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ON THE ENUMERATION OF CERTAIN EQUIVALENCE CLASSES 

OF EULER PATHS OF FULL GRAPHS 

Chapter I 

Introduction 

Graph theory has its origin in the works of Leonhard 

Euler in the early part of the eighteenth century [3]. 

The subject has experienced a strong revival in the past 

decade. Not only is graph theory being recognized as a 

powerful tool in applications but the theory is being 

extended at an increasing rate. The standard references 

in graph theory are those by Berge, König, and Ore found 

in the bibliography [2], [4], [5]. 

The statement of our main problem and its treatment 

are graph theoretical. However, we may alternatively 

state the problem as a problem in combinatorial analysis 

as follows: "Enumerate the non -equivalent cyclic 

arrangements of symbols taken from a set of n distinct 

symbols where each unordered pair of distinct symbols 

occurs in adjacent positions once and only once. Two 

arrangements are equivalent if and only if one may be 

obtained from the other by a finite sequence of rotations, 

reflections, and permutations of the distinct symbols." 

This problem has not received attention in the 

literature. The problem has its origin in the design of 

computers [6], but no such application of the results of 
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this thesis are envisioned. 

Let n be the number of distinct symbols from which 

arrangements are formed. We prove that there exists an 

arrangement if and only if n is odd and n > 3. We 

enumerate the non -equivalent arrangements for n = 3 and 

n = 5, but fail to obtain the enumeration for arbitrary 

n. We do obtain partial results for n = 7. We develop 

several rules of construction which give us all arrange- 

ments with at most a small number of repetitions from 

each equivalence class. However, even when we take 

n = 7 this method is prohibitive without a high speed 

computer partly because of the necessity of eliminating 

the repetitions mentioned. Finally, we prove a monoto- 

neity theorem for the number of pairwise non- equivalent 

arrangements. 
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Chapter II 

Basic Definitions and Theorems 

We are interested in full graphs in this thesis. 

full graph G(V) is defined by the equation, 

G(V) = 1(a, b} ( aeV, beV, a/b 

where V = j 1 < j < n }, n > 2, and the elements of 

G(V) are unordered pairs. Full graphs are known also as 

finite, unordered, complete graphs with no loops and with 

non- repeated edges. The elements of V are called 

vertices and the elements of G(V) are called edges. 

An Euler path on a full graph is a cyclic sequence 

of edges which contains each edge of the graph once and 

for which the intersection of two consecutive edges is a 

single vertex. Thus an Euler path is 

(2.1) 

where aieV, 1 < i 

.a1,a23, a2,a33, 

ai'ai+11, 
... 

< N, and where 

... 

, aN,al } }, 

N = 1,n(n -1) is the 

number of edges of G(V). 

A simpler notation for the Euler path in (2.1) is 

(2.2) al a2 a3 a4 ... ai-1 ai ai+1 ..* aN 

This arrangement is also referred to as the Euler path. 

It is now evident that the graph theoretical definition 

A 

}, 

ai-l' ail ' 

a1. 
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of an Euler path is equivalent to the combinatorial defini- 

tion given in the introduction. 

Example 1. If V = [1,2,33, an Euler path is 

{[1,2 },f2,3 }, {3,1 } }, or in the simpler notation of 

(2.2), 1 2 3 1. 

We will refer to an Euler path on a full graph with 

n vertices as simply an Euler path on n vertices. The 

first N symbols of (2.2) are the corners of the Euler 

path on n vertices. The symbol ai is the ith corner 

where 1 < i < N. Thus several corners may denote the 

same vertex. 

The next step in the investigation of Euler paths is 

to determine necessary and sufficient conditions on the 

order of the vertex set of the full graph for the existence 

of an Euler path on that graph. The following theorems 

will present these conditions. 

Theorem 1. If there exists an Euler path on a full 

graph G(V), then the order of V is odd and not less 

than three. 

Proof. We first prove that the order, n, is not 

less than three. That n is at least two follows from 

the definition of a full graph. If n = 2, then the 

full graph contains one edge. An Euler path would contain 

one edge with al as both the first and last vertex by 

(2.1), whereas by definition the vertices of an edge are 

distinct. 
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That n is odd also follows from a consideration of 

the Euler path as defined in (2.1). We have already noted 

that the vertex a1 occurs in the first and last edges. 

Also, if a vertex occurs in any other edge it must occur in 

either the preceding edge or the following edge. Hence 

since a1 does not occur in the second edge or the N -1 

st edge, then al must occur an even number of times in 

the remaining edges of (2.1). However, the number of 

edges containing vertex a1 of a full graph on n vertices 

is n -1. Thus n -1 must be even which implies that n 

must be odd and the theorem is proved. 

Theorem 2. If the order of the vertex set of a full 

graph G(V) is odd and not less than three, then there 

exists an Euler path on G(V). 

The proof which will be given here is different from 

known proofs which may be found in any standard reference 

in graph theory and in some works of topology [1]. This 

proof is useful in the construction of Euler paths for 

study in later chapters. The proof is by induction on the 

order of the vertex set. 

Proof. An Euler path on three vertices is given by 

Example 1. We assume that there is an Euler path on n 

vertices denoted by (2.2) where al = 1. Then an Euler 

path on n + 2 vertices is given by 

(2.3) b b2 b3 
1 2 3 ... bi ... bN bN bN 

bl' 

where bl = a1 = 1, 
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bi = ai (2<i<N), 

bN+2k-1 k (1<k<n), 

bN+4k-2 n+l -( 1<k<%( n+1) ) , 

bN+4k = 
n+2 (1<k<%(n-1)), 

bN+2n+1 = n+2. 

Clearly consecutive edges contain a common vertex. 

We need to show that each edge occurs once and only once. 

We will begin by showing that each edge appears at least 

once. The edges may be divided into four classes. 

Class 1. Edges of the form h, j} where 

1 < h < j < n. All edges of this class are found in the 

form bi,bi +l) where 1 < < N, since b1 b2 ... 

bN bN forms an Euler path on n vertices. 

Class 2. Edges of the forms [h,n +l} and h,n +2} 

where 2 < h < n. These edges may also appear in the 

form n +l,h} and [n +2,h }. Consider the edges 

{b b and 112.,=+ b 
} 

If h is even N +2h -2' N +2h -1 +2h- l'bN +2zfi ' 

they are [n +1,h} and h,n +2} respectively, whereas if 

h is odd they are n +2,h} and [h,n +l} respectively, 

Class 3. Edges of the forms {1,n +l} and 1,n +2 }. 

