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1 Introduction

The conservation of neutral particle radiation is of particular importance in a variety

of applications — reactor physics, astrophysics, radiation detection and protection,

and nuclear fusion, for example. Nuclear fusion presents a challenge in computing

the distribution of radiation in high energy density physics (HEDP) regime. Drake

[1] defines these regimes as having material pressures about 100 GPa or higher.

The field of hydrodynamics investigates the compression, movement, and physical

state of high energy density fluids. In these situations, fluids are generally modeled as

compressible. Some of the aforementioned physical situations have high density fluids

subject to the laws of compressible hydrodynamics. One hydrodynamic simulation

code is BLAST1 [2], which is being developed by a team of scientists at Lawrence

Livermore National Laboratory (LLNL). BLAST solves the Euler equations using a

high order finite element spatial discretization to evolve the conservation of mass,

energy, and momentum. MFEM [3], a general finite element library also developed

at LLNL, is employed by BLAST and allows the use of meshes with curved surfaces.

Nuclear fusion applications give rise to very high radiation field densities that can

compress and deposit momentum to the fluid [4]. The field of radiation hydrodynam-

ics exists to describe and address these particular challenges in HEDP scenarios. The

combination of radiation transport with hydrodynamics helps to fully characterize the

compression, motion, and energy of a fluid. BLAST is not yet capable of simulating

radiation hydrodynamics. The topic of this thesis is radiation transport in HEDP

problems.

Modern radiation transport codes fall into two categories: deterministic and

stochastic. The latter rely on statistical methods to converge on a solution. These

methods track a particle in a problem domain throughout its lifetime. The particle

1https://computation.llnl.gov/project/blast/

https://computation.llnl.gov/project/blast/
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is randomly “born” in a region and followed through its “random walk” as it inter-

acts with material until it either escapes the domain of interest or is absorbed. It

is impractical to model all of the particles that exist in some real world problems so

an average particle behavior is calculated by tracking enough particles until a sta-

tistically significant result is achieved. This can be very accurate but is typically

very computationally intensive. There are many Monte Carlo codes available, some

of which are listed in Kirk [6].

Deterministic radiation transport methods solve a conservation equation — the

radiation transport equation — for the radiation flux. The equation includes the

mechanisms for gaining and losing radiation in a given phase space. That is, the

radiation flux increases from volumetric sources, radiation streaming into a volume,

and from collisions into a phase space. The loss mechanisms include radiation leakage

out of a volume, absorption, and collisions out of a phase space of interest. In HEDP

materials, these mechanisms can be highly dependent on the internal energy (i.e.

temperature and mass density) of the material. Accounting for these dependencies

by coupling to the energy equations increases the complexity and difficulty of radiation

transport calculations [5, 4].

This radiation transport equation has seven independent variables: time, energy,

position (3), and direction of travel (2). In simple problems, the radiation transport

equation can be solved analytically. However, approximations are typically made and

the equation is discretized in each of the independent variables, where any particu-

lar combination of the discretized variables is denoted as a phase space. That is, a

mesh approximates spatial regions, angular quadrature approximates the directions

of travel to a few discrete directions (SN), energy groups approximate ranges of parti-

cle energies, and time is discretized into small time steps to approximate progression

through time. As the discretizations are refined, the numerical solution will converge

to the exact solution. There are many discretization methods to suit many different
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applications. The research presented in this thesis solves the steady-state, monoen-

ergetic, SN radiation transport equation using high order finite elements on meshes

with curved surfaces using MFEM.

The remainder of this chapter is organized as follows: Section 1.1 reviews the finite

element spatial discretization method applied to the radiation transport equation, and

Section 1.2 outlines the remainder of this thesis.

1.1 Finite Element Spatial Discretization

This research utilizes the finite element method (FEM) to discretize the spatial do-

main. Finite element discretizations of radiation transport were introduced in the

1970s with triangular meshes in two dimensions (2-D) using arbitrary order finite

elements [7, 8]. It is common to use triangular elements especially when discretizing

curved boundaries. Two early codes that were developed using piecewise linear finite

elements, TRIPLET and TRIDENT, were developed by Reed et al. [9] and Seed et al.

[10, 11], respectively. The former experimentally found that the discontinuous finite

element method (DFEM) is stable when polynomial weight functions are used. Reed

et al. [9] also show that the error of a small pure absorbing problem decreases with

increasing finite element order up to 4th order and the computation time increases

significantly. The finite element method had been proliferating in the structural and

mechanical engineering fields for many years prior [12] showing much promise and

warranted further research in the radiation transport context.

In the 1980s, additional FEM research was performed for radiation transport.

Mordant [13] created the FEM code ZEPHYR that used bilinear basis functions in two

dimensions. The author numerically demonstrated this method is a good alternative

(considering computational time) to some finite difference codes in that the FEM

is more accurate by generally having more unknowns. Johnson and Pitkaranta [14]
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and Asadzadeh [15] were among the first to perform error estimates of the fully

discrete radiation transport equation using discontinuous Galerkin piece-wise linear

basis functions in two dimensions.

HEDP problems often involve spatial meshes whose cells can be very optically

thick. Materials that are optically thick and diffusive (scattering dominated) pose

problems for iterative methods in transport problems. To address the optically thick

mesh cell problem, the spatial mesh could be repeatedly refined until the optical

thickness of a mesh cell is on the order of a mean free path. While this is often the case

in neutron transport problems, it is computationally impractical in thermal radiation

transport problems because the number of cells would be prohibitively expensive.

Thus, the optical thickness of the cells remains thick and numerical methods must

adapt. Alternatively, the thick problem could be approximated by the solution of a

diffusion equation with spatial cells that resolve the diffusion length rather than the

mean free path. The drawback to using a diffusion equation solver is its inability

to model complicated problems with highly absorbing regions, optically thin regions,

material boundaries, or any combination thereof.

The first asymptotic analysis of the radiation transport equation into the diffusion

limit was performed by Larsen et al. [16]. Thick diffusion limit analysis examines

the behavior of the discretization method as the scattering ratio approaches unity

and each spatial cell becomes optically thick. Larsen and Morel [17] concluded that

the linear discontinuous FEM (LD method) in one dimension (1-D) possesses the

diffusion limit and should be sufficiently accurate for most practical applications,

having accurate scalar fluxes in the interior and boundary regions. Later, lumped LD

(LLD) methods were shown to be accurate in optically thick problems in 1-D in the

interior with an unresolved boundary layer [18]. That is, an accurate solution can be

achieved in the problem interior without needing to have an accurate boundary layer

solution in optically thick media.
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For optically thick problems in 2-D on rectangular meshes, Börgers et al. [21]

demonstrated that LD methods do not achieve the diffusion limit. However, Adams

[22] observed the behavior of bilinear discontinuous finite elements (BLD) in 2- and

3-D in Cartesian geometries in the diffusion limit. He found mass and surface lumping

were required for better solution behavior and acknowledged that much more research

needs to be performed for multidimensional diffusion limit DFEMs. Palmer and

Adams [23] furthered this by analytically and numerically demonstrating that fully-

lumped BLD (FLBLD) methods are accurate in optically thick regimes (i.e. boundary

layers and the interiors) in 1-D spherical and 2-D cylindrical geometries.

The LD method was implemented into Attila, a 3-D neutron transport code using

unstructured tetrahedral meshes. Wareing et al. [24] demonstrated Attila’s ability

to accurately model complex geometries with a nuclear well-logging test problem.

Version 2 of Attila implemented a tri-linear discontinuous FEM (TLD) where McGhee

and Wareing [25] state it solves optically thick radiation transport problems, although

they acknowledge the potential for negative fluxes. They note some difficulties of

unstructured meshes and techniques to handle them: 1) the finite elements are not

analytically integrable and were integrated numerically using Gauss quadrature, 2)

ordering of the matrices can be mesh dependent so the meshes were assumed to not

be very skewed, and 3) difficulty arises with cyclical cells so all cell surfaces were

approximated to have an average outward normal vector, essentially approximating

the surfaces as planar.

Adams [26] performed an asymptotic DFEM diffusion limit analysis for arbitrary

meshes in Cartesian coordinates. While the analytical and numerical results showed

the discretized BLD radiation transport equation has the diffusion limit, he noted

this asymptotic analysis would need to be performed for each method independently

to confirm it has the diffusion limit. The piecewise linear DFEM (PWLD) method

on unstructured meshes was concluded to behave similarly to BLD on rectangular
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grids in the diffusion limit [27]. This was corroborated and furthered by Bailey et

al. [28] who demonstrated the flexibility offered by PWLD in the diffusion limit on

higher polygonal meshes in cylindrical geometry where LD and BLD can fail. Sub-

sequently, Bailey et al. [29] obtained similar results for piecewise BLD (PWBLD).

Morel and Warsa [30] lumped the surface integral in cylindrical geometry and found

additional robustness in the BLD method on quadrilateral grids and similarly found

lumping useful on triangular meshes [31]. Morel and Warsa [32] investigated tetrahe-

dral meshes using LLD in the diffusion limit with positive preliminary results in the

boundary layer with high-aspect ratio grid cells.

Within optically thick cells, an acceleration method is required to achieve source

iteration convergence within a reasonable amount of time. Considerable research

has gone into diffusion synthetic acceleration (DSA) [19, 20] as a means to quickly

converge the scattering source of the SN radiation transport problem. Particularly, it

has been shown that certain problems have very fast convergence as problems become

optically thick and diffusive [19].

Performing convergence studies using higher order (up to 4th order) finite elements

on unstructured triangular meshes, Wang and Ragusa [33, 34] found convergence

rates can approach p+1 (where p is the finite element order). The use of higher order

finite elements was conceived at the onset of solving the radiation transport equation

with FEM. Other authors have also recently investigated higher order finite element

methods [20, 35, 36, 37].

