


AN ABSTRACT OF THE THESIS OF
 

Jing Zhao for the degree of Master of Science in 

Electrical and Computer Engineering presented on May 30, 2013 

Title: Flexible Dual TCP/UDP Streaming for H.264 HD Video Over WLANs 

Abstract approved: 

Ben Lee 

High Definition video streaming over WLANs faces many challenges because video 

data requires not only data integrity but also frames have strict playout deadline. Tradi­

tional streaming methods that rely solely on either UDP or TCP have difficulties meeting 

both requirements because UDP incurs packet loss while TCP incurs delay. This the­

sis proposed a new streaming method called Flexible Dual-TCP/UDP Streaming Protocol 

(FDSP) that utilizes the benefit of both UDP and TCP. The FDSP takes advantage of 

the hierarchical structure of the H.264/AVC syntax and uses TCP to transmit important 

syntax elements of H.264/AVC video and UDP to transmit non-important elements. More­

over, if desired, FDSP is flexible enough to send any H.264 syntax element via TCP. The 

proposed FDSP is implemented and validated under different wireless network condition­

s. Both visual quality and delay results are compared against pure-UDP and pure-TCP 

streaming methods. Our results show that FDSP effectively achieves a balance between 

delay and visual quality, thus it has advantage over traditional pure-UDP and pure-TCP 

methods. 



c©Copyright by Jing Zhao
 

May 30, 2013
 

All Rights Reserved
 



Flexible Dual TCP/UDP Streaming for H.264 HD Video Over WLANs
 

by
 

Jing Zhao
 

A THESIS
 

submitted to
 

Oregon State University
 

in partial fulfillment of
 
the requirements for the
 

degree of
 

Master of Science
 

Presented May 30, 2013
 
Commencement June 2013
 



Master of Science thesis of Jing Zhao presented on May 30, 2013 

APPROVED: 

Major Professor, representing Electrical and Computer Engineering
 

Director of School of Electrical Engineering and Computer Science
 

Dean of the Graduate School 

I understand that my thesis will become part of the permanent collection of Oregon State 

University libraries. My signature below authorizes release of my thesis to any reader 

upon request. 

Jing Zhao, Author
 



ACKNOWLEDGEMENTS
 

First and foremost, I sincerely thank my advisor Dr. Ben Lee for his expert guid­

ance during my study at Oregon State University. His strong academic background and 

insightful advices make my academic journey much smoother than I expect. I also ap­

preciate his persistent encouragement, complete trust in me, and care about my personal 

life. It was my pleasure to work with him. 

I would like to express my gratitude to my research teammates for their excellen­

t support. Special thanks to Mohammed Sinky and Kevin Gatimu for their efforts in 

developing many tools that are used for my research. 

I particularly thank my wife, Yi, who gave birth to our daughter Jinmo in Spring 

2013. I appreciate her patience and loving support during the busy time in our lives. 



TABLE OF CONTENTS
 

Page
 

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
 

2. BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
 

2.1. I, P, and B-Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
 

2.2. Features of H.264 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
 

2.2.1 H.264 Bitstream Syntax and the Effect of Data Loss on Video . . . 5
 

2.3. Data Partitioning (DP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
 

2.4. Streaming Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
 

2.5. Packetization Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
 

2.5.1 Method 1 (H264→TS→RTP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
 
2.5.2 Method 2 (H264→RTP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
 

3. RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
 

4. FLEXIBLE DUAL TCP/UDP STREAMING PROTOCOL . . . . . . . . . . . . . . . . . . 15
 

4.1. Dual Tunneling (UDP+TCP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
 

4.2. TCP Segment Reassembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
 

4.3. H.264 Syntax Parser and MUX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
 

4.4. DEMUX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
 

4.5. Simulation and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
 

4.5.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
 
4.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
 

5. SUB-STREAM OVERLAPPING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
 

5.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
 



TABLE OF CONTENTS (Continued) 

Page 

5.2. Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
 

5.2.1 Choice of the Threshold and Sub-stream Length . . . . . . . . . . . . . . . . . 26
 

5.3. Simulation and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
 

5.3.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
 
5.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
 

6. PERCENTAGE BASED PRIORITIZATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
 

6.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
 

6.2. Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
 

6.3. Simulation and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
 

7. CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
 

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
 



LIST OF FIGURES
 

Figure	 Page 

2.1	 Typical GOP structure. Each arrow indicates the relationship between
 
current (i.e., predicted) frame and reference frame(s). . . . . . . . . . . . . . . . . . . . 4
 

2.2	 H.264 bitstream syntax [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
 

2.3	 Effect of slice header loss. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
 

2.4	 The relationship between streaming protocols. . . . . . . . . . . . . . . . . . . . . . . . . . . 9
 

2.5	 Method 1 H264→TS→RTP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
 

2.6	 Method 2 H264→RTP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
 

4.1	 Flexible Dual-protocol Streaming system diagram. . . . . . . . . . . . . . . . . . . . . . . 15
 

4.2	 The general structure of OEFMON. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
 

4.3	 TCP Fragmentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
 

4.4	 Simulated network scenarios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
 

4.5	 PSNR comparison for all three scenarios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
 

4.6	 The decoded Frame 134 for FDSP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
 

5.1	 Sub-stream Overlapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
 

5.2	 Queue status during streaming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
 

5.3	 Simulated network scenarios (Sub-stream Overlapping). . . . . . . . . . . . . . . . . . 29
 

5.4	 PSNR comparison and packet loss for all three scenarios . . . . . . . . . . . . . . . . 30
 

6.1	 PSNR comparison for FDSP with no PBP, FDSP with 50% PBP, and
 
FDSP with 90% PBP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
 

6.2	 Visual quality comparison of Frame 1187. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
 



LIST OF TABLES 

Table	 Page 

4.1	 Buffering comparison for all three scenarios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
 

5.1	 Buffering comparison for all three scenarios (Sub-stream Overlapping). . . 31
 

5.2	 Sub-stream ready times for FDSP for all three scenarios. . . . . . . . . . . . . . . . . 32
 

6.1	 Sub-stream ready times for FDSP with no PBP, FDSP with 50% PBP,
 
and FDSP with 90% PBP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
 



FLEXIBLE DUAL TCP/UDP STREAMING FOR H.264 HD VIDEO
 

OVER WLANS
 

1. INTRODUCTION 

High Definition (HD) video streaming over WLANs has become a viable and impor­

tant technology as network bandwidth continues to improve and the use of smartphones, 

Mobile Internet Devices, and wireless display devices increases. Some notable HD wire­

© ©less streaming technologies include Apple AirPlay R [2], Intel WiDi R [3], and Cavium 

WiVu R© [4]. These technologies are deployed in an ad hoc mode, and the state-of-the-art 

video compression standard H.264 facilitates wireless video streaming by providing more 

efficient compression algorithm and thus less data needs to be transmitted through the net­

work. Moreover, H.264 provides many error-resilience and network-friendly features, such 

as Data Partitioning (DP), Flexible Macroblock Ordering (FMO), and Network Adaption 

Layer (NAL) structure [5]. However, wireless HD video streaming still faces many chal­

lenges. This is because, unlike transmitting traditional data, video streaming requires not 

only data integrity but also frames have strict playout deadline in the presence of packet 

delay and loss. Both of these factors are also closely related to streaming protocols. 

