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We seek the control strategies that are applicable on legged robots and control 

them to run in real world as robust and efficient as animals. To achieve this goal, 

we need to understand the principles of legged locomotion and the control policies 

that animals use during running. In this study we tried to understand these 

principles by investigating birds’ running experiments, and hypothesized their 

possible control policies that are important for real machines. We proposed two 

types of flight phase control techniques inspired from ground running birds for 

spring-mass running robots and derived mathematical formulas for the optimum 

design of the passive elements in these robots. For the control policies, we focused 

on flight phase because adjusting the leg parameters during the flight is very energy 

efficient and also the overall behavior of the system is very sensitive to the landing 

conditions that are determined during the flight phase of running. We first 

considered the change of the leg angle as the only control parameter during the 

flight phase. In the proposed control policies, three objective functions i) leg peak 



force, ii) axial impulse and iii) leg actuator work, all from passive stance phase, 

were considered to be regulated during running. It turned out that with a simple 

swing leg policy (constant leg angular acceleration), all the three objective 

functions can be nearly regulated at the same time, meaning that both goals of 

damage avoidance and energy efficiency can be fulfilled at once. After that, we 

investigated the effect of the leg length in addition to the leg angle on the dynamics 

of the spring-mass running robots. This control policy retains the steady state 

running by providing the equilibrium gait for each stride. The leg length and leg 

angle together make it possible for the robot to retain the steady state in the 

presence of a disturbance while limit the increase of the leg force which if increases 

may break the leg. In all of the control policies, the robot is purely passive during 

the stance phase and therefore the dynamics of the system comes from the passive 

dynamics of the system. Finally, we investigated the effect of the passive dynamics 

elements on the initiation of running. We derived mathematical formulas that 

determine the required stiffness and damping for the actuator to achieve the 

maximum possible performance given the physical limitations of the system. 
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Chapter 1 – Introduction 

Despite of the recent remarkable advances in the field of legged robotics, animals can 

still outperform the legged robots in performance, efficiency and robustness during 

running in natural environment. Part of this superiority is due to the difference in 

the actuator mechanisms that robots and animals have, and part of it is due to the 

superior control policies that animals use during running. In this work we seek to 

first understand the control principles of running through investigating the animals’ 

behavior and second to propose design formulas for the passive elements of robots’ 

actuators to achieve the best performance for initiating running. 

Observations on animals running revealed that the brain is not very engaged in 

the process of running. Studies on paralyzed animals showed that, even though the 

brain signals did not engage in running, they still can accomplish this task. Therefore, 

it seems that what animals do for their running, may be some types of feed-forward 

control strategy synchronized with a very well-designed passive actuator mechanism. 

We begin with spring-loaded inverted pendulum (SLIP) model as the passive 

dynamics model for running. SLIP is a simple and yet accurate mathematical model 

for animals and humans running [1]. Recent studies showed that this model has a 

self-stabilizing characteristic [2], which implies that it does not require control effort 

to become stable, and hence is aligned with the observations from paralyzed animals 

stable running. 
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ATRIAS 2.1 Actuated SLIP

Leg
Motor

Figure 1.1: ATRIAS 2.1 vs the actuated SLIP model. The leg motor allows the 
model to change the zero force leg length during the flight phase. The leg is assumed 
massless and position controller is used for the leg angle placement. 

The model that we use in this work is the actuated version of the SLIP model [3] 

and is mathematically suitable as a simplified model of our robot ATRIAS (figure 

1.1). In this model, a motor is used in series with the leg spring to add or remove 

energy when it is needed to go to higher or lower energy level. All the controllers 

that we investigate in this study are during the flight phase and therefore, the leg 

motor is kept locked during the stance phase to provide a passive and conservative 

gait. 

In chapter 2 we propose three control strategies for the flight phase of running. 

Each of these control policies targets a different objective function to regulate during 

running and the only control parameter that we use in this chapter is the leg angle 

at the moment of touch-down. The objective functions are considered for damage 
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avoidance and energy efficiency, two important technical issues for real robots. We 

concluded at the end that by implementing either of the proposed control policies 

in this chapter, both goals will be hit at once with a very simple implementation 

strategy. After that, in chapter 3, we included the leg length in addition to the leg 

angle to the control parameters. The aim that we seek in this chapter is to minimize 

the leg peak force while retaining steady state running in the presence of hidden 

disturbances. For all of the control policies, we assume that the robot does not have 

any information of the location and the size of the disturbances, therefore the need for 

external sensing is minimal. Finally in chapter 4, we derived mathematical formulas 

for the effect of the characteristics of the passive elements (spring and damper) on 

the maximum velocity that the robot can achieve in running. To initiate running 

from stationary position, the motors should add energy to the system and the passive 

elements can help the robot to reach to a higher energy level. It turned out that 

both spring and damper can be helpful if they are chosen accurately and if they are 

not chosen accurately, they both can be harmful to the performance of the system 

relative to the case that there is no passive element in the system and the motor is 

directly connected to the body. 

The contribution of this work is two types of flight phase control strategies for 

spring-mass running robots and a mathematical framework for the design of the 

passive elements for initiating running of these robots. The control policies are easy 

to be implemented on the machines with minimal sensing. The passive dynamics of 

the system is used as the main source that drives the system, and the controllers try 

to manage the balance between the potential energy and horizontal/vertical kinetic 
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energy. Therefore, the robot theoretically pursues in its original energy level that it 

started the running in the beginning. For the design of the passive elements of the 

robot (the physical spring and damper characteristics), we presented mathematical 

framework that maximizes the achievable velocity at the beginning of running. 
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Chapter 2 – Swing leg control strategy considering only leg angle 

we proposed three swing leg control policies for spring-mass running 

robots inspired from our recent collaborative work on ground running 

birds. Previous investigations suggest that animals may prioritize injury 

avoidance and/or efficiency as their objective function during running. 

Therefore, in this study we targeted the structural capacity (maximum 

leg force for the damage avoidance) and the efficiency as the main goals 

for our control policies, since these objective functions are important to 

limit the motor size and structure weight. Each proposed policy controls 

the leg angle as a function of time during flight phase such that its ob

jective function during the subsequent stance phase is regulated. The 

three objective functions that are regulated in the control policies are i) 

the leg peak force, ii) the axial impulse, and iii) the leg actuator work. 

Surprisingly, all three swing leg control policies result in nearly identical 

subsequent stance phase dynamics. This implies that the implementation 

of any of the proposed control policies would satisfy both goals (damage 

avoidance and efficiency) at once. Furthermore, all three control policies 

require a surprisingly simple leg angle adjustment: leg retraction with 

constant angular acceleration. In summary, a simple control method (ei

ther one of the proposed control policies) satisfies both goals (damage 
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avoidance and efficiency) at the same time, and it is extraordinarily easy 

to implement on a machine by providing a constant angular acceleration 

for the leg retraction. 

2.1 Introduction 

We seek to understand the principles of legged locomotion and implement them 

on robots. Recent years have seen remarkable advances in dynamic legged robots, 

including Rhex, a rough-terrain hexapod [4, 5], Bigdog, a rough terrain quadruped 

[6], MABEL, a biped that can negotiate uneven terrain [7], ATRIAS, a bio-inspired 

actuated spring-mass robot [8], and PETMAN a versatile humanoid biped. These 

robots highlight the emerging potential for legged robotic technology; however each 

of these machines compete with animal performance and efficiency only within a very 

limited context. In natural environments animals frequently negotiate potholes, steps 

and obstacles fantastically. But since we do not yet know how they perform these 

tasks, we cannot reproduce these behaviors in machines [9]. In this study we seek a 

reasonable objective function that might be animals concern in running and use it to 

control the spring-mass running robots. To achieve this goal, we observe the guinea 

fowl running data (figure 2.1) to gain insights about the goals that they may care 

during running and then interpret the importance of those goals for real machines. 

We pick the objective functions that are concerns for current running robots. 

There are two reasons we focus on swing leg control: 1. The flight phase de

termines the landing conditions, which have huge effects on stance dynamics, and 



7 

y

TD

LTD
LTD

x

( )t

a)

b)

Step -2 Step -1 Step 0

θ

TDθ

θ

Figure 2.1: Illustration of experiment setup on the guinea fowl running over a step 
down (a), and schematic drawing of the SLIP model (b). The gray areas indicate 
the stance phases, and the blue line represents the CoM trajectory [10]. 

2. adjusting the leg parameters during flight is very energy efficient. The effect of 

swing leg control methods on the dynamics of a spring-mass system has been inves

tigated in previous literature [11, 2, 12, 13, 14]. From biology perspective, animal 

running data reveal that the initial leg loading during stance is very sensitive to its 

landing conditions, which are determined by the flight phase [15, 16, 17, 18]. Da

ley et. al. [19] showed that for running guinea fowl, variation in leg contact angle 

explains 80% of the variation in stance impulse following an unexpected pothole. 

From a roboticist’s point of view, swing leg control techniques are energy efficient 

and easy to implement. Its energy efficiency comes from the fact that there are no 
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ground reaction forces to overcome during flight to move the leg. Furthermore, using 

a feed-forward control strategy minimizes the need for sensing, which makes these 

techniques easy to implement on robots. 