High order finite element methods are susceptible to oscillations in the solution,

which can result in negative fluxes. In the context of thermal radiation transport,

negative fluxes can result in negative temperatures, negative densities, and nega-

tive pressures following the imposition of the equations of state. This research does

not explicitly investigate methods to prevent negative fluxes so the oscillations are

retained as part of the investigation of the methodology [38]. There are three ap-
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proaches to the treatment of negative fluxes: ad hoc fixups [39], strictly non-negative

solution representations [40], and matrix lumping techniques. The first two result in

a non-linear system of equations so matrix lumping has received significant attention.

For instance, Adams [26] used traditional lumping techniques with BLD, Maginot

[41] explored integration methods associated with lumped matrices, and Brunner [42]

considered using linear methods in spatial regions where the solutions are susceptible

to these oscillations and higher order finite elements elsewhere. Again, lumping is not

investigated within this thesis but it is mentioned throughout.

Since there is a discontinuity of basis functions between spatial regions in DGFEM,

a boundary condition is required to be applied to each cell. The upwind angular flux at

each cell interface is used as the angular flux incident on that interface. Ragusa et al.

[43] proposed a modified upwinding scheme that can robustly achieve the diffusion

limit for any finite element order by making the upwind flux dependent upon the

amount of scattering in that problem domain. The authors acknowledged the need

for further research so this method is not implemented here. Adams [26] proposed

the upwind interface condition could be used for mesh cells that have curved surfaces.

This research numerically investigates the use of meshes with curved surfaces.

1.2 Outline

The remainder of this thesis details the development of the higher-order FEM radi-

ation transport solver and the characterization tests performed. The research objec-

tives are to develop a high order DGFEM SN code that solves problems on meshes

with curved surfaces. An implicit goal is to evaluate the ability of MFEM to work in

this regime. The following chapters include the methods used, results of a suite of test

problems, and conclusions. Section 2 describes the discretization of the steady-state,

monoenergetic radiation transport equation in angle using level-symmetric Gaussian
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quadrature, derives the discretization in space using the finite element method, dis-

cusses the implementation of the finite element library, and describes the suite of test

problems to investigate the spatial discretization of the radiation transport equation.

The solutions to these test problems serve as a proof-of-concept of this methodology

by solving the radiation transport equation on meshes with high order curved sur-

faces. Section 3 presents the solutions and a short discussion to the suite of problems.

Section 4 summarize the findings of this research.
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2 Methods

The radiation transport equation is a mathematical representation of the conservation

of particles within a multidimensional phase space,

1

v

∂ψ (r, E,Ω, t)

∂t
+ Ω · ∇ψ (r, E,Ω, t) + σt (r, E, t)ψ (r, E,Ω, t)

=
1

4π

∫
4π

dΩ′
∫ ∞
0

dE ′σs (r, E ′ → E,Ω′ → Ω, t)ψ (r, E,Ω, t)

+
1

4π
S0 (r, E,Ω, t) (1)

with incident boundary condition

ψ (r, E,Ω, t) = ψinc (r, E,Ω, t) , r ∈ ∂V, Ω · n̂ < 0 (2)

where v is the particle velocity, ψ is the angular flux, Ω ∈ 4π is the unit vector

of direction of travel, ∇ is the gradient operator, σt is the macroscopic total cross

section, σs is the macroscopic scattering cross section, S0 is an arbitrary fixed source,

n̂ is the outward normal unit vector, and ψinc is the incident angular flux on the

boundary ∂V. The arguments include the spatial location vector, r ∈ V, where V

describes the problem domain, particle energy, E, particle direction of travel, Ω, and

time, t. The E ′ → E and Ω′ → Ω terms describe the scattering from energy E ′ to

E and from direction of travel Ω′ to Ω. The first term in Equation 1 is the time-

dependent term. The second is the streaming term, accounting for the particle flow

into and out of a region. The third term is the absorption term. On the right hand

side of the equation are the scattering source and fixed source terms.

While the time, direction of travel, and energy dependencies are important, this

research is focused on discretizing in space. Specifically, r is a function of the three

spatial Cartesian coordinates, x, y, and z. Although this discretization method is
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generalized to three-dimensions in space, this research only considers test problems

in one- and two-dimensions.

The finite element discretization method allows for general spatial grid geometry.

It is of particular interest for this research to predict flux values on a mesh with curved

surfaces, but this method allows for arbitrary geometry. More detail is provided in

Section 2.3.

2.1 Time and Energy Discretization

Assuming an energy independence and steady-state conditions, Equation 1 becomes

Ω · ∇ψ (r,Ω) + σt (r)ψ (r,Ω) =

1

4π

∫
4π

dΩ′ σs (r,Ω′ → Ω)ψ (r,Ω′) +
1

4π
S0 (r,Ω) (3)

and Equation 2 becomes

ψ (r,Ω) = ψinc (r,Ω) , r ∈ ∂V, Ω · n̂ < 0 (4)

Assuming isotropic scattering, there is an equal probability of scattering into any

direction, which removes the angular dependence of σs,

Ω · ∇ψ (r,Ω) + σt (r)ψ (r,Ω) =
1

4π
σs (r)

∫
4π

dΩ′ ψ (r,Ω′) +
1

4π
S0 (r,Ω) (5)

Then, completing the final angular flux integration over all angles in the scattering

source term results in the steady-state, mono-energetic, isotropic scattering transport

equation

Ω · ∇ψ (r,Ω) + σt (r)ψ (r,Ω) =
1

4π
σs (r)φ (r) +

1

4π
S0 (r,Ω) (6)
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where φ is the scalar flux defined by

φ ≡
∫
4π

ψdΩ (7)

Equations 5 and 6 will both be used to represent the transport equation in this

thesis.

2.2 Angular Discretization

This research does not investigate the discretization of the transport equation in

direction of travel. The discrete ordinates approximation (also referred to as SN ap-

proximation) in Cartesian coordinates is used. The unit sphere is discretized into a

number of solid angles, which are described by direction Ω, where Ω is a function

of µ, η, and ξ, the x-, y-, and z-components, respectively. Level-symmetric quadra-

ture sets were used to discretize the angular variable. These were obtained through

collaboration with Bailey [44], Lau [45], and Maginot [46]. The quadrature sets were

provided in individual text files for the unit sphere. The weights are normalized to 4π,

which is common and does not require any further manipulation within the solver

to adjust to the number of spatial dimensions. Tables 1 and 2 show example S4

and S8 level-symmetric quadrature sets, respectively, for the positive octant. These

quadratures are reflectioned into the other octants but are omitted for brevity. Other

quadrature sets and a general discussion can be found in Lathrop and Carlson [47],

and Lewis and Miller [48]. This SN approximation allows the numerical calculation

of the scalar flux from the angular fluxes as

φ ≡
∫
4π

ψdΩ ≈
M∑
m=1

ψm∆m (8)

where ∆m is the angular quadrature weight for direction m.
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Table 1: S4 level-symmetric quadrature set for the positive octant.

µ η ξ ∆

3.50021175E-01 3.50021175E-01 8.68890301E-01 5.23598776E-01

3.50021175E-01 8.68890301E-01 3.50021175E-01 5.23598776E-01

8.68890301E-01 3.50021175E-01 3.50021175E-01 5.23598776E-01

Table 2: S8 level-symmetric quadrature set for the positive octant.

µ η ξ ∆

2.18217890E-01 2.18217890E-01 9.51189731E-01 1.90046963E-01

2.18217890E-01 5.77350269E-01 7.86795792E-01 1.42535222E-01

2.18217890E-01 7.86795792E-01 5.77350269E-01 1.42535222E-01

2.18217890E-01 9.51189731E-01 2.18217890E-01 1.90046963E-01

5.77350269E-01 2.18217890E-01 7.86795792E-01 1.42535222E-01

5.77350269E-01 5.77350269E-01 5.77350269E-01 1.45444104E-01

5.77350269E-01 7.86795792E-01 2.18217890E-01 1.42535222E-01

7.86795792E-01 2.18217890E-01 5.77350269E-01 1.42535222E-01

7.86795792E-01 5.77350269E-01 2.18217890E-01 1.42535222E-01

9.51189731E-01 2.18217890E-01 2.18217890E-01 1.90046963E-01

2.3 Finite Element Spatial Discretization

To discretize using finite elements, the spatial domain is divided by a spatial mesh.

