the idea of performance anti-patterns [88][89] to 

find performance problems. These anti-patterns look for common design decisions 

that may lead to performance problems. One example is One-Lane Bridge, which 

describes the a point in the execution where one, or only a few, processes may continue 

to execute concurrently, while all other processes must wait. These anti-patterns are 

detected by monitoring the execution for specific symptoms. Two tools [92][99] apply 

these ideas to models to try and detect the performance problems in the design phase 

before they have been implemented. Another tool [18] checks for two anti-patterns in 

Object-Relational Mapping, a conceptual abstraction for mapping database records 

to objects in an OO language. The final tool, Performance Problem Diagnostics [94] 

runs on an already deployed application. It monitors the execution while changes to 

the workload are made to try and detect any potential anti-pattern. 

The tools that detect these anti-patterns are all looking at design decisions that 

lead to performance problems, and none of these tools can pinpoint areas of the code 

that might be problematic. They can recommend methods or classes to investigate 

and potential design solutions, but much of the work is left to the developer. 

Due to the differences in how memory is used between object-oriented and dataflow 

code (that is, creating/deleting objects versus shared references to arrays of data 

that act as queues), it is likely that different heuristics will be required for finding 
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performance problems in dataflow code. It is also unclear whether heuristic based 

methods would be as readily useful to end-user programmers as to the well-trained 

professional programmers who use ob ject-oriented languages. 

2.1.4	 Methods and tools that guide programmers to potential prob

lems in dataflow code 

So far, there have only been a few substantial lines of work specifically aimed at 

finding performance problems in end-user programmers’ dataflow code, which is the 

specific focus of the work detailed in this dissertation. 

The first of these is VI Analyzer [42], a program checker for LabVIEW, which 

is a graphical programming language and supporting environment [39]. This tool 

includes many checks for coding style and a handful for performance. However, 

there are only a few tests to detect performance issues, and some of these focus on 

settings inside of a user’s program rather than the code itself. For example, one of the 

tests checks to see if debugging is enabled as this often slows down execution speed. 

With so few performance related tests, VI Analyzer can only catch a small portion 

of performance issues, which greatly reduces the usefulness of this tool for finding 

performance problems. The tool is not situated in the task, meaning it is contained 

in a separate window from the LabVIEW IDE. To perform the suggested fixes the 

user has to continuously switch between the editor and this tool. Consequently, 

the format of the results makes it difficult for users to follow the suggestions. This 

thesis broadens the range of performance problems that can be detected, and directly 
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incorporates feedback about performance problems in a way that reduces the need 

for the user to flip back and forth from the problem to the related code. Figure 2.2 

shows an example output from this tool. 

Figure 2.2: Example output from VI Analyzer 

Two other lines of work specifically related to finding performance problems in 

end-user programmers’ dataflow code were focused on analyzing Yahoo! Pipes. Like 

VI Analyzer, each of these can only check for a very narrow set of performance prob

lems. One line of work yielded a tool that can find all operations that are performed 

multiple times, and it can identify parts of the code where data-generation opera

tions can be moved earlier in the program to improve performance [34]. The other 

area of work provided a tool that identifies opportunities for re-ordering (scheduling) 

operations to improve memory utilization [100]. The work in this thesis investigated 



22 

a broader range of performance problems, including problems that require user inter

vention to correct. 

Another line of work has focused on finding maintainability problems in dataflow 

code. This work focused on Yahoo! Pipes, a dataflow programming language and sup

porting environment for creating mashups. Researchers investigated how to adapt the 

heuristics above maintainability problems in ob ject-oriented for the purpose of ana

lyzing dataflow code [90]. They then ran these heuristics on a corpus of Yahoo! Pipes 

programs, finding that most of these programs had at least one problem according to 

the heuristics. Many of the specific heuristics used could have potential performance 

implications and therefore be useful for improving performance; an example is the 

“Noisy Module” heuristic, which determines if a dataflow element “has unnecessary 

fields, making a pipe harder to read and less efficient to execute.” However, unlike 

the work detailed in this thesis, this research did not investigate the extent to which 

fixing problems found by these heuristics would improve performance. 

2.2 Methods for Helping Programmers to Fix Problems in Code 

Once a problem has been found in a program, the next step is to fix it. Some 

tools ignore this step entirely under the assumption that detecting and informing the 

user about a problem is enough for the user to correctly fix the issue in their code. 

However, some approaches aim to fix these problems automatically or provide a guide 

that provides assistance so that programmers can control how the code is fixed. 

Of particular interest to this thesis are methods that help users to refactor or 
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transform their code to fix the problem. Refactoring and transformation are simi

lar ideas, but they affect the code slightly differently. Refactoring is the process of 

changing software in a way that does not alter the external behavior of the code but 

improves its internal structure and makes it easier to understand or maintain [29]. 

Code transformation, on the other hand, takes a program and generates another pro

gram. The transformed program is most often required to be semantically equivalent 

to the original, relative to a particular formal semantics, but some transformations 

result in programs that semantically differ from the original in predictable ways [74]. 

Hence transformation is a generalization of refactoring. 

2.2.1 Refactoring Tools 

When the idea of code smells [29] was proposed, the smells were designed to aid 

programmers in the refactoring of their code to make it easier to understand and 

maintain. As such, there are many tools that have been built that help users refactor 

their code based on the smells defined by Beck and Fowler [29]. The tools that use 

these code smells are designed to help users find maintainability issues in object-

oriented code. These tools [31][63][66] detect the code smells in a user’s code and 

then provides refactoring help to eliminate the maintainability issues. How these 

refactorings are presented vary greatly between systems. In one system [66], the tool 

acts as a guide to the user and helps them step through the refactoring process. 

This is designed to help teach the users about the refactoring process so that they 

won’t always be reliant on the system. Two similar methods [31][63] apply automatic 
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refactorings on user’s code or suggest automated refactorings rather than helping 

users through the process. Unlike the work done in this dissertation, these tools are 

focused on fixing maintainability issues rather than performance problems. 

While the original code smells have been shown to be effective in refactoring 

textual code, the idea has also been expanded to new smells and languages. Of par

ticular interest to this thesis are tools that apply refactoring to dataflow code. One 

method [90], discussed in more depth in Section 2.1.4, is focused on using code smells 

to find maintainability problems in dataflow code, particularly Yahoo! Pipes. Re

searchers investigated how to adapt the heuristics above maintainability problems in 

object-oriented for the purpose of analyzing dataflow code [90]. They then ran these 

heuristics on a corpus of Yahoo! Pipes programs, finding that most of these programs 

had at least one problem according to the heuristics. With these heuristics in place, 

refactorings were introduced to help fix the issues that had been found. These refac

torings were aimed to reduce the complexity of the code, increase the abstraction, and 

adjust the code to community style standards. Some of these heuristics may be useful 

for improving performance, but most of the performance benefits are secondary to the 

result of getting rid of unnecessary code. In addition, this research did not investigate 

the extent to which fixing problems found by these heuristics would actually improve 

the performance of the programs. 

There are also two systems [34][59] that are designed to improve the performance 

of dataflow code through refactoring. The first method [34] applies refactorings to 

Yahoo! Pipes mashups to minimize the redundant operations that are in a program 

and to reorder the program so that all data creating operations occur first. For 
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example, if the same operation occurs five times in the program, this tool would 

refactor the code so that the operation only occurs once and the result is saved 

for use the other four times. The second method [59] enhances the performance 

of a Yahoo! Pipes mashup by automatically refactoring the structure of the data 

flow. It does this by first annotating the operators in the program. The tool then 

applies refactoring rules to the code to generate all semantically equivalent data flows. 

Once this process is complete there will be many different semantically equivalent 

programs. The tool then applies heuristics to determine which program has the 

smallest execution time, which the tool then recommends to the user. While these 

tools do focus on the performance of dataflow code, they only apply refactorings 

ensuring that the semantics of the mashup remains the same, which would not fix 

many of the performance problems that appeared in real programs (See Sections 4.1.1 

and 4.1.2). Therefore, only applying refactorings is not the best approach to solve 

performance problems in dataflow code. 

There has also been some research in applying refactorings to ob ject-oriented 

code to help improve performance. One tool, ReLooper [22], helps users create par

allel programs by converting sequential code into parallel code using existing parallel 

frameworks in C# or Java. In particular, this tool takes advantage of the Java data 

structure ParallelArray which is an array data structure that supports parallel op

erations over the array elements. For example, one can apply an operation to each 

element, or reduce all elements to a new element in parallel. To refactor an array 

to a ParallelArray, this tool analyzes loop iterations to determine if they are safe for 

parallel execution, and it then replaces loops with the equivalent parallel operations. 



26 

Preliminary experience with refactoring real programs has shown that ReLooper is 

useful, and it has been shown to produce a speedup between 1.3 and 1.9 on a two core 

machine. This tool takes advantage of a data structure that is specific to Java and 

would have to be modified to work with dataflow code. Namely, LabVIEW already 

parallelizes dataflow execution when possible, yet performance problems still remain. 

Clearly, more remains to be done. 

2.2.2 Program Transformation other than Refactorings 

The approaches in Section 2.2.1 apply refactoring to try and fix a range of problems 

from maintainability to performance. However, at times the best way to apply a 

solution to a performance problems is to perform code transformations (See Section 

5.1). That is to semantically change the code to eliminate the offended code and 

increase the performance. For example, consider a program that contains a parallel 

loop that runs continuously to read information from a device. Since the loop is 

continuously running, it causes the rest of the program to slow down and the user 

interface to be unresponsive. A simple solution to this problem is to add a wait to the 

loop. This is a very simple transformation that changes the semantics of the program, 

which is necessary to fix the performance issue. 

Program transformations often attempt to improve the performance of a program, 

and can be of two types. The first type is very similar to compiler optimizations, in 

which transformations are applied to a program without notifying the user of what is 

being done [5][76]. These tools have a set of transformations that it will apply right 
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before a program is compiled. However, research has shown that simply applying 

transformations without involving the user is not as effective as manual transforma

tions to improve performance. The gap between automatic transformations and what 

can be done by hand has been widening over time, due to several factors. Among 

them are the complexity increase in microprocessor and memory architectures [19][52], 

and to the rising level of abstraction of popular programming languages and styles 

[6]. In addition much of the program transformation research has focused on partial 

evaluation, specialization and simplification, which are not focused on performance 

optimization. 

Due to this, rather than simply applying the transformations to a program, there 

have been many tools designed to help users apply transformations to their code 

and choose which transformations would be best. One area where this method is 

particularly useful is Digital Signal Processing (DSP) applications, which usually 

measure, filter and/or compress continuous real-world analog signals and often require 

precise timing and performance. The research in the area takes a DSP application 

and applies transformations to improve performance. One method [56] does this 

by investigating the loops and arrays in a program and determining if there are 

any mismanagements of the cache. If any are identified, the tool will recommend 

transformations that could improve cache performance. 

Another method tries to apply ideas from functional programming to DSP pro

grams and apply transformations such as removing loops to improve their perfor

mance. A final method [37] tries to improve the throughput of DSP applications by 

using an ordered set of transformations and showing which ones could be applied to 
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the user. If desired these transformations could also be automated. All of these meth

ods were shown to improve the performance of the code if the transformations were 

applied to a program, however, some of the methods used are specific to DSP pro

grams, while others [70] try to force functional programming fundamentals on users 

instead of helping them learn and understand the language they are using. Although 

semi-automatic transformations have proven successful in specialized domains such as 

DSP, little work has yet investigated how to analyze dataflow programs. For instance, 

one line of work produced a tool that can find all operations that are performed mul

tiple times and that can suggest operation reordering to improve performance [34]. 

This thesis and related research will be the first work to investigate how to help 

end-user programmers fix a wide range of performance problems in data flow code. 
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Chapter 3: General Idea 

Smell-driven performance analysis (SDPA) fills the gap identified in Chapter 2, namely 

the need of end-user programmers for help with finding and fixing performance prob

lems in dataflow code. The section below describes this technique at the conceptual 

level, from the standpoint of an end-user programmer who needs help with solving a 

performance problem. Technical implementation details are deferred to the following 

chapters. 

3.1 General Idea 

Suppose an end-user programmer has a certain program and is unsatisfied with some 

aspect of performance. For example, the program might be missing realtime deadlines 

or dropping samples.The programmer will open up the problematic program in the 

development environment for the visual dataflow language. This environment would 

be enhanced with a new tool that aids in analyzing performance. 

Such a tool would take advantage of the fact that the causes of many performance 

problems are specific structures in the source code (Section 4.2 will discuss in detail). 

Some of these might resemble canonical “bad code smells” used to characterize ob ject

oriented code that appears to be hard to maintain [29]. In object-oriented code, smells 

are found using heuristics, such as a rule that any method with more than some N lines 
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of code is potentially poor quality. Likewise, a tool in SDPA would statically analyze 

the program to detect areas matching heuristics, though in this case, the heuristics 

would be “bad performance smells”, rather than focused on maintainability. Each 

heuristic would describe one common structure that often causes problems (e.g., each 

performance-related structure listed in Section 4.1.2.2 for LabVIEW). 

The next step in SDPA is for the tool to insert visual alerts (e.g., icons) into 

each area of code that matches a heuristic. To avoid annoying users with uninvited 

advice, the tool by default would not actually show alerts unless the user asked 

for help finding a performance problem (e.g., by clicking a “Diagnose Performance” 

button). A configuration setting could allow users to continuously run the tool in the 

background, with any alerts appearing as passive notifications. 

Providing users with a list of detected smells could help them in the debugging 

process, but there is no guarantee of the detected smells actually being responsible 

for performance problems. If the tool gives users too many false positives, (i.e., smells 

that do not actually cause a performance problem), it is very likely that they would 

grow frustrated with the tool and stop using it. 

To help alleviate this potential problem, the tool can provide users with the ability 

to profile their code and find the actual hot spots. If the user selects the “profile 

code” option, the tool will first begin by gathering timing and memory data for every 

smell that has been detected in the program, as well as the total execution time and 

total memory usage of the program. Once the program has finished executing, the 

information for each smell can be compared to the information for the program. Any 

smell that takes up a large proportion of memory or time can be said to be a “True 
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Positive” as it actually causes a performance problem. The smells that are profiled 

by the tool that do not greatly impact performance could be considered likely “False 

Positives” and the tool will filter them out. 

When code is profiled, the hot spots of a program are detected, and the next 

step is fixing those areas. If the user fixes a smell, it is likely that the hot spot will 

dissipate or disappear. 

The tool would provide advice on how to fix these problems. Specifically, if a 

user clicks a visual alert, the tool would summarize the heuristic that had led to that 

alert. It would explain relevant programming concepts and describe a potential code 

modification aimed at eliminating the problematic structure (ideally without altering 

the code’s functionality). Fixing a problem would make the alert disappear (or the 

user could just dismiss it). 

In addition to a text description of a solution, the tool will supply users with the 

ability to semi-automatically transform the detected smells. There may be a set of 

available transformations for each specific smell rather than just one. 

Some straightforward transformations can be applied at the click of a button, but 

others might be more complex. So the tool would need to be able to handle multiple 

types of potential transformation. For the simpler transformations, all that would be 

required is the click of a button. Other transformation may require a wizard that 

can guide users through the process of applying a transformation by asking relevant 

questions, supplying users with a thorough step-by-step guide, and providing advice 

on possible ways to remove the smell. 

In terms of user interaction, SDPA resembles Surprise-Explain-Reward, whereby 
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a tool helps users to find and fix spreadsheets’ computational errors [96]. In that ap

proach, users can enter a testing mode, within which the tool shows question marks 

alongside elements of the program (spreadsheet cells) on the screen to pique curios

ity. When the user responds, the tool explains how to test part of the spreadsheet. 

Users are rewarded for testing by changes in the user interface. SDPA uses alerts 

to draw attention to targeted parts of a program, presents advice to explain how 

the user should respond, and hides alerts to reward user responses. Our technique 

differs from Surprise-Explain-Reward in that it is guided by heuristics (smells) and 

is oriented toward helping users with fixing performance problems rather than just 

finding computation errors (functionality). 

3.2 Research Claims 

While the ideas described in the previous section were implemented as part of the 

LabVIEW IDE, they can apply to any dataflow language. To validate these ideas, nine 

claims were specified that summarize what the approach should be able to accomplish. 

These claims were used to design evaluations that determined if the research met the 

goals. Table 3.1 below shows these claims as well as the corresponding evaluations 

that will be used to determine if they are met. 

The first six claims required testing a prototype tool on real world LabVIEW 

examples. Claim 1 relates to the prevalence of the gathered smell by determining 

how often they actually occur in real world examples. This is important because if 

few of the smells that can be detected exist in real programs, then it will not be a 
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Table 3.1: Key claims and corresponding evaluations
 
Claim Evaluation Section 

1 Smells are common in end-user dataflow programs Real World 6.1.1 
that have performance problems Examples Study 

2 SDPA automatically identifies most performance Real World 6.1.2 
problems that experts find Examples Study 

3 Smells identified by SDPA usually indicate real Real World 6.1.3 
performance problems Examples Study 

4 Smell-Aided Profiling improves the false positive Real World 6.1.4 
rate of SDPA and negligibly impacts the true pos- Examples Study 
itive rate 

5 Tool-based transformation of most smells im- Real World 6.1.5 
proves program performance Examples Study 

6 Tool-based code transformations semi- Real World 6.1.6 
automatically improve performance almost Examples Study 
as well as experts do 

7 SDPA helps end-user programmers to more User Study 6.2 
quickly and successfully find and diagnose perfor
mance problems 

8 Smell-based performance tools (including SDPA, User Study 6.3 
Smell-Aided Profiling, and transformations) to
gether help end-user programmers to more quickly 
and successfully fix performance problems 

9 SDPA and tool-based transformations can be ap- Generalizability 7.4 
plied in other dataflow languages Study 

very effective tool. Claim 3 relates to the impact of those detected smells, to ensure 

that the tool mostly detects smells that actually affect performance. 

Claims 2 and 4 relate to the validity of the detected smells and that they are 

filtered correctly once profiled. Claim 2 compares the prototype’s impact to the 

optimizations performed by expert LabVIEW programmers to determine if there are 

any optimizations that the tool misses. Claim 4 focuses on the false positive rate of 
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SDPA and Smell-Aided Profiling to ensure that profiling does filter out false positives 

without removing many actual problems. 

Claims 5 and 6 relate to the transformations and how much they improve per

formance. Claim 5 focuses on the transformed code compared to the original code, 

while Claim 6 compares the resulting improvement to the performance improvement 

that experts were able to achieve. Combined, these will show how well the tool could 

potentially help to fix problems. 

Testing Claims 7 and 8 will involve evaluating the tool with actual users to ensure 

that it is usable and that it helps them find and fix performance problems in their 

code. These studies will involve participants trying to debug real world LabVIEW 

examples for performance problems both with and without the tool. The time taken 

and success rate will be tracked to allow a comparison between the two methods. 

Finally, Claim 9 essentially states that the overall approach is generalizable. This 

is important to show that SDPA and transformations are not specific to LabVIEW, 

which they were implemented in, and in fact apply to similar languages. 
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Chapter 4: Smell-Driven Performance Profiling 

In the debugging process, a key task is to identify the problem and find where it 

is occurring in the program. Once it has been found, a fix can be made that will 

correct the problem. Finding and fixing performance problems can be particularly 

challenging for end-users who lack the expertise needed know what to look for or even 

where to begin looking. This can lead to frustration and limit adoption or usage of a 

language. 

This chapter will describe the SDPA technique developed to help end-users find 

performance problems by detecting patterns that have been known to cause per

formance issues. The approach has been implemented in a lightweight add-on to 

LabVIEW as a way to evaluate their effectiveness [17]. This prototype also provides 

guidance on ways to fix such problems. Chapter 5 will discuss the more extensive 

assistance provided to semi-automatically fix performance problems. 

4.1 Preliminary Studies 

Helping end-users with performance issues requires knowing what problems end-users 

struggle with, and how they might best be solved. Consequently, two studies were 

performed to investigate problems that LabVIEW users typically encounter as well as 

potential ways to use this information to design better tools. The first study involved 
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new LabVIEW users who were interviewed after a brief tutorial about the barriers 

that they faced while learning LabVIEW. In the second study, LabVIEW technical 

support personnel were interviewed about common problems often found in end-user 

code and coding elements that led to bad LabVIEW programs. 

4.1.1 Post Tutorial Interview 

The first study was performed after a LabVIEW workshop given at Oregon State 

University by a representative from National Instruments. This workshop was de

signed to help teach new LabVIEW users about the language and guide them in the 

creation of a simple program. After the workshop was over, the participants were 

interviewed in a group setting (focus group) to gather informal feedback about any 

issues or barriers they faced while learning LabVIEW as well as topics that they 

found particularly confusing. This study was designed to ferret out possible research 

areas in LabVIEW and ways to help new users. It was not focused specifically on 

performance problems. 

4.1.1.1 Methodology 

To recruit participants, information about the LabVIEW workshop was distributed 

to the Robotics Club and Mechanical Engineering classes at Oregon State University 

that use LabVIEW for assignments. A total of 11 individuals showed up to participate 

in the workshop. Of those, nine were interviewed for the study (two were under 18 
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years old and had to be excluded). LabVIEW programming experience varied greatly 

amongst the participants, though all of the interviewees had at the very least used 

LabVIEW previously in a class or club. 

The participants were interviewed in a group setting (focus group style), with 

questions being suggested to the group by a researcher. These questions covered 

topics such as the material they had just learned, any problem they experienced 

programming in LabVIEW, and about their experiences with LabVIEW in the past. 

Any answers were written down by the researcher. 

