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of the set of zeros of a ⇡-sine-type function.
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NONUNIFORM SAMPLING OF BAND-LIMITED FUNCTIONS

1 INTRODUCTION

In this thesis we consider extensions of the well-known Whittaker-Kotelnikov-Shannon

(WKS) sampling theorem. In its original form, this theorem allows the reconstruction of

a band-limited function from its sampled values and reads as follows: If a function f is

band-limited to [�⇡,⇡], i.e., it is represented as

f(t) =

Z

⇡

�⇡

g(x)e�ixtdx , t 2 R, (1.1)

for some function g 2 L2
(�⇡,⇡), then f can be reconstructed from its samples, f(k),

k 2 Z. The reconstruction formula is

f(t) =
1
X

k=�1
f(k)

sin⇡ (t� k)

⇡ (t� k)
, t 2 R. (1.2)

The series converges absolutely, in the L2-sense, and uniformly on R.

A function that has the representation (1.1) is called a band-limited function with band-

width ⇡. One can say that the WKS sampling theorem marks the beginning of Information

Theory. Information Theory is an interdisciplinary field with applications in electrical

engineering, computer science, communications, and applied mathematics. It concerns

compressing and restoring data, and studying the reliability of data reconstruction. Some

early works in this field are by Whittaker [46], Ogura [34], Kotelnikov [24], and Shannon

[41].

The cardinal series (1.2) is an example of the more general formula
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f (t) =
X

n2Z
f (�

n

)'
n

(t) (1.3)

where

'
n

(t) =
' (t)

(t� �
n

)'0
(�

n

)

(1.4)

and

' (t) = lim

N!1

Y

|k|<N

✓

1� t

�
k

◆

. (1.5)

In (1.2) one has �
k

= k and '(t) = 1
⇡

sin (⇡t).

A major theme of this thesis is to establish the formula (1.3) for more general choices of the

�
k

’s and for f in more general function spaces. In particular, we consider functions that

may have polynomial growth on the real line and are band-limited in the distributional

sense.

Higgins [17] proved a generalization of the WKS sampling theorem where the sampling

points, the integers, are replaced by points that are within one quarter from the integers.

In Chapter 2 we will generalize this result and consider sampling points that lie within a

certain distance from the zeros of a sine-type function that are not necessarily real. The

integers are an example of the set of zeros of a ⇡-sine-type function.

In Chapter 3 we will consider an approximate reconstruction of functions that have

polynomial growth when restricted to the real line. The idea of the reconstruction is

to control the growth of such a function by multiplying the function by a smooth cut-

off function that decays faster than the reciprocal of any polynomial. The reconstructed

function can be made arbitrarily close to the original function on compact subsets of C.

The reconstruction is accomplished by means of the Paley-Wiener-Schwarz theorem in

conjunction with slight "ratio-type" oversampling. By ratio-type oversampling we mean a

sampling set of higher density, e.g., using �Z, with 0 < � < 1 instead of Z.
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Chapter 4 considers the reconstruction of functions from the same class studied in Chap-

ter 3. However, this time, we will use oversampling that is not of ratio-type as in Chapter 3.

Instead, only finitely many points will be added to the sampling set. The main idea is

to use quotient division to create an auxiliary function with reduced growth that lies in

PW2
�

, the space of functions that have the representation (1.2). Then we use a sampling

theorem for the space PW2
�

for the reconstruction. After that, we unravel the quotient

to obtain the desired reconstruction. A similar theme can be applied by using the Tay-

lor polynomial that requires the derivatives of the function at zero which constitutes the

additional information in this case.

Furthermore, a method using contour integration will be used to obtain a reconstruction

with sampling points that may be perturbed by more than a quarter from the integers.

An estimate of the canonical product (1.5) by Hinsen [19], and a theorem by Phragmén-

Lindelöf [27, p. 39], will be used in the proof.

In Chapter 5 we will control the error in the reconstruction that occurs in the quantization

process for the Paley-Wiener Space PW1
�

, the functions (1.1) with g 2 L1
(��,�). The

quantization error occurs in the sense that f(�
k

) is replaced by f(�
k

) + �
k

where |�
k

| < �

for sufficiently small � > 0 in the sampling series. This requires us to find a sampling series

for the space PW2
�

that has a sufficiently fast decay. Then we use that sampling series

to reconstruct functions in the space PW1
�

by means of the density property of PW2
�

in

PW1
�

. Also, we will treat the problem over compact subsets of R by using a sampling

series deduced in Chapter 4.

Chapter 6 will be concerned with finding an estimate of the infinity norm of band-limited

functions that are bounded on the real line by knowing their values on a set � ⇢ R. This

is called Peak Value Problem. We will show that such an estimate exists if � is the zero set

of a ⇡-sine-type function. This answers a question posed by Boche and Mönich [32, page

2218]. We will prove a nonuniform version of the Valiron-Tschakaloff sampling theorem
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and then apply it to the peak value problem.
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2 A SAMPLING THEOREM BY PERTURBING THE ZEROS OF A
SINE-TYPE FUNCTION

One generalization of the Whittaker-Kotelnikov-Shannon (WKS) sampling theorem is a

result by Higgins. It claims that if we perturb the sampling set, the integers, by less than

a quarter, we can have a sampling series of Lagrange-type for the class of band-limited

functions with band-width ⇡. In this chapter, we are interested in generalizing the result

by Higgins and this will be by perturbing the zeros of a ⇡-sine-type function instead of the

integers.

Theorem 2.1 (Higgins [17], see also Seip [39]). Let {�
k

}
k2Z be a sequence of real numbers

such that

|�
k

� k|  D <
1

4

,

and let '(t) be defined as in (1.5). Then for all f 2 PW2
⇡

, we obtain

f(t) =
1
X

n=�1
f(�

k

)

'(t)

'0
(�

k

) (t� �
k

)

. (2.1)

The convergence is uniform over R.

We can point out that if the sampling series (2.1) is extended to complex values of t, then

one may call it Paley-Wiener-Levinson theorem since it follows from the celebrated result

by Paley-Wiener using the fact that Fourier transform defines an isometric isomorphism

from L2
[�⇡,⇡] onto the space PW2

⇡

defined in Definition 2.2 below.

Boche and Mönich [32] deduced a sampling series for a larger class of functions where

the sampling set is the zeros of a ⇡-sine-type function, see Appendix F. We need some

definitions and results that will explain the theme of the generalization we are interested

in. Functions of sine-type are defined as:
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Definition 2.1. An entire function f is of exponential type at most � (� > 0), if for

any ✏ > 0 there exists an A
✏

such that

| f(z) | A
✏

e(�+✏)|z|

for all z 2 C. In this case, we write, f is a function of exponential type  �. This function

is said to be of �-sine-type function if

(i) The zeros of f are simple and separated (=uniformly discrete inf

j 6=k

| �
j

� �
k

|�
� for all k 2 Z for some � > 0) and

(ii) There exist A, B and ⌘ such that

Ae�|y| | f(x+ iy) | Be�|y| (2.2)

for all x, y 2 R, such that | y |� ⌘.

The function sin (⇡z) is an example of a ⇡-sine-type function. An example of a ⇡-sine-type

function with non-equidistant zeros is provided by

'
↵,�

(z) = cos (⇡z)� � sin (↵⇡z) where 0 < ↵ < 1 and 0  �  1.

For more details see the Appendix A.

Let E denote the space of all entire functions and E
�

denote the class of all entire functions

of exponential type  �. The Paley-Wiener spaces PWp

⇡

are defined as follows:

Definition 2.2. A function f is in the Paley-Wiener space PWp

⇡

, 1  p  1 if

f(z) =
R

⇡

�⇡

g(w)eizwdw, z 2 C for some g 2 Lp

[�⇡,⇡] where the norm is given by

kfkPWp
⇡
:=

✓

1

2⇡

Z

⇡

�⇡

|g (w)|p dw
◆1/p

for 1  p < 1.
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The band-limited function is a tempered distribution whose Fourier transform has a

compact support. The functions in the spaces PW2
⇡

and PW1
⇡

are examples of band-

limited functions.

A closely related function space is Bernstein space Bp

�

which consists of all functions in

E
�

whose restrictions to the real line are in Lp

(R). The norm for Bp

�

, 1  p  1 is given

by k f kBp
�
=k f k

p

. Again the functions in this space are band-limited functions. That

can be seen by Phragmén-Lindelöf and Paley-Wiener-Schwartz Theorem, see Theorem B.1

and Theorem E.3.

The two normed spaces B2
⇡

and PW2
⇡

are identical, and that can be seen by Plancherel,

and Paley-Wiener Theorem, see Theorem E.1.

The Bernstein and Paley-Wiener spaces can be ordered as follows:

B1
�

⇢ B2
�

⇢ . . . ⇢ B1
�

and

. . . ⇢ PW2
�

⇢ PW1
�

.

For more details about the inclusion ordering of the Bernstein and Paley-Wiener spaces

see the Appendix E. The functions in the Bernstein space B2
�

are band-limited in classical

sense while the functions in Bp

�

with p > 2, p = 1 are band-limited in distributional sense,

with band-width �, if they are not band-limited in the classical sense. This follows from

the Paley-Wiener-Schwartz Theorem, see Theorem E.3.

Also, we obtain the following ordered inclusions:

B2
�

= PW2
�

⇢ PW1
�

⇢ B1
�,0 ⇢ B1

�

.

where the elements f in B1
�,0 are those in B1

�

that satisfy lim|t|!1 f(t) = 0.

The WKS sampling series can be used for the class B1
�,0 if we consider oversampling, see

[32, Theorem 6]. For more general study of function reconstruction, we will consider the
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class of functions that is defined as

eB
�,N

=

n

f 2 E | |f(z)|  � (1 + |z|)N e�|Imz|, for some N 2 N and � 2 R
o

. (2.3)

This class consists of all entire functions of exponential type  � that are bounded by

some polynomial of degree  N when restricted to the real line R. The classes of functions

that we are interested in for our study are listed below:

PW2
�

⇢ PW1
�

⇢ B1
�,0 ⇢ B1

�

⇢ eB
�,N

.

When we deal with perturbation, the question of stability of the reconstruction comes

into the play. One kind of stability is defined from the sampling set point view. The set

⇤ = {�
k

}
k2Z is called a set of stable sampling (or sampling) for the space B2

�

, if there

exists a constant K such that

kfk2
L

2  K
X

k2Z
|f(�

k

)|2

for all f 2 B2
�

. And ⇤ is called a set of interpolating for B2
�

if for each square-summable

{c
k

}
k2Z there exists f 2 B2

�

with

f(�
k

) = c
k

. (2.4)

If f is the only solution in B2
�

for (2.4), then ⇤ is called a complete interpolating set

for B2
�

.

We are interested in the stability of the reconstruction for the space B1
�

. Due to Landau

[25], if there exists a constant K such that

kfk1  K sup

k2Z
|f(�

k

)|

for all f 2 B1
�

, then ⇤ = {�
k

}
k2Z is called a stable sampling set for the space B1

�

.

In practice, we study function reconstructions over compact sets. Accordingly, there will

be cases where we study stability over compact sets of R or C. Oversampling can be
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used for stability. It provides a fast decay in the sampling functions that are used in the

reconstruction formulae for larger function spaces.

The stability in sense of Riesz basis is another type of stability. It leads to stability in the

sense of stable sampling set.

Definition 2.3. A sequence of vectors {'
k

}
k2Z in a separable Hilbert space H is called a

Riesz basis if {'
k

}
k2Z is complete in H and there exist constants A and B such that for

all M , N 2 N and arbitrary scalars c
k

we have

A
N

X

k=�M

|c
k

|2 
�

�

�

�

�

N

X

k=�M

c
k

'
k

�

�

�

�

�

2

 B
N

X

k=�M

|c
k

|2 . (2.5)

When we have to deal with perturbation, we use Kadec’s 1/4-Theorem , see [49, page

36].

Theorem 2.2 (Kadec). If {�
k

} is a sequence of real numbers for which

|�
k

� k|  D <
1

4

, k = 0,±1,±2, . . .

then
�

ei�kt
 

forms a Riesz basis for L2
[�⇡,⇡].

2.1 Derivation Of The Main Result

Let us now consider the perturbation as �⇤
k

= �
k

+ d
k

and define '⇤ as

'⇤
(z) = lim

N!1
Y

|k|N

✓

1� z

�
k

+ d
k

◆

(2.6)

where (1� z/(�
k

+ d
k

)) is replaced by z if �
k

+ d
k

= 0. Here we assume {d
k

}
k2Z 2 l1.

It is known that the sequence {�
k

}
k2Z forms a complete interpolating sequence for PW2

⇡

if

the system
�

ei�kt
 

k2Z is a Riesz basis for L2
[�⇡,⇡]. That can be seen by using the right-

hand side of the inequality (2.5), inverse Fourier transform and the biorthogonal basis of
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the exponentials
�

ei�kt
 

k2Z in L2
[�⇡,⇡]. The biorthogonal basis {h

k

}
k2Z satisfies

D

ei�m(.), h
n

E

= �
mn

. (2.7)

A consequence of work by B. S. Pavlov [36], is that if {�
k

}
k2Z is a complete interpolating

sequence for PW2
⇡

, then the canonical product '(z) in (1.5) defines an entire function of

exponential type ⇡, see also K. Seip and Y. Lyubarskii [40, 30]. If the system
�

ei�kt
 

k2Z

forms a Riesz basis for the space L2
[�⇡,⇡], then the canonical product '(z) defines an

entire function of exponential type ⇡.

Here, we will study the perturbation of a sampling set. Perturbing the integers (which are

zeros of a ⇡-sine-type function) by less than a quarter guarantees that '⇤
(z) defines an

entire function of exponential type ⇡ by Kadec and Pavlov mentioned above. However,

we are interested in the more general case where we perturb the set of zeros of a ⇡-sine-

type function. Levin and Ostrovskii in [28, page 80] stated that if {d
k

}
k2Zis a bounded

sequence of complex numbers and {�
k

}
k2Z is a set of zeros of a ⇡-sine-type function, then

the canonical product '⇤
(z) in (2.6) is a function of exponential type ⇡, but it need not

be a ⇡-sine-type function.

For later use, we summarize what have mentioned above as a Remark

Remark 2.1. If {�
k

}
k2Z is a complete interpolating sequence for PW2

⇡

, then the canonical

product '(z) in (1.5) defines an entire function of exponential type ⇡. Consequently, if the

system
�

ei�kt
 

k2Z form a Riesz basis for L2
[�⇡,⇡], then the function '(z) defines an

entire function of exponential type ⇡, see [49, Theorem 9, page 143].

For later use, we state the following remark

Remark 2.2. If f 2 PW2
⇡

vanishes on a complete interpolating set ⇤ of PW2
⇡

, then f ⌘ 0.

A. G. García [14] gave a new proof of the Paley-Wiener-Levinson Theorem where he used a
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theorem by Titchmarsh. Titchmarsh’s theorem can be stated as follows, cf. [43, Theorem

VI].

Theorem 2.3 (Titchmarsh). Let g 2 L1
[�⇡,⇡] and define the entire function f as

f(z) =

Z

⇡

�⇡

g(w)ezwdw.

Then, f has infinitely many zeros, {z
n

}
n2N, with nondecreasing absolute values, such that

f (z) = Azme(
a+b
2 )

z

1
Y

n=1

✓

1� z

z
n

◆

for some m 2 N[ {0}, where [a, b] ✓ [�⇡,⇡] is the smallest interval that contains the

support of g. The infinite product is conditionally convergent.

For our application of Titchmarsh’s theorem we also need the following lemma

Lemma 2.1. Let ⇤ = {�
k

}
k2Z be such that {f

k

(z) = ei�kz, k 2 Z} is a Riesz basis of

L2
[�⇡,⇡]. Let {g

k

}
k2Z denote the corresponding biorthogonal basis. Let [↵

k

,�
k

] ✓ [�⇡,⇡]
be the smallest interval that contains the support of g

k

. Then ↵
k

= �⇡ and �
k

= ⇡.