Then, the solution is expanded in terms of basis functions. This results in many un-

knowns and one equation. Each term of the radiation transport equation is multiplied

by a weight function wk,i (r) and integrated over the volume of mesh cell k, where

i indicates the i ’th weight function, for i = 1 . . . Jk, r ∈ Vk, and Jk is the number

of basis functions. Finally, after applying boundary conditions there are the same

number of equations as unknowns. This discretization process is explicitly derived as

follows.
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First, applying the weighted integrals to Equation 6,

∫
Vk

wk,i (r) Ω · ∇ψk (r,Ω) +

∫
Vk

wk,i (r)σt (r)ψk (r,Ω) =

1

4π

∫
Vk

wk,i (r)σs (r)φk (r) +
1

4π

∫
Vk

wk,i (r)S0 (r) (9)

Applying Green’s Theorem to the streaming term,

∫
Vk

wk,i (r) Ω · ∇ψk (r,Ω) =∫
∂Vk

wk,i (r) n̂ (r) ·Ω ψk (r,Ω)−
∫
Vk

ψk (r,Ω) Ω · ∇wk,i (r) (10)

Substituting this into Equation 9,

∫
∂Vk

wk,i (r) n̂ (r) ·Ω ψk (r,Ω)−
∫
Vk

ψk (r,Ω) Ω · ∇wk,i (r) +∫
Vk

wk,i (r)σt (r)ψk (r,Ω) =

1

4π

∫
Vk

wk,i (r)σs (r)φk +
1

4π

∫
Vk

wk,i (r)S0 (r) (11)

Expanding the angular and scalar fluxes in terms of basis functions,

ψk (r,Ω) =

Jk∑
j=1

bk,j (r)ψk,j (Ω) (12)

φk (r) =

Jk∑
j=1

bk,j (r)φk,j (13)
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and applying them to Equation 11

Jk∑
j=1

∫
∂Vk

wk,i (r) n̂ (r) ·Ω ψ (r,Ω)−
Jk∑
j=1

∫
Vk

bk,j (r)ψk,j (Ω) Ω · ∇wk,i (r) +

Jk∑
j=1

∫
Vk

wk,i (r)σt (r) bk,j (r)ψk,j (Ω) =

1

4π

Jk∑
j=1

∫
Vk

wk,i (r)σs (r) bk,j φk,j +
1

4π

∫
Vk

wk,i (r)S0 (r) (14)

Applying the finite element discretization to Equation 4, the problem boundary inci-

dent flux,

ψ (r,Ω)→
∫
∂Vk

wk,i (r) n̂ (r) ·Ω ψinc (r,Ω) , r ∈ ∂V,Ω · n̂ < 0 (15)

finishes the finite element discretization.

The finite element equations in matrix form from Adams [26] are adapted here

in Equations 16 through 26; his work represents a common starting ground for much

of the subsequent FEM transport research. For cell k, weight function i, and basis

function j,

[
Lsurfk ψsurfk + Lkψk

]
+ Tkψk =

1

4π
[Tk − Ak]φk +

1

4π
S0k (16)
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where,

ψk (Ω) = [ψk,1 (Ω) , ψk,2 (Ω) , . . . , ψk,Jk (Ω)]T , (17)

φk = [φk,1, φk,2, . . . , φk,Jk ]T , (18)

φk,j (r) ≡
M∑
m=1

∆mψk,j (Ωm) , (19)

S0k =
[
S0k,1 , S0k,2 , . . . , S0k,Jk

]T
, (20)

S0k,j ≡
∫
Vk

d3r wki (r)S0 (r) , (21)

[
Lsurfk ψsurfk

]
i
≡

Lk∑
l=1

∫
∂Vk,l

d2r n̂ (rk,l) ·Ω wk,i (r)ψ (rk,l,Ω) , (22)

[Lk]i,j = −
∫
Vk

d3r bk,j (r) Ω · ∇ wk,i (r) , (23)

[Tk]i,j ≡
∫
Vk

d3r wk,i (r)σt (r) bk,j (r) , (24)

[Ak]i,j ≡
∫
Vk

d3r wk,i (r)σa (r) bk,j (r) . (25)

The cell boundary conditions for the incoming angular flux on interior cells are

taken to be the upwind flux,

ψ (rk,l,Ω) =


ψ
(
r−k,l,Ω

)
, n̂ (rk,l) ·Ω > 0

ψ
(
r+
k,l,Ω

)
, n̂ (rk,l) ·Ω < 0

(26)

which enforces a continuous flux between cells. That is, for internal cell k, the angular

flux at cell edge l is taken as the upstream value at each surface location rk,l. The

equations described above are very generalized; they work on an arbitrary spatial grids

in one-, two-, or three-dimensions. Additional boundary conditions are needed for the

outer surface of the problem domain. Dirichlet, periodic, and reflecting boundaries are

used in the suite of test problems introduced below. The weight and basis functions
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are equal for Galerkin methods (i.e., wk,i = bk,j), ensuring that the residuals are

orthogonal to the span of the basis functions. This is common practice because (in

a particular sense) it minimizes the error introduced by approximating the flux in

terms of the basis functions [49]. In this research, these weight and basis functions

are allowed to be polynomials of arbitrary order.

2.4 Implementation with MFEM

The open source finite element library Modular Finite Elements Method (MFEM) [3]

was used to create the system of linear equations to be solved by a linear algebra solver.

The user chooses various parameters to create the system of equations and passes them

into MFEM as arguments (i.e. the order of finite elements, the mesh, the number

of times to refine the mesh, the order of the mesh, any mesh transformations, the

linear algebra solver method, the source iteration convergence criteria, the maximum

number of source iterations to perform, the initial guess for the scalar flux, and, in

diffusion limit problems, the scaling factor to be applied). MFEM creates the matrices

and a linear solver computes the angular flux. This research utilizes the serial version

of MFEM and the direct solver UMFPack [50, 51] to solve the equations using a

LU decomposition. It is common for transport solvers to solve the local system of

equations for an individual spatial cell and sweep through the problem domain to

propagate information from one cell to the next. Instead, MFEM creates the system

of equations for the entire problem domain and solves for all of the unknowns in all

cells simultaneously.

Shown in Table 3 are the functions within MFEM that integrate and assemble the

various components of the transport equation (Equation 11) to the linear algebraic

system. The functions are displayed along with the general form of their equation

and their translation to the applicable component of the transport equation. The last
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two entries of Table 3 are the interior boundaries using the upstream values (no. 5)

and the problem boundary (no. 6). Several of the MFEM equations have coefficients,

α and β, that are required input. For item number 1, using α = 1 sets the MFEM

equation equal to the discretized equation. Similarly, for item number 5 using α = −1

and β = 1/2,

α

∫
∂V

Ω · (−n̂) {ψ}w + β

∫
∂V
|Ω · (−n̂)| [[ψ]]w =

∫
∂Vk

(Ω · n̂)ψk wk,i (27)

where {ψ} = 1/2 (ψu + ψk) and [[ψ]] = ψu − ψk, where ψu is the upwind angular flux

and ψk is the angular flux in cell k.

− 1

∫
∂V

[Ω · (−n̂)]

[
1

2
(ψu + ψk)

]
w +

1

2

∫
∂V
|Ω · (−n̂)| (ψu − ψk)w

=

∫
∂Vk

(Ω · n̂)ψk wk,i (28)

1

2

∫
∂V

(Ω · n̂) (ψu + ψk)w +
1

2

∫
∂V
|Ω · (−n̂)| (ψu − ψk)w =

∫
∂Vk

(Ω · n̂)ψk wk,i (29)

For Ω · n̂ < 0 (incident to cell k),

1

2

∫
∂V

(Ω · n̂) (ψu + ψk)w −
1

2

∫
∂V

(Ω · n̂) (ψu − ψk)w =

∫
∂Vk

(Ω · n̂)ψk wk,i (30)

1

2

∫
∂V

(Ω · n̂)ψk w +
1

2

∫
∂V

(Ω · n̂)ψk w =

∫
∂Vk

(Ω · n̂)ψk wk,i (31)

The normal vector n̂ in MFEM is outward of the upwind mesh surface so a negative

was applied to the normal vector to convert it to be the outward normal of the surface

of cell k like it has been previously defined in this thesis. Similarly, for item number
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6, α = −1 and β = −1/2,

α

2

∫
∂V
ψinc Ω · (−n̂) w − β

∫
∂V
ψinc |Ω · (−n̂)|w =

∫
∂Vk

(Ω · n̂)ψinc,k wk,i (32)

−1

2

∫
∂V
ψinc Ω · (−n̂) w +

1

2

∫
∂V
ψinc |Ω · (−n̂)|w =

∫
∂Vk

(Ω · n̂)ψinc,k wk,i (33)

1

2

∫
∂V
ψinc (Ω · n̂)w +

1

2

∫
∂V
ψinc [Ω · (−n̂)]w =

∫
∂Vk

(Ω · n̂)ψinc,k wk,i (34)

1

2

∫
∂V
ψinc (Ω · n̂)w +

1

2

∫
∂V
ψinc (Ω · n̂)w =

∫
∂Vk

(Ω · n̂)ψinc,k wk,i (35)

MFEM automatically determines the degree of numerical integration to integrate

each of the integrals of Table 3. These default integration orders are shown in Table

4. It was discovered that integrating all of the terms consistently was important for

numeric conservation. For simplicity, each of the integration orders were set to the

largest of the default integration orders. Table 4 shows that the integration order is

the same for all of the integrators except DomainLFIntegrator, which is the largest

integration order only if p = 0 (piecewise constant). While the results presented in

this thesis do not consider the circumstance of piecewise constant finite elements, this

integration order was included in the code for future use.

MFEM is equipped to visualize data using various tools requiring additional user

input. The images presented in this thesis were produced with VisIt, an open source

visualization analysis tool [52].
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Table 4: MFEM default integration orders for transport operators. The notation for
the finite element order is p, mesh order is m, and problem dimension is d.

MFEM Integrator Default Integration Order

DGTraceIntegrator m · d+ 2 · p− 1

ConvectionIntegrator m · d+ 2 · p− 1

MassIntegrator m · d+ 2 · p− 1

DomainLFIntegrator 2 ·m

BoundaryFlowIntegrator m · d+ 2 · p− 1
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2.5 Solution Methods

Two methods are used to solve for the scalar flux: 1) source iteration and 2) a direct

solve of all the angular fluxes simultaneously by inverting the “streaming plus collision

minus scattering” operator.

2.5.1 Source Iteration

Source iteration is performed by guessing an initial scalar flux and solving the trans-

port equation for the angular flux in each of the quadrature directions [48]. After

multiplying each angular flux by an appropriate quadrature weight and summing

over the number of weights, the scalar flux value gets updated and this process is

repeated until two subsequent iterations of scalar flux differ by an amount less than a

small convergence criteria. The source iteration algorithm for the (l + 1)th iteration

is

Ω · ∇ψ(l+1)
m + σtψ

(l+1)
m =

1

4π
σsφ

(l) +
1

4π
S0 (36a)

φ(l+1) (r) =
M∑
m=1

∆mψ
(l+1)
m (r,Ω) (36b)

where M is the number of angular quadrature directions.

