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The expansion of a gas within a piston-cylinder arrangement is studied in order to 

obtain a better understanding of the heat transfer which occurs during this process. While 

the situation of heat transfer during the expansion of a gas has received considerable 

attention, the process is still not very well understood. In particular, the time dependence 

of heat transfer has not been well studied, with many researchers instead focused on 

average heat transfer rates. Additionally, many of the proposed models are not in 

agreement with each other and are usually dependent on experimentally determined 

coefficients which have been found to vary widely between test geometries and operating 

conditions. Therefore, the expansion process is analyzed in order to determine a model 

for the time dependence of heat transfer during the expansion. A model is developed for 

the transient heat transfer by assuming that the expansion behaves in a polytropic manner. 

This leads to a heat transfer model written in terms of an unknown polytropic exponent, 

n. By examining the physical significance of this parameter, it is proposed that the 

polytropic exponent can be related to a ratio of the time scales associated with the 

expansion process, such as a characteristic Peclet number. 



 

 

Experiments are conducted to test the proposed heat transfer model and to 

establish a relationship for the polytropic exponent. The tests are performed using an 

apparatus that consists of a single piston-cylinder, which allows for pressure-volume data 

to be collected during the expansion of a hot gas. These experiments justify the 

polytropic expansion assumption, and from these results models are developed for the 

polytropic exponent. Heat transfer data are also collected from these experiments through 

applying an energy balance on the gas during expansion. These heat transfer data are 

used to compare the Nusselt number predicted by the proposed model with the 

experimentally determined Nusselt number. It is found that the proposed model agrees 

very well with the experimental data, and accurately captures the time dependence of the 

heat transfer characteristics. The proposed model also accurately handles variations in the 

heat transfer characteristics due to the different test conditions studied. By capturing the 

transient effects of heat transfer during the expansion process, the proposed model should 

be a more accurate tool in determining heat loss during the expansion of a gas than 

previously developed models.  
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NOMENCLATURE 

 

Greek Letters and Symbols 

α Thermal diffusivity (m
2
/s) 

γ Specific heat ratio, 𝛾 = 𝑐𝑝/𝑐𝑣  

θ Non-dimensional temperature, 𝜃 = 𝑇𝑔/(𝑇𝑔 − 𝑇𝑤𝑎𝑙𝑙 )  

κ Thermal conductivity (W/m-K) 

μ Dynamic viscosity (Pa-s) 

ρ Gas density (kg/m
3
) 

ρavg Average gas density (kg/m
3
) 

ϕ Equivalence ratio  

χ Mole fraction  

 

Roman 

Ac Cross-sectional area (m
2
) 

As Surface area (m
2
) 

c Acoustic velocity (m/s) 

cp Specific heat at constant pressure (J/kg-K) 

cv Specific heat at constant volume (J/kg-K) 

D Cylinder diameter (m) 

f Darcy friction factor  

h Heat transfer coefficient (W/m
2
-K) 

m Mass (kg) 

ṁ Mass flow rate (kg/s) 

n Polytropic exponent  

𝑁𝑢𝐷  Spatial average Nusselt number using the cylinder diameter, 𝑁𝑢𝐷 = 𝑕𝐷/𝜅  

𝑁𝑢𝑥
       Spatial average Nusselt number using the distance x, 𝑁𝑢𝑥

      = 𝑕𝑥/𝜅 

P Gas pressure, absolute (Pa) 

Pair Air pressure, absolute (Pa)  

PH2 Hydrogen pressure, absolute (Pa) 

PT Total initial pressure, absolute (Pa) 

 



 

 

NOMENCLATURE (Continued) 

 

PeD Peclet number using the cylinder diameter, 𝑃𝑒 = 𝑣𝑝𝐷/𝛼  

𝑃𝑒∗ Characteristic Peclet number, 𝑃𝑒∗ = 𝑆𝑝𝐷/𝛼0  

Pex Peclet number using the distance x, 𝑃𝑒 = 𝑣𝑝𝑥/𝛼  

Pr Prandtl number, 𝑃𝑟 = 𝜇𝑐𝑝/𝜅  

Q Heat lost (J) 

q̇ Heat loss rate (W) 

q̇’’ Heat flux lost  (W/m
2
) 

R Gas constant (J/kg-K) 

ReD Reynolds number using cylinder diameter, 𝑅𝑒𝐷 = 𝜌𝑣𝑝𝐷/𝜇  

Rex Reynolds number using the distance x, 𝑅𝑒𝑥 = 𝜌𝑣𝑝𝑥/𝜇 

St Stanton number, 𝑆𝑡 = 𝑕/𝜌𝑐𝑝𝑣𝑝   

Sp Mean piston speed (m/s) 

𝑆𝑝
∗ Dimensionless mean piston speed, 𝑆𝑝

∗ = 𝑆𝑝/𝑐0 

Tg Bulk gas temperature (K) 

Twall Wall temperature (K) 

tex Expansion time (s) 

U Internal energy (J) 

u Fluid velocity (m/s) 

um Mean fluid velocity (m/s) 

V Cylinder volume (m
3
) 

vp Piston velocity (m/s) 

x Distance from cylinder head to piston face (m) 

x
* 

Non-dimensional distance, 𝑥∗ = 𝑥/𝐷  
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Chapter 1 – Introduction 

1.1 Introducing the introduction! – make this white  

The process of gas expansion in a piston-cylinder assembly is common in many 

applications, but the heat transfer which occurs during this process is not well 

understood. The expansion process itself is very complex; the expansions considered here 

are characterized by a turbulent flow field, and the process is inherently unsteady. These 

complexities make characterization of the heat transfer difficult, especially when time-

dependent heat transfer rates during the expansion are required. Many previous studies 

have used a pseudo-steady state assumption to develop models for the heat transfer. 

While models of this form can be used to characterize average heat transfer rates for the 

expansion, these models do not capture the time dependence of the heat transfer. The 

expansion process is inherently unsteady; therefore, by neglecting the time dependence of 

the process, these models do not fully capture the fundamental forces driving heat 

transfer during this process. Other researchers have proposed various methods of 

including the time dependence of the expansion process in heat transfer models. Largely, 

these consist of modifications to pseudo-steady models which incorporate various 

transient elements of the process. Since the transient behavior of heat transfer is of 

interest in this study, the proposed method of addressing the problem is to develop a 

model based on the transient effects of expansion directly, rather than by first assuming a 

steady process.   
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1.1 General Problem Statement 

The situation of heat transfer that occurs when hot gases are allowed to expand in 

a closed piston-cylinder assembly has many complexities, such as turbulence, spatially 

growing boundary layer regions and transient effects due to expansion. Since the gases 

are at a higher temperature than the walls of the piston-cylinder assembly, a temperature 

gradient exists to drive heat transfer. Gases are considered here to be non-radiating, and 

due to the bulk fluid motion that occurs, heat transfer is overwhelmingly dominated by 

convective heat transfer, meaning that it is governed by Newton’s law of cooling: 

 𝑞 ′′ = 𝑕Δ𝑇 (1.1) 

This process is shown schematically below in Figure 1.1. 

 

Figure 1.1 – Schematic of heat transfer during a piston-cylinder expansion process as 

currently studied 

 

In this formulation of Newton’s law of cooling, the temperature difference to be 

used is that between the bulk fluid and the wall, Δ𝑇 = 𝑇𝑔 − 𝑇𝑤𝑎𝑙𝑙  . The bulk fluid 
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temperature for the expansion process is most commonly defined using the ideal gas 

equation of state: 

 
𝑇𝑔 =

𝑃𝑉

𝑚𝑅
 (1.2) 

This differs from other bulk fluid temperature definitions; for flow in pipes, for example, 

the bulk temperature is defined based on the amount of thermal energy transport. In 

Eq.1.2, P refers to the absolute pressure of the gas and V is the volume which the gas 

occupies, while m refers to the mass of gas and R refers to the gas constant for the 

mixture. For a uniform pressure distribution within the cylinder, this expression yields a 

spatially averaged gas temperature used as the bulk temperature. However, since the 

pressure and volume of the gas change as the system expands the bulk temperature is not 

constant in time, although still evaluated from the ideal gas equation of state above. 

The challenge in describing heat transfer for this process is in determining the 

appropriate heat transfer coefficient, h, to used in Eq. 1.1.  In some other situations the 

heat transfer coefficient is directly calculable from the Navier-Stokes equations and the 

energy equations (see Appendix A), most notably for certain steady, laminar flows such 

as steady flow in a tube. This is not possible for the expansion of a gas however, because 

of the unsteady and potentially turbulent nature of the process. The conditions presently 

investigated all result in turbulent flow, characterized by unstable, highly three 

dimensional and transient flow patterns with large Reynolds numbers. This makes an 

analytic solution by solving the Navier-Stokes and energy equations impossible.  
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Therefore, the goal is to extract the most important physical processes driving the heat 

transfer, and incorporate these into a simplified model.  

The expansion of a gas is also not a steady process, but gas pressure, temperature, 

and density, as well as the expansion rate, all may vary with time. This has several 

ramifications. Firstly, this means that the density, momentum, and energy content of the 

process varies with time, shown mathematically by the inclusion of the time derivatives 

of density, velocity, and temperature in the governing equations. Secondly, this also has 

consequences on what flow distributions can be assumed. When analyzing steady flows 

in tubes it is often assumed that the flow is fully developed, which means that axial 

variations in an appropriate temperature difference and velocity distributions can be 

neglected and that sufficient time has elapsed for momentum and heat to diffuse 

completely across the flow. In the expansion of a gas however, the flow certainly is not 

fully developed, and there may significant axial variations of fluid velocity and 

temperature distributions. Similarly, heat and momentum may not be able to diffuse 

across the flow in the time scales of expansion, meaning that both thermal and viscous 

boundary layers will exist at the wall edges and may be non-uniform in both space and 

time. These boundary layers are expected to be thin because the flow has not fully 

developed. This situation leads to increased heat transfer caused by these large 

temperature gradients. These boundary layers may be additionally affected as the gas 

pressure changes during the expansion (Lawton, 1987). Furthermore, because of the large 

changes in temperature and pressure, properties such as viscosity, thermal conductivity, 
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and specific heat are not constant, which further complicates the governing equations. 

Because of these complications, in order to calculate or predict the heat transfer certain 

simplifications or generalizations to the governing equations and processes must be 

made, and often experimental data is required to justify these simplifications or to 

determine empirical relationships.  

Many other researchers have studied this general problem, in various forms and 

for different applications. Since the problem is inherently very complex, various 

assumptions must be made to arrive at a useable solution. These simplifications lead to 

different results depending on what parts of the governing processes are included as the 

most necessary physical factors influencing heat transfer. Some researchers have 

proposed discarding many transient elements of the problem, while others have included 

them in various forms. Examining what other researchers have proposed as models for 

the heat transfer allows one to explore how the various physical processes are 

incorporated into heat transfer models and how future improvements could potentially be 

made. 

 

1.2 Literature Review 

The problem of predicting the convective heat transfer to or from a hot, expanding 

gas is one which has already received considerable attention in the literature. Most 

research has been from the field of internal combustion engines, where knowledge of the 

heat transfer from the working fluid (combustion gases) to the engine wall is of 
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importance to understand the overall energy losses from the system, to determine the 

necessary cooling load, and in the development of computer models predicting engine 

performance (Heywood, 1988). Different researchers have approached the problem in 

different ways. One common approach has been to simplify the analysis by modeling the 

process as “pseudo-steady”. In this approach, parameters such as temperature, pressure, 

and density still vary with time, but it is assumed that the mechanism driving the heat 

transfer is similar to that for a steady process. This allows for the functional form 

describing the heat transfer to be borrowed from the analysis of a simpler situation, such 

as flow in tubes. Others recognized that the transient nature of the flow is important, and 

have developed models that reflect transient effects such as the developing nature of the 

flow and the effect that expansion has on the boundary layer. Because of the complex 

nature of the problem however, other simplifications concerning the flow behavior must 

be made in order to obtain a useable expression for the heat transfer.  

Most researchers choose to express the heat transfer using non-dimensional 

parameters that represent fundamental physical elements governing the process. The 

dimensionless parameters generally considered are: the Nusselt number, 𝑁𝑢 =
𝑕𝐿𝑠

𝜅
, which 

represents the magnitude of convective heat transfer to conductive heat transfer;  the 

Reynolds number, 𝑅𝑒 =
𝜌𝑢𝑠𝐿𝑠

𝜇
, which represents the ratio of inertial forces to viscous 

forces; and the Prandtl number, 𝑃𝑟 =
𝜇𝑐𝑝

𝜅
, which represents the ratio of momentum 

diffusion to heat diffusion. While these are the parameters with which heat transfer 



7 

 

 

during the expansion of a gas is generally described, there are significant differences in 

what characteristic length scale, Ls, and characteristic velocity scale, us, are used to 

represent these parameters.  

  

1.2.1 Pseudo-Steady State Models 

Many researchers describing heat transfer during the expansion of a gas have 

assumed that the convective heat transfer can be modeled using the pseudo-steady state 

assumption described previously. This assumes that convective heat transfer behaves 

similarly as it does in related steady, fully developed flows. Such flow in tubes has been 

studied extensively, and the similarity between momentum and energy transport yields 

the Chilton-Colburn analogy relating flow characteristics (e.g. velocity) to heat transfer 

(Incropera, et al., 2007). For turbulent flows, this takes the form of the Colburn equation, 

given as: 

 𝑁𝑢𝐷 = 0.023𝑅𝑒𝐷
0.8𝑃𝑟0.33 (1.3) 

This commonly used heat transfer correlation holds for both liquids and gases. Since the 

Prandtl number is roughly constant for most gases near 0.7, this can be generalized as: 

 𝑁𝑢𝐷 = 𝐶𝑅𝑒𝐷
𝑚  (1.4) 

This functional form for convective heat transfer arises from turbulent flow in tubes, 

where it has been applied quite effectively to predict heat transfer rates (Bhatti & Shah, 

1987).  
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Three important studies of heat transfer in internal combustion engines that have 

made use of this same functional form are by Annand, Woschni, and Hohenburg 

(Annand, 1963; Woschni, 1967; Hohenburg, 1980). In modeling the convective heat 

transfer during expansion, the starting point for each is the functional form for steady 

flow in tubes, Eq. 1.4. However, each differs in its application in several important 

points. In particular, they differ in the definition of the characteristic length scale 

associated with both the Nusselt and Reynolds numbers and in the characteristic velocity 

scale associated with the Reynolds number. Additionally, while Annand expresses his 

relation in dimensionless form, Woschni and Hohenburg both start from the 

dimensionless form of Eq. 1.4 but express their results dimensionally, allowing for the 

dependence of the heat transfer coefficient on the gas pressure and temperature to be 

shown explicitly. 

Annand represents the characteristic length scales in both the Nusselt and 

Reynolds numbers with the cylinder diameter, D (Annand, 1963). Additionally the mean 

piston speed, Sp, is chosen as the characteristic velocity scale. While these may change 

for different geometries and operating conditions, once fixed they do not change during 

expansion. Thus, the main physical parameter affecting change in the heat transfer 

coefficient (via the Nusselt number) is the density of the gas (via the Reynolds number). 

The final form of Annand’s expression was given as: 

 𝑁𝑢𝐷 = 𝐶𝑅𝑒𝐷
0.7 (1.5) 
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The constant C has a range given as C=0.35-0.8. The range in the constant C represents 

the range needed for the various engine types tested, and can be selected according to the 

best fit for one’s particular geometry (Annand, 1963). As a constant multiplicative 

enhancement of heat transfer, this constant is meant to represent the strength of advection 

for the given engine geometry and operating conditions. The power 0.7 was selected 

empirically as the best fit to experimental data. 

Woschni similarly started from Eq. 1.4 and used the cylinder diameter D as the 

characteristic length scale (Woschni, 1967). However, the characteristic velocity scale 

was modified to be the mean piston speed multiplied by a constant, c1. The heat transfer 

coefficient is given directly, rather than non-dimensionally through the Nusselt number. 

To do this, the thermal conductivity and viscosity of a gas were taken as functions of 

temperature,  𝜅 ∝ 𝑇0.75 and 𝜇 ∝ 𝑇0.62 , together with the ideal gas law for density. These 

are substituted for the properties in both the Reynolds and Nusselt numbers, resulting in 

the expression shown in Eq. 1.6: 

 𝑕 = 𝐶𝐷−0.2𝑃0.8(𝑐1𝑆𝑝)0.8𝑇𝑔
−0.53 (1.6) 

The power 0.8 reflects the original power on the Reynolds number used in the Colburn 

equation, Eq. 1.3, which was found to represent experimental data well. The other 

constants were given as c1= 2.28 and C=0.085 (for standard SI unit system, as this 

constant must take on units for the equation to be dimensionally consistent), chosen as 

the best fit to experimental data (Woschni, 1967).  
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Hohenburg took an identical approach to Woschni by expressing the result 

dimensionally rather than in terms of non-dimensional parameters (Hohenburg, 1980). 

However, the definition of the length scale is modified, choosing this as the diameter of a 

sphere with an equivalent volume to the current gas volume. In introducing this transient 

length scale, he introduced further time dependence on the heat transfer; however, this 

term does not explicitly represent any physical effect concerning transient heat transfer. 

Additionally, Hohenburg removed the constant multiplicative value on the mean piston 

speed, instead modifying the exponent for the temperature to reflect the gas velocity 

dependence on temperature. This equation is given as:  

 𝑕 = 𝐶𝑉−0.06𝑃0.8𝑇𝑔
−0.4𝑆𝑝

0.8 (1.7) 

The constant C was determined by experimental data, and given as C=0.013. 

These three authors represent efforts made to characterize the heat transfer using a 

pseudo-steady state model, and while their results are the most widely used, others have 

also presented correlations in similar forms (Sitkei, 1972; Chen & Karim, 1998; Chang et 

al., 2004). Each of these researchers began from a form of the Colburn analogy, Eq. 1.4, 

and while they differed in selection of the appropriate length scale and in the handling of 

the thermal properties, they notably all use a constant velocity scale in the Reynolds 

number. Additionally, none of these authors chose to include Prandtl number 

dependence. Instead, any Prandtl number effects were lumped into the empirical constant, 

which was justified by noting that the Prandtl number remains near 0.7 for most gases. 

While each requires individual tuning by way of constants, they have been widely used in 
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both industry and academia as tools to predict heat transfer for internal combustion 

engines as well as starting points for further analysis (Borman & Nishiwaki, 1987; 

Soyhan, et al., 2009; Demuynck, 2010). 

An additional item of concern in using the aforementioned functional forms for 

heat transfer is the large temperature difference possible between the gas and the wall. 

Temperature affects the thermal conductivity, viscosity, and density for gases, raising 

questions as to what temperature should be used in evaluating these properties. 

Additionally, these variations can have an effect on temperature and velocity 

distributions, thereby affecting the heat transfer (Kakac, 1987). One option to account for 

this is to choose a reference temperature such as the average between the bulk and wall 

temperature at which to evaluate all properties; this is the method used in Annand’s 

model. Another method is to evaluate all properties at the bulk temperature and then 

include a temperature correction factor. For gases, this is typically accomplished using 

the form (Kakac, 1987): 

 𝑁𝑢

𝑁𝑢𝑐𝑝
=  

𝑇𝑤

𝑇𝑔
 

𝑎

 (1.8) 

In this expression, Nucp represents the Nusselt number evaluated using constant 

properties at the bulk temperature. The exponent a is negative and approximately equal to 

-0.5, thus for a hotter bulk temperature than wall temperature this modification increases 

the predicted Nusselt number. While this temperature correction is not used in many heat 

transfer equations for gas expansion, the importance of including this temperature 
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difference could perhaps be justified by its accuracy in modeling steady flows with large 

temperature differences. 

  

1.2.2 Transient Models 

While developing a model for heat transfer based on a pseudo-steady state 

assumption is attractive because of its relative simplicity, there are significant transient 

effects occurring in the expansion of a gas that call this assumption into question. This is 

especially true if one is interested in the time evolution of the heat transfer coefficient, 

rather than an expression that tends towards an average description of heat transfer during 

a single expansion. These transient effects can be seen in several ways. They are 

important because the time dependence of density, velocity, and temperature are included 

in the fundamental conservation equations, and reflect that density, momentum and 

energy, respectively, need not pass through the system at constant rates, but can change 

due to compressibility, applied forces, and energy storage capacities of the fluid, 

respectively. Additionally, their effects can be seen tangibly through the concepts of flow 

development and the boundary layer. 