Proof. Assume that [↵
k

,�
k

] is a proper subset of [�⇡,⇡] for some k 2 Z, let c = (↵
k

+�
k

)/2,

and consider the shifted function h(z) = g
k

(z � c). Then h is supported in [�(�
k

�
↵
k

)/2, (�
k

� ↵
k

)/2] = [��⇡,�⇡] for some � 2 (0, 1). The inverse Fourier transform of

h now satisfies ˜h(�
n

) =

R

h(x)ei�nxdx =

R

g
k

(x � c)ei�nx dx = ei�nc
R

g
k

(x)ei�nx dx =

ei�nchf
n

, g
k

i = ei�nc�
kn

, i.e., ˜h vanishes on ⇤0
= ⇤ � {�

k

}. According to Beurling and

Malliavin [4] the closure radii of ⇤ and ⇤0 are equal. Therefore, since � < 1 and ˜h 2 PW2
�⇡

vanishes on ⇤0, it must vanish identically, which is a contradiction.

We restate the following theorem by Katsnel’son, see [23].

Theorem 2.4 (Katsnel’son). Let {�
k

}
k2Z be the set of zeros of a �-sine-type function and

let {d
k

} be a sequence of complex numbers satisfying the conditions

|Re d
k

|  dp, sup
k2Z

|Im d
k

| < 1
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where p = inf

k

|Re�
k

� Re�
k+1|, d < 1

4 is a constant. Then, the sequence
�

ei(�k+dk)t
 

is a

Riesz basis in L2
(��, �).

We now state the main result of this chapter. It is a generalization in the sense that the

perturbed sampling points in Higgins’s result are replaced by perturbed complex numbers

with a certain distance from the zeros of a ⇡-sine-type function.

Theorem 2.5. Let {�
k

}
k2Z be a set of zeros of a ⇡-sine-type function and let {�⇤

k

}
k2Z be

a sequence of complex numbers satisfying

|Re�⇤
k

� Re�
k

|  dp, sup
k2Z

|Im�⇤
k

� Im�
k

| < 1

where d < 1
4 and p = inf

k

|Re�
k

� Re�
k+1|. Then, for all f 2 PW2

⇡

, we obtain

f(z) =
X

k2Z
f (�⇤

k

)

'⇤
(z)

'⇤0
(�⇤

k

)(z � �⇤
k

)

,

where the convergence is uniform on any horizontal strip of C of a finite width.

Proof. By Theorem 2.4 we have the sequence
�

ei�
⇤
k(.)
 

k2Z forms a Riesz basis over

L2
[�⇡,⇡]. The sequence

�

ei�
⇤
k(.)
 

k2Z possesses a complete biorthogonal sequence {g
k

}
k2Z

in L2
[�⇡,⇡], see Theorem D.1. The sequence {g

k

}
k2Z is a Riesz basis being biorthogonal

to
�

ei�
⇤
k(.)
 

k2Z, see Theorem D.2. Let h
k

= g
k

. It follows that

Z

⇡

�⇡

h
n

(x)ei�
⇤
mxdx =

D

ei�
⇤
m(.), g

n

E

= �
mn

.

We define the function G
n

as

G
n

(z) =

Z

⇡

�⇡

h
n

(x)eizxdx. (2.8)

By using the biorthogonality condition (2.7) we obtain that

G
n

(z) =
'⇤

(z)

(z � �⇤
n

)

K(z),
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with K(�⇤
n

) 6= 0. We claim that the function K has no zeros. The claim will be proved by

the way of contradiction. Assume that K(µ) = 0 for µ 6= �⇤
n

and define the function H as

H(z) = G
n

(z)
(z � �⇤

n

)

(z � µ)
.

Then, the function H belongs to PW2
⇡

= B2
⇡

since G
n

is, and the factor (z��

⇤
n)

(z�µ) is asymptot-

ically equal to 1. The function H vanishes on the complete interpolating set ⇤ = {�⇤
k

}
k2Z

and thus H ⌘ 0 by Remark 2.2. That implies that G
n

is identically equal to zero, a con-

tradiction. Therefore, the function K is different from zero everywhere. Now, by virtue of

Theorem 2.3 and Lemma 2.1 we obtain

G
n

(z) =
'⇤

(z)

z � �⇤
n

K(z) = Azm
1
Y

n=1

(1� z

z
k

).

Since '⇤ has only simple zeros and K(z) has no zeros, we have that z
k

6= z
l

for k 6= l.

Furthermore, one has either m = 0 and �0 6= 0, or m = 1 and �0 = 0. In either

case {z
k

, k = 1, 2, . . .} = {�⇤
k

, k 2 Z, k 6= n}. It follows that K(z) is constant. By the

biorthogonality condition we obtain that

1 = G
n

(�⇤
n

) = lim

z!�

⇤
n

G
n

(z) = '⇤0
(�⇤

n

)K (�⇤
n

)

and thus, we rewrite (2.8) as

Z

⇡

�⇡

h
n

(x)eizxdx =

'⇤
(z)

'⇤0
(�⇤

n

) (z � �⇤
n

)

= '⇤
n

(z).

Now, if f 2 PW2
⇡

, then

f(z) =

Z

⇡

�⇡

g(w)eizwdw

for some g in L2
[�⇡,⇡]. We have {h

k

}
k2Z is a Riesz basis for L2

[�⇡,⇡] and so

g(w) = lim

N!1

N

X

m=�N

c
m

h
m

(w)
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in L2 sense. It follows that f(�⇤
m

) =

⌦

ei�
⇤
m(.), g

↵

=

⌦

ei�
⇤
m(.),

P

k2Z ckgk
↵

= c
m

by biorthog-

onality. Now,
�

�

�

�

�

f(z)�
N

X

m=�N

f(�⇤
m

)

'⇤
(z)

'⇤0
(�⇤

m

)(z � �⇤
m

)

�

�

�

�

�

=

�

�

�

�

�

Z

⇡

�⇡

g(w)eizwdw �
N

X

m=�N

c
m

Z

⇡

�⇡

h
m

(w)eizwdw

�

�

�

�

�

=

�

�

�

�

�

Z

⇡

�⇡

"

g(w)�
N

X

m=�N

c
m

h
m

(w)

#

eizwdw

�

�

�

�

�


p
2⇡

�

�

�

�

�

g �
N

X

m=�N

c
m

h
m

�

�

�

�

�

2

e⇡|Imz|.

Thus, for |Imz|  M for some M 2 R, we have

lim

N!1

�

�

�

�

�

f(z)�
N

X

m=�N

f(�⇤
m

)

'⇤
(z)

'⇤0
(�⇤

m

)(z � �⇤
m

)

�

�

�

�

�

 lim

N!1

p
2⇡

�

�

�

�

�

g �
N

X

m=�N

c
m

h
m

�

�

�

�

�

2

e⇡|Imz|
= 0,

which shows that the convergence is uniform over any horizontal strip of a finite width.

For completeness, we state the following theorem.

Theorem 2.6. [16, Theorem 3.12] Under Fourier transformation, the pre-image of a Riesz

basis for L2
[�⇡,⇡] is a Riesz basis for PW2

⇡

.

With this result, we see that the sequence {'⇤
k

}
k2Z forms a Riesz basis for PW2

⇡

. Hence,

the stability in the sense of (2.5) follows.

Example 2.1. If {�⇤
k

}
k2Z is a sequence of real numbers and {�

k

}
k2Z = Z which are

zeros of a ⇡-sine-type function, then p = 1 and |Re�⇤
k

� Re�
k

|  d < 1
4 and thus for all

f 2 B2
⇡

= PW2
⇡

we obtain that

f(t) =
X

k2Z
f (�⇤

k

)

'⇤
(t)

'⇤0
(�⇤

k

)(t� �⇤
k

)

,

where the convergence is uniform over R. This is the sampling series by Higgins, see

Theorem 2.1. Furthermore, if we additionally set d = 0, then we obtain the WKS sampling

theorem.
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2.2 Numerical Example

In the following we have the plot of the function

f(x) =
sin(⇡

�

x� 2
10

�

)

�

x� 2
10

�

+

sin

�

⇡

3

�

x� 23
10

��

�

x� 23
10

�

that is in the space PW2
⇡

. We consider sampling points that are the zeros of a ⇡-sine-

type function. The ⇡-sine-type function is g(x) = cos⇡x � 0.5 sin
⇣

⇡p
3
x
⌘

that has zeros

with p = 0.7448. The zeros form a nonuniform and nonperiodic sampling points. We

perturb the first ten positive zeros. The perturbation achieved with a random function

that maintains the quarter condition in Theorem 2.5. The number of the terms used for the

reconstruction is 2N + 1 = 801. The truncation error is kek
L

1[�10,10] = 0.0025. The plot

of the reconstruction and the exact function below coincides since the error is relatively

small.
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FIGURE 2.1: The graph of the function and its reconstruction where the sampling points
are the zeros of a ⇡-sine-type function.
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3 APPROXIMATE RECONSTRUCTION OF BAND-LIMITED
FUNCTIONS OF POLYNOMIAL GROWTH

In this chapter, we will study the problem of approximately reconstructing a band-limited

function of polynomial growth from its nonuniform samples. The main result will be

derived by using oversampling and the Paley-Wiener-Schwartz Theorem. We start with

some background on the topic.

Campbell [8] is one of the early authors who studied a generalization of the sampling series.

The generalization was in the sense that he considered functions that, essentially, have

polynomial growth when restricted to the real line. Campbell’s reconstruction required

the support of the shifted distribution to be disjoint with a function � that is in the space

D. The idea mainly is as follows:

Let hg, hi denote the result of applying a distribution g 2 D0 to a test function h 2 D. If

g is a distribution with bounded support and f is defined as

f(t) =
⌦

g(w),�(w)e�iwt

↵

where � 2 D and � (w) = 1 on some open set containing the support of g (w), then with

use of the identity
X

m

g (w � 2m�) =
1

2�

X

n

f
⇣n⇡

�

⌘

ein⇡w/� (3.1)

and the fact that � (w) is disjoint from the supports of the shifted distributions, that are

g (w � 2m�), m = ±1,±2, . . ., we apply
⌦

.,�(w)e�iwt

↵

to both sides of (3.1) to obtain

⌦

g(w),�(w)e�iwt

↵

=

1

2�

X

n

f
⇣n⇡

�

⌘D

ein⇡w/�,�(w)e�iwt

E

,

that is

f(t) =
1

2�

X

n

f
⇣n⇡

�

⌘

Z

R
� (w) e�iw(t�n⇡/�)dw.
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Several authors studied sampling expansions for distributions, both with uniform and

nonuniform sampling points. Pfaffelhuber [37] obtained a reconstruction with uniform

sampling points. The expansion is

f(t) = q
N

(t) cos (�t) +
X

n2Z
[f(�

n

)� (�1)

n q
N

(�
n

)]

✓

t

�
n

◆

sin� (t� �
n

)

� (t� �
n

)

where

q
N

(t) =
N�1
X

k=0

tk

k!

✓

d

dt

◆

k



f(t)

cos�t

�

�

�

�

�

�

t=0

Later, it is generalized by Hoskins and Pinto [20]. They replaced the function cos�t by

⌘(t) which is the inverse Fourier transform of suitable distribution in the space D0. An

important tool in their paper was a result by Schwartz for decomposing a distribution,

see [20]. Also, we should mention that Lee [26] did an early study where the class he

considered was B
k

(W ), the class of functions that are band-limited to [�W,W ] and satisfy
R

R |f(x)| (1 + x2)�kdx < 1 when restricted to R. He obtained the sampling series

f(z) =
X

n2Z
f
⇣n⇡

�

⌘

sin� (z � n⇡/�)

� (z � n⇡/�)

sin

k � (z � n⇡/�)

�k (z � n⇡/�)k
,

where � > 2⇡W and � < (� � 2⇡W ) /k. The convergence is uniform over compact subsets

of C. Gilbert G Walter did an extensive study for the class of functions that are band-

limited and have polynomial growth. In [44], he obtained a sampling expansion that

includes a correction by a polynomial where the sampling set is uniform. While in [45],

he derived a sampling expansion with nonuniform sampling points that are symmetric as

�
k

= ���k

2 C.

3.1 Smooth Cut-off Function

We will study the functions in the class eB
⇡,N

, N 2 N[ {0}. The class eB
⇡,N

is defined as

eB
⇡,N

=

n

f 2 E | |f(z)|  � (1 + |z|)N e⇡|Imz|, for some � 2 R
o

. (3.2)
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We will use the notion of Riesz basis of the exponentials. It is appropriate to use the result

by Katsnel’son, see Theorem 2.4, since we will be oversampling and considering sampling

points that are complex (not necessarily real).

We will use the method of multiplying the given function by a smooth cut-off function. As

result, the new function will have a decay that is faster than a reciprocal of any polynomial.

The main tool will be the celebrated theorem by Schwartz that was proved after the Paley-

Wiener Theorem, see [38, page 198]. The theorem is stated as follows

Theorem 3.1 (Paley-Wiener-Schwartz). (a) If � 2 D (Rn

) has its support in rB, B is

the closed unit ball of Rn, and if

f(z) =

Z

Rn
� (t) e�iz.tdm

n

(t) , (z 2 Cn

) (3.3)

then f is entire, and there is a constant �
N

< 1 such that

|f(z)|  �
N

(1 + |z|)�N er|Imz|, (z 2 Cn, N = 0, 1, 2, . . .) (3.4)

(b) Conversely, if f is an entire function in Cn which satisfies (3.4), then there exists

� 2 D (Rn

), with support in rB, such that (3.3) holds.

For the following result we define f
�

as

f
�

(z) = f(z)ˆh
�

(z)

where h
�

(t) = ��1h(t/�) for h 2 D (B) with
R

h = 1. The function f
�

converges to f

pointwise as � ! 0.

We state and prove the following theorem

Theorem 3.2. Let {�
k

}
k2Z be a sequence of complex numbers such that
�

�

�

�

�
k

� k

✓

⇡

�0 + ⇡

◆

�

�

�

�

 D <
1

4

✓

⇡

�0 + ⇡

◆

.
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for some �0 > 0. Then for given f 2 eB
⇡,N

, C ⇢ C compact and ✏ > 0 there is � =

� (f, C, ✏) < �0 such that
�

�

�

�

�

f(z)�
X

k2Z
f
�

(�
k

)

'(z)

(z � �
k

)'0
(�

k

)

�

�

�

�

�

< ✏.

for all z 2 C.