Previous theoretical studies of swing leg control suggest a trade-off between objec

tives like disturbance rejection, stability, maximum leg force and impact losses. For 

example, a constant leg retraction velocity in late swing improves stability in both 

quadrupeds [20] and bipeds [12]. Similarly, increasing the leg length in late swing 

can improve stability and robustness [13]. Whereas low leg retraction velocities im

prove the robustness against variations in terrain height, high leg retraction velocities 

minimize peak forces and improve ground speed matching [21, 22]. Alternatively, a 

feed-forward swing leg control policy can be applied to the spring-loaded inverted 

pendulum (SLIP) model to maintain steady state running (equilibrium gait), regard

less of ground height changes [23]. While maintaining steady state running results in 

symmetric trajectories even in the presence of ground height changes, it also results 

in high leg forces and high leg actuator work (electric consumption of the electric 

motor) during the perturbed step. Karssen et. al. [24] determined the optimal swing 

leg retraction rate that maximizes disturbance rejection, and minimizes impact losses 

and foot slipping. They considered a predefined constant retraction rate for running 

and concluded that there is no unique retraction rate to optimize all of aspects men

tioned above at the same time. Especially for high forward speeds, a compromise 

between disturbance rejection and energy losses is inevitable. Recently, Ernst et. al. 

[14] demonstrated how leg stiffness may affect the self-stability of a running robot. 

They proposed a control strategy that updates the leg stiffness based on the fall time 
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or vertical velocity of the center of mass (CoM). 

The equilibrium (symmetric) gait policy is a well-investigated swing leg control 

policy for spring-mass robots [23, 14]. This policy ensures that the robot’s CoM 

trajectory is symmetric with respect to the vertical axis, which is defined by mid-

stance (touch down and take off conditions are symmetrical). Therefore, on flat 

ground each step is identical to the previous step, resulting in a periodic gait pattern. 

By choosing the appropriate initial leg angle (touch down leg angle) for each velocity 

vector v = (v x , vy )
T , a symmetric gait can be obtained. This policy continuously 

updates the leg angle based on the CoM velocity vector during flight such that 

whenever the leg hits the ground, a symmetric CoM trajectory is be maintained. 

In the presence of a drop, however, the required mechanical capacity (leg force for 

example) can increase drastically, up to the point where the leg may be unable to 

sustain. Therefore, the equilibrium gait policy may be not a practical control strategy 

for spring-mass robots. 

Inspired by our findings from a previous study on guinea fowl negotiating a drop 

perturbation [10], we propose three candidates for the objective functions of the 

swing leg control policies. The objective functions are: i) maintaining constant peak 

force, ii) maintaining constant leg axial impulse, and iii) maintaining constant leg 

actuator work. Each control policy adjusts the leg angle during flight such that its 

objective function during the subsequent stance phase is regulated. The first swing 

leg control policy ensures that the leg peak force in the following stance phase is 

the same as the peak force of the previous step. The second policy keeps the axial 

impulse of the upcoming passive stance phase the same as the axial impulse of the 
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previous step. The last control policy focuses on economy by maintaining constant 

electrical work to keep the motor, which is in series with the spring, locked (providing 

zero mechanical work and thus a conservative passive stance phase). In this case the 

actuator requires the same electric energy for the drop step and flat ground. We 

compare these control policies with equilibrium gait policy and against each other. 

The results show that the equilibrium gait policy requires more energy and leg 

force capacity than the other proposed control policies. For economically designed 

robots that are operating at (or close to) their maximum mechanical capacity, any 

drop in the ground may cause a damage to the robot or the robot could even fall 

if the motors are not strong enough. Moreover, it turns out that with a simple 

swing leg control policy, retracting the leg with constant angular velocity, both goals 

(optimizing mechanical demand and energy efficiency) could be met at once. 

2.2 Bioinspiration 

We are inspired by the robust and efficient running of animals. The guinea fowl 

for example (as dynamical systems) run very agile, robust and efficient in natural 

environments (uneven terrain). We are looking for control policies that make the 

legged robots perform as good as animals like guinea fowl in running. 

Our strategy is to look at the results from the experiments that have been done 

in Blum et. al. [10] on the guinea fowl and hypothesize the policies that these birds 

may follow during running. The experiment setup that they used is shown in figure 

2.1. 
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The experiments showed that the guinea fowl use nearly the same leg length for 

the drop step as they use for the level running, but the touch down angle for the drop 

step is significantly steeper than level running. It suggests that the leg touch-down 

angle may be the only parameter that the guinea fowl use for the flight phase control. 

Furthermore, processing the force plate data in the stance phase show that the leg 

peak force and axial impulse during the stance phase are nearly constant for level 

running and the drop step [10]. 

2.3 Methods 

2.3.1 Model 

We consider the spring-loaded inverted pendulum (SLIP) [1, 25] because the passive 

model of the spring-mass robot is similar to the SLIP model. The actual model of the 

robot has a leg motor to compensate for the energy loss due to impact and friction 

(figure 2.2). Since the model is passive in stance phase we do not need the leg motor 

in our simulation, but its existence can not be ignored. Therefore, we keep the leg 

motor locked (zero mechanical work) to have a conservative system (like SLIP model 

in simulation). 

The SLIP model is known as a template for studying legged locomotion [26]. This 

model is based on the ubiquitous behavior of the center of mass that animals have 

during running. It should be noted that animals and actual spring-mass running 

robots have leg actuators in series with a spring, but the overall behavior of the 

system can be approximated well by a passive spring-mass model. Therefore, the 
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Figure 2.2: left: The model of the robot with the leg motor. The reason of the 
leg motor existence is to add energy into the system when some energy is lost due 
to impact or friction. Here, this motor is kept locked (zero mechanical energy) to 
provide the equivalent conservative SLIP model that is shown in the right. 

mechanical energy generated/dissipated by the motors is low, primarily compensat

ing for energy loss, and thus the system can be accounted as a passive conservative 

SLIP model. 

During flight phase of running the CoM describes a ballistic curve, determined 

by the gravitational force. Therefore, the only parameters of running that can be 

controlled during the flight phase are the landing conditions for upcoming stance 

phase. The transition from flight to stance occurs when the landing condition y = 

L0 sin(αTD ) is fulfilled. During stance phase the equation of motion for a passive 

SLIP model is given by 

L
mr̈ = k

Leg 
0 − 1 r − mg, (2.1) 
r 

with r = (x, y)T being the position of the point mass with respect to the foot 
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point, r its absolute value and g = (0, g)T the gravitational acceleration, with g = 

9.81 m/s2 . Take off occurs when the spring deflection returns to zero. The system is 

energetically conservative and due to the massless leg there is no impact or friction 

losses in the system. 

The model was implemented in Matlab (R2012a, Mathworks Inc., Natick, MA, 

USA). To accomplish the simulations, following properties for the robot were as

sumed. 

Table 2.1: Properties of the spring-mass robot 

Parameter Description Value 
m robot mass 38.0kg 
kleg leg spring stiffness 3900N 

m 
v0x initial horizontal velocity 3.5m 

s 
h0 initial CoM height 57cm 
δgnd ground disturbance −10cm 

2.3.2 Proposed control Strategies 

Inspired by the behavior of birds mentioned in section 2.2, we propose three swing 

leg control policies. We focus on flight phase control policies because, contrary to 

stance phase, we can theoretically do no work and still control the gait. Therefore, 

the controllers would be economically efficient. Leg angle during the flight is the 

only parameter that would be changed in all the proposed control policies. Each 

policy controls the trajectory of the leg angle as a function of time α(t) (or vertical 

velocity) such that the corresponding SLIP model regulates the objective function of 

the policy in the upcoming passive stance. The objective function for each policy is i) 
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the leg peak force or ii) axial impulse or iii) the leg actuator electric work. Therefore, 

each control policy tries to find the appropriate leg angle during the flight phase at 

each instant to keep its objective function the same as previous stride. When there 

is no disturbance in the ground (level running), all of these control policies lead to 

equilibrium gait policy. 

We assume that our model has no information about the location and the size 

of the drop perturbation, and the leg angle is adjusted continuously starting at the 

instant of the expected touch down in anticipation of ground contact. Therefore, on 

flat ground, equilibrium gait is obtained and on a drop step, the leg angle would be 

adjusted at each instant such that the objective function is regulated for the stance 

phase. It should be noted that no control is applied during the stance phase and it 

is purely passive. 

2.3.2.1 Constant peak force policy 

The first proposed control strategy is to regulate the peak force during running. This 

control policy adjusts the leg angle during the flight phase such that the resulting 

leg peak force in any drop step remains the same as it used to be during the level 

running. This control policy makes it possible for the running robots to operate at 

their maximum capacity on even terrain and relinquishes the need to reserve some 

of the mechanical capacity for the drop step (unless the leg would break) and hence 

yields to a lighter and more efficient robots. Also, observations from birds’ data show 

that they run at nearly the same peak force during the level running and drop step 
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([10]). It should be noted that the controller does not need to have any information 

about the size and location of the drop (minimal sensing), in this policy the leg 

angle is adjusted continuously during the flight phase such that the leg peak force 

gets regulated. 