Transmission Control Protocol (TCP) and User Datagram Protocol (UDP) are the 

two fundamental Transport Layer protocols used to transmit video data through the 

network. TCP is a reliable protocol but delay and bandwidth consumption increase due 

to re-transmissions of lost packets, which further increase the likelihood of packet loss. 

For example, HTTP-based streaming video relies on TCP. Much work has been done to 

hide or reduce delay caused by TCP [6–8], but this remains a major problem for real-time 
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video streaming. By contrast, UDP offers minimal delay but does not guarantee delivery 

of packets. These lost packets cause errors that propagate to subsequent frames. 

Although considerable amount of research has been done on both TCP and UDP to 

improve video streaming in general, little attention has been paid to utilize the advantages 

of using both TCP and UDP for wireless video streaming. Recently, Porter and Peng 

proposed a Hybrid TCP/UDP streaming method, which relies on TCP to transmit higher 

priority data and UDP to transmit lower priority data [9]. However, they did not actually 

implement their method in a realistic network environment and instead used a tool to 

randomly remove data from an encoded video locally in order to simulate packet loss 

caused by UDP. This evaluation process lacks rigor and prevents them from providing 

meaningful results, such as visual quality and buffering time caused by using both TCP 

and UDP. 

In contrast to previous research that rely on either UDP or TCP, this thesis presents 

a new video streaming method called Flexible Dual-TCP/UDP Streaming Protocol (FDSP) 

that utilizes the benefits of combining TCP and UDP. FDSP achieves a balance between 

visual quality and buffering time by sending important data via TCP and less important 

data via UDP. In order to validate our idea, FDSP was implemented and tested on a 

complete video streaming simulator using HD videos. Our results show that the proposed 

method has advantage over traditional pure-UDP and pure-TCP streaming methods. Al­

though this thesis focuses on streaming real-time HD video in a wireless ad-hoc network 

environment, FDSP can also be applied to sub-HD videos and other types of networks. 

The rest of the thesis is organized as follows: Chapter 2. presents a background 

on H.264 video compression standard, streaming protocols, and packetization methods. 

Chapter 3. discusses the related work. The proposed streaming method is presented in 

Chapter 4. Chapter 5. presents a technique called Sub-stream Overlapping that enhances 

basic FDSP method to minimize initial buffering for long videos. Chapter 6. introduces a 
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new module called “Percentage Based Prioritization” to FDSP that further improves its 

performance. Finally, Chapter 7. concludes the thesis. 
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2. BACKGROUND 

This chapter provides the background information necessary to understand the pro­

posed FDSP, and the relationship between how H.264 video is encoded and streamed and 

the effect of packet delay and loss on its visual quality. 

2.1. I, P, and B-Frame 

I B P B P B I... ...

Time

FIGURE 2.1: Typical GOP structure. Each arrow indicates the relationship between 

current (i.e., predicted) frame and reference frame(s). 

An encoded video stream consists of a sequence of Group of Pictures (GOPs) as 

shown in Fig. 2.1. Each GOP consists of an intra-frame (I-frame), predicted-frames (P­

frames), and bi-predicted frames (B-frames). An I-frame contains all the data required 

to reconstruct a complete frame and does not refer to other frames. Conversely, P- and 

B-frames require reference frame(s) during decoding. If a reference frame contains errors, 

these errors will propagate through subsequent frames that refer to this frame. Since an 

I-frame does not depend on any other frame, error propagation will cease when a new 

I-frame arrives. Consequently, I-frames should be given higher priority if possible during 

video streaming. 
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2.2. Features of H.264 

H.264 is the state-of-the-art video compression standard. Compared to its predeces­

sors, H.264 provides more aggressive compression ratio and has network-friendly features 

that make it more favorable for video streaming. 

There are several characteristics of H.264, and video compression in general, that 

are important for efficient wireless video streaming. The two most important character­

istics are the syntax for encoding video data to bitstream data and how the bitstream is 

packetized and transmitted. These issues are discussed below. 

2.2.1 H.264 Bitstream Syntax and the Effect of Data Loss on Video 

The hierarchical structure of the H.264 bitstream syntax is shown in Fig. 2.2. Net­

work Adaption Layer (NAL) consists of a series of NAL units. Three common NAL units 

are Sequence Parameter Set (SPS), Picture Parameter Set (PPS), and slice. 

SPS contains parameters common to an entire video, such as profile and level the 

coded video conforms to, the size of a video frame and certain decoder constraints such as 

the maximum number of reference frames. Therefore, if SPS is lost, then the entire video 

cannot be decoded. 

PPS contains common parameters that are applied to a sequence of frames, such as 

entropy coding type, number of active reference pictures and initialization parameters. If 

PPS for a sequence of frames is lost, then these frames cannot be decoded. 

A slice is a unit for constructing a frame, and a frame can have either a single slice 

or multiple slices. A slice can be I-slice, P-slice, B-slice, or Instantaneous Decoder Refresh 

(IDR) slice. An IDR slice is a special form of I-slice that indicates that this slice cannot 

reference any slice before it, and is used to clear the contents of the reference frame buffer. 

Each slice contains a slice header and a slice data containing a number of macroblocks 

(MBs). Slice header contains information common to all the MBs within a slice. If a slice 
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SPS PPS IDR Slice Slice SliceNetwork Abstraction Layer PPS Slice

VCL NAL Units

Slice Layer
Slice 

Header Slice Data

MB MB MB MB MB MB MB ...