4.1.1.2 Results 

The biggest issue revealed during the interview was that programming in LabVIEW 

is very different from programming in a textual language. All of the participants men

tioned that it had taken (or was taking) a long time to get used to a dataflow language 

and that they often would create LabVIEW programs using textual language con

cepts, such as using variables to store data rather than passing values directly between 

operations as in the dataflow paradigm. For example, one participant mentioned that 

at first he created variables any time he wanted to store information in a LabVIEW 

program. As the program got larger, the number of variables got unwieldy, causing 

issues with the behavior and results. 

Another issue that arose was the handling of arrays in LabVIEW, particularly 

when in conjunction with loops. Users of textual languages commonly use a For 

Loop to access all the elements in an array. However, in LabVIEW there are multiple 
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methods that can be used to achieve this. Several users mentioned that there is no 

guidance on what methods will cause performance problems and which will not. 

They would often just go with the method that they could get to work first, which 

sometimes led to inefficient code. If the wrong method was used, the problems would 

often not be revealed until the program had gotten larger. By this time refactoring 

the code was a nightmare as the “wrong” method had been integrated with all the 

existing code. 

In general, the participants mentioned that while they could create a program 

in LabVIEW rather easily, they often had a hard time debugging their LabVIEW 

programs if they ran into problems. This was sometimes due to the lack of knowledge 

and not knowing a more efficient way to use certain modules. 

In conclusion, this small, preliminary study suggested that users encounter several 

different problems when learning to use LabVIEW. Sometimes performance problems 

arise because people are uncertain of the best techniques to use while coding in 

LabVIEW. In addition, the participants did not feel like they had sufficient tools to 

debug the problems inside of LabVIEW and often had to start over from scratch to 

create a working program. 

4.1.2 AE Specialist Interviews 

After the small, informal focus group study (Section 4.1.1), a second study was done 

to carefully assess (1) what specific performance problems are most common with 

LabVIEW users, and (2) the extent to which these problems are attributable to users’ 
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code. In this study, application engineer (AE) specialists from National Instrument 

were interviewed. These participants are considered expert LabVIEW programmers, 

and their job is to answer customers questions about LabVIEW and to assist in 

troubleshooting programs. 

4.1.2.1 Methodology 

National Instruments provided an email list consisting of 13 AE specialists. These 

individuals were emailed and nine agreed to participate in a 30 minute interview 

session. Six of these interviews were done over the phone, while the remaining three 

were done in person. The questions and process remained the same regardless of the 

interview method. 

The questions asked during this study were aimed at determining the kinds of 

problems that the AE specialists had experienced while assisting customers. To get 

the participants thinking about their experiences, they were first asked to describe a 

recent customer call where they had provided assistance. They were asked to describe 

the program as well as the problems the customer had been dealing with. After this 

discussion, questions were asked about the typical types of problems that they often 

see in customer code as well as problems that they are aware of that users often run 

afoul of. 

Thematic analysis, a grounded content analysis method that identifies recurring 

topics [55], was used to analyze answers about user problems. This created a set of 

mentioned problems. The number of times each problem was mentioned was counted. 
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A second researcher reviewed each categorization to verify that it appeared appropri

ate. 

4.1.2.2 Results 

All participants had at least 3 years of experience, with the average level being just 

under 5 years. Each had served as an Application Engineer (AE) for 1-2 years before 

becoming an AE Specialist. Most reported their workload had been 5-10 straightfor

ward support issues per day as an AE, and that their workload as an AE Specialist 

was approximately 10 relatively complex issues per month. 

Participants’ answers revealed a long list of recurring problems that, for the most 

part, resulted directly from the structure of end-user programs. These structures 

were typically problematic because of their impact on the performance of programs. 

For example, Build Array in Loop refers to the situation when a Build Array 

node (which allocates memory) is nested inside of a Loop. This causes frequent 

memory allocation and de-allocation, which in turn, causes memory fragmentation, 

unnecessary memory collection overhead, and ultimately poor execution time for the 

program as a whole. As another example, Too Many Variables refers to a situation 

where one virtual instrument (VI) contains more than a few variables. A VI is a 

single block of computation, analogous to a function; the program as a whole is also 

considered a VI. AE Specialists indicated that people sometimes get confused about 

how to keep variable values consistent when many variables are used, and in code 

that compiles to multiple parallelized threads, this can result in race conditions. 
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Performance problems manifested at runtime in a variety of ways that included 

missed deadlines, race conditions, jitter , dropped samples, system crashes, and data 

corruption. In one example, a LabVIEW user contacted NI about a program that 

would at first run fine, but after 10-15 minutes of execution would slow down and 

eventually blue-screen the computer. To try and fix the problem, the user kept 

increasing the virtual memory size, until this solution was no longer viable. After a 

brief code review, the program was found to be continually creating duplicates of a 

650 MB array (Multiple Array Copies ). Each duplicate caused the memory usage 

of the program to increase until the computer crashed. 

One topic that interviewees did not mention was a unified resource for finding 

and solving performance problems. The names of problems above are names that 

were assigned; even though different AE Specialists often saw the same problems, 

they had no standardized names for problems, let alone a consolidated reference for 

characterizing problems. Instead, they relied on experience and intuition to diagnose 

trouble. Lacking such expertise, end-users’ choices are to purchase technical support, 

buy better hardware, or use another language. 

Overall, 10 of the 13 problematic structures that the AE Specialists came up with 

had direct implications for performance according to interviewees. These implications 

were not minor, either: All of these code structures had such an obvious, often-

catastrophic impact on performance that users had taken the time and expense to talk 

with technical support. In addition, several AE Specialists mentioned that training 

materials created by National Instruments to aid users in creating better performing 

code might have patterns that the interviewees were unable to remember. From these 
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materials, two additional smells not mentioned by AE Specialists were found. 

Table 4.1 briefly details these smells. This table also includes the total number of 

AE Specialists who mentioned that smell during their interview. The smells gathered 

from training materials have a T in this column. All smells are discussed in more 

detail in Section 4.2. 

Table 4.1: Smells gathered from AE Specialists. P indicates a smell that may impact 
performance. 

Smell 
P = Performance Problem 

Description 
# who 

reported 

Too Many Variables P Too many variables in a VI can lead to race conditions, The suggested limit 
ranges from 2 to 5 variables per VI, more than this raises the risk of inconsistent 
behavior. 

8 

Build Array in Loop P When a build-array node is inside of a loop, it builds a new copy of the array 
every iteration. This can cause slow performance and memory issues. 

6 

Multiple Array Copies P When an array is forked and passed to multiple nodes, a new copy of the array 
is made-and large arrays forking multiple times can cause memory issues 

5 

No Wait in Loop P If there is no wait inside of a loop, it could cause synchronization issues and 
also usually makes front panel elements unresponsive 

4 

Unconnected Front Panel Elements When elements on the front panel are not connected to anything in the block 
diagram, this can lead to unexpected behavior or confusing VIs 

3 

Redundant OperationsP When there is large data, such as a large array, having operations that are 
redundant can waste time and memory in the VI (e.g., adding 0 to each element 
of an array) 

3 

No Queue ConstraintP When there are no constraints on a queue, the queue can grow infinitely large. 
This can cause performance problems due to memory and loop synchronization 
issues. 

3 

Infinite While LoopP A loop that runs infinitely (sometimes due to the lack of any rule for termina
tion) may cause issues with expected behavior and execution time. 

3 

Non-Reentrant subVIP Non-reentrant subVIs have a data space shared between multiple calls. If a 
non-reentrant subVI is in a structure that can be parallelized, blocking causes 
poor execution speed. 

2 

String Concatenation in LoopP When string concatenation occurs inside of a loop, it builds a new copy every 
iteration. This can cause slow performance and memory issues. 

2 

Sequence StructureP Sequence structures remove a lot of the power of LabVIEW, limiting the com
piler’s optimization options and potentially reducing readability. 

2 

Deeply Nested Loops Deeply nested loops reduce readability and make for confusing programs. 2 
Only Loop Once If a loop only iterates once, then having the loop structure reduces readability 2 

Uninitialized Shift Registers P If a shift register is not initialized then the value held in it will remain after 
the program as finished executing. This can result in unnecessary memory use, 
especially if the shift register holds an array. 

T 

Terminals in Structure P Having terminals inside of a structure means that the UI thread gets blocked 
every time that structure executes. Removing terminals can decrease execution 
time. 

T 

There were a few other smells that were focused more on how a program looked 

such as wires going in the wrong direction or a general misuse of dataflow. These 

are discussed briefly after the performance smells below Of the performance code 

smells, only three, Build Array in Loop, No Wait in Loop, and String Con
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catenation in Loop, can be detected by the existing VI Analyzer tool (Section 

2.1.4). 

4.2 Performance Smells 

The following subsections discuss the performance smells that were generated from 

the AE Specialists as well as the two from training materials provided by National 

Instruments. 

4.2.1 Too Many Variables 

This smell was mentioned by all but one of the AE Specialists as a coding pattern that 

often causes problems in end-user code. One participant suggested that the frequency 

of this problem is often due to users having experience with textual languages where 

variables are an important part of the program. In LabVIEW, having too many 

variables often cause problems with the dataflow aspect of the language, and can lead 

to race conditions, particularly when one variable is written to in parallel locations. 

These can lead to unintended behavior and often confuse the user. This is especially 

problematic since LabVIEW is an inherently parallel language, and a variable could 

be set or read in many places at nearly the same time. In addition, the participants 

mentioned that having too many variables can make the program confusing to users, 

as it makes it unclear where the data is coming from and what is being calculated. 

The exact number for too many variables varied amongst the AE Specialists, with 
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one stating that anything more than two was often problematic, but the consensus 

was that if there were more than four that was often emblematic of programs that 

had problems. Several participants stated that if there are two or more writes to a 

variable then it should be flagged as an issue as this is the first sign of a potential 

race condition. 

4.2.2 Build Array in Loop 

This smell was cited as one that caused slow performance and excess memory usage. 

AE specialists said that this smell often occurs because, to novices, it seems like the 

simplest way to fill an array inside of a loop. However, the Build Array node has 

the side effect of allocating memory to a new array every time an element is added 

to an array that is full. Every time the loop iterates it has the potential to allocate 

more memory to the array, which can cause the program to slow down. Overall, it 

results in unnecessary memory usage. An example of this is shown in Figure 4.1. 

In this figure, the case statement contains three Build Array nodes. Every 

time this loop executes, these nodes will append a value onto the passed array. If the 

array runs out of space then it will have to allocate more memory. Since there are 

three of these nodes, this can be especially problematic for the performance of this 

program. 
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Figure 4.1: LabVIEW program showing three instances of Build Array in Loop (high
lighted) 

4.2.3 Multiple Array Copies 

This smell occurs when the wire holding an array is split and then manipulated on 

both of the branches. When this is done, two copies of the array are created. This is 

especially problematic if the split occurs inside of a loop or if the array is especially 

large. An example of this smell is shown in Figure 4.2. 

Figure 4.2: LabVIEW example demonstrating when multiple array copies are created
 
(The wire split leading to the Index Array Node and the Replace Array Subset Node)
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In this figure, the third element in an array of integers is accessed and then 

incremented. That value is then placed back into the array to replace the previous 

value contained in the third element. In this case, when the array is indexed to access 

the third element, a new copy of the array will be created and stored in memory. 

4.2.4 No Wait in Loop 

This smell is the result of having no timing nodes inside of a loop. Not having any 

timing can result in the program spiking the CPU (since the loop runs as fast as 

possible without waiting on each iteration) and taking as many resources as possible, 

which starves the other threads of CPU time. This can make front panels unresponsive 

and can make other elements of the program, particularly parallel loops, slow to 

execute. 

One participant noted that this smell is particularly difficult for many users be

cause they do not routinely think about timing while programming and thus leave 

it out. In addition, the reasons behind the use of timing structures such as a Wait 

node, are not explained by training materials in any detail, leaving users ignorant to 

the problems posed by having no timing in their loops. 

Figure 4.3 shows a small LabVIEW program containing a While Loop that has 

no timing structures in it. In this case it is especially problematic because every loop 

iteration is contacting hardware and requesting data. 
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Figure 4.3: LabVIEW program containing a While Loop with no Wait Node 

4.2.5 Redundant Operations on Large Data 

This smell is similar to Multiple Array Copies, but it involves a program per

forming unnecessary operations on data. This is especially problematic when the 

dataset is large, such as an array. The participants had one primary example that 

they thought could be checked for which was to look for unnecessary math. In these 

cases, the program is performing mathematical operations that do not change the 

dataset. One example of this would be a set of nodes that adds zero to every element 

of an array. This adds nothing to the program other than excess time and causes 

the program to run slower than necessary. A similar example is multiplying every 

element in an array by one. 

In addition, the participants mentioned several cases where they had seen users 

write code that was very inefficient and did many more operations that were necessary. 

However, they could not boil this down to a specific smell, and fixing these instances 

often required refactoring of the entire program. 
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4.2.6 No Queue Constraint 

Having no constraint on a queue will cause a problem when many elements are being 

added to a queue while very few are being removed. When this occurs on a queue 

that has no size constraint, the size of the queue will continue to grow and use excess 

memory. This problem can be remedied by adding a size constraint on the queue and 

specifying what happens when that limit is hit. 

4.2.7 Infinite While Loop 

While there can be cases when a loop should run continuously for an extended period 

of time, many users will create loops with no way to stop them, other than aborting 

the execution of the program. A loop that runs infinitely may sometimes cause issues 

with expected behavior and execution time. This primarily occurs when the user is 

expecting something to happen after the loop is finished executing. However, since 

the loop is infinite and will never end, they never see the expected behavior from 

their program. 

Figure 4.4 shows a LabVIEW program that contains this smell. The cause of the 

smell is highlighted. In this instance the user has attached a constant Boolean value 

of False to the parameter that determines when the While Loop should stop. 
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Figure 4.4: LabVIEW program containing an Infinite While Loop (smell is high
lighted) 

4.2.8 Non-Reentrant subVIs 

When a subVI is created in LabVIEW, by default it is configured to be non-reentrant, 

meaning that only one instance of that subVI can run at a time. Basically, the subVI 

reserves only a single space in memory to store its data, so all instances of the subVI 

share that data space. However, if the subVI does not store data, then it can be 

configured for reentrant execution. Under this configuration, LabVIEW can execute 

all instances of the subVI simultaneously as LabVIEW allocates copies of the data 

space so that separate instances of the subVI have distinct locations to store their 

data. 

Since LabVIEW is inherently parallel, if subVIs are not configured correctly they 

can cause issues with execution time and expected behavior. As an example, imagine 

there is a subVI that performs calculations on a number and returns the changed 
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value. Since this subVI is not storing data it can be configured for reentrant execution. 

If it is used only once in a program then there are no consequences. However, if this 

subVI is used multiple times in parallel loops, while still being configured as non-

reentrant, it will slow the program down. When the instance of the subVI in one 

loop is running, no other instance can run, meaning that the other loop has to wait 

to execute the subVI, slowing the program down. Simply changing the configuration 

of the subVI to reentrant execution allows each instance to be run separately and the 

parallel loops to execute without a slowdown. 

4.2.9 String Concatenation in Loop 

In LabVIEW, strings behave very similarly to arrays, and the String Concatenation 

node is very similar to the Build Array node. When string concatenation occurs 

inside of a loop, it builds a new copy every time the loop iterates. Several partici

pants mentioned that this was not as large of an impact when compared to Build 

Array in Loop, but there are certain cases when this can cause poor performance, 

particularly when large strings are being concatenated together. This can eventually 

cause the same memory issues as a Build Array node. 

Figure 4.5 shows a snippet of LabVIEW code containing this smell. In this ex

ample there are two String Concatenation nodes which are both highlighted. 

The node on the left is actually a false positive as the string that it creates will be 

removed from memory after every iteration since it is not connected to a shift register. 

The right one, however, will gradually accumulate memory for as long as execution 
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continues, without bound.
 

Figure 4.5: LabVIEW snippet containing two string concatenation nodes in a loop. 
Both nodes are highlighted 

4.2.10 Sequence structure 

The use of a Sequence Structure is often due to a user’s desire to write Lab-

VIEW code that is similar to how textual code is written, as sequence structures 

force a program to perform actions sequentially. This removes the inherent par

allelism of LabVIEW. While there are cases where sequence structures make sense, 

several participants mentioned that gratuitous use lends to less parallelism and poorer 

performance. 

Figure 4.6 shows a LabVIEW program containing a sequence structure. There is 

data being passed between the frames, and without a Sequence Structure, the 

frames would all operate in parallel. 
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Figure 4.6: LabVIEW snippet containing a sequence structure. Only the first three 
frames are shown 

4.2.11 Uninitialized Shift Registers 

In LabVIEW, a shift register exists to help pass data between loop iterations. They 

can hold many types of data including, single values, arrays, and even clusters. Storing 

data in shift registers allow users to easily access and modify it inside of a loop. 

Figure 4.7 shows a small example program containing a shift register, the nodes 

with the arrows on the left and right border of the for loop. In this example, the 

Shift Register begins with the value zero as that is what it is initialized to, it is 

then incremented in every iteration of the loop. Since this loop will iterate five times, 

the final value that shows up in the Numeric terminal is five. 

This simple example shows the basic concept of a Shift Register, and also 

introduces initialization. As mentioned above, the Shift Register is initialized 

to a value when an element is wired to it. In the case above, that element was a 

constant integer with the value 0. This initialization sets the value of the Shift 

Register when the program starts to run. 
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Figure 4.7: LabVIEW Example containing an initialized Shift Register (arrowed 
nodes on the side of the loop 

If it is not initialized then it will keep the value stored in it from the previous run. 

For example, if the Shift Register in Figure 4.7 was not initialized then after 

one execution of the program it would hold the value 5 and would not be reset. If 

the program was run again, the final value would be 10. A third run would result in 

the value of 15, and so on. 

While this example only contains a single value, if an uninitialized shift register 

holds an array, it can quickly increase in size over multiple executions, causing the 

program to use up more resources and the user to notice performance problems. If 

the shift register in Figure 4.7 was holding an array, each execution of the program 

would result in five additional elements being added to the array. This can quickly 

add up and result in unnecessary memory usage and slow programs. 

4.2.12 Terminals Inside Structures 

In LabVIEW, terminals refer to both controls and indicators, which are used for 

input and output respectively. Controls allow users to pass data to their programs 
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and change that data during execution, while indicators display data generated by 

the program. Controls can be ob jects such as buttons, sliders, or doubles, while 

indicators include ob jects like graphs, arrays, or gauges. 

When a terminal is inside of a structure in a LabVIEW program, it causes the 

UI thread to be blocked frequently. This can be especially problematic when there 

are many terminals, and can cause a significant impact on the overall performance. 

The primary reason this smell causes poor performance is when a terminal, such as 

an array or a graph, is located inside of a loop. In these instances, every time the 

loop iterates the front panel will have to be updated to show the new values of the 

terminal. Moving these elements outside of the loop remove the ability to see them 

update live but can greatly increase the execution speed of the program. 

One thing that should be noted about this smell is that to fix it entirely, all of 

the terminals have to be removed from the structure. So if there are cases where 

not all of the terminals can be moved, then the performance problems will not be 

completely fixed. There are cases were the terminals cannot be moved outside of 

the structure, mainly if they are required for algorithmic reasons. However, moving 

the worst offending terminals, such as graphs and charts could provide significant 

improvement. 

Figure 4.8 shows an LabVIEW program with terminals inside of a structure, in 

this case a For Loop. The terminals are all individually highlighted. All of these 

terminals are outputs and represent two arrays and a graph. Terminals such as these 

are problematic in loops because they require the front panel to be updated every 

iteration to display the new values. 
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Figure 4.8: LabVIEW program containing three terminals inside of a loop (high
lighted) 

4.2.13 Smells unlikely to affect performance 

The AE Specialists listed three smells that may have a minor impact on overall per

formance, but are more likely to impact program comprehension or cause the program 

to behave erratically. In a sense , they are more like the classic maintainability smells 

handled by many existing tools (Chapter 2). Because they are not relevant to the 

topic of this thesis, i.e. performance, these smells are not caught by SDPA and are 

only discussed here briefly. 

The first smell is deeply nested loops, which tend to obscure the control flow 

of a program. This can make it difficult to diagnose performance problems, or to 

understand what the algorithm is designed to do. Deeply nested loops can sometimes 

be replaced with a simpler more efficient algorithm. Programs that contain this smell 
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often exhibit poor performance, but it is mostly due to poor algorithm design. 

The second of these smell occurs when elements on the front panel are not con

nected to anything on the block diagram. This can cause a minor hit in performance 

because of unnecessary elements, but it is primarily a problem because the program 

fails to display data that the user is expecting. 

The final smell is a loop that only iterates one time. This unnecessary structure 

creates clutter in the program and can reduce program readability. This is often a 

leftover remnant from a previous program that the user simply did not remove during 

code maintenance. 

4.3 Smell-Driven Performance Analysis (SDPA) 

The formative study revealed that many performance problems do result from end-

user programmers’ code. Below, are the technical implementation details of the Lab-

VIEW prototype for finding such structures, as well as the design leading to this 

tool. 

4.3.1 Paper Prototyping 

To design a new kind of tool for detecting performance smells in graphical programs, 

an informal paper prototype study was run with a four LabVIEW users to discuss 

preliminary tool designs and to obtain feedback useful for refining the designs. In 

addition to gathering information about the types of interactions that were desired, 
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this study helped solidify the design of the tool, and it guided the creation of the 

actual prototype. 