These edges may also appear in the form {n +l,l} and 

n +2,1} respectively. The edge {l,n +l} is {b , b + } N +1 N 2 

and the edge [n +2,1} is bN +2n b1}. 

i 

, +l 

= 

= 
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Class 4. The edge n +l,n +21. This edge is 

bN +2n' bN +2n +1 }' 

Finally, the number of edges of (2.3) is N +2n +l. 

Since 

N +2n +l = %n(n -1) + 2n + 1 = ß(n2 - n + 4n + 2) 

%(n2 + 3n + 2) = %(n ±2)(n +1) 

is the order of G(V) for a set V of order n +2, no 

edge can occur more than once. Thus each edge occurs 

exactly once and the proof is complete. 

Let k be the number of corners of an Euler path on 

n vertices which denote a specific vertex. We find that 

N = nk and k = 1(n -1). 

= 



8 

Chapter III 

Characteristic Sequences 

In this chapter we define equivalent Euler paths and 

devise a method of determining whether or not two given 

Euler paths are equivalent under this definition. 

Two Euler paths P and P' on the same full graph 

are defined to be equivalent if and only if P can be 

transformed into P' by a finite sequence of rotations 

and reflections of the path and permutations of the 

vertices of V. Here the terms rotation and reflection 

are taken in the geometric sense. More precisely, two 

Euler paths, P = al 
a2 

a3 a4 aN al, and P' = 

bl b2 b3 b4 bN bl, of the same full graph are defined 

to be equivalent if and only if there exists a permutation 

ai bi on the set a1,a2'a3'a4, ...,a 
N 

which is an 

element of the permutation group generated by elements of 

the following three types: Vertex Permutation, that is 

permutations for which corners which denote the same vertex 

have images which are corners which denote the same vertex; 

Rotations, that is permutations of the type, bi = ai for 

1 < i < N; Reflections, that is permutations of the type, 

b1 = a1 and bi = aN +2 -i for 2 < i < N. We define at 

for an arbitrary integer t by at = aj where 

j t (mod N) and 1 < j < N. 

- 

+k 

r 
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The above definition defines an equivalence relation 

on the set of all Euler paths on a given full graph. Each 

equivalence class of Euler paths contains paths which are 

sequences of rotations, reflections, and vertex permutations 

of a given path. Our problem is that of enumeration of 

equivalence classes for each odd n which is not less than 

three. This statement of our problem agrees with the 

statement given in the introduction. 

We wish to devise a practical way of determining 

whether or not two given Euler paths belong to the same 

equivalence class. For this purpose we define the right 

representative sequence. For a given Euler path, 

al a2 a3 ... ai ai ... aN al, 

the right representative sequence, or RRS, is 

r1 ... ri ri ... 
rN, 

where ri corresponds to the corner ai and 

(3.1) ri = min k ai +k = ai, k > 13. 

The element, ri, of this sequence is called the right 

characteristic number associated with the corner a.. 
i 

Since each vertex is denoted by k = 1/2(n -1) corners, then 

if n > 3, each vertex is denoted by more than one corner 

and will have more than one right characteristic number 

corresponding to it. 

A vertex permutation may be considered to be a 

relabelling of the elements of V. Thus, the RRS is 

+l 

r2 r3 

I 
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invariant under a vertex permutation since it is dependent 

upon the order of the vertices and not upon the symbols 

used to represent those vertices. We always perform a 

vertex permutation upon each Euler path we are considering 

in order to bring it to a form such that the first corner 

denoting the vertex i precedes the first corner denoting 

the vertex j if 1 < i < j < n. 

If the Euler path is subjected to a rotation then the 

effect upon the RRS is to operate upon it with the 

permutation, 

(3.2) 
ri ri +k. 

We define rt for any integer t by rt = rj where 

j E t (mod N) and 1< j< N. 

For the purpose of characterizing Euler paths to 

within a reflection, we also always perform a rotation upon 

each Euler path to transform it to a form al a2 aN al, 

such that the corresponding number, 

N 

r 
NN-i 

, is maximal. 

i=1 

The right representative sequence of an Euler path 

which has been transformed in the aforementioned way is 

called the right characteristic sequence, or RCS. The 

RCS is a characterization of an equivalence class 

corresponding to an equivalence relation where two Euler 

paths P and P' are equivalent if and only if P can 

- 
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be transformed into P' by a finite sequence of rotations 

and vertex permutations as defined above. 

If the Euler path is subjected to a reflection, the 

effect upon the right representative sequence is to operate 

upon it with the permutation, 

(3.3) ri s. . 

1 

Upon examination of this result we find that the sequence 

of s's may be defined in another way which is equivalent 

to the above. For a given Euler path, 

al ... ai 
ai +l 

let the left representative sequence, or LRS be, 

s1 ... si si+l - sN' 
where si corresponds to the corner ai and where 

(3.4) si = min k 
ai-k 

= a., k>13. 

We define st for any integer t by st = sj where 

j E t (mod N) and 1< j< N. 

Thus, upon comparing (3.1) with (3.4) we see that 

if a. = ai +r , then ai = a. Moreover, we find that 
1 J -sj 

the only difference between the right and left represen- 

tative sequences is the sense of direction in which we 

must count from a corner to find the next corner denoting 

the same vertex. Thus, the effect of a reflection on an 

Euler path is to interchange its right representative 

sequence with its left representative sequence. This result 

-. 

... 

i 

a2 a3 aN al, 

s2 

I 

.. 
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will be used extensively in Chapter V. 

The Euler path to which a given left representative 

sequence corresponds is sometimes transformed by a rotation 

such that the number, 

N 

s. Ni-1 

i=1 

is maximal. 

The left representative sequence of an Euler path 

which has been transformed in the aforementioned way is 

called the left characteristic sequence, or LCS. When 

working with the left characteristic sequence but not 

directly with the Euler path to which it corresponds, we 

will write the LCS in the following form: 

sN -1 sN -2 
... 

sN -i 
... 

2 

By doing this we sacrifice the correspondence between 

the left characteristic numbers and the corners of the 

Euler path to which they correspond for the purpose of 

being able to compare characteristic sequences more easily. 

Now to each Euler path correspond two sequences, the 

right and left characteristic sequences, and these sequences 

completely characterize an equivalence class of Euler paths 

on a full graph. Since the effect of a rotation of an 

Euler path upon its RRS and LRS is to interchange them 

such a rotation also interchanges the RCS and LCS of 

the path. Thus the RCS of an Euler path is identical to 

sN 
s2 
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the LCS of that path after that path has been reflected 

once. Two Euler paths are equivalent if and only if the 

RCS and LCS of one are identical to the RCS and LCS 

of the other in either order. More simply, two Euler paths 

are equivalent if and only if the RCS of one equals the 

RCS or LCS of the other. 