Macroblock Layer

skip indication

Type Prediction Coded Block 
Pattern QP Residual

Intra mode (s) 

INTRA

Reference 
Frames Motion vectors 

INTER

Luma blocks Cb 
blocks Cr blocks 

FIGURE 2.2: H.264 bitstream syntax [1]. 

header is lost, then the entire slice cannot be decoded even if the slice data is properly 

received [1, 5]. 

Fig. 2.3 illustrates the effect of packet loss on a frame from a HD video clip called 

“battlefield” streamed via UDP using VLC media player [10] and analyzed using Wire-

shark [11] and Elecard StreamEye Studio [12]. Fig. 2.3a shows the original transmitted 

frame, while Fig. 2.3b shows the received frame with some information missing due to 

packet loss. In this example, the slice header for Slice 4 is lost, thus the entire slice cannot 

be decoded. In contrast, the slice header for Slice 5 is received but the last two RTP 

packets are lost, which allowed most of the slice to be decoded. Afterwards, Error Con­
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cealment (EC) techniques can be used to recover the lost information with some artifacts 

(which is not shown). Therefore, PPS, SPSs, and slice headers are the most important 

data, and thus more care should be given to them during video streaming. 

3/15/2012 Sponsored by LG Display 1 

Slice 

1 

2 

3 

4 

5 

6 

7 

8 

(a) The original frame. 
“Header” is important! 

Slice 

1 

2 

3 

4 

5 

6 

7 

8 

Slice4: First 8 dropped, last 7 received 

Slice5: Last 2 packets dropped 

*Grey area means the slice cannot be reconstructed correctly! 
3/15/2012 Sponsored by LG Display 1 

Header is lost! 

The entire slice is lost 

Latter part of slice is 
lost 

(b) The received frame. 

FIGURE 2.3: Effect of slice header loss. 
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2.3. Data Partitioning (DP)
 

DP is an error-resilience feature in H.264. The coded data for each slice is placed 

in three separate data partitions A, B, and C. Partition A contains the slice header and a 

header for each MB (i.e., MB type, quantization parameter, and motion vectors), Parti­

tion B contains Coded Block Patterns (CBPs) and coefficients for intra-coded MBs, and 

Partition C contains CBPs and coefficients for inter-coded MBs [5]. To decode Partition 

B, Partition A must be present. To decode Partition C, both Partition A and B must 

be present. DP can be used with Unequal Error Protection (UEP) methods to improve 

streaming performance. UEP will be discussed further in Chapter. 3. Although DP is a 

powerful tool for error resiliency, it has not yet been widely adopted because it requires 

videos to be re-encoded and 802.11e networks [13]. 

2.4. Streaming Protocols 

Existing streaming protocols include Real Time Streaming Protocol (RTSP), Hyper-

Text Transfer Protocol (HTTP), Microsoft Media Server (MMS), and Real-time Transport 

Protocol (RTP). Note that RTSP, HTTP, MMS, and RTP are Application Layer protocols 

so they do not deliver the streams themselves. For example, RTP uses UDP or TCP to 

deliver multimedia data. RTSP, HTTP, and MMS add more control features for streaming 

but they also use TCP or UDP to deliver multimedia data. 

RTSP allows a client to remotely control a streaming media server. For example, 

a client can play, pause, and seek a video during streaming. RTSP can be used together 

with RTP Control Protocol (RTCP) to obtain statistical data on Quality of Service (QoS). 

Typically, RTSP uses TCP to deliver control signal and RTP/UDP to deliver multimedia 

data. 
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HTTP RTSP

RTP RTCP

TCP UDP

Controllability

Observability

Fundamental protocols

FIGURE 2.4: The relationship between streaming protocols. 

HTTP also allows a client to control streaming, and uses TCP to transmit both 

multimedia and control data. Since HTTP uses TCP, packets are never lost. Another 

advantage of HTTP is that it works across firewalls as the HTTP port is usually turned 

on. However, HTTP will incur high end-to-end delay when lost packets need to be re­

transmitted. 

RTP typically uses UDP to deliver multimedia data. An RTP header contains a 

sequence number and a timestamp. Sequence number is increased by one for each packet 

sent and is used for packet-loss detection. Timestamp can be used to synchronize multiple 

streams such as video and audio. Note that there is no control functionality by using only 

RTP/UDP. 

The relationship between these streaming protocols is shown in Fig. 2.4. For our 

purpose, the focus is on RTP/UDP and RTP/TCP direct streaming as they are funda­

mental to all other streaming protocols. 

2.5. Packetization Methods 

Packetization method defines how a H.264 NAL unit is encapsulated into RTP 

packets. Different packetization methods can affect video streaming performance and 

thus visual quality. Two basic packetization methods are discussed below. 
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2.5.1 Method 1 (H264→TS→RTP) 

Transport Stream (TS) is a legacy format designed to transport MPEG-2 video 

streams and is still used to carry H.264 video. This method is illustrated in Fig. 2.5. 

First, each TS packet is filled with H.264 bitstream as much as possible until the limit of 

188 bytes is reached. Afterwards, each RTP packet is filled with as many TS packets as 

possible until the Maximum Transmission Unit (MTU) size is reached. Because the MTU 

size is 1500 bytes for Ethernet, there are typically seven TS packets in one RTP packet. 

Method 1 does not consider the H.264 NAL unit structure. 

NAL1 NAL2 NAL2

RTP1 RTP2 RTP3

TS1 TS2 TS3 TS4 TS5 TS6 TS7

FIGURE 2.5: Method 1 H264→TS→RTP. 

2.5.2 Method 2 (H264→RTP) 

NAL1 NAL2 NAL2

RTP1 RTP2 RTP3 RTP4

FIGURE 2.6: Method 2 H264→RTP. 

This method shown in Fig. 2.6 is specifically designed for H.264 video. If the size 

of a NAL unit is less than or equal to the MTU size, one RTP packet contains only one 

NAL unit. If the size of a NAL unit is greater than the MTU size, the NAL unit will be 

fragmented into multiple RTP packets. This method also supports NAL unit aggregation, 
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which is used when NAL units are very small. For example, since SPS and PPS have a 

few bytes at most, they can be aggregated with other NAL units into a single RTP packet 

to reduce the overhead for headers [5]. 

