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Hatchery-reared salmonid fish routinely encounter stress due to 

handling, barging, tagging, and overcrowding. It has been demonstrated that 

there exists a direct correlation between stress and transient immune 

suppression which can last for many days in fish. Epizootic viral infections 

routinely appear in hatcheries and can have a devastating effect on the fish 

population. The major viral pathogens in salmon and trout are the fish 

rhabdovirus, infectious hematopoietic necrosis virus (IHNV), and the fish 

birnavirus, infectious pancreatic necrosis virus (IPNV). Vaccines for these 

viral pathogens are under investigation; however, the fish immune system 

becomes virtually nonresponsive during episodes of immune suppression. It 

was necessary to develop a nonantibody mediated, nonimmune method for 

preventing viral infections. 

An interferon-like substance has been described for fish which 

possesses antiviral activity against both IHNV and IPNV. Since interferon 

administered to cattle has been very effective against vesicular stomatitis 

virus, a cattle rhabdovirus, an examination of interferon-like activity in fish was 
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initiated. We report here the establishment of in vitro interferon assays. In 

addition, the salmonid genome contains a multigene family of p-interferon-like 

genes, much like those in the bovine, equine and porcine genome. The 

rainbow trout interferon-like genes were found to be inducible in a manner 

which parallels those seen with bovine and human interferons. 

In addition to the multigene interferon-like family, it was found that 

rainbow trout also contain a retroposon multigene family. Retroposons are 

repetitive elements which appear to have arisen by a reverse transcription 

event. Two Ll like repetitive elements have been cloned, one of which 

contains a Drosophila retroposon polymerase sequences never before 

described for salmonid fish. A number of retroviruses have been described in 

fish including the walleye dermal sarcoma virus and the Atlantic salmon 

swimbladder sarcoma virus. Interferon shows prophylactic promise both in 

vivo and in vitro, against the human retrovirus, HIV. Therefore, research into 

fish interferon may be even more important if it demonstrates not only anti-

IHNV and anti-IPNV, but also anti-fish retrovirus properties. 
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Characterization of Interferon and
Retroposon-like Repetitive Elements in Salmonid Fish

INTRODUCTION 

Aquaculture of salmonid fish species is an important industry in the 

Pacific Northwest and viral diseases of salmon and trout have had a serious 

impact on the growth of this industry. The American diet continues to shift from 

red meat to leaner chicken and fish and per capita consumption of fish is 

predicted to reach 30 lb/capita/year by the year 2000. This is twice the 

consumption determined in 1989 at 15 lb/capita/year, and is a strong 

indication that the demands on aquaculture will continue to increase (Buyers 

Guide, 1990, Aquaculture Magazine). Since many aquaculture facilities do 

not have pathogen free water available, it is virtually impossible to prevent 

viral epizootic outbreaks. It is important to develop comprehensive, cost-

effective prophylactic programs to limit virus related losses. One way to do 

this is to develop vaccines against the most serious viral pathogens- infectious 

hematopoietic necrosis virus (IHNV), a fish rhabdovirus, and infectious 

pancreatic necrosis virus (IPNV), a fish birnavirus. 

Vaccines alone, although effective in certain circumstances, can be 

ineffective during times of stress. Hatchery-reared fish commonly encounter 

stress inducers such as handling, barging, tagging, and overcrowding. These 

stress factors have been shown to be directly linked to periods of marked 

immune suppression. In these circumstances, it is believed that the non-

immune antiviral substance, interferon (IFN), would be a logical partner to 

vaccination for antiviral prophylaxis. It has been shown in mammalian 

systems and in early fish IFN work that IFN activity reduces the infectivity 
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of both rhabdoviruses and birnaviruses, so this course of investigation 

appears valid. 

The studies reported here describe the molecular and biological 

features of a salmonid IFN-like substance. The ultimate goal of this study is to 

determine whether the administration of fish IFN may be useful as an 

economically sound part of good hatchery management. 

In addition, information regarding the genetic makeup of the rainbow 

trout genome has been elucidated. In an attempt to isolate rainbow trout IFN 

genes from a lambda-based rainbow trout genomic library, retroposon 

repetitive elements were discovered. It has been reported that the rainbow 

trout genome is comprised of 84% repetitive elements. We report here the 

discovery of retroviral-like polymerase sequences embedded within the fish 

genome. Pitha (1991) reports that in vivo and in vitro evidence indicates that 

endogenous human IFN may be important in limiting HIV spread, replication 

and concommitant opportunistic infections. Retroviruses such as the walleye 

dermal sarcoma virus (Walker, 1947) and Atlantic salmon swimbladder 

sarcoma virus (Duncan, 1978) have been described in fish; therefore, the 

importance of studying fish IFN and the prophylactic uses of fish IFN may be 

even greater than originally envisioned. 
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LITERATURE REVIEW 

INTERFERON 

In 1957, Isaacs and Lindenman described IFNs as a group of proteins 

and glycoproteins that could inhibit the growth of a wide range of viruses. 

Interferons have since been described in all mammals investigated including 

the brown lemur, blackbuck, and gray seal (Wilson et al., 1983). There is 

some biological and molecular evidence that IFN exists in bony fish ( see 

FISH INTERFERON BACKGROUND section) and other preliminary evidence 

indicates that IFN may even exist in plants (tobacco); (Edelbaum et al., 1990). 

To date, no evidence has been reported demonstrating any IFN moiety in 

invertebrates. 

Sehgal and Sagar (1980) discussed the fact that viral pathology was 

more dramatic in animals treated with antibodies against IFN than in untreated 

infected animals. Thus, IFNs are thought to play an important role in the early 

nonspecific defense against viruses. 

In the sixties, investigators discovered that some IFNs were more than 

just antiviral substances (see Pestka, 1987 review). Jounger and Stinebring 

(1964) detected !FN in the serum of chickens injected with the Brucella 

abortus bacterium. Thus, IFN also stimulated antimicrobial activity. 

Investigators from the 1960's through the 1980's collectively demonstrated 

that IFNs played a role in various cellular functions including the modulation of 

immune responsiveness and regulation of cellular growth. The 

pharmaceutical potential of IFNs includes not only antiviral possibilities, but 

uses in cancer chemotherapy, immune modulation, and antimicrobial 

chemotherapy. Table 1 lists many of the current biological activities 

attributable to IFNs. 
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Table 1. Interferon inducible biological activities. 
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ANTIVIRAL- RNA and protein synthesis inhibition 

ANTIPROLIFERATIVE: cell growth is inhibited 
-intracellular parasites such as toxoplasma and 

plasmodium are inhibited 

STIMULATE: phagocytosis 
-tumor cell differentiation 
-tumor necrosis factor activity 
-myoblast and fibroblast differentiation 

IMMUNOMODULATE: stimulate macrophage cytotoxicity 
-toward tumor cells and virus infected cells 
-B-cells are stimulated to produce antibody 
-NK cell activity is stimulated 

Table 1. 
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Stringfellow, in a 1980 overview, described the three main antiviral 

properties a substance must possess to be an IFN: 

1. inactivation of antiviral activities possible by treatment with 

proteolytic enzymes but not nucleases; 

2. antiviral properties arise as inducible intracellular activities 

mediated by an IFN receptor-IFN interaction; and 

3. the IFN-like substance must be active against a wide variety of 

viruses. 

Standard IFN nomenclature is shown in Table 2. IFNs are classified as 

either type 1 or type 2. 

Type 1 IFNs are represented by both alpha (a) and beta ((3) IFN. There 

are at least 15 different a-IFNs located at 15 unique gene loci in man. 13-IFNs 

have traditionally been thought to be represented by a single gene; however, 

information to the contrary appears in some select species. There are 

between 1 and 5 human 13-IFN genes; the number is unclear at this time. 

Ungulates possess a 13-IFN multigene family (Wilson et al., 1983) as do the 

equine and porcine species (Leung et al., 1984). Type 1 IFNs (with the 

exception of human (32 -IFN ) possess no introns. a -IFNs are not glycosylated 

while (3-IFNs are. Both type 1 IFNs are stable to pH 2 and stable when held at 

56°C for 30 min. 

Gamma or immune IFN (yIFN) is also known as type 2 IFN and there 

appears to be only one yIFN gene in humans (Lengyel, 1986). Unlike the 

type 1 IFNs, there are three introns located in the type 2 y-IFN. The protein 

itself is glycosylated, labile at pH 2, and heat instable at temperatures 

above 56°C for 30 min. 



Table 2. Interferon species, their inducers and the cells producing each type 

of interferon. 
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IFN type Inducer Secreting cell type 

1 a nucleic acid leukocytes 
lymphoblastoid cells 

13
nucleic acid fibroblasts 

antigenic macrophage stimulated2 'y
stimulus T-cells

Table 2. 
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Recently, investigators have described a variety of novel IFN activities 

which may be represented by as yet unmapped IFNs. The first is known as 

"endogenous IFN". This cell product was found expressed in physiologic 

amounts by uninduced cells in culture and varied in strength over the cell 

cycle (Friedman-Einat et al., 1982). This IFN-like substance demonstrated 

antiviral and cell growth inhibitory activity and was thought to be a novel IFN 

by the kind of activity demonstrated. An acid-labile a-IFN was described in 

serum samples from patients suffering from systemic lupus erythematosus 

(Preble et al., 1982). Placental IFN was recently described as an antiviral 

activity not associated with virus infection. This substance was found in a 

majority of amniotic fluid samples taken from the 37th week of pregnancy on. 

The function of placental IFN is unknown but investigators noted that no 

known infectious agents were present at the time of sampling. Thus, placental 

IFN appears to be a constituitively expressed nonimmune form of fetal 

protection (Duc-Goiran et al., 1985). Another IFN is readily induced by growth 

factors. This IFN has been given the name [32-IFN (Sehgal and Sager 1980; 

Kohase et al., 1986; Sehgal et al., 1987) because it possesses cross-reacting 

epitopes with the more commonly studied 3 -IFN and can be induced from the 

same cells. Joklik (1990) stated that [32-IFN possessed weak antiviral activity 

but was an active cytokine/lymphokine. jig -IFN is also known as interleukin-6 

(IL-6) (Ray et al., 1988). Finally, two IFN-like glycoproteins were identified in 

tobacco (Edelbaum et al., 1990). A human 0-IFN monoclonal antibody cross-

reacted with two glycoproteins, gp-22 and gp-35 from tobacco. These 

proteins were shown to possess antiviral activity against tobacco mosaic virus. 
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INDUCTION OF INTERFERON 

IFN is not generally thought to be constitutively expressed in quantities 

that can elicit a strong response; rather, IFNs are inducible. Type 1 IFNs, a 

and 13, are readily induced by class-A inducers (reviewed by Baron et al., 

1984). Class A IFN inducers are potent and they contain nucleic acid. RNA 

viruses are good IFN inducers, with the myxoviruses being the most effective. 

DNA viruses, with the exception of vaccinia virus, are poor IFN inducers. It is 

believed that a dsRNA intermediate of viral replication is the signal to activate 

the antiviral arm of IFN. Marcus and Sekellick (1977) demonstrated that one 

defective-interfering particle of vesicular stomatitis virus (VSV) could induce 

IFN production. An extremely useful commercially available IFN inducer is the 

synthetic dsRNA polymer, polyinosinic-polycytidylic acid or poly I:C (Lampson 

et al., 1981). 

Increased levels of human 13-IFN mRNA are seen following induction, 

due to increased gene transcription. IFN message concentrations increased 

by two logs after 3 h of induction with poly I:C. An increase in protein activity 

paralleled the mRNA production with antiviral activity peaking by 6 h 

postinduction (Fujita et al., 1982). Whittmore and Maniatis (1990) investigated 

the rapid post-induction drop in 13-IFN mRNA concentration. They found that 

the mRNA reduction was due to a combination of factors; mainly repression of 

transcription and rapid message turnover. In the presence of the protein 

synthesis inhibitor, cycloheximide, IFN mRNA became more stable. Thus, a 

repressor appeared to be induced by the virus as well. 

Class-B inducers elicit a weak IFN response from a and 13-IFNs 

following target cell exposure. Representatives of this class include microbes 

and microbial products, some chemicals such as polyvinyl sulfate, and low 
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molecular weight products such as kanamycin and basic dyes (Baron et al., 

1984). 

-IFN is induced by a variety of immunostimulants. Antigens can be 

effective as y-!FN inducers if the immune cell has already been sensitized. An 

antibody responding to the OKT3 antigen on T- lymphocytes will stimulate 

y-IFN production while antibodies against OKT4 or OKT8 on T-helper cells 

and T-suppressor cells, respectively, do not elicit an IFN response. Tumor 

cells and mitogens such as PHA, Con A and LPS are also good inducers of 

IFN (Baron et al., 1984). 

PRIMING 

Priming is a phenomenon where cells are exposed to low levels of IFN 

prior to IFN induction by other means, such as poly I:C (Abreu et al., 1979). 

Priming enhances the production of IFN over induction alone. The current 

theory is that IFN, in low priming concentrations, stimulates the production of 

transcription initiation factors. It is interesting to note that poly I:C induction of 

an IFN response varies from cell line to cell line. This suggests that these 

factors may be limiting in some cell lines which are semiresistant to induction. 

This theory is supported by the finding that priming is ineffectual in cells where 

protein synthesis is inhibited (Fujita et al., 1981). Thus, priming appears to 

stimulate the translation of a novel gene product necessary for enhanced IFN 

gene transcription. 

Fujita et al. (1981) investigated priming in L-cells. He La cells are an 

example of a poorly inducible cell line. Pre-treatment of He La cells with (3 -IFN 

and the subsequent induction with poly I:C yielded a two-fold greater IFN 

response over cells which were only treated with poly I:C. Enoch et al. (1986) 

felt that these results indicated that a trans-acting factor was involved and was 
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induced by IFN itself. It was possible that this factor was limiting in those cell 

lines which were poorly inducible. Dron et al. (1990) demonstrated that 

treatment of He La cells with hu-a-IFN prior to induction with poly I:C yielded 

an 8- to 100-fold increase in (3 -IFN mRNA. Dron et al. investigated 

chloramphenicol acetyltransferase (CAT) activity in HeLa cells transfected 

with a plasmid containing the CAT gene. This CAT gene was under the 

control of a p-IFN promoter. The promoter corresponded to a fragment 

spanning positions -91 to -62 with respect to the IFN trancription initiation site. 

Plasmids were constructed with the promoter and CAT gene in the correct and 

the opposite orientations. IFN priming of these transfected HeLa cells yielded 

increased levels of CAT activity upon subsequent poly I:C induction with both 

plasmid constructions. The authors also noted that IFN treatment alone 

without any induction had no effect on plasmid constructions containing either 

this 30 by promoter fragment or an entire IFN promoter. 

RECEPTORS 

Interferons elicit their effects on target cells via a receptor ligand 

interaction. The IFN molecule binds with specific receptors on the cell surface 

in a narrow, species-specific manner. Interferon enters cells via receptor-

mediated endocytosis. The signal is relayed to the nucleus where specific 

IFN-inducible genes are then transcribed and these gene products then carry 

out the biological effects of IFN (Aguet, 1980). The signal transmission 

between the cell membrane to the level of transcription initiation is unknown at 

this time. 

Experimental evidence indicates that IFNs must utilize the receptor to 

elicit the appropriate biological response. Higashi and Sokawa (1982) 

microinjected purified IFN directly into the cytoplasm of target cells. They 
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found a total lack of characteristic IFN-induced biological activity after 

intracytoplasmic injection. Riviere et al. (1990) microinjected 20,000 a- and (3

IFN molecules directly into the nucleus of mouse L-cells. Reviere indicated 

that this amount of IFN was sufficient to elicit an antiviral response from cells 

bathed in IFN at this level in culture media. The L-cells were challenged with 

either vesicular stomatitis virus or Semliki Forest virus 3, 6, or 24 h following 

nuclear injection. The results indicated again that there was no antiviral 

activity induced. Thus, IFN added to the cytoplasm or the nucleus could not 

elicit antiviral activity; IFN must use the receptor to generate any characteristic 

activities. 

The presence of receptors for a-, 13-, and y-IFN on the surface of target 

cells was proven as early as 1982 by Joshi et al. To identify the location and 

usage of cell receptors, cross-linking and competition assays were performed. 

Purified human a-, 13-, and y- IFNs were radiolabeled with 1251- methionine. 

Bifunctional cross-linking reagents were used to bind and cross-link 1251 

labeled IFNs to cell surfaces (Gupta et al., 1985). The affinity of binding was 

tested for each IFN type in a competitive binding assay by varying 

concentrations of homologous unlabeled IFNs. Following cross-linking, 

membrane fractions were analyzed by SDS-poly acrylamide gel 

electrophoresis (SDS-PAGE) to determine whether any complexes had 

formed (Joshi et al., 1982; Sarkar and Gupta., 1984; Raziuddin et al., 1984). 

The hu-a-IFN receptor was found to interact with radiolabeled a-IFN to form a 

150 kDa complex. This complex could be immunoprecipitated with anti-a-IFN 

but not by preimmune sera (Gupta et al., 1985). Interestingly, 

nonradioactive hu-a-IFN and hu-13-1FN both blocked the formation of the 

150 kDa complex, while hu- 'y-IFN did not. This finding led investigators to 
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conclude that type 1 IFNs both used the same receptor while type 2 IFN did 

not. Similarly, the binding of 1251 - labeled hu-y-IFN to cell-surface receptors 

led to the formation of a 105 kDa ± 5 kDa complex when analyzed by SDS

PAGE. Complex formation was blocked by nonradioactive hu-y-IFN but not by 

hu-a-IFN or hu -13 -IFN. Thus, it appeared that hu-y-IFN bound to a unique 

receptor. 

Evidence has accumulated for human chromosome 21 as the carrier of 

the IFN-a/A receptor gene(s). Mouse/human hybrid cells were created with 

three copies of human chromosome 21 (Gupta et al., 1985). These cells, 

WA17 cells, when treated with 1251-labeled hu-a-IFN formed the 150 kDa 

complex previously described; the A9 parental mouse cells did not. 

Mouse/human hybrid cell lines containing chromosomes other than #21 also 

did not form this complex. 

Uze et al. (1990) cloned and sequenced the cDNA for the human a-IFN 

receptor. This sequence was compared with the previously published human 

y-IFN receptor sequence (Aguet et al., 1988) and was found to contain no 

sequence similarities. Bazan (1990) noted that there were evolutionary 

similarities between these receptors in their secondary structure. Type 1 

receptors possess binding domains thought to possess two regions with 

preferential affinity for either the a-IFN or p-IFN so that the receptor can 

accomodate both type 1 IFNs. Arnheiter et al. (1983) demonstrated that the 

amino-terminus of a2-IFN contained the ligand for the membrane bound IFN 

receptor. Epitopes for receptor binding were mapped to common N-terminal 

regions in both a- and (3 -IFN and y-IFN (Bazan, 1990). Type 1 and 2 receptors 

appear to share regions whose three dimensional structures were 

rich in A-turns. The current theory is that, although there is no evidence that 
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a/13-IFN can compete for binding to y-IFN receptors and vice-versa, there are 

similar regions of antiparallel helical bundles in these conserved N-terminal 

ends which could bind to similarly shaped receptors (Bazan, 1990). 

ANTIVIRAL ACTIVITIES INDUCED BY INTERFERON 

Interferons typically elicit a variety of responses from the same cell. A 

"fingerprint" of a specific IFN includes the ratio of antiviral to antiproliferative 

activities induced by the IFN. This has been one descriptive way to separate 

IFN species. 