When pseudo-steady state is assumed in the form of Eq. 1.4, it is implicitly 

assumed that the flow is fully developed. This is because the Colburn analogy which 

forms the basis for pseudo-steady state models was derived for steady, fully developed 

flows. For turbulent flows the entry length typically lasts between 10 and 60 diameter 
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lengths ( 10 ≤
𝐿𝑓𝑑

𝐷
≤ 60 ) (Incropera et al., 2007). While this is a generally short distance 

for flow in tubes, this is often much larger than the expansion distance experienced in 

piston-cylinder expansions. For example, automobile engines typically have a stroke to 

bore ratio (equivalent to the expansion length per diameter) of less than 1.3 (Heywood, 

1988). The entry length is of importance because it typically exhibits higher amounts of 

heat transfer than the fully developed region, due to the fact that the boundary layer is 

thinner and allows for greater mixing (Molki, 1986). Often, the entry length is accounted 

for by using an expression that enhances the fully developed Nusselt number near the 

entry length (Incropera et al., 2007):  

 𝑁𝑢𝐷

𝑁𝑢𝐷,𝑓𝑑
= 1 + 𝐶  

𝑥

𝐷
 
−𝑚

 (1.9) 

An entry length correction was used in the model proposed by Irimescu (Irimescu, 

2012). He also used a more elaborate expression for the steady heat transfer for turbulent 

flow in tubes due to Gnielinski (Gnielinski, 1976). This was modified to account for entry 

length in the fashion described above, as well as an additional modification to account for 

the wall to gas temperature difference: 

 
𝑁𝑢𝐷 =  

(𝑓/8)(𝑅𝑒𝐷 − 1000)𝑃𝑟

1 + 12.7(𝑓/8)0.5(𝑃𝑟2/3 − 1) 
 ∗  1 +  

𝑥

𝐷
 
−

2
3
 ∗  

𝜇𝑔

𝜇𝑤
 

0.14

 (1.10) 

In the above expression, 𝑓 is the Darcy friction factor, μb the viscosity at the bulk gas 

temperature, and μw the viscosity at the wall temperature. Instead of using a constant 

velocity scale in the Reynolds number, Irimescu proposed using a velocity calculated by 
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using a simplified k-ϵ turbulence model, which varied during the cycle and is related to 

the instantaneous piston speed. By making these changes, Irimescu incorporated the 

effect of the entry length on heat transfer, as well as introducing time dependent velocity 

scale, reflecting the importance of the instantaneous velocity on heat transfer. 

The expansion process has also been found to have an effect on the boundary 

layer. Lawton suggested that the expansion process tends to decrease the gas temperature 

in the boundary layer due to the decrease in pressure, thus effectively lowering the 

driving temperature difference for heat transfer near the cylinder walls (Lawton, 1987). 

This is in agreement with several published experimental and theoretical results, but is 

often considered to be of low significance in overall heat transfer calculations (Annand & 

Ma, 1970; Borman & Nishiwaki, 1987; Kornhauser & Smith, 1994; Ota, 2008). 

Nevertheless, by starting with the one-dimensional energy equation and making several 

simplifying assumptions (while keeping the essential time dependence relations intact), 

Lawton showed that pseudo-steady state correlations such as Annand’s equation (Eq. 1.5)  

should be modified by an unsteady term reflecting the expansion of the gases (Lawton, 

1987): 

 𝑁𝑢𝐷 = 𝑎𝑅𝑒𝐷
0.7 − 2.75  

𝑇𝑤

𝑇𝑔−𝑇𝑤
 𝐿     with    𝐿 =

𝛾−1

𝑉

𝑑𝑉

𝑑𝑡
𝑡𝑠  (1.11) 

For this expression, ts is expressed as the combination of convective and diffusive time 

scales, or 𝑡s =  
𝐷3

𝛼𝑆𝑝
 

0.5

. While this does not incorporate the effects of flow development 

directly, this formulation of the heat transfer during the expansion of a gas models the 
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transient behavior through means of the expansion process itself, through its effect on the 

boundary layer. 

It should be mentioned that there has been considerable research in modeling the 

heat transfer during the expansion of a gas using computational fluid dynamics (CFD) 

codes. This is certainly a useful tool in studying the heat transfer in this complex process, 

and can be used to examine time dependent phenomenon. However, it does not replace 

the need for straightforward expressions that accurately model the heat transfer 

characteristics seen in the expansion of a gas. These expressions are useful for things 

such as overall computer codes modeling internal combustion engines or other similar 

devices, and to gain deeper understanding into the governing processes. Additionally, 

there are other concerns which exist in CFD models, such as how the wall heat transfer 

formulations are developed (Rakapoulos et al., 2010).  

While the heat transfer models given by Eq. 1.5-1.7 and Eq. 1.10-1.11 have been 

used frequently to predict heat transfer, there is room for improvement in these models. 

Many of the models are highly dependent on experimental constants used in the 

equations. The values of these constants are not firmly established, and they can vary 

widely with different geometries and different operating conditions (Annand & Ma, 

1970; Borman, 1987; Demuynck, 2010). This makes predicting heat transfer difficult 

unless one has experimental data to compare against. From a design perspective this is a 

large hindrance on thermal modeling. This is especially true in the development of novel 

engines, such as HCCI engines (Soyhan et al., 2009). Therefore one improvement which 
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could be made is to develop a model that is less dependent on ambiguously defined 

constants, or where the range of experimentally determined constants is small. Another 

area of improvement is in predicting the time dependence of heat transfer. While the 

previously mentioned models generally predict cycle-averaged heat transfer well, they 

often fail at describing the unsteady heat transfer effects (Borman & Nishiwaki, 1987). 

Accurate prediction of instantaneous heat transfer rates is essential for an understanding 

of heat transfer during gas expansion process. It is also important from a design 

perspective. For example, knowledge of the time dependence of heat transfer rates is 

important in the design and modeling of novel internal combustion engines, where steps 

could be taken to minimize heat loss based on knowledge of instantaneous heat transfer 

rates. In general, current heat transfer models lack universality and transient robustness, 

leaving considerable room for improvement.  

 

1.3 Specific Problem Statement 

Based on the foregoing discussion, the goal of this research is to develop a simple 

model for the time-dependent heat transfer during the expansion of a gas. The spatial 

distribution of heat transfer is not of interest in this research, but rather accurately 

modeling the time evolution of heat transfer. Additionally, this model must be able to 

accurately respond to changes in operating parameters (such as the initial pressure). To 

accomplish these objectives, the heat transfer during the expansion process must be 
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analyzed in a manner that incorporates the necessary physics driving the flow and heat 

transfer while avoiding excessive complication.  

Many previous studies have assumed the same form of the heat transfer model 

between the expansion process and steady flow in tubes as the starting point for their 

analysis. While it may be useful to compare the expansion process with steady flow in 

tubes because flow in tubes is a well studied and more straightforward scenario, this 

assumption should not be used as a starting point for the analysis because it ignores the 

inherently transient nature of the expansion process. Instead, the expansion process 

should be analyzed independently in order to describe the transient heat transfer behavior 

and capture the fundamental physics driving the heat transfer in this process.  

This study develops an analytical model for transient heat transfer during the 

expansion of a gas. The time dependence of this process is particularly emphasized, while 

spatial variation is not considered. Experiments are then carried out in order to evaluate 

the accuracy of this model. These experiments emphasize variations in the operating 

conditions of the expansion, in order to determine how universal the model developed is. 

The results from these experiments give insight into what further improvements could be 

made in the modeling of heat transfer during the expansion of a gas.   
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Chapter 2 – Analysis 

2.1 Introducing the Analysis – make this white 

The situation of heat transfer during the expansion of a gas in a piston-cylinder 

assembly is analyzed in order to develop a model for the heat transfer. The process is 

inherently complex, so in order to analyze it the process is simplified by restricting the 

analysis to the global system, without consideration of spatial variations of heat transfer 

within the cylinder. By restricting the analysis to the global system, a model is developed 

which predicts the transient heat transfer characteristics of the process. By expressing this 

model in a non-dimensional form, the key factors influencing heat transfer can be 

illuminated and the model compared against existing models. The analytical development 

and subsequent discussion of this model is presented in the following sections.  

 

2.1 Model Development 

Many different approaches are possible in order to analyze the heat transfer 

during the expansion of a gas. The differential form of the energy equation (see Appendix 

A) could be invoked, together with the continuity and the Navier-Stokes equations. This 

by itself forms a formidable set of coupled, non-linear partial differential equations to be 

solved, further complicated by the unsteady nature of the problem and that thermal 

properties (such as viscosity and thermal conductivity) are not constant over the wide 

range of expected bulk temperatures. Furthermore, the flows considered here are 
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turbulent, making an analytic solution to the Navier-Stokes equations impossible. 

Therefore, in order to conduct a mathematical analysis, the process must be simplified by 

some means. One such method is to examine the system globally rather than on a spatial 

basis. To do this, a control volume is placed around the entire gas present in the volume, 

as shown in Figure 2.1.  

 

Figure 2.1 – Schematic showing control volume used for the analysis of the expansion 

process 

 

The energy equation can be expressed globally as the first law of thermodynamics, 

written for a closed system (no inlets or exits): 

 𝑑𝑈

𝑑𝑡
=

𝑑𝑄

𝑑𝑡
−

𝑑𝑊

𝑑𝑡
 (2.1) 

This is a statement of the conservation of energy principle, expressed on a rate basis. It 

reads that the change in internal energy (U) is balanced by any heat gain and work done 



20 

 

 

(following standard thermodynamic sign convention, heat lost from the system is 

represented by a negative Q, and work done by the system is represented by a positive 

W). With the assumption of an ideal gas and recognizing that the only way for work to be 

done is through the expansion of the piston, this equation becomes: 

 
𝑚𝑐𝑣

𝑑𝑇𝑔

𝑑𝑡
=

𝑑𝑄

𝑑𝑡
− 𝑃

𝑑𝑉

𝑑𝑡
   (2.2) 

Where m is the mass of gas in the system, and cv is the specific heat at constant volume of 

the gas mixture at its current temperature. The temperature is the bulk temperature as 

defined by Eq. 1.2 while the pressure is the average gas pressure. The ideal gas equation 

of state (used for the bulk temperature) gives: 

 𝑚𝑅𝑇𝑔 = 𝑃𝑉 (2.3) 

Taking the derivative with respect to time while assuming that the amount of gas in the 

cylinder is constant, the ideal gas equation of state becomes: 

 
𝑚𝑅

𝑑𝑇𝑔

𝑑𝑡
= 𝑃

𝑑𝑉

𝑑𝑡
+ 𝑉

𝑑𝑃

𝑑𝑡
 (2.4) 

Upon substitution into Eq. 2.2 and using the relation 𝑐𝑝 = 𝑐𝑣 + 𝑅, the conservation of 

energy equation reads: 

 𝑑𝑄

𝑑𝑡
=

𝑐𝑝

𝑅
𝑃

𝑑𝑉

𝑑𝑡
+

𝑐𝑣

𝑅
𝑉

𝑑𝑃

𝑑𝑡
 (2.5) 

If there is no heat input to the system (via combustion or external heating), then the 

quantity dQ/dt represents the rate of heat loss from the gas. Using the chain rule, Eq. 2.5 

could be expressed as:  
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 𝑑𝑄

𝑑𝑡
=

𝑐𝑝

𝑅
𝑃

𝑑𝑉

𝑑𝑡
+

𝑐𝑣

𝑅
𝑉

𝑑𝑃

𝑑𝑉

𝑑𝑉

𝑑𝑡
 (2.6) 

In this expression, P,V, cp, and cv are known based on the thermodynamic state of the gas. 

The term 𝑑𝑉/𝑑𝑡 is the rate of change of volume, which for this geometry is the velocity 

of the piston times the cross sectional area. However, the rate of change in pressure with 

volume, 𝑑𝑃/𝑑𝑉, is unknown. To proceed with this analysis, some relationship between 

pressure and volume must be known or assumed. This is accomplished by assuming that 

the pressure and volume follow a polytropic relationship: 

 𝑃𝑉𝑛 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (2.7) 

This assumption has been found to represent many gaseous expansion processes well and 

was verified experimentally for the test conditions used here (see Chapter 3 and 4) 

(Zucker & Bilbarz, 2002) . There is also a physical significance to the exponent n.  An 

expansion at constant entropy (an isentropic expansion) has an exponent n equal to the 

specific heat ratio 𝛾 = 𝑐𝑝/𝑐𝑣  , so expansion at an exponent greater than γ indicates 

deviation from the isentropic, ideal expansion due to irreversibilities in the expansion 

such as heat loss. Conversely, an isothermal expansion is one where the exponent n is 

equal to unity, as indicated in Eq. 2.3 where if 𝑃𝑉 is constant, temperature must also be 

constant.  

Assuming a polytropic expansion, the pressure volume derivative is: 

 𝑑𝑃

𝑑𝑉
= −𝑛

𝑃

𝑉
 (2.8) 
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Substituting this expression into Eq. 2.6 and rearranging (as well as invoking the 

definition of γ as given above), the rate of heat loss from the gas becomes: 

 𝑑𝑄

𝑑𝑡
=  1 −

𝑛

𝛾
 
𝑐𝑃

𝑅
𝑃

𝑑𝑉

𝑑𝑡
  (2.9) 

Following standard thermodynamic sign convention, this quantity is negative for heat lost 

from the system. Changing convention to what is commonly used in heat transfer (heat 

lost is positive), the rate of total heat lost from the gas is given by the following equation. 

 𝑑𝑄

𝑑𝑡
=  

𝑛

𝛾
− 1 

𝑐𝑃

𝑅
𝑃

𝑑𝑉

𝑑𝑡
 (2.10) 

The assumptions made in deriving Eq. 2.10 are: 

 Spatially uniform temperature and pressure (bulk state) 

 Ideal gas 

 Constant mass (no leakage or inlets) 

 Polytropic expansion, determined by the exponent n 

 No heat input 

The assumption of no heat input is required in order for this result to be interpreted as 

heat loss, otherwise the above expression gives the “apparent” heat loss or gain 

(Heywood, 1988).  

Equation 2.10 is the basis for the proposed heat transfer model; however, it can be 

rearranged to provide more insight and utility. Recognizing that the time rate of volume 
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change is the piston velocity, 𝑣𝑝 , times its cross sectional area, and expressing the heat 

loss as a flux, the expression becomes 

 
𝑞 ′′ =  

𝑛

𝛾
− 1 

𝑐𝑝

𝑅

𝐴𝑐

𝐴𝑠
𝑃𝑣𝑝  (2.11) 

Where Ac is the piston cross sectional area and As is the total surface area for heat 

transfer. For the geometry given in Figure 2.1 these quantities are 𝐴𝑐 =  
𝜋

4
 𝐷2 and 

𝐴𝑠 = 𝜋𝐷𝑥 + 2𝐴𝑐 . Introducing the definition of the heat transfer coefficient given by 

Newton’s law of cooling,  𝑞 ′′ = 𝑕 𝑇𝑔 − 𝑇𝑤𝑎𝑙𝑙   , and again invoking the ideal gas 

equation of state to rewrite pressure gives Eq. 2.12: 

 
𝑕 =  

𝑛

𝛾
− 1  

𝐴𝑐

𝐴𝑠
  

𝑇𝑔

𝑇𝑔 − 𝑇𝑤𝑎𝑙𝑙
 𝜌𝑐𝑝𝑣𝑝  (2.12) 

The quantity 
𝑇𝑔

𝑇𝑔−𝑇𝑤𝑎𝑙𝑙
  is a non-dimensional temperature based on the driving temperature 

difference for heat transfer; this is defined as θ. This expression can be further non-

dimensionalized by introducing the Nusselt number, 𝑁𝑢𝐷 =
𝑕𝐷

𝜅
, the Reynolds number, 

𝑅𝑒𝐷 =
𝜌𝑣𝑝𝐷

𝜇
, and the Prandtl number, 𝑃𝑟 =

𝜇𝑐𝑝

𝜅
. Additionally, the term 𝐴𝑐/𝐴𝑠 can be 

rewritten for the geometry given in Figure 2.1 as 𝐴𝑐/𝐴𝑠 = 1/(2 + 4𝑥∗) , where 𝑥∗ is the 

piston position non-dimensionalized by the cylinder diameter, 𝑥∗ = 𝑥/𝐷. Given in this 

dimensionless form, the heat transfer during the expansion of a gas is equal to 

 
𝑁𝑢𝐷 =  

𝑛

𝛾
− 1  

1

2 + 4𝑥∗
 𝜃𝑅𝑒𝐷𝑃𝑟 (2.13) 



24 

 

 

The length scale for both Nusselt and Reynolds numbers is the cylinder diameter, D, 

while the velocity scale used in the Reynolds number is the instantaneous piston velocity, 

𝑣𝑝 . Since the derivation was based on the bulk gas temperature, properties such as 

thermal conductivity, viscosity, density, and specific heat must be evaluated at the bulk 

gas temperature (defined by the ideal gas equation of state).  This analysis was not 

restricted to any particular gas, so is valid for any gas species provided that the thermal 

properties are evaluated for the species at hand. However, the gas must behave ideally, 

which is true for many gases over a wide range of thermodynamic states (Moran & 

Shapiro, 2008). 

 

2.2 Alternate Expressions 

The non-dimensional parameters in Eq. 2.13 could be expressed differently, and 

exploring these alternate expressions is helpful in understanding the underlying processes 

driving heat transfer. The product of the Reynolds number and Prandtl number is the 

Peclet number, 𝑃𝑒 =
𝑣𝑝𝐷

𝛼
, which expresses the ratio of the advection (bulk fluid motion) 

rate to conduction (molecular motion) heat transfer rate:  

 
𝑁𝑢𝐷 =  

𝑛

𝛾
− 1  

1

2 + 4𝑥∗
 𝜃𝑃𝑒𝐷 (2.14) 

The expression of the heat transfer model in Eq. 2.14 emphasizes the direct relationship 

between the Nusselt and Peclet numbers for the expansion process. Since the Nusselt 

number represents the rate of convection to conduction heat transfer, what is seen is that 
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heat loss via convection is directly proportional to the strength of bulk fluid motion. The 

proportionality between these two is governed by the position along the expansion, the 

temperature of both the fluid and the wall, and the polytropic term which represents the 

deviation of the expansion from the isentropic ideal.  

The Nusselt, Reynolds, and Prandtl numbers could also be combined to form the 

Stanton number: 

 
𝑆𝑡 =

𝑁𝑢

𝑅𝑒𝑃𝑟
=

𝑕

𝜌𝑐𝑝𝑣𝑝
 (2.15) 

As can be seen by its definition, the Stanton number represents the ratio of heat transfer 

by convection to the thermal energy storage of the fluid. Using this, Eq. 2.13 becomes 

 
𝑆𝑡 =  

𝑛

𝛾
− 1  

1

2 + 4𝑥∗
 𝜃 (2.16) 

This expression of the heat transfer model combines the information contained in 

Reynolds, Prandtl, and Nusselt numbers into one quantity. The ratio 𝑛/𝛾 is roughly 

constant for the expansion, and since both 1/𝑥∗ and 𝜃 decrease monotonically during the 

expansion the Stanton number will also decay monotonically. In this form, the transient 

nature of the heat transfer characteristics is shown to be strongly dependent on the 

dimensionless position, 𝑥∗. It is noted that upon examining the expression for the heat 

transfer coefficient, Eq. 2.12, that the Stanton number emerges as the simplest non-

dimensional form for the heat transfer coefficient. 
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These alternate expressions of the heat transfer model are useful in understanding 

the implications of the proposed model. Many other researchers have chosen to represent 

their results using the Nusselt, Reynolds, and Prandtl numbers, so the original form given 

in Eq. 2.13 is used frequently in order to draw comparisons between the proposed model 

and other models. However, as will be seen later, describing the heat transfer using the 

Peclet number as shown in Eq. 2.14 may be the most appropriate dimensionless form for 

understanding and modeling the expansion process because of the significance of the 

Peclet number to modeling the polytropic exponent.  

  

2.3 Model Discussion 

The expression in Eq. 2.13 relates the heat transfer characteristics to the physical 

characteristics of the expansion process in a dimensionless manner. No pseudo-steady 

state assumptions were made in the derivation, so the expression given is by nature fully 

transient, which was the objective. Because spatial non-uniformities were not considered 

in the analysis, the development of this model did not explicitly invoke the use of the 

boundary layer or developing flow phenomena. While this means that spatial information 

concerning the heat transfer is not expressed, this is not at the loss of transient accuracy 

since the other parameters represent these transient effects in the process. 

By expressing the result in a dimensionless form the governing physical processes 

are illuminated, and the result can be compared with the results from other studies. Two 

important parameters in the heat transfer model are the Reynolds number, and the Prandtl 
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number. These dimensionless parameters are of importance in many heat transfer 

applications because they encapsulate much of the necessary information about the flow 

conditions (Incropera et al., 2007). The Reynolds number for the expansion contains 

information on the magnitude of inertial forces for this expansion compared to viscous 

forces. The Prandtl number is a combination of thermophysical fluid properties that 

compares the ratio of momentum diffusion to heat diffusion. The proposed form of the 

heat transfer model, Equation 2.13, suggests that the exponents on the Reynolds and 

Prandtl numbers for this process should each be unity. The common pseudo-steady state 

form which has been used to model the expansion process uses an exponent of 0.7 or 0.8 

on the Reynolds number (Annand, 1963; Woschni, 1967; Hohenburg, 1980; Chang et al., 

2004). This pseudo-steady state form comes from the Colburn equation for turbulent flow 

in tubes: 

 𝑁𝑢𝐷 = 0.023𝑅𝑒𝐷
4/5𝑃𝑟1/3 (2.17) 

This equation comes from a more general statement of similarity between fluid 

flow and heat transfer. This similarity stems from the processes of heat diffusion and 

fluid shear stress being identical, both representing the transport of a property (energy or 

momentum, respectively) across a spatial gradient of either temperature or velocity, 

respectively.  When formulated mathematically by the energy equation and the Navier-

Stokes equation, it can be shown that the governing equations and boundary conditions 

for heat and momentum transport in boundary layer flow have the same form; therefore 

the solutions to these equations must also be related (Incropera et al., 2007). This forms a 
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basis for relating the shear stress in a fluid to the heat flux. The Colburn analogy (or 

modified Reynolds analogy) relates the two processes for fully developed flow in tubes 

by the non-dimensional parameters governing each situation: 

 
𝑁𝑢 =  

𝑓

8
 𝑅𝑒𝑃𝑟1/3 (2.18) 

The analogy of Eq. 2.18 has proved to be very useful and accurate in predicting heat 

transfer for flows such as pipe flow, even when the flows are turbulent. This analogy is 

also at the heart of the pseudo-steady state models discussed in Chapter 1. In pipe flows, 

the Darcy friction factor, f, is often replaced by a function of the Reynolds number, 

𝑓 ∝ 𝑅𝑒−0.2. This is gives the power of 0.8 on the Reynolds number used by many 

pseudo-steady models.  