4.3.1.1 Participants and Methodology 

To recruit participants for this study, LabVIEW programmers from Oregon State were 

contacted via email, focussing on professors and students of LabVIEW in classes at 

Oregon State. In total, four participants were interviewed: two professors, one staff 

member who used LabVIEW professional in a lab setting, and one graduate student 

who used LabVIEW for research purposes. 

During a 30 minute one-on-one interview session, the participants were shown a 

LabVIEW program on a piece of paper. They were then told there they was a perfor

mance problem with the program, and the participant had to debug that issue. The 

participants were then showed several possible interface designs to determine what 

they thought worked best or what if anything they found annoying. The user could 

interact with these potential designs, and the researcher used the paper prototype to 

describe how each tool would respond. The participants’ opinions were then gathered 

along with any potential ideas of there own. The participants’ views on the feedback 

management, particularly Interruption Style and Criticism Type, were of particular 

interest to determine an effective way to give users feedback about a program. 
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4.3.1.2 Results 

Through the process of showing the participants several potential designs, it was 

quickly apparent that they would really like to avoid any tool that dominated too 

much of the screen or too much of their attention. While they thought that it would 

be useful to have a tool that could notify them of potential performance problems, 

they did not want the tool’s information to dominate the programming window. They 

felt like that space was already limited, and crowding it with a lot of extra icons or 

information would be very problematic. 

Consequently, of the potential designs that were presented, most participants far 

preferred the ones that had small icons on the nodes indicating that there was a 

specific problem on a node. In terms of the potential designs, the users were split 

about how they wanted to be notified of a problem. Two users thought that having 

an icon show up in the IDE somewhere would be good, while the other two did not 

want any icon to show up unless they initiated the tool themselves. One of the tested 

methods involved highlighting each affected node with a squiggly red line or box 

similar to how a spell checker might work. None participants liked this approach as 

they felt it was too distracting. 

The participants were also asked how they would prefer the see descriptions of 

problem details. There was no uniform answer, but they did generally say that it 

would be nice if the results from the tool could be displayed in a similar manner to 

current LabVIEW errors and warnings. In addition, they liked the idea of having this 

information within the LabVIEW IDE. In contrast, VI Analyzer and other “add-on” 
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LabVIEW tools are not part of the IDE requiring users to flip their attention back 

and forth between separate windows. 

The interruption style that was preferred by all users was negotiated-style inter

ruptions. This style uses interruptions that inform the user of a pending message but 

do not force them to acknowledge it immediately [62]. This method was also used in 

the Surprise-Explain-Reward research [96] and have been shown to make users more 

effective at debugging [81]. 

In terms of the criticism type, users thought that showing both bad (focusing on 

areas that have problems) and good (focusing on patterns that follow good perfor

mance) areas of code resulted in too much information that they had to sift through. 

They said only seeing feedback about the good ones was not helpful to the debugging 

process. By contrast, they felt that just seeing the bad information was the best form 

to aid in debugging. 

Overall, the idea of a new kind of tool was well-received, and concrete guidance 

was obtained for how to design such a tool for reporting performance problems. 

4.3.2 Basic SDPA Prototype 

A prototype tool has been implemented to apply this technique on LabVIEW code. 

This tool is fully integrated with the version of the LabVIEW environment currently 

under development at National Instruments. This integration allowed easy evaluation 

of the effectiveness of this technique in a realistic end-user programming environment. 

Even though LabVIEW was used for this work, there is no reason why similar tools 
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could not be created for other visual dataflow languages, although presumably the 

specific heuristics needed would vary. 

The prototype begins by acquiring a data structure representing the LabVIEW 

program at hand. This is done by taking advantage of the existing DFIR graph, 

which is LabVIEW’s hierarchical, graph-based internal representation of a program’s 

code [40]. The DFIR graph of a program is very similar to the program’s visual 

representation on the screen, except (1) the DFIR graph decomposes some program 

elements that appear as single icons in the visual program, and (2) the DFIR graph 

includes optimizations achieved by minor program transformations (e.g., dead code 

elimination). In all other ways, however, a DFIR graph is to LabVIEW what an 

abstract syntax tree is to Java or a similar textual language. 

Next, the prototype runs bad performance smell detectors on the program. Each 

detector checks for one of the performance problems by implementing a heuristic for 

finding that problem. The detector does this by visiting each node of the DFIR 

graph relevant to a particular smell, then computing which nodes (if any) meet the 

heuristic. For example, our detector finds instances of Build Array in Loop smells 

by visiting all Build Array nodes in the DFIR graph, then for each Build Array, 

recursively working outward in the DFIR graph (analogous to working up an abstract 

syntax tree) to check if that Build Array is nested inside a Loop; in this case, 

the heuristic is simply checking whether a Build Array node is anywhere inside 

a Loop. Likewise, the Too Many Variables smell detector visits all variable-

declaration nodes and counts to check if more than four are in any one VI. 

The prototype alerts the user to detected smells by annotating program elements 
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with small triangle icons, as shown in Figure 4.91 . Since smells usually involve more 

than one node, there is the question of which nodes should receive these alert an

notations. For the prototype an alert is place on each node in the program that an 

end-user programmer would need to modify to fix the smell; usually, this is one pro

gram element or a handful of elements. For example, when Build Array in Loop 

is detected, SDPA places an alert on the Build Array node inside of the loop to 

indicate that this node is causing the issue, however for No Wait in Loop, an alert 

will be added to the loop that is missing the node. 

Figure 4.9: LabVIEW example containing an instance of Build Array in Loop that is 
marked with an icon to indicate that it has been detected 

In addition to the alerts that appear on the visual code itself, the prototype also 

shows a tabular list of all smells found in the program at the user’s request. This table 

succinctly explains each detected problem and its cause. Clicking on an alert icon in 

1This figure is a mock up of the interface as the actual interface was implemented in an unreleased 
version of LabVIEW, kept confidential at NI’s request. 
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the program causes the corresponding entry in the table to be highlighted (and vice 

versa), thereby supporting direct navigation between an alert and its explanation. 

If the user alters the code to fix a smell, the corresponding icon and table entry 

automatically disappear. 

4.4 SDPA with Smell-Aided Profiling 

While the tool described in the above section is useful for helping end-users detect 

performance problems, the information that it provides has the possibility of being a 

false positive. 

For example, there may be a Build Array in Loop, but if that loop only iterates 

a few times, it likely will have very little impact on the overall performance of the 

program. Similarly, a Multiple Array Copies that involves an array with only 5 

elements that is copied only once through a wire split will have a very minor effect 

on performance. The basic SDPA prototype, above, does not have the intelligence to 

filter these cases out. This may lead to users seeing messages that have little to no 

effect on the performance and may cause mistrust in the tool. 

One way to filter out false positives is to profile the program to determine which 

parts of the code take the longest to execute. The assumption is that the returned 

are the hot spots of the program and all debugging should be focused there. While 

profiling is a common technique done in performance debugging, adding profiling to 

a code can often change the execution and alter the timing enough that the correct 

hot spots may not always be discovered. 



63 

To address these challenges, the prototype also incorporates Smell-Aided Profiling, 

a new form of profiling to try and mitigate the effect of profiling the entire program. 

Since SDPA can detect smells that cause bad performance, it is likely that most 

performance problems will be contained in the areas affected by those smells. Smell-

Aided Profiling treats these areas as potential hot spots and only profiles those areas. 

If one of those hot spots, which already contains a smell, is found to be poorly 

performing, then it is marked and the user is informed. By only profiling the areas 

that contain smells, the tool limits the adverse affects of profiling and is ideally able 

to determine the areas that are causing performance problems, while filtering out 

those that are not out of the tool results. 

4.4.1 Profiling Smells 

The first area of implementation that needed to be completed was to set up a way to 

profile each smell inside a LabVIEW program. To do this, the idea of timing probes 

was implemented. LabVIEW currently has the ability to create probes that track 

data over wires, and this method was modified so that CPU and memory usage could 

be tracked instead of the data. While probes are usually created manually by the 

users, the timing probes used for Smell-Aided Profiling are inserted automatically by 

the prototype tool. 

As an example, take the program in Figure 4.10. It shows a For Loop in Lab-

VIEW that contains a Build Array node inside it. As this program shows, the 

loops is only going to execute 3 times, meaning the impact of the overall performance 
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is likely to be minimal. However, without the ability to profile the code, SDPA will 

still notify users that a Build Array in Loop smell has been detected. 

Figure 4.10: LabVIEW program showing a Build Array node in a Loop (highlighted 
in red). Due to loop iterations this smell is unlikely to cause a performance problem. 

When the tool detects a smell, it automatically create two timing probes. The 

first probe is created on the wire leading into the smell and the second is created 

on the wire leading out of the smell. If a program is run with Smell-Aided Profiling 

turned on, it will take a snapshot of current memory usage as well as mark the current 

time when the first timing probe is hit (during execution). When the second timing 

probe is hit, it takes another snapshot of the memory usage and the current time. 

It then subtracts the memory usage and time that was gathered by the first timing 

probe from the data of the second. This gives the change in memory as well as the 

total execution time of the area containing the smell. 

Consider again the program in Figure 4.10. When it is detected by the tool, timing 

probes will be dropped on the wire leading into the loop and the wire that is leaving 

the loop. When the program is executed, it can now collect data on the smell and 
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determine if it is causing performance issues in the program. If the timing probes 

are hit several times, that is, if the smell is inside a loop, the data collected will be 

summed for each run to gather the overall impact. 

Since each smell manifests differently in a LabVIEW program, the timing probe 

configuration varies for certain smells. Table 4.2 details where each timing probe is 

set up for a specific smell. 

Table 4.2: Timing probe wire locations for specific smells 
Code Smell(s) Begin Timing Probe End Timing Probe 
Build Array in Loop Wire into Loop Wire out of loop 
No Wait in Loop 
String Concatenation in Loop 
Infinite While Loop 
Uninitialized Shift Registers 
Multiple Array Copies Wire before split Wire after split 
Non-Reentrant subVIs Wire into subVI Wire out of subVI 
Redundant Operations Wire into operation Wire out of operation 
Sequence Structure First wire in first frame Last wire in last frame 
Terminals in Structure Wire into structure Wire out of structure 
No Queue Constraint Wire into Enqueue Wire out of Enqueue 

There is one smell for which timing probes cannot collect adequate information to 

diagnose if they are a true positive or a false positive. For Too Many Variables, 

which manifests over the entire program and is not relegated to a single spot that is 

profitable, no profiling is used to filter alerts. 

With the timing probes in place, an initial snapshot of the program will be taken, 

providing the current level of memory use and the start time. This allows Smell-

Aided profiling to determine the total memory usage and execution of the program 

by comparing it to a similar snapshot at the end of execution. During execution, if a 
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timing probe is hit a snapshot of memory is taken and the current time is recorded. 

When the corresponding ending timing probe is hit, another snapshot will be taken 

gathering the new memory information and current time. The tool compare the values 

to determine the change in memory usage and the execution time of the profiled area. 

If the timing probes are hit multiple times then the information for each execution will 

be averaged to see if the memory usage or execution time increases for each specific 

run. 

The results will then be filtered based on which smells have been determined to 

be actual problems and which do not meet the requirements to counted as a smell. 

How this is done is discussed in the next section. 

4.4.2 Determining False Positives 

The final step of the profiler is use the timing and memory information gathered 

from the timing probes to determine which smells are actually causing performance 

problems and which detected smells are false positives. This will allow the tool to 

filter the smells shown to users. 

The algorithm to determine if a specific smell is a false positive is as follows: 
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1. Calculate Percent of Total Time Used (TP) by Smell Time/Program Time 

2. Calculate Percent of Total Memory Used (MP) by Smell Memory/Program 

Memory 

3. Calculate Percent of Total Nodes (NP) (Smell Nodes/Program Nodes) 

4. If TP - NP < 15% AND If MP - NP < 10% then smell is a false positive 

Digging into this algorithm, it first must calculate the time and memory used 

compared to the total time of the program. For example, if the time measured for a 

given smell is 50 ms, but the total time of the program is 5000 ms then the smell has 

very little impact on the overall performance. Similarly, if the total time is only 100 

ms, then the smell is the cause of 50% of the total time. 

While it seems likely that such a smell would be a true positive, there is one further 

check that must be completed. That is to determine what percent of the program the 

smell takes up. A smell instance that occupies a large fraction of a program’s code 

should be entitled to use a large fraction of the program’s memory and execution 

time. This is calculated, imperfectly, using the number of nodes that are present in 

the area that was identified for a smell. If the smell was in a structure, such as a loop, 

then all of the nodes in that loop are counted. Take the example in the paragraph 

above. Suppose that the smell that caused 50% of the total time also had 50% of the 

total nodes in the program. If that is the case, then it is not surprising for it to take 

that much time to execute. 

The thresholds (15% and 10%) for determining if a smell was a false positive was 

arrived at by running the tool, on programs gathered from the LabVIEW forums, with 
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certain values to determine the best possible fit. Values higher than this removed too 

many smells, while numbers smaller than this filtered very few smells. 

4.4.3 Interface Design 

The final touch needed to complete the profiling enhancement to the tool is to add a 

way for the user to apply profiling. The ability to profile for performance problems 

should be tied closely to the user interface where detected smells are presented. In 

addition, how end-users use LabVIEW as a whole should not change, meaning that 

how they run a program should not change despite the fact that they want to apply 

Smell-Aided Profiling. 

To determine the final interface, several designs were developed to imagine po

tential methods for changing the interface to suit the needs of the tool. The final 

interface change that was decided on was ultimately very simple. As detailed in Sec

tion 4.3.2 above, there are two places where end-users can view information about 

the smells, a table at the bottom that contains information about all of the detected 

smells in the program and a panel on the far right of the IDE that shows information 

only on a smell that has been highlighted by the user. In both of these places, a check 

box was added, that allows users to turn on performance profiling upon the next run 

of the program. 

When a user mouses over these check boxes, a message is displayed that details 

what this check box would do. If it is checked, when the program is next run, by 

clicking on the green arrow, profiling will be turned on and the necessary data will 
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be collected. 

The final change to the interface is in the information that is displayed. When 

profiling is turned on, the smells table at the bottom will be filtered so that only 

smells that are determined to be true positives are displayed. In addition, the smells 

in the table will be sorted so that the smells that have been profiled to have the 

highest impact on performance are displayed at the top. 

In addition, the information that is given in the right panel is changed to include 

specific profiling information about the selected smell. It tells how much memory was 

used throughout the course of execution, as well as the execution time of the timing 

probes around the smell. Finally, it provides information about what percentage of 

the total memory usage and execution time were taken up by the selected smell. 

Figure 4.11 shows this. In this image, the For Loop was detected as a hot spot. 

The user can click on the hot spot entry in the table at the bottom of the screen. 

The relevant area is then highlighted in the code and information detailing the hot 

spot, including the smell inside of the hot spot, is discussed in the pane on the right 

side of the IDE. (This figure is a mock up of the interface as the actual interface was 

implemented in an unreleased version of LabVIEW, kept confidential at NI’s request.) 



70 

Figure 4.11: The SDPA user interface after Smell-Aided Profiling was run. The 
hotspot is highlight and information provided to user on the right side of the IDE 
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Chapter 5: Smell Guided Transformations 

A user debugging a program has two primary goals. The first is to find the problem. 

Once that has been accomplished, the next goal is to determine how best to change 

the code to solve the identified problem. 

Chapter 4 detailed SDPA and the Smell-Aided Profiling extension that help end-

users find performance problems in their LabVIEW programs. These methods also 

provided basic advice on how a user could solve that problem. But in a user study 

(Section 6.2), it was found that this information was not always enough for the users 

to determine a solution. A few participants in this study mentioned that it would be 

helpful to have more information about ways to fix the issue. Among the suggestions 

were to link to white papers or websites about the smells and the potential solutions. 

While these suggestions might be useful to end-users, what they really reveal is 

a need for help with fixing problems by eliminating smells. This chapter describes 

an approach for meeting this need by providing end-users with the ability to apply 

fully automatic or interactive code transformations that fix the performance problems 

detected by SDPA. 
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5.1 Methodology for Determining Smell Transformations 

Before the transformations could be implemented for LabVIEW code, a set of trans

formations had to be determined for every smell detected by the tool. To accomplish 

this, AE Specialists from National Instruments were interviewed about how they 

would fix each smell. This was done to draw on the expertise of LabVIEW experts 

who routinely fix problems such as these. 

To recruit participants, an email was sent to all of the AE Specialists at National 

Instruments describing the idea of smells and why transformations were required for 

the next stage of the prototype tool. Seven individuals agreed to participate in the 

interview process and were each scheduled for a half hour session. 

During the interview, the participants were shown example programs for most 

of the detectable smells. These example programs were gathered from the National 

Instrument LabVIEW forums1 . These programs were briefly tested to verify that 

they showed some performance problems. In some cases the programs were snippets 

that contained only the relevant part, but this was done in a limited fashion as often 

it is better to look at the whole program while debugging. 

For each smell, the AE Specialists where asked to describe how they would fix 

the given program to solve the performance problem. After this information was 

gathered, they were asked in detail about their solution and why it would fix the 

problem. They were also asked if this solution would work for every instance of a 

smell, and if it did not work for a specific instance, to describe why, and a better 

1http://forums.ni.com/t5/LabVIEW/bd-p/170 

http://forums.ni.com/t5/LabVIEW/bd-p/170
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solution. 

From these interviews, a set of transformations was created to handle the smells 

detailed in the previous chapter. In some cases, the participants could not determine 

a specific automatable transformation that would always work due to the difficulty 

of the problem. As such, three categories of transformations arose. The first, Full 

Transformations, address smells that can be completely fixed automatically by simply 

clicking on a button to apply a transformation. The second category, Partial Trans

formations address smells that can be applied fully with the exception of a few minor 

details that must be provided by the user. The final category, Wizard Transforma

tions, address smells that do not have a fully automated fix but rather offer a wizard 

guiding the user to a solution. These categories will be talked about in detail in the 

following subsections. 

Unlike refactoring, many of these transformations will change the semantics of 

the program. The problems that are detected by SDPA are code structures, and 

the problems that they cause cannot be fixed without changing the semantics of the 

program. In addition, the timing of when outputs occur from the program are also 

part of the semantics. Fixing performance issues will most likely change when a 

program outputs results and thus change the semantics. 

5.2 Full Transformations 

The first category of transformations contains those that fix smells that can be fixed 

semi-automatically with the click of a button. This is the simplest category of smells 
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since the user does not have to do much work to solve performance problems. The 

tool also provides information as to why this transformation will solve the problem 

in the hopes that the user will learn the cause of the problem and can avoid it in 

the future. The rest of this sub section will detail these transformations, as well as 

discuss what the AE Specialists said about each transformation. 

5.2.1 No Wait in Loop 

Having no timing structure inside of a loop can usually be solved with a rather simple 

fix. All of the AE Specialists said that what is needed is to add timing operation. 

For the majority of cases, this is as simple as adding a Wait to the loop. There are 

rare cases where a more detailed timing structure is required, but these examples had 

to do with complex programs such as those that would control an FPGA and would 

require specific timing requirements. 

There are two primary types of waits in LabVIEW, but most of the AE Specialists 

preferred Wait Until next ms Multiple, since it is generally considered to 

have more precise timing, which is important for real time applications. For the 

examples that they were shown during the interviews, all stated that the type of wait 

that was added probably would not make much difference to the program and that 

most end-users would probably understand using the simple Wait node. A few of 

the participants mentioned that this could be one way to help instruct users of the 

differences between the two types of wait nodes by describing the cases when each 

should be used one this smell is detected. 
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The final step of determining the transformation was to decide on the best wait 

time. This is, of course, highly variable and depends on the loop itself as well as 

the computer that the program is running on. Several of the participants noted that 

they will often look at CPU usage and loop rate and determine the best time. Others 

stated that they usually pick a generic time, such as 10 ms or 100 ms and then modify 

that number if the program is not behaving as they would prefer. Finally, several 

mentioned that even adding a Wait with a wait time of 0 or 1 ms would cause the 

loop to pause and allow other structures or the UI Thread to be accessed. In the case 

of the programs that they were shown, they determined that the user may not want 

to wait a long time to see their results and that they would try a wait with a small 

number so that the program wouldn’t run much longer than it did before the wait 

was added. 

The final transformation for this smell is: 

For a loop with no Wait node: 

1. Add a Wait node to the loop 

2. Add a integer constant with the value of 1 ms 

3. Connect the constant to the Wait 

Figure 5.1 shows the loop with the transformation for this smell applied. The 

transformation (adding a Wait) has been highlighted in red. The before program 

(Figure 4.3 can be found in Section 4.2.4. 

In addition, the tool provides information (that was gathered from the AE Spe

cialists) about why a Wait node should be inside of a loop and when someone might 
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Figure 5.1: LabVIEW program showing the transformation for a While Loop with 
no Wait Node (transformation is highlighted) 

want to use the different timing structures. It provides this information in the pane 

where users apply the transformation. This pane also describes that though the wait 

time of one millisecond is likely to be adequate to improve the performance, a longer 

wait may be preferable for some programs. 

5.2.2 Sequence Structure 

Using sequence structures effectively can get tricky, particularly if data is shared be

tween frames in the sequence structure. If that is the case, then a Shift Register 

needs to be created on the loop to hold that information. This can result in many shift 

registers being created, which may make the code more confusing. When asked about 

this, AE Specialists mentioned that passing data between frames in a Sequence 

Structure, particularly a Stacked Sequence Structure is even more con

fusing. Figure 5.2 shows an example of a Stacked Sequence Structure with 
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all of the cases shown at once. Normally, the user would have to hit the arrow at 

the top of the structure to move between frames. The bottom of each frame contains 

feedback nodes that allow data to be transferred between the frames. 