Proof. Let C be a compact set in C and let f
�

(z) = f(z)ˆh
�

(z) where h
�

(t) = ��1h(t/�)

and h 2 D (B) with
R

h = 1. Let �  �0. Now, by the Paley-Wiener-Schwartz Theorem

we obtain

|f
�

(z)| < �
q

(1 + |z|)�q e(�+⇡)|y| q = 0, 1, 2, . . .

and thus again by the same theorem we obtain

f
�

(z) = h'
�

, e�z

i =
Z

Rn
'
�

(t)e�iztdm
n

(t)

for some '
�

2 D ((� + ⇡)B). Now, we use Theorem 2.5 to reconstruct f
�

2 B2
�0+⇡

. The

reconstruction of f
�

is

f
�

(z) =
X

k2Z
f
�

(�
k

)

'(z)

(z � �
k

)'0
(�

k

)

where the convergence is in L2-sense. Using the fact that |.|  p
2⇡ k.k2 e⇡|Imz| we can

have uniform convergence over compact subsets of C. From the definition above for f
�

we

can have a sufficiently small � = � (f, C, ✏) < �0 such that

|f(z)� f
�

(z)| < ✏

for all z in C. Now,
�

�

�

�

�

f(z)�
X

k2Z
f
�

(�
k

)

'(z)

(z � �
k

)'0
(�

k

)

�

�

�

�

�

= |f(z)� f
�

(z)|

 ✏

and thus the conclusion follows where the convergence is uniform over compact subsets of

C.
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3.2 Numerical Examples

In the following we have the plot of the function

f(x) = (x+ 4.5)

✓

cos (⇡x)�
✓

3

4

◆

sin

✓

⇡p
2

x

◆◆

that is in the space eB
⇡,1. The function has a polynomial growth of order 1. The sampling

set is a perturbed sampling set from the scaled integers
⇣

⇡

�0+⇡

⌘

Z with �0 = 0.2. The

perturbation is achieved by a random function that maintains the quarter condition in

Theorem 3.2. The number of terms considered is 2N + 1 = 801. The truncation error is

kek
L

1[�10,10] = 0.3331.
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FIGURE 3.1: The graph of the function f of the polynomial and its reconstruction where
the sampling points are within a quarter from the scaled integers

⇣

⇡

0.2+⇡

⌘

Z.
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4 FINITE POINTS OVERSAMPLING AND PERTURBING
BEYOND A QUARTER

In this chapter, we will deduce a sampling series for a function that is band-limited in a

distributional sense and has polynomial growth when restricted to the real line R. The

sampling set that we consider will be either a perturbed set from the integers or more

generally from the set of zeros of a ⇡-sine-type function. In the first section, we will

consider a perturbed sampling set from zeros of a ⇡-sine-type function. We will show that

adding finite additional sampling points helps to obtain a reconstruction for those type

of functions. This type of oversampling is not of ratio-type such as �Z where � < 1 in

case of reconstructing a function with band-width ⇡. It is an oversampling by adding a

finite number of points that is determined with respect to the degree of the growth of the

function to be reconstructed. In the second section, we will consider a perturbed set from

the integers. We will show that adding one additional sampling point for the reconstruction

allows the perturbation to go beyond a quarter.

4.1 Finite Points Oversampling

Our aim in this section to obtain a sampling series for the space eB
⇡,N

with minimum

oversampling. The sampling set is a perturbed sampling set either from the integers or

more generally from zeros of a ⇡-sine-type function. Let S
⇡

denote the class of ⇡-sine-type

functions. For f 2 S
⇡

, ⇤
f

denotes the set of zeros of f . Let S denote the collection of all

such ⇤
f

, i.e., S = {⇤
f

| f 2 S
⇡

}.

The desired perturbation that we will be studying is as follows: {�
k

}
k2Z in S and {�⇤

k

}
k2Z

is any set satisfying

|�⇤
k

� �
k

| < � (4.1)
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for all k 2 Z and some � > 0.

K. Seip and J. R. Higgins, see [39, Theorem 2] and [18, Theorem 1], had results where

they considered the space B1
�⇡

, 0 < � < 1 (oversampling, ratio-type) where the perturbed

sampling set is within a quarter from the integers (zeros of a ⇡-sine-type function). Boche

and Mönich, see [32, Theorem 4], had a sampling series for B1
�⇡

, 0 < � < 1, where the

sampling set is made of the zeros of a ⇡-sine-type function. Moreover, Boche and Mönich

[32, Theorem 2] had a result for the space B1
⇡,0 ⇢ B1

⇡

where no oversampling required.

But, the sampling set is zeros of a ⇡-sine-type function. The result is stated as follows:

Theorem 4.1 ([32, Theorem 2]). Let ' be a function of ⇡-sine-type, whose zeros {�
k

}
k2Z

are all real and ordered increasingly. Furthermore, let '
k

be defined as in (1.4). Then, for

all T > 0 and all f 2 B1
⇡,0 we have

lim

N!1
max

t2[�T,T ]

�

�

�

�

�

f(t)�
N

X

k=�N

f(�
k

)'
k

(t)

�

�

�

�

�

= 0.

There is a progress where we have a perturbation from zeros of a ⇡-sine-type function. It

can be explained after the following result.

Theorem 4.2. (Levin-Ostrovskii, [28]) If {�
k

}
k2Z are zeros of a ⇡-sine-type function and

{d
k

}
k2Z 2 lp, 1 < p < 1, then

'(z) =
Y

k2Z

✓

1� z

�⇤
k

◆

where �⇤
k

= �
k

+ d
k

, is a function of ⇡-sine-type.

Theorem 4.2 allows a perturbation that leaves the function ' to be of a ⇡-sine-type. If the

set {�⇤
k

}
k2Z is the zero set of a ⇡-sine-type function, then the sampling series for f 2 B1

⇡,0

by Boche and Mönich, Theorem 4.1, is applicable. However, this perturbation is different

from the desired �-perturbation, see (4.1).
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With regard to �⇤
k

= �
k

+ d
k

where |d
k

| < �, Boche and Mönich asked whether for

sufficiently small � the set {�⇤
k

}
k2Zis again in S. Obviously that will lead to the sampling

series in Theorem 4.1 since {�⇤
k

}
k2Z would then satisfy the hypothesis of their result. The

question is not yet answered.

The sampling series by J. R. Higgins, see Theorem 2.1, of the functions in B2
⇡

does not

directly apply to B1
⇡

. To demonstrate this we give the following example

Example 4.1. If f(t) = sin(⇡t), then f 2 B1
⇡

. If {�⇤
k

}
k2Z = Z, then f(k) = 0 and

therefore

lim

N!1
max

t2R

�

�

�

�

�

f(t)�
N

X

k=�N

f(�⇤
k

)'
k

(t)

�

�

�

�

�

6= 0

when t = 1/2.

Let ⇤ = {�
k

}
k2Z, ⇤⇤

= {�⇤
k

}
k2Z, and µ1, . . . , µr

be additional sampling points such that

µ
i

6= µ
j

for i 6= j and {µ1, . . . , µr

}\⇤⇤
= ;. With ⇤⇤

µ

= ⇤

⇤ [ {µ1, . . . , µr

}, we define S
N

f

as

S
N

f(t) =
X

�̃k2⇤⇤
µ,|�̃k|N

f
⇣

˜�
k

⌘

G
k

(t)

where the G
k

’s are suitable sampling functions. The main question is as follows:

Question 1. Let {�
k

}
k2Z 2 S. Then, does there exist � > 0 such that given any sampling

sequence {�⇤
k

}
k2Z with |�⇤

k

� �
k

| < � for all k 2 Z, we have that

lim

N!1
max

t2[�T,T ]
|f(t)� (S

N

f) (t)| = 0

holds true for all T > 0 and all f 2 B1
⇡

?

Before answering the question we start by motivating a result that generalizes a result

obtained by Gilbert G Walter [44]. Then we will try to obtain a result for a larger class of

functions. That class of functions is the one defined in (3.2).
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We will use a result we proved in Chapter 2, see Theorem 2.5. That result will enable us

to consider sampling points that are complex (not necessarily real) instead of the result by

Higgins, see Theorem 2.1, that uses only real sampling points. The proof is considerably

easier than the one by Gilbert G Walter since we avoided using a result for decomposing a

distribution by Schwartz. The result will be for a perturbation of the zeros of a ⇡-sine-type

function.

Let µ1, µ2, . . . , µN+1 be distinct and different from the sampling set {�
k

}
k2Z and let f be

in the class eB
⇡,N

. We define e'
N

as

e'
N

(z) =

 

N+1
Y

i=1

(z � µ
i

)

!

'(z).

Now, we define the function Q
N+1 as follows: for z 6= µ

j

let

Q0(z) = f(z), Q1(z) =
Q0(z)�Q0(µ1)

z � µ1
,

Q2(z) =
Q1(z)�Q1(µ2)

z � µ2
, . . . , Q

N+1(z) =
Q

N

(z)�Q
N

(µ
N+1)

z � µ
N+1

(4.2)

where Q
j

(z) = Q0
j�1(µj

) for z = µ
j

, j = 1, . . . , N + 1. By back substitution we can see

that Q
N+1(z) will require the values of f at µ1, µ2, . . . , µN+1. Furthermore, the function

Q
N+1(z) 2 B2

⇡

and thus we can apply Theorem 2.5 to obtain

Q
N+1(z) =

1
X

k=�1
Q

N+1(�k)
'(z)

(z � �
k

)'0
(�

k

)

which means that

Q
N

(z)�Q
N

(µ
N+1)

(z � µ
N+1)

=

1
X

k=�1
Q

N+1(�k)
'(z)

(z � �
k

)'0
(�

k

)

Q
N

(z) = Q
N

(µ
N+1) +

1
X

k=�1
Q

N+1(�k) (�k � µ
N+1)

(z � µ
N+1)'(z)

(�
k

� µ
N+1) (z � �

k

)'0
(�

k

)
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If we continue with this back substitution we will end up with

f(z) = Q0(µ1) +Q1(µ2) (z � µ1) + . . .+Q
N

(µ
N+1) (z � µ1) . . . (z � µ

N

)

+

1
X

k=�1
Q

N+1(�k) (�k � µ1) . . . (�
k

� µ
N+1)

(z � µ1) . . . (z � µ
N+1)'(z)

(�
k

� µ1) . . . (�
k

� µ
N+1) (z � �

k

)'0
(�

k

)

.

By using the closed form of the product and the definition of e'
N

, the expression above

can be written as

f(z)�Q0(µ1)�
N

X

k=1

Q
k

(µ
k+1)

k

Y

j=1

(z � µ
j

) = (4.3)

1
X

k=�1

0

@Q
N+1(�k)

N+1
Y

j=1

(�
k

� µ
j

)

1

A

e'
N

(z)

(z � �
k

) e'0
N

(�
k

)

.

(4.4)

We denote the polynomial in the left hand side

Q0(µ1) +

N

X

k=1

Q
k

(µ
k+1)

k

Y

j=1

(z � µ
j

)

by q
N

. The polynomial q
N

is a polynomial of degree N that is of Newton form. It

interpolates the function f at the points µ1, . . . , µN+1. We compute the coefficients of the

series in the right hand side of (4.4) by back substitution of (4.2) as follows

Q
N+1(z) =

Q
N

(z)�Q
N

(µ
N+1)

z � µ
N+1

=

Q
N�1(z)�Q

N�1(µN

)� (z � µ
N

)Q
N

(µ
N+1)

(z � µ
N

) (z � µ
N+1)

=

Q
N�2(z)�Q

N�2(µN�1)�Q
N�1(µN

) (z � µ
N�1)�Q

N

(µ
N+1) (z � µ

N�1) (z � µ
N

)

(z � µ
N�1) (z � µ

N

) (z � µ
N+1)

...

=

Q0(z)�Q0(µ1)�
P

N

k=1Qk

(µ
k+1)

Q

k

j=1 (z � µ
j

)

Q

N+1
j=1 (z � µ

j

)

=

f(z)� q
N

(z)
Q

N+1
j=1 (z � µ

j

)

. (4.5)

Thus,

Q
N+1(�k)

N+1
Y

j=1

(�
k

� µ
j

) = Q0(�
k

)�Q0(µ1)�
N

X

k=1

Q
k

(µ
k+1)

k

Y

j=1

(�
k

� µ
j

)
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= f(�
k

)�Q0(µ1)�
N

X

k=1

Q
k

(µ
k+1)

k

Y

j=1

(�
k

� µ
j

)

which is the left hand side of (4.4) evaluated at �
k

. Therefore, the sampling series in (4.4)

became

f(z)�Q0(µ1)�
N

X

k=1

Q
k

(µ
k+1)

k

Y

j=1

(z � µ
j

)

=

1
X

k=�1

0

@f(�
k

)�Q0(µ1)�
N

X

k=1

Q
k

(µ
k+1)

k

Y

j=1

(�
k

� µ
j

)

1

A

e'
N

(z)

(z � �
k

) e'0
N

(�
k

)

(4.6)

The left hand side of (4.6) is the difference of function f and its corresponding polynomial

(interpolating polynomial) of degree N . If f(z) is a polynomial of degree N , then the

interpolating polynomial in (4.6) is the function itself. So the left hand side of (4.6) is as

f(z) � p
N

(z) = f(z) � f(z) = 0 and the right hand side is also identically equal to zero.

We will prove the following result.

Theorem 4.3. Let f 2 eB
⇡,N

and let {�
k

}
k2Z, �0 6= 0 be a set of zeros of a ⇡-sine-type

function and let {�⇤
k

}
k2Z, �

⇤
0 6= 0 be a sequence of complex numbers satisfying

|Re�⇤
k

� Re�
k

|  dp, sup
k2Z

|Im�⇤
k

� Im�
k

| < 1

where d < 1
4 and p = inf

k

|Re�
k

� Re�
k+1|. Then,

f(z)� p
N

(z) = lim

M!1

M

X

k=�M

(f (�⇤
k

)� p
N

(�⇤
k

))

✓

z

�⇤
k

◆

N+1 '⇤
(z)

(z � �⇤
k

)'0
(�⇤

k

)

,

where p
N

is the Taylor polynomial of f about zero of order N . Similarly,

f(z)� q
N

(z) = lim

M!1

M

X

k=�M

(f (�⇤
k

)� q
N

(�⇤
k

))

N+1
Y

j=1

✓

z � µ
j

�⇤
k

� µ
j

◆

'⇤
(z)

(z � �⇤
k

)'0
(�⇤

k

)

,

where q
N

is the interpolating polynomial of f at the points {µ
j

}N+1
j=1 . The convergence in

both expansions is uniform over compact subsets of C.
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Proof. For the first part, let f 2 eB
⇡,N

and let p
N

(z) be the Taylor polynomial of f of order

N about zero. Then,

h(t) =
f(t)� p

N

(t)

⌘(t)
2 L2

(R) ,

where ⌘(t) = tN+1, since f is bounded by a polynomial of degree N . The function h(z) is

an entire function of exponential type ⇡ and thus it is in the space B2
⇡

. We apply Theorem

2.5 and the fact that |.|  p
2⇡ k.k2 e⇡|Imz| for functions in the space B2

⇡

. Now, let C 6= {0}
be a compact subset of C. Then for every ✏ > 0 there is N 2 N such that

�

�

�

�

�

f(z)� p
N

(z)

⌘(z)
�

N

X

k=�N

f(�⇤
k

)� p
N

(�⇤
k

)

⌘(�⇤
k

)

'⇤
(z)

(z � �⇤
k

)'0
(�⇤

k

)

�

�

�

�

�

<
✏

sup
z2C |⌘(z)|

.

for all z 2 C. It follows that
�

�

�

�

�

f(z)� p
N

(z)�
N

X

k=�N

(f(�⇤
k

)� p
N

(�⇤
k

))

⌘(z)

⌘(�⇤
k

)

'⇤
(z)

(z � �⇤
k

)'0
(�⇤

k

)

�

�

�

�

�

= |⌘(z)|
�

�

�

�

�

f(z)� p
N

(z)

⌘(z)
�

N

X

k=�N

f(�⇤
k

)� p
N

(�⇤
k

)

⌘(�⇤
k

)

'⇤
(z)

(z � �⇤
k

)'0
(�⇤

k

)

�

�

�

�

�

< |⌘(z)| ✏

sup
z2C |⌘(z)|

 ✏

which shows that the convergence is uniform over compact subsets of C. For the second

part, we replace p
N

by q
N

and we let ⌘(z) =
Q

N+1
j=1 (z � µ

j

).

Remark 4.1. The Taylor polynomial of order N will require N +1 pieces of information.

They are the value of the function and its derivative, up to order N , at zero.

The result by Gilbert G Walter [44] was for a uniform sampling and uniform convergence

over compact subsets of R. Our result, Theorem 4.3, provides a sampling series with

nonuniform sampling (perturbed points from the zeros of a ⇡-sine-type function) and

uniform convergence over compact subsets of C.