However, while fluid flow and heat transfer are undoubtedly related during an 

expansion process, Eq. 2.18 is not strictly applicable for the expansion process. This is 

because the assumptions in the Colburn analogy leading to Eq. 2.18 include assumptions 

invalid for the expansion process, such as steady flow and constant thermal properties. 

These assumptions are not valid for the expansion process currently studied, so the direct 

application of Eq. 2.18 is not valid. Therefore, from a fundamental perspective, the 

difference between the exponent on the Reynolds number for the model proposed by Eq. 

2.13 and the exponent used in pseudo-steady state models results from how similarity 

between the flow and the heat transfer is imposed. While the processes of momentum and 

energy transport are undoubtedly still connected due to their inherent natures, the 
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relationship between the two is not governed by the simple Colburn analogy in Eq. 2.18 

for the process of gas expansion.  

The heat transfer expression given in Eq. 2.13 also contains information on both 

the expansion distance and the gas to wall temperature difference. The term 1/(2 +

4𝑥∗) comes from the ratio of cross sectional area to total surface area; however, it 

resembles the entry length correction often used for turbulent flow in tubes (Eq. 1.9). It 

similarly functions to enhance heat transfer near the inlet or beginning of expansion. The 

non-dimensional temperature term is 𝜃 = 𝑇𝑔/(𝑇𝑔 − 𝑇𝑤𝑎𝑙𝑙 ); this bears some resemblance 

to the correction factor often used to model flows with large gas to wall temperature 

differences (Eq. 1.8). However, the term shown above tends towards unity for large 

temperature differences, while the factor used in Eq. 1.8 serves to enhance heat transfer 

for large temperature differences. Since the factor used in Eq. 1.8 is used to model flow 

in tubes, this seems to be another difference between heat transfer during an expansion 

process and in pipe flow.  

The Reynolds number, Prandtl number, and the non-dimensional temperature and 

distance quantities in Eq. 2.13 are known from the thermodynamic state of the gas and 

the geometric considerations of the piston-cylinder assembly. What is unknown is the 

term n, which is the polytropic exponent governing the expansion process, as defined in 

Eq. 2.8. If this parameter is equal to the specific heat ratio γ, the Nusselt number 

calculated by Eq. 2.13 goes to zero. This is in agreement with an adiabatic and reversible 

expansion, which by definition has no heat loss and has the pressure-volume relationship 
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given by 𝑛 = 𝛾 (Moran & Shapiro, 2008). What remains to complete the development of 

the heat transfer model is a method for predicting the value of n.  

 

2.4 Flow Considerations 

Before investigating methods of determining the polytropic exponent n, it is 

important to discuss more of the differences between an expansion process and a flow. 

The term “flow” describes continuous bulk motion of a fluid, driven most commonly by 

spatial pressure gradients or gravitational forces. An expansion process is not a flow, but 

describes a fixed mass of fluid whose volume increases due to a pressure differential 

between the contained fluid and ambient conditions. While this has characteristics 

certainly similar to some flows, the processes are not identical.  

In order to examine the flow characteristics of the expansion, an analysis is done 

comparing flow in tubes with an expansion by way of their characteristic fluid velocities. 

From the geometric arrangement examined here, the expansion process seems to 

resemble flow in a tube. For flow in tubes, the characteristic velocity can be defined as 

the spatial average velocity needed to achieve the given flow rate (Incropera et al., 2007): 

 
𝑢𝑚 =

𝑚 

𝜌𝐴𝑐
 (2.19) 

For a piston-cylinder expansion, an obvious choice for the characteristic velocity 

would be the piston velocity. However, this velocity is not a uniform fluid velocity. 

Simply by imposing a no-slip boundary condition on the walls, one can infer that the 
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fluid velocity at the piston face in Figure 2.1 would equal the piston speed, while the fluid 

velocity at the opposite end of the chamber (𝑥 = 0) would remain zero for the duration of 

the expansion. An estimate of the fluid velocity distribution between these points can be 

made by using the differential form of the continuity equation: 

 𝐷𝜌

𝐷𝑡
+ 𝜌

𝜕𝑢

𝜕𝑥
+ 𝜌

𝜕𝑣

𝜕𝑦
= 0 (2.20) 

This can be simplified by restricting the analysis to along the centerline and assuming 

symmetry, which eliminates the gradients in y. Under the assumptions of uniform 

pressure and temperature (as used in developing the heat transfer model), spatial 

variations in density may also be neglected. These assumptions lead to a linear velocity 

distribution (see Appendix B): 

 𝑢 =
𝑣𝑝

𝐿
𝑥 

(2.21) 

While these assumptions may be too restrictive for a detailed model of the 

velocity distribution, this analysis gives a rough idea of what the gas velocities within the 

cylinder are. Assuming the velocity distribution of Eq. 2.21, the maximum gas velocity is 

the piston speed while the average gas velocity is half of the piston speed. This justifies 

the velocity scale used in the Reynolds number for the previous analysis (the piston 

speed), since this is the quantity that characterizes the fluid velocity within the cylinder. 

If it was desired to use an average gas velocity in modeling the expansion process, simply 

half the piston speed could be used. Since this would result in an extra factor of two in 

the model shown by Eq. 2.13, the current study leaves the characteristic velocity as the 
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piston speed. The presence of this axial velocity gradient by Eq. 2.21 illustrates one of the 

differences between the expansion process and steady flow in tubes, which has uniform 

velocity in the axial direction (assuming a constant cross sectional area).  

 

2.5 Polytropic Exponent 

The heat transfer model developed for the expansion process and shown by Eq. 

2.13 includes the parameter n, the polytropic exponent. This parameter is not known a 

priori for an expansion process. Therefore, in order for the heat transfer model to be 

useful in predicting heat transfer, this unknown parameter must be related to other, 

known parameters concerning the expansion process.  

The analysis of the expansion process conducted thus far has shown the 

importance of transient characteristics of the expansion on heat transfer. This will also be 

seen in Ch. 4 when the results from the proposed heat transfer model are compared with 

experimental data. Also seen in this analysis is the importance of the polytropic exponent, 

n, in characterizing the expansion process, as this parameter governs the pressure decay 

with volume during expansion. Since the expansion process is inherently transient, it is 

reasonable to suggest that n is related to the transient nature of the process and could be 

characterized by some time or rate scale associated with the expansion.  

Examining the limiting cases of long and short expansion time scales provides 

evidence that the polytropic exponent is indeed related to the time scale associated with 
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the expansion process. As the expansion process becomes very slow (a long expansion 

time scale), the rate of change of pressure with volume, 𝑑𝑃/𝑑𝑉, becomes large as 

pressure decreases due to heat transfer while the volume changes very little. In the limit 

of an isochoric (constant volume) process, the polytropic exponent approaches infinity 

(Zucker & Bilbarz, 2002). In the other limit, as the expansion process becomes very fast 

the process becomes nearly adiabatic, as the time for heat transfer to occur becomes 

negligibly small. This limit suggests that 𝑛 → 𝛾, as this would cause the heat transfer by 

Eq. 2.10 to approach zero. Thus, by examining the limiting cases, it can be seen that the 

polytropic exponent is affected by the expansion rate. Examining the time scales 

associated with the expansion process can then provide a basis for a functional form used 

to determine the polytropic exponent. 

One way to characterize the time associated with the expansion process is by 

comparing the expansion rate with the rate at which heat can diffuse through the cylinder 

gases. This results in the Peclet number, which can also be viewed as a combination of 

the Reynolds and Prandtl numbers for the expansion process: 

 𝑣𝑝𝐷

𝛼
= 𝑃𝑒 = 𝑅𝑒𝑃𝑟 (2.22) 

The Peclet number shown in Eq. 2.22 is an instantaneous value, since both the piston 

speed, 𝑣𝑝 , and the thermal diffusivity, α, change during the expansion. Since the 

polytropic exponent, n, is a constant value for an expansion, the parameter used to 

characterize it should also be a constant value which describes the expansion. A 
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characteristic Peclet number describing the expansion process can be obtained by using 

the mean piston speed, 𝑆𝑝 , as the characteristic expansion velocity. This results in the 

following definition of the characteristic Peclet number for the expansion process: 

 
𝑃𝑒∗ =

𝑆𝑝𝐷

𝛼0
 (2.23) 

Where 𝛼0 is the thermal diffusivity of the gas, taken at the initial conditions of the 

expansion so that it is a known quantity. Comparing the expansion speed with the heat 

diffusion speed effectively references the magnitude of the expansion time to the time 

required for heat to diffuse through the gas. Therefore, it is proposed that the polytropic 

exponent can be determined as a function of the characteristic Peclet number for the 

expansion: 

 𝑛 = 𝑓(𝑃𝑒∗) (2.24) 

Describing the polytropic exponent with the characteristic Peclet number 

emphasizes the ratio between the time scale associated with heat diffusion and with the 

expansion. The importance of the Peclet number in determining the polytropic exponent 

suggests that the most appropriate non-dimensional form of the overall heat transfer 

model is the form given by Eq. 2.14 (reproduced below as Eq. 2.25): 

 
𝑁𝑢 =  

𝑛

𝛾
− 1  

1

2 + 4𝑥∗
 𝜃𝑃𝑒𝐷 (2.25) 

The Peclet number used in Eq. 2.25 is the instantaneous value based on the time-

dependent piston velocity and thermal diffusivity (Eq. 2.22), as opposed to the constant 
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value used in Eq. 2.23 to model the polytropic exponent. Because of the importance of 

the Peclet number to describing the polytropic exponent, Eq. 2.25 is suggested as the 

most appropriate form of the proposed heat transfer model. 

In characterizing the time associated with the expansion process, the expansion 

rate could also be compared with other rates relevant to the expansion process. Another 

rate relevant to the expansion process is the acoustic velocity, which describes the speed 

at which pressure waves can propagate through the gas mixture. For an ideal gas, the 

acoustic velocity can be calculated as: 

 𝑐 =  𝛾𝑅𝑇 (2.26) 

From Eq. 2.26, it is seen that the acoustic velocity is a state variable; therefore, using this 

is also a means of comparing the expansion process with the thermodynamic state of the 

gas mixture. Comparing the expansion speed to the acoustic velocity gives the following 

definition for a parameter describing the characteristic time scale of the expansion: 

 
𝑆𝑃

∗ =
𝑆𝑃

 𝛾0𝑅𝑇0

 (2.27) 

Where 𝑆𝑃
∗ is a dimensionless mean piston speed. Since both 𝛾 and T change during the 

expansion, their values are taken at the initial conditions so that they are known at the 

beginning of the expansion. Eq. 2.27 emphasizes the importance of the mean piston speed 

and the thermodynamic state of the gas on characterizing the expansion process, and 

leads to the following functional form for the polytropic exponent: 



36 

 

 

 𝑛 = 𝑔 𝑆𝑝
∗  (2.28) 

  In order to determine the functional relationships, f and g in Eq. 2.24 and Eq. 

2.28, experiments were conducted. The results of these experiments also produced heat 

transfer data for the expansion, which were used to test the accuracy of the proposed 

model for heat transfer, Eq. 2.25. The experimental methodology used to conduct these 

tests is discussed next in Ch. 3, and the results are presented in Ch.4.   
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Chapter 3 – Experimental Methodology 

3.1 Make this white 

Experiments were performed in order to test the analytic model developed for 

heat transfer during the expansion of a gas. As shown in Ch. 2, the polytropic exponent is 

related to the characteristic time scales associated with the expansion process, such as the 

characteristic Peclet number and a dimensionless form of the mean piston speed. The 

exact forms of these relationships, however, are not known. Therefore, one purpose of the 

experiments is to establish the relationship between the polytropic exponent and both the 

characteristic Peclet number and the mean piston speed. It is also necessary to test the 

overall accuracy of the analytic model developed for heat transfer during the expansion 

of a gas. This is done by experimentally determining the heat transfer coefficient and 

comparing this result to the value predicted by the model. The spatial variance of the heat 

transfer coefficient is not considered, but its time evolution is to be determined. In order 

to determine the heat transfer coefficient, as defined by Newton’s law of cooling (Eq. 

1.1), the total heat flux from the gas to the wall and the bulk gas temperature (as defined 

by Eq. 1.2) is required. The bulk gas temperature is determined by measuring the average 

pressure and the cylinder volume, relating these to temperature using the ideal gas 

equation of state, Eq. 1.2. Heat flux is determined by an energy balance, again relying on 

the measured pressure and volume.  

The experimental test facility, built in 2009, used a single shot, single piston-

cylinder assembly, located at the laboratory of Long Haul Power, LLC, in Corvallis, OR.  
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This apparatus allows for recording pressure, volume, and time data for a single 

expansion event. In order to evaluate the applicability of the heat transfer expression, 

tests conditions were varied to produce a range of conditions on the expansion. In 

particular, test conditions were controlled in order to produce a range of Reynolds 

numbers. This was done because it will allow characterizing the polytropic exponent over 

a range of Peclet numbers and piston speeds. An uncertainty analysis was conducted in 

order to ascertain the level of confidence in the final results.  

 

3.1 Experimental Setup 

The experimental setup was used to extract necessary information to evaluate the 

heat transfer that occurs during the expansion of a gas. Prior to its expansion however, 

the gas mixture undergoes a combustion reaction. Understanding and investigating the 

energy release via combustion and the heat transfer associated with this reaction are not 

topics of this present research. Instead, the combustion reaction is used primarily to 

generate the initial conditions needed for the expansion, which are high pressures to drive 

the expansion and high temperatures to drive heat transfer from the gas to the cylinder 

walls and piston head. The data of interest to this study begins after combustion, once the 

piston starts expanding.  

An experimental test facility had been constructed at Long Haul Power, LLC for 

other experimental purposes but was found to be suitable for the current study. A 
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schematic of the test apparatus is shown below in Figure 3.1; photographs of the facility 

are included in Appendix C.  

 

 

Figure 3.1 – Schematic of experimental apparatus used to conduct tests 

 

This test apparatus is a single piston-cylinder assembly, which is used for a single 

expansion event (it does not reciprocate). An initial fill chamber is attached to one end of 

the assembly, and forms a seal with the piston and cylinder. The cylinder diameter is 4 

inches. The piston is initially held in place by one to three retaining bolts (depending on 

the test requirements), as shown in Figure 3.1. To operate, the initial fill chamber is filled 

with a mixture of air and hydrogen. Air is added first, controlled by a needle valve until 

the desired initial air pressure is reached. Hydrogen is then added, similarly controlled by 
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a needle valve, until the desired mixture composition is reached. The final mixture 

composition can be described using the mole fraction, 𝜒, of each species, which can be 

determined by the partial pressure of each gas as the chamber is filled: 

𝜒𝑎𝑖𝑟 =
𝑃𝑎𝑖𝑟

𝑃𝑇
;     𝜒𝐻2

=
𝑃𝐻2

𝑃𝑇
 

The air pressure, 𝑃𝑎𝑖𝑟 , was known from the initial air fill pressure since air was 

the first species added. The hydrogen pressure, 𝑃𝐻2
, was the difference between the total 

pressure in the system after both hydrogen and air had been added, and the initial air 

pressure. The total pressure of the mixture is PT. This mixture is then ignited by spark-

plug type electrodes located the initial fill chamber. The piston is held immobile while 

the mixture undergoes a combustion reaction by the retaining bolt(s) holding it in place, 

and the pressure in the initial fill chamber rises very rapidly. Once the pressure reaches a 

certain value, the bolt(s) shear, allowing the piston to accelerate rapidly. As the piston 

expands, some of the energy in the gas is lost as heat while the rest goes into expansion 

work. This work is dissipated by the raising of a weight (not shown). The expansion that 

occurs immediately following the shearing of the bolts is the expansion of interest for 

these tests. 

The initial air pressure and the initial mixture pressure (prior to ignition) was 

recorded by an Omega model PX309 piezo-resistant type pressure transducer (shown in 

Figure 3.1 as Pres). In order to record the rapid pressure rise during combustion and the 

subsequent rapid pressure drop during expansion, two piezoelectric pressure transducers, 
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by PCB Piezotronics model 102B04 (shown in Figure 3.1 as Pe1 and Pe2), were used. 

Piston position was known from the cable-extension position transducer, Celesco model 

PT5A. The output from these sensors was read by a LabVIEW controlled data acquisition 

system. The block diagram and the front panel of this system are shown in Appendix C. 

Data were sampled and recorded at a rate of 25,000 Hz in order to capture the expansion 

event in detail, as the expansion process was very rapid, lasting less than 50ms. The 

experimental setup and data acquisition system were built and assembled by Long Haul 

Power prior to this author’s involvement. 

 

3.2 Data Reduction 

The output from the piston-cylinder assembly used for these experiments was 

pressure, position, and time data. Position data was a voltage output from the position 

transducer directly proportional to the piston displacement. The calibration to convert 

voltage to position for this was performed in situ (see Appendix D). Since the geometry 

was a right cylinder, the volume was determined from 𝑉 =
𝜋

4
𝐷2𝑥, where x is the piston 

position and D is the cylinder diameter.  

The polytropic exponent of the expansion process is determined by the pressure-

volume relationship: 

 𝑃𝑉𝑛 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (3.1) 

This can be rewritten in a linear fashion using logarithms as: 
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 log 𝑃 = −𝑛 log 𝑉 + log 𝐶  (3.2) 

The value of n was determined using a least squares fit of pressure versus volume data 

based on Eq. 3.2. The polytropic exponent is the slope of this line. 

The pressure-volume data was also used to obtain the heat transfer coefficient for 

the expansion process. This was done by means of a global energy balance. The analysis 

used to determine this begins identically as the global energy balance used to analyze this 

process in Ch. 2, and has been used by other researchers to obtain time-dependent heat 

transfer information (Chen & Karim, 1998; Ota, 2008). 

Using the same terminology as in Figure 2.1, a global energy balance of the gas 

within the cylinder can be written as: 

 𝑑𝑈 = 𝑑𝑄 − 𝑑𝑊 (3.3) 

By assuming that the gas behaves ideally, this can be rewritten in terms of solely pressure 

and volume (see Eqns. 2.1-2.4 for this derivation), and rearranged to give:  

 𝑑𝑄 =
𝑐𝑝

𝑅
𝑃𝑑𝑉 +

𝑐𝑣

𝑅
𝑉𝑑𝑃 (3.4) 

In Eq. 3.4, dQ represents a differential amount of heat lost from the gas. To obtain the 

total, accumulated heat lost as a function of time, this expression is integrated from the 

start (t0) to the time of interest: 

 
𝑄(𝑡) =  

𝑐𝑝

𝑅
𝑃𝑑𝑉

𝑉(𝑡)

𝑉(𝑡0)

+  
𝑐𝑣

𝑅
𝑉𝑑𝑃

𝑃(𝑡)

𝑃 𝑡0 

 (3.5) 
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Pressure and volume were measured directly, and the specific heats were calculated 

based on the bulk temperature determined through the ideal gas equation of state. The 

quantity Q(t) was obtained from the experimental data by numerically evaluating the 

integrals in Eq. 3.5.  

The key assumptions necessary to use this method to experimentally determine 

the heat transfer coefficient are that the gas follows the ideal gas equation of state, that 

the mass in the cylinder is constant, and that there is no heat input/combustion during the 

expansion. The assumption of no heat input is necessary so that the quantity calculated in 

Eq. 3.5 is the heat loss, rather than a net heat transfer (heat loss minus heat input). As was 

previously described, the high pressures and temperatures needed at the beginning of the 

expansion were obtained by burning hydrogen with air (forming water vapor and 

nitrogen) in a constant volume vessel. Therefore, the assumption of no combustion during 

the expansion was also necessary in order to determine the gas composition, which was 

calculated assuming complete combustion. Because of the importance of this assumption 

to the data reduction, constant volume (“bomb”) tests were conducted to justify 

combustion completeness. To do this, the piston was restrained with additional retaining 

bolts so that it could not move. Combustion time was then determined, defined as the 

time from the beginning of pressure rise to the peak pressure. This information was then 

used to determine whether it was justified in assuming that the reaction had completed by 

the time expansion began. Combustion times typically lasted around 2ms. By defining the 

start of expansion by a 1% volume increase, sufficient time was allowed for combustion 
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to complete prior to expansion. This is discussed further in Chapter 4 when the 

experimental data is presented and discussed.  