In the presence of a drop, the leg angle retracts towards the ground. Contrary to 

equilibrium gait policy, as indicated in appendix 2.7, for constant peak force policy 

the leg always should retract to fulfill its objective function. This behavior helps 

to reach the ground sooner and hence prevents the vertical velocity from increasing 

more. The reason that the leg is retracted before hitting the ground in this control 

policy is as follows: As the robot falls, the vertical velocity of the CoM increases 

and consequently the velocity vector rotates towards the leg. To avoid the increase 

of the peak force, the angle between the velocity vector and the leg direction should 

be increased. To increase this angle, the leg should be retracted even faster than the 

rotation of the velocity vector towards the leg. This implies the retraction behavior 

for the leg. 

2.3.2.2 Constant axial impulse policy 

The axial impulse is another objective function that we propose to be regulated 

during the running. We picked the axial impulse because this function considers both 

leg force and the leg work at the same time (our both goals), keeps consistent energy 

storage in the spring and also is able to reproduce the observed animal behavior. 

Constant leg impulse control policy provides the same axial impulse for the drop 
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step as for the level running by only adjusting the leg angle during the flight phase. 

This control policy - like the constant peak force control policy - retracts the leg at 

the presence of the drop perturbations, to retain the axial impulse the same as the 

previous step. 

The mathematical formula for the axial impulse is: 

ts 

I = F dt 
0 

In the above equation, F is the force in the leg direction and ts is the stance time. 

2.3.2.3 Constant leg work policy 

In this section we regulate the actuator work during the running process. Although 

the experimental data from birds’ running shows very slight change in the magnitude 

of the peak force or axial impulse in drop step respect to level running, these changes 

are statistically significant (low standard deviation in the data). It means these values 

(leg peak force and axial impulse) definitely change in the presence of the drop step, 

but not significantly in magnitude. In this section we investigate regulating another 

criteria that directly targets the efficiency of the system. The presence of the muscles 

in series with tendons in animals is similar to the presence of the motor in series with 

the leg spring for running robots. We know that electric motors consume electric 

energy even when they are kept locked. It means although the whole system remains 

energetically conservative and the generated/consumed mechanical work is zero, but 

the leg actuator needs electric energy to stay locked. 
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To regulate the electric work for this control policy in the drop step, the leg angle 

should be adjusted such that the leg actuator electric energy be the same as it used 

to be for level running. Since the electrical energy consumed by electric actuators 

is proportional to the integral of the torque squared over stance time, we use this 

integral as the criteria for the consumed electric energy. The mathematical formula 

for the electric work criteria is defined as: 

ts 

W = F 2 dt 
0 

This control policy - like the two previous control policies - retracts the leg in the 

presence of the drop step to keep the leg actuator work constant and consequently, 

like before, this behavior helps the leg reaches the ground sooner because of the 

steeper leg angle at the time of the touch-down. 

2.4 Results 

In this section we investigate, in simulation, the success of the control policies in the 

presence of a hidden drop step and then, compare the three proposed control policies 

against the equilibrium gait policy (Appendix) and against each other. Since the 

system follows its passive dynamics during the stance phase, the difference in the 

behavior of the system for each policy comes from the different touch-down angles. 

Figure 2.3 shows the CoM trajectories for one step before the drop and the drop 

step. Since the robot does not have any information about the disturbed step, the 

step before the drop would be the same as level running. All the control policies 
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could successfully pass the drop step and the robot didn’t fall. The overall shape of 

the CoM trajectories during the drop step are very similar for the three proposed 

control policies and clearly different from the equilibrium gait policy. The constant 

force control policy touches the ground slightly sooner than the other two policies 

and hence leaves the ground with a lower height and less vertical velocity. 

The CoM trajectories in figure 2.3 imply that the robot accelerates horizontally 

in the drop step for all the three proposed control policies, but for equilibrium gait 

policy the robot maintains the same forward speed as before. It should be noted that 

although part of the potential energy of the system is redirected to the horizontal 

kinetic energy, but since the velocity is with power two in the kinetic energy, the 

resulting horizontal velocity after the take-off does not increase too much especially 

for high forward speeds. For example, if the initial forward speed is 5m/s, after 

redirecting the change in potential energy from falling of a 20cm drop to horizontal 

velocity, the resultant forward speed will be 5.4m/s. It means only 8% increase in 

the forward speed after the 20cm drop. 

The leg force profiles are shown in figure 2.4. The leg peak force in the drop step 

for equilibrium gait policy increases about 45% of the level running while for the 

proposed control policies it remains nearly the same as before. The leg peak force 

increases slightly for the constant impulse and constant work relative to the constant 

peak force policy, which is the same as level running. 

The axial impulse would decrease for the constant peak force and constant ac

tuator work policies in the drop step (figure 2.5), but it increases about 60% for 

equilibrium gait policy. 
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Figure 2.6 compares the efficiency of the control polices from the required electric 

energy point of view. The constant axial impulse policy requires 7% more electric 

work for the drop step than level running, but the constant force needs the least 

electric energy in the drop step (about 5% less than level running). While the 

proposed control policies require nearly the same amount of electric energy for the 

drop step as level running, the required electric energy for the equilibrium gait policy 

at the drop step is more than 2 times of the energy that the actuator needs for level 

running. 

Figure 2.7 compares the touch-down angles for each control policy and show 

qualitatively how the objective functions change in difference scenarios. In this figure 

the proposed control policies are depicted on the peak force, impulse and leg work 

contour lines. moving along each contour line means following the corresponding 
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Figure 2.6: Actuator electric work criteria to keep the motor locked during the stance 
phase. The required work for drop step with equilibrium gait control policy is much 
higher than the level running (more than 2 times), but the required electric work 
with constant peak force control policy is nearly the same as level running. 

control policy. During the level running, all the proposed control policies and the 

equilibrium gait policy coincide at one point (it is shown with the gray big circle in 

the figure). The small colored circles show the touch down condition of the robot 

following each of the control policies at the drop step. As the vertical velocity 

increases, the contour lines diverge from each other, which implies more different 

behavior from the system under each control policy. 

The shapes of the contour lines in figure 2.7 are close to linear for small changes 

in vertical velocity. To study the shape of the contour lines further, we focus on only 

the peak force contour lines in figure 2.8. This figure shows the desired leg angle 

trajectory, which is the same as the peak force contour lines, and two sets of fit, 

linear and quadratic function, for the desired leg angle trajectory. The linear fit of 

the desired leg angle trajectory has drift along the desired curve, and this drift gets 
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smaller as the forward speed increases. The quadratic function is an excellent fit for 

the leg angle update. 

2.5 Discussion 

All the proposed control policies are able to reject the drop step with a similar 

behavior. Therefore, each of them individually has the capability to be used as a 

swing leg control policy and by implementing either of them, the other two policies 

would be nearly fulfilled as well. Among these policies, the constant force policy 

leaves the ground with a lower height and less vertical velocity which means, it has 

the shortest flight phase after leaving the ground to adjust the leg for the next stride, 

the constant impulse and constant work control policies have nearly the same flight 

phase time and slightly more than constant peak force policy. For the equilibrium 

gait policy [23, 14], the CoM trajectory remains symmetric and the robot would have 

the largest flight time to be prepared for the next step. 

Results show that the equilibrium gait policy in the drop step requires much 

more demands (mechanical (leg force) and electric energy) than the proposed control 

policies. The 45% increase of the leg force in the results section may lead to serious 

structural damage to the leg, and even if the structure of the leg can sustain this 

new force, the amplifiers may not be able to provide that much current and hence 

leads to falling. For the proposed control policies, on the other hand, the internal 

demands remain nearly the same as before. For example the leg peak force increases 

slightly (about 2 − 3%) for the constant impulse and constant work relative to the 
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constant peak force policy, which is the same as level running. 

The asymmetric shapes of the CoM trajectories in the proposed control policies 

during the drop step imply that the robot accelerates horizontally in the drop step 

for all the three proposed control policies. This is consistent with the behavior 

that animals show in the drop step [10]. But for equilibrium gait policy, the robot 

maintains the same forward speed during the whole running. The increase of the 

horizontal velocity in the drop step for the proposed control policies is due to the 

conversion of the potential energy (from drop height) to the kinetic energy. Since 

the velocity is with power two in the kinetic energy, the resulting horizontal velocity 

after the take-off does not increase significantly, especially for high forward speeds. 

For example, if the initial forward speed is 5m/s, after redirecting the change in 

potential energy from falling of a 20cm drop to horizontal velocity, the resultant 

forward speed will be 5.4m/s. It means the forward speed increases only 8% after 

falling from the 20cm drop. 

The proposed control policies here consider the mechanical and electrical limi

tations as the central concern for the controllers. Other preferred requirements like 

the next stride apex height and apex horizontal velocity are in the second priority of 

the control policy and can be determined similar to the dead-beat control strategies 

[27, 23] or the Raibert controller [28]. Later in this section we will discuss more 

about these aspects. 