The answer to Question 1 now follows as a corollary
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Corollary 4.1. Let {�
k

}
k2Z be a set of zeros of a ⇡-sine-type function and let {�⇤

k

}
k2Z be

a sequence of complex numbers satisfying

|Re�⇤
k

� Re�
k

|  dp, sup
k2Z

|Im�⇤
k

� Im�
k

| < 1

where d < 1
4 and p = inf

k

|Re�
k

� Re�
k+1|. Then, for f 2 B1

⇡

and µ1 6= �⇤
k

for all k 2 Z

we have

f(z) = f(µ1) +
X

k2Z
(f(�⇤

k

)� f (µ1))

✓

z � µ1

�⇤
k

� µ1

◆

'⇤
(z)

�

z � �⇤
k

�

'⇤0
(�⇤

k

)

. (4.7)

The convergence is uniform over compact subsets of C.

This shows that having one additional piece of information makes the reconstruction of

functions in the space B2
⇡

works for the space B1
⇡

where the convergence is uniform over

compact subsets of C. Thus, it is an oversampling by one point.

4.2 Perturbation Beyond a Quarter

In this section we will discuss the perturbation that goes beyond a quarter from the integers.

The problem will be addressed by oversampling by including one additional point.

The growth of the ⇡-sine-type function was an important step to obtain the sampling series

in Theorem 4.1. Hence, our strategy will be to study the growth of the canonical product '

with the perturbed integers (the integers is one example of zeros of a ⇡-sine-type function)

to deduce a sampling series of Lagrange-type. We do not have any result about the growth

of the canonical product with a perturbation of the zeros of sine-type function in the sense

of �-perturbation (4.1).

In the following, we present an estimate for the canonical product by Hinsen, see [19].
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Theorem 4.4. [19, Proposition 3.1] Let {�
k

}
k2Z ⇢ R , with �0 = 0, be such that |�

k

� k| 
D < 1

2 . Then there are positive constants C1, C2 such that for all z = x+ iy 2 C with |z|
sufficiently large

C1H1(z)H2(D; z)  |'(z)|  C2H1(z)H2(�D; z), (4.8)

where

H1(z) = e⇡|y|

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

1, |Im(z)| > 1

Q

M+2
k=M

|�
k

� z| , |Im(z)|  1 and Re (z) > 0

Q�M

k=�M�2 |�k � z| , |Im (z)|  1 and Re (z) < 0

(4.9)

H2 (D; z) =

8

>

>

<

>

>

:

|z|�4D , 0  |sin ✓|  sin

⇣

⇡

2|z|

⌘

|z|�2D |sin ✓|2D , sin

⇣

⇡

2|z|

⌘

< |sin ✓|  1

(4.10)

M = M (z) is a suitable index to be defined below. In particular, for ✓ = Arg(z) 2 [0,⇡/2),

and for sufficiently large |z|, M is given by

M := M(z) = max {n 2 N : n+D  |z| / cos ✓} = b|z| / cos ✓ �Dc . (4.11)

The second case of H2 (D; z) in (4.10) can be bounded below by c |z|�4D for some c > 0

and can be used in lower bound of (4.8). It is stated and proved in the following lemma.

Lemma 4.1. Let 0 < ✓ < ⇡/2. Then, for sufficiently large |z| , H2 (D; z) � �12
�2D |z|�4D.

Proof. We will study the second case in (4.10). Using Taylor expansion we can have the

following inequality

sin ✓ � ✓ � ✓3

6

, 0 < ✓ <
⇡

2

.

The right hand side is positive for 0 < ✓ < ⇡/2. But, we have sin ✓ > sin

⇣

⇡

2|z|

⌘

and thus

sin ✓ >
⇡

2 |z| -
⇡3

48 |z|3 >
1

2 |z|
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for sufficiently large |z|. Therefore, for a sufficiently large |z|, we obtain

|z|�2D |sin ✓|2D >

✓

1

2

◆2D

|z|�4D .

After this result, we can look at H2 (D; z) as one case for simplicity. In the next result, we

will show that M defined in (4.11) has one value for sufficiently large |z| as Imz 2 [0, 1].

Lemma 4.2. Let {�
n

} as in Theorem 4.4, x
n

= (�
n

+ �
n+1) /2, y 2 [0, 1], z = x

n

+ iy

and M (z) as defined in (4.11). Then, for sufficiently large n we obtain M (z) = n.

Proof. We have 0  ✓  tan�1
⇣

1
xn

⌘

and thus

b|z|�Dc M 
6

6

6

4

|z|
cos
⇣

tan�1
⇣

1
xn

⌘⌘ �D

7

7

7

5

j

p

x2
n

+ y2 �D
k

M 
$

p

x2
n

+ y2

x
n

/
p

1 + x2
n

�D

%

bx
n

�Dc M 
�

x
n

+

1

x
n

�D

⌫

(4.12)

Now, we have

�D < x
n

�
✓

n+

1

2

◆

< D

which implies
✓

n+

1

2

◆

� 2D < x
n

�D <

✓

n+

1

2

◆

.

But, D < 1
2 and that leads to

n < x
n

�D <

✓

n+

1

2

◆

. (4.13)

For sufficiently large n we also have

n < x
n

+

1

x
n

�D <

✓

n+

1

2

◆

. (4.14)



33

It follows from (4.13) and (4.14) that bx
n

�Dc = n =

j

x
n

+

1
xn

�D
k

. Substituting in

(4.12) we obtain that M = n.

For the purpose of perturbation that goes beyond a quarter we define e 
N

and  N

k

as

e 
N

(z) =

 

N+2
Y

i=1

(z � µ
i

)

!

' (z) , (4.15)

 

N

k

(z) =
e 
N

(z)

(z � �
k

)

e 0
N

(�
k

)

. (4.16)

Those functions satisfy the condition  N

k

(�
l

) = �
kl

.

In (4.16) we have e 0
N

(�
k

) in the denominator. This can be a singularity. The next result

treats this problem.

Theorem 4.5. If {�
k

}
k2Z ✓ R, is a set satisfying |�

k

� k|  D < 1
2 , and µ

j

6= �
k

for all

j = 1, . . . , N + 2 and k 2 Z, then inf

k2Z

�

�

�

e 0
N

(�
k

)

�

�

�

6= 0.

Proof. We will show that the sequence
n

�

�

�

e 0
N

(�
k

)

�

�

�

o

�k2⇤
is bounded away from zero. The

zeros ⇤ are simple zeros for e 
N

(z) and so
�

�

�

e 0
N

(z)
�

�

�

> 0 at those points. The concern is

that
�

�

�

e 0
N

(�
k

)

�

�

�

becomes arbitrary small as �
m

becomes arbitrary large. Now, let �
m

be

sufficiently large, � = inf

k

|�
k+1 � �

k

| and |z � �
m

| = � where � < �/2. Then,

|z � µ
j

| = |z � �
m

+ �
m

� µ
j

|

� ||z � �
m

|� |�
m

� µ
j

||

= |�
m

� µ
j

|� �

>
1

2

|�
m

� µ
j

| (4.17)

Now, we use Hinsen estimate, see Theorem 4.4, and the above inequality as follows

�

�

�

e 
N

(z)
�

�

�

=

0

@

N+2
Y

j=1

|z � µ
j

|
1

A |'(z)|
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� C1

N+2
Y

j=1

|z � µ
j

|
 

M+2
Y

k=M

|�
k

� z|
!

e⇡|y| |z|�4D

> C1

N+2
Y

j=1

|z � µ
j

|
 

M+2
Y

k=M

|�
k

� z|
!

|z|�2

� C1

N+2
Y

j=1

|z � µ
j

|
 

M+2
Y

k=M

|�
k

� z|
!

|z|�N�2 . (4.18)

The quantity |z| can be bounded as |z| = |z � �
m

+ �
m

|  |z � �
m

| + |�
m

| = � + |�
m

| <
2 |�

m

|. Now, with use of Maximal Modulus Principle and (4.18), we obtain

min

|z��m|=�n

�

�

�

�

�

e 
N

(z)

z � �
m

�

�

�

�

�

� min

|z��m|=�

�

�

�

�

�

e 
N

(z)

z � �
m

�

�

�

�

�

> C1 min

|z��m|=�

Q

M+2
k=M

|�
k

� z|
(4)

N+2 �

Q

N+2
j=1 |�

m

� µ
j

|
|�

m

|N+2

= C1 min

|z��m|=�

Q

M+2
k=M

|�
k

� z|
(4)

N+2 �

N+2
Y

j=1

�

�

�

�

1�
�

�

�

�

µ
j

�
m

�

�

�

�

�

�

�

�

where
�

�

�

µj

�m

�

�

�

< 1
2 for sufficiently large �

m

. Also, for large �
m

we have M = m by Lemma

4.2 and so
Q

M+2
k=M

|�
k

� z|
�

=

m+2
Y

k=m+1

|�
k

� z| . (4.19)

Now using the fact that � < �/2. We can bound the quantity in (4.19) as

min

|z��m|=�

m+2
Y

k=m+1

|�
k

� z| = min

|z��m|=�

|�
m+1 � z| |�

m+2 � z|

= min

|z��m|=�

|�
m+1 � �

m

+ �
m

� z| |�
m+2 � �

m

+ �
m

� z|

� min

|z��m|=�

||�
m+1 � �

m

|� |z � �
m

|| ||�
m+2 � �

m

|� |z � �
m

||

> (�
m

� �/2) (�
m

� �/2) = (�
m

� �/2)2 > (�/2)2 > 0,

where �
m

= |�
m+1 � �

m

|. Now, by letting �
n

! 0, we obtain that

�

�

�

e 0
N

(�
m

)

�

�

�

> C1

✓

1

8

◆

N+2

(�/2)2 > 0
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and therefore, inf
m

�

�

�

e 0
N

(�
m

)

�

�

�

6= 0.

The following theorem explains the growth of functions of exponential type that has a

polynomial growth on the real line. It is a corollary for the Theorem B.1.

Theorem 4.6. (Phragmén-Lindelöf, [27, page 39]) If f(z) is an entire function of expo-

nential type ⇡, and

|f (x)|  m (1 + |x|)N , x 2 R, N 2 N

then

|f(z)|  C (1 + |z|)N e⇡|y|

for all z in the complex plane C.

One method we will use in this section is the Residue Theorem . The Residue Theorem

is applicable for arbitrary finite number of singularities. We will be using a sequence of

contours that contains arbitrary large number of sampling points. Accordingly, we should

be concerned about the convergence of the infinite series. But, having the difference,

between the function that we want to represent and the sequence of the partial sum, goes

to zero shows the convergence of the infinite series.

The contour �
n

that will be used in the next theorem is defined as �
n

= ⌘1 [ ⌘2 [ �1 [ �2
where

⌘1 = {x+ iy
n

| x�n

= Re(��n

+ ��n�1)/2  x  x
n

=Re(�
n

+ �
n+1)/2, yn = x

n

} ,

⌘2 = {x� iy
n

| x�n

= Re(��n

+ ��n�1)/2  x  x
n

= Re(�
n

+ �
n+1)/2, yn = x

n

} ,

�1 = {x
n

+ iy | x
n

= Re(�
n

+ �
n+1)/2, | y |< x

n

}

and,

�2 = {x�n

+ iy | x�n

= Re(��n

+ ��n�1)/2, | y |< x
n

} (4.20)
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FIGURE 4.1: The contour for the contour integral method.

and can be depicted as in Figure 4.1.

The next theorem is the main result of this section.

Theorem 4.7. Let f 2 eB
⇡,N

and {�
k

}
k2Z ✓ R be a set satisfying |�

k

� k|  D < 1
2 ,

µ
j

6= �
k

for all j = 1, . . . , N + 2 and k 2 Z. Then, we have the following expansion

f(z) =
N+2
X

j=1

f(µ
j

)

e 
N

(z)

(z � µ
j

)

e 0
N

(µ
j

)

+

X

k2Z
f(�

k

) 

N

k

(z) (4.21)

where e 
N

and  N

k

as in (4.15) and (4.16). The convergence is uniform over compact

subsets of C.

This theorem is another generalization of Higgins theorem in the sense that we reconstruct

functions in the space eB
⇡,N

and the �
k

’s are allowed to go beyond the quarter from the

integers. Gilbert G Walter did an extensive study for this class of functions. In [44],

he obtained a sampling expansion that includes a correction by a polynomial where the

sampling set is uniform. While in [45], he derived a sampling expansion with nonuniform

sampling points that satisfy the three conditions: (i) �
k

= ���k

, k = 0,±1,±2, . . ., (ii)

sup

k

|Re�
k

� k| < 1
4 , (iii) |Im�

k

|  C < 1.

Proof. Let z 2 C ⇢ C be a compact set and let n be sufficiently large such that C and
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{µ
j

}N+2
j=1 are inside the contour �

n

defined in (4.20). Then, for any entire function we use

Cauchy Integral Formula to obtain

f(z) =
1

2⇡i

I

�n

f(w)

(w � z)
dw

=

1

2⇡i

I

�n

[

e 
N

(w)� e 
N

(z) + e 
N

(z)]

(w � z)

f(w)
e 
N

(w)
dw

=

1

2⇡i

I

�n

[

e 
N

(w)� e 
N

(z)]

(w � z)

f(w)
e 
N

(w)
dw +

1

2⇡i

I

�n

e 
N

(z)

(w � z)

f(w)
e 
N

(w)
dw (4.22)

For the first integral in (4.22) we will use residue theorem with the contour �
n

. It follows

that

Res

 

[

e 
N

(w)� e 
N

(z)]

(w � z)

f(w)
e 
N

(w)
,�

k

!

=

e 
N

(z)f(�
k

)

(z � �
k

)

e 0
N

(�
k

)

,

for all �
k

’s that are inside the contour �
n

. Similarly,

Res

 

[

e 
N

(w)� e 
N

(z)]

(w � z)

f(w)
e 
N

(w)
, µ

j

!

=

e 
N

(z)f(µ
j

)

(z � µ
j

)

e 0
N

(µ
j

)

,

where j = 1, . . . , N + 2. Thus,

f(z) =
N+2
X

j=1

e 
N

(z)f(µ
j

)

(z � µ
j

)

e 0
N

(µ
j

)

+

n

X

k=�n

f(�
k

)

e 
N

(z)

(z � �
k

)

e 0
N

(�
k

)

+ E
n

(z) (4.23)

where

E
n

(z) =
1

2⇡i

I

�n

e 
N

(z)

(w � z)

f(w)
e 
N

(w)
dw.

We will compute the error in (4.23) for the region Re(w) � 0 and Im(w) � 0 as n goes to

infinity. The computation for the other regions follow the same way because of the relations

(A.2) and (A.3). Now we estimate the integral over �1. It follows that
Q

N+2
j=1 |x

n

� Reµ
j

| =
Q

N+2
j=1 |Re (w � µ)| QN+2

j=1 |w � µ
j

| and |x
n

� Rez| = |Re (w � z)|  |w � z|, where w =

x+iy. By applying Phragmén-Lindelöf to f , see Theorem 4.6, the integral can be estimated

as
�

�

�

�

�

I

�1

e 
N

(z)

(w � z)

f(w)
e 
N

(w)
dw

�

�

�

�

�

 C max

z2C

�

�

�

e 
N

(z)
�

�

�

Z

xn

0

(1 + |x
n

+ iy|)N e⇡|y|

|x
n

� Rez|
�

�

�

e 
N

(x
n

+ iy)
�

�

�

dy.
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If we use the bounds (4.9) and (4.10) in Theorem 4.4 and Lemma 4.1, then for sufficiently

large n, the function
�

�

�

e 
N

(w)
�

�

�

will be bounded below by

C1

✓

1

2

◆2D N+2
Y

j=1

|w � µ
i

| |w|�4D e⇡|y|

8

>

>

<

>

>

:

Q

M+2
k=M

|w � �
k

| , |Im(w)|  1

1, |Im(w)| > 1

and thus the integral splits into two integrals as follows
�

�

�

�

�

I

�1

e 
N

(z)

(w � z)

f(w)
e 
N

(w)
dw

�

�

�

�

�

 (2)

2D C max

z2C

�

�

�

e 
N

(z)
�

�

�

Z

[0,1]

(1 + |x
n

+ iy|)N |x
n

+ iy|4D e⇡|y|

|x
n

� Rez|QN+2
j=1 |x

n

+ iy � µ
j

|QM+2
k=M

|x
n

+ iy � �
k

| e⇡|y|dy

+ (2)

2D C max

z2C

�

�

�

e 
N

(z)
�

�

�

Z

[1,xn]

(1 + |x
n

+ iy|)N |x
n

+ iy|4D e⇡|y|

|x
n

� Rez|QN+2
j=1 |x

n

+ iy � µ
j

| e⇡|y|dy.