In order to obtain the desired heat transfer coefficient the rate of heat loss is 

necessary. This was done simply by evaluating the time derivative of Eq. 3.5,              

𝑞 = 𝑑𝑄/𝑑𝑡  . Using the definition of bulk temperature given in Eq. 1.2, the heat transfer 

coefficient was calculated using Newton’s law of cooling as: 

 
𝑕 =

𝑞 

𝐴𝑠 𝑇𝑔 − 𝑇𝑤𝑎𝑙𝑙  
  (3.6) 

Surface area As includes the cylinder wall and piston face and was calculated as         

𝐴𝑠 = 𝜋𝐷𝑥 + 2 0.25𝜋𝐷2 , given the geometry shown in Figure 2.1. The wall temperature 

used in Eq. 3.6 was assumed to be constant and uniform wall temperature. This was 

justified by a transient conduction analysis assuming that the cylinder walls and piston 

face could be modeled as a semi-infinite solid. This analysis imposes a step change in 

heat transfer coefficient and then holds both the gas temperature and the heat transfer 

coefficient constant, and the time response of the wall temperature was determined. In 

reality the temperature and the heat transfer coefficient are not constant, consequently 

this analysis provides a worst case scenario. The results of this analysis show that for the 

small time durations seen in this expansion process the semi-infinite approximation is 

valid and the wall temperature is very nearly constant, with a maximum increase of 3% 

from the initial wall temperature. This increase in wall temperature would change the gas 

to wall temperature difference by a maximum of 2.25%. Since this is a small change and 
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represents an over-statement of the wall temperature rise (due to being a worst-case 

scenario analysis), the assumption of constant and uniform wall temperature is justified. 

Details of the conduction analysis are included in Appendix E. The experimentally 

determined heat transfer coefficient calculated using Eq. 3.6 is a spatially averaged value, 

as the temperature used for the gas is the bulk temperature, the expression for the heat 

loss rate is for the entire gas volume, and the heat transfer occurs over the entire exposed 

wall surface area. 

Since this research is focused solely on the heat transfer while the gas expands, a 

method of uniquely and consistently defining the beginning of expansion was necessary. 

Additionally, it was required that this point be sufficiently past the ignition point such 

that combustion was completed by the beginning of expansion. This was done by 

defining the beginning of expansion as the point where the cylinder volume has increased 

by 1% from its original volume. The time associated with this amount of expansion was 

then compared to the combustion time measured in the bomb. The cutoff value chosen 

could be arbitrary, but it was desirable to have this as small as possible so that 

information on the early expansion period was not lost, and necessary for this value to 

consistently represent a time that is beyond the combustion time. The value of 1% 

increase from the original volume was selected because it ensured enough time had 

elapsed for combustion to be complete without sacrificing very much information on the 

expansion heat transfer. This is further discussed in the Ch.4 . 
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Other parameters concerning the expansion are also of interest, and can be 

calculated from the experimental data. The bulk gas temperature used in Eq. 3.6 was 

calculated using the ideal gas equation of state: 

 
𝑇𝑔 =

𝑃𝑉

𝑚𝑅
 (3.7) 

In this expression, P is the measured gas pressure, V is the measured cylinder volume, R 

is the gas constant for the mixture, and m is the mass of the gas. The quantity m was 

known similarly from the ideal gas equation of state, applied at the initial fill conditions 

where the gas temperature was assumed to be ambient temperature.  

 
𝑚 =

𝑃𝑇𝑉𝑖

𝑅𝑇𝑎𝑚𝑏
 (3.8) 

This mass is constant (no inlet or exits), so the density throughout the expansion is 

calculated using its definition: 

 𝜌 =
𝑚

𝑉
 (3.9) 

Finally, the piston speed was calculated from the time derivative of volume (this was 

approximated numerically with a five-point finite difference): 

 
𝑣𝑝 =

1

𝐴𝑐

𝑑𝑉

𝑑𝑡
 (3.10) 
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3.3 Test Conditions 

In order to test the validity of the heat transfer model developed, it was necessary 

to test over a range of parameters. Based on the form of Eq. 2.13, the main parameters of 

interest to vary are the Reynolds number (which could be varied by varying density or 

piston speed), gas temperature, and the gas composition (which affects the Prandtl 

number and specific heat ratio). Variations in the Reynolds and Prandtl numbers will also 

produce variations in the Peclet number, which is also desired to characterize the 

polytropic exponent. The two main parameters which could be varied in the described 

experimental apparatus are the initial fill pressure, and the mixture composition (via the 

equivalence ratio, discussed below).  

Changing the initial fill pressure while maintaining a constant equivalence ratio 

changes the peak pressures (and therefore piston speed) and gas densities attained during 

the expansion. Increasing the fill pressure increases both the piston speed and the density, 

thereby increasing the Reynolds number during the expansion process. By varying the fill 

pressure, a range of Reynolds numbers experienced during the expansion process could 

be obtained. Changing the initial fill pressure would have little effect on the subsequent 

peak bulk gas temperatures, since the energy released per mass is governed by the 

mixture composition, which is constant.  

The mixture composition of hydrogen and air is best understood through use of 

the equivalence ratio, ϕ, which compares the amount of hydrogen mass inputted to the 

amount needed for complete combustion with no excess fuel or oxidant (stoichiometric 
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combustion). An equivalence ratio of one is combustion with no excess oxygen or fuel, as 

seen by the following:  

 
𝐻2 +

0.5

0.21 ∗ 𝜙
  0.21𝑂2 + 0.79𝑁2 → 𝐻2𝑂 +

1.88

𝜙
𝑁2 + 0.5 ∗  

1

𝜙
− 1 𝑂2 (3.11) 

By making changes to the equivalence ratio, the product gas composition is 

varied. Equivalence ratios less than one result in oxygen remaining in the exhaust, while 

equivalence ratios greater than one lead to unburned hydrogen or the presence of other 

species in the exhaust. Since energy is released via the combustion reaction, changing the 

equivalence ratio changes the amount of energy released into the system. This affects the 

temperatures and pressures attained at the beginning of the expansion, causing changes in 

the Reynolds number and temperatures experienced during the expansion, as well as 

affecting the gas composition. 

One purpose of these experiments was to establish the relationship between the 

polytropic exponent and the characteristic Peclet number, and the relationship between 

the polytropic exponent and the mean piston speed, as proposed in Ch. 2. Variation in 

both of these parameters can be achieved by conducting the experiments over a range of 

Reynolds numbers. This was accomplished by changing the initial fill pressure while 

holding the equivalence ratio constant. While changing the equivalence ratio also changes 

the Reynolds number during the expansion, it also affects the gas temperature and 

composition, while changing fill pressure has very little effect on gas temperature and no 

effect on gas composition. Therefore by keeping the equivalence ratio constant and 
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increasing the fill pressure, the effect of increased Reynolds number could be isolated. 

The test cases conducted are shown in Table 3.1. Each test consisted of a single 

combustion and expansion event. In order to reduce the uncertainties associated with 

these experiments, multiple tests were conducted for each test condition, as listed in 

Table 3.1. 

Table 3.1 – Test Conditions 

Test Case  

Air Fill 

Pressure (psia) 

Equivalence 

Ratio (ϕ) 

Number 

of Tests 

Case A 14.7 1 7 

Case B 20.0 1 6 

Case C 27.4 1 6 

Case D 34.7 1 6 

Case E 44.7 1 9 

 

The test cases listed in Table 3.1 provided for a wide range of Reynolds numbers 

to be tested, with mean Reynolds numbers ranging from 2400-12,200. Some tests were 

conducted at higher pressures than listed in an attempt to extend the test boundaries. It 

was found however that tests at higher fill pressures could not be conducted confidently 

because of leaks in the initial fill chamber. The amount of gas present in the cylinder 

during expansion was determined using Eq. 3.8. In order for this to be valid, the filling 

process must be slow to allow for the gas to come to an equilibrium temperature. This 

was incompatible with the higher leak rates present at fill pressures greater than those 

listed in Table 3.1, so these tests were not considered.  
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Each operating condition for the tests was repeated 6-9 times, as listed in Table 

3.1. The results of these individual runs were then combined to form a single 

representative data set for that operating condition. While processing the data, it was 

found that the method outlined in Eqns. 3.3-3.6 required that the data be smooth. 

Therefore the representative data set for each operating condition was determined by 

fitting a smooth curve through the combination of all data sets for that operating 

condition. This was done using least-squares regression models. Details concerning this 

procedure are given in Appendix F. 

 

3.4 Uncertainty Analysis 

An uncertainty analysis was conducted in order to make an estimate of the 

uncertainties in the overall results. Bias errors for each instrument were taken from the 

manufacturer’s specifications or from calibration, as given in Table 3.2. The piezoelectric 

sensors used for cylinder pressure during the combustion of the gas and the piston 

expansion had a calibration certificate from the manufacturer, Piezotronics, and 

calibration for the position transducer was performed in situ by the author (see Appendix 

D). Precision errors were calculated using the sample standard deviation between all the 

tests conducted for each test case and assuming 95% confidence. These precision errors 

were found to vary from test to test, as well as during the expansion; the values used were 

mean values of these precision errors for each test condition. The bias and precision 
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errors were then combined in a root-sum-square manner to produce the total uncertainty 

in measured parameters. This is shown in Table 3.3.  

 

Table 3.2 – Instrument Uncertainties 

Parameter Instrument Manufacturer Model # 

Nominal 

Value 

Bias 

Error 

Cylinder 

Diameter Calipers Mitutoyo 

CD-

6”CSX 4 in. 0.0005 in. 

Piston 

Position 

Cable-

Extension 

Position 

Transducer Celesco PT5A 1.5 -12 in. 0.051 in.  

Fill Pressure 

Piezo-

Resistant 

Transducer Omega PX309 

27.4-91.9 

psia  0.55 psia  

Cylinder 

Pressure 

Piezo-

Electric 

Transducer Piezotronics 102B04 varies  

1.3 % of 

reading  

Ambient 

Temperature Thermometer Honeywell 

FocusPRO 

5000 286-289 K  0.28 K  

 

Table 3.3 – Uncertainty in Measured Variables 

Test 

Case Diameter 

Initial 

Volume 

Initial Fill 

Pressure 

Ambient 

Temperature Pressure Volume 

Case A 0.58% 6.09% 2.88% 1.39% 5.71% 3.84% 

Case B 0.58% 6.06% 2.09% 0.26% 8.99% 6.70% 

Case C 0.58% 6.40% 1.65% 0.10% 10.92% 8.85% 

Case D 0.58% 5.35% 1.29% 1.09% 5.56% 4.59% 

Case E 0.58% 3.64% 1.07% 0.54% 16.07% 13.32% 

 

It was found that the precision errors were much larger than the bias errors of the 

instruments, especially for the cylinder pressure and volume. Thus, while the 

uncertainties listed in Table 3.3 are total (bias and precision) uncertainties, it is 
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dominated by the precision uncertainties. The breakdown between bias and precision 

uncertainties is shown in Appendix G.  

The polytropic exponent is a measure of the non-dimensional pressure gradient 

during an expansion. This was calculated for each individual expansion test using the 

method shown in Eq. 3.1 and 3.2. For each test case, the uncertainty in the polytropic 

exponent was calculated from the deviation of the polytropic exponent between 

individual expansion tests, assuming 95% confidence, combined with uncertainties from 

instrument errors (which were relatively small). The uncertainty in the polytropic 

exponent ranged from 4%-10%, as shown in Table 3.4.  

Table 3.4 – Polytropic Exponent 

Test 

Case 

Polytropic 

Exponent Uncertainty 

Case A 1.71 7.26% 

Case B 1.52 3.59% 

Case C 1.36 4.72% 

Case D 1.36 6.27% 

Case E 1.32 10.84% 

 

Uncertainties were also estimated for other calculated parameters of interest. In 

particular, these were the gas temperature and density, piston speed, the heat transfer 

coefficient, and the dimensionless numbers characterizing the process. The total 

uncertainties in these calculated parameters were determined by the Kline and 

McClintock method. This method propagates the uncertainty in a measured parameter, ux, 

to the uncertainty in a calculated parameter, uy, as follows: 
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𝑢𝑦 =

𝜕𝑦

𝜕𝑥
𝑢𝑥  (3.12) 

The measured parameters for these tests are listed in Table 3.3. The uncertainties 

in calculated parameters from each measured variable were combined using the root-

sum-square method to determine the total uncertainty in the dependent variable. The 

propagation of uncertainty from measured parameters to final parameters is shown 

graphically in Appendix G. Since the uncertainties were found to vary during expansion, 

the values presented in Table 3.5 are mean values for each test case for physical 

variables, while Table 3.6 has the mean values for each test case for non-dimensional 

parameters. The minimum and maximum uncertainties are included in Appendix G. 

  

Table 3.5 – Propagated Uncertainties in Physical Variables 

Test 

Case Moles Temperature Density 

Piston 

Speed 

Heat Transfer 

Coefficient 

Case A 7.12% 9.90% 8.09% 3.57% 13.38% 

Case B 6.55% 12.99% 9.37% 3.79% 17.44% 

Case C 6.69% 15.57% 11.10% 6.39% 26.68% 

Case D 5.67% 9.17% 7.30% 2.42% 13.91% 

Case E 3.89% 21.23% 13.88% 16.64% 48.67% 
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Table 3.6 – Propagated Uncertainties in Non-Dimensional Parameters 

Test 

Case 

Reynolds 

Number 

Prandtl 

Number 

Peclet 

Number 

Nusselt 

Number 

Case A 10.68% 9.89% 14.6% 15.40% 

Case B 12.01% 12.97% 17.7% 20.12% 

Case C 15.12% 15.55% 21.7% 29.44% 

Case D 8.87% 9.16% 12.8% 15.62% 

Case E 24.68% 21.21% 32.5% 52.18% 

 

The uncertainty in total moles of gas is dictated solely by the initial fill 

conditions; the initial pressure, volume, and the ambient temperature. This was a 

manageably small uncertainty for each test case. The dominant sources of uncertainty for 

all other parameters were the cylinder pressure and volume, as shown previously in Table 

3.3. Uncertainties in heat transfer coefficient ranged from 13% to 27% for test cases A-D, 

which were considered reasonable values for this study. However, the uncertainty in heat 

transfer coefficient reached nearly 50% for Case E. This was due to an increase in scatter 

in the data for this test case. It is unclear what caused this increase in scatter for this test 

case, but it is possible that this is from increased leaks in the initial fill chamber when 

filling to higher pressures. While this is a large uncertainty in the heat transfer coefficient, 

the uncertainty in the polytropic exponent was much less, as shown in Table 3.4.  The 

value of the polytropic exponent was one of the primary goals of these experiments, as 

previously discussed, so even with large uncertainties in the heat transfer coefficient this 

test case was still useful in developing a model for heat transfer during the expansion of a 

gas.  
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The results of these experiments were compared with the analytic model 

previously developed in Ch.2. The presentation and discussion of these results is done 

next in Ch. 4.  
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Chapter 4 – Results & Discussion 

4.1 Make this white 

An analytic model was developed in order to study the heat transfer that occurs 

during the expansion of a gas, as described in Ch. 2. The result of the analysis provided a 

form for the heat transfer model: 

 
𝑁𝑢 =  

𝑛

𝛾
− 1  

1

2 + 4𝑥∗
 𝜃𝑃𝑒𝐷 (4.1) 

Other forms of this model were given by Eq. 2.12-2.16; however, because the Peclet 

number is also significant in characterizing the polytropic exponent, the form given by 

Eq. 4.1 is suggested as the most appropriate form. This model assumed that the expansion 

process could be modeled as a polytropic process, 𝑃𝑉𝑛 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, where the 

polytropic exponent n is an unknown constant. By analyzing the time scales associated 

with this process and their implications on the polytropic exponent, it was proposed in 

Ch. 2 that n could be related to the characteristic Peclet number during the expansion, or 

to a dimensionless form of the mean piston speed. This model was tested by conducting 

experiments as described in Ch.3. These experiments were designed to determine the 

relationships concerning polytropic exponent suggested in Eq. 2.24 and 2.28, and to also 

determine the spatially averaged, instantaneous heat transfer coefficient during the 

expansion process.  

The results of these experiments show that the pressure-volume relationship in the 

expansion matches the assumed polytropic expansion very closely, and that the 
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polytropic exponent can be modeled based on the characteristic Peclet number or the 

dimensionless form of the mean piston speed proposed in Ch. 2. The experimentally 

determined heat transfer coefficient for the expansion is then compared with the proposed 

overall heat transfer model as well as with previously established models. It is found that 

the proposed model is a good match for the experimental data, and accurately predicts the 

time evolution of the heat transfer coefficient during the expansion.  

 

4.1 Experimental Results 

The first component of experimental data was the constant volume (“bomb”) 

combustion data. These tests were conducted because the high pressures and 

temperatures needed to drive the expansion process are created by an initial constant-

volume combustion reaction in the expansion tests. Therefore, it was necessary to 

ascertain whether combustion had completed by the beginning of expansion. This was 

done by determining the combustion time from the bomb tests (no expansion), where 

combustion time is defined here as the time from the beginning of the measured pressure 

rise to the peak pressure. This time was compared to justify whether combustion was 

complete at the beginning of expansion, which was defined as the point where volume 

had increased from the initial volume by 1%. A sample output from the bomb 

experiments is shown in Figure 4.1 for Test Case D; other test conditions are included in 

Appendix H.  
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Figure 4.1 – Bomb data for Test Case D, used to determine combustion time 

 

The measured combustion times for each of the tests conditions are reported in Table 4.1. 

Combustion times vary slightly for the conditions tested, which had a constant 

equivalence ratio of unity with various initial pressures. 

Table 4.1 – Combustion Times 

Test Case 
Initial Air 

Pressure 

Equivalence 

Ratio 

Combustion 

Time (ms) 

Case A 14.7 psia 1 1.84 

Case B 20.0 psia 1 2.04 

Case C 27.4 psia 1 2.04 

Case D 34.7 psia 1 2.36 

Case E 44.7 psia 1               3.20 

 

This information was used to determine whether the combustion reaction was 

complete at the beginning of expansion. This is shown graphically in Figure 4.2, which 
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shows pressure and volume for a single combustion and expansion event, with the times 

corresponding to the end of combustion and the beginning of expansion marked. These 

representative data were taken from Test Case D, with other test conditions included in 

Appendix H. It can be seen that choosing to start the expansion at a 1% increase in 

volume from the initial fill volume gave ample time for combustion to complete before 

expansion data were collected. 

 

Figure 4.2 – Pressure and volume versus time for a combustion and expansion event, 

showing that combustion is complete by the time expansion begins. Data shown is from 

Test Case D. 

 

Figure 4.2 justifies the assumption that combustion is complete when expansion 

begins by showing that the time at which the volume has increased by 1% of its original 
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value is beyond the measured combustion time. This is important because it was assumed 

that combustion is complete in the energy balance method used to extract heat transfer 

information, as discussed in Ch.3.  

Multiple expansion tests were conducted for each test condition, as previously 

reported in Table 3.1. These tests were combined to form a single data set representative 

of that test condition by fitting a least squares curve through the combined data set.  

Figures 4.3-4.5 show the data from the expansion tests conducted for Test Case D. The 

experimental data from other tests conditions is included in Appendix H. 

 

Figure 4.3 – Measured cylinder volume versus time during expansion for Test Case D 
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Figure 4.4 – Measured cylinder pressure versus time during expansion for Test Case D 

 

Figure 4.5 – Measured cylinder pressure versus volume during expansion for Test Case D 
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Figures 4.3 and 4.4 show the time evolution of volume and pressure, respectively. 

The piston velocity can be seen to approach a constant value midway through the 

expansion, as evidenced by the volume time trace becoming approximately linear in 

Figure 4.3. Pressure decays rapidly as the piston expands, as expected and shown in 

Figure 4.4. Of primary importance, however, is the pressure-volume relationship present 

in the expansion process (Figure 4.5). This is because the expansion process through the 

pressure-volume relationship determines the exponent n given in Eq. 4.1. Figure 4.5 

shows that the individual expansion tests collapse onto a single curve on the pressure-

volume diagram, showing good repeatability between tests. The curve fit shown in Figure 

4.5 is a power law curve fit, meaning that the data follows a polytropic expansion (Eq. 

2.7) very closely. This justifies the polytropic assumption made in developing the heat 

transfer model in Ch. 2.  

Plotting the pressure-volume data on a logarithmic scale further illustrates the 

validity of the polytropic assumption. The pressure-volume data should be linear on a 

logarithmic scale, as suggested by Eq. 3.2, with the slope equal to the negative of the 

polytropic exponent. This is shown in Figure 4.6.  
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Figure 4.6 – Measured cylinder pressure versus volume during expansion for Test Case 

D, logarithmic scale 

 

The experimental pressure-volume data were used to calculate the heat transfer 

characteristics and other relevant parameters during the expansion. These parameters are 

then used to describe the heat transfer in a dimensionless fashion and establish 

relationships for the polytropic exponent. 

 

4.2 Expansion Characteristics 

The experimental data were used to calculate parameters relevant to the 

expansion, such as the gas temperature, density, and piston speed. The data presented 

below is plotted along a non-dimensional distance, 𝑥∗ = 𝑥/𝐷. Plotting the results using 
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distance rather than time allows for direct comparisons between test conditions. This is 

because the total expansion time varied between test conditions, and because the 

thermodynamics of the expansion are more inherently linked to changes in volume (or 

position) rather than changes in time. Additionally, the non-dimensional distance, 

𝑥∗ = 𝑥/𝐷, is an important factor in the heat transfer model, as seen in Eq. 4.1. Since the 

test apparatus included an initial fill chamber with a depth of approximately 1.5 inches 

and the cylinder diameter was 4 inches, the term 𝑥∗ does not start at zero but near 

𝑥∗ = 0.38 since the initial volume at the initial time is not zero. 