Although MFEM has the capability to perform parallel calculations with respect

to spatial cells, this transport solver only employs the serial version. However, the

source iteration method inherently allows for parallel calculation of angular flux with

respect to quadrature angle. Within the (l + 1)th iteration, the M angular fluxes

are computed for each angular direction using the same previously determined (l)th

scalar flux. Message Passing Interface (MPI) was employed for this parallel calculation

within Equation 36a for each of the M angles. The (l + 1)th calculation of scalar flux

is then used back in Equation 36a to perform the next iteration until the convergence
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criteria is met. A simple convergence criteria is

‖φ(l+1) − φ(l)‖∞ < εconv (37)

where εconv is some small tolerance.

Additional requirements for the convergence criteria are necessary when approach-

ing the diffusion limit (see Section 2.6). Considering a slowly converging scalar flux,

Equation 37 will be satisfied if two sequential scalar flux calculations differ by less

than εconv even though the scalar flux is not truly converged. To protect against false

convergence, the spectral radius, ρ (a measure of the convergence rate), must be taken

into account in these situations. It can be estimated with

ρ ≈ ‖φ
(l+1) − φ(l)‖∞

‖φ(l) − φ(l−1)‖∞
, (38)

and the modified convergence criteria becomes

‖φ(l+1) − φ(l)‖∞ < εconv (1− ρ) ‖φl+1‖∞, (39)

as described by Adams and Larsen [53].

The convergence criteria εconv used for most of the test problems was 10−12. The

final difference between iterations upon convergence is much smaller than εconv (up

to several orders of magnitude) when accounting for the spectral radius.

2.5.2 Direct Solve of Angular Fluxes

Expanding the scalar flux in terms of angular fluxes and quadrature weights for each

cell creates a large system of equations to solve for the angular flux in each direction

simultaneously without having to perform any iterations. Expanding the summation

of approximation in Equation 8, substituting it into Equation 6 for φ, and solving for
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the angular flux ψm in directions m = 1, . . . ,M results in the set of equations

Ω · ∇ψ1 + σtψ1 =
1

4π
[σs∆1ψ1 + · · ·+ σs∆mψm + · · ·+ σs∆MψM ] +

1

4π
S0,1 (40a)

Ω · ∇ψ2 + σtψ2 =
1

4π
[σs∆1ψ1 + · · ·+ σs∆mψm + · · ·+ σs∆MψM ] +

1

4π
S0,2 (40b)

· · ·

Ω · ∇ψm + σtψm =
1

4π
[σs∆1ψ1 + · · ·+ σs∆mψm + · · ·+ σs∆MψM ] +

1

4π
S0,m

(40c)

· · ·

Ω · ∇ψM + σtψM =
1

4π
[σs∆1ψ1 + · · ·+ σs∆mψm + · · ·+ σs∆MψM ] +

1

4π
S0,M

(40d)

It is clear from Equation 40 that each angular flux is coupled to all of the other

angular fluxes. Structuring a block matrix to solve this coupled system of equations

is best explained starting with the uncoupled (i.e. no scattering source) system

Ω · ∇ψm + σtψm = S0,m (41)

Discretizing Equation 41 using the finite element method results in a matrix solve of

the form

Amψm = bm (42)

where Am is the operator that takes into account the streaming and absorption terms

of Equation 41 and bm is the solution vector S0,m. Since (in this simplified case)

the solution ψm is not coupled to other solutions, a large matrix can be formed to

solve Equation 42 for all m angular directions simultaneously. For angular quadrature
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directions m = 1, . . . ,M ,



A1

A2

A3

. . .

AM





ψ1

ψ2

ψ3

...

ψM


=



b1

b2

b3
...

bM


(43)

Each ψm is the solution vector to all of the support points in the finite element space

for quadrature angle m.

The off-diagonal matrices of A in Equation 43 (i.e. the zero matrices) are the

matrices that couple each angular flux to the others. Reintroducing the scattering

source term by subtracting the scattering term from both sides of Equation 40 (only

showing the case for the general mth direction),

Ω · ∇ψm + σtψm − [σs∆1ψ1 + · · ·+ σs∆mψm + · · ·+ σs∆MψM ] = S0,m (44)

Consider a general scattering term from Equation 44,

σs∆mψm (45)

Applying the finite element discretization to this term is similar to the absorption

term — the angular flux gets expressed in terms of basis functions, multiplied by

weight functions, and integrated over the volume. The finite element discretization
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for Equation 45 creates the full matrix

Dm =



∫
Vw1σs∆mψm,1

∫
Vw1σs∆mψm,2

∫
Vw1σs∆mψm,3 · · ·

∫
Vw1σs∆mψm,j∫

Vw2σs∆mψm,1
∫
Vw2σs∆mψm,2

∫
Vw2σs∆mψm,3 · · ·

∫
Vw2σs∆mψm,j∫

Vw3σs∆mψm,1
∫
Vw3σs∆mψm,2

∫
Vw3σs∆mψm,3 · · ·

∫
Vw3σs∆mψm,j

...
...

...
. . .

...∫
Vwiσs∆mψm,1

∫
Vwiσs∆mψm,2

∫
Vwiσs∆mψm,3 · · ·

∫
Vwiσs∆mψm,j


(46)

for quadrature direction m, where wi are the weight functions, σs is allowed to be

spatially dependent, ∆m is the angular quadrature weight, and ψm,j is the solution

vector for the finite element space that is expanded in terms of basis function j within

the integration. Updating Equation 43 with these Dm matrices for each quadrature

direction shows that the flux depends on every angular flux at every support point.

The result is the large system of equations



A1 −D1 −D2 −D3 · · · −Dm

−D1 A2 −D2 −D3 · · · −Dm

−D1 −D2 A3 −D3 · · · −Dm

...
...

...
. . .

...

−D1 −D2 −D3 · · · Am −Dm





ψ1

ψ2

ψ3

...

ψm


=



b1

b2

b3
...

bm


(47)

There are

Nunknowns = (p+ 1) ·Ncells ·Nangles (48)

angular flux unknowns in a problem domain, where p is the finite element order, Ncells

is the number of spatial cells in the mesh, and Nangles is the number of quadrature

angles. Since this matrix operator has (Nunknowns)
2 elements, it is easy to see that

it can be very large. After solving for the angular fluxes, solving for the scalar flux



27

using Equation 8 is the same as within the source iteration method.

These two solution methods are alternate ways to solve the finite element trans-

port equations. Solving the same problems with each method will help characterize

the discretization in various conditions. The direct solve method creates very large

matrices so it practically limits the size of the mesh, quadrature, and the finite element

order.

2.6 Diffusion Limit

A scaling factor ε can be multiplied to each term of the steady-state diffusion equation,

−∇D · ∇φ+ σaφ = S0 (49)

without affecting the solution to the equation,

−ε∇D · ∇φ+ εσaφ = εS0 (50)

where D = 1/3σt. The scaling factor affects the amount of scattering and absorption

that exists at spatial position r [54],

σt →
σt
ε

(51)

σa → εσa (52)

S0 → εS0 (53)

Rather than a truncation analysis, this scaling factor is scaling the physics of the

problem. Note that the diffusion equation is invariant to changes in ε.
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Applying these scaled parameters to Equation 6 results in

Ω · ∇ψ +
σt
ε
ψ =

1

4π

(σt
ε
− εσa

)
φ+

ε

4π
S0 (54)

As ε→ 0, the problem is scaled to have less absorption and more scattering. The

diffusion limit is defined as the limit as ε → 0 of Equation 54, which analytically

converges to Equation 49 at O (ε2).

This research investigates the discretization schemes discussed above while ap-

proaching the diffusion limit for an optically thick medium. Difficulty arises when ε

is small while solving with the source iteration method. Specifically, as ε → 0, the

spectral radius, ρ, approaches unity. Adams and Larsen [53] demonstrated that this

affects the iteration counts by

ρl ≥ ‖ψ − ψ
l‖

‖ψ − ψ0‖
(55)

where l is the current iteration. This says that after many iterations the ratio of the

norms of the current error to the first iteration error is bounded by the spectral radius

multiplied by itself l times. For instance, to reduce the error by a factor of 1000, the

number of source iterations required is

ρl ≥ 0.001 (56)

l ≥ ln ρ

ln 0.001
(57)

Several solutions are tabulated in Table 5 illustrating the computational requirement

for these problems.
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Table 5: Source iteration convergence iterations.

ρ l

0.9 66

0.99 687

0.999 6904

0.9999 69,074

2.7 Test Problems

Several test problems were solved for a proof-of-concept and to exercise the transport

solver. The first few test problems are very simple problems to serve as early bench-

marks. Subsequently, more sophisticated problems were defined including diffusion

limit problems, which are a particular focus of this research. Several of the meshes

used have curved surfaces. These meshes were created by transforming an orthogonal

quadrilateral mesh (Figure 25) — the nodes of the mesh were translated and recon-

nected with arbitrary order polynomials. For instance, a first order mesh reconnects

the translated nodes with linear surfaces (Figure 26), a second order mesh reconnects

the translated nodes with quadrilateral surfaces (Figure 27), and so on. Figures 28

and 29 show third and eighth order meshes, respectively.