Method 2 has several advantages over Method 1 [14]. The most important one is 

that intelligently mapping NAL units to RTP packets provides better error resilience since 

the loss of one RTP packet affects only the NAL unit inside that packet (unless aggregation 

is used). In contrast, the size of RTP packets in Method 1 is fixed regardless of the size 

of NAL units. Therefore, multiple NAL units can be corrupted. In addition, Method 2 

does not use TS packetization so there is less packet header overhead. For these reasons, 

Method 2 is used in the proposed FDSP method. 
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3. RELATED WORK 

UDP is generally accepted to be more suitable than TCP for real-time video stream­

ing since it offers low end-to-end delay for smooth video playout [5, 15]. Although UDP 

is prone to data loss, multimedia data to a certain degree (unlike traditional data) is 

loss-tolerant. In addition, a decoder uses EC techniques to reduce the artifacts caused by 

data loss. Numerous EC techniques have been developed to reduce the impact caused by 

packet loss [16, 17]. However, as discussed in Sec. 2.2.1, if lost packets contain important 

data, such as SPS, PPSs, and slice headers, the decoder simply cannot reconstruct the 

video even with the aid of EC. 

In order to tolerate packet loss caused by UDP, UEP is often used in UDP-based 

streaming [5, 18, 19]. UEP aims to prioritize important data over the others because 

some syntax elements are more critical than others. A basic UEP method is to send 

important packets more than once, which raises the probability for the packets to arrive 

at the receiver [5]. More advanced UEP methods incorporate Forward Error Correction 

(FEC) [18,19]. By using FEC to code important packets with redundancy, a receiver can 

recover these lost packets without retransmission. However, FEC introduces additional 

overhead, which increases network bandwidth required to transmit video. 

Despite the conventional wisdom that TCP is not desirable for streaming, a sig­

nificant fraction of commercial video streaming traffic uses it [20]. TCP provides guar­

anteed service so the transmitted packets are always preserved. Nevertheless, TCP’s 

re-transmission and rate control mechanisms incur delay, which can cause packets to ar­

rive after the playout deadline. A typical solution for this problem is to add a buffer in 

front of the video decoder. At the beginning of video streaming, the decoder waits until 

the buffer is filled before displaying video to accommodate initial throughput variability 

or inter-packet jitters. This waiting time is called initial buffering. After the decoder 
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starts to decode video data in the buffer, decrease in throughput within a TCP session 

may cause buffer starvation. When this happens, the decoder stops displaying video until 

sufficient number of video packets are received. This waiting time is called rebuffering [6]. 

Buffering prevents late packets to be dropped; however, network congestion can cause 

long initial buffering and frequent rebuffering that degrades users’ experience. Mok et 

al. performed a subjective assessment to measure Quality of Experience (QoE) of video 

streaming [21]. Their analysis showed that the frequency of rebuffering is the main factor 

responsible for variations in user experience. Much research has been done on determining 

the appropriate buffer size to reduce the frequency of rebuffering [6,7]. Besides buffer size 

estimation, Brosh et al. presented packet splitting and parallel connection methods to 

reduce TCP delay [8]. 

Another approach to improve wireless video streaming is using IEEE 802.11e net­

works, which define a set of QoS enhancements through modifications to the Media Access 

Control (MAC) layer [13]. In an 802.11e network, delay-sensitive data such as video and 

audio can be assigned to higher priority class. If contention occurs at the MAC layer, 

smaller contention window size is used to transmit data with higher priority, and thus 

lower transmission delay can be achieved. 802.11e is specially tailored for multimedia, but 

it has not been widely adopted perhaps due to the hardware changes required. 

To the best of our knowledge, the work closest to ours was done by Porter and 

Peng [9]. The authors proposed the Hybrid TCP/UDP method that prioritizes video data 

by using H.264 Data Partitioning (see Sec. 2.3.). However, our proposed FDSP method 

has a couple of advantages over their method. 

First, FDSP is much more flexible because it is not tied to DP and is able to 

prioritize any syntax element. FDSP integrates a H.264 Syntax Parser within the streamer 

to segregate SPS, PPSs, and slice headers from rest of data. Thus, videos do not have to 

be re-encoded and the network does not have to support DP. Moreover, FDSP is able to 
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segregate and prioritze any syntax element from a video stream. For example, some of the 

slice data (in addition to SPS, PPS and slice header) can be segregated and prioritized 

to further improve visual quality. In contrast, DP strictly defines contents of the three 

partitions and therefore the syntax elements that can be prioritized are fixed. 

Second, the authors did not implement their proposed method as a complete sys­

tem that includes a network simulator. For example, they used a modified rtp loss utility 

(provided by JM reference software) to preserve partition A and randomly drop other 

partitions for a given video to simulate network behavior. In contrast, FDSP was imple­

mented on a complete video streaming simulator (see Chapter 4.) that simulates realistic 

network scenarios and provides more insight on frame-by-frame behavior and buffering 

time, which are key indicators of video streaming QoE. 

Finally, our simulation study is based on HD video, which is state-of-the-art and is 

also more demanding in terms of bandwidth and delay requirements. 
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4. FLEXIBLE DUAL TCP/UDP STREAMING PROTOCOL
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FIGURE 4.1: Flexible Dual-protocol Streaming system diagram. 

The system diagram of the proposed FDSP is shown in Fig. 4.1.
 

The Sender consists of an encoder, MUX, Dual Tunneling (UDP+TCP), and the
 

H.264 Syntax Parser. MUX together with the H.264 Syntax Parser are responsible for 

segregating critical data from the video bitstream and steering the two parts to UDP and 

TCP tunnels. Dual Tunneling keeps both UDP and TCP sessions active during video 

streaming. The operation of the Percentage Based Prioritization (PBP) will be discussed 

in Chapter 6. 

The Receiver consists of Dual Tunneling, DEMUX and a decoder. DEMUX drops 

late UDP packets and merges on-time UDP packets with TCP packets. Afterwards, 

DEMUX sends on-time UDP packets together with TCP packets to the Decoder, which 

is implemented using FFmpeg [22]. 

The proposed FDSP was implemented within Open Evaluation Framework for Mul­
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timedia Over Networks (OEFMON) [23], which integrates the DirectShow multimedia 

module [24] and the QualNet network simulator [25]. A simplified diagram of OEFMON 

is shown in Fig. 4.2. The main components used by FDSP are QualNet Connector, Video 

Source Filter, and Video Writer Filter. The QualNet Connector is responsible for RTP 

paketization. The Video Source Filter reads an H.264 file and sends the data to the Qual-

Net Connector and the Video Writer Filter writes the decoded frame data to a raw video 

file. The detailed discussion of OEFMON can be found in [23]. 

QualNet
Connector

Video
Source Filter

Video
Writer Filter

DirectShow
Connector

NetworkSender Receiver

QualNet

DirectShow

OEFMON

FIGURE 4.2: The general structure of OEFMON. 