The gas pressure and the bulk temperature during the expansion for each test 

condition are presented below in Figures 4.7 and 4.8, respectively. The pressure reported 

is from the smooth curve combining the individual tests, and the bulk temperature was 

calculated using the ideal gas equation of state (Eq.  3.7). 
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Figure 4.7 – Measured gas pressure during expansion versus dimensionless distance from 

piston to cylinder head for each test case 

 
Figure 4.8 – Bulk gas temperature during expansion versus dimensionless distance from 

piston to cylinder head for each test case 
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The gas pressure decays rapidly during the initial expansion, with the decay 

slowing as the expansion progresses. By changing the initial fill pressure, the peak 

pressure at the beginning of expansion also increases, as expected. The peak temperature 

is almost invariant between test conditions. This is because the equivalence ratio is kept 

constant. By keeping this fixed, the amount of energy per mass originally inputted to the 

system in order to attain the peak expansion conditions is constant. Since the initial fill 

temperature is roughly constant between test conditions, the peak temperature at the 

beginning of expansion should similarly be the same among test conditions.  

As shown in Ch. 2, the Reynolds number for the expansion plays an important 

role in modeling the heat transfer. The Reynolds number for this study is defined as: 

 
𝑅𝑒𝐷 =

𝜌𝐷𝑣𝑝

𝜇
 (4.2) 

Where 𝜌 is the gas density, vp is the instantaneous piston velocity, D is the cylinder 

diameter, and 𝜇 is the viscosity of the gas. Since both the density and piston velocity are 

key physical variables in describing this process, these parameters are shown for each of 

the test conditions in Figures 4.9 and 4.10. The piston velocity was calculated 

numerically by evaluating the time derivative of position with a five-point central 

differencing scheme (Eq. 3.10), while the gas density was calculated from the mass and 

instantaneous volume of the system (note that the mass is constant during the expansion), 

according to Eq. 3.9. 
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Figure 4.9 – Gas density during expansion versus dimensionless distance from piston to 

cylinder head for each test case 

 
Figure 4.10 – Piston velocity during expansion versus dimensionless distance from piston 

to cylinder head for each test case 
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Since the mass of the gas is constant the density decays inversely with volume. 

Piston velocity starts low, however it is non-zero because the beginning of expansion was 

set at 1% change in volume, indicating that expansion has already begun. Piston velocity 

initially increases rapidly, approaches a constant value, and eventually slows as energy is 

dissipated by raising a weight.  

The Reynolds number and Prandtl number during the expansion are shown in 

Figure 4.11 and 4.12, respectively, for each of the test cases. The Reynolds number was 

calculated using Eq. 4.2, while the Prandtl number was calculated using: 

 𝑃𝑟 =
𝜇𝑐𝑝

𝜅
 (4.3) 

The thermophysical properties viscosity, μ, thermal conductivity, κ, and specific heat, cp , 

were determined as functions of temperature during the expansion from tabular values 

compiled using the program EES (see Appendix I). 
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Figure 4.11 – Instantaneous Reynolds number during expansion versus dimensionless 

distance from piston to cylinder head for each test case 
 

 
Figure 4.12 – Prandtl number during expansion versus dimensionless distance from 

piston to cylinder head for each test case 
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The length scale used in the Reynolds number is the cylinder diameter, which is a 

constant for this expansion. The viscosity of the gas varies with temperature during the 

expansion; however this variation is generally not as large as the variations in gas density 

and piston speed. The gas density decreases monotonically, as shown in Figure 4.9. 

Piston velocity, shown in Figure 4.10, is initially low but increases rapidly, followed by 

eventual slowing. This interplay between these variables causes a rapid rise in the 

Reynolds number shortly after expansion begins, followed by a gradual decay, as shown 

in Figure 4.11. This will be seen to have a significant effect on the behavior in the heat 

transfer during this process, as shown through the Nusselt number. In many situations the 

Prandtl number is taken as a constant for gases, such as in the pseudo-steady state models 

discussed in Ch.1. While it does not vary as widely as the Reynolds number does, Figure 

4.12 shows that the Prandtl number varies by approximately 20% from the beginning to 

the end of expansion. This is due to the changes in temperature during the expansion, 

which affects the Prandtl number through changes in the thermal conductivity, viscosity, 

and specific heat. Since the Nusselt number is directly proportional to the Prandtl number 

in the proposed heat transfer model, Eq. 2.13, it follows that incorporating the time 

dependence (through temperature) of the Prandtl number is important to modeling the 

transient behavior of the heat transfer.  

The Reynolds number and the Prandtl number are important dimensionless 

parameters characterizing the expansion process, and the original form of the heat 

transfer model, Eq. 2.13, shows their importance in predicting heat transfer. Many heat 
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transfer models are formulated in terms of these parameters, including many of the 

models discussed in Ch. 1, so it is useful to examine these quantities in the present study. 

However, it was found in Ch.2 that the proposed heat transfer model can best be 

characterized using the Peclet number, because this parameter is also significant in 

characterizing the polytropic exponent. The Peclet number can be formed by combining 

the Reynolds and Prandtl numbers: 

 
𝑃𝑒𝐷 = 𝑅𝑒𝐷𝑃𝑟 =

𝜌𝑐𝑝𝑣𝑝𝐷

𝜅
=

𝑣𝑝𝐷

𝛼
 (4.4) 

The Peclet number during the expansion process is shown in Figure 4.13.  

 

Figure 4.13 – Peclet number during expansion versus dimensionless distance from piston 

to cylinder head for each test case 
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 Upon comparing Figure 4.13 with 4.11, it is seen that the Peclet number is very 

similar to the Reynolds number. This follows from Eq. 4.4, and can be understood by 

noting that while the Reynolds number compares inertial forces to viscous (momentum 

diffusion) effects, the Peclet number compares inertial forces to conduction (heat 

diffusion) effects. However, it is noticed that the Peclet number exhibits less abrupt 

changes during the expansion, and is slightly more leveled during the expansion. This is 

due to the effect of the Prandtl number not being constant, but changing during the 

expansion, as seen in Figure 4.12. Just as the peak in the Reynolds number was noted 

because of its future implications on heat transfer, the peak in the Peclet number shares a 

similar significance.  

 

4.3 Heat Transfer Characteristics 

The heat transfer characteristics associated with the expansion of a gas were 

calculated from the experimental data using the data reduction process developed and 

described in Ch.3. This results in a spatially averaged, instantaneous heat transfer 

coefficient, which is defined by: 

 
𝑕 =

𝑞 ′′

𝑇𝑔 − 𝑇𝑤𝑎𝑙𝑙
 (4.5) 

Where 𝑇𝑔  is the bulk gas temperature, as defined by the ideal gas equation of state (Eq. 

3.7). This results in values for the heat transfer coefficient versus piston position as 

shown in Figure 4.14. 
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Figure 4.14 – Spatial average instantaneous heat transfer coefficient during expansion 

versus dimensionless distance from piston to cylinder head for each test case 

 

The heat transfer coefficients shown in Figure 4.14 start at some finite value and 

increase rapidly to a peak value, occurring near 𝑥∗ = 0.5. After this the heat transfer 

coefficient decays, approaching zero at the end of expansion. It is noted that all test cases 

produced heat transfer coefficients very similar in magnitude, and that the trend during 

expansion in this heat transfer coefficient is the same for all cases. While the magnitude 

of the heat transfer coefficient is very similar between test cases, it is seen that it is 

somewhat higher for cases at low initial fill pressures (Case A) than at higher initial fill 

pressures (Case E). The exception is Case C; here the heat transfer coefficient is lower 

than expected, and does not follow the trend present in the other cases. This however is 
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consistent with other results from this study, namely that the relationship between the 

polytropic exponent and the characteristic Peclet number changes when 𝑃𝑒∗ ≈ 15,000, 

which corresponds closely to the conditions of Case C (this is discussed further when the 

model for the polytropic exponent is developed). 

It was noted previously that increasing the Reynolds number (or Peclet number) 

should increase the Nusselt number (or the heat transfer coefficient) since the proposed 

model suggests they are directly proportional. Figure 4.14 however, shows that the heat 

transfer coefficient is similar in magnitude between all tests. The reason for this is 

apparent when examining the relationship between the characteristic Peclet number and 

the polytropic exponent, and is discussed later. The peak magnitude of the heat transfer 

coefficient for all tests was approximately 𝑕 = 350 𝑊/𝑚2𝐾.   

The experimentally determined heat transfer coefficient was non-dimensionalized 

by expressing it as the Nusselt number: 

 
𝑁𝑢𝐷 =

𝑕𝐷

𝜅
 (4.6) 

The Nusselt number during the expansion is shown in Figure 4.15.  
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Figure 4.15 – Spatial average Nusselt number during expansion versus dimensionless 

distance from piston to cylinder head for each test case 

 

It is seen that the Nusselt number follows a similar trend as the heat transfer 

coefficient. At the beginning of the expansion it is small, but it increases rapidly to form a 

peak near 𝑥∗ ≈ 0.5. Subsequently, the Nusselt number decays until the end of the 

expansion. Previously, it was noted that there was a distinct peak in the Peclet (and 

Reynolds) number (Figure 4.13 and 4.11, respectively), also occurring near 𝑥∗ ≈ 0.5. 

This peak was caused by the decay in density accompanied by the rapid increase in piston 

velocity. The Nusselt number shares a similar peak, illustrating the importance of the 

Peclet number on heat transfer during the expansion process. It also illustrates the 

importance of using the instantaneous piston speed, 𝑣𝑝 , as the velocity scale in the Peclet 
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number used to model the heat transfer. If an average value, such as the mean piston 

speed, 𝑆𝑝 , were used instead, this peak in the Peclet number would have been missing, 

and the model would subsequently not capture the peak in the Nusselt number shown in 

Figure 4.15. 

The dimensionless parameters used in this study use a length scale of D, the 

cylinder diameter. This was defined in Ch.2 when the expansion process was analyzed, 

and reflects the importance of the diameter to the expansion process, as well being a 

simple length scale used in many other studies (Annand, 1962; Woschni, 1967; Lawton, 

1987; Chen & Karim, 1998; Irimescu, 2012). However, other, equally valid, length scales 

could have been chosen instead. This would then influence the values and trends in the 

Reynolds, Peclet, and Nusselt numbers reported. The effect of using other length scales is 

investigated in the following section.  

 

4.4 Alternative Length Scales 

In the original development of the heat transfer model, it is seen that the non-

dimensionalization of the model in Eq. 2.13 introduced the length scale as D, the cylinder 

diameter. This is consistent with the length scales used by many other researchers, and 

describes an important, constant dimension that governs the expansion process. However, 

other choices could have been made for the length scale without invalidating the form of 

the heat transfer model, as long as the same scale is applied to both the Peclet (or 
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Reynolds) and Nusselt numbers. This length scale could potentially be selected to 

represent the transient nature of the expansion. 

One such possibility as an alternative length scale is the distance from the 

cylinder head to the piston, x. While the cylinder diameter is the radial dimension of 

importance to the expansion (and is constant), the expansion distance x is the axial 

dimension, and changes during the expansion. Applying this length scale, the Peclet, 

Reynolds, and Nusselt numbers become:  

 𝑃𝑒𝑥 =
𝑣𝑝𝑥

𝛼
 (4.7) 

 𝑅𝑒𝑥 =
𝜌𝑣𝑝𝑥

𝜇
 (4.8) 

 
𝑁𝑢𝑥
      =

𝑕𝑥

𝜅
 (4.9) 

The overbar has been added to the Nusselt number to emphasize that it is still a spatially 

averaged value, not a local value. In this manner, 𝑁𝑢𝑥
       can be thought of as the spatially 

averaged Nusselt number up to the position x.  

 The Peclet number during the expansion using this alternative length scale is 

shown in Figure 4.16.  
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Figure 4.16 – Alternate Peclet number, using the length scale of x, the distance from the 

cylinder head to the piston 

 

The Peclet number shown in Figure 4.16, using a length scale of x, is very 

different from the Peclet number shown in Figure 4.13, which uses the cylinder diameter 

as the length scale. Previously, there was a peak in the Peclet number early in the 

expansion, which was related to a similar peak the Nusselt number.  Introducing the 

length scale of x makes the expansion distance a dominant factor in determining the 

Peclet number, and washes out the peak previously reported. Instead, the Peclet number 

increases monotonically for most of the expansion, decreasing only near the end as the 

piston velocity decreases. While the behavior of this alternative Peclet number is very 
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different from the Peclet number shown in Figure 4.13, the overall magnitudes are 

similar, although slightly larger.  

The Reynolds number during the expansion using this alternative length scale is 

shown in Figure 4.17. 

 

Figure 4.17 – Alternate Reynolds number, using the length scale of x, the distance from 

the cylinder head to the piston 

 

The Reynolds number shown in Figure 4.17, using a length scale of x, is very 

similar to the Peclet number shown in 4.16, as could be inferred by Eq. 4.4. It, too, 

changes significantly when using the length scale of x rather than D, as seen by 

comparing Figure 4.17 with 4.11. Most significantly, the early peak previously noted in 

the Reynolds number disappears when using this length scale for the Reynolds number.  
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The Nusselt number during the expansion calculated using x as the length scale is 

shown in Figure 4.18.  

 

Figure 4.18 – Alternate Nusselt number, using the length scale of x, the distance from the 

cylinder head to the piston 

 

Comparing Figure 4.18 with Figure 4.15, it is seen that using the expansion 

distance rather than the cylinder diameter as the length scale has a strong effect on the 

calculated Nusselt number. While the Nusselt number still has a peak early in the 

expansion, the peak is much weaker and occurs later than in Figure 4.15. Additionally, 

the magnitudes of the Nusselt numbers in Figure 4.18 are slightly lower than those in 

Figure 4.15.  
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When the cylinder diameter is used as the length scale (Figures 4.13 and 4.15), 

both the Peclet and Nusselt numbers have a peak early in the expansion (𝑥∗ ≈ 0.5), and 

subsequently decay for the duration of the expansion. When the expansion distance is 

used (Figures 4.16 and 4.18), the Peclet number shows little to no peak, except possibly 

towards the end of the expansion, instead increasing for most of the expansion. The 

Nusselt number, however, still has a peak early in the expansion, although it is much less 

pronounced. After this peak, the Nusselt number decays for the duration of the expansion. 

When applying the cylinder diameter as the length scale, the direct importance of the 

Peclet number on predicting the Nusselt number is emphasized. This can be seen by 

comparing their graphs in Figures 4.13 and 4.15 and noting the similar behavior of each. 

This similar behavior vanishes when applying the expansion distance as the length scale. 

Instead, Figures 4.16 and 4.18 indicate that the other terms in the heat transfer model, Eq. 

4.1, are also important to predicting the Nusselt number accurately. 

Applying the expansion distance as the length scale in the Peclet, Reynolds and 

Nusselt numbers illustrates the effect of the selected length scale on the resulting 

dimensionless parameters. Since these parameters are used to characterize the heat 

transfer, the selection of the length scale influences how heat transfer during the 

expansion process is understood and discussed. However, the choice of this length scale 

does not affect the validity of the heat transfer model given by Eq. 4.1, assuming that the 

same length scale is used in both the Peclet and Nusselt numbers. The cylinder diameter 

was chosen as the length scale during this study because it is an important dimension 
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governing the expansion process and has been used by many other researchers as the 

length scale. However, future studies could determine whether a different dimension, 

such as the expansion length, x, is a more appropriate length scale for the expansion 

process. While this does not change the validity of Eq. 4.1, this will affect the 

interpretation of the heat transfer characteristics. 

 

 

4.5 Model for the Polytropic Exponent 

In Ch.2 it was proposed that the polytropic exponent n could be related to the 

characteristic time scale associated with the expansion process. After analyzing the time 

scales associated with the expansion process, two functional forms were proposed. One 

functional form suggested that a characteristic Peclet number, representing the ratio of 

the expansion rate to the heat diffusion rate, is an appropriate parameter upon which to 

base a model for n. The other functional form suggested that the mean piston speed, 

normalized by the acoustic velocity, is an appropriate parameter for use in modeling the 

polytropic exponent. Since the acoustic velocity is a state variable, this parameter 

compares the expansion time scale to a time scale associated with the thermodynamic 

state of the gas. It is found in this study that both functional forms can be used as the 

basis for developing models for the polytropic exponent, as shown in the following 

discussion. 
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4.5.1 Model Based on the Characteristic Peclet Number 

It was proposed in Ch.2 that the polytropic exponent could be modeled using the 

characteristic Peclet number of the expansion. For this study, the characteristic Peclet 

number is defined as: 

 
𝑃𝑒∗ =

𝑆𝑝𝐷

𝛼0
 (4.10) 

The velocity used in the characteristic Peclet number is the mean piston speed, 𝑆𝑝 : 

 
𝑆𝑝 =

𝑉𝑚𝑎𝑥 − 𝑉𝑚𝑖𝑛

𝐴𝑐𝑡𝑒𝑥
 (4.11) 

Where 𝑡𝑒𝑥  is the total expansion time, and 𝐴𝑐  is the cross sectional area, 𝐴𝑐 =
𝜋

4
𝐷2. 

While the thermal diffusivity changes during the expansion (see Appendix I), its value is 

taken at the beginning of the expansion so that it is a readily known quantity. The 

relationship between the polytropic exponent and the characteristic Peclet number is 

shown in Figure 4.19. 
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Figure 4.19 – Polytropic exponent and the characteristic Peclet number for each test case. 

The polytropic exponent was determined from experimental pressure-volume data and 

the characteristic Peclet number was calculated using Eq. 4.10-4.11 

 

 The results presented in Figure 4.19 show a strong link between the characteristic 

Peclet number and the polytropic exponent, as was hypothesized in Ch. 2. The polytropic 

exponent increases significantly at low Peclet numbers, while changing only slightly at 

high Peclet numbers. An increase in the polytropic exponent indicates an increase in heat 

transfer by Eq. 4.1. However, also by Eq. 4.1, heat transfer is also directly dependent on 

the Peclet number, and a decrease in the Peclet number causes a decrease in heat transfer. 

This explains why the heat transfer coefficients and Nusselt numbers seen in Figures 4.14 

and 4.15, respectively, have similar magnitudes between test cases, while the Peclet 

numbers differ substantially between test cases, as shown in Figure 4.13. Test cases with 
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low Peclet numbers (such as Case A) have decreased heat transfer due to the Peclet 

number directly, but increased heat transfer due to the polytropic exponent. Test cases 

with high Peclet numbers (such as Case E) have increased heat transfer due to the Peclet 

number directly, but decreased heat transfer due to the polytropic exponent. This tends to 

keep the heat transfer coefficients and Nusselt numbers similar between test conditions, 

even though the Peclet numbers may differ significantly. 

 In order to establish a relationship between the polytropic exponent and the 

characteristic Peclet number, the behavior of the polytropic exponent in some limiting 

cases is examined. First, the polytropic exponent was normalized by the specific heat 

ratio at the beginning of expansion, γ0. This normalization is suggested by the form of the 

proposed heat transfer model, Eq. 4.1. Additionally, an isentropic expansion is 

characterized by 𝑛 = 𝛾, so this normalization reflects the deviation of the expansion from 

the ideal. If γ  were a constant, the lower limit for this normalized polytropic exponent 

would be one. If it were less than one, it would imply that heat is being added to the 

expansion, which would be heat transfer from a cold wall to a hot gas according to Eq. 

4.1. However, γ changes with temperature during the expansion, and the value used to 

normalize the polytropic exponent is taken at the beginning of expansion when γ is 

lowest. This means that when n is normalized by the initial γ, the lower limit on             

𝑛/𝛾0 must be something slightly greater than one. Referring to Figure 4.19, an upper 

limit on the normalized polytropic exponent would be caused by very low characteristic 

Peclet numbers, meaning a very slow expansion. In the limit of the characteristic Peclet 
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number going to zero, the expansion becomes an isochoric (constant volume) process. An 

isochoric process can be modeled as 𝑃𝑉∞ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡; while pressure changes with 

volume constant, the quantity 𝑃𝑉∞  is constant, equal to infinity (Zucker & Bilbarz, 

2002). This suggests that as the characteristic Peclet number decreases the polytropic 

exponent increases, without a limit imposed as the upper bound. 

The data presented in Figure 4.19 suggests that at large characteristic Peclet 

numbers, the polytropic exponent is only weakly dependent on 𝑃𝑒∗, with little variation. 

However, at low characteristic Peclet numbers, the polytropic exponent is strongly 

dependent on 𝑃𝑒∗. It was found for the current data that the relationship between the 

normalized polytropic exponent and the characteristic Peclet number is best described by 

a power law expression:  

 𝑛

𝛾0
= 2.5  

𝑃𝑒∗

1000
 
−1.5

+ 1.05 (4.12) 

The result of using the model presented in Eq. 4.12 is compared with the experimental 

data in Figure 4.20, revealing that the model describes the relationship between the 

polytropic exponent and the characteristic Peclet number accurately over the range of test 

conditions examined. 
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Figure 4.20 – Polytropic exponent normalized by the specific heat ratio at the beginning 

of expansion, versus the characteristic Peclet number calculated using Eq. 4.10-4.11. 