Again, we have
Q

N+2
k=N

|x
n

� �
k

| QN+2
k=N

|x
n

+ iy � �
k

| and so
�

�

�

�

�

I

�1

e 
N

(z)

(w � z)

f(w)
e 
N

(w)
dw

�

�

�

�

�

 (2)

2D C max

z2C

�

�

�

e 
N

(z)
�

�

�

Z

[0,1]

(1 + |x
n

+ iy|)N |x
n

+ iy|4D
|x

n

� Rez|QN+2
j=1 |x

n

� Reµ
j

|QM+2
k=M

|x
n

� Re�
k

|dy

+ (2)

2D C max

z2C

�

�

�

e 
N

(z)
�

�

�

Z

[1,xn]

(1 + |x
n

+ iy|)N |x
n

+ iy|4D
|x

n

� Rez|QN+2
j=1 |x

n

� Reµ
j

|dy


(2)

2D C max

z2C

�

�

�

e 
N

(z)
�

�

�

max

y2[0,1]

n

(1 + |x
n

+ iy|)N |x
n

+ iy|4D
o

|x
n
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n

� Reµ
j
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k

|
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(2)
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�

�

max

y2[1,xn]

n

(1 + |x
n

+ iy|)N |x
n

+ iy|4D
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�
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|N+4D
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� Reµ
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3
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�
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�

e 
N
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�

�

�
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n

|N+4D |x
n

� 1|
C1 |xn � Rez|QN+2

j=1 |x
n

� Reµ
j

|
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= O

 

1

|x
n

|2�4D

!

.

The right hand side goes to zero as n goes to infinity.

The other integral will be over the path ⌘1, see (4.20). It follows that
Q

N

j=1 |yn � Imµ
j

| =
Q

N

j=1 |Im (w � µ
j

)|  Q

N

j=1 |w � µ
j

| and |y
n

� Imz| = |Im (w � z)|  |w � z|. If we use

Phragmén-Lindelöf, Theorem 4.6, Theorem 4.4 and Lemma 4.1, then for sufficiently large

n we have the function
�

�

�

e 
N

(w)
�

�

�

bounded below by C1
�

1
2

�2DQ
N+2
j=1 |w � µ

j

| |w|�4D e⇡|y|

and thus we obtain
�

�

�

�

�

I

⌘1

e 
N

(z)

(w � z)

f(w)
e 
N

(w)
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�

�
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�
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z2C
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�

�

e 
N
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�

�

�

Z
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|x+ iy
n
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�

�

�

e 
N

(x+ iy
n

)

�

�
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dx

 (2)

2D C max

z2C

�

�

�

e 
N

(z)
�

�

�

Z

[0,xn]

(1 + |x+ iy
n

|)N |x+ iy
n

|4D
|y

n

� Imz|QN+2
j=1 |y

n

� Imµ
j

|dx


(2)

2D C max

z2C

�

�

�

e 
N

(z)
�

�

�

max

x2[0,xn]

n

(1 + |x+ iy
n

|)N |x+ iy
n

|4D
o

|x
n

|
|x

n

� Imz|QN+2
j=1 |x

n

� Imµ
j

|


3

N

(2)

4D C max
z2C

�

�

�

e 
N

(z)
�

�

�

|x
n

|4D+N+1

|x
n

� Imz|QN+2
j=1 |x

n

� Imµ
j

|

= O

 

1

|x
n

|2�4D

!

.

The right hand side goes to zero as n goes to infinity. This completes the proof.

Remark 4.2. (1) In Corollary 4.1, we can see that we obtain a reconstruction for func-

tions in the space B1
⇡

, with a perturbation within a quarter, by oversampling by

one point. While, K. Seip [39] had a ratio-type oversampling for the same class of

functions.

(2) In Theorem 4.7, if we consider the class B1
⇡

, then we can notice that the two points

oversampling allows the perturbation to go beyond a quarter from the integers.



40

4.3 The Stability Over Compact Sets

The stability that is due to small error in the function values input should follow easily

since the convergence is over compact sets. It can be shown as follows:

Let

 

N

k

(z) =
e (z)

(z � �
k

)

e 0
(�

k

)

where ⇤ is the sampling set after re-indexing and let C be a compact set. Let {�
k

}
k2S

be such that �
k

’s are in C ⇢ C. The set S can be chosen to be of symmetric index as

{k 2 Z | �
k

or��k

belongs to C}. Now,
�

�

�

�

�

X

k2Z
↵ (�

k

) 

N

k

(x)

�

�

�

�

�


X

k2Z
|↵ (�

k

)| �� N

k

(x)
�

�

 sup

k2Z
|↵ (�

k

)|
X

k2Z

�

�

 

N

k

(x)
�

�

 sup

k2Z
|↵ (�

k

)|
0

@

sup

x2C

X

k2S

�

�

 

N

k

(x)
�

�

+

X

k2Z\S

�

�

 

N

k

(x)
�

�

1

A

Now we use the fact that we are studying convergence over the compact set C and thus

there exists ✏1 and ✏2 such that |x� �
k

| � ✏1 |k| and |�
k

� µ
i

| � ✏2 |k| for all k 2 Z\S and

all i = 1, . . . , N . We obtain
�

�

�

�

�

X

k2Z
↵ (�

k

) 

N

k

(x)

�

�

�

�

�

 sup

k2Z
|↵ (�

k

)|
0
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x2C

X

k2S

�
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N
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�
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+

X

k2Z\S
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�
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k

(x)
�
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1

A

 sup

k2Z
|↵ (�

k

)|
0

@C1 +
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✏1✏2
sup

x2C

�

�

�

e 
k

(x))
�

�

�

X

k2Z\S

1

k2

1

A

 M (C) sup
k2Z

|↵ (�
k

)|

which shows that
�

�

P

k2Z ↵ (�
k

) 

N

k

(.)
�

�

1is small whenever sup
k2Z |↵ (�

k

)| is sufficiently

small.
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4.4 Numerical Example

In the following we have the plot of the function

f(x) = cos (⇡x)�
✓

3

4

◆

sin

✓

⇡p
2

x

◆

that is in the space B1
⇡

. The sampling set is a perturbed set from the integers within 1
2 .

The number of terms considered is 2N +2 for 1-point oversampling and 2N +3 for 2-point

oversampling, see the expansion in Theorem 4.7. The additional points are µ1 = 0.5 and

µ2 = 1.5 for the 2-points oversampling, and only µ1 in case of 1-point oversampling. For

1-point oversampling we used the expansion (4.7) where the sampling set is the integers

and no perturbation is considered. While the perturbation is beyond a quarter for the

2-point oversampling and follows the expansion (4.21). Also, we have a reconstruction

with the sampling set 0.7Z that is of a ratio type. The following table demonstrates the

truncation error among the number of terms considered over different intervals.

N = 20 N = 200 N = 400

1-point, kek
L

1[�10,10] 0.3281 0.0318 0.01602

0.7Z, kek
L

1[�10,10] 0.0261 0.0013 5.9527⇥10

�4

2-point, kek
L

1[�10,10] 0.0258 2.444⇥10

�5 3.1543⇥10

�6

1-point, kek
L

1[�20,20] 1.2984 0.0637 0.0318

0.7Z, kek
L

1[�20,20] 1.7181 0.0014 6.2729⇥10

�4

2-point, kek
L

1[�20,20] 0.6008 1.907⇥10

�4 2.6021⇥10

�5
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FIGURE 4.2: The graph of the function and its reconstruction with 1-point oversampling
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5 QUANTIZATION

In this chapter, we will control the reconstruction error of function when the perturbation

is not only in the sampling set, but in the function values as well. The perturbation in the

function values occurs as round-off in the sampled function values. This kind of problem

occurs in quantization processes and can be found in digital signal processing, see [2], [7],

[15], [21] and [10].

The quantization operator ⌥
�

is defined as

⌥
�

(f) =

�

Ref
2�

+

1

2

⌫

2� +

�

Imf

2�
+

1

2

⌫

2�i. (5.1)

In [6, Corollary 2], Boche and Mönich showed that the error of the reconstruction can grow

arbitrarily large for functions in the space PW1
⇡

where they considered the WKS sampling

series together with the quantization operator of step size (0 < � < 1
⇡

), see [33, Corollary

6.12].

Throughout this chapter, we will consider a uniform discrete sampling set {�
n

}
n2Z. In the

next result the sampling set is the integers.

Theorem 5.1. [33, Corollary 6.12] Let 0 < � < 1/⇡ and let

(B
�

f) (t) =
1
X

n=�1
(⌥

�

f) (n)
sin (⇡ (t� n))

⇡ (t� n)
.

Then,

sup

kfkPW1
⇡1

kf �B
�

fk1 = 1.

The difficulty that arises in the quantization process is due to the fact that the quantization

operator is nonlinear. That causes the operator B
�

to be nonlinear as well for given � > 0.

Butzer and Splettstößer [7] studied the functions f in C (R)\L1
(R) with Fourier transform

F (w) = 0 for all |w| > ⇡W , for some W > 0. For 0 < �  1/e and each |t| < b1/�c /W ,
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they used the WKS sampling series i.e.

ef(t) =
1
X

n=�1

ef
⇣ n

W

⌘

sin (⇡ (Wt� n))

⇡ (Wt� n)
,

where ef
�

n

W

�

= f
�

n

W

�

+ �
n

with |�
n

| < � for some small � > 0. They proved that the error

of the reconstruction using quantization is as follows
�

�

�

�

�

f(t)�
X

k2Z

ef
⇣ n

W

⌘

sin (⇡ (Wt� n))

⇡ (Wt� n)

�

�

�

�

�


✓

1 + ⇡

⇡

◆

⇣

2 +

p
2⇡W kfk1

⌘

� log (1/�) .

This error is for the construction with quantization over compact subsets of R. With an

additional constraint, that is |f(t)|  M |t|�� for some M > 0 and 0 < �  1, they proved,

for �  min

��

M/e2
� �

1
2W
�

�

, 1/ (MW �

)

 

, that
�

�

�

�

�

f(.)�
X

k2Z

ef
⇣ n

W

⌘

sin (⇡ (W (.)� n))

⇡ (W (.)� n)

�

�

�

�

�

1

 (13/�) � log (1/�) .

This error is uniform over R and it is independent of f but does depend on its decay factor

�.

5.1 Quantization Error Over R.

In [33] Mönich studied the behavior of a sampling series with equidistant sampling points

(=uniform) and the quantization operator (5.1). In general, he deduced that the error of

the sampling series can be controlled over all the functions in the space PW1
⇡

� PW2
⇡

if

the resolution of the quantization operator is made sufficiently small, provided that the

kernel (the sampling functions) in the sampling series is in L1
(R), see [33, Corollary 6.28].

In [33, Theorem 6.15], he used oversampling together with a kernel from the class M(a),

see [33, Definition 3.23].

In this chapter, we will study the quantization problem with nonuniform sampling set.

Mönich’s work was for uniform sampling points and he pointed out an interest in the

nonuniform sampling points in the following passage (see [33, page 159, section 6.4]):
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"All the results in this chapter were obtained for equidistant sampling. It would be interest-

ing to extend the results to non-equidistant sampling. Ordinary non-equidistant sampling

series without quantization or thresholding were analyzed in Section 3.3. However, the

more general problem which treats the convergence behavior of non-equidistant sampling

series with sample values that are disturbed by the threshold operator or the quantization

operator is difficult to analyze and still open."

His first result towards solution of this problem was obtained in [6] where oversampling

is considered. Also, he discussed the nonuniform sampling for PW2
⇡

with stable linear

time-invariant (LTI) system.

Accordingly, we state the main question as follows:

Question: Is there a sampling series, with a nonuniform sampling set, that uses the

quantization operator (5.1) such that the quantity

sup

f2PW1
⇡

kf �B
�

fk1

can be made small for sufficiently small � ?

To answer the question, we will use the following scheme: First, we find a sampling series

for functions in the space PW2
⇡

with a sufficiently fast decay. Then, we use this sampling

series to obtain a reconstruction for functions in the space PW1
⇡

using the density property

of PW2
⇡

in PW1
⇡

. The scheme will be used for lifting the space PW2
⇡

to PW1
⇡

. It is a

scheme that solves the problem over R uniformly.

A sampling series found by Cvetković, Daubechies and Logan [9] can be used to answer

the question. Cvetković, Daubechies and Logan [9, Theorem 3.1] found a series

f(t) =
X

n2Z
f(�

n

) 
n

(t� �
n

) (5.2)

for f 2 PW2
⇡

with a uniformly discrete sampling set {�
n

}
n2Z ⇢ R that satisfies

sup
n

�

��
n

� n

�

�

� < 1, � > 1. The convergence holds pointwise, absolutely, in L2 and
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uniformly on compact subsets of R. The functions  
n

are complicated but have rapid

decay.

In the following, we give an explicit definition of the function  
n

. First we consider C1

function ✓ that is defined as ✓ : R ! [0, 1] such that ✓ (x) = 0 for x < �1/2, ✓ (x) = 1 for

x > 1/2, and ✓ (x) + ✓ (�x) = 1 for all x. For ⌫ > 1 we define the function ĝ as

ĝ(w) =
1

p

⇡ (1 + ⌫)
sin


⇡

2

✓

✓

1 + ⌫ � 2 |w| /⇡
2 (⌫ � 1)

◆�

Then ĝ(w) = 1/
p

⇡ (1 + ⌫) for |w| < ⇡, ĝ(w) = 0 for |w| > ⌫⇡ and

X

m

�

�

�

�

ĝ

✓

w +

(⌫ + 1)m

2

◆

�

�

�

�

2

=

1

⇡ (⌫ + 1)

.

It follows that the functions g
k

(t) := g
⇣

t� 2k
⌫+1

⌘

, k 2 Z are orthonormal. The function

 
n

(t) will be defined as

 
n

(t) =
X

k

�

B�1
�

k,n

g(t+ �
n

� 2k

⌫ + 1

) (5.3)

where B = [B
n,k

] = [g
k

(�
n

)]. It is proved that for all t 2 R, n 2 Z and N � 1 the function

 
n

satisfies

| 
n

(t)|  C
N

(1 + |t|)�N .

The sampling series (5.2) has L2 convergence and thus it has the uniform convergence over

R since |f(t)|  p
2⇡ kfk2 for f 2 PW2

⇡

.

Cvetković, Daubechies and Logan with use of (5.2), estimated the error of the reconstruc-

tion with quantization for the space PW2
⇡

, see [9, Corollary 3.3]. The claim is for all t 2 R

one has
�

�

�

�

�

f(t)�
X

n2Z
↵
n

 
n

(t� �
n

)

�

�

�

�

�

 A�,

where |f (�
n

)� ↵
n

| < � for all n 2 Z and ↵
n

is a finite precision of f (�
n

). The constant

A is independent of the sequence {�
n

}
n2Z. The functions  

n

appear difficult to calculate.
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We need a few additional definitions and results before answering the question.

Let B�

CD

f denote a sampling series with the quantization operator using the sampling

functions by Cvetković and Daubechies. The sampling series B�

CD

f is defined as follows:

⇣

B�

CD

f
⌘

(t) =
1
X

n=�1
(⌥

�

f) (�
n

) 
n

(t� �
n

), (5.4)

where  
n

(t) as in (5.3).