The following three sections (4.1.∼4.4.) discuss the implementation of the key com­

ponents of FDSP. 

4.1. Dual Tunneling (UDP+TCP) 

OEFMON already implements UDP streaming in the QualNet network simulator. 

In order to implement Dual Tunneling, the existing code for UDP streaming required 
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modification and a TCP streaming module needed to be implemented. 

QualNet is a discrete-event simulator and an event is represented by a data structure 

called MESSAGE. The original code already contains MESSAGE for UDP and there is a pair 

of MESSAGEs (one for the sender and another for the receiver). The changes required 

for UDP mainly involved restructuring the code to handle the corresponding MESSAGEs. 

However, the implementation of TCP requires more MESSAGEs because it uses three-way 

handshaking. QualNet APIs such as APP TcpOpenConnectionWithPriority (request to open 

TCP socket) and MESSAGEs such as MSG APP FromTransListenResult (respond to request) 

must be properly handled before transmitting video data. 

To enable Dual Tunneling, the functions for handling both UDP and TCP MESSAGEs 

were implemented inside a single application file called app fdspvideo.cpp in QualNet. 

4.2. TCP Segment Reassembly 

TCP is a stream-oriented protocol (instead of being packet-oriented) and data is 

viewed as an unstructured, but ordered, stream of bytes [26]. Because TCP does not 

preserve data message boundaries, an RTP packet carried by TCP may be divided into 

several segments. Fig. 4.3 illustrates the fragmentation caused by TCP. In order to recover 

RTP packets from a TCP byte stream, TCP segments must be reassembled. 

HDR

H DR

*HDR stands for "header"

Send 3 RTP
packets via TCP

Receive 5 
TCP segments

HDR HDR

HDR HDR

FIGURE 4.3: TCP Fragmentation. 

The length information of a RTP packet is required to accomplish TCP segment 
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reassembly. Because the standard RTP header does not include length information, the 

12-byte RTP header is extended by two bytes to indicate the length of each RTP packet. 

This allows the receiver to determine whether or not the current TCP segment contains 

a complete RTP packet. 

The algorithm for TCP reassembly involves first checking whether an RTP header 

is complete. If not, it waits for next TCP segment(s) to complete the RTP header. Once 

the RTP header is complete, it determines whether the RTP payload is complete using 

the RTP length information. If not, it waits for the next TCP segment(s) to complete the 

RTP payload. 

4.3. H.264 Syntax Parser and MUX 

The H.264 Syntax Parser was developed based on an open source library called 

h264bitstream [27]. The parser was implemented within QualNet and linked to 

app fdspvideo.cpp. Before streaming, the parser parses the video bitstream and returns 

its syntax information (such as start address and length and type of each NAL unit) as 

input to MUX. During streaming, each NAL unit is encapsulated into an RTP packet by 

the QualNet Connector in OEFMON. At the same time, MUX uses the stored syntax 

information to determine whether an RTP packet contains a NAL unit that is SPS, PPS 

or slice header. If an RTP packet contains an important NAL unit, MUX will steer it to 

the TCP tunnel; otherwise, the packet will be steered to the UDP tunnel. 

4.4. DEMUX 

The DEMUX drops late UDP packets and merges on-time UDP packets with TCP 

packets. 
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When the receiver receives a TCP packet, DEMUX will store the packet in a file 

called “tcpdata.h264” on the disk drive. When the receiver receives a UDP packet, DE­

MUX will first parse the UDP packet to obtain the RTP timestamp. If the timestamp 

is larger than playout deadline, DEMUX will drop this UDP packet because it is late. If 

the timestamp is smaller than playout deadline, DEMUX will then parse the UDP packet 

to obtain the RTP sequence number. Afterwards, the DEMUX will parse the “tcpda­

ta.h264” file to check whether there is any TCP packet whose RTP sequence number is 

smaller than the RTP sequence number of the UDP packet. If so, DEMUX will merge 

these TCP packets with the current UDP packet and send them to the decoder. 

4.5. Simulation and Results 

4.5.1 Simulation Setup 

The primary video selected for our experiments is 360 frames of raw HD YUV video 

(12 seconds of 1920×1080 @30fps) from an “African Cats” trailer. The YUV file is encoded 

using x264 with an average bitrate of 4 Mbps and single slice per frame1 . 

Using OEFMON, a 802.11g ad-hoc network with 18 Mbps bandwidth was setup 

and three network scenarios were created to evaluate video streaming performance. The 

placement of devices for three scenarios are shown in Fig. 4.4. 

•	 Scenario 1: One pair of nodes stream the primary video over the network. At the 

same time, a second pair of nodes generates a 10 Mbps of constant bitrate (CBR) 

data as background traffic. 

•	 Scenario 2: One more CBR data of 4 Mbps is added so that the network becomes 

saturated. 

1The current version of OEFMON does not support multiple slices. 
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FIGURE 4.4: Simulated network scenarios. 

•	 Scenario 3: Repeats the network traffic of Scenario 1, but the nodes are now posi­

tioned in a classic hidden-node arrangement. 

After video streaming completes, the sent and received video files are decoded using 

FFmpeg and PSNR is computed between the two YUV files using Avisynth [28]. Since 

PSNR calculation for missing frames and two identical frames are not well defined, this 

thesis uses 0 dB as the PNSR value for missing frames and follows the method used by 

Avisynth that uses 111 dB to indicate perfect PSNR. In addition to PSNR information, 

initial buffering and rebuffering are recorded to evaluate end-to-end delay. 

Our main objective for the experiments is to show the advantage of the proposed 

FDSP over traditional pure-UDP and pure-TCP streaming methods. For FDSP, all the 

important data (SPS, PPSs, and slice headers) will be first sent via TCP and then the 

rest of data will be sent via UDP. The time spent sending all the important data in FDSP 

is treated as initial buffering. For the pure-TCP method, a buffer is added to simulate 

initial buffering and rebuffering. In order to compare between FDSP and pure-TCP, the 

size of the buffer for pure-TCP is properly adjusted so that both methods have the same 
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initial buffering time. 

4.5.2 Results 

The PSNR comparison is shown in Fig. 4.5. The figures contain PSNR values as 

well as frame sizes (shown on the bottom of the graphs) for the three streaming methods. 