Since the shapes of the contour lines in the leg angle (θ)-fall time (t) plane (figure 

2.7) is close to linear, a constant leg retraction rate with the average slope of the 

contour lines would be a simple implementation strategy. The value for the leg 
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retraction rate agrees with Karssen et. al. [24]. Further investigation in the shape 

of the contour lines revealed that constant leg angular acceleration is an excellent 

fit for the swing leg retraction trajectory. As the horizontal velocity increases, the 

linear function becomes more acceptable fit for the contour lines. Therefore, for 

high forward speeds (forward speed more than 6m/s), constant leg retraction rate is 

nearly the same as the slope of the contour lines and hence is nearly exact. Among 

the contour lines, the peak force contour lines have the steepest slopes which means 

the greatest leg retraction rate among other policies. 

The objective functions that we chose for the policies are important technical 

issues from the robotics point of view. We tried to find an exact map that regulates 

our objective functions, but surprisingly the map function happened to be a simple 

constant leg angular acceleration. For small flight time (falling from small drop 

heights), constant leg angular velocity is a good approximation for this map. The 

outcomes agree with what Karssen et. al. [24] found for the optimal swing leg 

retraction rate when the peak force is considered as the objective function. But 

contrary to their work, we did not limit our policy to a constant leg retraction rate. 

The difference between the proposed control policies and the equilibrium gait 

policy increases as the forward speed increases. To provide steady state running for 

high forward speeds, the leg should protract in the falling half of the flight phase 

(appendix), but for all the proposed control policies the leg should retract to reach 

the ground. The leg protraction in the equilibrium gait policy postpones the moment 

of the touch-down and consequently increases the difference of the proposed control 

policies and the equilibrium gait policy. Karssen et. al. [24] also reported that the 
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trade-off between optimal swing leg retraction rate for the disturbance rejection and 

other objective functions (including the leg peak force) increases by increasing the 

forward speed. 

The desired leg angle trajectory for each of the proposed control policies is dif

ferent with the two-phase constant leg retraction rate in the clock-driven model that 

was proposed for the robots like RHex [4] [5] [29]. In each of the proposed control 

policies, Like the clock-driven model, the leg retraction trajectory after the time of 

the expected touch-down would follow a different trajectory function. But in these 

policies, instead of a constant retraction rate, constant angular acceleration should 

be provided for the leg, and more importantly, contrary to clock-driven method, the 

control efforts stop at the beginning of the stance phase (contrary to clock-driven 

technique, proposed control policies are purely passive in stance phase). The clock-

driven technique is a simple bio-inspired technique, but it does not consider the 

structural or electrical capacity of the leg and hence these technical issues may cause 

damage during the stance phase. 

By using a new type of return map, the proposed control policies and their 

limitations can be depicted visually. In this new type of return map, contrary to 

return maps with constant mechanical energy [2, 14], the horizontal velocity is kept 

constant (figure 2.9). In the return maps with constant energy, any change in the 

ground level alters the energy of the system and therefore, the flight phase control 

policies with varying ground level can not be depicted on the maps (figure 2.9-a). In 

the return map that we use here, instead of the mechanical energy, the horizontal 

velocity is kept constant (figure 2.9-b). The key difference of these two return maps 
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is: the axes in the return map with constant mechanical energy represent the apex 

heights relative to the original ground level, but in the return map with constant 

forward speed, the two axes are the apex heights relative to the upcoming stance 

phase ground level. In figure (2.9-b), yi represents the apex height relative to the 

upcoming stance phase. Therefore, any change in ground height is interpreted as 

the change in yi (for example if there is a 10cm drop step, then this apex height 

increases 10cm). The vertical axes of this graph (yi+1) is the apex height relative to 

the upcoming stance ground level. 

To implement the constant peak force control policy, the leg angle should follow 

parallel to the axial peak force contour lines. Using the constant forward speed for 

this map allows us to interpret the change of the ground level as a change in the 

apex height. Therefore, contrary to the conventional return map [2, 14], we do not 

need to change the graph. For example, if the apex height for steady state running 

is about 57cm then the peak force would be 1000N . Now assume the drop height is 

10cm therefore the apex height including the drop step would be 67cm. To follow 

the constant peak force policy, the leg angle should be set to θ = 121◦ at the moment 

of touch-down, and the passive dynamics of the system drives the stance phase and 

has the same axial peak force as before (1000N). It should be noted that there is 

no need to know the ground level in advance and the leg angle is getting updated 

continuously expecting to reach the ground at that moment. To have steady state 

running (equilibrium gait policy), the controller should follow the 45◦ line which 

requires the touch down angle be about θ = 129◦ and consequently the peak force in 

the leg surges to about 1350N (35% increase). Also, we can notice that although the 
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constant peak force policy prevents the peak force from increasing, it has a limit for 

the maximum drop height that can be handled by this control policy. For example, to 

keep the peak force equal to 1000N , the maximum drop height that can be handled 

is around 10cm (the end of the 1000N contour line). It implies that for deeper drop 

steps, the peak force would increase unless the robot does not leave the ground after 

the passive stance phase. 

Because of the negative slope of the force contour lines in the return map, the next 

apex height decreases with increasing the drop height. It implies that the system 

gains horizontal velocity due to the transformation of the potential energy to kinetic 

energy. This behavior is confirmed in simulation and also observable from animals’ 

experiment [10]. Also, we know that to have a successful running gait, the next 

apex height is another important factor that should be considered. The next apex 

height after the drop step should be greater than a threshold and the flight phase 

should be long enough to allow the leg to be placed on the ground for the next stride. 

Therefore, based on the geometry of the leg, the controller should limit the allowable 

drop height, or use a shorter leg length for the next stance phase. For all these cases, 

the return map with constant horizontal velocity can determine the limitations and 

one can design the appropriate scenario for the control policy on the map. 

The discussion of the return map that we presented for constant peak force policy, 

can be easily extended for axial impulse or leg work. In these cases, only the peak 

force contour lines in figure 2.9 would change to the impulse or leg work contour 

lines in the range of 175N.S to 300N.S and 135000N2.S to 350000N2.S respectively. 

The overall shape of the impulse/leg work contour lines are similar to the peak force 
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contour lines in figure 2.9. 

It should be remembered that all the proposed control techniques were during the 

flight phase and the system was assumed conservative during running. Therefore, to 

continue running on ground with a permanent drop step, the robot should dissipate 

the gained kinetic energy. In this case, a stance phase control is inevitable to return 

the robot back to the preferred forward speed unless the robot will continue with 

a higher horizontal velocity. A simple and bio-inspired stance phase technique that 

was proposed by Schmitt et. al. [30] and investigated more by [31] and [32] can be 

used to dissipate the gained energy. 

2.6 Conclusion and future work 

Three flight phase control policies inspired by animals’ data, but suitable from me

chanical perspective for machines, were proposed and implemented to the model 

of spring-mass running robots. The control policies regulate their objective func

tions that target the mechanical/amperage limitation and electrical efficiency of the 

system. Therefore, by using either of these bio-inspired control policies, the safety 

and efficiency of the robot during running is guaranteed while we showed that the 

implementation of them is very easy with minimal sensing requirements. 

All the three proposed control policies (constant peak force, constant axial im

pulse and constant leg actuator electric work) successfully rejected the drop step and 

surprisingly resulted in similar behavior on the spring-mass robot. Therefore, by 

implementing either of these proposed control policies, both goals (damage avoid
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ance and efficiency) would be satisfied. For instance, by implementing the peak force 

control policy (which was considered for damage avoidance and amplifier limitation) 

the efficiency goal would also be achieved. 

We showed that a simple leg angular acceleration during the flight phase is enough 

for the robot leg to keep the running safe (avoiding the damage) and efficient. If 

the drop height is less than 10% of the leg length, a constant leg angular velocity 

(constant leg retraction rate) would approximately give similar results. The value 

of the leg retraction rate (leg angular velocity) can be found from the slope of the 

leg peak force contour lines in the leg angle-falling time plane. It should be noted 

that implementing these policies are very easy and requires very little sensing or 

computation on a robot. 

For future work we plan to implement these policies on our robot ATRIAS. We 

found out that the amperage limitation is a big concern for actuated spring-mass 

robots like ATRIAS and therefore, we will start with the constant leg peak force 

policy. 

2.7 Appendix: Equilibrium gait policy 

The equilibrium gait policy ensures that the robot has symmetric CoM trajectories 

during the stance with respect to the vertical axis defined by mid-stance (i.e. touch 

down and take off conditions are symmetrical). To create symmetric gait for high 

forward speeds in the presence of a drop, the leg should protract as the CoM falls in 

the drop (figure 2.10). This protraction opens more room between the toe and the 
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ground and consequently leads to higher vertical velocity at the time of touch down. 

To have equilibrium gait, figure 2.10 shows the leg angle function with respect to 

falling time for different forward speeds. For low horizontal velocities, the leg angle 

function is monotonically decreasing meaning that the leg should be retracted after 

passing the apex. For high forward speeds (here vx > 3) the robot should protract the 

leg in the beginning and then (after gaining some downward velocity if it yet hasn’t 

reached the ground) it should start retracting the leg to provide the appropriate 

leg angle for equilibrium gait. For human-scale spring-mass running robots, high 

downward velocity (here more than about 2 m/s which corresponds to a drop height 

of about 30% of the leg length) is not common to be rejected blindly. Therefore, for 

small to medium drops, the leg would have monotonic behavior. It is interpreted 

as retraction for low forward speeds and protraction for high horizontal velocities as 

the robot falls. 