Also, we define the operator (S
N

f) as follows:

(S
N

f) (t) =
N

X

n=�N

f(�
n

) 
n

(t� �
n

).

where  
n

(t) as in (5.3).

For completeness, the following known result.

Lemma 5.1. PW2
⇡

is dense in PW1
⇡

.

Proof. We use the fact that D (⇡B) is dense in L2
(⇡B). If f 2 PW1

⇡

, then f(t) =

R

⇡B

�(w)eiwtdw where � 2 L1
[�⇡,⇡] and kfkPW1

⇡
=

R

⇡B

|� (w)| dw < 1. Now, let ✏ > 0.

Then there exist �
�

2 D (⇡B) with
R |�

�

|2 dw < 1 such that
R |�� �

�

| dw < ✏. We

define g
�

(t) =
R

⇡B

�
�

(w) eiwtdw. It follows that kf � g
�

kPW1
⇡
=

R |�� �
�

| dw < ✏ which

completes the proof.

Lemma 5.2. Let {�
n

}
n2Z ⇢ R be a uniformly discrete sampling set and let

(S
N

f) (t) =
N

X

n=�N

f (�
n

)'
n

(t) (5.5)

be an approximation for functions in PW2
⇡

that converges to f uniformly on R as N ! 1.

If the sampling functions satisfy

X

n2Z
|'

n

(t)| < M < 1, for all t 2 R, (5.6)
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then

lim

N!1
|f (t)� (S

N

f) (t)| = 0

for all f 2 PW1
⇡

. The convergence is uniform over R.

Proof. Let t be arbitrary but fixed in R. The space PW2
⇡

is dense in PW1
⇡

and so for

a given ✏, there exist g 2 PW2
⇡

such that kf � gkPW1
⇡
< ✏/2. Now, we compute the

following:

|f(t)� (S
N

f) (t)| = |f(t)� g(t) + g(t)� (S
N

g) (t) + (S
N

g) (t)� (S
N

f) (t)|

 |f(t)� g(t)|+ |g(t)� (S
N

g) (t)|+ |S
N

(f � g)(t)| .

The first quantity can be made less than ✏/2 by using the density property and the fact

that |f(t)� g(t)|  kf � gk1  kf � gkPW1
⇡
. While for the second quantity, we choose N

sufficiently large in the sampling series (5.5). It remains to show the analysis of the last

quantity

|S
N

(f � g)(t)| =
�

�

�

�

�

N

X

k=�N

[f(�
k

)� g(�
k

)]'
k

(t)

�

�

�

�

�

=

�

�

�

�

�

N

X

k=�N

1

2⇡

Z

⇡

�⇡

⇣

ˆf(⇠)� ĝ(⇠)
⌘

ei⇠�kd⇠'
k

(t)

�

�

�

�

�

=

�

�

�

�

�

1

2⇡

Z

⇡

�⇡

⇣

ˆf(⇠)� ĝ(⇠)
⌘

N

X

k=�N

ei⇠�k'
k

(t)d⇠

�

�

�

�

�

 1

2⇡

Z

⇡

�⇡

�

�

�

ˆf(⇠)� ĝ(⇠)
�

�

�

�

�

�

�

�

N

X

k=�N

ei⇠�k'
k

(t)

�

�

�

�

�

d⇠

 max

⇠2[�⇡,⇡]

�

�

�

�

�

N

X

k=�N

ei⇠�k'
k

(t)

�

�

�

�

�

kf � gkPW1
⇡


N

X

k=�N

|'
k

(t)| kf � gkPW1
⇡


X

k2Z
|'

k

(t)| kf � gkPW1
⇡ .
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By using (5.6) we obtain

|S
N

(f � g)(t)|  M✏

uniformly over R. Thus, for a given ✏ > 0, there is N 2 N such that

|f(t)� (S
N

f) (t)|  (1 +M) ✏ for all t 2 R

The proof is complete.

The following result is the answer to the main question.

Theorem 5.2. Let the sampling set {�
n

}
n2Z ⇢ R satisfy sup

n2Z
�

��
n

� n

�

�

� < 1, � > 1.

Then, for the reconstruction defined in (5.4), we obtain

lim

�!0

 

sup

f2PW1
⇡

�

�

�

f �B�

CD

f
�

�

�

1

!

= 0

Proof. The function reconstruction (5.5) can be used for the functions in the space PW1
⇡

by Lemma 5.2 since the sampling functions { 
n

} satisfy (5.6). Thus, for arbitrary fixed t

in R and all f 2 PW1
⇡

we obtain

�

�

�

f(t)�
⇣

B�

CD

f
⌘

(t)
�

�

�

=

�

�

�

�

�

X

n2Z
f(�

n

) 
n

(t� �
n

)�
X

n2Z
(⌥

�

f) (�
n

) 
n

(t� �
n

)

�

�

�

�

�

=

�

�

�

�

�

�

X

n2Z,
[f(�

n

)� (⌥
�

f) (�
n

)] 
n

(t� �
n

)

�

�

�

�

�

�


X

n2Z
|f(�

n

)� (⌥
�

f) (�
n

)| | 
n

(t� �
n

)|

 2�
X

n2Z
| 

n

(t� �
n

)|  2�M

by (5.4). The right hand side is independent of t and f . Therefore, the conclusion follows.
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5.2 Quantization Using Finite Points Oversampling Sampling Functions

In this section, we will use the sampling functions of finite points oversampling to control

the error from quantization, see (4.15) and (4.16). We need to check the condition (5.6)

over compact subsets of C. Let C be a compact subset in C, {�
k

}
k2Z ⇢ R and {µ

i

}m+2
i=1 be

the set of oversampling. The sampling functions that we consider here are

 

m

k

(t) =

Q

m+2
i=1 (t� µ

i

)' (t)

(t� �
k

)

Q

m+2
i=1 (�

k

� µ
i

)'0
(�

k

)

.

Let S = {k 2 Z |�
k

or��k

2 C} and also consider �
k

’s that satisfy

|�
k

| > 2 |µ
m+2| (5.7)

Then, let eS be the symmetric set of indices such that it contains S and makes the condition

(5.7) satisfied. For some ✏ > 0 we have |t� �
k

| � ✏ for all k 2 Z\ eS. Also, |'0
(�

k

)| > c > 0

for all k 2 Z and
Q

m+2
i=1 |�

k

� µ
i

| > " |k|m+2 for some " > 0. Now for t 2 C we obtain

X

k2Z
| m

k

(t)| =
X

k2Z

�

�

�

�

�

Q

m+2
i=1 (t� µ

i

)' (t)

(t� �
k

)

Q

m+2
i=1 (�

k

� µ
i

)'0
(�

k

)

�

�

�

�

�

 sup

t2C

0

@

X

k2e
S

| m

k

(t)|
1

A

+

X

k2Z\eS

�

�

�

�

�

Q

m+2
i=1 (t� µ

i

)' (t)

(t� �
k

)

Q

m+2
i=1 (�

k

� µ
i

)'0
(�

k

)

�

�

�

�

�

 sup

t2C

0

@

X

k2e
S

| m

k

(t)|
1

A

+

X

k2Z\eS

�

�

�

�

�

Q

m+2
i=1 (t� µ

i

)' (t)

(t� �
k

)

Q

m+2
i=1 (�

k

� µ
i

)'0
(�

k

)

�

�

�

�

�

 A (C) +
sup

t2C

�

�

�

Q

m+2
i=1 (t� µ

i

)' (t)
�

�

�

"✏c

X

k2Z\eS

1

|k|m+2

< 1

for all t 2 C.

Since these sampling functions can be used for the space B1
⇡

, we do not need the scheme

suggested earlier for the space PW1
⇡

. The convergence in this case is studied over compact

subsets of R.
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We define the sampling series (B
F

f) (t) that uses the sampling functions { m

k

}
k2Z and

the quantization operator (5.1) as

(B
F

f) (t) =
X

n2Z
(⌥

�

f) (�
n

) 

m

k

(t)

where ⌥
�

f is as defined in (5.1).

In the following the quantization error is controlled over compact subset of R.

Theorem 5.3. Let the sampling set {�
k

}
k2Z ⇢ R satisfy |�

k

� k|  D < 1
4 . Then, we

obtain

lim

�!0

 

sup

f2B1
⇡

kf �B
F

fk1
!

= 0

The uniform norm is over compact subsets of R.

Proof. We have

|f(t)� (B
F

f) (t)| =
�

�

�

�

�

X

n2Z
f (�

n

) 

m

k

(t)�
X

n2Z
(⌥

�

f) (�
n

) 

m

k

(t)

�

�

�

�

�


X

n2Z
|f (�

n

) 

m

k

(t)� (⌥

�

f) (�
n

) 

m

k

(t)|

=

X

n2Z
|f (�

n

)� (⌥

�

f) (�
n

)| | m

k

(t)|

 2�
X

n2Z
| m

k

(t)|  2�M

by the above computation. Therefore, the conclusion follows.

5.3 Speed of Convergence

For computing the rate of convergence we consider a compact set C ⇢ R. Choose N and

✏ > 0 such that |�
k

| � 2 |µ
m+2| and |t� �

k

| > ✏ for all t 2 C and all |k| � N . Also we
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have |'0
(�

k

)| � c for all k 2 Z and
Q

m+2
i=1 |�

k

� µ
i

| > " |k|m+2 for some " > 0. Now,
�

�

�

�

�

�

X

|k|�N

f (�
k

)

Q

m+2
i=1 (t� µ

i

)' (t)

(t� �
k

)

Q

m+2
i=1 (�

k

� µ
i

)'0
(�

k

)

�

�

�

�

�

�


X

|k|�N

�

�

�

�

�

f (�
k

)

Q

m+2
i=1 (t� µ

i

)' (t)

(t� �
k

)

Q

m+2
i=1 (�

k

� µ
i

)'0
(�

k

)

�

�

�

�

�


sup

t2C

�

�

�

Q

m+2
i=1 (t� µ

i

)' (t)
�

�

�

sup

k2Z |f (�
k

)|
✏"c

X

|k|�N

1

|k|m+2

 A(C) sup
k2Z

|f (�
k

)|
Z 1

N�1

dx

xm+2

=

˜A(C) 1

(m+ 1) (N � 1)

m+1

which shows that the error = O
�

1
N

m+1

�

if f is a bounded function.

We proved some results on controlling the error caused by the quantization operator (5.1)

for the space PW1
⇡

. The main idea was finding a sampling series with sampling functions

that have sufficiently fast decay for the space PW2
⇡

and applying it for the space PW1
⇡

by

using the density property of PW2
⇡

in PW1
⇡

. Also, we treated the problem over compact

subsets by using the sampling functions from finite points oversampling where in this case

we considered the space B1
⇡

� PW1
⇡

.
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6 PEAK VALUE PROBLEM

The problem of finding an upper bound for the infinity norm of signals from their samples

is called Peak Value Problem. The Peak Value Problem is a significant problem related

to e.g. Orthogonal Frequency Division Multiplexing (OFDM) which has application in

wireless networks, digital television, audio broadcasting and mobile communications, see

[48]. In this chapter, we will first answer a question posed by Boche and Mönich where

the sampling set is the zeros of a ⇡-sine-type function. Then we will address a related a

question where the sampling set only requires a bound on the maximum distance between

two consecutive sampling points. The norm that we consider in this section is the infinity

norm unless otherwise specified.

The next result is about the infinity norm estimate of the subclass of B1
⇡

that contains all

trigonometric polynomials of degree  n with real coefficients, that is

T
n

=

(

f | f(t) = a0
2

+

n

X

k=1

a
k

sin kt+ b
k

cos kt, t, a
k

, b
k

2 R
)

.

Theorem 6.1 (Ehlich and Zeller, [12]). Let m > n, m,n 2 N and f 2 T
n

. Then

kfk1  1

cos

⇡n

2m

max

0k<2m

�

�

�

�

f

✓

k

m
⇡

◆

�

�

�

�

. (6.1)

The estimate in (6.1) is sharp if and only if n | m.

Building on an earlier result by Wunder and Boche [47], Jetter, Pfander, and Zimmermann

[22] deduced an estimate for oversampling. It is as follows

kfk1 
r

m+ n

m� n
max

0kN�1

�

�

�

�

f

✓

k
2⇡

N

◆

�

�

�

�

(6.2)



54

for f 2 T
n

where m � n + 1 and N � m + n. In particular for N � 2n + 1 the choice

m = N � n gives
r

n+m

n�m
=

r

N

N � 2n
.

For a background of the problem in signal processing, see [42], [35] and [31].

6.1 Solvability Question For Stable Sampling

In [5], Wunder and Boche obtained a result for the class of functions B1
�⇡,0, 0 < � < 1 that

are real when restricted to the real line. The result reads as

Theorem 6.2 (Wunder and Boche, [5]). If 0 < � < 1 and f 2 B1
�⇡,0, then

k f k1 1

cos(�⇡/2)
sup

k2Z
| f(k) | . (6.3)

In (6.3) the sampling set is Z. Here S will denote the set of all sampling patterns ⇤ =

{�
k

}
k2Z that are made of the zeros of a ⇡-sine-type function. Accordingly, an interesting

question is the following:

Question 1: (Boche, Mönich, [32, page 2218])

Let 0 < � < 1 and ⇤ = {�
k

}
k2Z 2 S. Does there exist a constant C = C (�) such that

k f k1 C (�) sup
k2Z

| f(�
k

) |

for all f 2 B1
�⇡

?

There is a result by Beurling that shows an existence of such a constant. Before we state

the result, we define the following density conditions

u.u.d (⇤) = lim

r!1
max

x2R

#(⇤ \ [x, x+ r])

r
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and

l.u.d (⇤) = lim

r!1
min

x2R

#(⇤ \ [x, x+ r])

r
.

Beurling’s result is as follows

Theorem 6.3. (Beurling, [3, page 346]) Let f 2 B1
�⇡

with 0 < � < 1. Then, we obtain

kfk1  K (⇤,�) sup
k2Z

|f (�
k

)| (6.4)

where K (⇤,�) < 1 if and only if l.u.d (⇤) > �.

To answer Question 1, we need the following two theorems, see [49, page 144] and [1].

Theorem 6.4. (Levin-Golovin, [49, page 144]) If {�
k

}
n2Z is a set of zeros of a function

of ⇡-sine-type, then the system of
�

ei�kt
 

n2Z is a Riesz basis for L2
[�⇡,⇡].

Theorem 6.5 (see Avdonin-Joo, [1]). If
�

ei�kt
 

n2Z is a Riesz basis for L2
[�⇡,⇡], where

�
k

’s are ordered with respect to their real parts, then lim

k!±1
�k
k

= 1.

We answer the question as follows:

Let ⇤ = {�
k

}
k2Z ⇢ R be a set of zeros of a ⇡-sine-type function. Then, for ✏ > 0 there is

N 2 N such that
�

�

�

�

�
k

k
� 1

�

�

�

�

< ✏

for all |k| � N . Thus, we obtain |k| (1� ✏) < |�
k

| < |k| (1 + ✏) for all |k| � N . It follows

that

l.u.d = lim

r!1
min

x2R

#({�
k

} \ [x, x+ r])

r
� lim

r!1
min

x2R

#({|k| (1 + ✏)} \ [x, x+ r])

r
=

1

1 + ✏

for arbitrary ✏ > 0. Thus, for � < 1, if we pick ✏ < 1
�

� 1, then we obtain l.u.d > 1
1+✏

> �.

Therefore, we conclude that

kfk1 < K (⇤,�) sup
n2Z

|f(�
n

)|

exists for all f 2 B1
�⇡

by Theorem 6.3.
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6.2 Generalized Valiron-Tschakaloff Sampling Series

In this section we will generalize the Valiron-Tschakaloff sampling series. The generaliza-

tion appears in Theorem 6.7 below. We will need to estimate a certain contour integral

where the contour is the one given in (4.20). For this we will use the following estimate of

the canonical product.