Note that x264 does not generate an uniform GOP by default, and therefore, the number 

frames between I-frames (marked as “I”) can vary. 
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FIGURE 4.5: PSNR comparison for all three scenarios. 
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For Scenario 1 shown in Fig. 4.5a, as expected, pure-UDP has the worst PSNR with 

an average of 54 dB, while FDSP achieves 79 dB. Pure-TCP has perfect PSNR of 111 dB 

because there is no packet loss. 

The PSNR trends for FDSP and pure-UDP are in general similar. The transition 

points (marked as t) between non-perfect PSNR and perfect PSNR match fairly well with 

the position of I-frames (marked as “I”). This is because I-frames usually have much larger 

data size than P- or B-frames. If the network does not have enough bandwidth, a certain 

portion of the packets for an I-frame will most likely be lost or delayed, which reduces 

PSNR down from 111 dB. On the other hand, if an I-frame is received without any loss, 

it indicates that the network has enough bandwidth to transmit large frames. Therefore, 

the subsequent loss of P- or B-frames are unlikely under the same network condition since 

they are smaller than I-frames. Thus, PSNR remains at 111 dB until the next I-frame. 

An exception to this behavior starts at point e, which is caused by a packet loss. The 

packet-level log in OEFMON indicates the last packet for this I-frame is lost for the pure-

UDP streaming, thus PSNR is not perfect. Due to error propagation, the subsequent 

frames also cannot achieve perfect PSNR until the next I-frame. Moreover, in contrast to 

FDSP, pure-UDP has many missing frames whose PSNR value is 0. The packet-level log 

indicates that those frames having PSNR value of 0 dB are caused by slice header loss. 

This again shows the importance of slice header and the advantage of FDSP. 

For Scenario 2 shown in Fig. 4.5b, the network is saturated by introducing another 

CBR data of 4 Mbps. The pure-UDP method has a very low average PSNR value of 16 

dB mainly because there are only 120 frames out of 360 that can be reconstructed by 

FFmpeg. In contrast, all 360 frames are reconstructed using FDSP, which results in much 

better PSNR value of 44 dB. FDSP experiences no missing frames because all the slice 

headers are properly received. For example, Fig. 4.5b shows that frames 134-146 are lost 

for pure-UDP, but these frames are not lost in FDSP. The packet-loss log in OEFMON 
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FIGURE 4.6: The decoded Frame 134 for FDSP. 

shows that both pure-UDP and FDSP lose all the packets from the UDP tunnel for these 

frames. The only difference is that FDSP properly receives the slice headers for these 

frames from the TCP tunnel. As discussed before, the presence of slice headers is critical 

for a decoder to reconstruct a frame. Once a slice header is properly received, the decoder 

can use various EC techniques to conceal missing MBs even if rest of data is lost. For 

example, Fig. 4.6 shows the decoded Frame 134, which is a P-frame, reconstructed from a 

single packet containing the slice header and part of the slice. The upper-right watermark 

shows the frame number 134, which is the information retrieved from the packet. The 

lower-right watermark shows frame number 132, which indicates that FFmpeg using EC 

copied information from the previous frame 132 to the current frame 134. 

For Scenario 3 shown in Fig. 4.5c, PSNR degrades further compared to Scenarios 

1 and 2. This is caused by packet collisions resulting from the hidden-node effect. For 

pure-UDP, the average PSNR value is only 3 dB and there are 320 missing frames out of 

total of 360 frames. FDSP has an average PSNR value of 32 dB, which is significantly 

better than pure-UDP. 

The buffering requirements are shown in Table 4.1. Both pure-TCP and FDSP 

have same initial buffering times, and these increase as the level of network congestion 
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increases. Moreover, pure-TCP incurs very frequent rebuffering. During 12 seconds of 

video streaming, rebuffering occurs 3˜6 times and lasts on average 1.2˜2.1 seconds. As 

mentioned in Chapter 3., frequency of rebuffering is the main factor responsible for the 

variations in users’ experience. Such a high frequency of rebuffering can be very annoying 

even though pure-TCP provides perfect visual quality. This is a clear advantage of FDSP 

over pure-TCP. 

Streaming 

Method 

Initial 

Buffering 

(sec.) 

Rebuffering 

Count 

Avg. Re-

buffering 

Time (sec.) 

Scenario1 

FDSP 1.1 0 N/A 

pure-UDP 0.0 0 N/A 

pure-TCP 1.1 3 1.2 

FDSP 1.6 0 N/A 

Scenario2 pure-UDP 0.0 0 N/A 

pure-TCP 1.6 6 1.6 

FDSP 1.9 0 N/A 

Scenario3 pure-UDP 0.0 0 N/A 

pure-TCP 1.9 6 2.1 

TABLE 4.1: Buffering comparison for all three scenarios.
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5. SUB-STREAM OVERLAPPING 

5.1. Motivation 

As mentioned earlier, FDSP will first send all the important data via TCP and then 

send the rest of data via UDP. For the 12-second test video, the initial buffering (i.e., 

the time spent sending all the important data) is less than 2 seconds. However, initial 

buffering will be unacceptably long when streaming an entire movie. Therefore, this 

chapter presents a technique called Sub-stream Overlapping to reduce the initial buffering 

requirement. 

5.2. Solution 

TCP UDP TCPUDP UDP TCP UDP...

UDP ...... UDPTCP

sub-stream1

sub-stream2

I-frame
1/30s

P-frame
1/30s

B-frame
1/30s

I-frame
1/30s

Playout deadline for sub-stream2.
TCP data for this sub-stream must
be ready. Otherwise, rebuffering
is needed.

FIGURE 5.1: Sub-stream Overlapping. 

Fig. 5.1 illustrates the basic idea of Sub-stream Overlapping. An entire movie is 

subdivided to several n-second sub-streams (Note that Fig. 5.1 only shows the first two 

sub-streams). FDSP will only send all the important data for the first n-second sub-stream 

via TCP and then start the normal UDP streaming. As long as FDSP is not sending any 

UDP packet, it will send important data for next n-second sub-stream(s) via TCP. FDSP 
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will stop and perform rebuffering if the important data for an n-second sub-stream is not 

ready by the time it has to be played out. 

The process for Sub-stream Overlapping can be divided into four steps. 

•	 Step 1: Divide a video into several n-sec sub-streams. 

•	 Step 2: Send important data for only the first n-sec sub-stream via TCP. 

•	 Step 3: Start normal UDP streaming. 

•	 Step 4: During UDP streaming, send important data for next n-second sub-stream(s) 

via TCP if network is relatively idle. 