Figure 5.2: Stacked Sequence with each frame shown, feedback nodes (boxes at the 
bottom of each frame) pass data between frames 

While this example contains only a few feedback nodes, several AE Specialists 

noted that with more complex uses, a Stacked Sequence Structure can have 

many of these nodes which can be very confusing. In some cases this can even cause 

data to be used incorrectly. For example, one participant had seen a program that 

was using more memory than expected and was slowing the execution speed to a 

crawl. After investigation, the AE Specialist discovered that the user was passing 

an array between frames using the feedback nodes incorrectly, which caused multiple 

copies of the array to be created every time the sequence structure was executed. 

Due to this, a few participants thought that replacing a stacked sequence structure 

might alleviate some of these issues as all of the data that is used in a state machine 

is visible at once, and could fix some of the performance problems that was caused 

by the incorrect usage of the feedback nodes. 

In general, however, the AE Specialists who were interviewed were split about the 
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best transformation for the Sequence Structure smell, but most of them agreed that 

regardless of the transformation, replacing a sequence structure with anything 

was unlikely to change the performance very much for better or worse. 

The ma jority did agree that users often add sequence structures to their programs 

because they are trying to replicate the behavior of a textual programming language. 

A Sequence Structure allows users to create programs that are guaranteed to 

operate in a specific order (frame by frame). Users who are learning LabVIEW can 

sometimes be unsure about when certain parts of the program will execute because 

they do not fully understand the dataflow nature of the language. 

The transformation arrived at was to replace the Sequence Structure with 

a state machine, which in the case of LabVIEW can be created using a For Loop 

with a Case Structure inside of it. Each element in the Case Structure would 

contain one frame from the sequence and would be accessed by the loop count. Some 

participants were skeptical that this would be of much help, but they did not have a 

better solution. 

One item of importance that was discussed is that users will often use a Sequence 

Structure to perform timing of a snippet or program. This generally takes the form 

of a three frame sequence structure in which the first frame will set up the timing, 

the second will contain the code the user wants to be timed, and the final frame 

will end the timing and display how long the code took to execute. Many of the 

participants also mentioned that sequence structures that are less than three frames 

don’t really make sense to transform since they are so small anyway. For these reasons, 

the transformation will only be applied to sequence structures containing more than 
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three frames.
 

The complete transformation is:
 

For a sequence structure with X frames (X >3): 

1. Create a for loop that executes X times 

2. Create a case structure inside the loop 

3. Wire the loop counter to the case structure 

4. Copy the code in frame one of the sequence structure to the first element 

of the case structure 

5. For any wires going from frame n to frame n+1, create a shift register on 

the loop 

6. Connect wires to shift registers 

7. Copy frame n+1 to the case structure 

8. Connect relevant shift registers to elements in the case structure for frame 

n+1 

9. Repeat steps 4-8 for the remaining frames in the sequence structure 

Figure 5.3 shows the example program from Figure 4.5 (Section 4.2.10 after the 

transformation, with the sequence structure being replaced by a state machine. This 

figure has numbers corresponding to the steps of the transformation. The (1.) is 

located next to the for loop that is added in step 1, (2.) by the case, and (3) is next 

to the loop iteration count that is connected to the case structure. Steps 4-8 involved 

transferring the specific frames. In this Figure, frame 3 is shown, but clicking through 

the case structure would show the other frames. 
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Figure 5.3: Sequence Structure after being transformed. The numbers mark the steps 
of the transformation. 

5.2.3 Infinite While Loop 

The problem with having an infinite While Loop inside of a program is that often 

the user expects the program to complete, but the loop will continue running. Lab-

VIEW offers the ability to abort a program while it is running; however, this often 

causes problems with the behavior of the program. For example, if the program is 

collecting data inside the loop, it will not be saved when the program is aborted. 

Basically, the abort option simply ends the program wherever it is in the execution, 

which can be problematic, particularly for programs that are collecting data to be 

stored in a file after the loop is completed. 

The participants in the interviews all came up with the same simple fix for this 

problem, which was to add a button the user could click on to end the loop. When the 
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button is clicked, the program will finish the execution of the current loop iteration 

and then exit the loop allowing the data inside of the loop to be saved and the rest 

of the program to finish executing. The complete transformation is below. 

For a While Loop: 

1. Create a button inside of the loop 

2. Change the loop ending parameter to stop if true 

3. Delete constant parameter 

4. Connect the button to the parameter 

Figure 5.4 demonstrates the above transformation. In this instance, the button 

has been created and wired to the loop ending parameter (highlighted in red). An 

image of the before program (Figure 4.4 can be in Section 4.2.7). 

Figure 5.4: Transformed LabVIEW program no longer containing an Infinite While 
Loop (transformation is highlighted) 
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A few AE Specialists mentioned that there may be times when a more complex 

solution is needed to an Infinite While Loop. Nonetheless, adding a stop button 

to the loop is the first thing that they would do, and many mentioned that the more 

complex solutions are dependant on algorithmic choices by the user. For example, a 

user may want a loop to run for a specific amount of time or until a specific amount 

of data has been gathered. Simply adding a stop button will not accomplish this. 

5.2.4 Uninitialized Shift Registers 

An uninitialized Shift Register causes problems because it causes a program to 

store data over multiple runs, which unnecessarily wastes memory. When this value 

is an array, that often means that an array can quickly grow unwieldy over several 

runs of the program. The correct way is to add an constant in front of the loop and 

connect it to the shift register. This will cause the value that is being held by this 

shift register to start fresh at each run of the program. An example of a shift register 

that is uninitialized and one that is initialized is shown below in Figure 5.5. 

In this example, the Shift Registers are the nodes on the border of the loop 

with the down array. The Shift Register in the middle is initialized as it has a 

constant array wired to it, but the other three are uninitialized as they have nothing 

wired to them. There are several ways that the values for the shift register could be 

initialized, such as using an Initialize Array node to create a array that is the 

correct size for the algorithm, but these fixes may not also be correct for a given case. 

The AE Specialists mentioned that this smell only causes performance problems 
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Figure 5.5: LabVIEW example showing initialized (second blue shift arrow node) and 
uninitialized (the remaining three) shift registers 

if the Shift Registers are storing arrays. When an uninitialized shift register 

stores an array, it keeps all of the values that were added to it in the previous runs. 

However, if the value is a double, then it will only have a single value and uses the 

same amount of memory regardless (though it could cause the program to behave 

differently). Since SDPA marks all uninitialized shift registers, the transformation is 

created to repair all such cases. 

This transformation will retain the behavior of a given program on its first execu

tion, but in the cases when the user wanted the data to be kept over multiple runs, 

it should not be applied. This information, as well as why it can cause problems is 

supplied to the user by the tool. 
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For an uninitialized shift register: 

1. Determine the type of the shift register. 

2. Create a constant of that type outside the loop 

3. Connect the constant to the shift register 

Figure 5.6 shows the transformation applied all of the shift registers in Figure 5.5.
 

Figure 5.6: Transformed LabVIEW example showing all four shift registers initialized 

5.2.4.1 Redundant Operations on Large Data 

A redundant operation has a very simple transformation, which is to remove the 

redundant operation from the program. It is possible that some of these redundant 

operations might be necessary, but for the most part the participants mentioned 

that they are likely leftover code from something that was no longer needed. The 

primary problem is that the tool can only fix the redundant operations that can be 
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detected. In the prototype that was developed and described in the previous chapter, 

the range of redundant operations that was caught is relatively narrow. In all cases, 

the transformation is to take the redundant operation and remove it. Once this is 

completed, the wires must be connected so that the program can be executed. 

5.3 Partial Transformations 

Partial transformations are transfers that can mostly applied semi-automatically, but 

require the assistance of the user to complete them in some cases. In these instances, 

the user will be prompted for information that will be used in the transformation. 

5.3.1 Build Array in Loop 

The Build Array in Loop smell is often used as the primary example of a bad smell 

in LabVIEW, and the performance impact is usually fairly noticeable. However, the 

AE Specialists that were interviewed did not have a consensus about the correct 

solution for this smell. In fact, out of the interviews three possible solutions arose. 

The first possible solution was to replace the Build Array node in the loop 

with array indexing, which is a LabVIEW construct that can be connected to loops 

that allows an array to be build every iteration of the loop. If an element is wired to 

the array indexing construct, it will be added to the ith element of the array, where 

i is the current loop iteration. This was a popular answer among AE Specialists, but 

upon testing was discovered not to improve the performance of the code at all. 
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The second solution was to wrap the Build Array with an In-place Structure. 

In LabVIEW this structure forces everything inside of it to be done in-place, meaning 

that no new copies of anything will be created. The participants who mentioned this 

solution were trying to mitigate the fact that the Build Array node inside of a 

Loop will use a lot of memory. This solution was moderately successful, and it could 

be implemented as a full transformation; however, the performance improvement was 

much less compared to the final option. 

This final solution was to initialize the array outside of the loop. Then, inside 

of the loop, change the Build Array node to a Replace Array Subset node. 

This creates an array that is already as large as the user requires, and inside the loop 

the value at element i is replaced with the value that is generated inside the loop. 

This transformation cuts down on both the memory usage and the execution time, 

and of the three proposed solutions was clearly the best when tested on a handful of 

example programs. 

However, the transformation is different depending on the loop that is part of the 

smell, thus necessitating user input. If the Build Array node is inside of a For 

Loop, then the transformation can be fully automated. The transformation will set 

up an array initialization node outside of the loop and the array size set to the number 

of loop iterations. In the case of a While Loop, the initialization cannot be fully 

automated because the number of loop iterations cannot be determined algorithmi

cally. In this case, the transformation will be applied, but the user will be informed 

that the size of the array should be changed to reflect how many times the While 

Loop will iterate. The AE Specialists said that the default for an array in a while 
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loop should be to set the array size to an arbitrarily large number so that the array 

could continue to be populated without any problems. 

The full transformation for this smell is: 

1. Add Initialize Array node outside the loop 

2. If	 For Loop: Wire loop count to array size, else create a large constant 

and wire to array size 

3. Remove Build Array 

4. Add Replace Array Subset 

5. Wire loop iteration count to Replace Array Subset index input 

6. Wire value to be added to Replace Array Subset value input 

Figure 5.7 shows the program after the Build Array in Loop transforma

tions has been applied. The highlighting on the left side of the Figure shows the 

Initialize Array Nodes. Since the two arrays are of the same type, the ini

tialization can be used for both. The highlight on the inside of the loop shows how 

Replace Array Subset is used in place of Build Array. The before program 

(Figure 4.1) can be found in Section 4.2.2. 

5.3.2 String Concatenation in Loop 

The transformation for this smell is very similar to that for Build Array in Loop. 

The best transformation that the AE Specialists had was to use an array to store 

the different strings being concatenated. This array is initialized outside of the loop 
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Figure 5.7: Transformed LabVIEW example showing all Build Array Nodes trans
formed. Left highlight shows initialization and right highlight shows Replace Array 
Subset 

(requiring user involvement to set the array size) and the strings are added to the 

array using Replace Array Subset. 

The one difference in this transformation occurs after the Loop. For the result of 

the program to remain the same, a String Concatenation node must be applied 

to the array of strings. This will create one large string, which was the result of the 

initial program. 
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The full transformation for this smell is: 

1. Add Initialize Array outside the loop (input side) 

2. If	 For Loop: Wire loop count to array size, else create a large constant 

and wire to array size 

3. Remove String Concatenation 

4. Add Replace Array Subset 

5. Wire Loop iteration count to Replace Array Subset index input 

6. Wire value to be added to Replace Array Subset value input 

7. Add String Concatenation outside of loop (output side) 

8. Wire output array to String Concatenation 

9. Wire String Concatenation output to existing wire for the concate

nated string 

Figure 5.8 shows an example of this transformation after it has been applied to a 

LabVIEW program. The highlighting shows the relevant parts of the transformation. 

The key difference in this transformation when compared to Build Array in Loop is 

the String Concatenation node that is applied to the array. This is highlighted 

on the right side of the figure. The before program (Figure 4.5) can be found in 

Section 4.2.9. As mentioned in that section, the second String Concatenation 

node in the Loop is a false positive and thus has not been transformed. 

As this transformation is nearly identical to the transformation for Build Ar

ray in Loop, it has the same issue when the smell occurs in a While Loop. In 
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Figure 5.8: Transformed LabVIEW example removing String Concatenation Node 
in Loop transformed. Left highlight shows initialization and Middle highlight shows 
Replace Array Subset, Right highlight shows string concatenation 

these cases, the initialization cannot be fully automated because the number of loop 

iterations cannot be determined algorithmically. Thus, the user is informed that the 

size of the array should be changed to reflect how many times the While Loop will 

iterate. 

5.4 Wizard Transformations 

The final set of transformations involve those that cannot be performed semi-automatically. 

This is either because they involve setting the properties of certain elements or be

cause they require extensive effort from the user to continue. In these instances, 

the tool aims to guide the user through the process with suggestions, including a 

step-by-step guide to fix the problem. 
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5.4.1 Multiple Array Copies 

The AE Specialists were unified about trying to avoid array copies, but they were 

rather split on the best way to solve this problem. In general, fixing this smell usually 

requires changing the algorithm or entirely refactoring the program. In the examples 

shown to the participants, the most common solution was to completely change how 

the program worked so that it did not require making multiple copies of the array. 

This is not something that can be reduced to a transformation, especially when it 

requires asking users specific questions about what they are trying to accomplish. 

When pressed for a solution that could be turned into a transformation and applied 

to code, the AE Specialists’ most-often-mentioned fix was to wrap the array copy 

inside of an In-place Structure, but they worried that this might be leading 

users down a path that is not optimal. Namely, they worried that users might start 

using these structures in other, more inappropriate situations. Another problem 

with the In-place Structure as a solution to this problem is that adding an 

In-place Structure around a wire split will not eliminate the array copy, and 

it will end up having no impact on the performance. 

The ma jority of the AE Specialists said that the best way to go about fixing the 

problem would actually be to show the user every place where the memory is copied. 

Further tool guidance can then provide detailed advice. Since the most common 

answer was to entirely change the algorithm, the tool explains methods to reduce 

or eliminate these copies. There are a few different ways that an array copy can 

occur, so the program tries to tailor the advice based on the specific instance that 
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was recognized by the tool. 

For example, one simple way for an array copy to occur is if the user wires an 

array into a structure two (or more) different times. Doing this will cause two copies 

to be created regardless of how they are used inside of the structure. By contrast, 

if the array is only wired once to the structure, multiple copies will not be created. 

When the tool detects this case, it suggests to change the wiring into the structure. 

Another way copies are created is to branch the wire of an array to two different 

nodes that modify the contents of the array. While the branching can be detected and 

the user can be notified, removing this from the program is problematic. The tool 

describes why this might be a problem and explains why the program creates multiple 

copies of the same array. The suggestion to improve this is to try and refactor the 

program in such a way that the wire branch is not required. At times this may not 

be possible, as two arrays may actually be needed, but the suggestion is to change 

the program so that the program only uses one copy of the array, and to remove the 

branching. 

In addition to these suggestions aimed at removing copies, the tool also offers the 

alternate suggestion of wrapping the offending code with an In-place Structure. 

This structure will try and perform all of the operations inside it in a manner that 

will reduce memory allocation if possible. The tool informs users that this works in 

some cases, but in many others it has little impact. 

A final suggestion that the tool provides when appropriate is to move the array 

copies outside of loops if the user cannot remove them entirely. By removing them 

from a Loop, it will reduce the number of copies that are created. This can be enough 
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to improve the performance. 

One of the main points that was brought up by the AE Specialists in relation 

to this smell is that they would like the ability to see how memory is allocated 

throughout a program. Having a tool that could do this would allow them to see 

where an array is created, where it is copied to create a new instance, or where it is 

simply modified. Many stated that having a tool that shows this information would 

greatly aid themselves (and likely other users) in fixing the problem, or at the very 

least help inefficient programs be more easily debugged. 

5.4.2 Non-Reentrant subVI 

Setting a subVI as reentrant or non-reentrant is a setting and can not be done pro

grammatically. While it is a rather simple change, it is one that the tool has to guide 

the user through. In this case, the tool will instruct the user how to get to the proper 

menu and then how to set a subVI as reentrant. 

The AE Specialists stated that most end-users are rather confused about this and 

there are only specific instances when this transformation should be recommended. 

Any subVI that contains data that is being stored on a physical resource should be 

reentrant. 

They also mentioned that this is rarely a performance problem that they see end-

users making, primarily because end-users do not often make code that is reusable, 

thus there is only one instance of a subVI being called in the program anyway. Ac

cording to the interviewees, the most crucial case where reentrancy matters is when 
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programming for an FPGA. LabVIEW already has all subVIs set to be reentrant in 

those cases, meaning that the problem is mostly inconsequential in those instances. 

Despite this, the wizard is set up to inform the user why having a non-reentrant 

subVI could cause performance problems. It will then give the steps on how to 

open the properties menu of the subVI and change it to reentrant execution. It also 

recommends that the user change the priority from normal to subVI priority to help 

with the timing of the program. 

5.4.3 No Queue Constraint 

Most of the AE Specialists felt like Queues were not used by end-users. One even 

stated that end-users often view Queues as scary or confusing and try to avoid them 

if at all possibly. In general, they did not think that this smell would occur often 

unless a user was saving the LabVIEW program to a real-time target that had limited 

memory. In those cases, the constraint on the queue and how the program handles 

hitting that constraint matter greatly. 

Adding a constraint to a Queue is fairly straightforward in LabVIEW, but when 

doing so, there are several questions that must be dealt with by the user to set up 

the program correctly. 

The key question is what the program should do when the constraint is hit. The 

AE Specialists mentioned two primary options. The first is to silently drop the data 

that the user is trying to enqueue. In general, the AE Specialists did not like this 

option. They much preferred displaying a runtime message stating that the queue 
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had reached the constraint limit and that the element could not be added to it. This 

would let the user know what is going on with the program and allow making a 

change. 

When this smell is detected (and the user decides to address it), the tool will 

gather input from users on how big they want the queue to grow and what they want 

the program to do when the constraint is hit, to simply wait or to do a lossy enqueue 

and lose data. Once this data has been gathered the program will guide the user 

through steps on how to add this to their queue. 

5.4.4 Terminals Inside a Structure 

The transformation for fixing this smell is much more complex than just moving 

all Terminals outside of the structure, though that would seem like the obvious 

solution. Often those terminals are required for the correct execution of the VI. For 

example, there could be a boolean terminal inside of a Loop that is used to control a 

Case Structure. When the boolean is triggered on the front panel, a certain case 

will be run. In this instance, the terminal cannot be moved outside of the loop as it 

would mean that the boolean could never be triggered while the loop is running. 

Figure 5.9 shows an example of this. In this instance, there is a boolean terminal, 

“Add to Array”, that is controlling a Case Statement inside the While Loop. 

The user can interact with this terminal from the front panel while the program is 

running. When the user changes the value of this terminal to true, values will begin 

to be added to the array. If the terminal value is changed to false, then vales would 
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no longer be added to the array. This example also has a double terminal, “Value to 

Add”, inside of the loop that is added to the array whenever Add to Array is true. 

Since it is located inside of the While Loop, the user can change this value during 

execution and have that value be added to the array. 

Figure 5.9: LabVIEW example demonstrating terminals (Add to Array Boolean) that 
must be included in a structure (while loop) for the program to execute correctly 

Moving both of these terminals outside of the structure would completely change 

how this program behaves. If “Add to Array” is moved outside of the loop, then it 

can only have one value (read before the While Loop). So if it was set to false, 

then nothing would be added to the array, whereas if it was true, every value would 

be added. Similarly, if “Value to Add” was moved outside of the While Loop, then 

the same value would be added to the array every time the loop executed (providing 

that “Add to Array” was true). 

It is instances like this that make this smell difficult to transform. The tool can 

advise the user on why having terminals inside of a structure are bad, but ultimately 

if they are required to be inside for algorithmic reasons, then they should not be 
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removed. 

The tool handles this by prioritizing which Terminals to recommend for removal 

from structures. Often the largest cause of performance slowdown is a program being 

required to continuously update graphs or terminals inside of a loop as it causes the 

UI thread to be updated every iteration which greatly slows down the execution of 

the program. For this reason, the tool will ask the user if charts or graphs need to be 

updated inside of a Loop. If they can be moved outside of the structure, the program 

will execute more swiftly. It is up to the user to determine if they can afford to move 

Terminals or if the Terminals are required to be inside the structures. 

Figure 5.10 demonstrates the results of this transformation, which involves moving 

the terminals outside of the loop. The before program is Figure 4.8 and can be found 

in Section 4.2.12. 

Figure 5.10: Transformed LabVIEW program showing three terminals moved outside 
of the loop 
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5.4.5 Too Many Variables 

Too Many Variables had the widest range of possible solutions. However, all of 

those solutions involved getting rid of as many of the variables as possible. In general 

AE Specialists stated that users add variables to their LabVIEW code because they 

are trying to replicate the programming that they are used to in textual languages. 

The AE Specialists boiled having too many variables down to one primary prob

lem, which is the possibility that a variable might be written to at the same time due 

to the inherent parallelism of LabVIEW. This would result in a race condition and 

could disrupt the behavior and performance of the program. 

Unfortunately, this problem is difficult to create a transformation for. While the 

tool can detect when there are multiple writes to a specific variable, the number of 

ways that they can appear in the code are varied, and fixing the problem usually 

requires reworking the code itself and changing the algorithm. For example, in the 

LabVIEW code that was shown to the AE Specialists during the interview, most of 

them mentioned that the easiest way to fix the problem would be to create a Shift 

Register on the Loop that would store the data. This would remove the variable 

entirely. However, this only works if all of the writes to that variable are inside the 

same loop. If they span multiple structures, then it gets much more complex. 