 

The power law expression for the normalized polytropic exponent (Eq. 4.12) is in 

good agreement with the data collected in this study, as seen in Figure 4.20. The 

maximum difference between the data and the model is 2%, showing good agreement 

over the range of data collected. The power law relationship used reflects the strong 

dependence of n on the characteristic Peclet number at low Peclet numbers, and the weak 

dependence at large Peclet numbers. For 𝑃𝑒∗ ≤ ~15,000, it is seen in both the data and 

the proposed model that the normalized polytropic exponent varies significantly with the 

Peclet number, changing by approximately 25% between Test Case A and C. However, 

for expansions with characteristic Peclet numbers greater than 15,000, the normalized 
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polytropic exponent is nearly constant, varying by less than 3% between Test Case C and 

E.  

An expansion characterized by a large characteristic Peclet number indicates that 

the time scale associated with the expansion process is much smaller than the time scale 

associated with the diffusion of heat. This implies a decrease in the amount of energy lost 

by the gas as heat, since the time required for heat diffusion is larger than the time present 

in the expansion process. This is consistent with the results shown in Figure 4.20, 

because the smaller polytropic exponent at large characteristic Peclet numbers indicates a 

decrease in heat transfer by Eq. 4.1.   

Included in Figure 4.20 are error bars for both the normalized polytropic exponent 

and the characteristic Peclet number for the expansion. The values of these parameters 

obtained in this study and the associated uncertainties, are given in Table 4.2. 

Table 4.2 - Polytropic Exponent for Each Test Case 

Test 

Case 

 Polytropic 

Exponent  

Uncer-

tainty 

Normalized 

Polytropic 

Exponent  

Uncer-

tainty 

Characteristic 

Peclet 

Number 

Uncer-

tainty 

Case A 1.71 7.26% 1.37 7.28% 3700 11.5% 

Case B 1.52 3.59% 1.21 3.67% 6700 11.7% 

Case C 1.36 4.72% 1.08 4.81% 14200 12.7% 

Case D 1.36 6.27% 1.08 6.29% 20600 9.5% 

Case E 1.32 10.84% 1.05 10.9% 30400 12.6% 

 

The results seen in Figure 4.20 confirm the proposed relationship between the 

polytropic exponent and the characteristic Peclet number during the expansion, and Eq. 

4.12 provides the functional form suggested by Eq. 2.24. The existence of this 
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relationship was proposed in Ch.2 by examining the time scales associated with the 

expansion process, and it was noted that other time scales could also be used to 

characterize the polytropic exponent. One such alternative is a time scale based on the 

mean piston speed and the acoustic velocity, and is discussed next.  

 

4.5.2 Model Based on the Mean Piston Speed 

It was proposed in Ch.2 that the time scale characterizing the expansion could be 

compared to a time scale representing the thermodynamic state of the gas, and that the 

polytropic exponent could be modeled using this ratio of time scales. The expansion rate 

can be characterized by the mean piston speed, and the state of the gas characterized by 

the acoustic velocity: 

 𝑐 =   𝛾𝑅𝑇 (4.13) 

Since both γ and T vary during the expansion, the acoustic velocity, c, also varies during 

the expansion. In order to use this to characterize the polytropic exponent (which does 

not vary during the expansion for these tests), the value of c at the beginning of the 

expansion was used. As shown in Ch.2, comparing the expansion time scale with the 

acoustic time scale results in the following dimensionless quantity: 

 
𝑆𝑝

∗ =
𝑆𝑝

 𝛾0𝑅𝑇0

 (4.14) 
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Where 𝑆𝑝
∗ is a dimensionless form of the mean piston speed and represents the ratio 

between the acoustic time scale (characterizing the state of the gas) and the expansion 

time scale.  

 It was found that the polytropic exponent could be modeled using the 

dimensionless mean piston speed given by Eq. 4.14. Similar to the previously developed 

model for n, it was found that the polytropic exponent varied strongly at small values of 

the characteristic time scale, but varies only weakly at large values of this time scale. 

This could be modeled best by a piecewise model which describes these separate regimes 

independently, as shown in Eq. 4.15. For the development of this model, the polytropic 

exponent was normalized by the initial specific heat ratio, as previously discussed.  

 

 

𝐼𝑓 𝑆𝑝
∗ ≤ 0.006:          

𝑛

𝛾0
= 0.054𝑆𝑝

∗−1/2 + 0.4 

𝐼𝑓 𝑆𝑝
∗ > 0.006:          

𝑛

𝛾0
= −13.5𝑆𝑝

∗ + 1.18 

(4.15a) 

 

(4.15b) 

The comparison between this model for the normalized polytropic exponent and the 

experimental data is shown in Figure 4.21.  
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Figure 4.21 – Polytropic exponent normalized by the specific heat ratio at the beginning 

of expansion, versus the dimensionless mean piston speed defined by Eq. 4.14. 

 

The results shown in Figure 4.21 show that the polytropic exponent can be 

modeled based on the dimensionless form of the mean piston speed proposed in Eq. 4.14. 

The use of a piecewise model to determine the polytropic exponent reflects the nature of 

the relationship between the polytropic exponent and the dimensionless mean piston 

speed. For low values of 𝑆𝑝
∗ it is seen that the polytropic exponent is strongly dependent 

on 𝑆𝑝
∗, while at higher values the dependence is significantly reduced. This can be seen in 

Figure 4.21, and is a similar trend as seen in the model developed using the characteristic 

Peclet number, although in that scenario the model was more easily described by a single 

expression.  
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When the expansion time was characterized by the ratio between the heat 

diffusion and expansion time scales (resulting in the characteristic Peclet number, Eq. 

4.10), it was found that the expansion rate was much larger than the rate of heat diffusion. 

This resulted in large Peclet numbers. Using the ratio between the acoustic time scale and 

the expansion time scale (resulting in the dimensionless mean piston speed, Eq. 4.14), it 

can be seen that the expansion rate is much smaller than the acoustic rate, resulting in 

small values of 𝑆𝑝
∗. The acoustic velocity is a measure of how quickly the gas responds to 

a change in pressure, and for these tests it is seen that this value is always much larger 

than the mean piston speed.  

As shown by Figures 4.20 and 4.21, the polytropic exponent can be modeled 

using a characteristic time scale for the expansion process. This can be done using either 

the characteristic Peclet number, representing the ratio between the heat diffusion and 

expansion time scales, or a dimensionless mean piston speed, representing a ratio 

between the acoustic and the expansion time scale. This shows that multiple functional 

forms are possible in developing a model for the polytropic exponent, but also reinforces 

the original proposition made in Ch.2 that the polytropic exponent is related to the time 

scale associated with the expansion process. Because of the importance of the polytropic 

exponent in the overall heat transfer model (Eq. 4.1), determining the most appropriate 

functional form for the polytropic exponent is a potential area of further future research. 

For the purposes of this study, the original model proposed via Eq. 4.12 is used as the 
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preferred model. This is because an instantaneous form of the Peclet number was also 

found to be significant to the heat transfer model given by Eq. 4.1.  

The relationships given here for the polytropic exponent allow for the a priori 

determination of the polytropic exponent for the expansion process, because both the 

characteristic Peclet number and the dimensionless mean piston speed are calculable 

from geometric information concerning the expansion and the initial expansion 

conditions. This provides closure to the heat transfer model developed in Ch.2 and shown 

in Eq. 4.1, and allows for the heat transfer characteristics of the expansion process to be 

predicted. The heat transfer data collected during these experiments are next compared to 

the proposed heat transfer model.  

 

4.6 Heat Transfer Model Validation 

The experimentally determined Nusselt number was compared with that predicted 

by the proposed heat transfer model. The polytropic exponent was calculated using the 

model based on the characteristic Peclet number given by Eq. 4.12, and this polytropic 

exponent was then applied to the overall heat transfer model, Eq. 4.1. The results of this 

comparison for each test case conducted are given in Figures 4.22-4.26, and it is seen that 

the proposed model agrees very well with the experimental data.   

As shown previously, the polytropic exponent could also be calculated using the 

model based on the dimensionless mean piston speed, described by Eq. 4.15. However, 

the model based on the characteristic Peclet number was selected as the preferred model 
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because the instantaneous Peclet number (see Eq. 4.4 and Figure 4.14) was also found to 

be very important in the overall heat transfer model, Eq. 4.1. The results from using the 

overall heat transfer model with the polytropic exponent calculated from the 

dimensionless mean piston speed (Eq. 4.15) are included in Appendix J, and are very 

similar to the results given below, where n was calculated using the characteristic Peclet 

number and Eq. 4.12.  

 

Figure 4.22 – Comparison of experimental results and the proposed heat transfer model 

(Eq. 4.1) for the Nusselt number during expansion, using Eq. 4.12 for n – Test Case A 
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Figure 4.23 – Comparison of experimental results and the proposed heat transfer model 

(Eq. 4.1) for the Nusselt number during expansion, using Eq. 4.12 for n – Test Case B 

 
Figure 4.24 – Comparison of experimental results and the proposed heat transfer model 

(Eq. 4.1) for the Nusselt number during expansion, using Eq. 4.12 for n – Test Case C 
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Figure 4.25 – Comparison of experimental results and the proposed heat transfer model 

(Eq. 4.1) for the Nusselt number during expansion, using Eq. 4.12 for n – Test Case D 

  

 
Figure 4.26 – Comparison of experimental results and the proposed heat transfer model 

(Eq. 4.1) for the Nusselt number during expansion, using Eq. 4.12 for n – Test Case E 
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 The results reported in Figures 4.22-4.26 show that the proposed model for heat 

transfer during the piston-cylinder expansion of a gas matches well with the data. For all 

test cases, the Nusselt number calculated by the proposed model is within the margin of 

error for the experimental Nusselt number. Significantly, it is noted that the heat transfer 

model matches the trend of the data during the expansion, indicating a good transient 

response of the model to changing heat transfer characteristics. Differences between the 

model and the experimental data occur only by vertical shifts in Figures 4.22-4.26. These 

differences stem from the correlation of the polytropic exponent to the characteristic 

Peclet number shown by Eq. 4.12. Since the polytropic exponent term in Eq. 4.1 behaves 

as a multiplicative factor on the rest of the heat transfer model, errors in its calculation 

represent mainly vertical shifts in the Nusselt number versus position. In Cases B and D, 

the proposed model tends to under predict the heat transfer, while in Cases A, C and E 

the model over predicts. The characteristic peak in the Nusselt number in all the figures 

coincides with the peak in the instantaneous Peclet number during the expansion, as 

previously discussed.  In the application of the heat transfer model, the temperature 

dependence of thermophysical properties has been included, evaluated at the bulk gas 

temperature, as discussed in Ch. 2.  

 In the comparison of the proposed model with the experimental data, it was found 

that the proposed model is sensitive to the value used for the polytropic exponent n. This 

is especially true when the value of n is small, such as for Cases C, D and E. For these 

cases, it was found that a change in n of 1% would cause a 13% change in the predicted 
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Nusselt number. For situations with larger values of n, such as Case A, a change in n of 

1% would cause 6% change in the predicted Nusselt number. This sensitivity, especially 

for expansions with a small polytropic exponents (large characteristic Peclet numbers), 

indicates that future work could be done verifying the most accurate model for the 

polytropic exponent. 

The proposed heat transfer model is seen to match all test cases satisfactorily well, 

within the margin of error for the experiments. It is also seen to capture the time 

evolution of the heat transfer characteristics accurately, which was of primary importance 

for this study. This time dependence was captured by using a Reynolds number that uses 

the instantaneous piston speed as the velocity scale and a Prandtl number based on 

temperature-dependent fluid properties, which were combined to form the instantaneous 

Peclet number shown in Eq. 4.1. The time dependence was also incorporating by the 

effects of the bulk gas temperature and piston position, as also shown in Eq. 4.1. The 

approach used to formulate this heat transfer model differs from many models proposed 

by other studies by focusing on capturing the time dependence of heat transfer. The 

differences between this proposed model and other models are discussed next, and 

compared with the heat transfer data collected.  

 

 

 



99 

 

 

4.7 Model Comparison 

In Ch.1 several existing models for heat transfer during the expansion of a gas 

were examined. One of the common assumptions made in many previous heat transfer 

models has been the assumption that the process can be modeled in a pseudo-steady state 

fashion. Ultimately, this led to models of the form of Eq. 1.4, where the Nusselt number 

is related to the Reynolds number in a simple power law form. Commonly, the velocity 

scale used in the Reynolds number for the pseudo-steady state models was the mean 

piston speed, 𝑆𝑝  (this is in contrast to the instantaneous piston speed, 𝑣𝑝 , used in the 

present study) (Annand, 1963; Woschni, 1967; Hohenburg, 1980). To test this, a power 

law relationship with the Reynolds number based on mean piston speed and the Nusselt 

number determined from the experimental data are plotted in Figure 4.27.  



100 

 

 

 

Figure 4.27 – Nusselt number during expansion versus the Reynolds number calculated 

using the mean piston speed (logarithmic scale) 

 

It is seen from Figure 4.27 that the Nusselt and Reynolds numbers do not follow a 

purely linear relationship on a logarithmic scale during the expansion. This means that 

the pseudo-steady state model for heat transfer during the expansion of a gas is not 

accurate if the time-dependent heat transfer characteristics are important. This is 

amplified by the fact that the most non-linear portions of Figure 4.27 (at high Reynolds 

numbers) correspond to the portion of the expansion when the gas temperature is highest, 

when accurate knowledge of the heat transfer coefficient is most important. However, it 

is also seen from Figure 4.27 that a power law approximation may be justified if only 

cycle-averaged values are important and the transient behavior is not necessary, which 

was often the goal of these studies (Borman & Nishiwaki, 1987). This average power law 
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relationship between the Nusselt and Reynolds numbers appears to vary between test 

conditions, as the separate test cases do not collapse into a single curve. Accounting for 

this would require an additional method for describing the effect of different operating 

conditions beyond the power law relationship. Therefore, the power law relationship is 

shown not to perform well in predicting transient heat transfer behavior, or in adapting 

between operating conditions.  

The necessity of including transient effects in a heat transfer model for the 

expansion of a gas can also be seen by comparing the Nusselt numbers predicted by 

existing models and the currently proposed model. The correlations published by 

Annand, Woschni, Lawton and Irimescu are compared with the existing experimental 

data, and with the proposed model (Annand, 1963; Woschni, 1967; Lawton, 1987; 

Irimescu, 2012).  These models were selected for comparison because they are 

representative of much of the prior work in modeling the heat transfer during the 

expansion of a gas. The heat transfer models by Annand and Woschni assume a pseudo-

steady state form of Eq. 1.4, and while they were developed in 1963 and 1967, 

respectively, they are still widely used to predict heat transfer, particularly in internal 

combustion engines (Soyhan et al., 2009; Demuynck, 2010). The models by Irimescu and 

Lawton represent some of the prior studies that incorporated transient effects in the heat 

transfer models. Irimescu did this by using a correlation for heat transfer in the turbulent 

entry length for pipe flow, while Lawton modified Annand’s model to include the effect 

of expansion on the gas (see Ch.1 for more discussion of each correlation). The models of 
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Annand and Woschni required empirical constants to be selected to match observed 

conditions; in order to apply these models, these constants were chosen to match the data 

from Test Case D. The result is a value for 𝐶 of 0.18 for Annand’s model and 𝐶 = 0.013 

for Woschni’s model. These values are approximately half the values suggested by 

Annand and Woschni, respectively, indicating that considerable flexibility must be 

exercised when determining these constants. Irimescu’s model required that the velocity 

scale for the Reynolds number be from a simplified k-𝜖 turbulence model, which 

increases the velocity from the piston speed; instead however, the piston speed was 

increased by a factor of two, selected to match the data from Test Case D. The 

comparison of each of these models, along with the data and proposed model from this 

study, is shown in Figure 4.28.  
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Figure 4.28 –  Comparison of the proposed heat transfer model with models from other 

studies. Experimental data from Test Case D 

 

 Of the previously published studies, only the model proposed by Irimescu 

captures the initial increase in heat transfer properly; all the other studies show the 

Nusselt number decaying monotonically. This is because the velocity scale used by 

Irimescu varies with time/position, being based on the instantaneous piston velocity, 

while the velocity scales in the other previously published studies are based on the mean 

piston speed (constant for a given test case). None of the models are able to capture the 

decay of the Nusselt number during the expansion process accurately. Even the models 

by Irimescu and Lawton, which were developed including some transient effects, do not 

have the appropriate decay rate representing the decrease in heat transfer, although it is 

noted that Lawton’s model appears to have the appropriate slope initially and tends to 
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over-predict in later stages of expansion. Therefore, if time-resolved heat transfer 

information is of interest, the currently proposed model is a significant improvement over 

the previous models. 

The calculations made using the heat transfer models of Annand, Woschni, 

Irimescu, and Lawton in Figure 4.28 were made by modifying the empirical constants 

present in the models to fit the data from Test Case D. If the same constants are then 

applied to a different test condition, the results are in much worse agreement, as shown in 

Figure 4.29 for Test Case B. 

 

Figure 4.29 – Comparison of the proposed heat transfer model with models from other 

studies. Experimental data from Test Case B 

 

Figure 4.29 illustrates the dependence of the previously mentioned heat transfer 

models on the empirically determined constants used to adjust the models to 
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observations. Using the same constants from the operating conditions of Test Case D for 

Test Case B resulted in severely under-predicted Nusselt numbers. These constants are 

difficult to predict, and relationships describing how one may predict them are not given. 

The proposed heat transfer model, however, appears to be much more able to adapt to 

changes in the operating conditions, according to the data collected in this study. 

The results presented here show that the piston-cylinder expansion of a gas can be 

accurately modeled as a polytropic expansion, and that the polytropic exponent can be 

related to the characteristic time scales associated with the expansion process. The 

polytropic exponent was modeled with the characteristic Peclet number for the expansion 

process, representing the ratio between the expansion and heat diffusion rates, and 

resulting in a power law function relating the two parameters (Eq. 4.12). The polytropic 

exponent was also modeled with a dimensionless mean piston speed, representing the 

ratio between the acoustic and expansion time scales (Eq. 4.15). Both models were able 

to accurately reflect the data, showing that the polytropic exponent is related to the 

characteristic time scale of the expansion. The model for the polytropic exponent was 

then used in the overall model for heat transfer during the expansion of a gas developed 

in Ch.2 and given by Eq. 4.1. This model was found to predict the heat transfer accurately 

for all the test cases examined. Importantly, it accurately reflects the transient heat 

transfer characteristics exhibited during the expansion. When compared to pseudo-steady 

state models, it is found that the proposed model is more accurate at predicting transient 

heat transfer and is better at handling changes in operating conditions, for the test 
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conditions currently studied. The important findings of this study are summarized in the 

next chapter, and suggestions are given for areas of further research.   
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Chapter 5 – Conclusions 

5.1 Make this white 

This study provides analytic and experimental evidence supporting a new 

expression for the time dependent heat transfer during the expansion of a gas in a piston 

cylinder assembly. While heat transfer during the expansion of a gas has been studied 

previously, many of the previously proposed models have left room for improvement. 

These models lack accurate time-dependent information concerning heat transfer during 

expansion, being based either on a pseudo-steady state assumption or by modifications to 

this assumption. Additionally, these models are not universal, but can require 

considerable adjustment by way of user-defined constants in order to match predicted 

heat transfer to experimental values. These empirically determined constants have been 

found to vary between experimental apparatuses and between operating conditions on the 

same test apparatus (Annand & Ma, 1970; Borman, 1987; Demuynck, 2010).  

The model proposed by this study is based on a transient analysis of heat loss 

during piston cylinder expansion, arriving at the form of the heat transfer model 

presented by Eq. 4.1. The approach used to determine this model is a novel method based 

on a global thermodynamic analysis of the expansion process. Because it is grounded in a 

transient analysis, this model represents increased accuracy on the time dependent heat 

transfer over models based on a pseudo-steady state assumption. In order to complete the 

heat transfer model, a method for determining the polytropic exponent from other 

parameters is necessary. It is proposed that the polytropic exponent could be related to 
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the characteristic time scale associated with the expansion process; this was proven valid 

by the experiments conducted, and led to models being developed for the polytropic 

exponent. Using these models, the proposed heat transfer model is able to accurately 

predict the heat transfer characteristics of the expansion, both the transient aspects and 

the variations due to test conditions.  

The form of the heat transfer model (Eq. 4.1) accounts for the transient predictive 

capabilities of the proposed model, and is proposed as a more accurate alternative to the 

pseudo-steady state form (Eq. 1.4). While the relationships developed between the 

polytropic exponent and the characteristic expansion time scales are seen to be valid by 

the results presented in Ch. 4, the universality of the exact relationships proposed need to 

be tested by performing further tests at different operating conditions and using different 

test apparatuses. 

 

5.1 Transient Predictive Capability 

One of the primary objectives of this study was to develop a heat transfer model 

that accurately reflects the transient aspects of the expansion process. These transient 

aspects include the developing nature of the velocity and temperature distributions within 

the cylinder, and the effect of expansion on the gas temperature in the boundary layer. 

The transient effects of the expansion process were incorporated by considering the entire 

expansion volume and performing a first law analysis. While this analysis excludes 
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spatial information (such as boundary layer information), it has been shown to 

encapsulate the necessary transient aspects of the process.  