Example 2. If n = 5, the following Euler path is 

given by (2.3) using Example 1 as an Euler path on 

three vertices. We also give the RRS and LRS for this 

path. 

Euler path: 

RRS: 

LRS: 

1 

3 

7 

2 

4 

6 

3 

5 

5 

1 

7 

3 

4 

4 

6 

2 

6 

4 

5 

3 

7 

3 

5 

5 

4 

6 

4 

5 

7, 

3. 

1, 

The right and left characteristic sequences of the Euler 

path are, 

RCS: 7 4 6 3 5 6 7 3 4 5, 

LCS: 7 4 6 3 5 6 7 3 4 5. 

The above procedure of writing the RRS and LRS 

for a path by writing their characteristic numbers directly 

below the corners with which they are associated is used 

throughout this thesis. Note that in Example 2 the RCS 

is identical to the LCS. This is found later to be a 

property of the RCS and LCS of any Euler path on five 
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vertices. It is not, however, a property of the RCS and 

LCS of Euler paths in general. 
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Chapter IV 

Construction Theorems and Some Applications 

The purpose of this chapter is first to developtheorems 

which aid in the construction of the Euler paths which rep- 

resent the equivalence classes described in Chapter III. 

These theorems are then to be used to construct representa- 

tive Euler paths from each equivalence class for n equal 

to three and five. We also prove a theorem which will 

give some information about the number of equivalence 

classes of Euler paths on seven vertices. 

To construct the Euler paths we assign a vertex from 

the vertex set as a value to each of the N corners of the 

path, subject to the definition of an Euler path. We use 

the convention, described in the preceding chapter, of 

constructing Euler paths al a2 aN al such that the 

N 

number, ri NN -1, is maximal and such that the first 

i =1 

corner denoting the vertex i precedes the first forner 

denoting the vertex j if 1 < i < j < n. 

Let the segment associated with the corner ai which 

denotes the vertex h be defined as the set 

S(i,h) = fai 1 < j < s, ai / ai if 1 < j < s, as = 113. 

The segment associated with the first corner of an Euler 

path constructed according to the convention mentioned 
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above is called the principal segment of the Euler path. 

The length of a segment associated with a corner is its 

order. Thus, the length of the segment associated with 

a. is . We denote the length of the principal segment 

by L. Clearly, the length of the principal segment is 

greater than or equal to the lengths of the segments 

associated with each of the other N -1 corners. Thus, in 

the Euler path on three vertices, 1 2 3 1, the length of 

the principal segment, 2,3,1}, is three. 

Lemma 1. The sum of the right characteristic numbers 

associated with the corners denoting a specific vertex is 

N. 

Proof. Let S(i,h) be the empty set if the corner 

i does not denote the vertex h. Thus the Euler path is 

just, U S(i,h) for any fixed h. Let [A] be the 

1 <i <N 

order of the set A. The sum of the characteristic numbers 

associated with a specific vertex is just 

[S(i'h)] = 

i=1 

S(i,h) = N. 

1<i<N 

This completes the proof of Lemma 1. 

Theorem 3. If n > 5, the principal segment of an 

Euler path on n vertices has length greater than n. 

Proof. First we prove that L > n. Assume L < n. 

Consider the vertex 1. This vertex is denoted by 1/2(n -1) 

N U I 
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corners in an Euler path on n vertices. Since L is the 

length of the principal segment, the right characteristic 

numbers of the other 1/2(n -1) - 1 corners denoting the 

vertex 1 must be less than or equal to L. Thus the sum, 

W, of the characteristic numbers associated with corners 

denoting the vertex 1 satisfies W < %L(n -1) < 1/2n(n -1) =N 

contrary to Lemma 1 which states that W = N. 

Now we prove L > n. Assume L = n. By Lemma 1 the 

sum of the characteristic numbers associated with corners 

denoting a specific vertex must equal N. Each vertex is 

denoted by 1/2n(n -1) corners throughout the Euler path. 

All characteristic numbers of the RCS must be less than 

or equal to n. If any of the characteristic numbers were 

less than n, the sum of the characteristic numbers of the 

corners denoting some vertex would be less than N. Thus 

all characteristic numbers must equal n. But if the RCS 

consists only of n's then the edge a1,a2} equals the 

edge an +l,an }. If n > 5 these edges are distinct 

since n < N = n(n -1), and we have a contradiction; so 

Theorem 3 is proved. 

Theorem 4. Every vertex of an Euler path is denoted 

by some corner in the principal segment. 

Proof. Assume the vertex i is not denoted by a 

corner in the principal segment. Recall that the length 

of the principal segment is denoted by L. Let the first 

corner denoting the vertex i be corner m where m > L. 
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Assume that the 1/2(n-1)st corner denoting the vertex 

is corner p. Certainly p is less than or equal to N. 

Consider the segment associated with corner p. This 

segment will contain all corners of the principal segment. 

It will also contain corner one. Thus the length of this 

segment is at least L+1 which contradicts the definition 

of the principal segment and Theorem 4 is proved. 

Theorem 5. There is exactly one equivalence class 

of Euler paths on three vertices. 

Proof. Since each vertex is denoted by 1/2(n-1) 

corners in an Euler path on n vertices, each vertex is 

denoted by 1/2(3-1) = 1 corner in an Euler path on three 

vertices. The first corner denoting the vertex i 

precedes the corner denoting the vertex j if 

1 < i < j < 3 in this case. Hence since every corner 

denoting a vertex in an Euler path on three vertices is the 

first corner denoting that vertex, the only Euler path 

given by our construction is 1 2 3 1, and the theorem 

is proved. 

Let us examine the geometric significance of the results 

of Theorem 5. The full graph on three vertices may be 

represented by, 

5. Z 

The Euler path which we have found as a representative of 

all Euler paths on three vertices may be represented by, 

i 

' 
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z. 

In the above geometric interpretations we represent vertices 

by points, edges by line segments, and Euler paths by cyclic 

sequences of directed line segments. 

Theorem 6. Suppose an Euler path on n vertices, 

where n > 5, is operated upon by a rotation permutation 

such that its RRS is its RCS. Suppose further that a 

vertex permutation is performed so that the first corner 

denoting the vertex i precedes the first corner denoting 

the vertex j if 1 < i < j < n, Then the first four 

corners denote the vertices 1, 2, 3, and 4 ifi that order. 