Due to the multitude of ways that this problem can appear, a transformation could 

not be created. Instead the tool provides information about the kinds of problems 

that variables can cause, as well as ways to remove the variables. It makes a few 

different suggestions and explains how to use functional global variables, how to use 
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shift registers to store data in loops, and how to avoid using them entirely. 

5.5 User Interface 

The user interface for the transformations is based on the interface that was detailed 

in the previous chapter. When a user clicks on a smell in the table at the bottom of 

the LabVIEW IDE, new information populates the details pane located on the right. 

With basic SDPA, this pane contained only information about the smell a brief 

description of how it could be fixed. The addition of transformations increases the 

information that this pane holds. For those smells that have a Full Transformation, 

a button is now located at the bottom of the pane, along with information that 

describes the transformation. This button will perform the transformation for the 

given smell. Partial Transformations contain a similar button, but once clicked the 

user will have to provide details to complete the transformation. Smells that only 

have Wizard Transformations contain a button that will open the wizard and guide 

the user through the process. Figure 5.11 shows an example of the Wizard for the 

Smell Terminals in Structure. This figure is a mock up of the interface as the 

actual interface was implemented in an unreleased (confidential) version of LabVIEW. 

Many of the smells and transformations contain more information than can be 

displayed in this pane. For those smells, another button was added to open a pop-up 

window that contains more information about the smell and the transformation. This 

pane can either be docked somewhere in the IDE or can be left to float above the 

code. 
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Figure 5.11: The Transformation Wizard for the smell Terminals in Structure. 

An additional change that was made due to feedback from users, was to provide 

links to white papers or National Instruments web pages if applicable. While this 

information did not exist for every detectable smell, helpful links that could be found 

were added. 
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Chapter 6: Evaluations 

The nine claims discussed in Chapter 3 were evaluated through a series of four studies. 

The first study evaluated the approach’s effectiveness at finding and fixing perfor

mance problems on a corpus of “real world examples” retrieved from the LabVIEW 

forums. This study essentially assumed an ideal user, and real users might apply the 

approach differently than an ideal user. Therefore, two additional studies with real 

users examined how well the approach would help users to find and fix performance 

problems. Finally, a case study examined whether it would be possible to generalize 

the concepts to another data flow language (Chapter 7). Together, these four studies 

evaluated the nine key claims summarized in Table 3.1 (Section 3.2). 

6.1 Real World Examples Study 

The first study involved testing the tool on real world examples. The goal was to de

termine if detecting smells could accurately find real performance problems, resulting 

in a sizeable impact on the performance of programs. Several different analyses were 

performed, corresponding to the six claims evaluated by this study. 

To study these issues, a corpus of real world LabVIEW programs was gathered 

that the tool could be run on. The source for these programs was the LabVIEW online 

forums1, where users post questions about how to create or improve programs. While 
1http://forums.ni.com/t5/LabVIEW/bd-p/170 

http://forums.ni.com/t5/LabVIEW/bd-p/170
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there are many LabVIEW programs that are available on the forums, the parameters 

of this study required a focused search for programs that had performance problems. 

Investigating several claims required, in particular, comparing how the tool would 

improve programs to how experts would improve programs. So a corpus of “Before” 

and “After” programs was needed, namely, a set of pairs of programs, where the 

first in each pair was an uploaded program from a user that contained a performance 

problem before fixing by an expert, and the second was a version after fixing by an 

expert so the performance problem had been removed. 

To gather this repository, the LabVIEW forum was searched for specific keywords 

(specifically, “slow program” and “poor performance”). The results were then filtered 

to only include forum posts that contained attachments. This set of posts was then 

read to find those that had poorly performing LabVIEW code as well as a solution 

that had been provided by an expert. In this case, an expert was considered to be 

a person with a high number of posts, a high proportion of posts that had been 

marked as correct solutions by other users, or a high level of activity on the forums. 

In some instances, the solution was accepted if it was provided by a non-expert who 

did not meet these criteria, but only if an expert subsequently stated in the forum 

thread that the non-expert’s solution was correct and that is what they would have 

done, or if such an expert made a small suggestion about improving the non-expert’s 

solution but did not upload new code. In these latter cases, if an expert stated that a 

modification should be made to the program without uploading a solution, then the 

change was performed manually by the researchers conducting this study, in order to 

reflect the change that the expert would have made. Forum posts were reviewed until 
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30 test programs with Before and After versions were obtained. 

The six subsections below discuss analyses performed with this corpus to investi

gate each of the six claims related to this study. 

6.1.1 Prevalence of Performance Smells 

The first analysis examined the frequency of each smell in order to evaluate Claim 1, 

namely whether smells are common in end-user dataflow programs that have perfor

mance problems. The first step was to run the SDPA prototype tool on every Before 

program contained in the repository. This created a list with frequency data for each 

smell including how often smells occurred, both in terms of total number of instances 

as well as how many unique programs they were contained in. A few of the programs 

in the repository had subVIs associated with them. In those instances, the data for 

the subVIs are included in the information for the main program VI and does not 

show up as having a smell in two separate VIs, to avoid double-counting. 

The analysis identified 150 smell instances, or an average of 5 smell instances 

per program. We found that every Before program in the corpus had at least one 

smell. These results confirm the claim that smells are common in end-user dataflow 

programs that have performance problems. 

Table 6.1 shows the information that was gathered for each specific smell, including 

total number of instances and the number of programs affected. It is clear that not 

all smells are equally common. The first three smells listed below account for 70% of 

all the smell instances that occurred in these 30 programs, and the top 5 accounted 
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for 87% of all the smell instances.
 

Table 6.1: Prevalence of smells detected by SDPA in Real World Examples Corpus
 
Total number 
of Instances 

Unique VI’s 
with smell 

No Wait in Loop 37 19 
Terminals in Structure 34 18 
Build Array in Loop 34 12 
Uninitialized Shift Registers 14 6 
Multiple Array Copies 11 5 
Sequence Structure 6 4 
Non-reentrant subVI 3 2 
Too Many Variables 4 3 
Infinite While Loop 3 3 
No Queue Constraint 2 2 
String Concatenation 
in Loop 

2 2 

Redundant Operations on 
Large Data 

0 0 

Total 150 30 

Several of the smells deserve additional discussion. 

The total number of smell instances for the No Wait in Loop smell is high, in 

part, due to three programs that had 5, 5, and 7 instances of the smell, respectively. 

These instances were higher due to a large number of subVIs that all followed the 

same bad patterns, as if the smell instance had been copied and pasted, or as if the 

programmers did not know that this was a bad pattern and had manually repeated 

it several times. 

The Build Array in Loop smell also had a particularly high average (2.58) 

number of instances per program. Manual examination of the programs showed that 

the most common usage of this smell was for a user to have several arrays being 
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constructed inside the same loop. Each array had a corresponding Build Array 

node inside of that loop. 

Both Multiple Array Copies and Uninitialized Shift Registers also had 

a high number of instances per program (2.3 and 2.2, respectively). Reviewing the 

programs involved revealed that these, too, appeared to be situations where users 

either copy-pasted a mistake or manually recreated it many times. In particular, 

there were no cases where all of the shift registers were initialized but one: either the 

smell did not occur, or else it afflicted all of the shift register inputs. 

The other smells all appear less frequently, but all (with the exception of Redun

dant Operations ) were detected by the tool in at least two programs. 

6.1.2 Effectiveness of SDPA at Finding Problems Fixed by Experts 

Claim 2 is that SDPA automatically identifies most performance problems that ex

perts find. To test this claim, all of the Before programs created by users were 

reviewed and compared to the After programs created by experts. A list was made 

of all the locations where the Before programs were modified. Then, this list of lo

cations was compared to the list of smell instances that SDPA had identified for the 

analysis in Section 6.1.1, above. It was then possible to compute what proportion of 

the expert-identified locations were identified by SDPA. 

Experts made changes in only 8 locations other than the 150 smells identified by 

SDPA. Thus, SDPA successfully identified the vast ma jority (95%) of the performance 

problems identified by experts. 
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Table 6.2: Prevalence of optimizations performed by experts that are not detected by
 
SDPA 

Total number 
of cases 

Programs 

Auto-Indexed Tunnels 4 3 
Coercion Dots 2 2
 
Buffer Allocations 2 2
 

All of these uncaught optimizations are, to a certain extent, algorithm refactoring. 

There were several After programs in the corpus that were completely changed by 

the expert to make the code more efficient. One example of this was a program that 

had several nested loops. The expert stripped away all of the extra loops along with 

the necessary changes to insure the program still created the desired output. This 

not only fixed the performance problem the user was talking about, but it also made 

the program much easier to read and understand. 

The 8 uncaught optimizations not identified by SDPA fell into three general cat

egories, as shown in Table 6.2. The first change made by experts was to replace an 

auto-indexed tunnel with something more efficient. While this tunnel looks 

much cleaner than a Build Array node, it actually exhibits the same performance 

issues in a loop and, like the Build Array, causes many buffer allocations and po

tentially high performance problems. Nonetheless, tool was not designed to identify 

this problem because during the interviews, auto-indexing was not mentioned as prob

lematic. In fact, when asked about the best transformation for the Build Array in 

Loop smell, some AE Specialists mentioned replacing it with an auto indexing 

tunnel. Likewise, auto-indexing tunnels would occasionally spark a discussion where 

forum members would argue about their merits and whether they performed the same 
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as a Build Array node. So even though removing auto-indexing tunnels 

could sometimes improve performance (and sometimes not), it is not clear that all 

experts or AE Specialists are aware of this fact. Figure 6.1 shows two example pro

grams that will perform nearly the same. The top program contains the smell Build 

Array in Loop, while the bottom program uses an auto-Indexed Tunnel. 

Figure 6.1: LabVIEW examples showing Build Array in Loop(top) and Auto-Indexing 
Tunnel(bottom). The performance of these programs is nearly identical. 

Another optimization that experts identified but that went undetected by the tool 

was type coercion. LabVIEW will automatically change the type of a wire value if 

required for input to a specific node. For example, if a wire is an integer but is 

required to be a double to be an input to a node, LabVIEW will coerce the type 

automatically. Figure 6.2 shows a small code snippet that contains a coercion dot 

(the red dot on the Add node). A few expert solutions made a point of removing these 

dots with the claim that too many of them would affect memory usage. However, 

other expert LabVIEW programmers maintained that in the majority of cases, they 
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have little effect on memory. The cases from the corpus that had these changed by 

experts were tested to determine performance change. In one program, the effect was 

minimal, while the other showed a large improvement, though the solution was also 

heavily refactored elsewhere. 

Figure 6.2: LabVIEW snippet showing type coercion (red dot on the blue wire input 
to the Add Node) 

The final optimization that the experts looked for that was not caught by the 

tool was similar in nature to the coercion dot, but had much more impact on the 

performance. That was to show all of the buffer allocations of a program and to try 

and minimize them. This is similar in essence to program refactoring, but since it 

had the specific goal of removing one thing it warrants a discussion. Showing the 

buffer allocations can be particularly helpful when doing memory optimizations as 

it shows dots every place that LabVIEW compiler allocates memory. This usually 

means that the program is creating a copy of the value on the wire, and in the case 

of arrays, this can potentially cause high memory use, particularly when the buffer 

allocations occur inside loops. While some of the smells that the tool detects cause 

buffer allocations, namely Build Array in Loop, the tool does not check explicitly 

check for buffer allocations. There were two programs in the corpus where the expert 

worked to remove as many buffer allocations as possible, which significantly improved 
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performance. 

On a side note, many experts made a point of helping new LabVIEW users try 

to make their programs more understandable. Even for programs where the experts 

simply applied a simple fix, they would have describe ways that the user could make 

their program easier to understand. Based on the interviews with the AE Specialists, 

many users have problems creating code that can be read or understood by other 

people, and the experts seemed to be trying to remedy this by helping whenever they 

could. 

Another thing that they were focused on was getting users to write code that 

was more in line with the visual language style and to try and move away from best 

coding practices of textual languages. This often involved explaining the best way 

to program something in LabVIEW, and while this did not always greatly affect the 

performance of the program, it did often have a minor effect. 

In summary, the SDPA found almost all of the problems that experts fixed in cor

pus programs. One of the missed kinds of edits, auto-indexed tunnels could be 

added as a future smell. The other two kinds of edits involved substantially rewriting 

the program algorithm, such as for the purpose of eliminating buffer allocations. 

6.1.3 True and False Positives of SDPA 

The third claim is that smells identified by SDPA usually indicate real performance 

problems. Just because SDPA indicated the presence of a smell in a certain location, 

or just because an expert actually did perform an edit in that location, does not nec
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essarily imply that the smells actually caused real performance problems. Therefore, 

a further analysis was required to assess what proportion of the smell instances truly 

harmed performance. 

This was accomplished in several steps. First, for each smell identified by SDPA in 

a Before program, a corresponding fix was created. This fix was taken from the After 

program if the expert had supplied a fix at that location in the program. Otherwise, a 

fix was generated using the transformation offered by the tool if applicable. Otherwise, 

for a few situations where the transformation offered by the tool could not be applied, 

then the Before version was used unaltered as the fixed version (implying that there 

was no good fix for the smell, and no performance improvement was possible). Second, 

the Before program was run and the fixed program was then run. In each case, 

the execution time and the memory usage were both measured. Third, the percent 

improvement between the fixed and the original program was noted, both in terms of 

impact on execution time and on memory usage. Fourth, a smell was categorized as 

a true positive if its impact was at least 15% on execution time or 10% on memory 

usage, or a false positive otherwise. Fifth, the overall numbers of true and false 

positives were computed. 

Overall, this analysis revealed that most smells identified by SDPA did indicate 

an actual performance problem. Of the 150 smell instances, only 48 (32%) were false 

positives, while 102 (68%) were true positives. 

Most of the false positives were due to the Terminals in a Structure smell. 

While this smell occurs frequently and does sometimes cause performance issues, there 

are cases where a terminal has to be inside of a structure due to the algorithm design. 
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In such a case, as noted above, neither the expert nor the tool could actually fix the 

problem, so the Before version of the program was used as the fixed form as well, 

leading to a 0% improvement. In addition, in some cases when terminals could be 

moved outside of loops, the impact still fell below the threshold to determine a false 

positive. This does not necessarily signal that this smell should be abandoned, as 

there are many cases where moving the terminals outside of a structure significantly 

improves performance. 

Another interesting note is that every instance of the Sequence Structure smell 

was determined to be a false positive, as it had little impact on the actual performance 

of the program. Similarly, the Too Many Variables smell showed little impact on 

the programs in the corpus, and all but one instance was marked as a false positive. 

One interesting set of false positives was a few instances of Build Array in Loop. 

In these cases, either the Build Array node was in a loop that iterated very few 

times and did not have an impact on the memory, or it was in a conditional statement 

that executed very few times inside of the loop. While this smell in considered one of 

the worst offenders, as noted by AE Specialists in the formative study, the results of 

this analysis shows that there are certainly cases where it has little negative impact. 

6.1.4 True and False Positives with SDPA and Smell-Aided Profiling 

The analysis above was continued by turning on Smell-Aided Profiling, to evaluate 

Claim 4 that Smell-Aided Profiling improves the false positive rate of SDPA and 

negligibly impacts the true positive rate. As before, SDPA was run on all of the Before 
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programs to identify smell instances, but Smell-Aided Profiling was also activated in 

order to provide the execution data needed to filter down the list of smell instances 

to only include those that also corresponded to hotspots. This reduced the number 

of instances identified, which was expected to decrease the number of true and false 

positives. The question, of course, is whether Smell-Aided Profiling would successfully 

decrease the false positive rate much more than it decreased the true positive rate. 

Enabling Smell-Aided Profiling(SAP) yielded a total of 112 smell instances, of 

which 24 were false positives and 88 were true positives. Thus, SAP decreased the 

total number of false positives by 50% while only decreasing the number of true 

positives by 13%. Table 6.3 shows the results obtained. 

Table 6.3: True and false positives with SDPA and SAP 
True False 

Positives Positives 
Smell Detection 102 48 
Smell-Aided Profiling 88 24 

The primary reason there was not a larger decline in the false positive rate is 

due to how the smells are profiled. If there are multiple smells involving a structure, 

then the smell instances’ timing probes extended to the structure node, so they are 

essentially profiled together by profiling the runtime within that structure. So if 

a loop has a terminal inside it that is not causing any performance issues, but it 

also has a Build Array node that is, both would be marked as a hotspot. This 

would enable the Terminals in Structure smell to slip through, even though it is 

not specifically causing problems. How smells are profiled could be refined in future 

versions by adding profiling inside of structures to pinpoint the exact areas that are 



113 

causing problems. 

The primary reason for the decrease in the number of true positives is that the 

profiling was unable to measure the impact of Uninitialized Shift Registers as 

the impacts of that smell only show up when the program is run several times in 

a row, which the profiler does not check for. For example, one execution of a pro

gram that is profiled might use 5000 KB of memory for a 2 minute run. This might 

not be extreme (relative to the hotspot threshold in Chapter 4) and no significant 

performance problems would be detected. However, with the shift registers uninitial

ized, every single execution will cause the memory use to increase by around 5000 

KB (depending on the run time). The second run would use 10,000 KB, the third 

15,000. The profiler does not filter over multiple runs, and if it takes a long time for 

the problem to show up, the tool cannot determine that it is actually an issue. This 

problem could be addressed by allowing the profiler to aggregate over multiple runs, 

thereby enabling it to accumulate enough information to note that a certain smell is 

actually turning out to be a hotspot. 

6.1.5 Impact of Fixing Smells 

Claim 5 is that for most smells, tool-based transformation improves performance. 

This claim was evaluated applying all possible tool-based transformations to the 

SDPA-identified smell instances, then computing the average resulting impact on per

formance for each kind of smell over all instances of that smell. All smell instances 

were included, meaning that Smell-Aided Profiling was turned off. The overall average 
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impact of fixing a smell instance was computed, as well. 

Table 6.4 summarizes the improvements in performance when transformations 

were applied on a per-smell instance. Several key points are evident in this table. 

First, overall, fixing each individual smell instance led to an execution time im

provement of 26% and a memory usage improvement of 12%. This result is important 

because it demonstrates that even fixing a single instance of a smell can have a no

ticeable impact on performance. As noted in Section 6.1.1, corpus Before programs 

contained an average of nearly 5 smells per program, so users could anticipate even 

greater benefits when applying multiple smells, which Section 6.1.6 explores in detail. 

Second, for 7 out of the 11 smells that actually occurred in the corpus, applying 

the transformations improved execution time by at least 10%. This indicates, as 

expected, that tool-based transformation improves performance for most smells. For 

3 of these 7 smells, memory usage also improved by at least 10%. 

Third, however, the classic tradeoff between execution time and memory usage 

was apparent. Specifically, memory usage increased (negative improvement) for 4 of 

the 7 smells where execution time improved. The details of why this happened are 

discussed in subsections below. 

Finally, the transformations achieved bigger impacts on the smells listed near the 

top of the table than they did for smells listed near the bottom of the table. As smells 

are shown in decreasing order of prevalence (as in Section 6.1.1), it is clear that the 

transformations help the most in the situations that users will likely encounter most 

often. Subsections below explore the impacts of the smell-based transformations in 

detail. 
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Table 6.4: Average impacts on performance of applying each tool-based transforma
tion (per smell instance) 
Smell Execution Time 

Improvement 
Memory Usage 
Improvement 

No Wait in Loop 37% -13% 
Terminals in Structure 23% -1% 
Build Array in Loop 34% 37% 
Uninitialized Shift Registers 22% 86% 
Multiple Array Copies 25% -16% 
Sequence Structure -2% -1% 
Non-reentrant subVI 13% -2% 
Too Many Variables -1% -1% 
Infinite While Loop 0% 1% 
No Queue Constraint 0% 0% 
String Concatenation in Loop 16% 20% 
Redundant Operations on Large Data N/A N/A 
Average over all smell instances 26% 12% 

6.1.5.1 No Wait in Loop 

The transformation for No Wait in Loop is to simply add a Wait to the loop. 

This simple transformation greatly improved the execution time, while also slightly 

increasing the memory. The primary culprit to the memory gain seems to be due to 

the fact that many of the affected programs used very little memory to begin with, 

and small fluctuations show up as much larger percents. In addition, adding a Wait 

to a loop allows the inherent parallelism of LabVIEW to run and any other structures 

that can be run in parallel will be (including tother code that conserves memory). 

This is often enough to negatively affect the memory values used. However, this 

transformation in general shows impressive gains in execution time particularly for 

such a simple transformation. 
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6.1.5.2 Terminals inside a structure 

For this smell, there are some cases where a terminal is required to be in a structure 

for algorithmic reasons, such as a button that controls a case statement or a stop 

button for a loop. For the transformation for this smell to be successful, all of the 

terminals must be moved outside of the structure. Due to this fact, instances where 

the terminal was required to be in the structure could not be transformed. 

Nonetheless, where applicable, the transformation itself showed great improve

ment in terms of average impact on time, with negligible impact on memory usage. 

The best cases often showed a large improvement in both memory and time, and it 

may be worthwhile to focus the tool on those cases which involved moving large out

put terminals such as arrays and charts outside of the structure, which was usually a 

loop. 

6.1.5.3 Build Array in Loop 

As mentioned previously, the transformation for Build Array in Loop is not always 

simple, as the loop count has to be accounted for when looking at a While Loop. 

The transformation is straightforward for a For Loop, and often this slightly affected 

the overall impact on performance. Namely, removing a Build Array from a For 

Loop showed a greater improvement than removing it from a While Loop as it was 

usually much more precise when initializing the array outside of the loop. 