It was found that, among other things, the Nusselt number for the expansion 

process is dependent on the current expansion distance and the gas to wall temperature 

difference. These terms were commonly not included in pseudo-steady state models, but 

were found to be important in capturing the time dependence of the heat transfer in the 

expansion process. The term representing expansion distance,  1/(2 + 4𝑥∗) , is found to 

be especially important in modeling the transient heat transfer. This term arose from the 

ratio between the cross sectional and surface areas, which was simplified for the 

cylindrical expansion geometry used in this study. Neglecting this term causes the 

Nusselt number predicted by Eq.4.1 to be too low early in expansion, and too high later 

in expansion. While this may be suitable for average heat transfer values, it is not suitable 

for predicting time-dependent heat transfer characteristics, and therefore is essential for a 

transient model. While this term arose from characterizing the ratio between cross 

sectional area and surface area for the geometry under consideration, it is similar in 

nature to the modification commonly applied for heat transfer in the developing region of 

pipe flows (Eq. 1.9) and results in a similar effect, namely the enhancement of the heat 

transfer coefficient near the beginning of the cylinder.  

While many pseudo-steady state models propose the use of a Reynolds number 

based on the mean piston speed, it is found that the instantaneous piston speed is the 

appropriate velocity scale to model the instantaneous heat transfer characteristics. This 
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has a profound importance on predicting the Nusselt number, and is responsible for the 

characteristic peak in both Reynolds and Nusselt numbers in Figures 4.11 and 4.15, 

respectively, as well as the peak in the Peclet number shown in Figure 4.13. This velocity 

scale was also justified by showing the importance of the piston speed for the 

instantaneous fluid velocity, as shown in Ch. 2.  

Additionally, it is found that the Peclet number, rather than the Reynolds number, 

is best used to understand the heat transfer during the expansion process. This was seen 

from the original form of the heat transfer model, Eq. 2.13, which showed that the key 

non-dimensional parameter governing the process was not just the Reynolds number, but 

the product of the Reynolds and Prandtl numbers, which is the Peclet number. Since the 

Reynolds and Prandtl numbers change significantly during the expansion, modeling the 

process using the Peclet number incorporates the time dependence of the both the 

Reynolds and Prandtl numbers into the overall heat transfer model. The importance of 

using the Peclet number to characterize the expansion process is emphasized by the 

importance of the characteristic Peclet number on predicting the polytropic exponent.  

 

5.2 Universality 

One limitation with many current heat transfer models is their dependence on 

empirical constants, which may vary with both test apparatuses and test conditions. This 

lack of universality is a serious hindrance for one who wishes to predict heat transfer 
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without experimental data available. The universality of the proposed model is dependent 

on two factors which must be considered: the overall form of the proposed model, and the 

proposed relationship for the polytropic exponent. 

The form of the heat transfer model (Eq. 4.1) was determined analytically for the 

expansion process; the key assumption involved was that the pressure and volume in the 

expansion followed a polytropic relationship, 𝑃𝑉𝑛 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, where n is constant. This 

is generally true for many processes, and the data collected here shows that assumption is 

valid for the current test conditions (Zucker & Bilbarz, 2002). The analysis behind this 

model was a straightforward application of the conservation of energy principle; because 

this is universally true, it is expected that the form of the heat transfer model is valid 

regardless of test conditions/apparatus, provided that the expansion behaves in a 

polytropic manner. If it were found for different tests that n was not constant but varied 

slightly, it is expected that the form of the heat transfer model could still be used; 

however the model for predicting n would have to be modified to account for variations 

during expansion.  

It was proposed in Ch. 2 that a relationship exists between the polytropic 

exponent and the characteristic time scales associated with the expansion process. This 

characteristic time scale could be reported as a characteristic Peclet number, relating the 

expansion rate to the heat diffusion rate; or as a dimensionless mean piston speed, 

relating the expansion rate to an acoustic rate that describes the thermodynamic state of 

the gas. The models developed in Ch. 4 show that either characteristic time scale could be 
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used to describe the polytropic exponent, though the model based on the characteristic 

Peclet number was preferred due to the significance of the instantaneous Peclet number 

to the expansion process. While these relationships were validated by the data collected, 

the universality of these relationships cannot be judged without more extensive 

experiments conducted, both at different operating conditions and with other 

experimental apparatuses.  

 

5.3 Recommendations 

This study provides a new expression for heat transfer during the expansion of a 

gas based on an analytically derived heat transfer model, combined with experimental 

data. The experimental results are in very good agreement with the analytical results, 

supporting the proposed model. While it is expected that the overall form of the model 

could be applied to many situations, the proposed relationships for the polytropic 

exponent need further, independent tests to show how universally it could be applied. 

While the model for n responded well to changes in the operating conditions for these 

tests, the experiments conducted did not test variations with mixture composition or peak 

temperature at the beginning of expansion. Additionally, tests could be conducted with 

different geometries (such as a different cylinder diameter) than currently used. Testing 

the applicability of the proposed model for the polytropic exponent over different test 

conditions would provide further indication of the universality of the proposed model. 
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At several points during this study, it was found that some flexibility exists in the 

development and interpretation of the heat transfer model. In describing the polytropic 

exponent, it was found that a model could be developed using either the characteristic 

Peclet number or a dimensionless mean piston speed. While the model based on the 

characteristic Peclet number was proposed as the preferred model because of the 

significance of the instantaneous Peclet number to the heat transfer model, further 

research could be conducted to determine what characteristic time scale is the most 

appropriate to model the polytropic exponent. The length scale used in the Peclet, 

Reynolds and Nusselt numbers during for the majority of this study was the cylinder 

diameter. However, other length scales could be selected without invalidating the 

proposed heat transfer model, as discussed in Ch. 4. While the selection of this length 

scale does not affect the predictions for the heat transfer coefficient, it does affect how 

heat transfer in the expansion process is interpreted and understood. Therefore, future 

work could be done on determining whether a length scale other than the cylinder 

diameter is more appropriate in describing and modeling this process. 

Finally, the model developed for heat transfer assumed that the expansion could 

be modeled as polytropic. While this was verified experimentally for the test conditions 

examined, it is possible that this assumption would not be valid for other test conditions. 

It is suggested that the overall heat transfer model, Eq. 4.1, could be used to model 

expansions that are not polytropic, provided that the exponent n does not change 

significantly during the expansion. However, the model for n would have to be altered to 
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reflect this deviation, indicating that the extension of the proposed heat transfer model to 

near-polytropic expansions is an area of possible further research.   
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Appendix A - Conservation Equations for Mass, Momentum, and 

Energy 

 

The governing equations for many problems related to thermal-fluid sciences are 

the conservation of mass, conservation of momentum, and conservation of energy 

equations. This set of equations, together with the appropriate boundary conditions, 

describes the temperature, velocity, and density distributions within a fluid completely, 

provided that the flow is laminar. In their full form, these equations are all coupled and 

highly non-linear. However, they can be simplified significantly in many situations, such 

as when density, thermal conductivity, specific heat, and/or viscosity are constant, when 

time dependence is negligible, or when gradients are confined to a single direction. The 

problem of gas expansion involves large temperature ranges, therefore assuming constant 

properties is not realistic. The process is inherently unsteady, and indeed describing the 

transient heat transfer is the goal of this study, therefore the time dependence of the 

process cannot be neglected. Additionally, one can see that the flow must be at least two-

dimensional simply by imposing the no-slip boundary condition on all walls. This forces 

a radial velocity gradient (since the velocity is non-zero at the centerline) and an axial 

gradient (since the velocity is zero at the end of the cylinder and non-zero at the piston 

face). Therefore, the set of conservation equations describing this process becomes very 

daunting, prompting the use of other analytic methods to investigate this problem.  

 The conservation equations can be written (using tensor notation) as follows 

(Kakac & Yener, 1987): 
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Conservation of Mass (continuity): 

 𝜕𝜌

𝜕𝑡
+

𝜕

𝜕𝑥𝑖
(𝜌𝑢𝑖) = 0 (A.1) 

Where ρ is the gas density and ui is the velocity in the i direction.  

Conservation of Momentum (Newton’s 2
nd

 law): 

 
𝜌
𝐷𝑢𝑖

𝐷𝑡
= 𝜌𝑔𝑖 −

𝜕𝑃

𝜕𝑥𝑖
+

𝜕

𝜕𝑥𝑗
 𝜇  

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
 −

2

3
𝛿𝑖𝑗

𝜕𝑢𝑚

𝜕𝑥𝑚
  (A.2) 

Where P is the gas pressure and g is the body force per unit mass (such as gravity). 

Conservation of Energy (1
st
 law of thermodynamics): 

 
𝜌
𝐷𝑕

𝐷𝑡
= ∇ ∙  𝜅∇𝑇 +

𝐷𝑃

𝐷𝑡
+ 𝜇Φ (A.3) 

Where h is the enthalpy per mass of the gas, and Φ is the viscous dissipation function: 

 
Φ =

𝜕𝑢𝑖

𝜕𝑥𝑗
 
𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
  (A.4) 

These equations are non-linear because of the material derivative term, D/Dt. 

Additionally, they are each partial differential equations, and are highly coupled, meaning 

that they must be solved simultaneously. Because of these complexities, there is no 

known closed-form solution to these equations without considerable simplifications being 

made. The analysis conducted for this study was conducted on a spatially averaged 

consideration. This kept the essential time-dependence of the expansion process but 

simplified the problem greatly, as discussed in Chapter 2.  
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Appendix B - Characteristic Expansion Velocity 

 

In order to better describe the characteristic fluid velocities seen within the 

cylinder during the expansion process, the axial velocity distribution was analyzed. This 

was done by applying the 1-D, differential form the continuity equation to this process. 

For the purposes of this analysis, a rigorous, detailed description of the velocity 

distribution is not necessary. Rather, it is desired to obtain a simple estimate of what the 

velocities within the cylinder are, which could be used to determine what velocity scale 

should be used to describe the overall process.  

  An estimate of the velocity distribution between the piston and the end of the 

cylinder can be made by using the differential form of the continuity equation, applied 

along the centerline as shown in Figure 2.2. 

 

Figure B.1 – Geometry for use in determine the characteristic fluid velocity during 

expansion 

 

The continuity equation in two dimensions can be written and expanded as: 
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 𝐷𝜌

𝐷𝑡
+ 𝜌

𝜕𝑢

𝜕𝑥
+ 𝜌

𝜕𝑣

𝜕𝑦
= 0 (B.1) 

 𝜕𝜌

𝜕𝑡
+ 𝑢

𝜕𝜌

𝜕𝑥
+ 𝑣

𝜕𝜌

𝜕𝑦
+ 𝜌

𝜕𝑢

𝜕𝑥
+ 𝜌

𝜕𝑣

𝜕𝑦
= 0 

(B.2) 

By confining this analysis to the 1-D velocity profile along the centerline (assuming 

symmetry), the derivatives with respect to y can be neglected. 

 𝜕𝜌

𝜕𝑡
+ 𝑢

𝜕𝜌

𝜕𝑥
+ 𝜌

𝜕𝑢

𝜕𝑥
= 0 

(B.3) 

To proceed with this analysis, some information concerning the spatial variation of 

density is required. In the prior analysis for heat transfer during an expansion, uniform 

pressure and temperature were assumed to simplify the analysis. Employing the same 

assumption implies that density is uniform within the cylinder via the ideal gas law (Eq. 

2.3). Therefore, the continuity equation can be expressed as: 

 𝜕𝜌

𝜕𝑡
+ 𝜌

𝜕𝑢

𝜕𝑥
= 0 

(B.4) 

Density can be re-written as 𝜌 = 𝑚/𝑉, and since the mass of the gas is constant this 

reduces Eq. B.4 to: 

 𝜕𝑢

𝜕𝑥
=

1

𝑉

𝜕𝑉

𝜕𝑡
 

(B.5) 

The volume of the gas for the piston-cylinder geometry examined is 𝑉(𝑡) = 𝐴𝑐𝐿(𝑡), 

which is substituted into Eq. B.5 to form: 

 𝜕𝑢

𝜕𝑥
=

1

𝐿

𝜕𝐿

𝜕𝑡
=

𝑣𝑝

𝐿
 

(B.6) 



123 

 

 

Here the simplification has been made that 𝜕𝐿/𝜕𝑡 is simply the piston speed, 𝑣𝑝 . 

Integrating Eq. B.6 along x and using the boundary condition of 𝑢 𝐿 = 𝑣𝑝  produces the 

velocity distribution given by Eq. B.7: 

 𝑢 =
𝑣𝑝

𝐿
𝑥 

(B.7) 

This is a simple, linear velocity distribution for the fluid along the centerline of the 

piston-cylinder expansion. It varies from zero at the stationary end of the cylinder to the 

piston velocity, which changes over time. Since Eq. B.7 is linear, the average fluid 

velocity (found by integrating along x and dividing by L) is found to be half the piston 

speed: 

 𝑢𝑚 =
𝑣𝑝

2
 (B.8) 

This analysis represents a very simplified version of the expansion process. In particular, 

spatial gradients in density were ignored and the analysis was confined to the centerline 

assuming that non-axial gradients could then be ignored. While these assumptions may 

be too restrictive for a detailed model of the velocity distribution, that was not the intent 

of this analysis. Rather, the goal was to ascertain what would be an appropriate velocity 

scale for the fluid within the cylinder. This analysis suggests that the piston speed is the 

characteristic velocity of the expansion process. Since this was the velocity scale used in 

the Reynolds number for the heat transfer model, this analysis provides justification for 

that selection.  
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Appendix C – Experimental Apparatus 

  

The experimental apparatus used for these tests was the single piston-cylinder 

assembly which undergoes a single combustion and an expansion event. It is located at 

the laboratory of Long Haul Power, Inc, and was built prior to this author’s involvement. 

It is equipped with a piezo-resistant pressure sensor to measure initial fill pressure, two 

piezo-electric sensors for the rapid pressure rise and decay of combustion and expansion, 

and a cable-extension position transducer to determine piston position and therefore 

cylinder volume. As the gas expands, the work done on the piston is dissipated by raising 

a weight. While the schematic shown in Figure 3.1 illustrates the operating features of 

this experimental apparatus, photographs are included here in Figures C.1-C.2. 
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Figure C.1 – Image of test apparatus used for experiments 
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Figure C.2 – Image of test apparatus used for experiments, showing position of data 

acquisition instruments 

 

The output from the sensors on the experimental apparatus were read and 

recorded by a LabVIEW  controlled data acquisition system, which was also built by 

Long Haul Power prior to this author’s involvement. This data acquisition system 

recorded samples at a rate of 25,000 Hz. The block diagram is given in Figures C.3-C.4, 

while a screenshot of the front panel is shown in Figures C.5-C.6. Both the block diagram 

and the front panel are split between two figures because of their size.  
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Figure C.3 – Screenshot of LabVIEW block diagram showing data collection system; Part 1 of 2 



128 

 

 

Figure C.4 – Screenshot of LabVIEW block diagram showing data collection system; Part 2 of 2 
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Figure C.5 – Screenshot of LabVIEW front panel showing data collection system; Part 1 of 2 
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 Figure C.6 – Screenshot of LabVIEW front panel showing data collection system; Part 2 of 2 
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Appendix D –Position Transducer Calibration 

The test apparatus and instrumentation used for these tests were supplied by 

Long Haul Power, LLC, and had been installed prior to this author’s involvement in 

the project. While calibration information was available for the pressure sensors used, 

it was not available for the position transducer. This position transducer was a cable-

extension transducer by Celesco, model PT5A. It was mounted to a stationary frame, 

while the cable was attached to the free end of the piston (see Figure 3.1). To calibrate 

the position transducer, the piston position was determined by means of a measuring 

tape fixed to the side of the piston and compared to the voltage output for the position 

transducer. Piston position was referenced to zero when it was flush with the end of 

the cylinder. During expansion experiments the initial fill volume was attached to the 

end of the cylinder. Therefore, when applying the calibration curve to determine 

piston position and cylinder volume, the length of the initial fill volume was added to 

the position calculated from the calibration curve. 

 The calibration procedure consisted of first taking eight voltage readings with 

the piston flush to determine the zero readings. The piston was moved manually 

between tests to test the repeatability of the readings. Next readings were taken by 

moving the piston some random distance and recording the voltage output from the 

transducer. Piston distances were selected in no prescribed order to minimize any 

hysteresis effects. It was found that the voltage output varied linearly with position, as 

was expected. The equation of the line is given in Eq. D.1: 
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 𝑥 = 8.884(𝑉 − 1.05) (D.1) 

The curve fit error was calculated as the standard deviation between the 

position calculated from the curve fit and the measured position: 

 

𝑆 =   
 𝑦𝑚𝑒𝑎𝑠 − 𝑦𝑐𝑎𝑙𝑐  2

𝑁 − 2

𝑁

𝑖=1

 (D.2) 

Where N is the number of calibration points taken. The curve fit error was found to be 

0.051 inches. This was combined with the uncertainties of the measurement standard 

used, which was 0.0313 inches (half the precision of the measuring tape used), in a 

root-sum-square fashion to give a final uncertainty of 0.060 inches.  

The calibration curve data for piston position is shown in Figure D.1, and the 

calibration data is included in Table D.1.  

 

Figure D.1 – Calibration curve for the cable-extension position transducer 
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Table D.1 - Calibration Data for the Cable-Extension Position Transducer 

Test # 

Voltage 

Output (V) 

Measured Piston 

Position (in) Test # 

Voltage 

Output (V) 

Measured Piston 

Position (in) 

1 1.050 0 24 2.474 12.5625 

2 1.053 0 25 1.417 3.25 

3 1.051 0 26 1.495 3.9375 

4 1.054 0 27 1.290 2.1875 

5 1.054 0 28 1.451 3.625 

6 1.053 0 29 1.106 0.5 

7 1.053 0 30 1.053 0.0625 

8 1.053 0 31 1.069 0.1875 

9 1.748 6.125 32 2.460 12.5625 

10 2.459 12.4375 33 3.114 18.25 

11 1.404 3.125 34 2.418 12.1875 

12 1.620 5 35 2.425 12.25 

13 2.240 10.5 36 1.872 7.375 

14 1.150 0.9375 37 2.213 10.375 

15 2.486 12.6875 38 1.394 3.125 

16 2.027 8.6875 39 1.108 0.5625 

17 2.372 11.6875 40 1.969 8.25 

18 1.448 3.5 41 2.780 15.4375 

19 1.146 0.8125 42 2.964 17 

20 1.211 1.375 43 2.304 11.25 

21 1.542 4.3125 44 2.525 13.125 

22 1.902 7.625 45 2.618 13.9375 

23 2.236 10.5625 46 2.843 15.9375 
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Appendix E – Wall Temperature Analysis 

 

 In the determining of the heat transfer coefficient from experimental data, it 

was assumed that the wall surface temperature was constant and uniform. To test this 

assumption, the surface area for heat loss (which includes the piston head, cylinder 

head, and cylinder wall) was modeled as a semi-infinite solid subjected to a step 

change in heat transfer coefficient.  

 

Figure E.1 – Schematic for wall temperature analysis 

This is a 1-D transient conduction analysis; heat transfer through the solid is 

assumed to be only in the x direction. Assuming constant thermal conductivity and 

specific heat within the solid, the heat equation is: 

 1

𝛼

𝜕𝑇

𝜕𝑡
=

𝜕2𝑇

𝜕𝑥2
  (E.1) 
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The boundary conditions for this problem are that the solid is initially at a uniform 

temperature, that the solid remains at this initial temperature as x approaches infinity, 

and that the surface (at 𝑥 = 0) is exposed to a constant heat transfer coefficient, h, and 

a constant fluid temperature, T∞. Since this analysis is meant to be for a worst-case 

scenario, the heat transfer coefficient and gas temperature applied in this analysis are 

peak values experienced in the experiments. The boundary conditions can be 

represented mathematically:  

 𝑇 𝑥, 0 = 𝑇𝑖  (E.2a) 

 𝑇 𝑥 → ∞, 𝑡 =  𝑇𝑖  (E.2b) 

 
𝜅
𝜕𝑇

𝜕𝑥
│𝑥=0 = 𝑕 𝑇 0, 𝑡 − 𝑇∞  

(E.2c) 

This conduction problem has an analytic solution, which is given as (Carslaw & 

Jaeger, 1959): 

 𝑇 𝑥, 𝑡 − 𝑇𝑖

𝑇∞ − 𝑇𝑖
= 𝑒𝑟𝑓𝑐  

𝑥

2 𝛼𝑡
 −  𝑒𝑟𝑓𝑐  

𝑥

2 𝛼𝑡
+

𝑕 𝛼𝑡

𝜅
   𝑒

𝑕𝑥
𝜅

+
𝑕2𝛼𝑡
𝜅2   

(E.3) 

Where 𝛼 is the thermal diffusivity (𝛼 = 𝜅/𝜌𝑐𝑝  ), and erfc is the complementary error 

function and is related to the Gaussian error function, erf as: 𝑒𝑟𝑓𝑐 = 1 − 𝑒𝑟𝑓. The 

Gaussian error function is a well tabulated mathematical function.  

The solution given by Eq. E.3 gives the temperature throughout the solid as a 

function of time and space, and is dependent on the material composition of the solid. 