Proof. By Theorem 3 the principal segment must be 

of length greater than five. Thus the vertex 1 which 

occurs in the first corner cannot occur in corners two, 

three, or four. Consider the second corner. The only 

possible vertex for the second corner to denote is a new 

vertex, the vertex 2. The third corner can denote either 

the vertex 2 or a new vertex, namely 3. But if the 

vertex 2 is denoted by corner three we would have [2,23 

occurring in the Euler path and this is not an edge. Thus, 

the third corner must denote the vertex 3. The fourth 

corner may denote any of the vertices 2, 3, or the new 

vertex 4. The vertex 3 cannot be denoted by corner four 

because 3,33 is not an edge. The vertex 2 if denoted 

by corner four would cause the edge 2,3} to be repeated 

T L 
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which violates the definition of an Euler path. Thus, the 

only possible vertex which corner four can denote is the new 

vertex 4, and the theorem is proved. 

A loop is a pair of consecutive corners of (2.2), 

both of which denote the same vertex. Because a loop is 

not an edge, it is easily seen that a full graph, and 

therefore an Euler path of a full graph, cannot contain a 

loop. 

Theorem 7. The principal segment of an Euler path 

on five vertices cannot be of length six. 

Proof. Assume there is such an Euler path. We 

construct the representative Euler path of the equivalence 

class to which it belongs. By Theorem 6 the first four 

corners must denote the vertices 1 2 3 4. Corner five 

can possibly denote only two vertices, the vertex 2 or 

the new vertex 5. Thus the vertex 1 cannot be denoted 

by a corner preceding the seventh corner whereas the 

vertices 4 and 3 would give rise to a loop or a 

repeated edge, respectively. The vertex 2 is impossible 

also because the length of the segment associated with 

corner five would then be seven, a number greater than 

the length of the principal segment which is assumed to be 

six. This follows from Lemma 1 and the fact that each 

vertex is denoted by %(5 -1) = 2 corners in an Euler path 

on five vertices. The partial Euler path is now 

1 2 3 4 5 X X X X X 1. By a partial path we mean a path 
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partially determined. Each X denotes a corner with an 

undetermined value. Since the principal segment is assumed 

to have length six, the seventh corner of the Euler path 

must denote the vertex 1. Leaving the sixth corner 

undetermined, the partial path now becomes 

1 2 3 4 5 X 1 X X X 1. We now consider the possible 

vertices which can be denoted by corner six. Vertices 1, 

2, 4, and 5 are impossible because they would give rise 

to loops or repeated edges. The vertex 3 is impossible 

also because the length of the segment associated with the 

sixth corner would then be seven which would contradict 

the assumption that the principal segment is of length six. 

Thus there is no vertex which satisfies the conditions 

required for a vertex to be denoted by corner six. The 

theorem is now proved. 

Similar, though more complex, proofs can be devised 

to show that the length of the principal segment of an 

Euler path is greater than n + 1 if n is seven or nine. 

The lack of an inductive scheme keeps us from obtaining 

this result for more general values of n. 

Theorem 8. The number of equivalence classes of Euler 

paths on five vertices is three. 

Proof. We use our construction procedure to construct 

all representatives of equivalence classes of Euler paths 

on five vertices. We will then consider the RCS and LCS 
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of each of these representative paths to see if any are 

equivalent. Those Euler paths which remain will then be 

the representatives of the various equivalence classes of 

Euler paths on five vertices. 

By Theorem 6, the first four corners of all repres- 

entative Euler paths must denote the vertices 1 2 3 4. 

The eighth corner denotes the vertex 1 by Theorems 3 

and 7, for otherwise the ninth or tenth corner would 

denote the vertex 1 and we would have a repeated edge or 

loop. The fifth corner denotes either the vertex 2 or 

the new vertex 5, for otherwise we would have a repeated 

edge or loop. Thus we have two partial paths, 

A = 1 2 3 4 2 X X 1 X X 1 and B= 1 2 3 4 5 X X 1 X X 1. 

Consider the partial path A. Corner six of A must 

denote the vertex 5 to avoid loops or repeated edges, so 

we now have A= 1 2 3 4 2 5 X 1 X X 1. Corner seven 

denotes either of two vertices, the vertex 3 or the 

vertex 4, because vertices 2 and 5 would give rise 

to a repeated edge and a loop, respectively. Thus partial 

path A is replaced by the two partial paths, 

C = 1 2 3 4 2 5 3 1 X X 1 and D= 1 2 3 4 2 5 4 1 X X 1. 

Consider the partial path D with its partially 

determined RRS, 

D= 1 2 3 4 2 5 4 1 X X 1 

RRS = 7 3 3 7 7 3 
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Note that for RRS to be the RCS, (that is, for 

N 

r. NN -1 to be maximal) the characteristic number for 

corner six must be three. This requires that the vertex 

denoted by corner nine is the vertex 5, which in turn 

requires that corner ten denotes the vertex 3 to avoid 

loops and repeated edges. Thus we have as an equivalence 

class representative and corresponding RCS, 

(4.1) D= 1 2 3 4 2 5 4 1 5 3 1, 

RCS = 7 3 7 3 7 3 7 3 7 3 . 

Now let us consider the partial path C together with 

its partial RRS, 

C= 1 2 3 4 2 5 3 1 X X 1, 

RRS = 7 34 7 6 

Note that the right characteristic number for corner six 

is at least three and the triple of right characteristic 

numbers for corners five, six, and seven is at least 7 3 6. 

The triple of characteristic numbers for corners one, two, 

and three is 7 3 4. This fact contradicts the assumption 

that the right representative sequence of the path we are 

constructing is to be the RCS of the path. Thus C is 

not the representative of an equivalence class. 

Next to be considered is the partial path 

B = 1 2 3 4 5 X X 1 X X 1. The vertices 4 and 5 are 

not denoted by corner six otherwise we would have arepeated 

edge or a loop. Since the vertices 2 and 3 are acceptible, 
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partial path B is replaced by two partial paths, 

E = 123452X1XX1 and F= 123453X1XX1. 
Path F is not the representative of an equivalence class 

since if corner seven denotes any vertex, we have a repeated 

edge or loop. To avoid repeated edges and loops corner 

seven of partial path E must denote the vertex 4 and 

so we have E= 1 2 3 4 5 2 4 1 X X 1. Corner nine may 

denote either of the vertices 3 or 5. Vertices 1, 2, 

and 4 would give loops or repeated edges. So this 

partial path is replaced by the two partial paths, 

G = 1 2 3 4 5 2 4 1 3 X 1 and H= 1234 5241 5 X 1. 

Each of these partial paths may be continued by letting 

corner ten denote the only vertex which will give no loops 

or repeated edges, and we obtain the partial paths 

G = 1 2 3 4 5 2 4 1 3 5 and H= 1 2 3 4 5 2 4 1 5 3. 