There were two cases where the improvement did not help or showed little im

provement. These cases both involved a While Loop and a miscalculation of the 
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loop counts. Basically, the array was initialized by the transformation to be much 

larger than was actually required, which caused more memory to be used and the 

program to slow down very slightly. It should also be noted that these cases were 

dealing with small arrays, and cases like these may get filtered out by the profiler. 

6.1.5.4 Uninitialized Shift Register 

This transformation by far shows the most improvement, both in terms of time and 

memory. This is also a simple transformation, simply adding a constant array to 

the Shift Register, but it showed a nice improvement in terms of time, with an 

average improvement of 22% on execution time and 86% in memory. Even the worst 

instance still shows a 75% improvement in terms of memory. 

Since the issues due to this smell can manifest differently over multiple runs, 

the transformation was also separately tested over a series of 5 runs with the time 

and the memory recorded each time. Both the execution time and memory usage 

remained nearly constant for each run after the transformation was applied. This is 

encouraging, as it signals that the behavior of the program will remain the same over 

every execution once this transformation is applied to fix this smell. 

6.1.5.5 Multiple Array Copies 

The evaluation showed that this transformation improved execution time but harmed 

memory usage. The memory issue was because when there were multiple instances of 
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this smell in the same structure, then applying the fix to one smell instance allowed 

execution time to increase and the program to thereby invoke the other smell instances 

more often, which ended up consuming more memory overall. This is an indication 

that this smell requires all instances in a program or structure to be fixed to fully 

improve the program. Unfortunately, this is also one of the smells that requires the 

most manual work to fix because the tool uses a wizard to guide the user through the 

process of removing smell instances. While it is still beneficial to point this problem 

out to users, it is possible that the way the transformation is applied is not helpful 

and may need work. There may be a more straightforward way of dealing with it 

that would be simpler and would allow the user to solve their performance problem 

more quickly. 

6.1.5.6 Sequence Structure 

The Sequence Structure transformation is among the most complex, and it is 

also one that showed barely any impact in terms of performance. In general, it had 

very little impact on the total time of the program and memory. As AE Specialists 

noted in the formative study, gratuitous use of Sequence Structures can harm 

performance, but clearly none of the uses of this structure in the corpus were causes 

of poor performance. 
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6.1.5.7 Non-reentrant subVI 

Two of the detected cases of this smell were unable to be transformed because the 

detected subVIs were part of a built-in LabVIEW module that did not allow access to 

the internal block diagram. This meant that there was only one instance that could 

actually be transformed and measured. The one instance that was able to be tested 

showed a slight improvement, with setting the subVI to reentrant execution, showing 

a 13% decrease in the execution time with a 1.5% increase in the amount of memory 

used. 

6.1.5.8 Too Many Variables 

The transformation for the Too Many Variables smell is complex, as generally 

the best fix requires refactoring the program in such a way that it no longer needs 

variables. While the wizard attempts to guide users through this process, the per

formance improvement is negligible, and in fact slightly increases both the execution 

time and memory usage. It could be that there exist cases where this transformation 

would be useful, but they were not found in the corpus. Of the four detected instances 

of this smell, two of them were using the variables correctly, i.e. only writing to them 

in one place. (While they had many variables, they also written in a way that avoided 

the possibility of race conditions, which was the other main concern of AE Specialists 

regarding this smell.) 
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6.1.5.9 Infinite While Loop 

Compiling statistics for this smell was challenging. An infinite loop can only be 

stopped by using the abort button, which means that the rest of the program does 

not get executed. By comparison, adding the ability to end the program with a button 

means the rest of the program will execute, which will increase both the execution 

time of the program and the memory usage (how much depends on the program). 

So instead of compiling statistics for the entire program, a snapshot was taking right 

before either the program was stopped using the abort functionality, or the loop was 

stopped using the added button. The transformation had very little impact, positive 

or negative, on the overall performance. 

Nonetheless, it is worth noting that all three of these programs worked completely 

after this transformation was applied. While it did not improve the performance per 

se, it did fix the performance problem expressed by the users in the forum, which in 

these three cases was: “Why is my program stuck in this loop the entire time?”. 

6.1.5.10 No Queue Constraint 

Even before the transformations were applied, the queues never appeared to grow 

very large. When the constraints were added by the transformation, they were never 

hit, due to the constraint size being set rather high. If the constraint size was low

ered dramatically, it did have an impact on the memory usage as it stopped adding 

elements once the queue had reached a certain size. However, reaching this point 

would not have been the end result of the transformation wizard and as such, the 

http:6.1.5.10
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statistics were not included. Because of this, the transformation had no impact on 

performance, other than a very slight increase in memory due to the extra nodes used 

to display a message if the constraint was ever hit. 

6.1.5.11 String Concatenation in Loop 

Concatenating a string inside of a loop is similar to using a Build Array node, 

and the transformation is nearly the same. However, the impact was not quite as 

significant. 

6.1.5.12 Redundant Operations on Large Data Stats 

There were no instances of this smell in the corpus so it was not possible to test the 

potential transformations on real world examples. 

6.1.6 Tool-based Transformations versus Experts’ Fixes 

The final claim evaluated in this study, Claim 6, says that tool-based code transfor

mations semi-automatically improve performance almost as well as experts do. This 

claim was tested by running all applicable transformations on Before programs and 

measuring the resulting performance impact, then also independently applying all 

expert-based fixes to the Before programs and measuring the resulting performance 

impact. As in the analyses above, performance impacts were expressed as percentages 

relative to the Before program measurements. 

http:6.1.5.12
http:6.1.5.11
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The Mann-Whitney U test was used to compare the performance impacts of tool-

based transformations to the impacts of the experts’ fixes. This test was performed 

once using the impacts on execution time measurements for the 30 programs, then 

again using the impacts on memory usage measurements for the 30 programs. Thus, 

two statistical tests were performed. 

Table 6.5 summarizes the average impacts on performance. Overall, applying 

the available tool transformations to a program achieved, on average, an execution 

time improvement of 42% and a memory usage improvement of 20%. In comparison, 

experts achieved 46% and 28% improvements in these measures, respectively. The 

statistical tests showed that these differences were not statistically significant. (The 

P values were 0.57 for execution time and 0.25 for memory, with N=30 in each case. 

The U values were 291.5 for time and 266.5 for memory) These results confirm that 

the semi-automated tool-based code transformations did improve performance almost 

as well as the experts manually did. 

Table 6.5: Average impacts on performance (per program) 
Execution Time 
Improvement 

Memory Usage 
Improvement 

Experts 46% 28%
 
Tool 42% 20%
 

Although the expert solutions were better on average, in half of the programs 

(15/30) the expert solution and the tool solution were within 5% of one another, in 

terms of execution time and memory usage. Furthermore, 7 of those 15 solutions were 

within 1%. These cases primarily were programs with the smells as Uninitialized 

Shift Registers or No Wait in Loop, which have straightforward solutions. 
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There were four programs in which the tool solution was greatly superior (better 

than 20% difference) than the experts’ fixes. In these cases, the experts did not notice 

instances of the Terminals in Structure smell. All of these programs had that 

smell occur frequently, and removing them created the difference in the results. These 

cases highlight the potential value of SDPA even to experts. 

There were seven programs in which the expert solution was greatly superior 

(better than 20% difference) than the tool-generated solutions. Five of these cases 

were a case of the programs being completely refactored by the expert to be much 

more efficient, particularly by correcting buffer allocations, and coercion dots (i.e., 

situations discussed in Section 6.1.2). 

To summarize, the results from the analysis in Sections 6.1.1-6.1.6 indicate that 

SDPA usually does an accurate job of finding performance problems, that Smell-

Aided Profiling improves this accuracy, and that tool-based transformations improve 

performance nearly as well as experts do. The main limitations are related to the 

tool’s inability to completely rewrite algorithms. In most other ways, the tools are 

nearly as good as having an expert at hand to assist with diagnosing and fixing per

formance problems. The sections below evaluate how well this tool-based assistance 

helps users in practice. 

6.2 Smell-driven performance Analysis User Study 

The first user study performed was a laboratory study to evaluate the effectiveness 

of the first SDPA prototype without Smell-Aided Profiling, as well as to uncover op
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portunities for future prototype enhancements. This within-subject study evaluated 

the seventh research claim, which is: “SDPA helps end-user programmers to more 

quickly and successfully find and diagnose performance problems.” 

6.2.1 Methodology 

Participants were recruited by sending emails to Application Engineers at National 

Instruments. These individuals are the primary support staff for customers who 

have problems with LabVIEW. Participants were required to have at least a year of 

LabVIEW programming experience, with the intention of ensuring that participants 

would have a plausible chance of finding and diagnosing performance problems even 

without the prototype’s help. Through this process we recruited 13 participants. The 

study occurred at National Instruments’ Campus. 

Every participant was given two program-troubleshooting tasks, each involving 

a different LabVIEW program. They were informed that each program had one 

performance issue, and that their task was to verbally identify the problem and the 

solution. They were not required to actually implement the fix, but could do so if 

they desired. To begin the study, a short tutorial about the prototype was given to 

each participant. The tutorial included information about what the prototype was 

designed to do and what kinds of information would be displayed to the user. 

Participants had a total of 40 minutes to do both tasks, and they had access to 

the smell detection prototype tool, without hotspot analysis, for only one of the two 

tasks. For the other task, they used the basic LabVIEW IDE. The study was set 
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up with a within-subject design to control for between-participant skill differences. 

In addition, the program ordering and condition ordering (with/without prototype) 

was counter-balanced to control for any between-program differences in difficulty and 

between-task learning effects. 

The two LabVIEW programs used for this study were based on real-world exam

ples of LabVIEW programs that contained performance problems. These programs 

were found on the LabVIEW forum2, where a user had asked for help with trou

bleshooting the problem. In order to increase the likelihood that the participants 

would complete tasks in the allotted time, even without access to the prototype, the 

posted programs were slightly modified so that the effects of the performance prob

lem were more pronounced when the participants were debugging them. Specifically, 

these two programs as posted had demonstrated the Build Array in Loop and 

Multiple Array Copies smells, respectively, which eventually caused very slow 

execution within a few minutes. To cause the problem to be more evident the array 

size was increased in each program so that the problem occurred within seconds. 

Altering the real-world programs in this fashion did not bias the study in favor 

of the prototype because the alterations did not affect the behavior of the smell 

detectors. If anything, they made it easier for participants to complete tasks without 

the use of the prototype, because the performance problems became more obvious. 

After the participants had finished debugging the two programs, they were given a 

brief questionnaire to determine their thoughts on the tool in general and how helpful 

it was to the debugging process. In addition, they were asked for suggestions on how 

2http://forums.ni.com/t5/LabVIEW/bd-p/170 

http://forums.ni.com/t5/LabVIEW/bd-p/170
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the tool could be improved as well as any issues they had with usability. For the cur

rent study, qualitative questions were used that attempted to draw out explanations 

of what was good or bad about the prototype. For example, participants were asked 

“Did the tool ever intrude on your train of thought or distract you from the task at 

hand? If so, what was distracting?” Further questions asked for specific feedback 

about the alerts, the frequency of notifications, the kind of the alerts and advice 

given, the effectiveness at drawing attention to the performance problem, and the 

prototype’s usefulness overall. These answers were analyzed with thematic analysis, 

followed by another researcher’s inspection of all categorization results to assess face 

validity. 

6.2.2 Quantitative evaluation 

As participants attempted to find and verbally report each problem and its solution, 

four measures of success were manually recorded: whether participants found each 

problem, how long finding the problem took, whether they found the solution after 

finding the problem, and how long finding the solution required. Each program in 

this study had one performance problem, for which there was one clearly correct 

solution, which was based on forum posts uploaded by experts. When participants 

gave incorrect answers (e.g., stating that the problem was in a place other than 

the real problem), they were told that this was incorrect and to keep looking. The 

participants could give up and move on, if desired (e.g., due to frustration). It should 

be noted that the participants were actively trying to find the problem and were not 
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simply pointing at areas of code and asking if that was causing the problem. 

Once the data was collected from all of the participants, these measures were 

analyzed statistically. Fisher’s exact test was used to test two null hypotheses about 

success (H1 and H2, below) and the Mann-Whitney U test was used to test two 

null hypotheses about time taken by participants (H3 and H4, below). The Mann-

Whitney U test was used instead of a t-test because of the small sample size (13 

participants). 

Null hypotheses, tested with one-tail statistical tests: 

H1: Participants will be as likely to find performance problems without the 

tool as with the tool. 

H2: Participants who find performance problems will be as likely to find solu

tions without the tool as with the tool. 

H3: Participants who find a performance problem will do so at least as quickly 

without the tool as with the tool. 

H4: Participants who find a solution (after finding a problem) will do so at 

least as quickly without the tool as with the tool. 

Overall, the study showed Smell-driven performance analysis had a large impact on 

participants’ ability to diagnose problems (Table 2). Participants found the problem 

in 100% of the tasks with the tool, compared to only 38% in tasks without the tool. 

This difference in success rates was statistically significant (p < 0.001). Moreover, 

when they found the problem, they took only 4.49 minutes with the tool compared 

to 6.85 minutes without it, although this difference was not statistically significant 

(at p < 0.05). 
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Participants were able to find the solution in 92% of the tasks with the tool 

and only 60% without (not significant at p < 0.05). These numbers do not include 

those tasks were the user was not able to find the problem to begin with. When 

they did successfully describe a solution, they were able to do so faster with the 

tool, taking only 0.83 minutes compared to 2.37 minutes, a statistically significant 

difference (Mann-Whitney U=32, p < 0.001). There were no significant differences 

between tasks. In short, participants were more likely to find problems with the tool, 

and having done so, they were faster at finding solutions. 

Table 6.6: Effectiveness of participants with and without the prototype tool 
With Tool Without Tool 

Success Rate at finding problem 100% (13/13) 38% (5/13) 
Average time for finding problem (Minutes) 4.49 (13 cases) 6.85 (5 cases) 
Success Rate at finding solution 92% (12/13) 60% (3/5) 
Average time for finding solution (Minutes) 0.83 (12 cases) 2.37 (3 cases) 

6.2.3 Qualitative Feedback 

In addition to compiling the times and success rates of the users, their opinions about 

the tool were also gathered in a questionnaire given after the study. These questions 

were qualitative in nature and were focused on gathering as much information as 

possible about the participants’ views of the system and if it was helpful. For example, 

users were first asked if they found the feedback provided by the tool helpful, if they 

answered yes they were prompted to describe how it was useful. Similarly, if they 

said it was not useful, they were asked to describe why. 
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In terms of usefulness, 100% of participants said that the tool was useful in helping 

them complete the task. Eight of the thirteen participants said that the tool drew 

their focus immediately on the problem areas of the program, which was helpful and 

helped them speed debugging efforts. Three participants specifically mentioned that 

it alerted them to areas that they hadn’t even considered to be problems, and two 

participants stated that the tips for improving the program and good programming 

practices were the most useful part. Two participants commented on the fact that 

they felt the tool would help most LabVIEW users write better code. 

Finally, one participant commented that the tool might save development time. 

In particular, this person felt that many users create code that has memory issues, 

but they often do not notice these issues until much later in the development process, 

at which point it takes a lot of effort to go back and refactor the code to get rid of 

those issues. By having a tool that immediately pointed out areas in the program 

that might mismanage memory the issue could be solved immediately, which could 

save a lot of time and effort. 

In addition to finding the tool useful, all of the participants stated that the tool 

made LabVIEW easier to use. In particular, eight of the participants stated that the 

tool made it easier for them to find the performance problems and that it allowed 

them to do much less analysis of the code and focus more quickly on the area that 

contained the problem. One participant mentioned that instead of having to run the 

code, the tool provided immediate feedback that made it simpler to narrow down the 

area of the code to focus on. 

One unexpected finding was that for several users, the tool served as a way to 
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remember the training that they had already taken. Two participants stated that 

it was a quick reminder of problem areas that LabVIEW has and once they knew 

the exact issue they were able to remember ways to solve the issue in the task. One 

participant mentioned that it reminded them of good practices, but often forgot to 

implement in their programs. 

While the tool was found to be useful and made LabVIEW easier to use, that did 

not mean that it was issue-free, as participants mentioned two issues that needed to 

be addressed. Four of participants said that more assistance in fixing the performance 

problem would be beneficial. In particular, the notification and explanation provided 

by the tool was too general and did not apply to the specific problem they were trying 

to solve. Most said that having links to white papers containing more information 

about the problems and more detailed ways to fix them would be helpful. 

Several participants did not want to be forced to use the tool, with one even 

cautioning that making this tool pop up like Clippy would make the tool a hindrance. 

In total, eight of the participants mentioned that they would prefer to a way to opt 

in to the tool’s notifications (and be able to also opt back out) or never have the tool 

explicitly notify them at all. 

Finally, three participants mentioned that they were confused with some of the 

suggested fixes. The users understood where the issue was, but the suggestion pro

vided was not enough for them to easily determine what the solution should be, so 

they had to do a lot of searching in the LabVIEW help to determine what the sug

gestion actually meant. Adding links to more information about the problem as well 

as examples might help clear up the confusion. 
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This feedback helped to guide several of the minor user interface improvements 

mentioned in Section 5.5. These included, for example, adding further details about 

why smells impact performance, how to fix smells and related transformations, and 

links to white papers. 

6.3 Complete Tool Study 

The second user study was designed to evaluate the entire system, including SDPA, 

Smell-Aided Profiling, and semi-automatic transformations. This study consisted of 

having the users first find problems in LabVIEW code and then attempt fix the 

problems. This tested both the find and the fix portion of the system, and was used 

to evaluate claim 8: “Smell-based performance tools (including SDPA, Hotspot, and 

transformations) together help end-user programmers to more quickly and successfully 

fix performance problems.” 

6.3.1 Methodology 

Like the previous user study, this study was conducted at National Instruments head

quarters and involved Application Engineers. They were again recruited by sending 

emails to all Application Engineers at National Instruments. Participants were re

quired to have at least a year of LabVIEW programming experience, with the in

tention of ensuring that participants would have a plausible chance of finding and 

diagnosing performance problems even without the tool’s help. For this study, 32 
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participants were recruited. 

To begin the study, a short tutorial about the prototype was given to each par

ticipant. The tutorial included information about what the prototype was designed 

to do and what kinds of information would be displayed to the user. It also showed 

users how to run different parts of the tools and how to access all of the relevant 

information. 

Every participant was given two program-troubleshooting tasks, and each task 

involved finding and fixing two LabVIEW programs. They were informed that each 

program had performance issues, and that each task was to find and fix the problems 

in the task’s programs. For one task, the participant could use the IDE with SDPA. 

For the other, the participant only used the LabVIEW IDE without SDPA. 

The four LabVIEW programs that were used for this study were real-world Lab-

VIEW programs that contained performance problems that had been found on the 

LabVIEW forum3 . Each participant was given a description of the task’s two pro

grams as well as any information that had been posted on the forum that described 

the symptoms of the performance problem that each program was experiencing. In 

the event that a participant had further questions about the programs, they had 

access to the forum post and any information that was contained in it. 

Each task contained one easy program and one hard program, based on the amount 

of expected work needed to find and fix the problem. Specifically, one easy program 

contained the No Wait in Loop smell, while the other had the Uninitialized 

Shift Registers smell. One hard program had the Build Array in Loop smell, 

3http://forums.ni.com/t5/LabVIEW/bd-p/170 

http://forums.ni.com/t5/LabVIEW/bd-p/170
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while the other hard program contained the Terminals in Structure smell. (Note 

that these are four of the most common smells, as shown in Table 6.1.) In the case 

of these four programs, those smells were not the only ones in the program; however, 

those were the smells that caused the primary performance problems, and fixing the 

smells would fix the symptoms that the user asked about in the initial forum post. 

The study was set up with a within-sub ject design to control for between-participant 

skill differences. The tasks were counterbalanced in terms of when they were received 

(first or second) and what treatment they were in (tool or no tool). 

Participants had a total of 20 minutes to do each task (a total of 40 minutes). 

Participants were directed to begin with the easy program of the task. If at any time 

users wanted to stop debugging a program, they were allowed to do so. If they were 

on the first program of the task, they could then begin debugging the second program. 

They were not allowed to go back to the first program once they started the second 

program of a task. The task time limit was strict, and participants were told to stop 

debugging once the 20 minute time limit had been reached for each task. This meant 

that it was possible for them to run out of time in the middle of debugging. If this 

was the case, they had to stop and move on to the second task or end the study. 

Success was measured on a per-task basis by giving 25 points when participants 

found the problem of a program and 25 points when they fixed the problem of a 

program. Each task therefore had a total of 100 possible points, 50 for each program. 

Partial credit (12.5 points) was given in cases where the participant implemented a 

fix that was not optimal, but that did improve performance; this list of acceptable 

improvements for partial credit was developed prior to the study based on the set of 
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suggestions that users had proposed on the forum for fixing the program. As in the 

first user study, the researcher did not provide any coaching to participants about 

how to fix the problems, but participants could ask if they had yet succeeded so they 

could determine whether they could move on. 

After the participants had finished the study, they were given a brief questionnaire 

as in the first user study to gather their opinions on the tool, its usefulness, and any 

problems they experienced with it. 

6.3.2 Quantitative Results 

Once the data was collected from all of the participants, these measures were analyzed 

statistically. The one-tail Mann-Whitney U test was used for the null hypotheses on 

success, time, and efficiency: 

Null hypotheses, tested with one-tail statistical tests: 

H1: Participants will be at least as successful debugging performance problems
 

without Smell-Driven Performance Analysis as with it.
 