2.7.1 Test Problem 1: Uniform Infinite Medium with Scattering

This test problem investigates a homogeneous infinite medium with scattering. This

infinite medium problem results in a constant solution. An initial scalar flux was

chosen (φ = 1.4 cm−2 s−1) to test the convergence. It also tested the implementation

of the source iteration, angular quadrature, incident flux boundary conditions, high

order finite elements on meshes with curves surfaces, conservation, and consistency.
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This problem also motivated the work in Table 4.

The following homogeneous material properties describe the problem: σt = 1.0 cm−1,

σs = 0.3 cm−1, σa = 0.7 cm−1, and S0 = 0.7 cm−2 s−1. The steady-state transport

equation then simplifies to

Ω · ∇ψ (Ω) + σtψ (Ω) =
1

4π

∫
4π

dΩ′σsψ (Ω′) +
1

4π
S0 (58)

Because it is a homogeneous infinite medium, ∂ψ
∂x

= ∂ψ
∂y

= 0, so,

σtψ (Ω) =
1

4π

∫
4π

dΩ′σsψ (Ω′) +
1

4π
S0 (59)

Performing the integration on the right-hand-side,

σtψ (Ω) =
1

4π
σsφ+

1

4π
S0 (60)

Integrating over all angles, the exact solution is

φ =
S0

σa
=

0.7

0.7
= 1.0 (61)

ψ =
S0

4πσa
=

0.7

0.7 · 4π
=

1

4π
(62)

We use this exact solution as an incident angular flux boundary condition on all four

sides of the problem. That is,

ψinc =
S0

4πσa
=

1

4π
(63)

2.7.2 Test Problem 2: Reed-Hill

The Reed-Hill problem [55, 56] is a one-dimensional, multimaterial test problem with

vacuum boundaries. This problem tests the ability of the method to model material
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interfaces with sharp changes in the flux shape. A two-dimensional mesh with periodic

boundary conditions on the top and bottom (Figures 30 and 31) was used to model

this one-dimensional problem. Table 6 defines the material regions.

Table 6: Reed-Hill problem definition. Units for S0 are cm−2 s−1, and units for σt,
σs, and σa are all cm−1.

x ∈ (0, 2)

x ∈ (14, 16)

x ∈ (2, 3)

x ∈ (13, 14)

x ∈ (3, 5)

x ∈ (11, 13)

x ∈ (5, 6)

x ∈ (10, 11)

x ∈ (6, 8)

x ∈ (8, 10)

S0 0 1.0 0 0 50

σt 1.0 1.0 0 5.0 50

σs 0 0.9 0 0 0

σa 1.0 0.1 0 5.0 50

2.7.3 Test Problem 3: Spatial Convergence study

Using the method of manufactured solutions [57], a spatial convergence study was

performed. By substituting the manufactured solution, Equation 64, into Equation

5 and solving for S0 reveals the fixed source associated with that manufactured solu-

tion. Then, the solution to the discretized equations (Equation 16) using this fixed

source will converge to the manufactured solution upon refining the spatial mesh or

increasing the finite element order of approximation.
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Since our approach uses polynomial basis functions, the manufactured solution,

ψ (x, y, µ, η) = a+ bµ+ cη + d cos (4πx) sin (3πy) (64a)

a = 10 (64b)

b = 1 (64c)

c = 5 (64d)

d = 1 (64e)

was chosen to be a function of sine and cosine because it cannot be modeled exactly,

where µ and η are components of the angular quadrature, Ω. The coefficients were

chosen to ensure the fixed source and the angular fluxes were positive. The fixed

source associated with this manufactured solution is

S0 = 4π (a [σt − σs] + b [σtµ] + c [σtη] + d [−4πµ sin (4πx) sin (3πy) +

3πη cos (4πx) cos (3πy) + σt cos (4πx) sin (3πy)− σs cos (4πx) sin (3πy)]) (65)

The incident angular fluxes for the boundaries of the problem are

ψinc (x, y, µ, η) =



a+ bµ+ cη + d sin (3πy) , x = 0

a+ bµ+ cη, y = 0

a+ bµ+ cη + d sin (3πy) , x = 1

a+ bµ+ cη + d cos (4πx) sin (3π) , y = 1

(66)

and were derived from Equation 64 by substituting in the appropriate x or y boundary

location.

Table 7 shows the case matrix of tests considered, showing finite element orders
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and the number of spatial cells in the mesh. This case matrix was performed for

each of four spatial meshes: orthogonal, first, second, and third order meshes. The

unrefined meshes (i.e. 16 mesh cells) are shown in Figures 25 - 28. Two refinements

of the orthogonal mesh are shown in Figures 32 and 33, and two refinements of the

third order mesh are shown in Figures 34 and 35 for illustration.

Table 7 is populated with the number of unknowns appearing in the problem do-

main. Specifically, the number of unknowns, Nunknowns = Ncells (p+ 1)2, is a function

of the number of mesh cells, Ncells, and finite element order, p. S8 level-symmetric

quadrature was used in all cases to reduce ray effects and was solved on a unit square

where x, y ∈ [0, 1]. The L2 norm of the errors between the discretized solution and

the manufactured solution are calculated at each combination of finite element order

and mesh refinement on each of the four meshes.

Table 7: Case matrix for convergence study showing the number of unknowns in the
problem.

finite element order

1 2 4 6 8

n
u

m
b

er
of

m
es

h
ce

ll
s 16 64 144 400 784 1296

64 256 576 1600 3136 5184

256 1024 2304 6400 12,544 20,736

1024 4096 9216 25,600 50,176 82,944

4096 16,384 36,864 102,400 200,704 331,776

16,384 65,536 147,456 409,600 802,816 1,327,104

2.7.4 Test Problem 4: 1-D Diffusion Limit

A two-dimensional homogeneous test problem by Adams [26] is solved to investigate

the behavior of high order finite elements on meshes with curved surfaces for cells that
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are optically thick and diffusive. The problem is defined by σt = 1/ε, σa = ε, S0 = ε

and the Dirichlet boundary conditions φ (0) = φ (1) = 0, where σs = σt− σa. As ε→

0, the discretized transport equation solution converges to the discretized diffusion

equation solution, which provides a reference solution to evaluate the accuracy of this

methodology.

A one-dimensional version of this problem is considered first. The diffusion equa-

tion has an analytical solution in slab geometry and served as the reference solution.

Expressing Equation 49 in slab geometry,

− ∂

∂x
D (x) · ∂

∂x
φ(x) + σaφ(x) = S0 (67)

Consider the case where D does not depend on x,

∂2φ(x)

∂x2
− σa
D
φ(x) = −S0

D
(68)

and let L2 ≡ D/σa,

∂2φ(x)

∂x2
− 1

L2
φ(x) = −S0

D
(69)

The method of undetermined coefficients was used to analytically solve this second

order partial differential equation. The equation associated with the homogeneous

solution is

∂2φ(x)

∂x2
e1/L

2 − 1

L2
φ(x)e1/L

2

= 0 (70)

and has the general solution

φ(x) = c1e
x/L + c2e

−x/L (71)
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The equation associated with the particular solution is

φP (x) = a (72)

Plugging this into Equation 69,

0− 1

L2
a = −S0

D
(73)

and solving for a,

a =
S0

σa
(74)

The general solution to Equation 69 becomes

φ(x) = c1e
x/L + c2e

−x/L +
S0

σa
(75)

Applying the Dirichlet boundary conditions from the problem description to get the

analytic diffusion equation solution that served as the reference solution for this test

problem,

φ(x) =
S0

σa

[(
e−1/L − 1

e1/L − e−1/L

)
ex/L −

(
e−1/L − 1

e1/L − e−1/L
+ 1

)
e−x/L + 1

]
(76)

For various choices of the scaling factor, ε = {0.1, 0.05, 0.01}, the L2 norm of the

error between the transport solution and the reference solution was calculated. A one-

dimensional mesh was not available so this problem was solved on a two-dimensional

mesh with periodic boundary conditions on the top and bottom (Figure 36) to emulate

slab geometry.
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2.7.5 Test Problem 5: 2-D Diffusion Limit

Using the same physical parameters as Test Problem 4 (σt = 1/ε, σa = ε, and S0 = ε),

this problem solved the two-dimensional diffusion limit problem described by Adams

[26]. Since there is not an analytic solution, the transport solution was compared to

the solution from a diffusion code using the same mesh and finite elements. Using

the same values for ε as before (i.e. ε = {0.1, 0.05, 0.01}) the transport solutions were

compared to the diffusion equation solution. This was solved on the mesh in Figure

37.

2.7.6 Test Problem 6: Strong Scatter with Discontinuous Boundary Con-

ditions

This problem has been adapted from Test Problem 1 of Palmer [58]. It is homoge-

neous, optically thick (c = 0.999), and is defined by σt = 1000 cm−1, σs = 999 cm−1,

and S0 = 0.0 cm−2 s−1. There are vacuum boundaries on all sides except for six alter-

nating locations on the problem boundary with an incident angular flux strength of

1.0 cm−1 s−1 ster−1. Figure 1 shows the problem geometry where red borders indicate

the incident flux locations and Figure 38 shows the mesh. This problem illuminated

the effects of unresolved boundary layers on the interior solution (sufficiently far from

the boundary) in these optically thick regions. That is, the spatial mesh at the top

of Figure 1 is less resolved than the mesh on the right side and resulted in more

pronounced negative fluxes within those boundary layers.
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Figure 1: Test Problem 6 problem geometry; red boundaries indicate incident bound-
ary locations.