Theorem 6.6. (Levinson, [29, page 56]) Let ' be defined as (1.5) with

|�
k

� k|  D <
p� 1

2p
, 1 < p  2

Then,

A
p

|Imz| (|z|+ 1)

�4D�1e⇡|Imz| < |'(z)| < B
p

(|z|+ 1)

4De⇡|Imz| (6.5)

We need the following result for the proof of the main result. The proof of this result

follows the same way as the proof of Theorem 4.7. Here, for the residue part computation,

we will deal with singularity of order 2.

Theorem 6.7. Let f 2 B1
⇡

and let ⇤ = {�
k

}
k2Z ⇢ R satisfy

|�
k

� k|  D < 1/4 (6.6)

Then, for any m 2 Z we obtain the following expansion

f(z) = L(z) +
X

k2Z\{m}

f(�
k

)

(z � �
m

)'(z)

(�
k

� �
m

) (z � �
k

)'0
(�

k

)

(6.7)

where ' denotes the canonical product (1.5) and L(z) is

L(z) =

⇢

'(z)

'0
(�

m

)

�

f 0
(�

m

) +

("

1

(z � �
m

)'0
(�

m

)

�
1
2'

00
(�

m

)

('0
(�

m

))

2

#

'(z)

)

f(�
m

).

The convergence is uniform over compact subsets C of C.
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Proof. Let m 2 Z be arbitrary, C ⇢ C compact, and z 2 C. Let n be sufficiently large

such that both �
m

and C lie in the interior of the contour �
n

defined in (4.20). Then, by

the Cauchy integral formula we obtain that

f(z) =
1

2⇡i

I

�n

f(w)

(w � z)
dw =

1

2⇡i

I

�n

[(w � �
m

)'(w)� (z � �
m

)'(z) + (z � �
m

)'(z)]

(w � z)

f(w)

(w � �
m

)'(w)
dw

=

1

2⇡i

I

�n

[(w � �
m

)'(w)� (z � �
m

)'(z)]

(w � z)

f(w)

(w � �
m

)'(w)
dw

+

1

2⇡i

I

�n

[(z � �
m

)'(z)]

(w � z)

f(w)

(w � �
m

)'(w)
dw (6.8)

For the first integral in (6.8) we obtain by the residue theorem for k 6= m, |k|  n,

Res
✓

[(w � �
m

)'(w)� (z � �
m

)'(z)]f(w)

(w � �
m

) (w � z)'(w)
,�

k

◆

=

(z � �
m

)'(z)f(�
k

)

(�
k

� �
m

) (z � �
k

)'0
(�

k

)

.

We have that �
m

is a singularity of order 2. After computing and simplifying, we obtain

Res
✓

[(w � �
m

)'(w)� (z � �
m

)'(z)]f(w)

(w � �
m

) (w � z)'(w)
,�

m

◆

=

⇢

'(z)

'0
(�

m

)

�

f 0
(�

m

) +

("

1

(z � �
m

)'0
(�

m

)

�
1
2'

00
(�

m

)

('0
(�

m

))

2

#

'(z)

)

f(�
m

).

Thus, we obtain

f(z) =

⇢

'(z)

'0
(�

m

)

�

f 0
(�

m

) +

("

1

(z � �
m

)'0
(�

m

)

�
1
2'

00
(�

m

)

('0
(�

m

))

2

#

'(z)

)

f(�
m

)

+

X

|k|n,k 6=m

f(�
k

)

(z � �
m

)'(z)

(�
k

� �
m

) (z � �
k

)'0
(�

k

)

+ E
n

where

E
n

=

1

2⇡i

I

�n

[(z � �
m

)'(z)]

(w � z)

f(w)

(w � �
m

)'(w)
dw.

We now show that E
n

goes to zero as n ! 1. For n sufficiently large we will have

| y
n

|> ⌘ (⌘ for (2.2)) and | y
n

|>| ȳ | for all z = x̄+ iȳ 2 C. Thus, we have | f(x+ iy) |
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kfk1 e�⇡|y| by Phragmén-Lindelöf, see Theorem 4.6, and also we have | '(x + iy) |�
A |y| (|z|+ 1)

�4D�1 e⇡|y| as (6.5). The error over the horizontal segment ⌘1 will be

| 1

2⇡i

I

⌘1

[(z � �
m

)'(z)]

(w � z)

f(w)

(w � �
m

)'(w)
dw |

M kfk1
2⇡A

Z

xn

x�n

(|x+ iy
n

|+ 1)

4D+1

|y
n

| | x+ iy
n

� x̄� iȳ || x+ iy
n

� �
m

|dx

= O

 

1

|y
n

|1�4D

!

, (6.9)

where M = sup

z2C | (z � �
m

)'(z) |. The quantity in (6.9) goes to zero as n goes to

infinity. For the integral over the path �1, we only estimate the integral over the segment

�+1 in the first quadrant. The computation of the remaining segment ��1 in the fourth

quadrant can be estimated in the same way using the symmetry relations (A.2) and (A.3).

Also, the computation over the path �2 is similar to �1. We will use the estimate in [29,

page 57, eq 16.08] for the canonical product that is

|' (x+ iy)| � (1 + |�
N

� (x+ iy)|) e⇡|y|
(1 + |x+ iy �N |) (1 + |x+ iy|)4D ,

where N is determined by

N � 1

2

 |w| sec ✓ < N +

1

2

,

w = x+ iy and ✓ = Arg (w). Now,

| 1

2⇡i

I

�

+
1

[(z � �
m

)'(z)]

(w � z)

f(w)

(w � �
m

)'(w)
dw |

M kfk1
2⇡

Z

xn

0

(1 + |x
n

+ iy �N |) (|x
n

+ iy|+ 1)

4D

| x
n

+ iy � �
m

|| x
n

+ iy � x̄� iȳ | |�
N

� x
n

� iy|dy.

The quantity
1 + |x

n

+ iy �N |
|�

N

� x
n

� iy|
can be shown to be bounded for y 2 [0, x

n

] and thus
�

�

�

�

1

2⇡i

I

�1

[(z � �
m

)' (z)]

(w � z)

f (w)

(w � �
m

)' (w)
dw

�

�

�

�

= O

 

1

|x
n

|1�4D

!

. (6.10)

The right hand side of (6.10) goes to zero as n goes to infinity. This completes the proof.
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The previous result has again been obtained by adding one additional piece of information.

The additional piece of information required is the value of the derivative of the function f

at �
m

, while the additional piece information in Corollary 4.1 is the value of the function

f at µ1.

We point out here that if ⇤ = {�
k

}
k2Z is chosen to be the integers, then we obtain the

interpolation formula by Valiron-Tschakaloff, see (F.1).

6.3 Estimating The Infinity Norm

In this section we will estimate the infinity norm of function in the space B1
�⇡

, 0 < � < 1,

by knowing the information of the function over a set that is not necessarily uniform with

a certain gap. Accordingly, we state the following question:

Question 2: Let 0 < � < 1 and {�
k

}
k2Z ⇢ R with |�

k

� k| < � for all k 2 Z for some

� < 1
4 . Does there exist a constant C = C(⇤,�) such that

kfk1  C (⇤,�) sup
k2Z

|f (�
k

)| (6.11)

for all f 2 B1
�⇡

? If so, then can C(⇤,�) be estimated?

For the first part of the question, we have l.u.d (⇤) for ⇤ = {�
k

}
k2Z that satisfies |�

k

� k| 
D < 1/4 as

l.u.d (⇤) = 1 > �.

Thus, for all f 2 B1
�⇡

with 0 < � < 1 with the condition, ⇤ = {�
k

}
k2Z ⇢ R, |�

k

� k| 
D < 1/4 an estimate such as (6.4) exists. In order to bound C (⇤,�) in (6.11), we will use

Theorem 6.7. Before stating the main result of this section, we need some definitions that

are given below
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Let eB1
�⇡

=

n

f 2 B1
�⇡

| f (t) 2 R for t 2 R
o

. Then, we define k.k⇤,1 as

kfk⇤,1 = sup

�k2⇤
|f (�

k

)| ,

and we define the quantity C⇤ (�) as

C⇤ (�) = sup

f2 eB1
�⇡ ,kfk⇤,11

kfk1 . (6.12)

Following the condition (6.6), we show that C⇤ (�) > 1.

Example 6.1. We consider the function g(z) = c sinc (�⇡z), 0 < � < 1, where c =

1
sinc(�⇡/4) > 1. Then, |g(0)| > 1 and

�

�g
��1

4

�

�

�

=

�

�g
�

1
4

�

�

�

= 1. Now, if f (z) = g(z � t
k0),

t
k0 = (�

k0 + �
k0+1) /2 for some fixed k0 2 Z, then kfk ⇤,1  1 since �

k+1��
k

> 1
2 for all

k 2 Z, while kfk1 � |f (t
k0)| > 1. We conclude that C⇤ (�) � 1

sinc(�⇡/4) > 1.

For a more general set up, we let � ⇢ R, kfk� = sup

�2� |f (�)| and d� = sup

x2R dist (x,�),

where dist (x,�) denotes the distance of the point x to the set �. That means the largest

gap between two successive points in � has width 2d�. Then, we define C� (�) as

C� (�) = sup

f2 eB1
�⇡ ,kfk�1

kfk1

Now, we state and prove the main result.

Theorem 6.8. Let f 2 eB1
�⇡

, 0 < � < 1, ⇤ = {�
k

}
k2Z be such that it satisfies |�

k

� k| 
D < 1

4 , �0 = 0, '0
(0) > 0, |'0

(0)| = inf

�k2⇤ |'0
(�

k

)|. Let E (t) = '0
(0)'0

(t)�'00
(0)' (t)

and J = [�0a,�0b], ��1  a < 0 < b  �1, such that d0 (�0) = min

t2J E (t) > 0 for

0 < �0 < 1. If � ⇢ R with d�  (b� a) /2, then

kfk1  ('0
(0))

2

d0(�)
sup

�2�
|f (�)| .
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Proof. Let ✏ > 0 be arbitrary. Then there is f
✏

2 eB1
�⇡

with kf
✏

k�  1 and kf
✏

k1 >

C� (�)� ✏. We now construct a related function f
✏,�

such that |f
✏,�

| assumes its maximum

at a certain point. For this purpose let h 2 C1
0 (R) be an even non-negative function

such that h (t) = 0 for |t| � 1 and
R

R h (t) dt = 1. For � > 0 let h
�

(t) = h (t/�) /�.

Then bh
�

(t) 2 R for t 2 R, and
�

�

�

bh
�

(t)
�

�

�

 RR |h
�

(t)| dt = RR |h (t)| dt = RR h (t) dt = 1. Let

f
✏,�

(t) = f
✏

(t) bh
�

(t). Then |f
✏,�

(t)|  |f
✏

(t)|, lim|t|!1 f
✏,�

(t) = 0, f
✏,�

converges pointwise

to f
✏

as � ! 0, f
✏,�

2 eB1
�

0
⇡

for �0 = � + �/⇡, and |f
✏,�

(t)| assumes its maximum at some

point t
✏,�

. Now let � be sufficiently small such that �0 = � + �/⇡ < 1 as well as

|f
✏,�

(t
✏,�

)| = kf
✏,�

k1 � kf
✏

k1 � ✏ � C� (�)� 2✏.

The inequality kf
✏,�

k1 � kf
✏

k1 � ✏ holds because there is some t
✏

with |f
✏

(t
✏

)| �
kf

✏

k1 � ✏/2 and since f
✏,�

converges pointwise, one has for sufficiently small � that

kf
✏

k1 � kf
✏,�

k1 � |f
✏,�

(t
✏

)| � |f
✏

(t
✏

)| � ✏/2 � kf
✏

k1 � ✏. Since �f
✏,�

has the same

desired properties as f
✏,�

, we may assume that f
✏,�

(t
✏,�

) > 0. Furthermore, since f
✏,�

(t) is

maximal at t = t
✏,�

we have f 0
✏,�

(t
✏,�

) = 0.

Let ' (t) be the canonical product of the sampling set ⇤ and let '
�

0
(t) = ' (�0t) and

g̃ (⌧) = g (⌧/�0) where

g (t) = f
✏,�

(t+ t
✏,�

)� kf
✏,�

k1
'0
�

0 (t)

'0
�

0 (0)
.

Now we substitute the function g̃ in the sampling series (6.7) to obtain

g̃ (⌧)�
⇢

' (⌧)

'0
(0)

�

g̃0 (0) = ⌧'(⌧)

8

<

:

X

k2Z\{0}
g̃(�

k

)

1

�
k

(⌧ � �
k

)'0
(�

k

)

9

=

;

. (6.13)

We have '0
(�

k

) = (�1)

kc
k

, c
k

> 0 and �
k

(⌧ � �
k

) < 0 for ⌧ 2 (��1,�1). But, g̃(�
k

) =

d
k

(�1)

k+1, d
k

> 0 and if we substitute in (6.13) we obtain

g̃ (⌧)�
⇢

' (⌧)

'0
(0)

�

g̃0 (0) = ⌧'(⌧)

8

<

:

X

k2Z\{0}

(�1)

k+1d
k

�
k

(⌧ � �
k

) (�1)

kc
k

9

=

;

. (6.14)
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It follows that

g̃ (⌧)�
⇢

' (⌧)

'0
(0)

�

g̃0 (0) � 0 for ⌧ 2 (��1,�1).

Now, let ⌧ = �0t. Then g̃ (⌧) = g (t) and thus

g (t)�
⇢

' (�0t)

'0
(0)

�

g0 (0)

�0
� 0 for �0t 2 (��1,�1). (6.15)

We compute g0 (0) and it is

g0 (0) = �kf
✏,�

k1
�0'00

(0)

'0
(0)

.

Substitute back in (6.15) we obtain

g (t) +

⇢

' (�0t)

'0
(0)

�

kf
✏,�

k1
'00

(0)

'0
(0)

� 0 for �0t 2 (��1,�1).

Replacing g by its definition we obtain

f
✏,�

(t+ t
✏,�

)� kf
✏,�

k1
'0

(�0t)

'0
(0)

+ kf
✏,�

k1
'00

(0)' (�0t)

('0
(0))

2 � 0 for �0t 2 (��1,�1).

Then,

f
✏,�

(t+ t
✏,�

) � kf
✏,�

k1
'0

(0)'0
(�0t)� '00

(0)' (�0t)

('0
(0))

2 ,

for �0t 2 (��1,�1) . We have E (�0t) = '0
(0)'0

(�0t)�'00
(0)' (�0t) > d0(�0) for t 2 [a, b].

Also, we have 2d�  (b� a) and thus there is t
�

2 [a, b] such that t
�

+ t
✏,�

= � 2 � and

so |f
✏,�

(t
�

+ t
✏,�

)|  1. By the Intermediate Value Theorem there is t⇤ between 0 and t
�

such that f
✏,�

(t⇤ + t
✏,�

) = 1. Therefore,

kf
✏,�

k1  f
✏,�

(t⇤ + t
✏,�

) ('0
(0))

2

E (�0t⇤)
 ('0

(0))

2

d0(�0)
.

That means

C� (�)  kf
✏,�

k1 + 2✏  ('0
(0))

2

d0(�0)
+ 2✏.

Letting both ✏ and � go to zero completes the proof.

The earlier result by Wunder and Boche, Theorem 6.2, now follows as a corollary if we

choose � = ⇤ = Z.
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7 CONCLUSIONS

Several sampling theorems that are often used in signal processing are expansions with

uniform sampling points. The Poisson Summation Formula (PSF) is a central concept

for the uniform sampling set up. Both the PSF and the sampling theorems with uniform

sampling are built upon having a sampling set that forms a coset of a discrete subgroup

of R. Beyond that there are cases where the sampling set is the union of finitely many

cosets of a discrete subgroup. In that case, the sampling set is called nonuniform periodic.