Karssen et. al. [24] also concluded that for high horizontal velocity, the trade off 

between the disturbance rejection and energy losses and also foot slipping increases. 

The reason is that when the forward speed is such that protraction is needed, the 

leg should be rotated in the opposite direction of falling, but to reduce the effect of 

impact or prevent the foot slipping the leg should be retracted (it should be rotated 

in the direction of falling). Moreover, as the robot falls, the protraction increases 

the distance between the toe and the ground and postpones the contact moment, 

meantime the vertical velocity increases and consequently the leg peak force or axial 

impulse increase more. 
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Figure 2.10: The required leg angle trajectory for equilibrium gait policy. For low 
horizontal velocities, the leg should be retracted as it falls. For high forward speeds 
(here about vx > 3) the robot should protract the leg in the beginning and then it 
should start retracting the leg. The shaded area corresponds to deep drops (distur
bances more than about 30% of the leg length that is not very common for legged 
robots to reject blindly. 
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Chapter 3 – Swing leg control strategy considering leg length and leg 

angle 

In this paper we present a control strategy for spring-mass running robots 

that maintains a consistent running gait on uneven terrains, while priori

tizing a limit on the peak forces on the leg. The peak forces are a problem 

for real machines, potentially exceeding the peak forces of an actuator and 

leading to a fall, or even breaking robot components. Our control strat

egy relies on an actuated spring-mass model which is described in section 

3.2. Our controller chooses a leg angle and a leg length during the flight 

phase, relying entirely on passive dynamics during the stance phase to 

have symmetric gait and not suffer from high leg forces during the stance 

phase. 

3.1 Introduction 

The planar spring loaded inverted pendulum (SLIP) has been widely used in litera

ture as a model for walking [33, 11] and running [1, 23]. The stability of this simple 

model in running [34] explains how animals can run robustly and efficiently in real 

world. Schmitt et. al. [30] added a very simple controller to the passive SLIP model 

and made the system more robust. 

Recently Ernst et. al. [23] proposed a flight phase control strategy for running 
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on uneven terrain that leads to steady state running. In their method, the leg angle 

is chosen such that a steady state running is produced during the stance phase. This 

control strategy does not require any work during the stance phase, but the leg force 

is increased dramatically. 

Our motivation for this study comes from the response of animals to hidden 

disturbances [35] as is shown in Figure 3.1. For them, too, peak leg force appears 

to be a concern. Ground-running birds carefully limit their leg peak forces when 

encountering unexpected drop perturbations by extending their legs and adjusting 

their leg angles[35] (Figure 3.1). 

Inspired by the behavior of animals in running, we intend to investigate the effect 

of the leg length on the dynamics of running. Therefore, a leg actuator is added to 

the SLIP model [3] to control the length of the leg during the flight phase (Figure 

3.2). The observation of animals’ behavior shows that in the level running, the CoM 

trajectory is close to a symmetric path. When they encounter hidden drops in the 

ground, their leg length increases to fill the unknown hole height and their leg angle is 

adjusted to reject the disturbance robustly and efficiently. The steady state running 

(equilibrium gait) for the SLIP model can be obtained when the leg touch-down 

angle is the same as the leg lift-off angle and also the CoM velocity components are 

the same. 
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Figure 3.1: By extending their leg length and adjusting their leg angles, guinea fowls 
reject hidden disturbances without suffering from high leg forces[35]. 

3.2 Methods 

3.2.1 Model 

The model that we use here is an actuated version of the SLIP model [3] which is 

shown in Figure 3.2. The leg actuator is in series with the spring to control the leg 

length during the flight phase. We keep the motor locked during the stance phase, 

therefore the dynamics of the system will be entirely passive (SLIP model) in stance 

phase. The motor inertia and maximum motor torque are considered for the leg 

actuator to model a realistic electric motor. In addition to the leg length control we 

assume, like previous studies [23, 34, 30], that the leg angle can also be controlled 

during the flight phase. The leg angle is controlled with position control technique. 

For real robots, any leg mass can be included in motor inertia. In this case, 

the important physical limitations are considered in the results. To accomplish the 

simulations, following characteristics are chosen for the model. 
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Figure 3.2: The passive SLIP model vs. the actuated SLIP model.


Table 3.1: Robot characteristics for one legged robot


Parameter Description Value 
m robot mass 30.0kg 
kleg leg spring stiffness 4500N 

m 
l0 initial spring length 70cm 

Tmax maximum motor torque 850N.m 
I motor inertia 2.78kg.m2 

G Gear ratio 50 : 1 
v0x initial horizontal velocity 2.5m 

s 
h0 initial CoM height 70cm 
δgnd ground disturbance −15cm 

3.2.2 Control strategy 

The main goal of this control strategy is to keep the equilibrium gait during the 

running. Previously, Ernst et. al. [23] proposed a method to have equilibrium gait 

(steady state running) by only adjusting the leg angle during the flight phase. Based 

on their control strategy, the leg angle during the flight phase should be continuously 

updated, as a function of fall time, such that if the toe reaches the ground at each 

moment, the passive dynamics of the system will create the equilibrium gait. Figure 

3.4 shows the CoM trajectory of the SLIP model with this control policy. To imple
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Figure 3.3: CoM trajectory of the SLIP model adjusting the leg angle with constant 
leg length to have symmetric gait (equilibrium gait policy) [23]. 
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Figure 3.4: Leg force profiles for the undisturbed model and the equilibrium gait 
policy. The leg peak force increases about 33% for the equilibrium gait policy. 

ment this control policy on a real robot, we need to generate a look-up table which 

gives us the appropriate touch-down angle with respect to the vertical component 

of the CoM velocity. The main problem with this control policy is that the peak 

leg force during the pothole step increases significantly. Simulations show that the 

increase in the peak force in drop gait is about 33% of the level running value. This 

increase may break the leg or the transmission of the robot. It should be noted 

that the increase in the leg peak force would be more pronounced for higher forward 

speeds. 
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The control policy used by animals uses the leg extension in addition to leg 

retraction. Therefore, at each instant (means constant vertical velocity during the 

flight phase) we look for the relation between the leg length and the leg angle that 

leads to a symmetric gait for SLIP model. Moreover, we monitor the change in the 

peak leg force in the stance phase. We need to expand the previous look-up table 

that Ernst et. al. [23] proposed. In the new look-up table different leg lengths should 

also be included. Therefore, the required leg angle in each instant is obtained based 

on the falling time (or vertical velocity) and the current leg length by interpolating 

among the look-up table data. Since the system is purely passive in stance phase, 

the well known SLIP model equations of motion are used in stance phase [11, 30]. 

In Figure 3.5 the relation between the leg length and the leg angle is shown for 

different vertical velocities to have equilibrium gait. Each point (pair of leg angle and 

leg length) on the lines leads to an equilibrium gait for the corresponding vertical 

velocity. The numbers on the curves show the peak leg forces at those points. It can 

be seen that to have symmetric gait, the peak force is nearly constant for different 

leg lengths (numbers along each curve in Figure 3.5). It means if the leg length 

extends while the leg angle is being adjusted concurrently (like animals do), the 

peak force in the stance phase does not vary too much. The whole point is that the 

leg extension compensates for the hole height and therefore, a symmetric path with 

nearly constant peak force is generated during the stance phase. 

In summary we can design the controller as follows: if the vertical velocity passed 

the usual value at touch-down; the leg actuator should extend the leg towards the 

ground. Based on the current leg length at each moment the leg angle should be 
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Figure 3.5: Leg length vs leg angle for equilibrium gait policy with different vertical 
velocities. Numbers on the lines show the peak leg force [N] during the stance phase 
at that point. The peak forces are nearly constant along each curve. 

adjusted using the curves in Figure 3.5 or the look-up table that was mentioned 

earlier. 

Two different scenarios that may happen during the running are shown in Figure 

3.6. When the vertical velocity of the CoM is less than or equal to the usual value 

of the vertical velocity at touch-down, the motor does not work and only the leg 

angle is adjusted to generate symmetric path in stance phase (if there is any step 

up in the ground). If the vertical velocity of the CoM passes the usual value of the 

vertical velocity at touch-down it means the robot encounters a step down in the 

ground. Therefore, the leg actuator extends the leg towards the ground. Because of 

the existence of the motor inertia and maximum torque, the toe reaches the ground 

with some delay. Meantime, the leg angle is adjusted based on the current leg length 
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Figure 3.6: Left: The leg actuator does not work on even ground (no leg extension, 
only leg angle adjustment during the flight phase) Right: The leg actuator extends 
the leg, the leg angle is adjusted concurrently based on the current leg length. 

to have symmetric gait in stance phase whenever it hits the ground. 