H2: Participants will be at least as fast at debugging performance problems
 

without SDPA as with it.
 

H3: Participants will be at least as efficient at debugging performance problems
 

without SDPA as with it.
 

Looking at the primary measurement for success, the points given for finding and 

fixing performance problems, the prototype tool demonstrated a clear advantage over 

the normal LabVIEW IDE. The average number of points received by participants 
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using the tool was 97.66, while those who did not have access to the tool only scored 

67.19 points on average. The difference between the points data was found to be 

statistically significant (Mann-Whitney U=181 p < 0.001). Because the total possi

ble number of points was 100, these results indicate that participants were able to 

nearly perfectly complete every problem diagnosis and repair within the allotted time, 

provided that they had SDPA. 

In addition, participants spent far less time on tasks with the tool, requiring only 

5.66 minutes with the tool versus 13.28 minutes without. Because none of them ran 

into the 20-minute time limit when using the tool, but they hit the time limit four 

times when completing tasks without the tool, there would have been an even greater 

difference in task time if the study had permitted participants to take as long as they 

wanted on the tasks. The time taken to complete the total task was found to be 

statistically significant (Mann Whitney U=181 p < 0.001), indicating that the tool 

does help users debug more performance problems in less time. 

Using these two statistics, points earned and total time, the efficiency (points/minute) 

for each participant was computed. Participants using the tool had an efficiency of 

26.42 pts/min compared to only 7.14 pts/min when debugging without the tool. 

The efficiency by participant was found to be statistically significant (Mann Whitney 

U=31 p < 0.001), which indicates that the tool helped users become over three times 

(3.7) more efficient at debugging performance problems. 

Table 6.7 highlights these differences in points scored and time taken, and it 

presents additional statistics that help to explain several factors that contributed to 

differences in points scored and time taken. Out of the 32 cases where participants 
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had to find a problem using the tool, they succeeded every time. In contrast, there 

were 19 occasions where they failed to find the problem without the tool. However, 

once a participant had found a problem, regardless of tool condition, there were only 

a few occasions where they were unable to fix the problem for partial or full credit. 

Table 6.7: Summary of results 
With tool Without tool 

Summary statistics, averaged per task over all cases
 
Points scored 97.66 67.19 
Time spent (minutes) 5.66 13.28 
Average Efficiency (Points/Minute) 26.42 7.14 

Successes at finding and fixing problems
 
# successes at finding problems 64 45 
# successes at fixing problems (full or partial credit) 63 43 
# successes at fixing problems (for full credit) 60 39 

Time taken (minutes), averaged over full and partial successes
 
Finding the problem 1.09 3.56
 
Fixing the problem 1.62 1.92
 

Most of the difference in average total time between the two conditions is at

tributable to the time taken for finding problems. The time taken to fix the problems 

does not appear noticeably different between conditions, but that appeared to be due 

to the fact that the participants usually spent time reading about the potential trans

formation before applying it. In almost all cases, it appears that they read the whole 

description of why the smell was a problem, what the transformation was, and why 

that transformation would be effective at solving the issue. It is plausible that once a 

user used a transformation a few times, that there would be no need and little desire 
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to repeatedly read over this information. Therefore, the difference in total task time 

would probably be even larger over the long run in practice than what was observed 

during this experiment. 

Since the points given for partial credit was arbitrary, a sensitivity analysis was 

done on the data to ensure that did not impact the final results. To perform this 

two new data sets were created. In the first set all partial credit solutions were 

given one point and in the second all partial credit solutions were given 24 points. 

Analyzing each set then showed what would happen if the minimum or maximum 

points were given for partial credit. The points and efficiency statistics were still 

found to be statistically significant regardless of the points given for partial credit. 

Both points data sets (high and low) had the same result (Mann-Whitney U=181 

p < 0.001). For the efficient data sets, both were statistically different with the high 

points data set (Mann-Whitney U=29 p < 0.001) having a slightly different U value 

than the low points data set (Mann-Whitney U=31 p < 0.001). This analysis reveals 

that regardless of the points given for partial credits the results are still statistically 

significant. 

Tables 6.8 and 6.9, below, present statistics at an even finer level of granularity, 

breaking down the differences separately for the easy and the difficult performance 

problems. Of the 32 times that participants had to find an easy performance problem 

without the tool, they failed 10 times (for a 69% success rate). It was primarily at 

this point where the large gap opened up between the effectiveness of participants 

with the tool and without the tool, since their success rates at fixing the problem are 

comparable between conditions. (This success rate includes partial successes.) 
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Table 6.8: Easy LabVIEW programs, detailed breakdown of results 
With Tool Without Tool 

Success Rate at finding problem 100% (32/32) 69% (22/32) 
Average time for finding problem (Minutes) 0.96 (32 cases) 3.53 (22 cases) 
Success Rate at fixing problem at all 100% (32/32) 95% (21/22) 
Average time for fixing problem at all (Minutes) 0.53 (32 cases) 1.00 (21 cases) 
Average Efficiency (Point/Minutes) 46.50 (32 cases) 15.84 (32 cases) 

All of the potential transformations for the easy programs were full transforma

tions, and for the most part the participants used them. Out of the 32 cases where 

a semi-automatic transformation was available, they were applied 30 times. In the 

other two cases, the participant read the description and decided to implement a 

different solution based on the feedback provided by the tool. 

Table 6.9 shows results for the difficult LabVIEW programs, which presents a 

similar story to the one with the easy problems. Because three participants used up 

their entire allotted time struggling with the easy problem of a without-tool task, 

there were only 29 cases where a participant even began to attempt the difficult 

program of the task. They were able to find the problem only 23 times (for a 79% 

success rate, compared to the 100% success rate with the tool). As with the easy 

problems, it was again at this point where the large gap opened up between the two 

conditions. 

Investigating the transformations, there were 16 programs with a partial transfor

mation(Build Array in Loop ), and 16 with a wizard transformations(Terminals 

in Structure ). The average time to fix the Build Array in Loop with the tool’s 

partial transformation was 4.12 minutes, whereas without the tool it was 3.97 min
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Table 6.9: Difficult LabVIEW programs, detailed breakdown of results 
With Tool Without Tool 

Success Rate at finding problem 100% (32/32) 79% (23/29) 
Average time for finding problem (Minutes) 1.22 (32 cases) 3.59 (23 cases) 
Success Rate at fixing problem at all 97% (31/32) 96% (22/23) 
Average time for fixing problem at all (Minutes) 2.71 (32 cases) 2.83 (22 cases) 
Average Efficiency (Point/Minutes) 18.63 (32 cases) 9.24 (29 cases) 

utes. This was often due to participants reading the information provided by the 

tool to determine the steps necessary to complete the transformation. The average 

time to fix the Terminals in Structure with the wizard was 1.25 minutes whereas 

without the tool the average was 1.53 minutes. 

In summary, participants found and fixed more performance problems in less time 

with the tool than without. These differences were primarily attributable to the 

tool’s support for finding problems. The without-tool condition did not match or 

outperform the with-tool condition on any of the statistics computed for any of the 

tables above, including those related to fixing problems. 

Keeping in mind that participants in the study were Application Engineers and 

experienced LabVIEW programmers, it is reasonable to expect that less experienced 

programmers would struggle more than these study participants at finding and fixing 

performance problems. Thus, the tool is likely to be even more beneficial to users in 

practice than it was in this study. 
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6.3.3 Qualitative Results 

Qualitative observations and user feedback revealed important difference between 

when participants had access to the tool and when they did not. Namely, because 

participants found the problem 100% of the time when they had access to the tool, 

this allowed them to move on to fixing the issue and debugging the next program in 

the task. But lacking access to the prototype, there were several participants who 

got so confused trying to find an issue that they took the entire 20 minutes simply 

trying to discover what was going on with the program and why is was displaying poor 

performance, never moving on to the second (harder) program. After the study, when 

they were told what had been causing the problem, they groaned and commented 

that they knew that it could cause performance problems, but never thought to look 

for it. This feedback echoes the findings from the earlier study, that SDPA helped 

some participants remember their performance-related training. Similarly, in many 

instances in this study where the participants had access to the tool, they looked 

at the results and commented that it was a good reminder of what to look for in 

LabVIEW code, but that they would not have thought of it right away without the 

tool. 

One interesting observation that arose during the study, was how infrequently 

Smell-Aided profiling was used. While every participant had access to the ability 

to profile for performance, there was only one case where it was used. This may 

have been because the tool’s SDPA features led participants to the problem already, 

without any real need to run profiling. In almost all cases, the participants saw these 
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SDPA output and immediately focused on which of the identified smells most likely to 

be the real problem. Specifically, there were only three instances where participants 

got confused and began trying to solve a smell that was in the program but was not 

the cause of the performance problems. In these instances, running the profiling tool 

would have filtered the smells and informed them where to focus. There was one case 

where the participant got so far off track that this person opted to start debugging 

from scratch. After looking at the results from the tool again, this person immediately 

identified the problem and fixed it. The low use of the profiling tool suggests that it 

might not be needed in practice, on relatively simple programs. 

In terms of the questionnaire, 31 of the 32 participants completed it and answered 

questions about the prototype. Table 6.10 summarizes statistics related to usefulness, 

ease of use, and potential for distraction. 

Table 6.10: Summary of qualitative feedback about the tool as a whole 

Felt the tool was useful 97% 
Felt it made LabVIEW easier to use 94% 
Felt the tool was not distracting 90% 

A total of 30 of the 31 respondents felt that the tool was useful. More specifically, 

nine of these users highlighted the overall feedback, both in terms of finding the 

problem and the transformation, as the most useful aspect of the tool. Six participants 

thought the ability to quickly see the areas in the program that had problems was 

useful, and five felt that the tool highlighted the best practices that should be used 

when programming in LabVIEW. Four felt the semi-automatic transformations and 

the suggested changes was the most useful aspect, and three thought it was simply how 
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much time they could save while debugging code. Three mentioned that they thought 

that this tool would reduce the number of support calls that National Instruments 

received. The one participant who said it was not useful stated it might not be useful, 

given this person’s skill level, but that it “would be helpful for people not as familiar 

with LabVIEW or the programming constructs.” 

In addition, 29 of the respondents felt that the tool made LabVIEW easier to use. 

By far the most common aspect (13 participants) to cause LabVIEW to be easier to 

use was the ability of the tool to pinpoint areas causing the performance problems in 

code. Six participants felt that the ability to receive feedback about a program made 

LabVIEW easier to use and would help to reduce the number of customers that would 

have to call for support. Three felt that the transformations would reduce difficulty 

the most. Two thought that the education potential of the tool would over time help 

make LabVIEW easier to users as they learned how to avoid pitfalls. Finally, two felt 

that the ability to remind users of best practices would make it easier to program in 

LabVIEW. Of those that said it made it more difficult, one stated that at times he 

did not know what the tool was referring to and thought having a help file that came 

with the tool would have been good. The other participant actually thought that 

making it more difficult was a good thing. He stated “I think that forcing a user to 

think about this, even if it makes it more difficult, results in better code and better 

outcomes for our customers, so I don’t see ’more difficult’ as a bad thing.” 

Only three participants found the tool to be distracting. In all of these cases, they 

had complaints about the amount of data that was presented to the user and felt like 

it was too much at times or that it took up too much space on the screen. There were 



143 

several users who cautioned about the use of the tool. Much like in the first study, 

one participant explicitly asked to avoid a Clippy like interface, stating: ”Please do 

not make a paper clip that tells my VI is inefficient.” In total, five users were worried 

about the tool giving information that they might not want or need, and most (3/4) 

said that having the ability to turn off or hide the results was a necessary addition. 

In terms of other possible improvements, many users indicated a desire for better 

highlighting of the problem. While this is currently a feature in the tool, it can be 

subtle and hard to miss. In total 10 participants thought that the highlighting of 

problem areas could be improved. Many thought that drawing a colored box around 

the area would be beneficial and make the tool easier to use. 

In addition, the tool UI describing the smells was often not large enough to fit 

all of the information, particularly for the more complex smells. To see everything, 

the participants had to either scroll through the frame, or pop the frame out so that 

it hovered over the main IDE. Neither of these were optimal, and some participants 

struggled with how to best use this and how to see all the information that they 

wanted. This did not seem to deter them from using the tool, or from successfully 

debugging the program, but it is something that should be looked at in the future. 

One final weakness in the system that was observed, and commented on by several 

participants, is that if there are multiple smells of the same type they are all shown 

to the user. In one program, there were four instances of the Uninitialized Shift 

Register smell. Several participants noted that it would be better to only see a 

single entry in the table that summarizes the smells detected in the program. Once 

the smell was clicked it could potentially highlight all instances of that smell in the 
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program (or open up like a tree control). In addition, they had to click on each smell 

to apply the transformation for that instance. Since all the transformations were the 

same, the participants preferred the option to be able to fix all instances of a smell 

at the same time. 
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Chapter 7: Conceptual Generalizability 

The methods detailed in Chapters 4 and 5 were implemented in another graphical 

language in order to understand whether the ideas generalized beyond LabVIEW. 

When SDPA was implemented in LabVIEW, experts were interviewed to gather a 

set of patterns that frequently caused problems for end-user programmers. With 

another dataflow language oriented toward end-user programmers, Yahoo! Pipes [38], 

researchers have already taken the time to become experts at using the programming 

language and have published papers on ways to improve performance in programs. 

This existing research offered a basis for examining how well the smell-based approach 

described in this dissertation can conceptually encompass existing approaches. This 

existing work was used as a foundation to determine a set of problems that could 

be recognized as smells. Once this set of patterns was collected, a prototype were 

implemented to run on Yahoo! Pipes programs to detect the existence of smells and to 

apply transformations to fix them. The subsections below present some background 

on Yahoo! Pipes, the existing research on performance in this language, and the tools 

that were prototyped to find and fix smells that were defined based on this existing 

research. 
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7.1 Background on Yahoo! Pipes 

Yahoo! Pipes enables users to create programs that can retrieve, transform, and/or 

combine web data sources to produce a feed of items [38][97]. For example, a typical 

Pipe might retrieve a list of articles from an online newspaper, retrieve another list 

of items from a second online newspaper, merge the lists, filter them to only include 

news that mentions Microsoft in the title, and then displays the result. Figure 7.1 

shows a Yahoo! pipe that fetches many different feeds to gather information about 

the iPhones and iPod Touch and display it all in one output. 

Figure 7.1: A Yahoo! Pipe example that gathers data from many feeds 

The language offers a variety of primitives for operating on data, a few of which 

are shown in Figure 7.1. In this figure, the Union module combines all of the fetched 
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feeds into a single stream so that they operated on at the same time. Once this is 

done, the Pipe applies a Filter to the data to remove unwanted information. The 

Filter module can be configured to either block certain information as shown in 

Figure 7.1 after the Union or to only permit specific information, which happens 

in the Filter before the Union (bottom middle in the Figure). Another form of 

filtering, Unique is applied, which will remove duplicates. After all the filtering has 

been performed, the program sorts the data with a Sort module. This module will 

reorder the data by the specified argument, in this case publication date. 

The other popular operators that are found in Yahoo! Pipes are Reverse, which 

will flip the order of the data, Sub-Element which will return only one element for 

every item in the feed, and Regex, which is used to find and replace strings in the 

feeds with a user specified replacement. 

As with LabVIEW, performance can sometimes become a concern with Yahoo! 

Pipes. Recent research [58] analyzed mashups and found that very few of them 

will perform optimally. Previous research [90] has shown that 81% of pipes have a 

deficiency. While these deficiences are not necessarily related to performance, they 

do show that users struggle to create programs that execute optimally. Around 66% 

of these pipes are reused [90], and many pipes are designed to run hundreds (or more) 

times in a single day [59][100]. This means that existing performance problems can 

be exacerbated over many executions or perpetuated through reuse. Finally, many 

mashup systems have a limited amount of resources due to the online nature of their 

interface [34] meaning that even “small” performance problems can cause significant 

impact. 
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Yahoo! Pipes is a suitable context for testing the generalizability of SDPA and as

sociated tools not only because of the concerns about Yahoo! Pipes performance, but 

also because the language is a visual dataflow language, like LabVIEW. Therefore, it 

potentially accommodates the general approach discussed in Chapter 3. Specifically, 

programs created in this language can be parsed into a structure that can be stat

ically analyzed to identify specific combinations of program primitives, which could 

potentially correspond to performance smells. In addition, the parsed structure can 

be modified, potentially offering a means of semi-automatically eliminating smells. 

Finally, the visual representation of the code as a dataflow program offers locations 

on the screen where icons or other warnings could potentially be displayed. 

7.1.1 Existing work on Yahoo! Pipes performance 

Two specific projects have investigated performance in Yahoo! Pipes [34][100], while 

another [90] investigated maintainability smells that may influence performance. An

other pro ject [59] is designed to refactor specific patterns to optimize performance, 

but does not notify users as it simply performs the changes automatically. 

The first of these pro jects [34] aims to improve performance by applying two 

heuristics. One heuristic works to remove common components or merge them to

gether. The second checks a pipe to determine if it is in canonical form, which 

represents the best possible format for the optimal performance of specific modules. 

One example of this is that a filter module should always occur before a sort module 

to reduce the size of the feed. These heuristics were then applied to several data sets 
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that contained 2000-10000 mashups. The researchers found that these heuristics were 

able to reduce the delay during the execution, with the claim that delay was reduced 

by 2550 seconds over the entire set of mashups. The specific baseline and percent 

improvement were not given. 

The second of these projects [90] focuses primarily on finding maintainability 

smells in Yahoo! Pipes, but some of these smells might have implications on per

formance. This work created a tool that can search a Pipe for a set of smells and 

then apply a transformation. However, no performance metrics were measured, so it 

is not clear if any of these smells impact performance. This work did show that by 

cleaning up the maintainability smells in a pipe, the program is easier to understand 

and read, which can be important due to the high number of pipes that are reused. 

Upon careful examination, several of the smells that this tool detected may impact 

performance, particularly the smells that focus on redundant code and combining 

operators. Overall, it was found that 81% of the investigated 8,051 Yahoo! Pipes had 

some form of deficiency (had a smell detected). 

The third of these projects [100] focuses on creating a performance metric and 

scheduling framework in improve the memory utilization of mashups, such as Ya

hoo! Pipes. This approach first analyzes the original mashup for the memory and 

time used, and calculates the Product of Memory and Time (PMT). The scheduling 

framework, which implements lazy starts for modules, is run to try and find the best 

possible combination of starting times for specific modules so that PMT will be min

imized (the program will use less time and/or memory). By picking the correct time 

to start certain modules, this research showed a performance improvement of 29% by 
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avoiding blocking time and wasteful memory consumptions. 

The final pro ject [59] aims to create the optimally performing version of a pipe 

by analyzing a program and refactoring it automatically to generate several different 

versions of the pipe. These versions are compared to determine the most optimal. 

The researchers introduce an algorithm, Optimal DataFlow Selection (ODFS), that 

will apply a set of six refactorings to the pipe and then analyze the resulting versions 

to determine the ones that executed optimally (best runtime). This was then tested 

on a set of mashups that they created containing different numbers of modules to test 

the system. The version that was selected as optimal was compared to the original to 

determine the difference in run time. In one example, they were able to show a 41% 

improvement, which may have partially been due to the feed size of 10,000 elements. 

7.2 Smells for Yahoo! Pipes 

The first two of the projects above [34][90] provided several insights about perfor

mance problems that could be detected with four smells discussed in detail below. 

The third approach above required modifying the scheduler [100], meaning that it 

aimed at improving the Yahoo! Pipes environment rather than the end-user pro

grammers’ code within that environment, so no smells were derived from that project. 

Because smells could be defined (below) that encompassed two out of three of these 

existing approaches, this indicates at least at a conceptual level that the smell-based 

approach can subsume some but not all of existing approaches aimed at improving 

performance in Yahoo! Pipes. 
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7.2.1 Delayed Filtering 

One of the primary tasks in most Yahoo! Pipes is to gather data from feeds and 

modify the resulting data. Once the data is obtained, users can apply filters to it to 

reduce the data to contain only what they desire. 

Hassan et al. [34] showed that filters can unnecessarily create performance prob

lems when they are applied later than necessary. To take a simple example, suppose 

a news feed returns N items that are then passed through two other modules, A and 

B. Module A performs some operation on the items such as sorting, and Module B is 

a Filter that removes approximately 90% of the items. Then passing data through 

Module B and then Module A will offer much better performance than passing data 

through Module A and then Module B. The reason is that if B filters first, then the 

other module only needs to operate on 10% of the items. This could produce a sizable 

performance improvement, especially since most sorting algorithms are slower than 

O(N). This smell was also mentioned in [59] as a pattern that they recognized as 

problematic. They showed one instance where moving the Filter module earlier 

improved performance by 41%. 

Figure 7.2 shows a slightly more complex example of a real-world program ex

hibiting a similar performance problem. In this case, the pipe is filtering the collected 

feeds by a publication date. However, the filtering is happening after the feeds have 

been joined together and sorted. By applying the Filter after the Union and the 

Sort, the pipe is being forced to apply those operations to the entire, unfiltered data 

set, which increases the work that it must perform. 
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Figure 7.2: A Yahoo! Pipe containing a Filter module after a Union and a Sort 
module 

In general, this smell can be recognized as any situation where a Filter module 

consumes data after one or more modules that operate upon items in a feed but 

that do not actually change any content that a filter might recognize. Based on the 

information given in [34], there are four modules that Filter should be moved in 

front of: Union, Sort, Reverse, and Sub-Element. 