Thus we have as equivalence class representatives and their 

corresponding RCS's, 

(4.2) G= 1 2 3 4 5 2 4 1 3 5 1, 

RCS = 7 4 6 3 5 6 7 3 4 5 

(4.3) H= 1 2 3 4 5 2 4 1 5 3 1, 

RCS = 7 4 7 3 4 6 7 3 6 3 

Thus we have (4.1), (4.2), and (4.3) as equivalence 

classes. We must now examine their RCS's and LCS's to 

see if some pair represents the same equivalence class. 

The following is a list of the RCS and LCS of each of 

the three Euler paths: 

. 

. 
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D - RCS = 7 3 7 3 7 3 7 3 7 3 and LCS = 7 3 7 3 7 3 7 3 7 3. 

G- RCS = 7 4 6 3 5 6 7 3 4 5 and LCS = 7 4 6 3 5 6 7 3 4 5. 

H- RCS = 7 4 7 3 4 6 7 3 6 3 and LCS = 7 4 7 3 4 6 7 3 6 3. 

Thus we find that the three Euler paths D, G, and H 

must represent different equivalence classes of Euler paths 

on five vertices. The three equivalence classes represented 

by these three Euler paths are all that are possible on five 

vertices and the theorem is proved. 

Let us examine the geometric significance of this 

result. As for the case n = 3, we represent vertices by 

points, edges by line segments, and Euler paths by cyclic 

sequences of directed line segments. The full graph on five 

vertices may be represented by 
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The three Euler paths which we have found as representatives 

of each of the three equivalence classes of Euler paths on 

five vertices, each followed by a representation of that 

path, are as follows, 

Equivalence Class One, path D = 1 2 3 4 2 5 4 1 5 3 1: 

4 
Equivalence Class Two, path G = 1 2 3 4 5 2 4 1 3 5 1: 

3 

1 
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Equivalence Class Three, path H = 1 2 3 4 5 2 4 1 5 3 1: 

.Z 

4 .3 
This procedure of constructing all Euler paths which 

are representatives of equivalence classes for a given value 

of n becomes prohibitive for values of n wlich are greater 

than or equal to seven. The number of representatives for 

n = 7 which would be found using the theorems of this 

chapter is estimated to be of the order of 10,000. This 

estimate was made on the basis of the results of a partial 

enumeration of the representatives. The following gives a 

lower bound on the number of equivalence classes of Euler 

paths on seven vertices. 

Theorem 9. The number of equivalence classes of Euler 

paths on seven vertices is greater than or equal to three. 

Proof. To prove this theorem we will display three 

non -equivalent Euler paths on seven vertices. The three 

Euler paths we display are generated by using (2.3) and 

the representative Euler paths of each of the three equiva- 

lence classes of Euler paths on five vertices as found above. 

The Euler path on seven vertices obtained by using (2.3) 

ß- 



and path D as the Euler path on five vertices will be called D7 and similarly 

for G and H. The three Euler paths on seven vertices, together with their 

respective right and left representative sequence (RRS and LRS) are, 

Path D7: 1 2 3 4 2 5 4 1 5 3 1 6 2 7 3 6 4 7 5 6 7 1, 

RRS: 7 3 7 3 8 3(10) 3(10) 5(11) 4(10) 4 9 4 8 3 8(13)(14), 

LRS: (11)(10)9 8 3 8 3 7 3 7 3(13) 8(14) 5 4(10) 4(10) 4 3. 

Path G7: 1 2 3 4 5 2 4 1 3 5 1 6 2 7 3 6 4 7 5 6 7 1, 

RRS: 7 4 6 3 5 7(10) 3 6 9(11) 4(10) 4 9 4 8 3 7(13)(14), 

LRS: (11)(10)9 8 7 4 3 7 6 5 3(13) 7(14) 6 4(10) 4 9 4 3. 

Path H7: 1 2 3 4 5 2 4 1 5 3 1 6 2 7 3 6 4 7 5 6 7 1, 

RRS: 7 4 7 3 4 7(10) 3(10) 5(11) 4(10) 4 9 4 8 3 7(13)(14), 

LRS: (11)(10)9 8 7 4 3 7 4 7 3(13) 7(14) 5 4(10) 4(10) 4 3. 



Now if we find that the RCS of each of these three paths does not equal 

the RCS or LCS of any other of these three paths, we can say that these three 

paths are pairwise non -equivalent and therefore that there are at least three 

equivalence classes of Euler paths on seven vertices. 

The six characteristic sequences are 

RCS of D7: (14) 7 3 7 3 8 3 (10) 3 (10) 5 (11) 4 (10) 4 9 4 8 3 8 (13), 

LCS of D7: (14) 8(13) 3 7 3 7 3 8 3 8 9 (10)(11) 3 4 (10) 4 (10)4 5. 

RCS of G7: (14) 7 4 6 3 5 7 (10) 3 6 9 (11) 4 (10) 4 9 4 8 3 7 (13), 

LCS of GIs (14) 7(13) 3 5 6 7 3 4 7 8 9 (10)(11) 3 4 9 4 (10)4 6. 

RCS of H7: (14) 7 4 7 3 4 7 (10) 3 (10) 5 (11) 4 (10) 4 9 4 8 3 7 (13), 

LCS of H7: (14) 7(13) 3 7 4 7 3 4 7 8 9 (10)(11) 3 4 (10) 4 (10)4 5. 

Since these six characteristic sequences are distinct, there exist at least 

three equivalence classes of Euler paths on seven vertices and the theorem is proved. 
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Chapter V 

A Monotoneity Theorem 

The purpose of this chapter is to establish the 

following general theorem. 

Theorem 10. The number of equivalence classes of 

Euler paths on full graphs on n vertices, where n is 

an arbitrary odd integer not less than 3, is a monoton- 

ically increasing function of k, where k = 

Preliminary part of the proof. Let r(n) be the 

number of equivalence classes of Euler paths on n 

vertices. We must prove 

(5.1) r(n +2) > r(n) 

where n is odd and n > 3. The validity of (5.1) for 

n = 3 and for n = 5 follows from Theorems 5, 8, and 9. 

Hence we assume that n > 7. The proof of Theorem 2 is 

constructive where an Euler path on n + 2 vertices is 

constructed from an Euler path on n vertices. We will 

prove that Euler paths on n vertices which are from 

different equivalence classes yield Euler paths on 

n + 2 vertices which are from different equivalence 

classes under this construction. Our proof will be indirect. 

We will assume that two Euler paths on n + 2 vertices 

constructed from non -equivalent Euler paths on n vertices 

are equivalent and will then show that this assumption 

1(n -1). 
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leads to a contradiction. We will use the notation of 

Chapter 2. 