Antiviral effects of IFNs vary. The mode of action generally involves 

either inhibition of viral protein synthesis or degradation of viral RNA. 

Inhibition of protein synthesis is cytotoxic and may result in the sacrifice of the 

infected cell. Inhibition of viral mRNA or intermediate dsRNA is less toxic to 

the host cell, but creates a condition where immature virus particles could 

establish persistence (Joklik, 1990). 

The nature of the infecting virus ultimately directs the outcome of that 

infection. Two of the factors involved in the success of the viral infection 

include nucleic acid type and multiplicity of infection. RNA viruses are 

classically good inducers of IFN while DNA viruses, with the exception of 

vaccinia virus, are relatively poor inducers of IFN. Joklik (1990) described 

some of his early vaccinia work from 1966. In this work, the investigator 

described the outcome of vaccinia virus-nfected L-cells following IFN 

treatment. L-cells, not pretreated with IFN (unprimed), demonstrated a marked 

and rapid dissociation of the host message from resident ribosomes. The 

virus mRNA was then able to form viral polyribosomes and direct the 

production of virus-encoded proteins. The investigators postulated that 

priming of these cells with IFN prior to vaccinia infection caused a different 
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biological response. The host polyribosomes still rapidly disaggregated from 

host mRNA; however, the vaccinia virus nascent message was unable to form 

viral polyribosomes resulting in an inhibition of vaccinia protein production 

and ultimately, viral replication. In this case, viral message was produced but 

translation was impeded. The host cell generally died due to the universal 

inhibition of protein synthesis and viral dissemination was curtailed. The 

phenomenon was also described for VSV (rhabdovirus) and influenza virus 

(myxovirus) by Repik et al. (1974), reovirus (Wiebe and Joklik, 1975), and 

SV40 (papovavirus; Jakobson et al., 1977). 

The following three inducible antiviral mechanisms are the best 

described activities of IFN in the literature. They are: 1) a specific inducible 

protein kinase, 2) 2,5-oligoadenylate synthetase, which is linked to the 

activation of a latent ribonuclease RNase L, and 3) the Mx protein, which is 

effective against influenza virus. 

Protein Kinase Induction 

Kerr et al. (1974) first observed that dsRNA inhibited protein synthesis. 

This inhibition was brought about by a dsRNA and/or IFN inducible protein 

kinase (Hovanessian et al., 1986). The protein kinase, DA1, possessed two 

distinct kinase activities. It was found to be responsible for the endogenous 

phosphorylation of a 67 kDa protein subunit of the kinase itself and it 

phosphorylated the small a-subunit of elongation initiation factor elF-2. The 

67 kDa subunit was activated by phosphorylation and was thought to exist in a 

latent nonphosphorylated form. The phosphorylation of elF-2 effectively 

inhibited the protein synthetic activities attributed to the initiation factor. The 

concentration of this protein kinase increased 20-fold in IFN- treated cells. 

Since the phosphorylation of eIF -2 halted all protein synthesis, the host as 



17 

well as the virus was affected. 

Vaccinia virus has been shown to be capable of escaping the effects of 

IFN by inhibiting DA1 (Younger and Whitaker-Dowling, 1985). The structure 

of the factor responsible for the inhibition of DA1 has not been determined, but 

is known as a specific kinase inhibitory factor. The vaccinia-induced kinase 

inhibitor can rescue other viruses. When IFN primed cells were coinfected 

with vaccinia and VSV, VSV was able to replicate and cause cytopathic 

effects (CPE). This has also been shown for co-infection of vaccinia virus with 

picornaviruses and herpes simplex virus. Influenza, like vaccinia, is also able 

to avoid antiviral inactivation by DA1 by a method not yet determined. 

The 2.5-01igoadenylate/RNase L System 

Ribonuclease activity is another inducible mechanism of IFN action. 

The pathway known as 2,5-oligoadenylate synthetase/RNase L is dependent 

on dsRNA for its activity. 

Research by Kerr et al. (1978) identified an IFN-inducible enzyme 

oligoadenylate synthetase. They also isolated heat stable oligonucleotides 

with unique 2' to 5' phosphodiester linkages that were derived from the 

reaction: (n + 1) ATP + synthetase > (2'-5') pppA(pA)n + n-pyrophosphate 

where n ranged from 1-15. This product was referred to as 2,5-(A)n. 

The formation of small 2,5-(A)n oligomers led to the activation of 

another enzyme, RNase L (latent), also known as RNase DS because of its 

dsRNA degradation capabilities (Meegan and Marcus, 1989). Ribosomal 

RNA is known to be a casualty in the degradative path of RNase L. It binds 

reversibly to the 2,5-(A)n to make an RNase U2,5-(A)n complex. The RNase L 

recognizes 5'ppp and free 2'-OH groups at the terminus of its target and, if the 

substrate is not (A)16 or greater, then the ribonuclease is no longer active. 
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Naturally occurring dsRNA is found during the replication of (+) single-strand 

RNA viruses such as the picornaviruses (Chebath et al., 1987), togaviruses, 

coronaviruses, and caliciviruses. Double-strand RNA viruses include 

reoviruses and birnaviruses. These may be the most likely targets for this kind 

of antiviral activity (Joklik, 1990). There is speculation that other viruses 

sensitive to IFN, such as the DNA virus vaccinia, may contain a transient 

double-stranded RNA phase which has not yet been described. It has been 

found that two viruses, encephalomyocarditis virus (a picornavirus) and 

herpes simplex virus, are able to inhibit RNase L (Joklik, 1990). In He La cells, 

a-IFN will induce the synthetase but 13-IFN will not. Even though these IFNs 

share the same receptor, they do not necessarily induce the same antiviral 

response. 

Mx Gene Product 

A third inducible antiviral substance is known as the Mx gene product. 

In 1962, Lindemann described a unique protein induced by type 1 IFNs but 

not type 2, which could selectively inhibit influenza virus replication. The Mx 

gene was first described in the mouse. Horesberger et al. (1983) carried out 

experiments on the genetics of Mx activity in mice. The Mx gene was found to 

encode a product which provided a natural mode of early protection against 

influenza virus in response to IFN. Mice from the strain A2G are homozygous 

Mx/Mx and able to withstand a lethal infection of influenza virus. These mice 

were crossed with BALB/c mice which lack both Mx alleles and are highly 

sensitive to influenza infection. Each crossed generation was tested for its 

sensitivity to influenza infection. The survivors of influenza infection were 

backcrossed again and again. Congenic embryo cells from 11th generation 

backcross males were tested for their sensitivity to IFN. The cells from the 
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backcrossed population were able to withstand influenza infection. The 

investigators were able to determine that a unique 72.5 kDa protein was 

produced in the backcrossed cells that was not found in the original BALB/c 

cells. The maximal production of this protein occurred at 4 h following the 

exposure to IFN. Actinomycin D was able to totally block the production of the 

unique protein, indicating the necessity for mRNA synthesis. 

The 72.5 kDa mouse protein product is nucleophilic, accumulating in 

the nucleus of cells activated by virus infection or induction with dsRNA. The 

Mx gene product is capable of inhibiting both influenza A and B. When 

antibodies to the mouse Mx gene product were microinjected into mouse 

cells, the treated cells were unable to mount an anti-influenza state. Thus, the 

Mx gene product was responsible for the antiviral activities against influenza. 

Staeheli and Haller (1985) described the characterization of a human 

Mx counterpart. This gene product possessed antigenic characteristics similar 

to mouse Mx. The human Mx counterpart appeared to function within the 

cytoplasm, unlike the murine Mx. This protein also cross-reacted with mouse 

Mx antisera and could be purified by affinity chromatography. The human 

protein had a molecular weight of 78 kDa, similar in size to the mouse Mx 

protein. Yet, the human Mx protein did not confer an anti-influenza state to 

IFN-induced cells. Anti-Mx monoclonal antibodies, microinjected into human 

cells (Weitz et al., 1988), did not alter the cells' susceptibility to influenza 

infection. Therefore, the human Mx gene product did not appear to play a 

large role in protecting human cells against influenza infection. 

The gene loci in mice had been shown to consist of two genes, Mx1 

and Mx2. Mx1 was 90% homologous to Mx2 in the 5' region. However, the 

Mx2, found in BALB/c and CBA laboratory mice, contained many mutations 
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and no message was found upon induction (Staeheli and Sutcliffe, 1988). 

The specific antiviral activity attributable to Mx has not yet been 

established. All Mx sequences examined to date contained three consensus 

GTP binding sequences identified by sequence alignments (Horesberger et 

al., 1990). Future studies include testing this product for binding to 

nucleotides or nucleic acid. 

It is important to point out that there are still many unanswered 

questions regarding all the antiviral proteins examined which are inducible by 

IFN. All proteins mentioned have demonstrated biological activity that will 

vary by cell type, infecting virus, and inducer. Not all of the mechanisms of 

their actions have been uncovered. In some cases, the protein kinase or the 

synthetase will be present but not elicit an antiviral response. There clearly 

are more signals to the IFN-inducible system yet to be elucidated. 

BETA INTERFERON GENE STRUCTURE 

Beta IFNs were long thought to be represented by a single gene moiety 

in all systems investigated (Pestka et al., 1987). In 1984, Sehgal and May 

isolated 22 independent clones of a p-IFN from a human lambda library and 

mapped two of these: lambda B3, to human chromosome 2 and lambda B4, 

to human chromosome 4. Subsequent studies have suggested that there 

were "at least" 2 and possibly as many as 5 p-IFN genes. The human-pi-IFN 

has been located on chromosome 9 (Owerbach et al., 1981) and the human 

N-IFN has been located on chromosome 7 (Sehgal et al., 1986). 

Interferons are created as pre-proteins with an N-terminal signal 

peptide, for secretion. The signal peptide is subsequently cleaved to produce 

a mature IFN molecule. All IFNs, both type 1 and type 2, possess this signal 
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sequence which is approximately 20 to 23 amino acids in length (for review 

see Joklik,1990). 

Human [31-IFN is an intronless gene in all systems described to date, 

encoding a 166 amino acid gene product with a 21 amino acid signal 

sequence, as depicted in Figure 1. The 132-IFN gene is unusual, as a type 1 

IFN, in that it is comprised of 4 exons. The gene product contains a signal 

sequence of 28 amino acids and is 184 amino acids in length following 

cleavage (Sehgal et al., 1987). 

The DNA encoding the 132-IFN gene did not cross-hybridize with r31-IFN 

nucleic acid. Interestingly, polyclonal and monoclonal antibodies to 131-IFN 

neutralize the antiviral effects of 132-IFN (Zilberstein et al., 1987). 132-IFN was 

described as a translationally active IFN when programmed into Xenopus 

laevis oocytes. The mRNA of 132-IFN differs from 131 -IFN RNA by 400 nt. 

Cytokines affecting cell proliferation such as platelet-derived growth factor 

(PDGF), IL-1 and j3 -IFN all increase the expression of 132-IFN in human 

fibroblasts (Sehgal and May, 1986). Beta-2 IFN is inducible by tumor necrosis 

factor (TNF) and appears to mediate the antiviral and mitogenic activities of 

TNF in fibroblasts. 

These interactions and functions were dissected by the use of 

antibodies to 132-IFN. The 132-IFN protein is also known as interleukin-6 (IL-6) 

(Ray et al., 1988). 

Type 1 IFNs possess internal sequence duplications suggesting that 

they evolved via a gene duplication from a smaller related gene. Peter 

Sellers (1980) of Rockefeller University, developed a metric analysis 
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Figure 1. An example of 13-IFN gene structure. Human f31-IFN possesses 

a 21 amino acid signal sequence on the amino terminus of the 166 

amino acid protein. 
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algorithm for comparing the relatedness of two nucleotide sequences. The 

analysis led to the recognition of a number of internal patterns including 

inverted repeats, direct repeats, and palindromes (Erickson et al., 1984). 

Figure 2 shows the 5' amino acid positions which are duplicated in the same 

positions within the 3' half of the gene, demonstrating redundancy. Using 

metric analysis, Sehgal and May (1984) were able to show that human 131-IFN 

possessed two major repeats of approximately 300 by and the repeats 

possessed 45% similarity at the nucleotide level. The investigators also found 

that human a-IFN demonstrated a similar internal duplication of approximately 

300 by with 45% similarity at the nucleotide level. In addition, the results of 

metric analysis of human a- and j3-IFNs demonstrated that they shared 56% 

nucleotide homology with each other. Murine a- and 0-IFNs also contained 

large internal duplications. Further metric analysis revealed that each 

duplicated segment itself contained smaller 80 by duplications (Erickson et 

al., 1984). In 1983, May et al. reported that a poly I:C induced message of 

approximately 350 nucleotides (nt) from human fibroblasts was sufficient to 

encode a biologically active IFN when injected into Xenopus Iaevis oocytes. 

A thermolysin cleavage product of a2-IFN corresponding to the amino-

terminal 110 amino acids, or 330 bp, was also found to be biologically active 

(Ackerman et al., 1984). This supports the fact that the gene appears to be 

redundant. Investigators have not yet determined whether the carboxy 

terminus half of the IFN gene is biologically active. With such striking 

duplications and the relatedness between a-IFN and 13-IFN, Sehgal and May 

stated that it was no wonder that they shared the same cell surface receptor 

(see RECEPTORS section). 



25 

Human 13-IFN was first cloned in 1979 by Taniguchi et al. The kinetics 

of IFN production had to be determined before the initial isolation of the IFN 

gene could be carried out . Human fibroblasts were induced by dsRNA to 

produce IFN mRNA and the RNA produced was characterized for its capacity 

to produce an antiviral substance when microinjected into Xenopus laevis 

oocytes. The information gained from this experiment allowed the 

researchers to select the appropriate time post-induction for mRNA isolation. 

The mRNA was selected from total RNA by chromatography on oligo-dT 

affinity columns. The mRNA was then reverse transcribed into cDNA and 

cloned. 

A model for 131-IFN gene organization and control has been developed 

(Zinn and Maniatis, 1986). The IFN gene regulatory element (IRE), a region 5' 

to the transcription initiation site, appears to be under the control of two 

repressor molecules (Goodbourne et al., 1985). Gene transcription required 

the removal of these repressors, each of which bound to separate sites in the 

IRE. One site at -167 to -94 was thought to be a negative control sequence as 

the deletion of this region improved expression by 10-fold. One of the 

repressor molecules appeared to bind here. A second site was located 

between -68 to -38 which, in itself could be divided into two sections; the 5' 

half appeared to have enhancer capabilities while the 3' half appeared to 

contain an element for the second repressor molecule, which negatively 

controlled the enhancer (Goodbourne et al., 1986). During induction a 

transcription factor bound to the enhancer, the repressor molecules 

dissociated, and transcription began (Goodbourne et al., 1985; Keller and 

Maniatis, 1988). Investigators have found that the molecular control elements 
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Figure 2. Single-letter amino acid code for the amino terminus of human pi-

IFN including the 21 amino acid signal sequence. The bold/underlined letters 

represent amino acid positions which are duplicated in the same positions 

within the 3' half of the gene demonstrating redundancy. 
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5'-MTNKCLLQIALLLCFSTTALSMSYN 
LLGFLQRSSNFQCQKLLWQLNGRLE 
YCLKDRMNFDIPEEIKQLQQFQKEDA 
ALTIYEMLQN 

Figure 2. 



28 

appear to vary in different cell lines. Dinter and Hauser (1987) found that, in 

mouse L-cells, 111 nt were required upstream from the transcription initiation 

site, while Goodbourne et al. (1988) found that 77 nt were required upstream 

for full transcription. Goodbourne et al. also described the enhancer and 

second negative regulatory domain. The current model describes a 5' IRE 

which contains two positive regulatory domains and one negative regulatory 

domain. These areas are called PRD1, PRD2, and NRD1, respectively 

(Lenardo et al., 1989; see Figure 3). 

Activation of the 31 -IFN gene is dependent on a trans-acting factor, 

which is itself IFN inducible (Enoch et al. 1986). In certain cell lines induction 

of IFN activity is poor. He La cells induced with poly I:C or virus were found to 

be very inefficient in their ability to mount an antiviral response (Enoch et al., 

1986). However, if they primed these cells with IFN in the presence of 

cycloheximide, they found a 200-fold increase in antiviral activity. 

Cycloheximide is a potent inhibitor of protein synthesis and presumably acts 

by stabilizing the 131-IFN mRNA which leads to superinduction. Protein 

synthesis is not required to induce IFN mRNA (Ray and Pitha, 1983). 

Therefore, this trans-acting substance is only produced in low levels in 

unprimed He La cells and requires priming in order to be expressed. 

PRD2 has been shown to bind a nuclear factor, PRD2-BF. Sequence 

analysis of the factor PRD2-BF demonstrates conservation with the 

mammalian transcription factor NF-kB. Sequence analysis of PRD2 revealed 

a strong conservation with NF-kB binding sites within the MHC class I H-2K 

gene and the Ig k enhancer (Lenardo et al., 1989). In fact, in vitro, experiments 

revealed that NF-kB bound PRD2 (Lenardo et al., 1989). Lenardo et al. 

speculated that PRD2 was also an enhancer site. NF-kB has been 
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Figure 3. The nucleotide sequence of the 5' upstream regulatory elements 

affecting 0-IFN induction are shown here. The elements include the IRE (IFN 

gene regulatory element), PRD1 (positive regulatory domain 1), PRD2 

(positive regulatory domain 2), and NRD1 ( Negative regulatory domain 1). 

The highlighted sequences bind the trans-acting factor NF -x(3. 
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PRD 2

PRD 1 NRD 111____r_ 
I 

GAGAAGTGAAAGTGOGAAATTCCTCTGAATAGAGAGAGGAC 
-77 -66 4 -55 -37 

NF-K13 binding site 

IRE 

Figure 3. 
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described as a trans-acting factor which is independent of new protein 

synthesis (Lenardo and Baltimore, 1989). What is required for its activation is 

a removal of an inhibitory factor which then allows the factor to pass from the 

cytosol to the nucleus to effect its trans-acting functions. Experiments with 

cytoplasmic extracts treated with dissociating chemicals such as deoxycholate 

yielded high NF-kB activity. This result demonstrated the presence of a 

binding inhibitory factor. Treatment of cells with phorbol esters stimulated the 

production of protein kinase-C (PKC). Investigators were able to determine 

that PKC leads to the dissociation of NF-kB from the cytoplasmic inhibitor by 

phosphorylating the inhibitor and allowing the subsequent migration of NF-kB 

to the nucleus as a signal transducer (Ghosh and Baltimore, 1990). 

EVOLUTION OF BETA-INTERFERON GENES 

In 1961, Clem et al. described the possibility that primitive 

poikilothermic vertebrates had developed the capacity to produce IFN and that 

this mechanism must have evolved early as a nonspecific defense. 

Human a- and 13-IFN possess 45% similarity at the nucleotide level. 

The amount of divergence of a-IFN nucleotide sequences from 13-IFN 

sequences led some investigators to believe that type 1 IFNs emerged from a 

common proto-a/13 IFN ancestral gene. The proto-a!(3 IFN was in turn thought 

to have arisen from a short 300 by duplication to yield the -600 by full length 

coding region. This divergence was thought to have occurred approximately 

300 million to 400 million years ago (Pestka et al., 1987; Wilson et al., 1983). 