The transformation to fix an instance of the smell is to move the Filter module 

above these modules that may operate on the dataset. This may require cloning the 

filter module so that it can be applied to multiple incoming feeds. For example, Figure 

7.3 shows the transformed program (from Figure 7.2) after the Filter module has 

been moved. 
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Figure 7.3: The transformed Yahoo! Pipe with the Filter module now located before 
the Union and Sort module 

7.2.2 Duplicate Idempotent Operators 

The second smell identified based on related work is having Duplicate Idempotent 

Operator modules. An idempotent function is any function that, if applied multiple 

times, produces the same result after the Nth application as it did after the first. 

Within Yahoo! Pipes, the idempotent operators are Sort, Union, and Filter. 

Having duplicates of these modules in a pipe can cause the program to take longer to 

execute, as it is running modules multiple times with no additional effect. This smell 

was motivated by [90], which reported that 23% of pipes have duplicate models. 

As an example, Figure 7.4 shows a Yahoo! Pipe that has two Sort modules that 

are not required. In this instance, they are exactly the same and the second one can 

be removed. It should be noted that if the second Sort module was sorting by a 

different parameter, then both modules need to remain. 
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Figure 7.4: Yahoo! Pipe showing with subsequent sort operations. The second sort 
is not necessary 

In general, this smell can be recognized as a case where the idempotent operators 

appear more than once in a given path within the dataflow graph. The transformation 

for this smell is to simply remove the second instance of the duplicate module. 

It is important to note that this transformation could potentially alter the output 

of a program, if any module in between the duplicate idempotent operators have any 

side-effects that modify the effects of the second instance of the operator. For example, 

suppose that a program applies a Sort, then a Regex that alters the field used for 

sorting, then the same Sort again. Removing the last Sort operation would alter 

the program output. In general, most if not all of the operators in Yahoo! Pipes are 

not idempotent; therefore, if any of them are in between the two duplicate idempotent 

operators, it is possible that side-effects could occur that alter the program output. 
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Consequently, if a tool for this transformation were offered to users, it would 

not be offered in a fully automated form. Instead, it would be offered as a semi

automatic transformation that the user can decide whether or not to apply, depending 

on whether the resulting alterations to the output would be problematic. (This is 

very similar to the Wizard Transformations that were introduced for LabVIEW in 

Section 5.4, which address smells that do not have a fully automated fix but rather 

offer an interactive tool guiding the user to a possible performance solution.) For 

example, the tool could present a series of screens that explain the smell, suggest 

a transformation, show the effect of the transformation, and ask the user whether 

to retain the transformed code or instead to revert to the original, untransformed 

program. 

7.2.3 Combinable Operators 

A related smell is the redundant use of modules that can be combined. One example 

of this is two Regex modules being applied in a row. Instead they could be combined 

into one multi-rule module. This smell can occur with the Regex, Sort, and Filter 

modules. This smell was created based on the work done in [34] which detected 

common components and found that combining those components could decrease the 

delay experienced. This smell was also one that was refactored by ODFS [59]. 

Figure 7.5 shows a snippet of a Yahoo! pipe that contains the Combinable 

Operators smell. In this example, there are three Filter modules that operate 

back to back. All of these modules are blocking any element of the feed that matches 
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Figure 7.5: Yahoo! Pipe showing with combinable filter operations. All three filter 
modules can be combined 

certain criteria, which are set when the pipe is executed. 

The smell can be detected any time that the output of a combinable module of a 

particular type (Regex, Sort, or Filter) is fed directly into the input of a second 

module of the same type. For example, a Filter module that blocks any element 

that matches a criteria and Filter module that permits any element that matches 

a criteria cannot be combined. The transformation for this version of the smell is 

to combine the two redundant modules and use the arguments for both in the new 

version. Figure 7.6 shows the transformation applied to the above pipe. 
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Figure 7.6: Yahoo! Pipe showing with combined filter operations. All three filter 
modules have been combined to one 

7.2.4 Noisy Modules 

The Noisy Modules smell involves checking the modules in a pipe for any unnec

essary fields. This smell was mentioned in [90] and makes pipes harder to read and 

less efficient to execute. This smell is detectable by looking at the fields of a module 

and determining if they are 1) empty or 2) duplicated. Figure 7.7 shows an example 

of two modules that exhibit this smell. The Fetch Feed module (on top) contains 

two feed fields that are the same meaning that the feed is fetched twice. The URL 

Builder module (on bottom of image contains an empty field, in this case the field 

that says text indicating that text can be added if desired. 

The transformation for this smell is to remove the useless field(s). For example, 

the Fetch Feed module in the above figure would only have the first two fields after 

the transformation and the URL Builder module would have no field under “Path 
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Figure 7.7: Yahoo! Pipe snipper showing two Noisy Modules. The Fetch Feed module 
(top) contains a duplicate field, while the URL Builder module (bottom) contains an 
empty field 

Elements”. 

7.3 Prototype 

A prototype tool was implemented that could find and fix the performance smells 

described above. To create the tool, the framework that was used in [90] was acquired1 

and modified to detect the performance smells discussed above. 

This framework collects the JSON representation of a pipe by sending a load pipe 

request to the Yahoo! Servers for a specified Pipe ID. For this prototype, detectors 

were created for the four performance smells that would look through the JSON for 

specific patterns and print out which smells were detected and which modules were 

affected. 

As an example, the Delayed Filter smell would be found by looking at a Filter 

Module and finding the parent. The module type of the parent is checked to determine 

1http : //www.cs.iastate.edu/ kstolee/Ref actoringM ashups.html 

http:www.cs.iastate.edu
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if it is one of the four offending modules. If it is, then the a smell has been detected, 

otherwise, the program will check the parent of that module and continue checking 

until a source module, most likely a Fetch, is reached. The last module that is 

either a Union, Sort, Reverse, or Sub-Element will be noted for use in applying 

transformations. 

For each of the four smells, a transformation was created that would remove the 

problem. Since Noisy Module was an already existing smell in this framework, the 

detection and transformation was not changed. Once the transformations have been 

applied, the JSON representation can be reloaded to the Yahoo! servers so that an 

actual pipe will be created. This pipe can then be run to determine the performance 

improvements from the transformations. 

7.4 Running the Prototype 

To verify that the prototype was able to successfully run on Yahoo! Pipes programs, 

100 programs were collected to test from the “Popular Pipes” section of the Yahoo! 

Pipes repository2 . To gather 100 valid pipes, 108 were retrieved, as 8 of the pipes 

contained modules that no longer existed and would not load. 

7.4.1 Smell Prevalence 

The prototype performed well on all of these test cases. The SDPA prototype was able 

run successfully on 100% of the pipes in the this collection, within which it detected 

2http://pipes.yahoo.com/pipes/pipes.popular 

http://pipes.yahoo.com/pipes/pipes.popular
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97 smell instances. In total, 34 of the 100 Pipes had a smell that was detected. For 

each smell detected, the tool printed out the module that was affected as well as the 

smell that was detected. Table 7.1 details the prevalence results for each detectable 

smell. 

Table 7.1: Prevalence of smells detected by SDPA in 100 Yahoo! Pipes 
Smell Total Number 

of Instance 
Unique Pipes 
with Smell 

Noisy Module 45 15 
Delayed Filter 22 15 
Combinable Operators 19 7 
Duplicate Idempotent Operators 11 4 
Total 97 34 

Noisy Module was by far the most detected smell (46% of all smells), but the 

average number of instances per pipe (3) was high and thus it occurred in the same 

number of unique pipes as Delayed Filter. In total, these two smells made up 69% 

of the total smells that were detected by the SDPA prototype. 

Combinable Operators also had a high average number of instances per pipe 

(2.7), and it was rare to find this only once in a pipe. Duplicate Idempotent 

Operators was detected 11 times, though this high number was due to 7 instances 

occurring in one pipe. 

7.4.2 Performance Impact of Transformations 

Once the smells were detected, the applicable transformations were applied to fix 

each smell. This was done to each individual smells to determine the impact of each 
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specific transformation. The new pipe was then run to determine the impact of the 

transformation. For this evaluation, only execution time was gathered, since Yahoo! 

does not provide memory information for pipes. 

Table 7.2 shows the average performance impact for each individual smell instance. 

Delayed Filter had the largest impact on execution time with nearly a 44% increase 

on average. Noisy Module also showed great improvement when the transformation 

was applied. The others had less of an impact, with Combinable Operators only 

improving performance by 9% on average. 

Table 7.2: Performance Improvements of transformations on detected smells in 100 
Yahoo! Pipes 
Smell Average Performance 

Improvement 
Delayed Filter 44% 
Noisy Module 34% 
Duplicate Idempotent Operators 18% 
Combinable Operators 9% 
Average over all smell instances 29% 

As mentioned in the previous subsection, the top two smells, Delated Filter and 

Noisy Module, made up 69% of the detected smell instances. These smells were 

also the top two in terms of average performance improvement. 

Combinable Operators improved performance by 9%, and the majority of the 

instances barely improved the performance at all. 
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7.4.3 True and False Positives 

The smell instances detected by the Pipes SDPA prototype were also analyzed to 

determine how many were false positives and did not actually impact the performance 

of the pipe. A detected smell was said to be a false positive if it had less than a 15% 

impact on the execution time of the pipe. Table 7.3 shows the results of this analysis. 

Table 7.3: False Positive smells detected by SDPA in 100 Yahoo! Pipes 
Smell Total Instances 

Detected 
False Positives False Positive 

Rate 
Delayed Filter 22 7 32% 
Noisy Module 45 12 27% 
Duplicate Idempotent 11 4 36% 
Operators 
Combinable Operators 19 14 74% 
Total False Positives 97 37 38% 
Total False Positives 78 23 29% 
without Combinable 
Operators 

The top three smells in this table all had fairly similar numbers in terms of false 

positive rate, however the final smell, Combinable Operators did not fare well. 

14 of the 19 detected instances were false positives, and 12 impacted the overall 

performance by 3% or less. Combining operators still required the pipe to perform 

the actions, and evidently the time saved by removing a module was minimal. 

The overall false positive rate was 38%. It is possible that this number could 

be reduced further by smarter smell detection. For example, the false positives for 

Delayed Filter were primarily caused by Filter modules that were using the 

“permit” argument instead of “block”. It appeared that these modules did not block 
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many elements in the feed and so moving the filter has less impact on the overall 

performance. 

7.4.4 Evaluation Summary 

The successful application of smell-based analysis and transformations, to detect pro

gram structures known from earlier research to be problematic from a performance 

standpoint, shows that the methods described in this dissertation can encompass these 

existing approaches for detecting and correcting performance problems in end-user 

dataflow programs. 

The SDPA prototype for Yahoo! Pipes was able to detect performance smells and 

apply transformations to quickly fix the issues. Overall, the tool was able to improve 

the pipes by an average of 29%, which is comparable to the improvement in [100] 

(28.65%). However, the SDPA prototype does this without requiring the scheduler to 

be rewritten and puts the power in the hands of the users by allowing them to choose 

which smells should be fixed. 
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Chapter 8: Conclusions and Future Work 

Performance problems in data flow code are very difficult to debug for end-user pro

grammers who lack the experience and knowledge to correctly find and fix the prob

lems. These people have few options for assistance other than expensive customer 

support or posting on their questions on forums that have a low rate of solutions and 

a highly variable response time. This thesis has described Smell-Driven Performance 

Analysis, which detects common performance smells and gives end-users the ability 

to quickly and efficiently fix the issues. 

This work modified the idea of maintainability smells and, drawing upon the 

knowledge of expert LabVIEW programmers, developed the idea of performance 

smells. These smells were used to detect common problems and to aid end-user 

programmers in finding regions of the code that may be causing poor performance. 

Once these smells have been detected, semi-automatic transformations were provided 

that help users fix these issues. 

Several evaluations performed on real world examples showed that the smells 

detected by SDPA are prevalent in real LabVIEW code and that SDPA missed very 

few of the optimizations performed by experts. In addition, SDPA showed a false 

positive rate of only 32%, and the number of false positives was reduced by 50% with 

the introduction of Smell-Aided Profiling. 

Real world examples were also used to evaluate the transformations that are sup
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plied by SDPA and the performance improvements that they create. The transfor

mations on average improved the execution time by 42% and the memory use by 

20%. This was comparable to the 46% and 28% improvements shown by the opti

mizations performed by experts. This indicates that SDPA can achieve nearly the 

same performance improvements as experts, without requiring an expert to look at 

the code. 

SDPA was also evaluated through two user studies to determine how well it helped 

actual users find and fix performance problems. Participants using the tool were 

able to find problems quickly, and most noted that the ability to pinpoint potential 

problems saved time. In terms of the total debugging process, participants using 

the tool were over 3 times more efficient when debugging performance problems then 

those using the normal LabVIEW IDE. 

Finally, it was shown that SDPA is also applicable in other dataflow languages, 

as smell detection and transformations were implemented in Yahoo! Pipes. This case 

study showed that the ideas described in this thesis are generalizable and can be 

implemented in languages similar to LabVIEW. 

8.1 Future Work 

There are two types of work that could be pursued based on the research presented 

in this thesis. The first type is incremental changes to the tool or methods, while the 

second is more ambitious and looks at different ways this research could be applied 

to other languages or in other situations. 
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8.1.1 Incremental Improvements 

There are several small areas that could be done to improve the tool and the methods. 

While these suggestions are incremental improvements on the existing work, they are 

based on discoveries made during the evaluations and would improve the tool and 

likely make it more effective at helping End-users. 

8.1.1.1 Studying Adoption 

One aspect of creating new tools is that users may not adopt them. Users often 

have techniques to debug their programs and it may be hard to get them to try new 

methods that they aren’t sure of. A further study could investigate if users adopt 

the tool into their daily work practices, as well as finding ways to aid in the adoption 

process. 

To investigate this, a field study could be performed where the LabVIEW IDE 

with SDPA is given to users for a month. During this time, users actions would be 

tracked to determine when they used the tool as well as how helpful they found the 

results to be. Once the study is completed, the data could be analyzed to determine 

if it was adopted by the participants. In addition, participants could be asked about 

the tool, and better ways to make the results noticeable and easy to understand. 

This is particularly important since there were cases in the user studies where 

participants did not use the tools, especially Smell-Aided Profiling. This study would 

definitively show when certain parts of the tool are used as well as cases when they 

would be beneficial but are not used. This information could improve the user in
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terface by revealing better ways to notify users or which notification methods do not 

work. 

8.1.1.2 Does this aid Learning? 

During the complete tool study, it was clear that most of the participants took the 

time to read the information the tool provided on a given smell, as well as the pos

sible transformation. One hypothesis is that providing this information to users will 

help them learn about the potential pitfalls while programming and help avoid these 

problems in the future. This could be evaluated with a field study that tracks users 

over time (perhaps one month) to see if the use of known bad smells decreases over 

time after exposure to the information provided by the tool. 

8.1.1.3 Improved User Interface 

In the user studies, there were several suggestions from participants to improve the 

highlighting of the smells. Currently, when a user clicks on the smell instance in 

the table it flashes briefly in the program and then remains selected (indicated by 

a dashed line around the node). Several participants felt that this was not enough 

and that it could be made easier to find the smells. One suggestion was to draw a 

colored, slightly opaque box around the node or nodes causing the problem; another 

was to make the current action last longer and be more pronounced so that it stood 

out. While this did not hinder participants from finding the smells, it could make it 
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easier for users to notice the smells in a given program. 

Another improvement that could be made is to the smells table. In the prototype 

all the instances of a smell were given to the user. In some cases this meant seeing 

several identical messages, all for a different node. Clicking on one of the messages 

would highlight one node, and to find the location of all such smells the messages had 

to be handled separately. Participants felt that this could be streamlined by having 

one message for all instances of a certain smell. Clicking on that message would 

highlight every location of that smell in the program. The message could be expanded 

to select a single instance if desired. In addition, participants mentioned that having 

the ability to apply a transformation to all instances of a smell would decrease the 

amount of time spent fixing the problem, so this could also be a worthwhile addition. 

8.1.1.4 Better Profiling 

While profiling was not widely used in the study, there is still a place for it, particularly 

for programs that will be run on real time systems or FPGAs where the amount of 

memory is limited and every little bit matters. There are improvements that could 

be made to the profiler that may improve its effectiveness. One issue is caused by 

LabVIEW’s inherent parallelism. Consider the example of two loops that execute in 

parallel. If one of the loops contains a smell, the data gathered by the timing probes 

will include timing and memory information for the execution of both loops (since 

they operate in parallel). 

Another profiler improvement that could be implemented is to add profiling within 
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structures. Currently, the prototype does not profile inside of structures. This means 

that if a structure has two smells, one that causes a problem and one does not, the 

profiler will not be able to distinguish that one of those smells is a false positive and 

will report both to the user. Profiling inside the structure could indicate the actual 

smell that caused the problem, further reducing the false positives detected. 

8.1.1.5 User Added Smells 

One aspect that could be very beneficial would be allowing users to create their own 

smells and transformations. This would allow experts to create pattern/transformation 

combinations that could be installed by novice users. This would allow the tool to be 

highly flexible in the types of problems that could be detected and fixed. 

8.1.1.6 Integrating Transformations with the Compiler 

It is possible that some of the transformations performed by the tool may be more 

applicable if they were automatically applied by the compiler. This is particularly the 

case for the transformations that didn’t require any input from the user to be applied. 

For example, when Redundant Operations are detected, it may be simpler to have 

the compiler remove them from the execution rather than inform the user. 

It would be worth investigating what percentage of transformations could be au

tomatically applied by the compiler and what extent this changes the performance of 

the program. It is also possible that this removes too much say from the user. Many 
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of the transformations are not always wanted or needed. For example, a user may 

want to run through an array as fast as possible with a loop. Having the compiler 

automatically add a wait would mean that would no longer be possible. Future re

search could investigate which smells could be automatically transformed with the 

compiler and which require a users decision to be applied to the code. 

8.1.2 Further Research Applications 

In addition to the incremental extensions described above, there are several applica

tions for this research that could prove fruitful. 

8.1.2.1 Extension to other Graphical Languages 

While the prototype for this research was created in LabVIEW, the generalizability 

evaluation showed that these methods can be applied to another graphical language. 

Future work could look at the best way to implement these ideas in those languages. 

Creating tools that could help end-users find and fix performance problems in a 

variety of languages would have the potential to help end-users create programs that 

run more efficiently and give them the ability to do their jobs quickly and easily 

without having to worry about their programming skills. 
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8.1.2.2 Checking for Additional Types of Problems 

In addition to extended this research to other languages, it could also be extended 

to other types of problems. Performance problems was one area where little research 

had been done and was ripe to be investigated, and there are several similar areas. 

The first is checking for misuse of Dataflow concepts. Many LabVIEW users 

reportedly try to create programs that are similar in style to textual code. This fre

quently means that the programs they create do not take advantage of the unique 

aspects of the language and make them harder for understand and read. The tool 

could be extended to check for a set of patterns that indicate poor dataflow pro

gramming. To a certain extent, the existing tool checks for this as the smells Too 

Many Variables and Sequence Structures are often found when a user is trying 

to code in a manner similar to textual languages. Talking to AE Specialists could 

reveal more patterns that violate dataflow concepts or decrease readability or under

standability. These patterns could then be detected using the methods in this thesis 

and transformed at the users’ behest. 

A second type of problem that could be checked for using this method is un

necessary code. On the National Instruments LabVIEW forum, experts often poke 

fun at “Rube Goldberg Code”, which are programs that they have found that use 

LabVIEW very inefficiently. They will show an example program and then provide a 

much simpler solution that has the same end result. It may be possible to mine these 

cases for additional patterns to detect. If some of the “Rube Goldberg Code” cases 

could be generalized, they might be a powerful way of showing novice users how not 
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to program in LabVIEW. 

Finally, this research could be extended to look at LabVIEW code designed to 

run on an FPGA. The AE Specialists would often mention that some smells were far 

more important for code designed to run on a real time systems or a FPGA because 

the available memory is much lower. It is likely that modifying the tool to check for 

specific patterns that are problematic in FPGA code could be very useful. 

In some ways, broadening the types of problems that are caught also broadens the 

number of users who may find a tool like this useful. Checking for dataflow concepts is 

more likely to be helpful for novice LabVIEW programmers, while looking for patterns 

that are problematic for FPGA code would mostly be helpful for more advanced users. 

This presents challenges in terms of designing an interface that all users would feel 

comfortable with, and one that would be helpful without being intrusive or Clippy

like. 

8.1.2.3 Aiding Reuse 

While the main goal of this research was to find performance problems in an indi

viduals code, there is no reason why it could not be extended to find performance 

problems in other code available to LabVIEW users. In particular, if a user wants 

to reuse a LabVIEW program, or a snippet, they could first check it for smells to 

determine if it should be added. This could be used as a guide to help users find code 

that would perform well if reused. In addition, the tool could be applied to any large 

snippet that is pasted or imported. It could quickly be run to notify the user if they 



173 

have added (or pasted) code that will likely perform poorly. 

This idea could easily be extended and applied to an entire repository of LabVIEW 

programs. When the programs are uploaded to be shared they could be checked by 

the tool for any smells that might exist. This would help to determine the quality 

of a given program and help users pick programs that would not perform poorly. 

Currently, there are no online repositories that LabVIEW users can access, so creating 

one that has the ability to define the quality of a program as it is uploaded could be 

very beneficial. 

Finally, it may be possible that the methods could be modified, after talking to 

experts, to detect areas in the code where it would make sense to reuse other code 

or create subVIs. There may be code patterns that experts recognize that could 

be replaced by existing design patterns or snippets. Once detected, the tool could 

suggest a semi-automatic transformation that would replace the existing code with 

a snippet that has been designed by National Instruments and is known to behave 

properly and perform optimally. 
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