As the representative of a given equivalence class of 

Euler paths on n vertices we pick the path whose right 

representative sequence is identical to its RCS and for 

which the first corner denoting the vertex i precedes the 

first corner denoting the vertex j if 1 < i < j < n. 

By Theorem 6 the path begins with 1 2 3 4. Hence, our 

construction yields the following path on n + 2 vertices: 

(5.2) 1 2 3 4 ...} 1 (n +l) 2 (n +2) 3 (n +l) 4 (n +2) 

5 (n -2) (n +l) (n -1) (n +2) n (n +l) (n +2) 1. 

All but the last corner of the path on n vertices from 

which (5.2) is constructed are enclosed in braces. This 

is called the path part or P -part of (5.2). The remaining 

corners of (5.2) form what is called the induction part 

or I -part. Note that the vertices n + 1 and n + 2 

each are denoted by k + 1 corners of the I -part of (5.2), 

where k = %(n -1). Note also that each of the vertices i, 

where 2 < i < n is denoted by exactly one corner of the 

I -part of (5.2). The vertex 1 is denoted by two corners 

of the I -part of (5.2), namely the N + 1 st corner and 

the first corner. The first corner of an Euler path appears 

twice. The second appearance here is needed to indicate 

that the edge (n +2), 1} is contained in the Euler path 

since these vertices are denoted by the N + 2n + 1 st 

corner and the first corner, respectively. For the 
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remainder of this chapter we will assume that the I -part 

contains only one corner denoting the vertex 1, the N + 1 

st corner of (5.2). Hereafter we will enclose the path 

part of such a path in braces. A path constructed in this 

way is called an induction path and is denoted Pn +2' 

The right representative sequence of path (5.2) is 

of the form 

(5.3) [X X X X] (2n +1) 4 (2n) 4 (2n -1) 4 (2n -2) 4 

X 4 X 4 X 4 X 3 X (N +3) (N +4), 

where each X denotes a number which can be determined only 

with additional information about the form of path (5.2). 

The part of (5.3) which corresponds to the path part of 

(5.2) is enclosed in brackets. This is called the path 

part or P -part and the rest of (5.3) is called the induc- 

tion part or I -part. Hereafter we will enclose the path 

part of such RRS in brackets. Such an RRS is called 

an induction RRS and is denoted Rn 
+2. 

The left representative sequence of (5.2) is of the 

form 

(5.4) [(2n +1) (2n) (2n -1) (2n -2) X X X] X 

(N +3) X (N +4) X 4 X 4 X 4 X 4 X 4 3, 

where each X denotes a number which can be determined only 

with additional information about the form of path (5.2). 

The part of (5.4) which corresponds to the path part of 

(5.2) is enclosed in brackets and is called the path part 

or P -part. The rest of (5.4) is called the induction 
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part or I -part. 

Preliminary lemmas. We now prove four lemmas. 

Lemma 2. If n is odd, n > 7, then N > 2n + 1. 

Proof. N = %n (n -1) > 3n > 2n + 1. 

Lemma 3. If n is odd, n > 7, then N + 3 > 4. 

Proof. Since n > 7, then by Lemma 2 we have 

N + 3 > 2n + 4 > 4. 

Lemma 4. If n is odd, n > 7, then the unordered 

pair (N +3,N +4), occurs in adjacent positions of the path 

part or in the last two positions of the induction part of 

an induction RRS Rn 
+2.. 

Proof. We examine all other pairs of consecutive 

positions and find that always one of them is occupied by 

an integer smaller than N + 3. The integer 3 or the 

integer 4 occurs in every consecutive pair of positions 

except the last pair of the induction part of Rn The 

first integer of the path part of Rn +2 is not greater 

than % n(n -1) = N. The first integer of the induction 

part of Rn is 2n + 1. The integer preceding the pair 

(N +3,N +4) in the induction part of Rn is not greater 

than %n(n -1) + 2 = N + 2. Hence, by Lemmas 2 and 3 

each of these other possible pairs of consecutive positions 

is occupied by at least one integer less than N + 3 and 

so cannot be occupied by the pair (N +3,N +4). 

Lemma 5. There is no permutation on the set 

i 1 1 < i < n + 23 so that a sequence of consecutive 

+2. 
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corners of the induction part of a Pn k + 1 of which 

denote the vertex N + 1 or which denote the vertex n + 2, 

is transformed into a sequence of corners with the same 

order which are successive corners in the path part of a 

Pn 

Proof. By hypothesis at least one of the vertices 

n + 1, n + 2, is denoted by k + 1 corners of the sequence 

of consecutive corners of the induction part of a Pn +2. 

Hence, if such a permutation does exist, the common image 

of the corners that denote that vertex is denoted by k + 1 

corners of the path part of a Pn +2. However, each vertex 

of the path part of a Pn is denoted by k = %(n -1) 

corners, which is a contradiction, and Lemma 5 is proved. 

Our proof will be divided into two parts. In Part A 

we show that two induction paths which are constructed from 

non -equivalent Euler paths on n vertices are not related 

through rotations and vertex permutations. In part B we 

show that two induction paths which are constructed from 

non -equivalent Euler paths on n vertices are not related 

through a reflection. The theorem will then follow since 

we will have shown that two induction paths which are 

constructed from non -equivalent Euler paths on n vertices 

are not related through a finite sequence of rotations, 

reflections, or vertex permutations. This shows that 

representative Euler paths from different equivalence 

classes on n vertices generate representatives of different 

+2, 

+2' 
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equivalence classes on n + 2 vertices and thus 

r(n +2) > r(n). 

Proof, Part A. The induction paths, Pn obtained 

by the aforementioned process must fall into three mutually 

exclusive types. Each type is determined by the value of 

m such that the right characteristic number denoted by 

r1 in the RCS of the Euler path corresponds to the corner 

. The three mutually exclusive types are as follows. 

Type A: m = N + 2n + 1. For a type A 

Pn r1 = N + 4. 

Type B: N < m < N + 2n + 1. For a type B 

Pn r1 is dependent upon the Euler path on n vertices 

which is used to construct the induction path. 

Type C: 1 < m < N. For a type C Pn r1 is 

dependent upon the Euler path on n vertices which is used 

to construct the induction path. 

Thus after a rotation we obtain each type of induction 

as follows: 

1 (n +1) 2 (n +2) 3 (n +1) 

(2n +1) 4 (2n) 4 (2n -1) 4 

path with its corresponding RCS 

Type A 

path: (n +2) 1 2 3 4 
} 

RCS: (N +4) [X X X X X] 

path (cont): 4 (n +2) 5 

RCS (cont): (2n -2) 4 X ' 
(n +2) n (n +1) (n +2) 

3 X (N +3).(N +4). 

Note that for Type A Euler path there is one vertex of the 

I -part occurring before the P -part, followed by the N 

vertices of the P -part, followed by the remaining 2n vertices 

+2' 

+2' 

+2, 
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of the I -part. 