This was also roughly the predicted timeline for divergence of mammals from 

reptiles, birds, fish, and amphibia (Henco et al., 1985). Pestka et al. (1987 ) 

felt that fish diverged with only the one type, [3-IFN , and this hypothesis was 

supported by Wilson et al. (1983) (see FISH INTERFERON BACKGROUND 
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section), who showed that a hu-p-IFN gene probe would hybridize very 

weakly in Southern blots to the DNA derived from perch (Perca fluviatilis), 

minnow (Phoxinus phoxinus), dace (Leuciscus, leuciscus) and stone loach 

(Noemacheilus barbatulus). A hu-a-IFN gene probe did not show similar 

hybridization. 

Wilson et al. (1983) examined the DNA of a wide variety of animals for 

the presence of p-IFN-like sequences with a hu-p-IFN derived probe. Most 

mammalian species possessed only one or two hybridizing fragments 

corresponding to p-IFN. However, an anomalous hybridization pattern was 

noted in ungulates; the blackbuck (Anti lope cervicapra) and the cow (Bos, 

taurus). The DNA from these animals were found to contain 9 to 11 

hybridizing fragments which indicated that ungulates contained a multigene 

family of p-IFN genes. The finding suggested that the PIFN gene was 

duplicated specifically in the ungulates following their divergence from other 

mammals somewhere between 85 and 20 million years ago. Similarly, Leung 

et al. (1984) described multiple hybridizing bands in a Southern blot 

containing endonuclease restricted equine and porcine genomic DNA, 

indicating that these species also contained a multigene 3 -IFN family. 

FISH INTERFERON BACKGROUND 

in vitro production of an IFN-like substance was demonstrated as early 

as 1965 by Gravel! and Malsberger, in fathead minnow cell culture (FHM) 

(Pimephalas promelas). The investigators examined the temperature 

dependent production of an antiviral substance secreted into the supernatant 

by cells infected with infectious pancreatic necrosis virus (IPNV), a fish 

birnavirus. The antiviral substance was secreted at 23°C but not at 34°C. 

This substance could withstand 37°C for 2 h in the test tube and still yield 
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an antiviral effect on homologous cell cultures. Antiviral activity, thought to be 

IFN, was measured by a plaque reduction assay where units of IFN activity 

were described as the inverse of the dilution of sera where 50% of input virus 

was inhibited, i.e. plaque reduction (Wagner, 1961). 

Watson et al. (1954) observed a decrease in infectious hematopoietic 

necrosis virus (IHNV)-induced mortality in sockeye salmon (Oncorhynchus 

nerka) when the fish were reared at 20°C rather than 15.5°C. Infectious 

hematopoietic necrosis virus (IHNV) is a fish rhabdovirus. Amend (1970) 

examined the control of IHNV by temperature fluctuation. Amend held 

sockeye salmon at 12°C and segregated experimental groups at 16, 18, and 

20°C to determine what temperature yielded the best anti-IHNV activity (the 

least mortality). At 18 and 20°C, the fish in these groups exhibited a mortality 

of less than 10% while 12 or 16°C experimental fish groups were killed by 

IHNV up to 100%. Timing was critical as an increase in temperature was most 

useful within 24 h of the initiation of an IHNV outbreak, while the delay of 

temperature treatment by one week increased the average mortality to nearly 

50%. Amend stated that the reason for the decreased mortality was not 

known. IHNV was known to be viable at 28°C, so heat sensitivity was not 

thought to be the cause of decreased pathogenicity. The investigator also felt 

that the biological response was not immune; i.e. the antiviral activity was 

seen too rapidly to be a humoral response, and infection was restored rapidly 

when the temperature was returned to 15.5°C. They postulated, in 

conjunction with the Grave II and Malsberger (1965) findings, that the fish were 

producing an IFN-like substance. Sixteen months following the initial heat 

treatment, Amend was unable to reculture any IHNV isolates from the 18 and 

20°C treated fish populations; however, some of the fish developed scoliosis 
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pathognemonic for IHNV survival). 

De Kinkelin and Dorson (1973) described the same temperature 

related phenomenon in rainbow trout infected with viral hemorhaggic 

septicemia (VHS/Egtved virus), another fish rhabdovirus. The investigators 

noted a decrease in virus-induced mortality when the temperature was 

elevated from 12°C to 15°C. VHS grows well at 15°C in vitro, so IFN was 

again suspected as the antiviral substance responsible for the temperature 

dependent antiviral activity seen. 

Coho salmon (Oncorhynchus kisutch) have been shown to be relatively 

resistant to IHNV infection while rainbow trout are extremely susceptible. 

Busch et al. (1985) demonstrated that rainbow trout x coho triploid hybrid 

crosses gained significant resistance to IHNV. IHNV induced mortality 

dropped by 74.2% from normal diploid rainbow trout controls. It will be of 

interest in their future experiments to determine whether coho contain extra 

copies of IFN or possess biological activities missing in other salmonids. 

Fish have been shown to possess Mx-related sequences in their 

genome (Staeheli et al., 1989). The fish species examined were perch (Perca 

fluviatilis) and rainbow trout (Oncorhynchus mykiss). Genomic DNA was 

cloned and the subsequent recombinant library was probed with an Mx DNA 

probe. Sequence analysis of positive clones revealed a 60 to 84% similarity 

at the nucleotide level when comparing exons from fish to exons in mouse. 

Intron sequences demonstrated little or no similarity between fish and mouse. 

Northern analysis revealed that following 18 h of poly I:C induction, two novel 

fish RNA species of 2.5 and 2.0 kbp, hybridizing to the Mx probe, emerged. 

These species were not seen in the uninduced control fish. Myxoviruses have 

been isolated from fish (Winton et al., 1985). The presence of an inducible 



35 

Mx-like gene product with similar kinetics of induction to the mouse Mx gene 

product suggests that the Mx protein may play an antiviral role in fish. 

Persistence in Fish 

In 1961 Clem et al. described the emergence of what was termed the 

grunt fin agent in cultured grunt fin cells, Haemulon sciurus. This agent 

caused CPE in these cells following the 65th passage, which is more than a 

year after cell line initiation. It was postulated that the cultured grunt fin cells 

harbored an agent in a latent or subclinically persistent state. Beasley et al. 

(1966) felt that this persistent carrier state was mediated by endogenous IFN. 

In fact the supernatant fluids from carrier cells, when applied to grunt fin cells, 

effectively inhibited CPE and virus replication of IPNV. Oie and Loh (1971) 

also described IFN production in marine cell culture with similar results. Oie 

and Loh examined FHM cells infected with fish reovirus type 2 and 

demonstrated the presence of an antiviral substance, confirming Grave II and 

Malsbergers findings (1965) that antiviral activity was not solely due to 

temperature fluctuations. 

Sigel (1966) described some of the IFN-like properties demonstrated 

by this substance: 

1. the retention of antiviral activity in the supernatant after 

centrifugation at 100,000 g, 

2. thermostability following 30 min at 37°C, 

3. resistance to pH 2.0 , and 

4. species specificity, working only on homologous GF cells 

and not on heterologous cells from other species of fish. 
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Hedrick and Fryer (1981) examined persistent IPNV infection of three 

salmonid cell lines. They established persistent virus-shedding cell lines with 

a concomitant lack of CPE in chinook salmon embryo cells (CHSE-214), 

steelhead trout embryo cells (STE-137), and rainbow trout cells (RTG-2). 

Apparent IFN-like activity was undetectable in the culture fluids of both the 

CHSE-214 and STE-137 cells while the RTG-2 cells contained an antiviral 

substance thought to be IFN. 

In vivo experiments were performed to determine the duration of 

production of the antiviral substance in fish serum. Rainbow trout were 

injected with VHS by de Kinkelin and Dorson (1973). 5 x 106 plaque forming 

units (PFU) of VHS were injected intraperitoneally into -80 g rainbow trout. At 

three, nine, and fourteen days following the initial injection, fish were bled and 

their serum tested for antiviral activity. Sera was heated initially to 37°C for 2 

h to inactivate any virus. RTG-2 cells were then overlaid with fish serum in 

normal growth media from 1:50 to 1:20,000 dilutions for 16 h. The cells were 

then washed with Tris-buffered saline and subsequently challenged with 100 

PFU of IPNV and observed for CPE. The IFN units were determined by 

plaque reduction assay as described above. Serum collected on day three 

was determined to contain the most potent antiviral activity while day 14 

serum IFN activity approached zero. Serum from five trout bled on day three 

post-infection demonstrated IFN titers ranging from 100 to 2750 IFN units/ml 

and controls contained no detectable antiviral activity. The extreme variability 

of IFN units, from one trout to another, was thought to be due to genetic 

heterogeneity (de Kinkelin and Dorson, 1973). 

Biochemical and biophysical properties of fish IFN were determined 

from pooled sera from day three bleedings. The results are listed below: 
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1. broad antiviral activity (RTG-2 cells were protected from 

IPNV and IHNV), 

2. species specificity (15x more effective on RTG-2 cells 

than FHM cells), 

3. no loss of activity after sedimentation at 100,000 x g for 3 h, 

4. thermostable following 30 min at 56°C, 

5. stable at pH 2, and 

6. trypsin-labile and RNase-resistant. 

By 1975, investigators were attempting to partially purify and 

characterize an RTG-2 cell-derived IFN-like substance. De Sena and Rio 

(1975) described properties shared by this rainbow trout IFN-like substance 

and higher animals. The partial purification scheme began with tissue culture 

supernatants collected from IPNV-induced RTG-2 cells. The supernatant was 

clarified at 70 000 x g for 2 h following an acidification step to pH 2 for 48 h. 

The supernatant was then further purified by gel chromatography on 

Sephadex G-150. Fractions were tested for IFN activity by the neutral red dye 

uptake method of Finter (1969). Positive fractions were pooled and then 

placed on a CM-Sephadex (C-50) column. These fractions were then tested 

for IFN activity by plaque reduction. The final partially purified substance was 

found to be: 

1. heat stable at 40 and 56°C 30 min, 

2. stable to pH. 2, 

3. exhibited species specificity; more active in RTG-2 cells than 

SJU-1 cells (Goldfish cell line), 

4. sensitive to trypsin treatment and resistant to ribonuclease 

and deoxyribonuclease activity, and 
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5. non-specific antiviral activity, effective against both IPNV and 

IHNV. 

The investigators determined that the antiviral substance possessed a 

molecular weight of 94 kDa. 

Further physicochemical characteristics of rainbow trout IFN from live 

fish were elucidated by Dorson et al. (1975). Protocols for partial purification 

were similar to De Sena and Rio (1975). Dorson et al. determined that the 

rainbow trout IFN protein existed as a 26 kDa polypeptide with a 

sedimentation constant of 2.3S. They have reported that these values fall 

within normal values for IFNs of higher mammals. There is a discrepancy 

between the molecular weight determinations of De Sena and Rio and 

Dorson et al. and may be a reflection of the different purification schemes. 

Interferons with differing molecular weights were being described in the 

late 1960's and early 1970's. These species were found to be of two general 

sizes, those weighing approximately 100 kDa and those falling in the range 

between 20 and 40 kDa. It was later determined that under dissociating salt 

conditions, the high molecular weight species would disaggregate into the 

smaller forms which were biologically active, thus indicating the presence of 

high molecular weight multimeric forms of the smaller species (Stringfellow, 

1980). This may explain the observed disparity in molecular weight found by 

the early fish IFN investigators using similar purification schemes. 

MOLECULAR ANALYSIS OF FISH INTERFERONS 

Some preliminary molecular information on fish IFN has been available 

since 1983. Wilson et al. (1983) carried out a hybridization "survey" of 

vertebrate IFN gene families using human a- and 13-IFN DNA as the 

heterologous probe. They concluded that perch (Perca fluviatillis), minnow, 
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(Phoxinus phoxinus), dace (Leuciscus leuciscus) and stone loach 

(Neomacheilus barbatulus) all possessed weakly hybridizing genomic 

sequences under low stringency conditions: 3x SSC, 60°C for hybridization 

and 3x SSC for subsequent washing (0.45 M NaCI, 0.075 M NaCitrate). The 

faintly hybridizing genomic fragment was approximately a 3.5 kbp EcoR1 

digestion product. Wilson et al. (1983) postulated that the bony fishes may 

possess only one IFN-like gene of the a/I3 type, due to the hybridization 

frequency. The resulting bands were very difficult to see. It appears difficult 

to draw any conclusions on the size of the gene family from this paper. 

Dehlin et al. (1987) described the discovery of an IFN-like gene from 

zebrafish. The investigators were able to isolate three positive 

plaques/600,000 plaques from a zebrafish genomic library by screening with 

the coding regions of both the human a-IFN and 0-IFN. The frequency of 

hybridization in this case again reflects the possibility of a single copy gene. 

The information, in abstract form, did not include any sequence or other 

molecular information on this gene. No other molecular information has been 

published to date on salmonid IFN. 

REPETITIVE ELEMENTS 

A large number of nonfunctional genes and repetitive elements are 

found within mammalian genomes. They are thought to arise in two ways; by 

recombination where the duplicated gene acquires defects generating 

pseudogenes, or by retroposition where a cDNA copy of RNA is dispersed 

within the genome (Rogers, 1985; Weiner et al., 1986). Reverse transcription 

has been established in such diverse groups as humans, insects, and yeast 

(Baltimore, 1985) and may represent a hallmark of genetic reorganization and 

pseudogene genesis. Some of these elements appear to have arisen from a 
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reverse transcription event in that they appear more like a cDNA than DNA, 

lacking introns. These retroposition events give rise to retroposons, including 

retropseudogenes and short and long interspersed repetitive elements which 

can be present in as many as 500,000 copies per genome (Brosius, 1991). A 

number of examples of transcribed retroposons have been summarized in the 

review by Brosius (1991) and include an insulin type 1 gene in mice, pyruvate 

dehydrogenase E1a subunit gene in mice and humans and N-myc2 

oncogene in woodchucks. 

Retrotransposons are nonretroviral transposed elements found to share 

homology with retroviruses (Baltimore, 1985). They are loosely characterized 

by their poly A 3' tracts, lack of introns, polymerase-like sequences and repeat 

elements. These retroposons are organized like retroviruses and their 

presence within genomes indicates the act of nonretroviral or retroviral 

assisted reverse transcription and integration. 

One of the most common types of retroposons are the long 

interspersed elements known as Line-1 (L1) elements or LINES. L1 elements 

are an average of 6 kbp long, but 5' truncated versions are common, with the 

3' poly A tract and repeat short flanking repeats the most frequently found 

forms (Rogers, 1986). Complete L1 elements contain two open reading 

frames whose primary sequence can vary depending on the amount of point 

mutations and frame shifts found in them. In general, these open reading 

frames resemble gag-pol retroviral sequences and organization (Loeb et al., 

1986). 

Historically, retroposons have been viewed as garbage littering the 

genome with worthless information. However, researchers are beginning to 

believe that retroposons may actually play a role in the evolutionary process. 
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This is especially true if they insert regulatory elements upstream altering the 

expression of the resident genes or are transcriptionally active themselves 

(Brosius, 1991). 
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ABSTRACT 

The induction and assay of fish IFN was carried out with several 

salmonid fish cell lines. Cells were treated with poly l:C and the subsequent 

induction of IFN activity in vitro, was measured. Four IHNV isolates from 

different fish species were tested for their sensitivity to the IFN -like activity 

produced by RTG-2 cells. The isolates included Lake Auke (LA) from sockeye 

salmon, Round Butte-1 (RB-1) from steelhead salmon, 039-82 from rainbow 

trout, and Coleman-3 (CO -3) from chinook salmon (Hsu et al., 1986). The 

Lake Auke strain was the most sensitive to the antiviral effects of IFN. The 

viral isolate 039-82 was then tested for its sensitivity to IFN-like activities in 

four fish cell lines: RTG-2, K06, SSE-5 and STE-137. SSE-5 cells were the 

most effective in reducing the titer of the 039-82 strain of IHNV. 
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INTRODUCTION 

Interferon-like activity produced by fish cells has been examined in a 

number of fish cell lines (de Kinkelin and Dorson., 1973; De Sena and Rio, 

1975). The activity is characterized by the induction of resistance in cells to 

viral infection and by its resistance to acid treatment (pH 2.0), resistance to 

deoxyribonuclease and ribonuclease digestion, and sensitivity to trypsin 

digestion. The activity can be induced by exposure to inactivated virus, 

double-stranded RNA or synthetic polyribonucleotide polymers such as poly 

inosinic: poly cytidylic acid (poly I:C) (Trapman, 1979). We have characterized 

the production of this activity in a number of different cell lines and we have 

also determined that there are marked differences in the sensitivity of virus 

isolates to this activity. 

MATERIALS AND METHODS 
Cell lines 

Cell lines from rainbow trout gonad (RTG-2; Oncorhynchus mykiss; Wolf 

and Quimby,1962), kokanee embryo (K06; Oncorhynchus nerka; Lannan et 

al., 1984), sockeye salmon embryo (SSE-5; Oncorhynchus nerka; Nims et al., 

1970), and steelhead trout embryo (STE-137; Oncorhynchus mykiss; Fryer et 

al., 1965) were obtained from J. L. Fryer (Oregon State University, Corvallis, 

Oregon) and tested for IFN-like activity. The cells were plated onto 96-well 

microtiter dishes and allowed to grow until they attained an 80% confluent 

monolayer. All cells were maintained in Minimal Essential Media (MEM) 

containing 5 or 10% fetal calf serum. At the time of treatment with the IFN 

inducer, poly I:C (Boehringer-Mannheim), the media was removed and 

200 pi of poly I:C (6 p.g /ml in MEM-0% FCS) were added to each well. Control 
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cells received MEM-0% FCS alone. After 24 h, the inducer was removed by 

two washes for 5 min each with Tris-buffered saline. Following the 

wash, 100 g.I of infectious hematopoietic necrosis virus (IHNV) in MEM 

containing 5% FCS were added to the cells from a ten-fold dilution series 

which ranged from 10-1 to 10-6. Interferon-like activity was measured by the 

difference in virus titer in control, untreated cells vs. poly I:C treated cells. 

RESULTS 

Differences in the viral induced cytopathic effect (CPE) between poly 

I:C treated and untreated cells is clearly demonstrated in Figure 1.1. In plate A, 

the darkly staining wells indicate cells that have not been destroyed by virus 

infection and the apparent viral titer for the IFN-induced cells was 5.57 x 101 

TCID50 /mI (tissue culture infective dose 50%). In plate B of Figure 1.1, the 

clear wells represent those wells where the monolayer has been destroyed by 

the virus infection and the viral titer for these control cells was 5.57 x 106 

TC1D50 /m1. Thus, a measure of the IFN-like activity was taken as the 

difference (protection) between the log of the virus titers for treated and 

untreated cells, a four log difference in this example. 

Four IHNV isolates from different fish species were tested for their 

sensitivity to the IFN-like activity produced by RTG-2 cells. The isolates 

included Lake Auke (LA) from sockeye salmon, Round Butte-1 (RB1 ) from 

steelhead salmon, 039-82 from rainbow trout, and Coleman-3 (003) from 

chinook salmon (Hsu et al., 1986). The results of these studies are presented 

schematically in Figure 1.2. Each bar represents the mean of three assays 

which compared the viral titer for a particular IHNV isolate in cells treated and 

untreated with poly I:C. The difference is plotted as the mean log difference: 
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Figure 1.1. KO6 cells were challenged with the IHNV strain 039-82. This 

figure illustrates the differences in virus-induced CPE in cells that were treated 

with polyl:C and control untreated cells. A.) poly 1:0, B.) control. 
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A. B. 