Yet the PSF still plays a role in the derivations of sampling theorems for this case, see

[13, Section 3]. In this thesis, we generalize a sampling series for the space PW2
⇡

by

considering a sampling set that is a perturbation of the zero set of a ⇡-sine-type function.

The perturbation of each point is within a quarter of the minimum distance between two

consecutive zeros. Such a set can be nonuniform and nonperiodic and still maintains the

stability in the sense of a Riesz basis.

The other type of generalization in this thesis is considering bigger spaces than PW2
⇡

. It is

known that the functions in the space PW2
⇡

are functions in L2
(R) when restricted to the

real line. Additionally, those functions go to zero at infinity. We derived a sampling series

for eB
⇡,N

, the space of band-limited functions that have polynomial growth when restricted

to the real line. We developed a method using a smooth cut-off function. The purpose of

this function is to overcome the growth of the function f 2 eB
⇡,N

to be reconstructed. The

new function is called f
�

and has a rapid decay. The function f
�

can be made arbitrary

close, over compact sets, to the function f by choosing smaller values of �.

Another way of controlling the growth of the band-limited functions in the class eB
⇡,N

is by

using successive divisions to create an auxiliary function Q
N+1, see (4.5), that is in PW2

⇡

.

This method has some advantages such as
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(1) For the auxiliary function Q
N+1, we can use any sampling series for the space PW2

⇡

.

(2) The sampling set need not be of a ratio-type. The oversampling is a finite oversam-

pling determined by the degree of the growth of the function to be reconstructed.

A direct consequence is that one additional piece of information (1-point oversampling) is

sufficient to obtain a reconstruction for functions in the space B1
⇡

using a sampling series

for the space B2
⇡

= PW2
⇡

, see Corollary 4.1.

An important result in this thesis is Theorem 4.7 where the perturbation can be beyond

a quarter. The oversampling is by a finite number of points and not of ratio-type. The

sampling series is for band-limited functions that have polynomial growth when restricted

to the real line. The oversampling by adding additional points can be used to generate a

faster decay of the sampling functions which causes more rapid convergence in the sampling

series. The example in Section 4.4 demonstrates the higher reconstruction accuracy by

adding one additional sampling point.

Sometimes the sampled function values are only available in quantized form. The key

requirement to control the resulting error in the reconstruction is a sufficiently rapid decay

of the sampling functions. This we achieved for band-limited functions of polynomial

growth by using oversampling by finitely many points. The convergence is uniform over

compact sets. We also showed that a sampling theorem by Daubechies et al. [9] can be

used for functions in PW1
⇡

with uniform convergence over the whole real line. On the

other hand, their sampling functions may be more difficult to evaluate.

The problem of estimating the infinity norm of a function from its supremum over a subset

of R is called a peak value problem. Boche and Mönich asked whether an estimate of the

form

kfk1  C(�) sup
�2�

|f (�)| , f 2 eB1
�⇡

, 0 < � < 1, (7.1)
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exists if � is the zero set of a ⇡-sine-type function. We provide an affirmative answer using

a result of Beurling as well as some properties of sine-type functions.

We proved a generalized Valiron-Tschakaloff sampling theorem for sampling sets that are

perturbations of the integers by up to a quarter. This sampling theorem is then used to

derive a general method to find upper bounds for C(�) in the inequality (7.1) if � is a

subset of R with maximum gap of 2d�. For � = Z, i.e., d� = 1/2, we reproduce an earlier

estimate by Wunder and Boche [5, 48].
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A APPENDIX Sine-type Function

One example of a sine-type function with non-equidistant zeros is the the function

'
↵,�

(z) = cos (⇡z)� � sin (↵⇡z) where 0 < ↵ < 1 and 0  �  1.

The function has a non-equidistant set of real zeros, see [11, Theorem 1]. Setting � =

1
2

and ↵ =

1p
3

we obtain nonuniform, nonperiodic set of zeros.

The Canonical Product

Lemma A.1. The infinite product

1
Y

k=1

(1+ | a
k

|)

converges to a non-zero limit if and only if

1
X

k=1

| a
k

|< 1.

Throughout this work we will be considering the infinite product that is expressed below

'(z) =
Y

k2Z

✓

1� z

�
k

◆

. (A.1)

The convergence can be conditional. The infinite product on the right hand side of (A.1)

is understood in the sense of

lim

N!1

Y

|k|<N

✓

1� z

�
k

◆

.

The factor
⇣

1� z

�k

⌘

will be replaced by z if �
k

= 0.

Let G({�
k

}; z) denote the canonical product '(z) for the set of zeros {�
k

}
k2Z. If {�

k

}
k2Z ⇢

R, one has the relations

G({�
k

}; z) = G({�
k

}; z) (A.2)
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and

G({�
k

};�z) = s(�0)G({���k

}; z), with s(�0) =

8

>

<

>

:

1 if �0 6= 0

�1 if �0 = 0

(A.3)
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B APPENDIX Phragmén-Lindelöf

We define M
f

(r) as

M
f

(r) = sup

n

�

�

�

f
⇣

rei✓
⌘

�

�

�

: ✓1 < ✓ < ✓2
o

.

In the next result we set ✓1 = 0 and ✓2 = ⇡.

Theorem B.1. (Phragmén-Lindelöf, [27, page 38]) If f(z), z = x + iy, is an analytic

function in the upper half-plane {z | Im z > 0} such that for all ✏ > 0,

M
f

(r)
as
< e(�+✏)r

for sufficiently large r =| z | and | f(x) | M on the real axis, then

|f (x+ iy)|  Me�y

in the upper half-plane.

We also have the following useful corollary.

Corollary B.1. (Phragmén-Lindelöf, [27, page 39]) If f(z) is an entire function of expo-

nential type ⇡, and

|f(x)|  m (1 + |x|)N , x 2 R

then

|f(z)|  C (1 + |z|)N e⇡|y|

for all z in the complex plane C.
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C APPENDIX The Indicator Diagram and The Sine-type Function

The definition of the sine-type function in Katsnel’son [23] and (2.2) are equivalent. The

condition of having a function of exponential type satisfying

0 < m  |f (x+ iH)|  M < 1,

for some m and M for all x 2 R in some horizontal line y = H together with the indicator

diagram width condition is equivalent to:

There exist A, B and ⌘ such that

Ae�|y| | f(x+ iy) | Be�|y|

for all x, y 2 R, such that |y| � ⌘. The computation is as follows:

Let us assume that the indicator diagram is 2⇡. i.e. h
f

�

⇡

2

�

= h
f

��⇡

2

�

= 2⇡, where

h
f

(✓) = lim sup

|r|!1

log

�

�f
�

rei✓
�

�

�

r⇢

for some order ⇢. The function h
f

is called the indicator function. Now, If f(x+ iy) is an

entire function of exponential type and it is bounded on some horizontal line y = H, then

by Phragmén-Lindelöf, Theorem B.1, we obtain

|f(x+ iy)|  Be�|y|.

Moreover, if the zeros are in a horizontal strip |y|  H, then

Ae�|y|  |f(x+ iy)|  Be�|y|

for |y| � H and thus we have

eA+ � |y|  log |f (y)|  eB + � |y| .



75

It follows that

�  lim sup

|y|!1

log |f (y)|
|y|  �

and therefore, � = ⇡. Now, we show the equivalence in the two different statements that

are used as a definition. Let

m  |f (x+ iH)|  M (C.1)

then by using (C.1) and Phragmén-Lindelöf we have

|f (x+ iy)|  fMe⇡|y|. (C.2)

By using (C.2), it can be shown that

|f (x+ iy)| � me⇡|y|

whenever dis (z, {�
k

}) > ⌘, see [27, page 163]. Hence,

me⇡|y|  |f(x+ iy)|  Me⇡|y| (C.3)

for all x, y 2 R with |y| � ⌘. On the other hand, if (C.3) satisfied then

0 < ↵  |f(x+ iH)|  � < 1

where �1 < x < 1 for |H| � ⌘.
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D APPENDIX Riesz Basis

Theorem D.1. ([49, page 27]) Let H be a separable Hilbert space. Then, the following

statements are equivalent.

(1) The sequence {f
n

} forms a Riesz basis for H, that is the sequence {f
n

} is complete

in H, and there exist positive constants A and B such that for any arbitrary positive

integer n and arbitrary scalars c1, . . . , cn one has

A
n

X

i=1

|c
i

|2 
�

�

�

�

�

n

X

i=1

c
i

f
i

�

�

�

�

�

2

 B
n

X

i=1

|c
i

|2 .

(2) The sequence {f
n

} is obtained from an orthonormal basis by means of a bounded

invertible operator.

(3) There is an equivalent inner product on H, with respect to which the sequence {f
n

}
becomes an orthonormal basis for H.

(4) The sequence {f
n

} is complete in H, and its Gram matrix

((f
i

, f
j

))

1
i=1,j=1

generates a bounded invertible operator on l2.

(5) The sequence {f
n

} is complete in H and possesses a complete biorthogonal se-

quence {g
n

} such that

1
X

i=1

|(f, f
n

)|2 < 1and
1
X

n=1

|(f, g
n

)|2 < 1

for every f in H

Theorem D.2. A sequence that is biorthogonal to a Riesz basis is also a Riesz basis.
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E APPENDIX The Paley-Wiener Spaces and Theorems

Theorem E.1 (The Plancherel-Polya Inequality). Let f 2 Bp

�

, p > 0, and let ⇤ =

(�
n

), n 2 Z, be an increasing sequence such that �
n+1 � �

n

� 2�. Then

X

n2Z
| f(�

n

) |p 2ep��

⇡�
k f kp

p

.

Theorem E.2. The Bernstein and the Paley-Wiener spaces are ordered as follows

B2
�

✓ B3
�

✓ . . . ✓ B1
�

and

. . . ⇢ PW2
�

⇢ PW1
�

.

Proof. If f is in the space Bp

�

, p � 2 and ⇤ = {�
k

}
k2Z such that �

k+1 � �
k

� 2� , then by

Plancherel-Polya the function satisfies

X

n2Z
|f (�

k

)|p  2ep��

⇡�
kfkp

p

.

We claim that the function is bounded on the real line. If not then |f(x)| has a sequence

{|f(�
k

)|}
k2Z that is unbounded. Now we pick let ⇤ = {�

k

}
k2Zand then

kfkp
p

� ��

2ep��

X

k2Z
|f (�

k

)|p = 1

which is a contradiction. Thus,
Z

R
|f |p+1 dµ  max

x2R |f (x)|
Z

R
|f |p dµ < 1,

and therefore f 2 Bp+1
�

whenever f 2 Bp

�

. Also, since the function in any of these spaces

is bounded in the real line then all these spaces contained in B1
�

. However, the fact that

kfkPWp
�
=

 

1

2�

Z

[��,�]
|g(t)|p dt

!1/p
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1

2�

Z

[��,�]
|g(t)|p+1 dt

!1/(p+1)

= kfkPWp+1
�

shows the inclusions for the Paley-Wiener spaces.

E
�

denotes the space of entire function of exponential type  �.

Theorem E.1 (Paley-Wiener). Let f 2 L2
(R). Then, f has an analytic extension to C

which belongs to E
�

if and only if bf ✓ [��,�].

Theorem E.2. (Paley-Wiener-Schwartz, [38, page 198]) (a) If � 2 D (Rn

) has its support

in rB, B is the closed unit ball of Rn, and if

f(z) =

Z

Rn
� (t) e�iz.tdm

n

(t) , (z 2 Cn

) (E.1)

then f is entire, and there is a constant �
N

< 1 such that

|f(z)|  �
N

(1 + |z|)�N er|Imz|, (z 2 Cn, N = 0, 1, 2, . . .) (E.2)

(b) Conversely, if f is an entire function in Cn which satisfies (E.2), then there exists

� 2 D (Rn

), with support in rB, such that (E.1) holds.

Theorem E.3. (Paley-Wiener-Schwartz, [38, page 199]) (a) If u 2 D0
(Rn

) has its support

in rB, if u has order N , and if

f(z) = u (e�z

) , (z 2 Cn

) (E.3)

then f is entire, the restriction of f to Rn is the Fourier transform of u, and there is a

constant � < 1 such that

|f(z)|  � (1 + |z|)N er|Imz|. (E.4)

(b) Conversely, if f is an entire function in Cn which satisfies (E.4) for some N and some

�, then there exists u 2 D0
(Rn

), with support in rB, such that (E.3) holds.
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Theorem E.4. The spaces B2
⇡

and PW2
⇡

represent the same class of functions.

Proof. To show that we let f 2 B2
⇡

. Then, by Fourier transform

f(z) =

Z

R
ˆf(z)eizwdw

where ˆf 2 L2
[�⇡,⇡] since supp ˆf 2 [�⇡,⇡]. Thus, f 2 PW2

⇡

. The other inclusion, let

f 2 PW2
⇡

. Then,

f(z) =

Z

⇡

�⇡

g(w)eizwdw

where g 2 L2
[�⇡,⇡]. We can see that

|f(z)| 
Z

⇡

�⇡

|g(w)| e�wImzdw  kgk1 e⇡|y|  C kgk2 e⇡|z|

Also, kfk
L

2(R) < 1 either by Plancheral or by Hausdorff-Young Inequality.

In fact, the space B2
⇡

is a Hilbert space since it is a closed subspace of the Hilbert space

(L2
(R), < f, g >=

R

R f(x)g(x)dx). It is closed subspace since F�1 :L2
(R) ! L2

(R),

F�1
�

L2
[�⇡,⇡] = B2

⇡

where L2
[�⇡,⇡] is a closed subspace of L2

(R). The Fourier

transform is a unitary operator that carries closed space to a closed space. It is unitary

since it is an isomorphism on L2
(R) and preserves inner product by Parseval’s Identity.
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F APPENDIX Interpolation In Bernstein Spaces

In this section we give a short summary of interpolation formulae in Bernstein spaces.

• 1925 Valiron-Tschakaloff, an interpolation formula for f 2 B1
⇡

, see [16, page 60].

f(t) =
sin⇡t
⇡

8

<

:

f 0
(0) +

f(0)

t
+

X

n2Z\{0}
f(n)

⇡t(�1)

n

n(t� n)

9

=

;

(F.1)

• 1976 J. R. Higgins, an interpolation formula for f 2 B2
⇡

, |�
n

� n|  D < 1
4 , see [17].

Biorthogonality argument.

f(t) =
X

n2Z
f(�

n

)

'(t)

(t� �
n

)'0
(�

n

)

(F.2)

uniformly for t 2 R.

• 1987 Kristian Seip, an interpolation formula for f 2 B1
⇡��

(0 < � < ⇡),|�
n

� n| 
D < 1

4 , see [39]. Oversampling type.

f(z) =
X

n2Z
f(�

n

)

'(z)

(z � �
n

)'0
(�

n

)

(F.3)

• 1993 G. Hinsen, an interpolation formula for f 2 Bp

⇡

, |�
n

� n|  D, D < 1
4 for

1  p  2, and D < 1
2p for 2  p < 1, see [19]. More precise growth for '(t) and

distribution property for {�
n

}
n2Z.

f(z) =
X

n2Z
f(�

n

)

'(z)

(z � �
n

)'0
(�

n

)

(F.4)
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• 2010 Boche, Mönich, an interpolation formula for f 2 B1
⇡,0, {�n}

n2Z zeros of ⇡-sine-

type function, see [32].

f(z) =
X

n2Z
f(�

n

)

'(z)

(z � �
n

)'0
(�

n

)

(F.5)

• 2010 Boche, Mönich, an interpolation formula for f 2 B1
�⇡

, {�
n

}
n2Z zeros of ⇡-sine-

type function, see [32].

f(z) =
X

n2Z
f(�

n

)

'(z)

(z � �
n

)'0
(�

n

)

(F.6)

and if we consider B1
�⇡,0 the convergence will be uniform over R.

All convergence are over compact subsets of C, unless otherwise stated.