3.3 Results 

The CoM trajectory of the robot controlled with the policy described in section 3.2 is 

shown in Figure 3.7. When the vertical velocity of the CoM becomes greater than the 

vertical velocities at touch-down in previous strides, the leg actuator starts extending 

the leg towards the ground. At each moment, based on the new leg length and new 

vertical velocity the required touch-down angle is calculated from the look-up table. 

Figure 3.8 shows the leg force profiles for three cases. As can be seen in the figure, 

the increase in the peak force with the proposed control policy is only 11% more 

than the undisturbed case. This increase is due to the small increase in the vertical 

velocity of the CoM while the motor tries to hit the ground. The increase of the peak 

force due to the Ernst et. al. [23] method is about 33% more than the undisturbed 

case. 
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Figure 3.7: The actuated SLIP model rapidly extends the leg and adjusts the leg 
angle concurrently. The red line on the leg at the drop gait is the increased leg 
length. 
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Figure 3.8: Leg force profiles show the peak force increases only 11% if the leg is 
rapidly extended. This increase is due to the physical limitations of the motor like 
motor inertia. Without leg extension, increase in leg force would be 33%. 
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3.4 Conclusion 

In this paper we proposed a bio-inspired control strategy for the flight phase that 

leads to steady state running but more importantly keeps the leg force nearly constant 

in the presence of disturbances. The proposed control policy comes from the fact 

that if the leg length extends while the leg angle is being adjusted appropriately (like 

animals do), the peak force in the leg does not increase too much. It means the leg 

extension partially compensates for the drop and the leg angle is updated to generate 

the symmetric path. It should be noted that the small increase in the leg force in 

our simulation is due to the physical limitations of the motors that prevent them to 

act instantaneously. 
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Chapter 4 – Optimum passive elements for jumping: throwing the 

body mass 

The passive dynamics of actuators may impose serious limitations to the 

performance of a system. Existence of inertia for example makes it im

possible for the actuators to react immediately. A throwing mechanism 

(with electric motors) is composed of two inertias (object and motor) 

that decreases the performance of the system and can not be overcome 

with software control. But, we can use other elements (like a spring) to 

make the motor inertia a benefit to improve the performance of the sys

tem. Moreover, when the object is directly connected to the motor, the 

maximum velocity that the object can achieve is limited to the maximum 

velocity that can be provided by the motor. Here, we will extract math

ematical formula that gives us the required optimum value for stiffness 

and/or damping of the system to give us the optimal performance given 

physical limitations. 

4.1 Introduction 

Physical interaction tasks like catching and throwing (i.e jumping and landing) are 

done by animals much better than robots. Although rigid robots are very good at 

some tasks like accurate positioning of objects, they perform poorly in accomplish
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ing physical interaction tasks. We think that most of the amazing performance of 

animals is due to the physical characteristics of their mechanical systems and their 

synchronicity of their control policy. 

Throwing an object directly by a rigid robot which is driven by electric motor is 

limited to the maximum velocity that the motor can provide. In this case, to reach 

the maximum possible velocity, the robot applies the maximum force (or torque) 

to the system until either the motor reaches the limit of its range of motion or the 

object reaches the maximum velocity of the motor. By using the characteristics of 

springs and dampers, the performance of the system can be improved significantly. 

The idea of using spring for throwing a mass is to store energy in the spring in 

the beginning of the process to help the motor push the object faster while the motor 

is at its maximum velocity. In this process, the inertia of the motor helps the system 

to accelerate the object even more. Since the idea is to transfer as much energy 

as possible to the object, the existence of damper which dissipates energy seems 

destructive. However, considering the other mechanical limitations like maximum 

motor range of motion or maximum allowable spring compression, the existence of 

damping can become beneficial. 

Regardless of the software and controller, there are some physical limitations that 

impose serious limits. The motor inertia which is amplified through the gearbox or 

the maximum distance that the motor can travel are among the physical limitations 

that the software can not overcome. In the other words, no matter which controller 

is used, the motor can not travel further than its maximum limit or the motor can 

not respond instantly and generate the desired velocity. In this paper we use an 
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Figure 4.1: The system we investigate in this paper is entirely linear and includes 
damping, elasticity, motor inertia (represented as an equivalent mass), motor force 
limits and motor maximum velocity as well as maximum spring compression length. 

schema for throwing an object and present formulations to calculate the optimal 

values for the parameters of the new system (elasticity and damping) to have an 

optimal physical performance. In the mathematical framework of our mechanical 

system we consider inertia, torque limit and velocity limit for the electric motor in 

series with a spring-damper system (which has also compression limit) as shown in 

figure 4.1. 

4.2 Background 

The motivation of this paper is to investigate the effect of elasticity and damping 

on initializing the process of running for a legged robot from its rest position using 

electric motors. Other researchers have used the subject of throwing for robot’s arms 

[36][37], hopping [38] or as a new method for transportation of objects[39][40]. 

The mechanism of running and walking in animals can be best presented by 
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spring-mass model [2][41]. Although roboticists who have built machines to mimic 

spring-like behavior [42][28][43] acknowledged that elasticity provides robustness, but 

their studies focused on energy storage and efficiency. Little attention is given to 

how these elements contribute to general force control and manipulation with the 

environment. Recently [38] investigated the effect of compliant actuator on the 

energy efficiency of a hopping robot. They concluded that series elastic elements 

help the robot to achieve higher hopping hight. 

Early investigations into force control found that series compliance in an actu

ator can increase stability, and in some cases is required for stable operation [44]. 

Researchers at the Massachusetts Institute of Technology (MIT) Leg Laboratory ex

plored these ideas and created the Series Elastic Actuator (SEA). The MIT-SEA is 

designed specifically to include an elastic element as a force sensor and low impedance 

coupling between the drive system and the load to improve force control. It has been 

shown that this configuration provides filtering to handle shock loads and higher 

bandwidth force control [45]. 

Hurst et al. [46] proposed an extension to MIT-SEA. They investigated the effect 

of damping and concluded that the added damping provides higher bandwidth than 

a purely series-elastic element. But, initial observed force by the drive system at 

impact is greater than a system that is only composed of an elastic element. 

Haddadin et al. [47] showed that it is possible to derive suitable stiffness for an 

elastic joint and it is capable of at least reaching the maximum velocity of the rigid 

joint. 

Braun et al. [48] proposed an optimal stiffness profiles for a variable stiffness 
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system. They chose throwing a ball to demonstrate their method. Garabini et al. 

[49] also investigated the optimality principles in stiffness control. They imposed a 

fixed terminal time in their optimization program to maximize the velocity of the 

actuator link. 

Throwing an object has been considered a means in transporting objects[40] [39]. 

Frank et. al. in [40], used a rigid rotary system to throw the objects. A rotary electric 

motor is connected to the rigid arm with a specific length (which is determined based 

on the desired final velocity) and the mass is located at the end of the arm. To 

increase the final velocity of the thrown objects, the length of the arm should be 

increased which increases the inertia of the system quadratically (I = I0 + m d2).· 

In this paper we show quantitatively how the spring and damping affect the 

behavior of the throwing mechanism. Moreover, we will present mathematical for

mulations to relate the various parameters of the actuator. It will be shown that for 

various physical limitations (such as motor/spring stroke) there is an optimum value 

for stiffness and damping that gives us the greatest final velocity. 

4.3 Problem definition 

To investigate the effect of elasticity and damping on the performance of throwing, 

the system in Fig. 4.2 is considered. In the mathematical model of the system, 

in addition to the elements k and B, we include motor force limits, motor inertia 

and motor velocity limit as well as maximum spring compression length. The motor 

torque and rotational inertia are modeled as a linear mass with applied force (similar 
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to a ballscrew). The following symbols describe our mathematical model: 

k Spring constant 

B Damping constant 

mm Motor/transmission mass 

mL Load mass 

Fm Motor force 

Flimit Motor force limit 

Fd Force caused by the dynamic elements 

vmax Motor maximum velocity 

N m· 
N s·
m 

kg 

kg 

N 

N 

N 

m 
s 

We assume that the actuator can not sustain tension (like jumping) therefore the 

final velocity of the object is the velocity that it has at the first loss of contact (unlike 

the case for pogo sticks that to reach the maximum velocity, it losses the contact 

several times). Our goal in this paper is to show how to calculate the optimum 

values for stiffness and damping to be added to the passive dynamics of the system 

to improve the performance the most (means maximizes the final velocity of the 

object). 

4.4 Mathematical formulation 

To model the effects of the passive dynamics of an actuator to the performance of our 

system, the system shown in Fig. 4.2 is considered. We want to know how to choose 

the values of elasticity and damping (k and B) to have the most efficient throwing 
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Figure 4.2: System schematic. The motor inertia is represented as a linear mass 
(mm) and the load mass is represented as (ml). This is analogous to an electric 
motor attached to a ballscrew transmission where the rotational inertia is much 
greater than the mass of the transmission itself. 

system given our physical limitations like stroke limit. Moreover, the system shown 

in Fig. 4.2 is similar to the mechanism of legged robots [42] [28]. 

We define the performance of the system as the largest possible v that the object 

can reach without breaking the contact to the system given the physical limitations. 