Figure 1.1. 



48 

Figure 1.2. Bar graph representing the mean log difference in TCID5O/ml 

results of CPE reduction assays seen in each experimental cell type and IHNV 

isolate combination between control and poly 1:C treated cells. Cell lines and 

virus isolates are: 1.) STE-137/039-82, 2.) SSE-5/039-82, 3.) K06/039-82, 

4.) RTG-2/039-82, 5.) RTG-2/RB1, 6.) RTG-2/CO3, 7.) RTG-2/LA. 
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the larger the number, the more sensitive is the virus to the induced IFN-like 

activity. The LA virus was the most sensitive isolate and a 3.5 log 

difference was found in cells treated with the IFN inducer. Nearly as 

sensitive was the CO3 isolate with a mean log difference of 3. The virus 

isolates RB1 and 039-82 were less sensitive to the induced activity with only a 

2 log reduction in virus titer observed. The titers for each of the isolates were 

1 x 106 TCID50 /ml for LA; 6.85 x 105 TCID50 /ml for RB-1; 5.6 x 105 TCID50 /ml 

for 039-82; and 3.9 x 105 TCID50 /ml for CO3. 

The same viral isolate, 039-82, was then tested for its sensitivity to IFN-

like antiviral activities in the four cell lines. This experiment was designed to 

determine whether there was any variation in the level of IFN-like activity 

induced in the different cell lines. Treated SSE-5 cells were the most effective 

in reducing the titer of 039-82; the mean log difference was 4.5. In the other 

Q. nerka line K06, the mean log difference was also substantial at 3.6. 

However, poly I:C treatment of the Q. mykiss cell lines STE-137 and RTG-2, 

did not result in the same level of protection; there was only a 2.5 and 2 log 

reduction in virus titer, respectively. It is possible that 039-82, which was 

isolated from rainbow trout, has adapted to grow in cells of this species and is 

more resistant to the IFN-like activity produced by these cells. 

DISCUSSION 

An IFN-like activity in four different cell lines has been induced by 

treatment with poly I:C, a potent IFN inducer. We observed differences in the 

sensitivity of a single virus isolate of IHNV, 039-82, to the antiviral activity 

induced in the four cell lines. The results of this study suggest that SSE-5 

cells would be the cell line of choice to study IFN induction with 039-82. There 

was considerable variation in the level of activity that was induced among 
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these cells. RTG-2 cells were then tested for their relative ability to produce 

antiviral activity against four IHNV strains; Lake Auke, Coleman-3, 039-82 and 

Round Butte-1. We determined that the RTG-2 cell IFN-like substance was 

the most effective against the Lake Auke isolate of IHNV. The fish IFN-like 

substance is capable of protecting fish cells against the cytopathic effects of 

IHNV infection. In the future it will be necessary to determine whether the 

antiviral activity is due to the poly I:C or the IFN-like substance. 
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ABSTRACT 

Rainbow trout, coho salmon, and chinook salmon were induced In vivo, 

to produce an IFN-like substance by injection with the IFN inducer, poly I:C. 

The fish cell lines: rainbow trout gonad-2 (RTG-2), coho salmon embryo-119 

(CSE-119), chinook salmon embryo-114 (CHSE-114), and chinook salmon 

embryo-214 (CHSE-214) were examined for their responsiveness to 

exogenously applied induced fish serum. The respnsiveness was determined 

by the presence of antiviral acitivty against the fish rhabdovirus, infectious 

hematopoietic necrosis virus (IHNV). All cell lines, excluding CHSE-214, 

responded to the exogenously applied serum from poly I:C treated fish. The 

cell lines, RTG-2 and CSE-119, were induced by both homologous and 

heterologous serum to develop an antiviral state. The CHSE-214 cells were 

completely non-responsive to exogenously applied serum. In addition CHSE

214 cells, unlike CHSE-214 cells, were unable to produce any detectable 

endogenous IFN-like substance when induced with poly I:C. The IFN-like 

substance induced in vivo in rainbow trout and in vitro in RTG-2 cells, in 

response to poly I:C, was examined by western blot analysis. The molecular 

weight observed was approximately 40 kDa in size from both sources. 
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INTRODUCTION 

Interferon (IFN) activity induced in fish cells has been reported by a 

number of investigators. Beasley and Sigel (1967) were the first to report in 

vitro fish IFN-like activity in tissue cultured grunt fin cells. Subsequently, IFN-

like activity has been found in fathead minnow (Oie and Loh, 1971), swordtail 

(Kelly and Loh, 1973), goldfish (Shea and Berry, 1984) carp (de Kinkelin et 

al., 1982), and rainbow trout cells (De Sena and Rio, 1975). The production of 

salmonid fish IFN-like activity has also been documented in vivo by de 

Kinkelin and Dorson (1973), Dorson et al. (1975), and Eaton (1990). The IFN-

like activity of the fish serum substance was characteristic of mammalian typel 

IFNs, demonstrating antiviral activity as well as heat and acid pH stability. In 

addition, Wilson et al. (1983) found that a human (3 -IFN gene probe hybridized 

to the DNA of four different teleost species under low hybridization 

stringencies. This result suggested a fish IFN with homology to human 13-IFN 

(fibroblast) existed. Rainbow trout (Oncorhynchus mykiss), coho salmon (Q. 

kisutch) and chinook salmon (Q. tshawytscha) were evaluated for their ability 

to secrete an IFN-like substance into their blood system following 

intraperitoneal injections of the IFN inducer, poly I:C. This report describes the 

development of an in vitro, assay for evaluating salmonid fish IFN-like activity. 

In addition we examine the molecular weight of the rainbow trout in vivo and 

in vitro induced IFN-like substance by western blot analysis. 

MATERIALS AND METHODS 

Fish 

Chinook salmon, coho salmon, and rainbow trout, which weighed on 

average 35g, were held at the Salmon Disease Laboratory at Oregon State 
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University. Each fish was injected intraperitoneally with 40 ggig of poly I:C in 

100 RI of sterile STE (10 mM Tris, pH 8.0, 100 mM NaCI, and 1 mM EDTA). 

Control fish were injected with 100 IA of STE alone. Fish were returned to 

their tanks and held for three days at 12°C in specific pathogen free (SPF) 

water. Previous studies (Eaton, personal communication; de Kinkelin and 

Dorson, 1973) determined that fish IFN was maximally produced at 3 days 

post-injection so the experiments described here were all based on IFN 

activity detected three days post-injection. At three days post-injection, fish 

were lightly anesthetized in benzocaine and bled from the tail. The serum 

was separated from the red blood cell clot by microcentrifugation for 5 min and 

then treated at 56°C for 30 min to destroy endogenous complement. The 

serum samples were stored at 4°C (de Kinkelin and Dorson, 1973). 

IFN Assay 

Rainbow trout gonad-2 cells (RTG-2) cells were examined for their 

ability to mount an antiviral response when exposed to homologous and 

heterologous IFN-like substances produced by rainbow trout, coho salmon 

and chinook salmon. Additionally, coho serum was tested on cultured coho 

cells, CSE-119. Rainbow trout serum was also tested on two chinook cell 

lines, CHSE-114 and CHSE-214, for IFN-like activity. All cells used were 

originally received from C. Lannan at the Mark Hatfield Marine Science 

Center, Newport, Oregon. Cells were seeded in 96-well microtiter plates to 

confluency. Fish serum samples from above were serially diluted 2-fold to 

1:2450 in minimum essential media (MEM) containing no fetal calf serum (0% 

FCS). Cell monolayers were washed one time with MEM-0% FCS and 

exposed to the serum dilutions. The diluted serum was kept on the 

monolayers for 24 h at 18°C. Subsequently, the cells were rinsed once 
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withTris-buffered saline and exposed to 100 ill of a solution containing a 

constant 5.6 x 105 TCID50/mI (tissue culture infective dose-50% per ml) of 

IHNV, 039-82 isolate, for 1 h. Following adsorption, the virus was removed 

and the cells were overlayed with MEM containing 5% FCS. The cells were 

observed for cytopathic effect (CPE) which was seen as a rounding up and 

subsequent loss of cells from the monolayer. The assay was read at 10-14 

days for most of the cell lines with the exception of CSE-119 which required 

18 days. Average IFN units were calculated as follows: the reciprocal of the 

serum dilutions which yielded 50% reduction in CPE when compared to 

controls, were recorded as units of IFN-like activity. 

Induction with Poly I:C 

The CHSE-114 and CHSE-214 cells are mixed fibroblastic cells. It was 

of interest to determine which chinook cell line, if any, would be both 

responsive to exogeously applied IFN and also be capable of producing their 

own endogenous IFN upon induction. Cells were grown to 80% confluency in 

96-well microtiter dishes. Cells were maintained in MEM-5% FCS with 

penicillin, streptomycin, and L-glutamine. The media was removed and 

replaced with MEM-0% FCS containing 10 µg /ml poly I:C in the experimental 

groups or media alone in the control groups. Plates were held at 18°C for 1 h 

and the media was then removed. The cell layer was washed twice with 

sterile phosphate buffered saline (PBS) and replenished with MEM-5% FCS 

containing a ten-fold serial dilution series which ranged from 10-1 to 10-6 of 

the Round Butte-1 isolate of IHNV. The plates were then observed for the 

presence of CPE for 10-14 days. Experiments were done in triplicate. IFN-

like activity was measured as described above. 
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Western Blot

Cultured rainbow trout cells (RTG-2) were induced, in the presence of

poly I:C, to secrete an IFN-like substance into the surrounding culture media.

The fish IFN-like protein was then examined for antigenicity and size by

western blot analysis.

The supernatants were prepared according to the protocol of Frances

and Lehman (1989). Two 150 cm2 disposable tissue culture flasks (Corning)

per experimental condition were seeded with RTG-2 cells and grown to 80%

confluency. The cells were then washed with sterile phosphate buffered

saline (PBS) twice and re-fed with 30 mls of MEM-0% FCS containing 50

ug/ml poly I:C and 200 ug/ml DEAE-dextran. The control flasks received

MEM-0% FCS. The cells were held at 18°C for 2 h. Cells were then washed

two times with sterile PBS and re-fed with 10 mls of MEM-0% FCS containing

no inducer and held at 18°C for 18 h. Supernatant was then placed in sterile

15 ml conical tubes and clarified by centrifugation for 15 minutes at 3000 rpm.

The supernatant was collected in fresh 15 ml conical tubes.

The induction of rainbow trout fish serum was as described above. The

serum was treated in the same manner as the cell supernatants from this step

forward.

To precipitate the proteins contained within both the supernatant and

the fish serum samples, 800 µl of -20°C methanol was added to 500 p1 of

sample in a 1.5 ml eppendorf tube, as described by Wessel and Flugge

(1984). The samples were then held at -20°C for 30 minutes and

subsequently microfuged for 15 minutes at 15,000 rpm. The sample

supernatants were decanted and the pellets subsequently washed once with

800 gl of fresh cold methanol. The tubes were microfuged for 1 minute and
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the supernatants again decanted. The pellets were briefly dried and 

resuspended in 15111 of water each. Duplicate serum pellets of 15 ill each 

were made; one set was clarified by a 5 min microcentrifugation step at 

15,000 rpm while the second set was left unclarified. The protein 

concentration was determined by the BioRad protein assay (Bradford, 1976). 

The proteins were aliquoted into 10 ug samples and fractionated by 

denaturing SDS-polyacrylamide gel electrophoresis (Laemmli, 1970; Maniatis 

et al., 1982). The proteins were then transferred to a nylon membrane in the 

presence of Towbin buffer for subsequent western blot analysis (Maniatis et 

al., 1982). 

The western immunoblot was carried out as follows: The nylon 

membrane was soaked in PBS/tween for 30 minutes (0.05% Tween-20 in 

PBS), washed for 30 minutes in PBS/Brij (0.1% Brij-58 in PBS), and 

subsequently washed for 5 minutes in water. The primary antibody, MONA, 

was a polyclonal anti-a, anti-13-IFN sheep-antimouse antibody provided by 

Dr. Marasco (Pennsylvania Medical College, King of Prussia, PA). The 

primary antibody was originally produced by Paucker and Dalton (1980). The 

primary antibody was diluted 1:500 in NETG/NP-40 (0.05% NP-40 in lx 

NETG: 5x NETG =750 mM NaCI, 25 mM EDTA, 250 mM Tris pH 7.4, 1.25% 

gelatin) and was applied to the nylon blot for 9 h. The blot was then washed 

3x, 1 min each time in 1/100 NETG/TX/SDS (NETG, 0.5% Triton X-100 and 

0.1% SDS), 2x 5 min in lx NETG/TX/SDS, 3x in 1/100 dilution of 

NETG/TX/SDS, and 2x 5 min in water. The second antibody used was rabbit 

anti-goat antisera conjugated to the colorimetric substance horse radish 

peroxidase (HRP) (Boehringer-Mannheim). A 1:1000 dilution of the second 

antibody in NETG/NP40 was applied to the blot for 1.5 hours. The blot was 
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then washed as described above and developed. To develop the color 

reaction, 10 mg of the horse radish peroxidase substrate, 4- chioro -1- napthol 

(4CN) (Sigma), was initially mixed with 1 ml of ethanol and then combined 

with 100 mls of water and 100111 of hydrogen peroxidase. Following the last 

wash step above, the water was removed and the developement solution was 

added to the blot. When the color change had gone to completion the 

reaction was stopped with water. The blot was then air-dried and 

photographed. 

RESULTS 

Rainbow trout cells (RTG-2) responded to homologous and 

heterologous serum by demonstrating enhanced antiviral activity. The control 

uninduced and experimental poly I:C induced rainbow trout, coho salmon, 

and chinook salmon fish serum was applied to RTG-2 cells in tissue culture 

and the results are shown in Table 11.1. Rainbow trout serum IFN-like activity 

varied between individual fish samples (320 Wm, to 1920 U/ml) when tested 

on homologous RTG-2 cells. RTG-2 cells also responded to both coho and 

chinook salmon heterologous serum (Table 11.1). Control serum samples 

possessed undetectable amounts of activity in all cases except one where 

160U /ml of activity were found. Coho serum contained an apparent 320 to 

640 U/ml of activity while chinook serum demonstrated between 240 and 480 

U/ml on RTG-2 cells. Table 11.2 displays the results of homologous coho 

salmon serum on coho CSE-119 cells ranging from 320 Wm! to 1280 U /mI 

between individuals tested. The untreated fish possessed IFN background 

activity from 0 to 160 U/ml. 

The chinook cell lines CHSE-114 and CHSE-214 differed in their 

responses to exogenously applied IFN (Table 11.3). CHSE-214 cells 
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Table 11.1. Assays for fish serum IFN on RTG-2 cells. Fish were treated with 

401.1g/g poly I:C by intraperitoneal injection. Fish serum was harvested and 

analyzed for the presence of IFN-like activity. The IFN units were calculated 

as the reciprocal of the serum dilution which produced a 50% reduction in 

CPE when cells were challenged with 5 x 102 TCID50 /ml units of IHNV. IFN 

assays were carried out in triplicate. 
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A. Poly I:C Treated Fish: 

Rainbow Trout Coho Salmon Chinook Salmon 
Fish # IFN units Fish # IFN units Fish # IFN units 

1 480 1 240 1 240 
2 640 2 480 2 480 
3 640 3 640 3 480 
4 320 4 320 4 320 
5 1280 
6 1066 
7 1280 
8 960 
9 1920 
10 1280 

B. Control, Untreated Fish: 

Rainbow Trout Coho Salmon Chinook Salmon 
Fish # IFN units Fish # IFN units Fish # IFN units 

1 0 1 0 1 0 
2 0 2 0 
3 160 
4 0 

Table 11.1. 
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Table 11.2. Assay for fish serum on CSE-119 cells. Fish were treated with 

40 pg /g poly I:C by intraperitoneal injection. The IFN units were calculated as 

the reciprocal of the serum dilution which produced a 50% reduction in the 

CPE when the cells were challenged with 5 x 102 TC1D50 /m1 units of IHNV. 

IFN units represent the average of 3 assays. Because the coho salmon cells 

CSE-119 are very resistant to IHNV induced CPE, these assays were held for 

18 days before the serum IFN titer was determined. 
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A. Poly 1:C Treated Fish: 

Coho Salmon 
Fish # IFN Units 

1 1280
2 1280
3 640
4 320
5 320

B. Control, Untreated Fish: 

Coho Salmon 
Fish # IFN Units 

1 160
2 0
3 0

Table 11.2. 
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Table 11.3. Assay for fish serum IFN on two chinook salmon cell lines; 

CHSE-114 and CHSE-214 cells. Fish were treated with 40 gg/g poly I:C by 

interaperitoneal injection. The IFN units were calculated at the reciprocal of 

the serum dilution which produced a 50% reduction in the CPE when the cells 

were challenged with 5 x 102 TCID50/ml units of IHNV. IFN assays were 

carried out in triplicate. 
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A. CHSE-114: 

Rainbow Trout Coho Salmon Chinook Salmon 
Fish # IFN units Fish # IFN units Fish # IFN units 

1 1280 1 240 1 not tested 
2 640 
3 320 
4 320 

B. CHSE-214: 

Rainbow Trout Coho Salmon Chinook Salmon 
Fish # IFN units Fish # IFN units Fish # IFN units 

1 0 1 0 1 0 
2 0 2 0 2 0 
3 0 3 0 3 0 
4 0 4 0 4 0 
5 0 5 0 5 0 
6 0 6 0 
7 0 7 0 
8 0 

Table 11.3. 
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Figure 11.1. Comparison of cell line ability to reduce IHNV infection titers 

following poly I:C induction of IFN-like activity. 1.) CHSE-214 (controls), 

2.) CHSE-214 (poly I:C-induced), 3.) CHSE-114 (controls), 4.) CHSE-114 

(poly I:C-induced). All cultures were infected by the Round Butte-1 strain of 

IHNV. 
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Figure 11.1. 
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Figure 11.2. Western blot analysis of proteins found in induced and uninduced 

rainbow trout serum and cultured rainbow trout cell (RTG-2) supernatants. 1.) 

RTG-2 cell supernatant; uninduced, 2.) poly I:C/DEAE-dextran induced RTG-2 

cells, 3.) control fish serum, clarified, 4.) poly 1:0 induced fish serum, clarified, 

5.) control fish serum, 6.) poly 1:0 induced fish serum, 7.) MEM -O% control, no 

cells, M.) prestained molecular weight markers. The arrowhead marks the 

cross-reactive protein in the experimental lanes. 
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demonstrated no detectable change in antiviral activity when treated with 

either rainbow trout, coho, or chinook serum. CHSE-114 cells responded 

well, with IFN-like titers ranging from 160 U/ml to1280 U /ml with the 

heterologous rainbow trout serum and 1280U/ml from the coho individual 

tested. Chinook serum was not tested. 

Endogenous chinook cell IFN-like activity was examined in two chinook 

cell lines; CHSE-114 and CHSE-214. Activity was measured as a 50% 

reduction in IHNV infectivity (tissue culture infective dose or TC1D5oh-no 

Figure 11.1 contains a bar graph depicting the reduction of IHNV (Round Butte

1 strain) for both cell lines. When the two chinook salmon cell lines, CHSE

114 and CHSE-214, were compared for IFN production upon poly I:C 

induction there was a marked difference in the titer of the same dilutions of 

IHNV plated on the cells; 3.2 x 10 4 TCID50 /ml of CHSE-214 vs 4.7 x 101 on 

CHSE-114. 