MUX, DEMUX and Dual Tunneling in Fig. 4.1 were modified to support Sub-stream 

Overlapping. For Step 4, the condition that determines whether network is relatively idle 

is done by monitoring the Network Layer queue within QualNet. If the number of packets 

in the queue is less than the threshold (marked as “thresh” in the figure), FDSP will 

send TCP packets for next sub-stream(s). Fig. 5.2 shows the queue status during video 

streaming using pure-UDP for Scenario 1 described in Sec. 4.5.1. The X-axis represents 

each frame that FDSP is sending. “Num. of Pkts in Queue” indicates the number of 

packets in the Network Layer queue when sending each frame. “Num. of UDP to Be 

Sent” indicates the number of UDP packets that comprise the current frame. These are 

packets that are about to be pushed onto queue and sent out. For example, for Frame 1, 

the queue should be empty, and therefore “Num. of Pkts in Queue” is 0. Frame 1 consists 

of 177 UDP packets and therefore “Num. of UDP to Be Sent” is 177. 

5.2.1 Choice of the Threshold and Sub-stream Length 

The choice of the threshold depends on network condition and sub-stream length. If 

a network is congested, “Num. of Pkts in Queue” will drop slowly. For example, “Num. of 

Pkts in Queue” might not drop to 20 until Frame 30 instead of Frame 18 shown in Fig. 5.2. 
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FIGURE 5.2: Queue status during streaming. 

In order to allow TCP data for the next sub-stream to be ready before its playout deadline, 

the threshold needs to be increased to a value higher than 20 so that there is more time 

for FDSP to send TCP data. When the sub-stream length increases, TCP data required 

for the next sub-stream increases, but at the same time, the time available to transmit 

TCP data also increases. If network is not congested, there will be plenty of time available 

to send TCP data. In contrast, if the network is congested, “Num. of Pkts in Queue” 

can drop so slowly that, even if the time available to send TCP data increases, there may 

not be enough time to transmit TCP data. In this situation, the threshold should be 

increased. 

Finding the optimum values for the threshold and the sub-stream length is a chal­

lenging issue, and thus left as future work. In this paper, 20 packets is chosen as the 

threshold and 10 seconds is chosen as the sub-stream length. 
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5.3. Simulation and Results 

5.3.1 Simulation Setup 

The simulation setup is very similar to the previous setup described in Sec. 4.5.1. 

The differences are listed as follows. 

•	 A longer video clip is selected, which is a 40 second clip from the “African Cats” 

trailer consisting of 1,200 frames, in order to validate Sub-stream Overlapping. 

•	 The bandwidth of the 802.11g ad-hoc network was increased to 54 Mbps and the 

distance between nodes were adjusted to better model a home environment. The 

placement of devices for three scenarios are shown in Fig. 5.3. 

–	 Scenario 1: One pair of nodes stream the primary video over the network. At 

the same time, two pair of nodes each generates a 20 Mbps of CBR data as 

background traffic. 

–	 Scenario 2: One more CBR data of 10 Mbps is added so that the network 

becomes saturated. 

–	 Scenario 3: Repeats the network traffic of Scenario 1, but the nodes are now 

positioned in a hidden-node arrangement. 

5.3.2 Results 

The PSNR comparison and packet loss for all three scenarios are shown in Fig. 5.4, 

which also includes frame size. Since 1200 frames are too many to fit in a graph, PSNR, 

packet loss, and frame size are all averaged over 1 second (which translates to 30 frames 

because fps for the video clip is 30.). In addition, PSNR and packet loss for the pure-TCP 

method are omitted because it always achieves PSNR of 111 dB and 0% packet loss. 

For Scenario 1 shown in Fig. 5.4a, as expected PSNR for pure-UDP is worse than 

FDSP. Pure-UDP achieves an average of 93 dB, while FDSP achieves 102 dB. For Scenario 
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FIGURE 5.3: Simulated network scenarios (Sub-stream Overlapping). 

2 shown in Fig. 5.4c, the pure-UDP method has an average PSNR value of 51 dB, which 

is much lower than the FDSP method with 83 dB. For Scenario 3 shown in Fig 5.4e, the 

node pair 7 and 8 causes a hidden node effect further degrading PSNR and delay compared 

to Scenarios 1 and 2. Pure-UDP achieves an average PSNR value of 52 dB. In contrast, 

FDSP has an average PSNR value of 76 dB, which is still better than pure-UDP. 

There is a direct correlation between packet loss and PSNR. In these graphs, each 

PSNR degradation is caused by some packet loss. For example, although it is hard to 

observe due to the whole-second averaging process, in Fig. 5.4b there is packet loss ratio 

of 0.2% at 5 second for pure-UDP, which reduces PSNR down from 111 dB to 76 dB. As 

can be seen in Fig. 5.4d and Fig. 5.4f, for packet loss higher than 85%, PSNR value is 0 

dB indicating that frames are lost. In Scenario 1, there are 32 frames lost out of total of 

1200 frames for pure-UDP. In contrast, slice headers for all 1200 frames are received using 
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(a) PSNR comparison for Scenario 1. (b) Packet loss for Scenario 1. 
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(c) PSNR comparison for Scenario 2. (d) Packet loss for Scenario 2. 
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(e) PSNR comparison for Scenario 3. (f) Packet loss for Scenario 3. 

FIGURE 5.4: PSNR comparison and packet loss for all three scenarios 

FDSP, and thus all 1200 frames are reconstruced/decoded. In Scenario 2, there are 148 

frames lost by using the pure-UDP method, whereas there is no missing frames for FDSP. 

In Scenarios 3, there are total of 103 missing frames out of 1200 for pure-UDP. Again, 
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FDSP experiences no missing frames because slice headers are prioritized using TCP. 

Table 5.1 shows the buffering requirements for all three scenarios. Both pure-TCP 

and FDSP have same initial buffering time, and increases from 2 second to 2.56 second as 

a reaction to network saturation. However, pure-TCP incurs frequent rebuffering. During 

40 seconds of video streaming, rebuffering occurs 6 ˜19 times and each lasts 0.95 ˜1.46 

seconds. In contrast, FDSP does not have any rebuffering. This again shows that FDSP 

is very effective in a congested network because pure-UDP and pure-TCP tend to be 

unacceptable in terms of visual quality and delay, respectively. 

Streaming 

Method 

Initial 

Buffering 

(sec.) 

Rebuffering 

Count 

Avg. Re-

buffering 

Time (sec.) 