2.7.7 Test Problem 7: Material Discontinuity Stress Test

This problem was adapted from Test Problem 3 from Palmer [58]. There are five

different regions with various absorption and scattering cross sections as described in
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Table 8. Figure 2 shows the problem geometry and Figure 39 shows the mesh. There

is an incident flux on the left side of strength 1 cm−2 s−1 ster−1 and the remaining

boundaries are vacuum. Since thermal radiation transport problems can have opaci-

ties that vary over many orders of magnitude, a robust transport code must work in

all regimes. This problem begins to test this challenge. Additionally, optically thick

regions are more sensitive to anisotropic fluxes in the unresolved boundary layers.

The thick absorber attenuates fluxes that are perpendicular to the source-absorber

interface less than fluxes at an angle. This creates a preferentially anisotropic flux into

the scattering region testing the accuracy of the boundary condition on the interior

solution in the diffusive region. Lastly, the angular flux that is mostly unattenuated

is allowed to enter the scattering region through the very thin absorbing region. This

incident flux enters at a grazing angle testing the boundary condition on the interior

solution at this material interface.

Table 8: Test Problem 7 material properties.

Material Region σt cm−1 σs cm−1 S0 cm−2 s−1

Source 1.0 1.0 1.0

Very thin absorber 0.0001 0.0 0.0

Thick absorber 10.0 0.0 0.0

Very thick absorber 100.0 0.0 0.0

Very thick scatterer 1000.0 1000.0 0.0
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2.7.8 Test Problem 8: 2-D Diffusion Limit Direct Solve Method

This is the same problem as Test Problem 5 (Section 2.7.5) using the direct solve

method described in 2.5.2 for ε = {0.1, 0.01, 0.001, 0.0001}. The objective was to

test the accuracy of the method as the problem approaches the diffusion limit. The

transport solution was compared to the diffusion equation solution on the same mesh

with the same finite elements. The error was calculated using the L2 norm of the

difference between the transport solution and the reference solution for all of the

unknowns. The direct solve method is limited to solving smaller problems (i.e. fewer

angular quadrature directions, fewer mesh cells, lower order finite elements) due to

the size of the matrix that is generated. The spatial mesh is shown in Figure 40.
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3 Results

The results presented in this section are separated into their respective test problems.

Problem characteristics and solution methods are discussed along with important

conclusions from the problems.

3.1 Test Problem 1: Uniform Infinite Medium With Scat-

tering

This problem is defined in Section 2.7.1. Introducing the scattering term required

the implementation of source iteration. Figure 3 shows the DGFEM solution to the

transport equation with σ = 1.0 cm−1, σs = 0.3 cm−1, S0 = 0.7 cm−2 s−1 ster−1, and

ψinc = S0/σa. This calculation was performed using S8 level-symmetric quadrature,

8th order finite elements, on the mesh in Figure 37. This calculation took 14 iterations

with a convergence criteria of εconv = 10−12. There are 20,736 unknowns on 256

spatial zones. The exact solution, φ = 1.0 cm−2 s−1 (Equation 62), is shown by

the “Max” and “Min” values underneath the scale on the left-hand-side of the figure.

This solution demonstrates successful implementation of the source iteration, angular

quadrature, incident flux boundary conditions on a high order finite elements on

meshes with curved surfaces, conservation, and consistency. It was noted in Section

2.7.1 that this problem motivated the work in Table 4.
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Figure 3: Uniform infinite medium solution with fixed and scattering sources.

3.2 Test Problem 2: Reed-Hill

The Reed-Hill problem [55] is a multiregion problem defined in Section 2.7.2. Rather

than modifying the MFEM source code to implement reflecting boundaries, this prob-

lem was modeled with the material regions mirrored across x = 8 making the domain

x ∈ [0, 16]. This problem was solved using S8 level-symmetric quadrature with 8th

order finite elements on two orthogonal meshes: a coarser mesh with a 200 x 3 spa-

tial grid (Figure 30) and a mesh refined to 400 x 3 (Figure 31), both with periodic

boundary conditions on the top and bottom to emulate slab geometry. The coarser

mesh had 81 unknowns in each of 600 spatial cells. Thus, there were 1800 unknowns

along the x-direction. The refined mesh had 3600 unknowns along the x-direction.

There were vacuum boundaries at x = 0 and x = 16. The solution using the refined
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mesh is shown in Figure 4.

Figure 4: DGFEM Reed-Hill problem solution on a refined 2-D mesh with periodic
boundaries on top and bottom (Figure 31) to simulate slab geometry.

Figure 5 shows the scatter plot of all of the scalar fluxes from the solution shown in

Figure 4 as a function of their x values. Because there is no spread of data (i.e. each

scalar flux at any particular x value lies on the line), the scatter plot demonstrates

the solution is indeed one-dimensional.

A lineout was taken from Figure 4 at y = 0 and is shown in Figure 6. The

discretized transport solution models it smoothly even at the material interfaces where

there are sharp changes in the flux. Similarly, a lineout is shown for the coarser

mesh in Figure 7. There are some observable oscillations of the discretized transport
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Figure 5: Reed-Hill problem solution scatter plot; each flux value from Figure 4 is
plotted against its x-value indicating a true 1-D solution from a 2-D mesh.

solution on the coarser mesh near x = 3, x = 5, x = 11 and x = 13, which Gresho and

Lee [38] note may indicate that the mesh is inappropriate and requires refinement in

those areas.

This problem was also solved with a one-dimensional step differencing transport

code with 16,000 spatial cells using the same S8 level-symmetric angular quadrature;

this result serves as the reference solution. The L2 error from the reference solution

for the coarser mesh is 0.0335 and is 0.00181 for the refined mesh, both using a

convergence criteria of εconv = 10−12 implemented through Equation 39. The spectral

radius of the source iteration was 0.773 and converged in 101 iterations for the coarser

mesh. Similarly, the spectral radius of the source iteration was 0.774 and converged

in 102 iterations for the refined mesh.
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Figure 6: Lineout of Reed-Hill problem solution at y = 0 of Figure 4 on mesh with
400 cells across (Figure 31); red is the DGFEM solution and blue is the reference
solution.

Figure 7: Lineout of Reed-Hill problem solution at y = 0 of Figure 4 on mesh with
200 cells across (Figure 30); red is the DGFEM solution and blue is the reference
solution.

This problem was a preliminary test for problems involving significant material

heterogeneity.
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3.3 Test Problem 3: Spatial Convergence Study

This problem is described in Section 2.7.3. The data points in Figures 8 - 11 show the

L2 norm of the difference between the DGFEM scalar flux and the reference solution

as a function of the square root of the number of unknowns in the finite element space

(the data is found in Tables 10 - 13). Lines connect the values calculated with the

same finite element order. The number of unknowns is a function of the number of

mesh cells and the order of finite elements,

Nunknowns = Ncells · (p+ 1)2 (77)

where Nunknowns is the number of unknowns, and p is the finite element order. Each

was calculated with S8 angular quadrature to reduce the impact of ray effects.

The convergence rates reported in Table 9 were determined from the slopes of

the lines in Figures 8 - 11. It is common to report convergences rate as functions of

the mesh size. This poses a difficulty because the meshes with curved surfaces are

not uniform. Hence, the convergence rates have been reported as a function of the

number of unknowns along one axis. The convergence rate on quadrilateral meshes

is expected to be p + 1 [8]. Wang and Ragusa [34] found p + 1 convergence rates on

triangular meshes also. Thus, the results are consistent with theoretical and numerical

expectations.

Machine precision prohibited the accurate calculation of errors smaller than on

the order of 10−14. Values that were judged to be smaller than this maximum achiev-

able accuracy were omitted from determining the convergence rates. The number

of unknowns was limited to available memory so not all of the test cases of Table

7 could be computed. It is clear from Figures 8 - 11 that increasing the number of

unknowns in this problem decreases the error, whether by increasing the number of

mesh cells or the order of the finite elements. Convergence rates are greater for higher
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order finite elements. Also, the convergence rates were relatively insensitive to the

increasing curvature of the mesh surfaces.

The fixed source term in this manufactured solution is several orders of magnitude

greater than the other terms of the transport equation. Brunner [59] found that while

this can reveal errors in the source term, it can mask numerical deficiencies in the

smaller terms. A more comprehensive study should include changing the magnitude

of each term independently.

Table 9: Manufactured solution convergence rates on the square root of Nunknowns

determined from the slopes of the lines in Figures 8 - 11.

mesh order

orthogonal 1 2 3

el
em

en
t

or
d

er

1 2.680 2.559 2.709 2.706

2 3.541 3.384 3.526 3.529

4 5.729 5.426 5.640 5.627

6 7.821 7.258 7.641 7.567

8 9.853 9.052 9.613 9.342



48

10
0

10
1

10
2

10
3

√

Nunknowns

10
-15

10
-10

10
-5

10
0

10
5

L
2
 e

rr
o
r

1st order FE

2nd order FE

4th order FE

6th order FE

8th order FE

Figure 8: First order orthogonal mesh errors as a function of the square root of
Nunknowns.
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Figure 9: First order transformed mesh errors as a function of the square root of
Nunknowns.
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Figure 10: Second order transformed mesh errors as a function of the square root of
Nunknowns.
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Table 10: L2 norm of the difference between the DGFEM scalar flux and reference
solution for given order of finite elements and number of mesh cells for first order
orthogonal mesh.

finite element order

1 2 4 6 8
n
u

m
b

er
o
f

m
es

h
ce

ll
s 16 3.4800 6.1775E-1 2.4481E-2 3.5636E-4 2.6695E-6

64 7.0630E-1 1.3003E-1 6.3048E-4 1.7471E-6 2.9632E-09

256 1.1068E-1 1.2167E-2 1.2076E-5 7.6174E-9 3.1213E-12

1024 1.7186E-2 8.6984E-4 2.0238E-7 3.0997E-11 8.7513E-14

4096 2.4856E-3 5.7499E-5 3.2576E-9 - -

16,384 3.3718E-4 3.7238E-6 - - -

Table 11: L2 norm of the difference between the DGFEM scalar flux and reference
solution for given order of finite elements and number mesh cells for first order trans-
formed mesh.