Western blot 

Proteins precipitated from both control uninduced and poly I:C induced 

rainbow trout serum and cultured rainbow trout cell (RTG-2) supernatants 

were fractionated by SDS-PAGE and analyzed by western immunoblot. 

Figure 11.2 represents the banding pattern acheived. A 40 kDa broad protein 

band was found only in the induced serum and cell supernatant lanes. The 

colorimetric change was more pronounced in the cell supernatant lane than in 

the fish serum lanes. It may be that the actual IFN-specific bands were not as 

well represented in the serum samples because the amount of total protein is 

greater in serum than in MEM-0% FCS. 
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DISCUSSION 

Infectious hematopoietic necrosis virus (IHNV) is a fish rhabdovirus 

utilized in these studies and represents an economically important pathogen. 

Bukholm et al. (1989) demonstrated that IFN treatment reduced endocytosis of 

the mammalian rhabdovirus, vesicular stomatitis virus (VSV). It has been 

demonstrated that IFN can restrict the growth of VSV at many levels in the 

virus replication process. These stages include penetration, primary 

transcription, cap methylation, protein synthesis and assembly (Bukholm, 

1989). However, it has been reported that there are variations in cell line 

responsiveness to the receptor-mediated IFN induction of these antiviral 

activities. For example, mouse L-cell IFN can block VSV at the level of protein 

synthesis, and human L-Youngner cell IFN can block VSV uptake and 

subsequent primary transcription. Human L-Lewis cells are readily infected 

with VSV, however maturation of the virus is blocked by the activities of IFN 

(Whitaker-Dowling, 1983). Thus, we were interested in examining more 

closely IFN production by three salmonid species: Oncorhynchus mykiss, Q. 

kisutch, and Q. tshawytscha, and the variability of expressed antiviral activity 

between available established cell lines in response to exogenously applied 

homologous and heterologous fish serum, against the fish rhabdovirus IHNV. 

In vitro assay of antiviral activity in fish serum has been determined by 

Eaton (1990) not to be due to any antibody mediated activity, but due to some 

other inducible substance in fish serum. This substance has been evaluated 

in the past, using crude extracts (Dorson et al., 1975; De Sena and Rio, 1975), 

for biophysical characteristics typical of mammalian IFNs and appears to 

possess many similar characteristics to known IFNs. 
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Mammalian IFNs are measured with respect to international IFN 

standard units which researchers can obtain and use as a standardization 

tool. There are no international units to standardize fish IFN-like activity; thus, 

all IFN-like units measured and described here are based on a relationship 

between control and experimental observations. The predicted IFN units in 

each figure represent an average of the IFN units found in assays that were 

conducted a minumum of two and a maximum of three times for each fish 

serum sample. No assay result varied more than one dilution in activity for 

each fish sample over the duplicate assay. 

As the fish available were not clones, it was of interest to observe the 

individual variation in IFN production between individuals. To test for the 

presence of IFN in the serum of rainbow trout, coho salmon, and chinook 

salmon, a fish cell cytopathic-reduction in vitro assay was tailored using 

RTG-2 ,CSE-119 , CHSE-114 and CHSE-214 cells. It is clear that a rainbow 

trout IFN-like substance is active on RTG-2 cells as well as CHSE-114 cells 

against IHNV. The coho salmon IFN-like substance is active on RTG-2, 

CHSE-114, and CSE-119 cells. In addition, the chinook IFN-like substance 

could be assayed on RTG-2 cells. The data suggests that the salmonid fish 

species examined here secrete a poly I:C-inducible IFN-like substance into 

their bloodstream which segregates with the serum fraction. These IFN-like 

substances appear to have broad species specificity, but that there is a large 

variation among individuals and across species. 

Previous investigators have recorded the inablility of the CHSE-214 

line to respond to exogenous IFN (MacDonald and Kennedy, 1979; Bill Eaton, 

personal communication). It was of interest to determine whether it was the 

species of fish or rather the particular cell line, CHSE-214; routinely used in 
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cell culture, which was unable to produce endogenous IFN or respond 

detectably to exogenously applied IFN. In this study, we were able to 

demonstrate that the two chinook cell lines CHSE-114 and CHSE-214 varied 

dramatically in their abilities to both respond to exogenously applied IFN and 

produce their own endogenous IFN. CHSE-114 cells were able to both mount 

an anti-IHNV response in the presence of exogenously applied IFN and were 

able to successfully produce endogenous poly I:C inducible IFN. CHSE-214 

cells were not able to do either task. Clearly, there is some mechanism in the 

CHSE-114 line that is missing from the CHSE-214 cell line. We have 

confirmed the findings of Eaton (1990) that CHSE-214 cells are refractory to 

induction of IFN activity with poly I:C and have also demonstrated that the 

alternatively available chinook cell line, CHSE-114 could be a viable choice 

for chinook IFN studies. It was demonstrated here that it was not the chinook 

species but rather the particular cell line isolate that was resistant or unable to 

respond to the inducing activities of IFN. 

The polyclonal antibody, MONA, against mouse type 1 IFNs, is able to 

cross-react in a limited manner with human IFN (Paucker and Dalton, 1980). 

Classically, antisera raised against IFNs from one species do not readily 

cross-react with IFNs produced in other species. There are exceptions, as 

anti-mouse IFN will cross-react with human IFN (Havell, 1979). It was of 

interest to test whether MONA could detect IFN from both poly I:C induced 

rainbow trout serum and poly I:C induced rainbow trout cell culture 

supernatants by western blot. 

In this study a strong doublet of approximately 40 kDa was found only 

in the induced cell supernatant lane. A single band of approximately 40 kDa 

was found in both the clarified and unclarified induced serum lanes. No 
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bands were found in any of the control lanes. It is unclear that this represents 

fish IFN at this point as the size is different from those reported for other IFNs 

which generally range between 18 and 30 kDa. Fish IFN has been reported 

to range in size from 26 kDa to 94 kDa (Dorson et al., 1975; De Sena and Rio, 

1975) therefore its actual size remains a mystery. The evidence presented 

here demonstrates the presence of an inducible protein which cross-reacts 

with the polyclonal sheep anti-mouse antibody, MONA, raised against both 

type 1 IFNs; a and 0. This cross-species immunoreactivity is uncommon, but 

may demonstrate the presence of a specific inducible fish IFN-like protein. 
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ABSTRACT 

Fish have been reported to possess proteins with IFN-like activities (Oie 

and Loh, 1971; deKinkelin and Dorson, 1973; De Sena and Rio, 1975; 

Hedrick and Fryer, 1981). Hybridization analysis of vertebrate gene families 

using a- and 0-IFN DNA as heterologous probes demonstrated the presence 

of IFN gene-homologs within a variety of fish species. We report the presence 

of a 13-IFN type gene family in rainbow trout (Oncorhynchus mykiss), coho 

salmon (Q. kisutch) and chinook salmon (Q. tshawytscha). In addition, we 

report molecular evidence supporting the presence of a fish 13-IFN-like gene 

by RNA blotting and polymerase chain reaction (PCR). Fish IFN-like RNA 

transcription examined here appears to be inducible in the same manner as 

bovine and human 13-IFN; in the presence of the IFN inducer poly I:C, DEAE

dextran and cycloheximide. 
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INTRODUCTION 

Interferons, as described by Isaacs and Lindenman in 1957, are 

proteins and glycoproteins that inhibit the growth of a large number of viruses. 

The antiviral activities can effect both RNA and protein synthesis. Since 1957, 

IFNs have also been shown to possess antimicrobial activities, immune 

modulatory effects, and cell growth regulatory activities implicated in the 

reduction of some forms of cancer (Jounger and Stinebring, 1964; Pestka, 

1987). 

Interferons have been found in all vertebrates described to date 

(Wilson, 1983). Some preliminary molecular information on fish IFN has been 

available since 1983. Wilson et al. (1983) carried out a hybridization survey 

of vertebrate IFN gene families using human a- and 13-IFN DNA as 

heterologous probes. Wilson et al. found that perch (Perca fluviatilis), minnow 

(Phoxinus phoxinus), dace (Leuciscus leuciscus), and stone loach 

(Neomacheilus barbatulus) all possessed weakly hybridizing genomic 

sequences, under low stringency conditions. Wilson et al. postulated that the 

"bony fishes" may possess only one IFN gene of the a/13 type, due to the 

hybridization frequency. Dehlin et al. (1987) described an IFN-like gene in 

zebrafish. The investigators were able to isolate three positive plaques from a 

600,000 plaque zebrafish genomic library by screening with the coding 

regions from both the human al-and 131-IFN. The frequency of hybridization in 

this case supported the possibility of a single copy gene. No other molecular 

information has been published to date on salmonid IFN. 

The Investigation reported here describes the presence of IFN-like 

sequences within three Oncorhynchus genomes: Q. mykiss, Q. kisutch, and Q. 
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tshcwytscha. In addition, we report preliminary studies on the conditions for 

induction of this fish IFN-like gene. 

MATERIALS AND METHODS 

Preparation of Genomic DNA 

All genomic DNA was prepared from fresh frozen liver as described in 

'Current Protocols in Molecular Biology' (1987) and by Gros-Bellard et al. 

(1972). Bovine liver was obtained from the Oregon State University Meat Lab. 

Fish were obtained from the Salmon Disease Laboratory at Oregon State 

University. Bovine liver was acquired and quick-frozen in powdered dry ice. 

Salmonid liver also was quick-frozen in dry ice following dissection. Salmon 

species sampled included rainbow trout (Oncorhynchus mykiss), chinook 

salmon (Q. tshawytscha), and coho salmon (Q. kisutch). In all cases, the 

gallbladder was removed from the liver tissue as it contains high levels of 

degradative enzymes. One g of liver from each source provided the starting 

material for the isolation of genomic DNA. 

Frozen tissue was ground to a fine powder in a chilled mortar and 

pestle. Protein was digested away by resuspending the powdered tissue in 

1 ml of digestion buffer/100 mg of tissue (100 mM NaCL, 10 mM Tris-CI (pH 

8.0), 25 mM EDTA (pH 8.0), 0.5% SDS, and 0.1 mg/ml proteinase K) and 

shaking at 50°C for 18 h in a sterile 30 ml Corex tube. This released the 

nucleic acid creating a highly viscous solution. Nucleic acid was then isolated 

from the digested tissue by phenol-chloroform-isoamyl alcohol (IAA) (25:24:1) 

extraction. The resulting aqueous layer contained DNA. The aqueous layer 

was then transferred to a new Corex tube and combined with 1/2 volume of 

7.5 M ammonium acetate (pH 7.5), and 2 volumes of chilled 95% EtOH. The 
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long strands of precipitated DNA were removed with a sterile glass rod. The 

DNA was placed in a new sterile 15 ml Corex tube and rinsed with 2 ml of 

chilled 70% EtOH. The tubes were centrifuged for 5 min at 5000 rpm and the 

EtOH was then removed. The DNA pellet was air dried and gently 

resuspended in TE buffer. The DNA was stored at 4°C. 

Genomic Southern Blot 

Ten gg of genomic DNA was digested with either BamH1 or Hind Ill for 

Southern blot analysis (Southern, 1975). Genomic DNA from bovine, rainbow 

trout, chinook, and coho DNA were digested with restriction endonucleases to 

completion at 37°C. DNA was then phenol-chloroform extracted, chloroform 

extracted, and ethanol precipitated in the presence of 0.3 M NaOAc (pH 5.2). 

The resulting pellet of DNA was then resuspended in TE and lx agarose gel 

loading buffer (6x: 0.25% bromophenol blue, 0.25% xylene cyanol, 15% Ficoll 

type-400 in water), heated to 65°C for 5 min, chilled on ice for 2 min, and 

separated through a 0.8% agarose gel. The DNA was stained with ethidium 

bromide, 0.5 p.g/ml, and photographed with a ruler to determine a 

size/distance ratio. The gel was then placed in a denaturation bath (0.5 M 

NaOH, 1.5 M NaCI) and gently rocked for 30 min. The gel was subsequently 

neutralized for 30 min in a neutralization bath (0.5 M Tris (pH 7.4), 3 M NaCI). 

The DNA was transferred to a nylon filter (Nytrann4; Schleicher and 

Schuell) for hybridization analysis. The DNA transfer was performed as 

described by Maniatis et al. (1982) in the presence of 10x SSC. Following 

transfer, the blotting paper was gently removed, the filter was then lifted off the 

flattened gel and air-dried for 30 min. The membrane was then baked at 

80°C under vacuum for 2 h and prehybrided in hybridization buffer at 42°C (5x 

SSC, 40% formamide, 0.1% N-Lauryl sarcosine, 0.02% SDS, and 4% 
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GENIUSTM blocking reagent (Boehringer Mannheim)) for 1 h. 

Human [31-1FN Probe Preparation 

Human 131-IFN (received from Dr. David Leung, Genentech) was 

subcloned into pUC18 at the Pst 1 site (Figure 111.1). For hybridization 

purposes, the Pst 1-Bgl II fragment of human 01-IFN was gel isolated from a 

1.3% low melting temperature preparative agarose gel and purified from the 

agarose by GENECLEAN IITM, according to manufacturers instructions 

(Bio101, Inc.). The 600 by fragment was then radiolabeled with a 32P-dCTP 

using a random priming/klenow kit (Boehringer-Mannheim), to a total of 

1 x 109 counts per min /µg. The labeled fragment was separated from free, 

unincorporated nucleotides by gel filtration through a Sephadex G-50 Nick 

column (Pharmacia). The labeled fragment was heated in a boiling water 

bath for 5 min and added to a 50 ml conical tube containing 25 ml of 42°C 

hybridization buffer (the same as the pre-hybridization mixture). The 

prehybridization mixture was removed from the Seal-a-Mearm bag above, 

and replaced with the radioactive hybridization mix. The bag was resealed 

and held at 42°C for 18 h. The membrane was washed twice with 2xSSC:1% 

SDS at room temperature for 15 min each time, followed by a wash in lx 

SSC:0.1% SDS at room temperature and finally, a 15 min wash with 

0.1xSSC, 0.1% SDS at 42°C. The membrane was then placed between 

SaranwrapTM and exposed to XAR-X-ray film. 

RNA 

In vitro RNA was harvested from rainbow trout gonad-2 fibroblast cells 

(RTG-2) following the production of IFN-like RNA under a variety of inducing 

conditions. RTG-2 cells were obtained from C. Lannan (Mark Hatfield Marine 

Science Center, Newport, Oregon) and were maintained in minimal essential 



81 

media containing 5% fetal calf serum (MEM-5%), penicillin-

streptomycin (5 ml stock solution/500 ml), L-glutamine (5 ml of 200 mM/500 

ml), and sodium bicarbonate (pH 7.5) at 18°C. Cells were grown to 95% 

confluency in T-150 mm2 flasks in 35 ml of media. The inducer, poly I:C, was 

prepared from a 2.5 mg/ml water, filter-sterilized stock; cycloheximide was 

prepared from a 10 mg/ml water filter-sterilized stock; and DEAE-dextran was 

prepared from a 10 mg/ml water filter-sterilized stock. Each inducing condition 

was carried out in duplicate and the isolated RNA was subsequently pooled 

prior to analysis. Cellular IFN-like RNA was induced as follows. At time zero 

(To), when cells had reached 95% confluency as described above, media was 

removed from the flasks and the cells washed twice with 20 ml of MEM-0% 

FCS. The media was replaced with 20 ml of MEM-0% FCS according to the 

following set of parameters: 1.) MEM-0% FCS, 2.) MEM-0% FCS + 10 µg /ml 

poly I:C, 3.) MEM-0% FCS + 10 pg/mIpoly I:C + 20014/mIDEAE-Dextran, 4.) 

MEM-0% FCS + 50 pg /ml cycloheximide (CHX), 5.) MEM-0% FCS + 10 gg/m1 

poly I:C + 50 p.g/mICHX, and 6.) MEM-0% FCS + 10 gg/m1 poly I:C + 200 

gg/mIDEAE-Dextran + 50 gg/mICHX. The flasks were placed in an 18°C 

incubator for 3 h (for conditions A, B, and C) or 5 h for all conditions 

(duplicates of A, B, and C were run for the longer time). Following the 

incubation time, the media was removed. The monolayers were washed 

twice, as described above, with MEM-0% FCS. RNA was prepared using the 

guanidinium isothiocyanate, phenol, 13-mercaptoethanol RNAzol kit 

(CINNA/BIOTECX). Two ml of RNAzol were added to each monolayer which, 

according to the manufacturer's instructions, liberated the cellular RNA. 

Duplicate flask contents were pooled and RNA precipitated with an equal 

volume of cold isopropanol at -20°C for 45 min. RNA was pelleted at 
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12,000 rpm for 15 min and washed once with 5 ml of 75% EtOH in DEPC-

treated water to inhibit any RNAses present. The pellet was briefly air-dried 

and resuspended in 150 ill of DEPC-treated water containing 1 mM EDTA. 

RNA sample concentrations were determined by 0.D.280 readings. Aliquots 

of 50 gg each were stored in the presence of 0.3 M NaOAc (pH 5.2) and 95% 

EtOH. Samples were analyzed for their content by dot blot. 

Dot blot analysis was performed as described (Maniatis et al., 1982). 

Samples were microfuged to pellet the RNA from its storage condition in 

EtOH, and washed once with 100 gl of 75% EtOH /DEPC- treated water. The 

samples were briefly air dried and resuspended in 10 gl of DEPC-water. RNA 

was immobilized onto NytranTM (Schleicher and Schuell) with the aid of a dot 

blot manifold suction device (Schleicher and Schuell). NytranTM was wetted 

briefly in DEPC-treated water and then soaked in 20X SSC/DEPC-water for 

1 h at room temperature. Concurrently, the manifold suction device was 

cleaned with 0.1N NaOH /DEPC -water and then rinsed in DEPC-water. Two 

sheets of Whatman 3mm filter paper were prewetted with 20X SSC/DEPC

water. The manifold suction device was assembled according to 

manufacturers recommendations. The wells were rinsed with 200 RI of 

10X SSC/DEPC-water which was passed through the wells by suction. The 

wells were then refilled with 10X SSC/DEPC-water and allowed to sit while 

the RNA was prepared for immobilization. The RNA, in 10 p.I of DEPC-water 

described above, was combined with 20 pi of 100% deionized colorless 

formamide, 7 gl of formaldehyde (37%, the pH must be greater than 4.0), and 

2111 of 20X SSC. This mixture was incubated at 68°C for 15 min and cooled 

on ice for 5 min. Two volumes (80 gl) of 20X SSC were added to each 

sample. The 10X SSC which filled the wells was drawn through the 
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nitrocellulose by suction. The suction was turned off and the RNA was then 

applied to designated wells within the manifold suction device as shown in 

Figure 111.3. RNA was distributed in 20, 10, and 5 p.g aliquots. Samples were 

drawn onto the membrane by suction and subsequently rinsed by passing 2 

ml of 10X SSC through. Once the wells appeared dried, the device was then 

disassembled and the membrane air dried, sample side up, and subsequently 

baked for 2 h at 80°C in vacuo. The filter was then probed for the presence of 

sequences homologous to human 01-IFN as described above in the Southern 

blot section. 

in vivo production of IFN-specific RNA was examined. RNA was 

isolated from two separate size/age groups of fish under control and IFN-

inducing conditions, using poly I:C as the inducer. Poly I:C was prepared in 

filter sterilized STE (10 mM Tris, pH 8.0, 100 mM NaCI, and 1 mM EDTA) from 

a 10 mg/ml stock solution such that the total dosage was delivered in no more 

volume than 200 µl /fish. Control fish were injected with STE alone. Poly I:C 

was delivered as a 50 i.tg /g body weight dosage injected intraperitoneally into 

experimental fish from each size group while fish were lightly anesthetized. 