Type B 

path: u ... (n +2) n (n +l) (n +2) l 2 3 4 } 

RCS: d 3 X (N +3) (N +4) [X X X X X] 

path (cont): 1 (n +1) 2 (n +2) 3 (n+l) 4 (n +2) u 

RCS (cont): (2n +1) 4 (2n) 4 (2n -1) 4 (2n -2) 4 . 

Note that d is the right characteristic number of a 

corner denoting the vertex u and d > N + 4. We will 

assume that the vertex u is denoted by the jth corner 

of the I -part of (5.2), that is, we will assume that 

j -1 corners of the I -part follow the P -part of a Type B 

path. 

Type C 

path: v } 1 (n +l) 2 (n +2) 3 (n +l) 4 (n+2) +2) 5 

RCS: e X](2n +1) 4 (2n) 4 (2n -1) 4 (2n -2)4 X 

path (cont): (n +2) n (n +l) (n +2) [1 2 3 4 v 

RCS (cont): 3 X (N +3) (N +4) [X X X X . 

Note that e is the right characteristic number of a 

corner denoting the vertex v and that e > N + 4. We 

will assume that the vertex v is denoted by the ith 

corner of the P -part of (5.2), that is, we will assume 

that there are i -1 corners of the P -part which follow 

the I -part of a type C path. 

We now consider a set of mutually exclusive cases 

which will exhaust all induction paths which arise from the 
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aforementioned construction process. In each case we 

assume that the two induction paths, which have been 

constructed from non- equivalent Euler paths on n ver- 

tices, are related through a finite sequence of rotations 

and vertex permutations. In other words, we assume that 

the RCS's of the two induction paths are identical. We 

obtain a contradiction by showing that the RCS's are not 

identical, and thus that if the induction paths are 

equivalent they are related through a reflection only. 

Case 1. The two induction paths are of the same type. 

We are assuming that the two Euler paths on n vertices 

are non -equivalent. Therefore, there is some vertex a, 

where 1 < a < n, which is denoted by different sets of 

corners for the two Euler paths on n vertices. Thus, the 

vertex a is denoted by different sets of corners for the 

P -parts of the two induction paths Pn +2, and so the sets 

of right characteristic numbers which correspond to the 

corners denoting the vertex a must be different. This 

is because the vertex a must be denoted by the same 

corner of the I -part of the two induction paths. Now assume 

that the corner to which the right characteristic number 

denoted by 
r1 

corresponds is the same for both Pn +2's' 

Then the two RCS's cannot be identical because the set 

of corners which correspond to the right characteristic 

numbers of corners denoting the vertex a must be different 

for the two Pn +2's. This means that the two Pn +2's cannot 
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be of type A since for type A paths r1 corresponds 

to corner N + 2n + 1. 

Assume the Pn +2's are both of type B. The corners 

to which the right characteristic numbers equal to ri 

correspond cannot denote either the vertex n + 1 or the 

vertex n + 2. This is because all right characteristic 

numbers corresponding to corners denoting these vertices 

are known, and if the greatest of them, N + 4, were r1 

we would have a type A path. 

Thus r1 must correspond to different corners in each 

of the type B Pn +2's. This is because each vertex 

different from the vertex n + 1 and the vertex n + 2 

is denoted by exactly one corner of the I -part of a type 

B path. These vertices are denoted by corners occupying 

different, actually consecutive odd, positions of the 

I -part of the type B path. Thus the pair of right 

characteristic numbers (N +3,N +4) which corresponds to 

the consecutive pair of corners denoting the pair of 

vertices (n +1,n +2) must be identical with some other pair 

of consecutive right characteristic numbers from the I -part 

of the RCS of a type B path. But this is impossible 

by Lemma 4, and so the two paths cannot be of type B. 

Assume now that the Pn +2's are both of type C. Let 

the corner to which the right characteristic number denoted 

by ri corresponds be ai for one of the paths and 

ai +t for the other path. If t is greater than or equal 
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to 2n , then the k + 1 corners which denote the vertex 

n + 1 which occur in the I -part of one of the Pn +2's 

can be transformed by a vertex permutation into 2n 

corners of the P -part of the other Pn +2° But this is 

impossible by Lemma 5, and so t must be less than 2n. 

If t is less than 2n, the pair of right characteristic 

numbers (N +3,N +4) which corresponds to the consecutive 

pair of corners which denote the vertex n + 1 and the 

vertex n + 2 which occurs in the I -part of one of the 

Pn +2's must be identical with some pair consisting of 

right characteristic numbers of a consecutive pair of 

corners of the first 2n positions of the I -part of the 

other Pn But this is impossible by Lemma 4, and so 

both paths cannot be of type C. Thus, Case 1 has been 

proved to be impossible. 

Case 2. The two induction paths are of types A 

and B. The vertex u which is denoted by the first 

corner of the type B path is neither the vertex n + 1 

nor the vertex n + 2. This is seen by considering the 

right characteristic numbers of the corners which denote 

these vertices. All are less than N + 4 except that of 

the last corner of the I -part which denotes the vertex 

n + 2. But if this corner denoted the vertex u, we would 

have a type A path instead of a type B path. Thus, u 

is one of the vertices of the set [1,2,-,0. This means 

+2' 
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that d is one of the unknown right characteristic numbers 

of the I -part of an Rn Consider the last element of 

the RCS of the type B path. This number must be either 

4 or 3. Now consider the last element of the RCS of the 

type A path. This number is N + 3. If the two RCS's 

are to be identical these two right characteristic numbers 

must be equal. This is impossible by Lemma 3 and so this 

case is impossible. 

Case 3. The two induction paths are of types A and 

C. Remembering that the vertex v is denoted by the ith 

corner of the P -part of (5.2), we consider three subcases 

which exhause this case. 

Subcase 3A. Assume i < 2n. This requires that the 

pair rN +2n +1- i'rN +2n +2 -i of the RCS of the type C path 

must equal some consecutive pair form the first 2n elements 

of the RCS of the I -part of the type A path. This is 

impossible by Lemma 4. 

Subcase 3B. Assume i = 2n. This requires that 

rN of the RCS of the type A path equals rN +2n +2 -i 

of the RCS of the type C path. This leads to the 

equation, 2n + 1 = N + 4, which is impossible by Lemma 2. 