The cylinder walls of the experimental apparatus are steel, while the cylinder head and 

piston face are aluminum. In order to make sure that the constant wall temperature 
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assumption is valid, the wall temperature distribution was calculated for both steel and 

aluminum walls. The thermal properties used for this analysis are given in Table E.1: 

 

Table E.1 - Thermal Properties Used for Wall 

Conduction Analysis 

Metal 

Thermal 

Conductivity 

Thermal 

Diffusivity 

Steel 64 W/m-K 1.88E-05 m
2
/s 

Aluminum 177 W/m-K 7.30E-05 m
2
/s 

 

The wall temperature distribution was evaluated using Eq. E.3 and plotted as a 

function of distance into the wall and elapsed time. Distance was limited to 0.25 

inches because that was the thickness of the cylinder wall. Time was limited to 50ms 

because that was the maximum expansion time during the tests conducted. The wall 

temperature used was 𝑇𝑤𝑎𝑙𝑙 = 290 𝐾, which is near the wall temperatures seen during 

the tests.  The heat transfer coefficient was chosen as 𝑕 = 350 𝑊/𝑚2𝐾 and the gas 

temperature used was 𝑇∞ = 1800 𝐾. These values were selected based on the 

maximum for each during the expansion (see Figures 4.10 and 4.15). In reality neither 

the heat transfer coefficient nor the gas temperature are constant, but instead they vary 

significantly with time. Since the maximum values are used here, this analysis is worst 

case and is expected to significantly over-predict the wall surface temperatures. Figure 

E.2 has the wall temperature distribution evaluated using the thermal properties of 

aluminum, while Figure E.3 has the wall temperature distribution evaluated using the 

thermal properties of steel.  
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Figure E.2 – Temperature distribution for aluminum using a semi-infinite solid 

analysis 

 

Figure E.3 – Temperature distribution for steel using a semi-infinite solid analysis 
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Figures E.2 and E.3 illustrate several key results. In both cases, the wall 

temperature at 0.25” is barely changed from the initial temperature, showing that the 

semi-infinite approximation is a valid model for the small expansion times of interest. 

The wall surface temperature is indicated by the temperature at a distance of 𝑥 = 0. 

This is seen to rise approximately 6.5K for the aluminum case and 9.0K for the steel 

case. This difference reflects that aluminum allows heat to diffuse more easily than 

steel does.  

In the case of either metal, the increase in surface temperature was small. The 

maximum increase in wall temperature was determined to be approximately 9K, or 3% 

of the wall temperature. The wall temperature was used to determine the gas to wall 

temperature difference, which was on the order of 400-1500K. This means that a wall 

temperature increase of 9K reflects a change in gas to wall temperature difference of 

0.6%-2.3%. Since overall uncertainties in heat transfer coefficient during this study 

were 15%-25% (see §3.4), the effect of changing wall temperature was insignificant. 

Additionally, this represents the maximum change in wall temperature since the 

analysis was conducted for a worst-case scenario, while real values are expected to be 

lower. Therefore, the wall temperature during the expansion was assumed to be 

constant for the purposes of this study.  
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Appendix F – Data Processing  

 

Data was taken in the form of pressure and volume measurements for the 

combustion and expansion process. The beginning of expansion was defined as the 

point when volume has increased by 1% of its original volume, as described in Ch. 2. 

Multiple tests were conducted at each operating condition in order to decrease 

uncertainties. These tests were then combined to form the representative data set for 

each operating condition.  

Volume data was filtered by excluding outliers from the data set. These 

outliers were produced by vibrations/small oscillations present in the arm connecting 

the cable from the position transducer to the end of the piston. Because of the manner 

in which the arm was attached to the piston, these oscillations tended to produce 

outliers which were lower than the true signal. These were filtered by fitting a smooth 

polynomial to the raw data and computing a running five-point standard deviation 

based on the smooth curve. The cutoff value was chosen as five standard deviations 

(5𝜍); any values beyond this cutoff were removed and then replaced with the cutoff 

value, in order to keep the data set the same size. This filtering process is shown in 

Figure F.1.  
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Figure F.1 – Volume versus time for a single expansion in Test Case D, showing raw 

and filtered data. 

 

Multiple tests were conducted at each test condition and combined into a single 

curve representative of that test condition. It was found that the energy balance 

method used to extract heat transfer information required that the data be smooth; 

therefore these tests were combined by fitting a smooth curve through the combined 

tests. Volume data was fitted by a fifth order polynomial, which was determined by 

using the least squares regression function polyfit available in Matlab©. A fifth order 

polynomial was chosen because it was found to smoothly match the data well, both at 

the initial stage of expansion (when velocity is low but acceleration is high) and at the 

final stage of expansion (when velocity is high and acceleration is low). Pressure-

volume data was found to match a power law curve very well, therefore this least 
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squares fit was done using a first order (linear) polynomial using the logarithms of 

pressure and volume (see Eq. 3.2). These curve fits can be seen in Figures F.2 and F.3. 

 

Figure F.2 – Volume versus time for Test Case D, showing individual runs and the 

polynomial curve fit. 
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Figure F.3 – Pressure versus volume for Test Case D, showing individual runs and the 

power law curve fit. 
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Appendix G – Experimental Uncertainties 

 The uncertainties in calculated parameters, such as the heat transfer coefficient 

and Reynolds number, were determined by propagating the uncertainties from the 

measured variables. The uncertainty in a measured variable was determined by 

combining the instrument bias errors and the precision errors for the experiment, 

which were combined using the root-sum-square method. Bias errors were known 

from either the manufacturer’s information or calibration. Precision errors were 

calculated from the sample standard deviation between test cases, assuming 95% 

confidence for the t-factor. For cylinder pressure and volume during expansion, the 

precision errors were evaluated at five points along the pressure-volume diagram and 

then averaged. It was found that the precision errors were significantly larger than the 

bias errors, however both contributed to the overall uncertainty in the experiments. 

Table G.1 reports the bias errors associated with each of the measured variables, and 

Table G.2 reports the precision errors associated with each of the measured variables. 

These were combined in a root-sum-square fashion to produce the total uncertainties 

reported in Table 3.3 and repeated here in Table G.3.  

Table G.1 - Bias Uncertainties for Each Measured Variable 

 Test 

Case Diameter 

Initial 

Volume 

Fill 

Pressure 

Ambient 

Temperature Pressure Volume 

Case A 0.01% 3.40% 2.63% 0.10% 1.30% 1.00% 

Case B 0.01% 3.40% 1.94% 0.10% 1.30% 1.00% 

Case C 0.01% 3.40% 1.41% 0.10% 1.30% 1.00% 

Case D 0.01% 3.40% 1.12% 0.10% 1.30% 1.00% 

Case E 0.01% 3.40% 0.87% 0.10% 1.30% 1.00% 
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Table G.2 - Precision Uncertainties for Each Measured Variable 

 Test 

Case Diameter 

Initial 

Volume 

Fill 

Pressure 

Ambient 

Temperature Pressure Volume 

Case A 0.58% 5.05% 1.17% 1.39% 5.56% 3.71% 

Case B 0.58% 5.02% 0.78% 0.24% 8.90% 6.63% 

Case C 0.58% 5.42% 0.86% 0.00% 10.84% 8.79% 

Case D 0.58% 4.13% 0.64% 1.09% 5.41% 4.48% 

Case E 0.58% 1.30% 0.62% 0.53% 16.02% 13.28% 
 

 

Table G.3 - Total Uncertainties for Each Measured Variable 

 Test 

Case Diameter 

Initial 

Volume 

Fill 

Pressure 

Ambient 

Temperature Pressure Volume 

Case A 0.58% 6.09% 2.88% 1.39% 5.71% 3.84% 

Case B 0.58% 6.06% 2.09% 0.26% 8.99% 6.70% 

Case C 0.58% 6.40% 1.65% 0.10% 10.92% 8.85% 

Case D 0.58% 5.35% 1.29% 1.09% 5.56% 4.59% 

Case E 0.58% 3.64% 1.07% 0.54% 16.07% 13.32% 

  

These uncertainties were propagated to calculated parameters using the Kline-

McClintock method. This method calculates the uncertainty in a calculated parameter 

based on the gradient of the calculated parameter with respect to the measured 

parameter and the uncertainty in the measured parameter. If the calculated parameter 

is a function of multiple measured parameters, this method is repeated for each 

measured variable and the resulting uncertainties are combined in a root-sum-square 

manner. The Kline-McClintock method is represented mathematically by Eq. G.1: 

 

𝑢𝑅 =    
𝜕𝑅

𝜕𝑥𝑖
𝑢𝑥𝑖

 
2

 (G.1) 

Where R is the calculated parameter, 𝑥𝑖  are the measured variables, 𝑢𝑖  are the 

uncertainties in the measured variables, and 𝑢𝑅  is the uncertainty in the calculated 
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parameter. Using this procedure, the uncertainties in key calculated parameters were 

determined. For some parameters the uncertainty was fixed, while for others the 

uncertainty varied during the expansion. While the mean uncertainties were given in 

Tables 3.5 and 3.6 in the main body of the report, the minimum, maximum, and mean 

values are reported in Tables G.4-G.8 for each test case.  

Table G.4 - Propagated Uncertainties for Test Case A 

Parameter Minimum Maximum Mean 

Moles 7.10% 7.10% 7.10% 

Density 8.10% 8.10% 8.10% 

Bulk Gas Temperature 9.90% 9.90% 9.90% 

Piston Velocity 0.00% 36.20% 3.60% 

Heat Transfer Coefficient 8.60% 40.70% 13.40% 

Reynolds Number 9.40% 35.40% 10.70% 

Nusselt Number 11.40% 41.40% 15.40% 

Prandtl Number 9.90% 9.90% 9.90% 

Peclet Number 13.65% 36.76% 14.58% 

Characteristic Peclet 

Number 11.49% 11.49% 11.49% 

  

Table G.5 - Propagated Uncertainties for Test Case B 

Parameter Minimum Maximum Mean 

Moles 6.60% 6.60% 6.60% 

Density 9.40% 9.40% 9.40% 

Bulk Gas Temperature 13.00% 13.00% 13.00% 

Piston Velocity 0.00% 47.70% 3.80% 

Heat Transfer Coefficient 7.90% 50.10% 17.40% 

Reynolds Number 10.40% 44.50% 12.00% 

Nusselt Number 12.50% 51.00% 20.10% 

Prandtl Number 13.00% 13.00% 13.00% 

Peclet Number 16.65% 46.36% 17.69% 

Characteristic Peclet 

Number 11.66% 11.66% 11.66% 
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Table G.6 - Propagated Uncertainties for Test Case C 

Parameter Minimum Maximum Mean 

Moles 6.70% 6.70% 6.70% 

Density 11.10% 11.10% 11.10% 

Bulk Gas Temperature 15.60% 15.60% 15.60% 

Piston Velocity 0.00% 77.00% 6.40% 

Heat Transfer Coefficient 8.10% 84.40% 26.70% 

Reynolds Number 11.80% 71.20% 15.10% 

Nusselt Number 14.20% 85.20% 29.40% 

Prandtl Number 15.50% 15.50% 15.50% 

Peclet Number 19.48% 72.87% 21.64% 

Characteristic Peclet 

Number 12.66% 12.66% 12.66% 

 

Table G.7 - Propagated Uncertainties for Test Case D 

Parameter Minimum Maximum Mean 

Moles 5.67% 5.67% 5.67% 

Density 7.30% 7.30% 7.30% 

Bulk Gas Temperature 9.17% 9.17% 9.17% 

Piston Velocity 0.00% 20.46% 2.42% 

Heat Transfer Coefficient 6.80% 23.02% 13.91% 

Reynolds Number 8.05% 18.78% 8.87% 

Nusselt Number 9.69% 24.04% 15.62% 

Prandtl Number 9.16% 9.16% 9.16% 

Peclet Number 12.20% 20.90% 12.75% 

Characteristic Peclet 

Number 9.48% 9.48% 9.48% 

 

Table G.8 - Propagated Uncertainties for Test Case E 

Parameter Minimum Maximum Mean 

Moles 3.90% 3.90% 3.90% 

Density 13.90% 13.90% 13.90% 

Bulk Gas Temperature 21.20% 21.20% 21.20% 

Piston Velocity 0.00% 251.60% 16.60% 

Heat Transfer Coefficient 4.70% 308.80% 48.70% 

Reynolds Number 13.70% 241.50% 24.70% 

Nusselt Number 16.60% 309.20% 52.20% 

Prandtl Number 21.20% 21.20% 21.20% 

Peclet Number 25.24% 242.43% 32.55% 

Characteristic Peclet 

Number 12.56% 12.56% 12.56% 
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The propagation of uncertainty can also be represented graphically. This was 

done by linking the calculated parameter to the measured variables used to calculate it, 

along with the associated uncertainties. This is shown in Figures G.1-G.8, using values 

for the uncertainties from Test Case D.  

 

Figure G.1 – Propagation of uncertainty for the number of moles of gas in the cylinder 

during expansion 
  

 

Figure G.2 – Propagation of uncertainty for the bulk gas temperature during expansion 
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Figure G.3 – Propagation of uncertainty for the gas density during expansion 
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Figure G.4 – Propagation of uncertainty for the heat transfer coefficient during 

expansion 
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Figure G.5 – Propagation of uncertainty for the Nusselt number during expansion 

 

 

 
 

Figure G.6 – Propagation of uncertainty for the Prandtl number during expansion 
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Figure G.7 – Propagation of uncertainty for the Reynolds number during expansion 

 

 

 
 

 

Figure G.8 – Propagation of uncertainty for the Peclet number during expansion 
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Appendix H - Experimental Data 

 

Multiple tests were conducted for each test condition, and multiple test 

conditions were examined to determine overall trends. The results given in the main 

body of the report contain samples of the experimental data that represent the 

processes, but does not contain all the data for the sake of brevity. The figures 

included in this appendix represent the sum of the data collected for this study. 

Contained in Figures H.1 – H.5 are data from the constant volume combustion 

(“bomb”) tests showing how combustion time was determined. Contained in Figures 

H.6 – H.10 are data showing the pressure and volume during a single combustion and 

expansion event. These figures illustrate how the combustion time information was 

used to justify that combustion was complete when expansion began. Contained in 

Figures H.11 – H.30 are the experimental data for gas expansion for each of the test 

cases conducted. These figures show the raw data and the curve fits applied to 

represent each test case.  
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Bomb Data  

 

Figure H.1 – Bomb data for Test Case A 

 

 

Figure H.2 – Bomb data for Test Case B 
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Figure H.3 – Bomb data for Test Case C 

 

 
Figure H.4 – Bomb data for Test Case D 

 

 



155 

 

 

 
Figure H.5 – Bomb data for Test Case E 
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Combustion and Expansion Data 

 

Figure H.6 – Combustion & expansion data for Test Case A, showing the end of 

combustion as obtained from bomb data and the beginning of expansion by 1% 

increase from initial volume. 
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Figure H.7 – Combustion & expansion data for Test Case B, showing the end of 

combustion as obtained from bomb data and the beginning of expansion by 1% 

increase from initial volume. 

 

 
Figure H.8 – Combustion & expansion data for Test Case C, showing the end of 

combustion as obtained from bomb data and the beginning of expansion by 1% 

increase from initial volume. 
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Figure H.9 – Combustion & expansion data for Test Case D, showing the end of 

combustion as obtained from bomb data and the beginning of expansion by 1% 

increase from initial volume. 

 

 
Figure H.10 – Combustion & expansion data for Test Case E, showing the end of 

combustion as obtained from bomb data and the beginning of expansion by 1% 

increase from initial volume. 
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Additional Experimental Data 

 

Figure H.11 – Measured cylinder volume versus time during expansion for Test Case A  

 

Figure H.12 – Measured cylinder pressure versus time during expansion for Test Case A 
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Figure H.13 – Measured pressure versus measured cylinder volume during expansion 

for Test Case A  

 

 

Figure H.14 – Measured cylinder volume versus time during expansion for Test Case 

A, logarithmic scale  
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Figure H.15 – Measured cylinder volume versus time during expansion for Test Case 

B  

 

 

Figure H.16 – Measured cylinder pressure versus time during expansion for Test Case 

B  
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Figure H.17 – Measured cylinder pressure versus measured cylinder volume during 

expansion for Test Case B  

 

Figure H.18 – Measured cylinder pressure versus volume during expansion for Test 

Case B, logarithmic scale  
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Figure H.19 – Measured cylinder volume versus time during expansion for Test Case 

C  

 

Figure H.20 – Measured cylinder pressure versus time during expansion for Test Case 

C  
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Figure H.21 – Measured cylinder pressure versus measured cylinder volume during 

expansion for Test Case C  

 
Figure H.22 – Measured cylinder pressure versus volume during expansion for Test 

Case C, logarithmic scale 
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Figure H.23 – Measured cylinder volume versus time during expansion for Test Case 

D 

 

 
Figure H.24 – Measured cylinder pressure versus time during expansion for Test Case 

D 
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Figure H.25 – Measured cylinder pressure versus measured cylinder volume during 

expansion for Test Case D 

 
Figure H.26 – Measured cylinder pressure versus volume during expansion for Test 

Case D, logarithmic scale 
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Figure H.27 – Measured cylinder volume versus time during expansion for Test Case 

E 

 

 
Figure H.28 – Measured cylinder pressure versus time during expansion for Test Case 

E 
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Figure H.29 – Measured cylinder pressure versus measured cylinder volume during 

expansion for Test Case E 

 
Figure H.30 – Measured cylinder pressure versus volume during expansion for Test 

Case E, logarithmic scale 
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Appendix I – Thermophysical Fluid Properties 

 

In order to analyze the gas expansion process and calculate key non-

dimensional parameters, several thermophysical properties were necessary. The 

necessary quantities were the dynamic viscosity, μ, the thermal conductivity, κ, and 

the specific heat at constant pressure, cp. These quantities were taken from the 

computer program Engineering Equation Solver, also known as EES. This program 

has the desired thermophysical properties available as built in functions, determined 

assuming ideal gas behavior so that they are functions of temperature only. These 

functions were used to generate tables of μ, κ, and cp for a range of temperatures for 

the gas species present during expansion (N2 and H2O). Since the data processing was 

done using Matlab©, these tables generated from EES were imported into Matlab© 

and turned into functions, which returned the desired thermophysical property given 

the gas temperature. Mixture properties of μ, κ, and cp were determined by a mass 

average of N2 and H2O. Figure I.1 shows the viscosity of the gas mixture during 

expansion, Figure I.2 shows the thermal conductivity of the gas mixture during 

expansion, and Figure I.3 shows the specific heat at constant pressure of the gas 

mixture during expansion. Figure I.4 shows the thermal diffusivity, 𝛼 = 𝜅/𝜌𝑐𝑝 . 

Because this property varies with pressure as well as temperature, it generally varies 

more than the other thermal properties. Shown in each figure are the properties for 

each test case. Since all tests were conducted at the same gas composition, differences 
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between test cases primarily reflect different temperatures at that point in the 

expansion. For Test Case D, thermal diffusivity changed by approximately a factor of 

three between the start and end of expansion, thermal conductivity changed by 

approximately a factor of two, viscosity changed by a factor of ~1.5, and specific heat 

changed by a factor of 1.2.  

 

Figure I.1 – Viscosity of the gas mixture for each test case during expansion 
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Figure I.2 – Thermal conductivity of the gas mixture for each test case during 

expansion 

 

 

Figure I.3 – Specific heat at constant pressure of the gas mixture for each test case 

during expansion 
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Figure I.4 – Thermal diffusivity of the gas mixture for each test case during expansion 
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Appendix J – Results of Applying the Alternate Model for the 

Polytropic Exponent 

 

 In Chapter 4, it was shown that the polytropic exponent, n, can be modeled 

using a characteristic time scale for the expansion process. Two models for n were 

proposed; a model based on the ratio between the heat diffusion time scale and the 

expansion time scale (this was simplified into the characteristic Peclet number), and a 

model based on the ratio between the acoustic time scale and the expansion time scale 

(this was termed the dimensionless mean piston speed). Both models were shown to 

be viable methods of describing the polytropic exponent.  

The model based on the characteristic Peclet number is given by Eq. 4.12, and 

was used as the preferred model in this study because the instantaneous Peclet number 

was also found to be important to the heat transfer. When assessing the overall heat 

transfer model in Figure 4.22-4.26, the polytropic exponent was calculated using the 

model based on the characteristic Peclet number. However, calculating the polytropic 

exponent based on the dimensionless mean piston speed from Eq. 4.15 is a viable 

method of determining n, and when applied to the overall heat transfer model good 

agreement between the data and the model is achieved. The results of calculating n 

using Eq. 4.15 (reproduced below as Eq. J.1) and using this for the overall heat 

transfer model are shown in Figures J.1-J.4.  
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Alternate 

Model: 

𝐼𝑓 𝑆𝑝
∗ ≤ 0.006:          

𝑛

𝛾0
= 0.054𝑆𝑝

∗−1/2 + 0.4 

𝐼𝑓 𝑆𝑝
∗ > 0.006:          

𝑛

𝛾0
= −13.5𝑆𝑝

∗ + 1.18 

(J.1a) 

 

(J.1b) 

 

 

Figure J.1 – Comparison of experimental results and the alternate heat transfer model 

for the polytropic exponent – Test Case A 
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Figure J.2 – Comparison of experimental results and the alternate heat transfer model 

for the polytropic exponent – Test Case B 

 

 

Figure J.3 – Comparison of experimental results and the alternate heat transfer model 

for the polytropic exponent – Test Case C 
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Figure J.4 – Comparison of experimental results and the alternate heat transfer model 

for the polytropic exponent – Test Case D 

 

 
 

Figure J.5 – Comparison of experimental results and the alternate heat transfer model 

for the polytropic exponent – Test Case E 
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