Experimental group sizes were on average either 15 g or 600 g; 7 fish for the 

15 g size group for each the poly I:C and control groups and 3 fish each for the 

600 g fish poly 1:C and control groups. On day three following injection, the 

animals were terminated by anesthetization in 10% benzocaine and pithed. 

The livers were rapidly removed and the gallbladders dissected away from the 

solid liver tissue to reduce the presence of degradative enzymes. The livers 

were quick-frozen on dry ice and kept frozen prior to RNA extraction. Liver 

tissue was pooled from each experimental group and RNA was subsequently 

extracted by homogenization and RNAzol extraction as described above. The 
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RNA was stored at -20°C in the presence of 0.3 M NaOAc (pH 4.8), and 2 

volumes of 100% ethanol. The yield was approximately 1.5 mg of total RNA 

per 300 mg of starting tissue. 

Northern analysis of Q. mykiss RNA was carried out by using a 

denaturing formaldehyde/agarose gel (Lehrach et al., 1977; Ausubel et al., 

1987; Maniatis et a1.,1982). RNA samples, kept at -20°C in the presence of 

0.3 M NaOAc (pH 4.8), and 2 volumes of 100 % ethanol (see RNA preparation 

by RNAZOL above), were pelleted by microcentrifugation for 10 min and 

briefly air dried. The RNA was then resuspended in 20 ill of 

formaldehyde/formamide loading buffer (Maniatis et al., 1982), heated to 95°C 

for 2 min to denature the RNA, and loaded into gel wells. A control lane 

containing ribosomal RNA as markers was loaded in the outside well. The 

RNA was electrophoresed for 5 h at 75 volts or until the bromphenol blue dye 

traveled 3/4 of the distance through the gel. The gel was rinsed in several 

changes of distilled water to remove excess formaldehyde. The gel was then 

soaked, while gently rocking, in 10x SSC for 45 min. The RNA was then 

transfered to a nylon membrane (NytranTM, Schleicher and Schuell) in the 

presence of 20x SSC by the wicking technique previously described for 

Southern transfers (Maniatis et al., 1982). The filter was not rinsed after 

transfer. Following 30 min of air-drying, the membrane was baked in vacuo at 

80°C for 2 h. The membrane was then hybridized to a radioactive 01-IFN 

probe as described above for Southern hybridization and exposed to film for 

two weeks. 

Polymerase Chain Reaction 

Due to the cross-species amplification required of this experiment it 

was prudent to design flanking oligonucleotides corresponding to regions of 
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the human 01-IFN containing the most contiguous, least degenerative set of 

codons. An attempt to determine fish codon preference bias was carried out 

in order to incorporate that information into the final construction of the 

flanking primers. The three published fish sequences used for this 

determination were: 1.) a protamine gene (Dixon et al.,1981), 2.) the rainbow 

trout growth hormone gene (Agellon and Chen, 1986), and 3.) the rainbow 

trout Mx gene (Staeheli et al.,1989). 

Regions were located within the human 01-1FN open reading frame 

using the above parameters. The oligonucleotides #66 and #67 were 21nt 

long corresponding to 7 amino acids. Both oligonucleotides were synthesized 

by Dr. R. McParland at the Oregon State University Center for Gene 

Research/Central Services facility. Both oligonucleotides were subsequently 

gel purified from a 20% acrylamide gel in the presence of lx TBBE buffer. Gel 

purification was carried out by the "crush and soak" method (Maniatis et al., 

1982). The major oligonucleotide band was excised by shadowing with a 

long wave hand held U.V. source. The 0.D.260 was determined for each 

purified oligonucleotide and the concentration was adjusted to 50 gm. 

The polymerase chain reaction (PCR) was comprised of 100 ng of template 

DNA (rainbow trout genomic DNA as prepared in the genomic Southern 

section), 0.5% NP40, 10% 10x PCR buffer (Promega), dNTPs (2 mM each), 

2 gl of a 50 gM solution of each primer, and water to a final volume of 99 ill. 

The microfuge tube was held at 95°C for 5 min to destroy any endogenous 

enzyme activity and placed on ice for 1 min. Taq polymerase, the 

thermostabile DNA polymerase from Thermus aquaticus (Promega), was 

added to a final concentration of 1 unit and 75 gl of mineral oil was gently 

overlaid over the reaction mixture. The PCR reaction was then carried out in a 
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COrm tempcycler as follows: denaturation at 94°C for 1 min, hybridization at 

50°C for 2 min and elongation at 72°C for 5 min for 35 cycles. Magnesium 

chloride was then added to a final concentration of 10 mM and 2 units of 

Klenow were added to create a blunt or flush end for blunt-end cloning. The 

blunt-ended PCR product was then gel-purified from a 1.2% agarose gel by 

the Geneclean method (Bio101, Inc.). The fragment was subsequently ligated 

to 15 ng of Sma1 digested pUC18 vector by standard blunt end ligation 

procedures (Maniatis et al., 1982). The final cloned product was then 

sequenced by the dideoxy-chain termination method of Sanger (1975) using 

the Sequenasen4 kit (United States Biochemical Company). 

RESULTS 

Genomic Southern 

The probe (Figure 111.1) hybridized to a major band of 3.9 kbp in bovine 

DNA digested with BamH1 (Figure III. 2). Rainbow trout digested with BamH1 

yielded three bands; 1.0, 2.0, and 4.2 kbp. The same DNA digested with Hind 

III demonstrated two bands at 4.0 and 4.3 kbp upon hybridization. Chinook 

DNA of 0.6, 1.65,1.8, and 4.1 kbp hybridized to the human probe when 

digested with BamH1. Hind III digestion of this DNA yielded 2.2, 3.8, and 4.1 

kbp fragments respectively. Coho DNA hybridized at 1.2, 2.4, and 3.8 kbp 

from BamH1 fragmentation, while the Hind III digestion led to a major 

hybridizing band at 2.3 kbp and a minor band at 1.7 kbp. 
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Figure 111.1. A schematic representation of pFIF subcloning. The Pst1-Pst1 

fragment was subcloned from the tetracycline resistant pBR322 plasmid from 

Genentech into the Pst1 site of the ampicillan resistant pUC-18 plasmid from 

Bethesda Research Laboratories. Hybridization analyses were subsequently 

carried out using the Pst1 to Pst1 fragment shown. A.) signal sequence, B.) 

coding region, C.) 3' non-coding region. 
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Figure 111.2. Genomic DNA from bovine, coho, and rainbow trout was digested 

with BamH1 and Hindi!, separated on a 1% agarose gel in 1 x TAE buffer, and 

probed with human 13-1FN gene sequences (see Figure 111.1). The resulting 

banding pattern is shown here. The lane designations are M, molecular 

weight markers comprised of Lambda DNA digested with Hind111, 1.) 

bovine/Hind111, 2.) rainbow trout/BamH1 , 3.) rainbow trout/Hindi'', 4.) 

chinook/BamH1 , 5.) chinook/Hind111, 6.) coho/BamH1 , and 7.) coho /Hindlll. 
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In Vitro RNA Analysis 

Cellular inducible IFN-like RNA was shown, by dot blot analysis, to 

hybridize to human DNA derived from the (i1 -IFN open reading frame. Each 

induction condition was examined with 20, 10, and 5 mg amounts of RNA 

spotted onto the filter (Figure 111.3). The relative increase in the amount of 

hybridizable RNA when compared to control uninduced RNA, was quantified 

by densitometric scanning with a BioRad model 620 densitometer (Figure 

111.3). Densitometric units of area for each 5, 10, and 20 gg spot were pooled 

for each condition and averaged. These average scores were then compared 

to the control pooled score. The results are a fold-yield increase over controls. 

Uninduced RNA harvested at either 3 or 5 h post exposure to MEM-0% 

FCS, as a negative control, possessed no 131-IFN specific nucleic acid 

detectable under these conditions. Hybridization was also negligible 

following cycloheximide treatment. Rosztoczy et al. (1971) published that 

DEAE-dextran treatment alone had no effect on RNA induction and was not 

run here. The RTG-2 cells exposed to poly I:C harvested at 3 and 5 h yielded 

a negligible increase in detectable RNA over the controls as well. Results 

indicated that RNA produced in the presence of poly I:C plus the protein 

synthesis inhibitor cycloheximide was induced 0.3-fold over controls and poly 

I:C alone. RNA induced by poly I:C/DEAE-dextran harvested at 3 h showed a 

2.8-fold increase over controls, while at 5 h that score increased to a 6.8-fold 

yield. Finally, the combination of poly I:C, DEAE-dextran and cycloheximide 

yielded the greatest number with a 8.7-fold increase over control RNA at 5 h. 

Figure 111.4 demonstrates graphically the kinetics of fish IFN transcription 

which, at least at early times post-induction, parallels transcription patterns 

found when mammalian IFNs are induced. 
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Figure 111.3. A dot blot of RTG-2 cell RNA induced under a variety of conditions 

is shown here. A. An autoradiograph of the dot blot results is shown here. 

The designated wells include: 1.) control RTG-2 cells, 2.) poly I:C induced 

RNA harvested at 3 h post-induction, 3.) poly I:C/DEAE-dextran induced RNA 

harvested at 3 h post-induction, 4.) poly I:C induced RNA harvested at 5 h 

post-induction, 5.) poly I:C/DEAE-dextran induced RNA harvested at 5 h post-

induction, 6.) cycloheximide treated cellular RNA harvested at 3 h post-

exposure, 7.) poly I:C/DEAE-dextran/cycloheximide treated cellular RNA 

harvested at 5 h post-induction, and 8.) poly I:C/DEAE-dextran/cycloheximide 

treated cellular RNA harvested at 3 h post-induction. Each condition contains 

20, 10, or 5 ug of whole-cell RNA. The blot was probed with the human 13-IFN 

Pst1 fragment (see Figure 111.1). B. Quantitation of the dot blot analysis was 

carried out using the BioRad model 620 densitometer. Quantitation was 

based on the average of the optical density peak areas for the three dots per 

condition. The horizontal axis represents induction conditions and the time of 

RNA harvest post-induction. The vertical axis represents fold induction 

compared to the control RNA. The lanes are designated 1.) control, 2.) 

cycloheximide, 3.) poly 1:C, 3 h, 4.) poly I:C, 5 h, 5.) poly I:C/DEAE-dextran, 3 h, 

6.) poly I:C/DEAE-dextran, 5 h, 7.) poly I:C/DEAE-dextran/cycloheximide, 3 h, 

and 8.) poly I:C/DEAE-dextran/cycloheximide, 5 h. 
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Figure 111.4. Interferon probe-hybridizable RNA is present at 3 h post-induction 

and continues to be present at 5 h post-induction. The presence of fish IFN-

like RNA at these times post-induction is similar to what has been 

demonstrated in the mammalian system. 



%
 In

cr
ea

se
 o

f H
yb

rid
iz

ab
le

 
R

N
A

 o
ve

r 
C

on
tr

ol
 R

N
A

 

I.
)

o)
co

0
0 

O
0 

O
 

O
0 



96 

In Vivo RNA Production 

Northern analysis of the in vivo induced RNA revealed that the 15 g 

fish-derived RNA hybridized to the human R1 -IFN probe. Long exposures of 

the film were necessary to yield an adequate signal from in vivo derived IFN-

like RNA. Figure 111.5 demonstrates the inducible IFN-like RNA species. Fish 

of approximately 15 g preferentially produce a 1.4 knt RNA species and 

sparingly produce a smaller 0.9 knt RNA species. It appears that the more 

mature 600 g fish preferentially produced the smaller 0.9 knt species and a 

smaller amount of the larger 1.4 knt species. 

PCR 

Figure 111.6 illustrates codon preference determined by pooling codon 

usages from the rainbow trout protamine gene (Dixon et al.,1 981), rainbow 

trout growth hormone gene (Agellon and Chen 1986), and the rainbow trout 

Mx gene (Staeheli et al.,1 989). The PCR primers designed acording to 

codon preference are shown in Figure 111.7. Figure 111.8 illustrates the PCR 

product sequence. Similarities were found when the PCR product was 

aligned with the hu-01-IFN sequence shown in Figure 111.8. A 36% similarity 

between the putative rt-PCR-IFN and hu-p-IFN was found. The predicted 

amino acid sequence of the PCR product is shown in Figure 111.9. Alignment of 

the putative amino acid sequence with both human type 1 IFNs demonstrated 

4 exact amino acid matches between all three IFN species. These 4 highly 

conserved amino acids are: Leu, Ser, Trp, and Val (Figure 111.9). 



97 

Figure 111.5. Induced and uninduced IFN-like RNA from rainbow trout liver was 

fractionated through a formaldehyde, 1% agarose gel. RNA was transferred to 

a nylon membrane and probed for sequences similar to human (3 -IFN. The 

hybridization pattern is shown here. Lane 1-4 contain 20 gg of total cell RNA 

while lanes 5-8 contain 40 gg of total cell RNA and represent a repeat of lanes 

1-4. Lane designations include 1.) 15 g fish; control, 2.) 15 g fish; poly I:C, 

3.) 600 g fish; control, 4.) 600 g fish; poly I:C. The arrowheads indicate bands 

unique to the induced lanes. 



98 

<1 .4 knt 
<0.9 knt 

Figure 111.5. 
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Figure 111.6. Codon preference from published rainbow trout sequences is 

shown here as the % of usage in the sequences examined. 
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ALA GCC 42% PHE UUU 81% LEU CUG 53% 

ILE AUC 60% VAL GUG 55% SER UCC 39% 

PRO CCC 53% THR ACC 38% TYR UAC 100% 

HIS CAU 54% GLN CAG 74% ASN AAC 78% 

LYS AAG 73% ASP GAC 71% GLU GAG 68% 

CYS UGC 67% ARG CGC 31% GLY GGA 36% 

Figure 111.6. 
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Figure 111.7. The nucleotide sequence of PCR primers #66 and #67 are shown 

with degenerate positions listed below the sequence line. The primer #66 

begins with amino acid number 33 and primer #67 begins with amino acid 

number 98. These amino acid positions designate the corresponding protein 

borders from the human 13-1FN gene sequence. 
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#66 

5' 3'

AAG GAC AGG ATG AAC TTT GAC
C C

lys-asp

#67 

3' 5'
TTA CAG ATA GTA GTC TAT TTG GTA

G C G
-asn-his-

Figure 111.7. 
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Figure 111.8. Human 01-1FN nucleotide sequence is shown in alignment with 

the fish PCR IFN-like product sequence. The human 131-IFN sequence begins 

at nucleotide 354. The predicted amino acid sequence of the fish product is 

shown. The asterisks indicate shared homology at the nucleotide level. A.) 

human 13 -IFN, B.) fish PCR product 
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PL ser ser leu his leu lys arg tyr tyr gly arg ile leu his tyr
agc agt ctg cac ctg aaa aga tat tat ggg agg att ctg cat tac
* * * ** * * ** * * * ** * * * * 

B. aac aca ctt get cag caa ata ccc ttg cca tac atg tta cgt ttt
asn thr leu ala gln gln ile pro leu pro tyr met leu arg phe

A. leu lys ala lys glu tyr ser his cvs ala tro thr ile val arcs 
ctg aag gcc aag gag tac agt cac tgt gcc tgg acc ata gtc aga
* * ** ** * * *** * * ** *

B. ttt tct caa ttg cgt aca agc cat ttt tgg atc tgt gtt gaa
phe ser gln leu arg thr ser his phe trp ile cys val glu

A. val glu ile leu arg asn phe tyr phe ile asn arg leu thr 
gtg gaa atc cta agg aac ttt tac ttc att aac aga ctt aca g
** * * * * *** * * * * * * * ** 

B. atg tat cta cag cag aac aat gtg tac cat cag ata aac cca t 

met tyr leu gln gln asn asn val tyr his gln ile asn thr 

Figure 111.8. 
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DISCUSSION 

In 1983, Wilson et al. surveyed a wide variety of vertebrate and non-

vertebrate species for the presence of human a- and f3-IFN hybridizing 

sequences. Human a-IFN DNA hybridized to many mammalian and non-

mammalian DNA genomes but did not hybridize to perch (Perca fluviatilis), 

clawed frog (xenopus iropicalis), or invertebrate DNA. 13-IFN sequences 

could be detected in many nonmammalian species ranging from "birds to 

bony fish". The fish species examined for P-IFN sequences included perch 

(Perca fluviatilis), minnow (Phoxinus phoxinus), dace (Leuciscus leuciscus), 

and stone loach (Noemacheilus barbatulus). In all cases, faint bands were 

detectable upon Southern blot hybridization ranging in size from 3.8 kbp to 

approximately 8.0 kbp. 

Leung et al. (1984) surveyed mammalian genomes from human, 

bovine, feline, murine, porcine, and equine sources, for the ability to hybridize 

to human and bovine 13-IFN gene probes. Bovine DNA was found to possess 

a p-IFN multigene family. Murine, feline and human DNA were determined to 

contain only a single 13-IFN gene or a very small multigene family in their 

respective genomes by hybridization. Equine and porcine DNA was found to 

contain multiple copies of f3-IFN, as was found in the ungulates. 

Zoo-blots were carried out here to examine the distribution of IFN-like 

sequences among Oncorhynchus species. The Southern blot contained 

bovine DNA as a control as well as rainbow trout, coho salmon, and chinook 

salmon genomic DNA. The probe, human 131-IFN from Genentech, hybridized 

to a major band of 3.5 kbp in bovine DNA digested with Hind III, as well as two 

minor bands at 2.0 and 2.4 kbp. Rainbow trout genomic DNA, digested with 
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Figure 111.9. Human a -IFN, beginning at amino acid 107, and human 13-IFN, 

beginning at amino acid 110, were aligned with the predicted amino acid 

sequence of the fish PCR product. Note #1-#4 are highly conserved amino 

acid positions between all three IFNs. Sequences shared by the PCR product 

and either the a or P-IFN sequence are boxed. A.) human a-IFN, B.) rainbow 

trout sequence, and C.) human 0-IFN. 
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1

A- GLU THR PRO LEU MET ASN ALA ASP SER ILE LEU ALA VAL LYS
B- alu thr asp val leu cys leu tyr asn thr leu ala gln gln
C- ASP PHE THR ARG GLY LYS LEU MET SER SER LEU HIS LEU LYS

A LYS TYR PHE ARG ARG ILE THR LEU TYR LEU THR GLU LYS LYS TYR
B- leu pro leu pro tyr met leu arg phe phe ser gln leu arg thr
C- ARG TYR TYR GLY ARG ILE LEU HIS TYR LEU LYS ALA LYS GLU TYR

2 3 4
A SER PRO CYS ALA TRP GLU VAL VAL ARG ALA GLU ILE MET ARG SER
B- ser his phe trp ile cys val glu met tyr elu gln gln asn
C- SER HIS CYS ALA TRP THR ILE VAL ARG VAL GLU ILE LEU ARG ASN

Figure 111.9. 
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BamH1, yielded three bands of 1.0, 2.0, and 4.2 kbp. The same DNA digested 

with Hind III demonstrated two bands at 4.0 and 4.3 kbp upon hybridization. 