Scenario1 

FDSP 2.0 0 N/A 

pure-UDP 0.0 0 N/A 

pure-TCP 2.0 6 0.95 

FDSP 2.3 0 N/A 

Scenario2 pure-UDP 0.0 0 N/A 

pure-TCP 2.3 17 1.34 

FDSP 2.56 0 N/A 

Scenario3 pure-UDP 0.0 0 N/A 

pure-TCP 2.56 19 1.46 

TABLE 5.1: Buffering comparison for all three scenarios (Sub-stream Overlapping). 

Table 5.2 shows the ready times and playout deadlines for sub-streams for FDSP. 

Note that sub-stream1 is not listed in this table because its ready time is in fact the 

initial buffering time shown in Table 5.1. The playout deadline for each sub-stream is 

determined by its length, i.e., 10 seconds. As long as the ready time is less than playout 

deadline, no rebuffering is required. As network congestion increases, ready times also 
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increase. However, ready times for all sub-streams are still much earlier than their playout 

deadlines. Therefore, no rebuffering is required as indicated in Table 5.1. 

Sub-

stream 

Ready 

Time 

(sec.) 

Playout 

Deadline 

(sec.) 

Scenario1 

2 3.78 10 

3 5.37 20 

4 7.01 30 

2 4.80 10 

Scenario2 3 7.92 20 

4 11.47 30 

2 4.82 10 

Scenario3 3 6.95 20 

4 10.91 30 

TABLE 5.2: Sub-stream ready times for FDSP for all three scenarios.
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6. PERCENTAGE BASED PRIORITIZATION 

6.1. Motivation 

As indicated in Sec. 5.3.2, the ready times for sub-streams for all three scenarios is 

earlier than playout deadline. For example, in Scenario 2, the 4th sub-stream’s ready time 

is at 11.47 seconds, which is 18.53 seconds earlier than the playout deadline of 30 seconds. 

This implies that the network condition can handle more data to be prioritized and sent 

via the TCP tunnel. If FDSP can send additional data via TCP, the visual quality can 

be further improved. 

6.2. Solution 

In order to utilize the slack time (i.e., difference between sub-stream ready time 

and playout deadline) and further improve visual quality, a new module called Percentage 

Based Prioritization (PBP) (see Fig. 4.1) is added so that FDSP can prioritize more 

bitstream syntax elements in addition to SPS, PPS and slice header. PBP selects syntax 

elements according to an input parameter called PERCENT. For example, if PERCENT is 

defined to be 10%, then 1 out of 10 packets will be sent via TCP. PBP extends the 

flexility of FDSP because, if desired, any syntax element can be prioritized. 

In our implementation, PBP is used to prioritize frames larger than 100 Kbytes. 

These large frames are usually I-frames, and therefore, are more important than B-frames 

as mentioned in Sec. 2.1. 
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6.3. Simulation and Results 

FDSP with PBP was simulated using network Scenario 2 described in Sec. 5.3. Input 

parameter PERCENT was set to two different values in order to progressively show the visual 

improvement. For the first case, PERCENT is set to 50%, and thus, FDSP will send 50% of 

the packets of frames that are larger than 100 Kbytes via TCP in addition to SPS, PPS, 

and slice headers. For the second case, PERCENT is set to 90% that allows even more data 

to be sent via TCP. 

Fig. 6.1 shows PSNR comparison between FDSP with no PBP, FDSP with 50% 

PBP, and FDSP with 90% PBP. Note that the result for FDSP with no PBP is obtained 

directly from Sec. 5.3. As expected, higher PBP percentage results in better PSNR. The 

average PSNR for FDSP with no PBP is 83.08 dB, while PSNR for PBP with 50% PBP 

is 90.99 dB. In particular, PSNR for 90% PBP achieves perfect PSNR of 111 dB. This 

indicates that FDSP with PBP is very effective in improving visual quality because it 

guarantees more data to be received in addition to SPS, PPS, and slice header. 
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FIGURE 6.1: PSNR comparison for FDSP with no PBP, FDSP with 50% PBP, and FDSP 

with 90% PBP. 
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Fig. 6.2 shows visual comparison for Frame 1187. Clearly, FDSP has better perfor­

mance than pure-UDP. In addition, visual quality progressively improves as PBP percent­

age increases. 

(a) Frame 1187 for pure-UDP. (b) Frame 1187 for FDSP (no PBP). 

(c) Frame 1187 for FDSP (50% PBP). (d) Frame 1187 for FDSP (90% PBP). 

FIGURE 6.2: Visual quality comparison of Frame 1187. 

Table 6.1 shows ready times for sub-streams for FDSP with no PBP, FDSP with 

50% PBP, and FDSP with 90% PBP. Ready time for each sub-stream increases as the 

PBP PERCENT parameter increases. However, sub-streams’ ready times are still earlier 

than playout deadlines and therefore no rebuffering is needed. 

In summary, FDSP with 90% PBP achieves perfect PSNR and yet there is no 

rebuffering. In comparison, pure-TCP also achieves perfect PSNR but rebuffers 17 times. 

Moreover, compare to pure-UDP, FDSP with 90% PBP achieves 60 dB higher PSNR. 

The results achieved by FDSP with 90% PBP are considerably better than pure-TCP 

and pure-UDP and therefore FDSP clearly has advantages over pure-TCP and pure-UDP 
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methods.
 

Sub-stream 
FDSP Ready Time (sec.) Playout 

Deadline (sec.) no PBP \w 50% PBP \w 90% PBP 

2 4.80 7.35 9.83 10 

3 7.92 12.02 14.13 20 

4 11.47 16.47 17.84 30 

TABLE 6.1: Sub-stream ready times for FDSP with no PBP, FDSP with 50% PBP, and 

FDSP with 90% PBP. 
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7. CONCLUSION
 

This thesis presented a new streaming method called FDSP, which utilizes the ben­

efit of both UDP and TCP. In addition, two techniques called Sub-stream Overlapping 

and Percentage Based Prioritization were presented to further improve its performance. 

The proposed FDSP was implemented within OEFMON and compared against tradition­

al pure-UDP and pure-TCP methods. Two 1920×1080 @30fps HD video clips were used 

to evaluate the three streaming methods in an ad-hoc network environment. Six network 

scenarios were simulated and both delay and visual quality were analyzed. Our analysis 

shows that FDSP achieves higher PSNR than pure-UDP and less buffering time than 

pure-TCP for all six scenarios. This shows that FDSP is effective in striking a balance 

between delay and visual quality and thus has advantage over pure-UDP and pure-TCP 

methods. 
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