In our model, the spring is linear and the damper is a viscous damper, therefore the 

dynamical behavior of the system is linear. The differential equations that describe 

the motion of the system are: 

⎧ ⎪⎨

⎧ ⎪⎨


⎫ ⎪⎬

⎧ ⎪⎨


⎫ ⎪⎬

⎧ ⎪⎨ ⎪⎩ 

⎫ ⎪⎬ 

Fm 

⎫ ⎪⎬
¨
xl ẋl 0
xl 
[m]
 + [B]
 + [k]
 (4.1)
=
⎪⎩
 ⎪⎭
 ⎪⎩
 ⎪⎭
 ⎪⎩
 ⎪⎭
 ⎪⎭
¨
xm ẋm (t)
xm 
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where ⎤⎡ ⎢⎣

B −B
⎥⎦
[B]
 (4.2)
=

−B 

k −k 

−k 

ml 

⎡ 

⎡⎢⎣ 

B ⎤ ⎢⎣

⎥⎦
[k]
 (4.3)
=


k
⎤ ⎥⎦

0


[m]
 (4.4)
=

0 mm 

Here, the [B], [k] and [m] are respectively damping, stiffness and mass matrices. 

As the system of differential equations (eq. 4.1) is coupled, it can not be solved in this 

form. To solve the system, we decoupled (4.1) into two independent single degree of 

freedom (SDOF) systems using the system’s mode shapes [50]. Therefore, the initial 

degrees of freedom can be mapped by the mode shape vectors of the system to a new 

set of degrees of freedom as follows: 

⎧ ⎪⎨

⎫ ⎪⎬
xl 

= {φ}1 z1 (t) + {φ}2 z2 (t) (4.5)⎪⎩
 ⎪⎭
xm ⎧ ⎪⎨

⎧ ⎪⎨ 

⎫ ⎪⎬ 
⎫ ⎪⎬
1
 1


{φ}1 ⎪⎭

{φ}2 =
⎪⎩


(4.6)
=
⎪⎩
 ⎪⎭
1
 −µ


Which here, {φ}1 and {φ}2 are the mode shapes of the system. Because of 

the orthogonality characteristic of the mode shapes respect to mass and stiffness 

matrices [50], the original differential equation (eq. 4.1) can be split to the following 
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independent equations. 

(ml + mm) z̈1 (t) = Fm (t) (4.7) 

mez̈2 (t) + Beż2 (t) + kez2 (t) = −µFm (t) (4.8) 

where the equivalent parameters used here, are defined as follows: 

me = ml (1 + µ) (4.9) 

Be = B (1 + µ)2 (4.10) 

2ke = k (1 + µ) (4.11) 

ml 
µ = . (4.12) 

mm 

The two new models demonstrated in Fig. 4.3 are the two new independent 

degrees of freedom. The left figure represents the rigid body motion of the system 

(z1) and describes how the masses move together. On the other hand, the right 

figure describes the oscillation of the masses relative to each other (z2). The whole 

response of the system is composed of a linear combination of these two independent 

motions as described by eq. 4.5. 

Since we are looking for the case that gives us the largest final velocity, the 

motor should apply its maximum force from the beginning. It should be noted that 

here, like the case of jumping, the system of spring-damper can not sustain tension. 

Equation 4.7 can be easily solved by integrating that equation two times respect to 
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Figure 4.3: The original system in Fig. 4.2 can be broken into two separate single 
degree of freedom systems. 

time (t). On the other side, equation 4.8 is the well-known SDOF oscillation system 

[50]. The closed form solutions of the above equations are as follows: 

Fmax � 
2 
� 

z1 (t) = t (4.13)
2(ml + mm) 

µFmax 
z2 (t) = −

(1 + µ)ke 
(1 − A (t)) (4.14) 

ζ 
A (t) = e−ζwet � sin (wdt) + cos (wdt) (4.15) 

1 − ζ2 

Other parameters used in the above equations are: 

k (1 + µ) 
we = (4.16) 

ml 

Be
ζ = (4.17)

2mewe 

wd = we 1 − ζ2 (4.18) 
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Figure 4.4: Variation of the dynamical force of the spring-damper system to the 
object respect to time. 

Here, we, ζ and wd are respectively natural frequency, damping ratio and damped 

frequency of the equivalent system. The relative movement of the masses respect to 

each other (z2 and ż2) determines the contact between the object and the system. As 

the eq. 4.14 is like a constant force applying on a single degree of freedom system, the 

reaction force of the support never passes the zero line in the existence of damping. 

When there is no damping in the system, the dynamical force touches the zero line, 

but still never crosses that line. Fig. 4.4 shows how dynamical force of the system 

(B ż2 + k z2) varies respect to time. It can be concluded that as long as the motor · · 

applies the maximum force to the system, the object will not leave the system and 

consequently it means that the object is accelerated until some hard stops happen. 

The first hard stop that should be controlled is the spring length limit. To control 

the adequacy of the stiffness and/or damping of the system to satisfy the spring limit 
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length equation 4.14 is used. The required spring deflection is determined by the 

maximum possible value for the oscillation degree of freedom (z2) which is represented 

in equation 4.8. Therefore, the relation between the physical characteristics of the 

system and the maximum possible spring deflection can be obtained as follows: 

lspring = 
µFmax � 

1 + e−ζπ 
� 

(4.19)
(1 + µ)2k 

It is the first and the simplest equation to calculate the required stiffness and/or 

damping of the system. The largest value for the required stiffness is when the 

damping is equal to zero. Also it can be understood that damping has not significant 

effect on limiting the spring compression. 

The relative movement of the two masses shows if the object leaves the system or 

not. If the dynamic force applied by the spring and damper becomes zero, it means 

the object is on the onset of the separation. Based on the eq. 4.14, the relative 

equation of the masses is like a single degree of freedom under a constant force. The 

variation of this function is shown in Fig. 4.4 

To satisfy other physical limitations of the actuator, two scenarios may happen. 

In the first scenario, the motor reaches its maximum length before reaching its max

imum velocity and the second one is that motor reaches its maximum velocity before 

reaching its maximum length. For the first scenario, the system follows a single rule, 

but for the second one, the dynamics equation of the system alters when the motor 

reaches its maximum velocity (means the motor does not apply force when it is at 

its maximum velocity). 
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The velocities of the object and the motor can be obtained as follows: 

Fmax 1 
ẋl (t) = t − e−ζwet sin (wdt) (4.20) 

ml + mm wd 

ẋm (t) = 
Fmax 

t + 
µ
e−ζwet sin (wdt) (4.21) 

ml + mm wd 

The first term in the parenthesis above is common for both load velocity and 

motor velocity which shows the rigid body motion of the system. But, the second 

term shows the relative motion between the object and the motor. In the ideal 

situation where there was no motor limitations, we just needed to find a stiffness 

correspond to maximizing the second term. In the real situation that we do have 

physical limitations like motor length limit and motor velocity limit, the first term 

(means the time that the motor drives the system) also influences the results and 

makes the analysis of the system far more complicated. To consider the motor length 

limit, we need the position of the motor at each instant. The positions of the load 

and the motor are: 

Fmax 2 1 
xl (t) = 

ml + mm 
0.5t − 

we 

(1 − A (t)) (4.22)
2 

Fmax 2 µ 
xm (t) = 0.5t + (1 − A (t)) (4.23) 

ml� 
+ mm we 

2 � 
ζ 

A (t) = e−ζwet � sin (wdt) + cos (wdt) (4.24) 
1 − ζ2 

Since the motor can not travel more than its maximum length, the second equa
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tion above should be less than or equal to the maximum motor length. This equation 

relates the motor travel length limit to the physical characteristics of the system. 

Fmax 2 µ
lmotor = 

ml + mm 
0.5tf + 

we 
2 
(1 − A (tf )) (4.25) 

Which A (tf ) is given in eq. 4.24. This equation should be solved respect to 

the time (tf ) which shows the time of the process. After that, everything can be 

obtained by the equations 4.20 to 4.23. 

4.5 Simulation 

Because of the complicated form of the mathematical formulas, understanding the 

role of each parameter on the behavior of the system is not easy. In this section, 

based on the closed form solutions in the previous section, we present simulations to 

show the effect of the physical parameters on the behavior of the system by graphs. 

To accomplish the simulations, following characteristics are assumed for the system. 
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Parameter Description Value 

mm Motor/transmission mass 5kg 

ml Load mass 10kg 

lspring Spring maximum length 1m 

lmotor Motor maximum length 1m 

Fmax Motor maximum force 1000N 

vmax Motor maximum velocity 5m 
s 

The two scenarios mentioned before are investigated here in simulation. In the 

first scenario, we assume that the motor can reach any velocity until the maximum 

length of the motor. For the second scenario, in addition to the motor length limit, 

the motor can not pass a predefined velocity. 