Chinook DNA was found to possess four hybridizing bands of 0.6, 1.65,1.8, 

and 4.1 kbp when digested with BamH1. Hind III digestion of chinook DNA 

yielded 2.2, 3.8, and 4.1 kbp fragments. Coho DNA hybridized at 1.2, 2.4 and 

3.8 kbp from BamH1 fragmentation while the Hind III digestion led to a major 

band at 2.3 kbp and a minor band at 1.7 kbp. It is well documented that 

ungulates possess a multigene f3-IFN family. The multiplicity of hybridizing 

bands found within the salmonid genomes, under conditions of moderate 

stringency, indicated that fish may also contain a multigene family of at least 

three (3 -IFN -like genes or pseudogenes. 

p-interferon is an inducible gene product which is under tight control 

and which itself regulates the gene expression of many other gene products. 

Interferon has been well documented as inducible in the presence of 

mitogens, polyribonucleotides, such as poly and viruses. Experiments 

using Newcastle's Disease Virus (NDV) appear to induce both a- and 13-IFN 

from L-cells (Hiscott et al., 1984), while poly I:C is believed to preferentially 

induce fibroblast (f3)-IFN over leukocyte (a)-IFN. Therefore, poly I:C was 

preferentially utilized over viral inducers as an IFN inducer in these 

experiments. 

Rainbow trout gonad-2 fibroblast cells (RTG-2), maintained in tissue 

culture, were analyzed for their ability to producep-IFN-specific RNA under a 

variety of inducing conditions. These conditions have been well documented 

for mammalian species previously examined. These conditions include early 

harvest of RNA, induction with the polyribonucleotide poly and utilization 
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of both the protein synthesis inhibitor cycloheximide and DEAE-dextran which 

enhances the permeability of cell membranes. 

Rainbow trout fibroblast IFN-like RNA was examined at early times 

post- induction. The rational behind this time choice was made according to 

research done by Cavalieri et al. (1977). Cavalieri analyzed human fibroblast 

IFN RNA from 0-10 h post-poly I:C induction. Their research was based on the 

capacity of the induced IFN RNA to program the biosynthesis of biologically 

active IFN protein in Xenopus laevis oocytes. Cavalieri et al. concluded that 

poly I:C-induced IFN accumulated for 1-2 h post-induction but was then 

rapidly degraded with a half-life of 18 min. 

Interferon mRNA production has been postulated to be regulated by 

negative control mechanisms at both the transcriptional and translational 

level. When cells are treated with the transcription inhibitor Actinomycin D, 

mRNA continues to accumulate in poly I:C treated cells (Raj and Pitha, 

1983). Tan and Berthold (1977) postulated the existence of a rapidly turned-

over repressor and demonstrated that inhibitors of protein synthesis could 

induce IFN synthesis presumably by reducing the effective level of this 

repressor. Cycloheximide prolongs the synthesis of IFN RNA by this 

phenomenon known as superinduction (Vilcek, 1970). Greater than a 100 

fold increase in message levels has been described in the case of human 

cells by superinduction. Treatment of cells with cycloheximide elongated the 

time of accumulation of intact IFN RNA, in concert with poly I:C induction, as 

long as 3 h post-induction. In the presence of cycloheximide, the RNA half-life 

increased from 18 to 49 min (Cavalieri et al., 1977). 

Interferon production is also known to be enhanced by DEAE-dextran. 

Rosztoczy (1971), demonstrated that DEAE-dextran alone was incapable of 
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both virus titre inhibition and induction of any IFN activity. However, DEAE

dextran amplified the level of IFN mRNA by presumably increasing 

permeability of the cell membrane to the potent IFN inducer poly I:C. Together 

DEAE-dextran and poly I:C accentuated the production of IFN over poly I:C 

treatment alone. DEAE-dextran is also thought to diminish the possible effects 

of RNases on poly I:C, thus effectively increasing the presence and induction 

capabilities of the polymer poly I:C (Stewart II et al., 1972). 

According to this information, rainbow trout RNA was induced in a 

manner which would optimize both the production and accumulation of RNA 

and decrease the rate of transcript degradation. As described in the Materials 

and Methods section, IFN RNA was induced at either 3 or 5 h post-induction. 

It was determined that by 5 h post-induction, in the presence of both 

DEAE-dextran and cycloheximide, IFN-like RNA was easily detectable. There 

was a 87% increase over uninduced cells by this method. It is unclear how 

long the level of IFN mRNA accumulation continues in fish cells following 

induction, but it is clear that by 5 h post-induction the levels are well above 

control, uninduced levels. 

These inducible messages were subsequently evaluated for their 

length and compared to previously described f3-IFN messages. Following IFN 

induction in the presence of poly I:C and cycloheximide, Sehgal and Sager 

(1980) isolated the polyadenylated population of FS-4 cell cytoplasmic RNA 

and found that two populations of message were produced. By microinjecting 

fractionated RNA species into Xenopus laevis oocytes for in vitro translation 

and IFN activity analysis, the investigators were able to resolve two 

translationally active RNA populations. There was an abundant 1.3 knt 

species and a less abundant 0.9 knt species. Hybridization to fractionated 
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rainbow trout RNA by northern blot analysis using the human p-IFN Pst1-Bgl II 

fragment demonstrated predominantly the 0.9 knt RNA species. A 1.3 knt 

0-IFN "long" transcript was found to be inducible but not greatly affected by 

prior priming with (3 -IFN protein (Nir et al., 1985). The investigators were able 

to verify that the transcripts all originated at primarily the main 3 -IFN start point 

by nuclease S1 mapping. A minor internal start site was also found. Mapping 

of the 3' end mRNAs concluded that the transcripts were colinear with the 

main 0.9 knt transcript. 

Poly I:C inducible in vivo IFN RNA production was analyzed from 

two size/age groups of rainbow trout, Oncorhynchus mykiss. Fish RNA was 

probed with the Pst 1-Bgl II fragment of human p-IFN containing most of the 

coding sequence. This probe was able to detect both a 1.4 and 0.9 knt IFN 

RNA species from fish liver RNA. It has been demonstrated that it is very 

difficult to visualize any RNA produced by poly I:C induction alone so a two 

week exposure was necessary to visualize the RNA species induced (Tovey 

et al., 1987), thus explaining the high background. 

Developmentally, it appears that the small 15 g fish utilize the larger 

1.4 knt IFN mRNA preferentially while at later times in life, at an as yet 

undetermined time but before they reach 600 g, they switch production of IFN 

RNA to primarily the smaller species. 

In the fish, the two RNA species found by northern analysis could have 

arisen from a number of potential sources. As fish diverged from mammals 

200 to 400 million years ago, it is possible that the fish IFN may not have 

diverged as much in fish as they have within humans. Alternatively, they 

represent two different RNA species arising from varying processing events 
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ocurring from the same DNA template which would be representative of 

colinear, poly I:C inducible genes containing some or all of the 3' 2/3 of the 

13-IFN gene and/or some of the 3' flanking downstream sequences. More 

analysis needs to occur before these questions will be satisfactorily 

addressed. 

In vitro, amplification of specific DNA sequences corresponding to 

rainbow trout 13-IFN was carried out. The polymerase chain reaction (PCR), as 

originally described by Saiki et al. (1985) specifically amplified a DNA 

segment as defined by flanking oligonucleotides. The sequence utilized as 

the master template for these flanking oligonucleotides was published by 

Derynck et al. (1980) and corresponded to the human 13-IFN gene. The level of 

homology is apparent, although not striking, at 40% when compared to human 

(31 -IFN. 

In conclusion, the Oncorhynchus species examined here appear to 

contain a multigene 13-IFN-like family of genes. Representatives of this family 

demonstrate classic inducible transcription patterns described for more well 

documented mammalian IFN genes. 

Due to the inherent stress factors involved in hatchery rearing and the 

ubiquitous nature of viral pathogens, it is necessary to implement the most 

inclusive, low cost methods of prophylaxis. Ideally, classic viral vaccines in 

conjunction with a non-vaccine antiviral stimulant such as the cytokine, IFN, 

would be the best approach. Using the expensive bulk polyribonucleotide, 

poly I:C, as an IFN inducer would be a simple way to approach hatchery 

management. However, despite the fact that these products have been used 

in clinical antiviral and cancer trials, they elicit undesirable side effects. 

Clinically, poly I:C has been responsible for pyrogenic episodes, leukopenia, 
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and hypotension (Stringfellow, 1980). Another undesirable condition is 

known as hyporesponsiveness which occurs after repeated doses. 

Hyporesponsiveness is described as the temporary loss of the ability to 

respond fully to the applied inducer effectively eliminating its role as an 

antiviral agent (Stringfellow et al.,1987). In lieu of the concepts of toxicity and 

hyporesponsiveness it is undesirable as well as financially prohibitive to 

consider nucleoside polymers as viral prophylaxis in large scale fishery 

management protocols. Therefore, it is imperative to produce a low cost 

product which would boost the non-immune first strike mechanisms against 

fish pathogens. 
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Retroposon-like Elements Found Within the Genome of

Oncorhynchus mykiss: Fish Repetitive Elements
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Department of Microbiology
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ABSTRACT 

Most Oncorhynchus species (Kido et al., 1991) examined to date have 

been shown to contain repetitive elements possessing signals for 

polyadenylation and polyadenylate tracts. Winkfein et al. (1988) have 

reported the presence of repetitive sequences in the genome of the rainbow 

trout known as RSg-1 elements. These elements possess poly A tracts at the 

3' end of the element, a concensus polyadenylation signal, and redundant 

terminal sequences characteristic of retroposons and similar to the protamine 

pseudogene p101, another retroposon-like element found in the rainbow trout 

genome. We report two sequences found in the genome of rainbow trout 

(Oncorhynchus mykiss). These genes share similarities with the RSg-1 and 

p101 elements at the extreme 3' end of the element in that they contain poly A 

tracts and polyadenylation signal sequences. However, one of the elements 

reported here diverges from the RSg-1 elements by the presence of reverse 

transcriptase-like sequences which have not been found previously within the 

genome of Q. mykiss. We report the finding that the Ll retroposon elements 

possessing pol (ORF2) sequences described extensively within mammalian 

genomes is also represented within the genome of rainbow trout. 
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INTRODUCTION 

Genomic DNA is comprised of not only discrete genetic elements but 

also highly or moderately repetitive DNA sequences. Historically, repetitive 

elements have been considered garbage or stuffer DNA; however, their 

presence may provide clues concerning species evolution. These repetitive 

elements are dispersed within mammalian genomes and found to occur at a 

frequency of 104 or more (Singer, 1985; Jelinek et al., 1982). In some cases 

they represent the majority of the genome as in the case of the rainbow trout, 

whose genome consists of 84% repetitive elements (Schmidke et al., 1979). 

Repetitive elements are found to be as simple as dyad repeats and as 

complex as pseudogenes and retroposons (Winkfein et al., 1988). 

Retroposons possess structural elements which suggest their genesis by 

reverse transcription, i.e. sequence bounded by a repetitive (A)-rich tail at the 

3' side, and direct terminal repeats of flanking sequences at the 5' and 3' 

ends. Retroposons are found in both the viral superfamily as retroviruses and 

the nonviral superfamily comprised of processed pseudogenes, RNA 

polymerase II transcipts including LINE elements (Singer, 1985) and RNA 

polymerase III transcipts including heterologous tRNA composites and SINES 

(Weiner et al., 1986). The nonviral retroposons generate target site 

duplications, and contain poly adenylation signals and A-rich 3' regions 

(Rogers, 1985). 

We report the isolation of two rainbow trout retroposons. They both 

contain polyadenylation signals, extensive polyadenylate tracts and a 

84 by 3' element homologous to other fish retroposon sequences (Winkfein et 

al., 1988; Koishi and Okada, 1991). However, they do not share any 

homology with tRNA sequences found in fish SINE elements (Matsumoto et 
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al., 1986) and do not contain any sequences similar to the 5' region of the 

salmonid Hpa-1 elements (Koishi and Okada, 1991). One sequence, #17 

reported here, contains unique sequences homologous to retroposon 

polymerase sequences, which places this rainbow trout element within the 

LINE classification of repetitive elements. The "pole gene-like sequence has 

never been described before and appears to be restricted to rainbow trout. It 

is not highly represented within coho sequences and not found in bovine 

sequences. 

MATERIALS AND METHODS 

Screening a Lambda Genomic Library 

A Lambda-Dash IITM (Stratagene) vector-based rainbow trout genomic 

library (Figure IV.1) was obtained from Dr. Tom Chen (University of Maryland, 

Baltimore). An initial titration of the library was performed to determine the 

volume of bacteriophage necessary to yield 5 x 105 phage plaques for 

screening. The phage preparation was diluted 1:100 in TMG buffer (Maniatis 

et al., 1982). It was determined that 5 ILI of this phage dilution were sufficient 

to yield approximately 8000 phage plaques per 150 cm2 plate. 

Preparation for Phage Screening 

Luria-Bertani (LB) plates (50x 150 cm2) were prepared and allowed to 

dry for three days so that the plates did not contain any excess water. The E. 

oh. cell line necessary for phage attachment and replication, LE392, was 

prepared as follows. The bacterial cells, strain LE392, were streaked on an 

LB plate and grown at 37°C overnight. An isolated colony was transferred 

from the fresh plate into 100 ml of LB containing 2 ml of sterile 20% maltose in 

a 500 ml Erlenmeyer flask. The flask was shaken at 37°C until the 0.D.600 

reached approximately 1.0. Cells were then concentrated by centrifugation in 
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Figure IV.1. Schematic representation of the parent Lambda-Dash IITM 

(Stratagene) phage cloning vector. Rainbow trout genomic fragments were 

engineered into the BamH1 site by Dr. T. Chen at University of Maryland. 
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50 ml conical tubes at 2500 x g for 10 min and resuspended in 25 ml of cold 

sterile 10 mM MgSO4 on ice. This yielded approximately 2 x 108 cells per ml. 

An aliquot of 200 pl of cells was combined with 5 p.I of a 1:100 dilution of 

phage described above. The bacteriophage were allowed to adsorb for 20 

min at room temperature. The infected cells were then plated out in 7.5 ml of 

LB top agar containing 10 mM MgSO4, onto the LB plates. Cell lawn growth 

was observed for 4 h at 37°C for the emergence of plaques. Following plaque 

formation, the plates were placed at 4°C for 30 min. 

For plaque lifts, each plate was numbered along with a circular 

nitrocellulose disc (Schleicher and Schuell). Filters were gently applied to the 

soft agar overlay until completely wet, approximately 5 min. Orientation holes 

were poked through the nitrocellulose filters and correspondingly marked with 

a pen on the plate. Nitrocellulose filters were then lifted and allowed to air dry, 

cell side up, for 30 min. The filters were then consecutively laid on Whatman 

3 mm paper soaked in 1) 0.2 M NaOH, 1.5 M NaCL, 2x 5 min.; 2) 2x SSC and 

0.4 M Tris, pH 7.4, 2x 5 min; and finally 3) 2x SSC lx 5 min. The filters were 

then air-dried for 1 h and baked at 80°C for 2 h under vacuum. 

The filters were then probed with a DNA sequence containing the 3' 

end of the human 8-IFN gene and its poly A tract (David Leung, Genentech) 

(Figure IV.2). Filters were pre-wetted with 2x SSC and then treated with the 

prehybridization mixture; 5x SSC, 0.2% SDS, 0.1% N-lauryl sarcosine, 40% 

formamide and 4% Boehringer-Mannheim blocker, for 4 h at 42°C. The Pst1

Pst1 fragment described in Figure IV.2 was labeled to 1 x 108 cpm/ug using 

the Boehringer-Mannheim random-labeling kit. The labeled probe was boiled 

for 3 min and 200 ng of the probe was added to the prehybridization mix and 

allowed to hybridize at 42°C overnight to the Southern blot. Blots were then 
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washed twice in 2x SSC, 0.2% SDS at room temperature for 15 min each , 

twice in lx SSC, 0.1% SDS at room temperature for 15 min each, and once in 

0.1x SSC, 0.1% SDS at 42°C for 15 min. Blots were exposed to XAR-X-ray 

film and positive plaques were located. Of 5 x 105 phage particles, 20 positive 

plaques were isolated. The twenty plaques were then plaque purified three 

times. 

The DNA from 20 bacteriophage lambda recombinants was purified by 

the following protocol adopted from Methods in Molecular Biology, 1986. 

The bacterial cell line of Escherichia c.gi, LE392, was prepared as 

described above for phage infection. One hundred III of LE392 were added to 

10 ml of Luria-Bertani (LB) broth containing MgSO4 to a final concentration of 

10 mM in a 17 X 100 mm polypropylene snap cap tube. An agar plug 

containing a well-isolated single plaque was removed with a sterile Pasteur 

pipette from a master plate and placed in the LB mixture. The 

cell/bacteriophage mixture was placed in a 37°C shaker for 12 h, until lysis 

was apparent; cell debris was seen on the bottom of the tube while the 

supernatant appeared clearer than a cells-only control tube. Following lysis, 

100 gl of chloroform were added to each of the 20 10 ml tubes and shaken for 

2 h at 37°C. The tubes were then centrifuged at room temperature for 10 h at 

8,000 rpm to remove bacterial debris. The aqueous phase was then removed 

to a new 50 ml sterile tube. The DNA contained within the 10 ml lysate was 

then further purified by the following method: 

To the 10 ml lysate, 2 ml of a 25% PEG-6000 2.5 M NaCI solution were 

added. The mixture was swirled and placed on ice for 15 min. The phage 

particles were then precipitated by centrifugation at 10,000 rpm for 15 min. 

The supernatant was discarded and the tubes were spun for 5 min more at 
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Figure IV.2. Pst1 to Pst1 fragment of the human 13-IFN gene used as the 

phage library probe. Note long poly A tract which hybridized to retroposon 

poly A sequences. 
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5'- Pst1 
I 

gaag aaaaactgg ag aaag aagattttaccagg gg aaaactcatg ag cagtctgcacctg as 

aagatattatggg agg attctgcattacctg aagg agtacagtcactgtgcctggaccatagtcagagtgg a 

aatcctaagg aacttttacttcattaacagacttacaggttacctccg aaactg aagatcttcctagcctgtccct 

ctgggactggacaattgcttcaagcattcttcaaccagcagatgctgtttaagtgactgatggctaatgtactgc 

aaatgaaaggacactagaagattttgaaatttttattaaattatgagttattttttatttatttaaattttattttggaaaat 

aaattattttttggtgcaaagtcAAAAAAAAAAAAAAAAAAAAAAAAAAAA Pst1 

Figure IV.2. 
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5,000 rpm to bring down any remaining liquid on the side of the tube. The 

pellet was resuspended in 4001x1of TM buffer (50 mM Tris, pH 7.4, 10 mM 

MgSO4) and placed in a sterile 1.5 ml microfuge tube. RNase A (2 ill of 

10 mg/ml) and DNase I (2 gl of 1 mg/ml in 2.5 mM HCV50% glycerol) were 

added, gently mixed and set at room temperature for 30 min. Following 

incubation, the solution was then extracted with phenol (pH 8.0) one time, 

followed by a chloroform extraction. The aqueous phase was then 

precipitated with 1/10 volume of 3 M NaOAc (pH 4.8) and 2 volumes of 95% 

ethanol for 20 min at -20°C . The chilled solution was then centrifuged in a 

Beckman microcentrifuge for 5 min and the subsequent pellet was rinsed with 

150 gl of 80% EtOH and finally dried under vacuum. The final pellet was 

resuspended in 5011.1TE. 