Subcase 3C. Assume i > 2n. This means that the I- 

part of the type A path may be transformed by a vertex 

permutation into a sequence which occupies consecutive 

corners in the P -part of the type C path, which is impossible 

by Lemma 5. Thus Case 3 has been proved to be impossible. 
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Case 4. The two induction paths are of types B and 

C. Remembering that the vertex v is denoted by the jth 

corner of the I -part of (5.2), we consider three subcases 

which exhaust this case. 

Subcase 4A. Assume N -i < 2n + 1 - j. We now have 

two possibilities, either r2n of the RCS of the 

type B path must equal rN of the type C path, or 

the pair r2n 
+1- j,r2n +2 -j 

of the RCS of the type B 

path must equal some consecutive pair from the first j -1 

elements of the RCS of the I -part of the type C path. 

The first of these possibilities leads to the equation, 

N + 4 = 2n + 1, which is impossible by Lemma 2. The 

second possibility is impossible by Lemma 4, because 

the pair r2n 
+1- j,r2n +2 -j 

is the pair (N +3,N +4). 

Subcase 4B. Assume N - i = 2n + 1 - j. This means 

that the I -part of the type C path can be transformed by 

a vertex permutation into a sequence which occupies 

successive corners in the P -part of the type B path which 

is impossible by Lemma 5. 

Subcase 4C. Assume N - i > 2n + 1 - j. We show 

that the I -part of the type B path can be transformed 

into a sequence which occupies successive corners of the 

P -part of the type C path, which is impossible by Lemma 5. 

Consider the first 2n + 2 - j corners of the type B path. 

These corners are from the I -part of the type B path. 

Since N - i > 2n + 1 - j these 2n + 1 - j corners can be 

+2 -i 
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transformed by a vertex permutation into a sequence occupy- 

ing consecutive corners in the P -part of the type C path. 

Consider now the last j -1 corners of the type B path. 

These corners can be transformed by a vertex permutation 

into a sequence occupying consecutive corners in the P -part 

of the type C path also, because if they were not, one 

of the following would have to be true. Either 

of the RCS of the type C path equals rN +2n +2 -i 

rN +2n +2 -j of the RCS of the type B path, or the pair 

rN +2n +l- i'rN +2n +2 -i 
of the RCS of the type C path must 

equal some consecutive pair from the first j -1 elements 

of the RCS of the RCS of the I -part of the type B 

path. The first possibility leads to the equation, 

2n + 1 = N + 4, which is impossible by Lemma 2. The 

second possibility is impossible by Lemma 4, because the 

pair rN +2n +l- i'rN +2n +2 -i 
is the pair (N +3,N +4). Thus, 

Subcase 4C is proved to be impossible which completes 

Part A of the proof. 

Proof, Part B. In this part we show that two 

induction paths formed from non -equivalent Euler paths on 

n vertices cannot be related through a reflection. To do 

this we will consider an induction path, PN +2, which has 

been reflected once. We will call this reflected induction 

path Qn As was seen in Chapter 3, the RCS of 

Qn is identical to the LCS of Pn +2. If we compare 

the RCS of the Pn with the RCS of the Qn +2 and 

+2. 
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show that they cannot be identical, we will have shown that 

two Pn +2's formed from non -equivalent Euler paths on n 

vertices cannot be related through a reflection. We will 

show that the RRS's of Pn +2 and Qn can never be 

identical and since the RCS is just a specific element 

of the set of all RRS's we will have shown that the RCS's 

cannot be identical. Consider the RRS's of Pn +2 and 

Qn +2 
The RRS of Pn +2 is of the form 

[X X X X](2n +1) 4 (2n) 4 (2n -1) 4 (2n -2) 4 X 

4 X 4 X 4 X 3 X (N +3) (N +4). 

The RRS of Qn is of the form 

[X X X X (2n -2) (2n -1) (2n) (2n +1)] 3 4 X 4 X 

4 X X 4 X (N +4) X (N +3) X. 

All the unknown right characteristic numbers of the 

I -part of Pn must be greater than or equal to n +2. 

This follows from the fact that the vertex i cannot 

occur before the ith position of the P -part because we 

are using only the representative Euler path of each 

equivalence class on n vertices to form Pn 
+2. 

Now 

consider the known right characteristic number pair (3,4) 

of the I -part of Qn All right characteristic numbers 

of the I -part of Pn are greater than or equal to 4 

except the known right characteristic number 3, which 

precedes the known right characteristic number N +3. The 

pair (3,N +3) cannot equal the pair (3,4) by Lemma 3. 

+2 

+2 

+2 
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Since the first and last right characteristic numbers of 

the I -part of Pn +2 are 2n + 1 and N + 4, both of 

which are greater than 4 by Lemma 3, we find the 

following. No pair of consecutive right characteristic 

numbers of the RRS of Pn which contains at least 

one right characteristic number from the I -part of the 

RRS of that path can equal the pair (3,4). Thus if the 

RCS of Qn +2 is to be identical to the RCS of Pn +2 

the pair (3,4) of the RRS of the I -part of Qn 

must equal some pair of right characteristic numbers from 

the RRS of the P -part of Pn +2. 

By Lemma 5, the first 2n -2 vertices of the I -part 

of Qn cannot all have their images in the P -part of 

Pn But unless the first 2n -4 vertices of the I -part 

of Qn all have their images in the P -part of Pn +2' 

there will be a vertex which occurs in the P -part of an 

induction path which occurs more than once in its I -part. 

This is impossible because of the way we constructed 

these induction paths. Thus we have that the first 2n -4 

vertices of the I -part of Qn must have their images 

in the P -part of Pn This means that the right 

characteristic number of the 2n -2 nd corner of the I -part 

of Qn must equal the right characteristic number of 

either the first or the second corner of the I -part of 

Pn This last statement leads to the equations, 

N + 4 = 2n + 1, and N + 4 = 4, respectively, which are 

+2 

+2 
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impossible by Lemmas 2 and 3, respectively. Thus the 

RRS of Pn cannot be identical to the RRS of Qn +2 

and the proof of Part B is complete. This also completes 

the proof of Theorem 10. 

+2 
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INDEX OF NOTATION 

n - The order of the vertex set of a full graph. 

N - The number of edges in a full graph on n vertices. 

Also the number of edges in an Euler path on n 

vertices. 

k - The number of corners of an Euler path on n 

vertices which denote a specific vertex. 

ai 

ri 

si 

The ith corner of an Euler path on n vertices. 

The right characteristic number associated with the 

corner ai of an Euler path. 

- The left characteristic number associated with the 

corner ai of an Euler path. 

RRS - Right representative sequence. 

RCS - Right characteristic sequence. 

LAS - Left representative sequence. 

LCS Left characteristic sequence, 

L - The length of the principal segment of an Euler path. 

- 

- 

- 
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