finite element order

1 2 4 6 8

n
u

m
b

er
of

m
es

h
ce

ll
s 16 4.3779 9.7822E-1 4.9514E-2 1.1404E-3 1.5779E-5

64 1.0636 1.9437E-1 2.1084E-3 1.3649E-5 5.6024E-8

256 1.8427E-1 2.1919E-2 5.0502E-5 7.7242E-8 7.6887E-11

1024 2.9440E-2 1.8227E-3 9.3964E-7 3.3367E-10 1.1736E-13

4096 4.4956E-3 1.3200E-4 1.5960E-8 - -

16,384 6.8033E-4 9.4817E-6 - - -
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Table 12: L2 norm of the difference between the DGFEM scalar flux and reference
solution for given order of finite elements and number of mesh cells for second order
transformed mesh.

finite element order

1 2 4 6 8
n
u

m
b

er
o
f

m
es

h
ce

ll
s 16 8.1134 1.9689 1.2230E-1 4.2791E-3 1.1468E-4

64 1.4893 2.2841E-1 3.0402E-3 2.6284E-5 1.5938E-7

256 2.1937E-1 2.4236E-2 6.5709E-5 1.2739E-7 1.8697E-10

1024 3.2682E-2 1.9632E-3 1.1772E-6 5.4385E-10 -

4096 4.8375E-3 1.4116E-4 2.0158E-8 - -

16,384 7.2294E-4 1.0184E-5 - - -

Table 13: L2 norm of the difference between the DGFEM scalar flux and reference
solution for given order of finite elements and number of mesh cells for third order
transformed mesh.

finite element order

1 2 4 6 8

n
u

m
b

er
of

m
es

h
ce

ll
s 16 8.1099 2.0451 1.5364E-1 7.2457E-3 2.6153E-4

64 1.4891 2.4304E-1 4.1710E-3 5.3909E-5 5.3645E-7

256 2.2057E-1 2.5530E-2 8.9648E-5 2.6223E-7 6.2113E-10

1024 3.3012E-2 2.0550E-3 1.5906E-6 1.0910E-9 -

4096 4.8894E-3 1.4711E-4 2.6663E-8 - -

16,384 7.2936E-4 1.0551E-5 - - -

3.4 Test Problem 4: 1-D Diffusion Limit

The one-dimensional diffusion problem has an exact analytical solution described in

Section 2.7. This problem was solved using S8 level-symmetric angular quadrature,

with 8th order finite elements, on an orthogonal spatial grid with periodic boundary

conditions on top and bottom to simulate a one-dimensional slab geometry. The left

and right boundaries are vacuum. There are 24,300 unknowns on 300 spatial cells.

The convergence criteria was εconv = 10−12 implemented using Equation 39.

The solutions to this problem on the two-dimensional periodic mesh (Figure 36)
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with ε = 0.1, ε = 0.05, and ε = 0.01 are shown in Figures 12, 13, and 14, respec-

tively. Figure 15 shows lineouts (at y = 0) from these two-dimensional solutions

to demonstrate the slab geometry solutions. Shown are the analytical solution and

three DGFEM solutions (ε = {0.1, 0.05, 0.01}). The DGFEM solutions trend toward

the analytical solution as ε→ 0. However, this does not confirm that this code has the

diffusion limit or any asymptotic limit. This problem needs to be solved for ε = 10−6

to confirm achievement of the diffusion limit but requires a source iteration accel-

eration. An asymptotic analysis needs to be performed to confirm the discretized

transport equation converges to the discretized diffusion equation as ε → 0. This

extensive analysis is left to future work but an example of this analysis for the BLD

method can be found in Adams [26].
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Figure 12: One-dimensional diffusion solution simulated on a two-dimensional mesh
using periodic boundaries on top and bottom; mesh shown from Figure 36. Shown is
the solution to ε = 0.1 of Table 14.
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Figure 13: One-dimensional diffusion solution simulated on a two-dimensional mesh
using periodic boundaries on top and bottom; mesh shown from Figure 36. Shown is
the solution to ε = 0.05 of Table 14.
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Figure 14: One-dimensional diffusion solution simulated on a two-dimensional mesh
using periodic boundaries on top and bottom; mesh shown from Figure 36. Shown is
the solution to ε = 0.01 of Table 14.
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Figure 15: Lineout of solutions (at y = 0) from Figures 12 - 14; analytical solution
(black) and three DGFEM transport solutions of the one-dimensional diffusion limit
problem: ε = 0.1 (red), ε = 0.05 (blue), and ε = 0.01 (green).
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Table 14: L2 errors from the scalar flux of the reference solution and spectral radius
of iterations calculated by Equation 38.

ε scattering ratio spectral radius L2 norm

0.1 0.99 0.96 0.066

0.05 0.9975 0.9904 0.036

0.01 0.9999 0.999590 0.0069

3.5 Test Problem 5: 2-D Diffusion Limit

This problem was adapted from Adams [26]. The two-dimensional diffusion problem

was solved using S8 level-symmetric angular quadrature, 8th order finite elements, on

a quadrilateral mesh with 8th order polynomial surfaces. All boundaries are vacuum.

The solutions are shown in Figures 16 through 18 using the unaccelerated source

iteration. There are 20,736 unknowns on 256 spatial zones. The convergence criteria

was εconv = 10−12 implemented using Equation 39.

The L2 norms of the difference between the DGFEM scalar flux and the reference

solution, shown in Table 15, indicate that the DGFEM solution is trending toward

the diffusion solution as ε → 0. However, this does not yet confirm that this code

has the diffusion limit or any asymptotic limit. This problem needs to be solved for

ε = 10−6 to confirm achievement of the diffusion limit but requires a source iteration

acceleration. An asymptotic analysis needs to be performed to confirm the discretized

transport equation converges to the discretized diffusion equation as ε → 0. This

extensive analysis is left to future work but an example of this analysis for the BLD

method can be found in Adams [26].
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Figure 16: Two-dimensional diffusion problem DGFEM solution for ε = 0.1; mesh
shown from Figure 37.
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Figure 17: Two-dimensional diffusion problem DGFEM solution for ε = 0.05; mesh
shown from Figure 37.
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Figure 18: Two-dimensional diffusion problem DGFEM solution for ε = 0.01; mesh
shown from Figure 37.
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Table 15: L2 norm of the difference between the DGFEM scalar flux solution and the
reference solution for several choices of ε.

ε
scattering ratio

c = 1− ε2
spectral radius

(Equation 38)
L2 norm

0.1 0.99 0.94 0.048

0.05 0.9975 0.9835 0.024

0.01 0.9999 0.99926 0.0048

3.6 Test Problem 6: Strong Scatter with Discontinuous Bound-

ary Conditions

The problem description is in Section 2.7.6. Figure 19 shows the DGFEM calculation

of the scalar fluxes. The white space shows where the scalar flux is negative. Figure

20 shows the same data on a log scale. The solution is smooth (except where the

solution is negative) and changes over 22 orders of magnitude. That is, the poly-

nomial basis functions smoothly model the exponential behavior in this problem.

On orthogonal meshes in cylindrical geometry, Palmer [58] numerically demonstrates

three methods that have results similar to Figures 19 and 20 (bilinear discontinuous

FEM (BLD), mass-lumped BLD (MLBLD), and surface-lumped BLD (SLBLD)), and

two methods that are positive and smooth (fully-lumped BLD (FLBLD) and simple

corner balance (SCB)). Numerical results from Adams [22] also show negative fluxes

using the MLBLD and BLD methods in Cartesian geometry. Adams [26] states that

anisotropic fluxes incident on unresolved boundaries cause issues within the interior of

the solution and lumping can improve the solution behavior. The solution here used

S4 level-symmetric quadrature, 8th-order finite elements, and no lumping technique.

The spectral radius was 0.999 (by Equation 38), demonstrating a slow convergence

rate.
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In the context of radiation hydrodynamics, negative fluxes imply negative energies.

The equations of state can produce negative temperatures, negative densities, and

negative pressures, which are non-physical. It will be important that the radiation

transport method properly handles these negative flux regions to prevent errors in

the equations of state.
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Figure 19: Test Problem 6: Optically Thick Problem A scalar flux; white space shows
where solution is negative; mesh shown from Figure 38.
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Figure 20: Test Problem 6: Optically Thick Problem A scalar flux on a log scale;
white space indicates where solution is negative; mesh shown from Figure 38.
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3.7 Test Problem 7: Material Discontinuity Stress Test

This problem is described in Section 2.7.7. The resulting DGFEM scalar flux solution

is shown in Figure 21. The white space shows where the scalar flux is negative. Fig-

ure 22 is the same solution on a logarithmic scale. The solution is relatively smooth

(except where the solution is negative) and changes over 14 orders of magnitude.

The solution was computed with S4 level-symmetric quadrature, with 8th order finite

elements, and no lumping techniques were used. On orthogonal meshes in cylindri-

cal geometry, Palmer [58] numerically demonstrates two methods that have similar

results to Figures 21 and 22 (BLD and MLBLD) and two methods that are positive

and smooth (FLBLD and SCB). The spectral radius was 0.99999 (by Equation 38),

demonstrating a very slow convergence rate.