Phage Southern 

Phage DNA was digested to completion with either EcoR1 or Xba1 and 

separated on a 0.8% agarose gel in the presence of lx TAE. DNA was 

transferred to a nylon membrane (Schleicher and Schuell) by capillary action 

in the presence of 20x SSC as described by Maniatis et al. (1982). Following 

transfer, the membrane was rinsed with 5x SSC to remove any gel fragments 

and UV cross-linked. The membrane was then prehybridized and hybridized 

as described above. Fragments were probed for the presence of 

polyadenosine sequences, as described above. 

Sequencing 

Positively hybridizing fragments were subcloned and sequenced for 

content by the manufacturers' instructions for SequenaseTM (Pharmacia) using 

35S-dCTP or 32P-dCTP (Amersham) and the Sanger dideoxy-sequencing 

methodology. Sequences were fractionated on 6.6% polyacrylamide gel 
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matrices, dried on a BioRad gel dryer, exposed to XAR-X-ray film and read. 

Sequences were compared with the Gen Bank and EMBL sequence 

databases for homology and alignment properties. The BESTFIT and GAP 

programs (IntelliGenetics, Inc.) were utilized. 

Genomic Dot Blot 

Bovine, coho, and rainbow trout liver genomic DNA were prepared as 

described by Maniatis et al. (1982) and probed by dot blot analysis for the 

presence of polymerase-like sequences present in the representative 

genomes. The oligonucleotide used for probing purposes was 

oligonucleotide H-12, constructed from the sequence TTG CAT TGT AGT All 

AAC ATG TTT TAA TAT TTG TGC, which corresponds to the unique 

polymerase-like sequences found in the rainbow trout genome. H-12 was 

constructed in the antisense orientation. The oligonucleotide is marked in 

Figure IV.6 as the #2 arrow. Bovine, coho, and rainbow trout genomic DNA 

were immobilized onto a NytranTh nylon membrane using a dot manifold 

suction device (Schleicher and Schuell). Dilutions of DNA containing 10, 5, 

and/or 2.5 p.g carried in 100 p1 of 5x SSC, held at 65°C for 10 min, and chilled 

on ice for an additional 5 min. The DNA was applied to the manifold device 

and drawn onto the membrane until dry. An additional 100 gl of 10x SSC 

were passed through the wells and suction was applied for an additional 

5 min. The device was then disassembled and the blot removed for further 

treatment. The membrane was treated for 5 min with 0.4 M NaOH followed by 

neutralization with 1 M Tris, pH 7.4. The DNA was subsequently fixed to the 

membrane by UV cross-linking. Prehybridization was carried out as 

described above. Hybridization was carried out with 1 x 109 cpm 32P-7 ATP-

labeled oligo H-12 at 55°C for 18 h. The blot was subsequently rinsed 4x for 5 



126 

min each in 2x SSC, 0.1% SDS at room temperature and exposed to XAR-X

ray film. 

RNA Dot Blot 

Two-fold dilutions of total cellular RNA were applied to a nylon 

membrane using a dot blot manifold (Schleicher and Schuell) beginning with 

2.5 lig of RNA. The RNA samples were derived from RTG-2 cells (rainbow 

trout gonad cells) or Vero cells (African green monkey kidney cells). The RTG

2 cells had been treated with either cycloheximide, poly I:C, or DEAE-dextran 

alone or in combination before RNA was extracted from these cells. These 

combinations included poly I:C + DEAE-dextran, poly I:C + cycloheximide, or 

poly I:C + DEAE-dextran + cycloheximide. The RNA samples were prepared 

by the RNAzol method. Samples are diluted to a final concentration of 50% 

formamide, 17% formaldehyde and lx SSC before heating to 68°C for 15 min 

and then chilling in ice for 2 min. Samples were then diluted with 2 volumes 

of 20x SSC. The manifold was assembled with blotting paper and a nylon 

membrane presoaked in 10x SSC. Once the apparatus was assembled, 1 ml 

of 10x SSC was applied to each well before each sample was applied. 

Finally, 1 ml of 10x SSC was applied to wash each sample. After an 

additional 5 min of suction was applied, the apparatus was disassembled. 

The membrane was air-dried and subsequently UV cross-linked with a 

Stratagene UV Stratalinkermi 1800. Blots were hybridized with the 

oligonucleotide probe, H-12, described above in the presence of 6xSSC, 

0.5% SDS and 5x Denhardt's (50x stock: 1% Ficoll, 1% polyvinylpyrrolidone, 

1% BSA) at 65°C for 6 h. Blots were then washed with 2x SSC, 0.5% SDS at 

room temperature for 4x at 5 min for each wash and exposed to film for 24 h. 
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RESULTS

Phage Screening 

The rainbow trout liver genomic library was screened with a 

radiolabeled probe from the human 13-IFN gene (Figure IV.2). The initial 

screen of 5 x 105 phage plaques yielded ten positive phage clones after three 

plaque purification steps (Figure IV.3). The DNA from each phage clone was 

prepared and analyzed by restriction endonuclease digestion. Subsequent 

Southern blot hybridization of the restricted DNA identified the phage DNA 

fragments containing the hybridizing sequence (Figure IV.4). The phage 

clones were numbered 1, 3, 5, 6, 10, 15, 17, 18, 19, and 20. EcoR1 restriction 

analysis yielded positive fragments in phage # 1, 5, 6, 10, 17 and 20. Phage # 

1, 5, 17, and 20 were chosen for further analysis and the hybridizing fragment 

for each clone was 8.0 kbp (#1), 5.8 kbp (#5), 5.0 kbp(#17), and 3.8 kbp (#20). 

Phage #5 and #6 appeared to possess the same restriction fragment and 

were assumed to be the same clone. Subclone analysis (not shown) yielded 

smaller fragments which were subsequently cloned into pUC18 and 

sequenced. This produced a 2.5 kbp Sph1 fragment for phage clone #5 and 

a 4.3 kbp Xba1 fragment for phage clone #17. 

Sequence Analysis 

The Sph1 fragment for #5 and the Xba1 fragment for #17 were 

sequenced and found to resemble retroposon-like elements. The Sph1 (#5) 

gene fragment (Figure IV.5) and the Xba1 (#17) gene fragment (Figure IV.6) 

both possess long polyadenylated 3' sequences directly downstream from 

AAATAAA polyadenylation signals. The sequences also possess 3' terminal 

direct repeats. The Xba1 (#17) fragment was found to contain, in addition, a 

"poi" gene sequence in open reading frame 2. The "pol" gene sequence 
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Figure IV.3. Circles A-D represent the stages in obtaining pure phage clones. 

A. Initial screening showing hybridization to a single positive plaque (arrow 

head). B. Replating of phage from original plaque and screening of the 

plaque by hybridization with radiolabeled probe. C. Third plating of phage 

from a positive plaque taken from plate B. D. Negative control. Hybridization 

was to a human 13-IFN probe containing a poly A tract. Large outer dots are 

orientation markers which were added with India ink. 
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Figure IV.4. Restriction analysis and Southern blot hybridization of cloned 

phage DNA. The DNA obtained from each purified phage clone preparation 

was digested with EcoR1 and then separated on a 1% agarose gel. The 

separated DNA was then transferred to a nylon membrane and probed for the 

presence of poly A sequences. Letters above the lanes represent the 

designated number for each phage isolate: a.) #1, b.) #3, c.) #5, d.) #6, e.) 

#10, f.) #15, g.) #17, h.) #18, i.) #19, and j.) #20.. M; molecular size markers 

consisting of Hindill digested Lambda DNA fragments with the corresponding 

size in by on the right, C; control phage DNA with no insert. A. Ethidium 

bromide staining of restricted fragments. B. Positive hybridization banding 

pattern with the corresponding phage clones lettered above. 
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resembles the reverse transcriptase like sequence found in the C2. simulans 

retroposon 297 (Matsuo et al., 1986). There was a 64% similarity between 

these two sequences at the nucleotide level. Both #17 and #5 sequences 

possess, at the 3' end, a 84 by cassette that is highly conserved among this 

class of retrotransposons. The 84 by cassette is also found within tRNA-like 

retroposons and RSg-1 elements which appear to be highly conserved 

among these sequences. An alignment of the RSg-1 3' cassette with the #17 

3' cassette demonstrated an 81% sequence homology between the two 

elements (Figure IV.7). 

DNA Dot Blot 

Rainbow trout genomic DNA and, upon long exposure, coho DNA were 

found to hybridize to polymerase-specific sequences (Figure IV.8). Bovine 

genomic DNA does not hybridize to the fish derived probe. It is apparent that 

the sequences are restricted to the fish genomes examined here. 

RNA Dot Blot 

Dot blot analysis concluded that RNA was not produced in a steady 

state from the polymerase-like retroposon element, but under the induction 

conditions where cycloheximide, poly I:C and DEAE-dextran were present, 

some hybridization was detectable (Figure IV.9). 

DISCUSSION 

Repetitive elements are widely dispersed within eukaryotic genomes 

(Singer, 1985). Their genesis and purpose is unclear; however, many of them 

possess sequences characteristic of RNA such as polyadenylation signals 

poly A tracts and the lack of introns. The presence of these elements suggests 

that these elements arose from a reverse transcription event and/or 

subsequent transposition (Weiner et al., 1986). A class of common repetitive 
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Figure IV.5. Retroposon sequence derived from clone #5, a rainbow trout 

genomic clone. The DR is an element found as a direct repeat in the 

sequence analysis of clone #17 DNA, shown in figure IV.6. The DR is only 

represented one time in clone #5. The polyadenylation signal is boxed and 

the 51-A rich region is underlined. The hatched region indicates homologous 

sequences between #5 and #17 while the asterisk represents divergence 

between the two sequences. The sequences shown upstream from the DR 

element are unique to #5 and not found within #17. 
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1 acaagctagc atcctgtatt gtactcagta atgttcagcg tgtaataata 

51 gctgttgaca gcaattatag aaattagttg ttggcataca ttatacagct 

101 tttagccaca gttgaatgtg tatatttatt gtccaattga ttaagtgtat 

151 tacatattca atcaatcctt atctCkgggc ggcagggtag cctagtggtt 
DR

201 agagclttgg actagtaacc ggaaggttgt gagttcaaac ccccgagctg
III! lllllll *

251 acaaggtaca aatctgtcgt tctgcccctg aacaggcagt taacccactg

301 ttcccaggcc gtcattgaaa ataagaattt gttcttaact gacttgcctgIIIIIIIIII WIWI!,llllllllll It llllllll I lllll 1111

351 gtjtaaataa4 ggtaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa
il

401 aaaaaaaaaa aaaatcccag tctgctgttc ccacatgctt caagg

Figure IV.5. 
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Figure IV.6. Retroposon sequence derived from clone #17, a rainbow trout 

genomic clone. Retroposon-like features are highlighted. 1.) Reverse 

transcriptase-like sequence is indicated by the asterisks. Each asterisk 

designates a nucleotides identity with the "pol" gene sequence in retroposon 

297 of D, simulans. 2.) Oligonucleotide H-12 used for genomic DNA blotting. 

3.) Direct repeats (DR), 4.) polyadenylation signal, and 5.) 54-A rich region. 

The hatched region of similarity shown in figure IV.5, is located in the same 

position here between the DR element and the poly adenylation signal. 



136 

5' * ** * ** ****** *

1 cgctctagaa ctagtggatc tgtacttttg tjtatatataa aatattgata

****** *** ****** * * ****** ******* * *******
51 aatawacaa atattaaaac atgttaatac tacaatqcaa tactatgcaa 

** ** * ** **** * *** 121 
101 ttcaatgtac tgtaatacaa ttgalctgta ggtaccaatc ttctgtcaca 

151 ccctgatggt ttcacctgtc tttgtgcttg tctccacccc cctccaagtg 

201 ttgcctatct tccaaatatc cctgtgtatt tatacctgtg ttctctgttt 

251 gtctgttgcc agttcgtctg tcaggcttac cagcgtgctt ttccatcttt 

301 cctgcttctc aagtttctgt tcctagtttc cccggttctg accattctgc 

351 ctgccctgac cccgagcctg cctgccatgc tgtgcctgcc tgaccctgac 

401 ccgattacca acctggggcg gcagggtagc ctagtggtta gagcgggggc 

DR DR 

451 ggcagggtag cctagtggtt agagcgttgg actagtaagc ggaaggttgc 

501 gagttcaaac ccccgagctg acaaggtaca aatctgtcgt tctgcccctg 

551 aacaggcagt taacccactg ttcccacc gtcattgaaa ataagaattt 

601 gttcttaact gacttgcctg gt aaataa ggtaaaaaaa aaaaaaaaaa 

651 aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaatcc cagtctgctg 

701 ttcccacatg cttcaagagg gccaccattg tcccttgttc ccaagaaaac 

751 taaggtaa 

Figure 1V.6. 
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Figure IV.7. The RSg-1 consensus sequence from Winkfien et al. (1988) is 

aligned with the 3' end of the #17 DNA sequence here. The starting base pair 

positions are indicated. The dotted line indicates identity between the two 

sequences while nucleotides listed in the RSg-1 sequence line indicate 

dissimilarity at positions indicated. RSg-1 lacks an extensive poly A tract. 
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4'17 seq 568 by ....ctg ttcccaggcc gtcattgaaa ataagaattt 
RSg-1 496 by ....tgt... gg t.. .ca t ....g c. 

gttcttaact gacttgcctg gttaaataa aggtaaaaaa aaaaaaaaaax 
c g a gtgtcaatcac 

Figure IV.7. 
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Figure IV.8. Dot blot hybridization to bovine, coho, and rainbow trout genomic 

DNA. Aliquots of 10, 5, and 2.5 gg of DNA were immobilized on a nylon 

membrane and probed for retroviral polymerase-like sequences using 

oligonucleotide H-12 (see Figure IV.6). 
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elements sharing these characteristics are called retroposons. Nonviral 

retroposons can be divided into two main classes: SINES (short interspersed 

repeats) and LINES (long interspersed repeats) and some smaller, less 

prevalent subclasses (Weiner et al., 1986). SINES are thought to arise from 

RNA polymerase III transcripts. The common tRNAlys pseudogene retroposon 

element is believed to be widely distributed among SINES in the animal 

kingdom. SINES have been described for Q. isata (Matsumoto et al., 1986; 

Kido et al., 1991) These tRNAlYs pseudogene retroposon elements are 

thought to be the progenitors of the salmon pol III SINES. Kido et al. (1991) 

reported repetitive element families within salmon species. The highly 

restricted Sma1 family of repetitive elements only found in chum and pink 

salmon, the Fok1 repetitive family was restricted to Salvelinus (char), and the 

ubiquitious Hpa1 family which is found within salmonid species, contains 

some tRNA sequence similarities. These elements have been found in Q. 

nerka adonis (kokanee) and have been designated elements On-5 and On-8 

and in Q. friasou (cherry salmon) have been designated element Om-2. 

LINE (L1 elements) are all thought to be transcribed by RNA pol II. 

They appear to be truncated at the 5' end and can contain two overlapping 

ORFs (ORF-1 and ORF-2). ORF-2 possesses some sequence similarities with 

the pol protein of some retroviruses (Hattori et al., 1986). LINE families can be 

6-7 kbp long; however, most are truncated and some contain internal 

inversions and/or deletions. They also usually contain polyadenylation 

signals and poly A tracts at their 3' ends and are usually embedded within 

unrelated sequences. Interspersed, moderately repetitive retroposon-like 

elements have been decribed for a variety of salmonid species. Rainbow trout 

(Q. mykiss,) were found to contain RNA polymerase II derived structural 
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Figure IV.9. RNA dot blot representing transcription of nucleic acid in the 

region of the #17 retroposon element. The oligonucleotide H-12 (see Figure 

IV.6) was used as a probe. 1.) Herpes simplex type-1 RNA (negative control), 

2.) cycloheximide treated RTG-2 cell RNA, 3.) poly I:C treated RTG-2 cell RNA 

4.) cycloheximide and poly I:C treated RTG-2 cell RNA, 5.) poly I:0 and DEAE

dextran treated RTG-2 cell RNA, 6.) cycloheximide, poly I:C, and DEAE

dextran treated RTG-2 cell RNA, 7.) Vero cell RNA (cell control), 8.) RTG-2 cell 

RNA. 
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elements which appeared to be related to L1 elements but they exhibited no 

sequence homology to L1 elements or any other elements described to date. 

These elements were called RSg-1 elements (Retroposon Salmo gairdneri-1) 

(Winkfein et al.,1988). RSg-1 elements have been found to be distributed 

among trout multigene families. These sequences were found to lie upstream 

of a protamine gene (p101) and upstream of the histone H-4 gene cluster. The 

RSg-1 elements described contain no ORF-2 and, thus, no sequences that 

contain any similarities to gag-pol. 

The two new sequences reported here are two additional retroposon 

elements found in the Oncorhynchus genome. These are unique at their 5' 

ends and share strong identity with the 3' approximately 84 by sequence 

directly upstream of the poly A tract in all fish retroposons described to date. 

They share 81% similarity with the RSg-1 3' cassette; however, the similarity 

ends there. They are unique in a number of aspects from previously 

published fish retroposon-like elements. First, they contain much longer 

poly A tracts than the other fish elements: 50-54 A's versus 6-8 A's for RSg-1. 

Secondly, #17 contains pol-like sequences with 94 by sharing 70% homology 

with D. simulans retroposon 297 ORF-2 pol sequences beginning with base 

pair 30. The retroposon sequence of #17 also possesses a second direct 

duplication of the 84 by 3' element prior to the 54 adenosine residue tract. 

There is marked variability between the retroposon elements of #5 and #17 at 

the 5' end; but they also share an extensive poly A tract and an identical 31 by 

string following the adenosine tract which may be the target site of duplication. 

The polymerase-like sequences found within the #17 clone, characterizes this 

element as a LINE element. 
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RTG-2 cellular RNA induced in a manner classically used to induce IFN 

transcription using cycloheximide, poly I:C and DEAE-dextran was examined 

for the presence of any polymerase-like transcripts corresponding to the #17 

clone. It was found that, under the most stringent induction methods using all 

three reagents together, a small amount of the pol gene transcript was 

detectable. Some LINES are known to be transcribed; such as the MIF-1/ 

BamH1 LINE of rodents and the Kpn1 LINE of primates (for review, see 

Rogers et al., 1985) and some transcripts are thought to be synthesized from 

fortuitous upstream promoters. Due to the truncated structure of the #17 

clone, it is most likely that it is fortuitously transcribed from upstream promoter 

elements as well. 

Bovine, coho, and rainbow trout genomic DNA were probed for 

polymerase-like sequences using a 36 base oligonucleotide corresponding to 

the polymerase sequences found within the #17 clone. The results indicated 

that these particular polymerase-like sequences were strongly represented 

within the rainbow trout genome and were faintly present in sufficient 

quantities to be detectable in the coho genome. These sequences were not 

detectable by this method within the bovine genome. The ubiquitious nature 

of LINE elements within mammalian and nonmammalian vertebrates has 

been extended to the fish species. Previously, polymerase-like sequences 

have not been reported within Q. mykiss. The hybridization patterns are 

indicative of species-specificity which is a hallmark of these retrotransposable 

elements (Rogers et al., 1985). 
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