4.5.1 Motor length determines the final velocity 

In this scenario, we assume that the motor length limits the final velocity. Therefore, 

we can assume there is no limit on the motor velocity. It makes the equations simpler 

and gives us good information about the dynamics of the system. Figure 4.5 shows 

how damping and spring stiffness affect the maximum load velocity. The object gets 

its maximum velocity at the first peak. Also the largest value for the velocity is 

obtained when there is no damping in the system. The straight dashed line shows 

the velocity when the motor was directly connected to the object and it is accelerated 

until the motor hard stop occurs. Interesting note here is that, when for some reasons 

we could not provide the most optimum stiffness (like for example having a very small 
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limit for spring length), there are some other choices far stiffer than that. If we have 

a tight spring limit concern we should no use any damper in the system, otherwise 

the behavior of the system will not be improved significantly. 

To generate the response graphs in Fig. 4.5, the motor should at least provide 

the velocities shown in Fig. 4.6. In this figure, the maximum motor velocity for 

different spring stiffnesses is shown. As can be seen in both figures 4.5 and 4.6, 

to have the highest thrown velocity (which is about 13 m/s in this simulation) the 

motor should just have the maximum velocity about 8 m/s (means about 50 percent 

less). When the motor can not provide that velocity, the dynamic equation of the 

system changes and the behavior of the system will not be the same as was shown 

earlier. Interesting note in these figures is that, in about the same stiffness that the 

object gets its maximum velocity, the motor needs the smallest velocity. 

4.5.2 Motor velocity limit determines the final velocity 

The velocity limit on the motor alters the dynamics of the system. When the motor 

reaches its maximum velocity, it can no longer apply force to the system and the 

combined system travels with a constant velocity (but with relative motion respect 

to each other). This change in the dynamics of the system, changes the shape of the 

graphs in Fig. 4.5. The new response of the system is shown in Fig. 4.7. Two dashed 

straight lines in this graph show the velocities correspond to the motor length limit 

(top one) and motor velocity limit (bottom one). Adding elasticity to the system 

amplifies the maximum velocity of the object to about twice the value that it could 
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Figure 4.5: The effect of spring stiffness on the maximum velocity of the object for 
the case of undamped (B = 0) and with damping equal to B = 50. The dashed 
straight line shows the velocity of the object when it is rigidly connected to the 
motor and no motor velocity limit is assumed. 
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Figure 4.6: The variations of maximum motor velocity respect to the stiffness of the 
spring in the case of undamped system (B = 0) and with damping equal to B = 50. 

have without the spring. Therefore, for the systems with low motor velocity limit, 

using appropriate spring and damper can improve the performance of the actuator 

significantly. The stiffness value corresponded to the highest velocity in Fig. 4.5 

is still among the best choices for the stiffness. Moreover, the range of the spring 

stiffnesses that gives us the highest velocity was increased. Also it can be understood 

from the graph that damping has not significant effect on the response of the system 

for stiffnesses more than a certain value. 

Another parameter that highly influences the final velocity of the object is the 

maximum force that can be provided by the motor. Figure 4.8 shows how the motor 

maximum force affects the final velocity of the thrown object. Based on the closed 

form solutions, the increase in velocity is linear. 

For the case that we have velocity limit for the motor, the maximum motor force 
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Figure 4.7: Motor maximum velocity changes the shape of the response, but the 
optimum stiffness value remains optimum. 

can not increase the final velocity beyond a certain value (Fig. 4.9). In Fig. 4.9 the 

responses of the system for three different motor forces are shown. When we have 

motor velocity limit, increasing the motor force can be not useful. Also, no matter 

what stiffness is chosen, the maximum achievable velocity will be constant. In these 

cases, if we need higher velocity, we have to increase the motor velocity limit. 

4.6 Conclusions 

In this paper, we extracted mathematical formulas for calculating the optimum stiff

ness and/or damping to be added to the passive dynamics of a system to enhance 

the performance of a throwing mechanism. By the use of the eigenvectors of the 

system, we simplified the equations to two independent single degree of freedom sys
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Figure 4.8: The effect of the maximum motor force on the response of the system. 
Here, the system has no damping. As the maximum motor force increases the opti
mum required stiffness of the spring increases as well. 

tems. Based on the extracted formulas and interpretations of the results from the 

simulation we can conclude that: 

1. Adding elasticity and/or damping to the actuator if chosen accurately, improves 

the performance of the system. However, if these values are not used accurately, 

the outcome can even decrease the performance. 

2. For each system, if we do not have motor velocity limit, there is a stiffness 

value that improves the performance of the system the most. Also, there are 

other stiffer values for the spring that improves the final velocity but not the 

same as the initial one. 

3. The mechanical limitations like actuator range of motion directly affect the 
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Figure 4.9: The effect of the maximum motor force on the response of the system 
while we have motor velocity limit. The graphs are for non-damped cases. The 
highest velocity remains unchanged for different motor forces. 

required stiffness of the spring. 

4. Motor velocity is minimized for the stiffness that gives the object the largest 

velocity. 

5. For the cases that we have low maximum motor velocity, adding spring-damper 

system can improve the performance of the system. 

6. When the motor has low maximum motor velocity, increasing the motor force 

to improve the final velocity of the object, is not helpful. In this case, it 

is recommended to use gearbox to increase the motor velocity instead of the 

motor force. 
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We defined relationships between series stiffness, series damping, drive system 

inertia, drive system torque limits, the drive velocity limit and the maximum velocity 

that the object can achieve using the mathematical model shown in Fig. 4.2. The 

linear spring was chosen because of its simplicity and its similarity to the SLIP 

(Spring-Load Inverted Pendulum) model used in legged locomotion. For future work, 

we plan to investigate the effect of the nonlinearity of the spring on the behavior of 

the system. 
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Chapter 5 – Conclusion 

We have proposed two types of flight phase control strategies for spring-mass running 

robots and derived mathematical framework for the design of the passive elements 

of these robots for the initiation of running. The control policies are all during flight 

phase and the system is purely passive in stance phase following the passive dynamics 

behavior of the system. In our control policies, we targeted two important goals for 

real robots: damage avoidance and energy efficiency, to have a safe and efficient 

running. 

In chapter 2 we considered the leg angle as the only control parameter during the 

flight phase to control spring-mass running robots. In the proposed control policies 

we investigated in this chapter, the leg peak force, axial impulse and leg actuator 

work during stance phase were considered as the objective functions to be regulated 

by adjusting the leg angle during the flight phase. We found out that by regulating 

any of these three objective functions, both goals of damage avoidance and energy 

efficiency would be fulfilled at once. Results showed that implementing these policies 

in real robots are as easy as implementing a constant angular acceleration for the 

leg retraction during the flight phase. Furthermore, we proposed a new graph that 

depicts the behavior of the flight phase control policies in the presence of ground 

level changes. By the help of this graph, the limitations of the flight phase control 

policies (like the maximum drop height that can be rejected to have a successful 
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stance phase) can be found. The general conclusions for this chapter are: 

•	 Considering damage avoidance and/or energy efficiency as the primary goals 

during running is crucial for economically designed running robots and leads 

to the same behavior that we observe from animals’ running. 

•	 When regulating any of the three proposed objective functions (peak force, ax

ial impulse or leg actuator work) during running, both goals of damage avoid

ance and energy efficiency are fulfilled at once. 

•	 Implementing a constant leg angular acceleration is enough to regulate either of 

the proposed objective functions (leg peak force, axial impulse or leg actuator 

work). 

•	 The control policies are feed-forward and there is no need for any external 

sensing. 

In chapter 3 we used both leg length and leg angle as the control parameters for 

the flight phase. In this chapter the main focus was retaining steady state running 

in the presence of hidden disturbances and minimizing the leg peak force that the 

robot would have during the passive stance phase. The results showed that using the 

leg length can significantly reduce the leg peak force while retaining the equilibrium 

gait in running. 

In chapter 4 we derived mathematical formulas for the design of the passive ele

ments in spring-mass running robots for initiating running. The problem of jumping 

is mathematically equal to throwing an object, therefore we focused on the problem 

of throwing a load mass by motor with rotor inertia and maximum motor torque 
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capacity. We showed that using appropriate spring and damper can enhance the 

performance of the system. One interesting result is that even though it is thought 

that damper would reduce the performance of throwing problem, appropriate damp

ing can even enhance the performance of the system and make the robot jump even 

higher. The general conclusions for this chapter are: 

•	 Adding elasticity and/or damping to the actuator if chosen accurately, improves 

the performance of the system. However, if these values are not used accurately, 

the outcome can even decrease the performance. 

•	 Motor velocity is minimized for the stiffness that gives the object the largest 

velocity. 

•	 Increasing the motor force to improve the final velocity of the object is not 

always helpful. There should be a trade-off between the motor maximum ve

locity and motor maximum torque. When the motor has low maximum motor 

velocity, it is recommended to use gearbox to increase the motor velocity and 

accept the decrease in maximum motor force. 

By the results of this work, roboticists can optimally design the passive elements 

of spring-mass running robots to achieve the maximum possible speed. When the 

running started, the control strategies allow the robot to continue the running pri

marily based on the passive dynamics of the system and hence it will be very efficient. 

The focus of the control policies is on the peak force generated in the leg during the 

stance phase to avoid leg damage and have a safe running in uneven terrain. Surpris

ingly, the implementation of the proposed control policies are very easy and requires 
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minimal sensing. 
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