The majority of the negative fluxes appear in the very thick absorbing region

where oscillations are apparent. There are slightly visible oscillations in the unrefined

boundary layers of the scattering region but they do not go negative. Also seen are

some ray effects.
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Figure 21: Test Problem 7 scalar flux; white space shows where solution is negative;
mesh shown from Figure 39.
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Figure 22: Test Problem 7 scalar flux on a log scale; white space indicates where
solution is negative; mesh shown from Figure 39.
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3.8 Test Problem 8: 2-D Diffusion Limit Direct Solve Method

This is the same diffusion limit problem as in Test Problem 5 but using the direct

solve method. The computational time is significant for problems with a large number

of unknowns (e.g. on the order of 105), so this problem was limited to 4th order finite

elements whereas 8th order was used in Test Problem 5. S4 level-symmetric quadrature

was used on a second order mesh (Figure 40). There are 1600 unknowns in 64 spatial

cells. The solution is shown in Figure 23. The result demonstrates that this solution

method may be a viable alternative to source iteration especially in optically thick

problems when there are relatively few unknowns.

An issue arises when solving this linear system with a direct solve. The operator

matrix has an increasing condition number with increasing scattering ratio (Figure

24), causing the solve to break down beyond ε = 0.0005. The condition number,

κ = ‖A‖‖A−1‖ (78)

is an indication of how sensitive the solution is to small perturbations in the linear

algebra problem.

Table 16: L2 norms of the difference between the DGFEM scalar flux and the reference
solution for several choices of ε.

ε scattering ratio L2 norm

0.1 0.99 0.04654713

0.05 0.9975 0.023714251

0.01 0.9999 0.0048038978

0.005 0.999975 0.0024034884

0.001 0.999999 0.00048896782

0.0005 0.99999975 0.00027587357

0.0001 0.99999999 0.040468175
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Figure 23: Test problem 8: 2-D diffusion limit problem solved with direct solve
method; mesh shown from Figure 40.
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Figure 24: Condition number of the large matrix as a function of ε.
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4 Conclusions

The objectives of this research were to develop and characterize a radiation transport

code using high order finite elements in optically thick material on spatial grids with

curved surfaces. Employing the general finite element library, MFEM, several test

problems were solved to characterize the solver and serve as a proof-of-concept.

This research found it important to numerically integrate each of the finite element

terms consistently. Specifically, the quadrature order that is used for the integrations

should be equal. Presently, the integration orders of each term were set to the max-

imum of the default integration orders for a given problem. The cost involved is in

spending computational time integrating functions to a higher order than is neces-

sary. While this research was not directly concerned with optimizing computational

time, this issue could be better resolved.

The uniform infinite medium test problem was successfully solved demonstrating

early viability of the transport solver. Given cross-sections, a fixed source, incident

fluxes on the boundaries, and pre-generated level-symmetric quadrature sets, MFEM

generates a system of equations to solve for the angular flux. A direct-solve linear

algebra solver was used to solve these equations for the angular flux. The scalar

flux was calculated by summing the weighted angular fluxes and used in the scat-

tering source term for the next iteration. This source iteration was repeated until

a convergence criteria was satisfied and the final scalar flux was output to VisIt for

visualization. The analytic solution was achieved in this test problem indicating that

the aforementioned algorithm was implemented correctly.

The Reed-Hill problem tested the ability to model spatially dependent cross-

sections and fixed sources. The solution indicates this methodology can model mate-

rial interfaces with strong changes in material properties that result in sharp changes

in the flux profile. With sufficient spatial mesh refinement, the high order finite ele-
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ments model the sharp flux changes without significant oscillation at these material

interfaces. However, some oscillation was observed on the coarser mesh although they

do not go negative. In lieu of a reflecting boundary condition, the problem was mod-

eled reflected across this boundary to achieve the desired behavior at the reflecting

location.

Performing a convergence study resulted in various convergence rates with respect

to the square root of the number of unknowns. In all cases, increasing the number

of unknowns (either by increasing the finite element order and/or refining the mesh)

reduced the error. The convergence rates are approximately p+1, where p is the finite

element order, similar to the results found in Wang and Ragusa [34]. It is apparent

that the convergence rates are fairly insensitive to the degree of curvature in the edges

of the mesh.

Solving the homogeneous optically thick problems showed this method trends

toward the analytical one-dimensional diffusion solutions using high order finite el-

ements on a fine orthogonal spatial grid. Similarly, the results showed the two-

dimensional transport solution trending toward the diffusion equation solution. The

confirmation that this code has the diffusion limit cannot be achieved until it suc-

cessfully solves these problem for ε = 10−6. These high scattering ratio calculations

took longer than is practical so research in optically thick materials is limited until a

synthetic acceleration is properly implemented. Both the one- and two-dimensional

solutions demonstrated first-order convergence with respect to the smallness factor ε.

The analytical diffusion limit analysis has O (ε2) convergence. This implies the arise

of a O (ε) term in the discretized transport equation. This analysis is left to future

work.

Test Problem 6 revealed non-physical negative fluxes in the boundary layer of the

interior solution. Sufficiently far from the boundary layer, the solution is smoothly

modeled. These negative fluxes was expected from other research and have been
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investigated to correct these negative fluxes. Maginot [36] and Maginot et al. [35,

41] have researched lumping techniques with high order finite elements and have

determined that lumping alone may not preserve a positive solution.

Test Problem 7 specifically exposed the difficult task of modeling optically thick

and thin regions simultaneously. Since this phenomenon naturally arises in thermal

radiation transport problems, it is important to consider throughout the method de-

velopment. Negative fluxes appear in the absorption region and a relatively smooth

positive solution appears elsewhere. This problem also tested the boundary layers

of the scattering region where the incident flux was anisotropic. These regions can

be sensitive to anisotropic fluxes and some oscillation was present although the solu-

tion stayed positive. It is conceivable that implementing a lumping technique would

dampen the oscillations and make those areas less susceptible to negative fluxes by

making the method more local. However, making the method more local could have a

negative effect on the optically thin regions where the mean free path is much greater.

The direct solve method showed promise in the ability to model optically thick

problems without having to iterate upon a slowly converging scattering source. How-

ever, as ε was driven toward zero the large matrix became increasingly ill-conditioned.

Small changes in the input caused increasingly larger changes in the solution, includ-

ing any associated error. This caused the solution to rapidly diverge from the diffu-

sion equation solution. For well-conditioned problems (e.g. larger values of ε), the

direct solve method solved the solution as accurately as the source iteration method.

Since the direct solve matrix size is sensitive to the number of unknowns and angular

quadrature order, there is a practical limitation on the size of the solvable problem.
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4.1 Future Work

Although implementing synthetic acceleration for the source iteration was not a spe-

cific goal for this research, we did make an attempt to implement it from Wang and

Ragusa [20] but the implementation required significant modification to the MFEM

source code. This implementation will be necessary for future work in the diffusion

limit.

The method of manufactured solutions was used for a convergence study. An

extensive use of this method will include exercising each of the terms in the transport

equation to reveal any errors within the code. This is done by sequentially adjusting

the magnitude of each term of the transport equation independently [59].

In the future, the ability to model reflecting boundaries would be beneficial in

comparing results form this method with analytic results and in code-to-code compar-

isons. The work presented in this research used a combination of periodic boundaries,

fixed incident isotropic angular fluxes, and modeling the reflected problem across the

reflected boundary condition. While these were sufficient for the test problems here,

this approach may not be adequate in the future. Additionally, it would be advanta-

geous to be able to test simple problems that utilize periodic boundaries in alignment

with the goals of this research. Specifically, the process to transform a mesh to have

curved edges does not work with meshes with periodic boundaries or meshes not on

the unit square. It could be instructive to perform the Reed-Hill and one-dimensional

diffusion problems on meshes with curved surfaces and also allowing for additional

test problems.

MFEM can be compiled and used to compute each spatial cell in parallel. This

technique was not evaluated in our research, but it could be implemented in a future

investigation. The computational time is likely to decrease dramatically as there were

over 1000 spatial cells in some test problems described above.
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Eventually, this radiation transport code could be used in conjunction with a

hydrodynamics code to simulate radiation hydrodynamics problems. Much work

needs to be done to characterize and optimize this radiation transport code in the

various physical regimes achievable in high energy density physics problems. Other

material dependent interactions need to be added to the code. Adding a material

temperature dependency turns the system of equations into a non-linear problem,

further increasing the complexity of the solve. Hence, it is important to robustly and

accurately solve the linear transport equations prior to adding these non-linear terms.
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A Spatial Meshes

Included are various spatial meshes used in the test problems.

Figure 25: First order orthogonal mesh.

Figure 26: First order orthogonal mesh (Figure 25) transformed with first order edges.



82

Figure 27: First order orthogonal mesh (Figure 25) transformed with second order
curved edges.

Figure 28: First order orthogonal mesh (Figure 25) transformed with third order
curved edges.



Figure 29: First order orthogonal mesh (Figure 25) transformed with eighth order
curved edges.

Figure 30: Mesh on x ∈ (0, 16) with 200 cells in the x-direction and periodic boundary
conditions on top and bottom.
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Figure 31: Mesh on x ∈ (0, 16) with 400 cells in the x-direction and periodic boundary
conditions on top and bottom.

Figure 32: First order orthogonal mesh (Figure 25) refined to 256 mesh cells.
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Figure 33: First order orthogonal mesh (Figure 25) refined to 16,384 mesh cells.

Figure 34: Third order mesh (Figure 28) refined to 256 mesh cells.
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Figure 35: Third order mesh (Figure 28) refined to 16,384 mesh cells.

Figure 36: Mesh on x ∈ (0, 1) with 200 cells in the x-direction and periodic boundary
conditions on top and bottom.
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Figure 37: Eighth order mesh (Figure 29) refined to 256 mesh cells.

Figure 38: Mesh for Test Problem 6.
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Figure 39: Mesh for Test Problem 7.

Figure 40: Second order mesh (Figure 27) refined to 64 mesh cells.
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