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An embedding f of a graph G = (Vg, Eg) into a graph H = (Vh, Eh) is a one-to-

one mapping from Vg to Vh. For a mapping function f, the dilation cost of an edge (v,

w) e Eg is the distance between f(v) and f(w). The average dilation of the mapping f is

the total sum of the dilation cost of each edge in Eg divided by the number of edges,

I Eg l. Dilation 1 embedding means G is a subgraph of H.

By developing a mapping function from one interconnection topology to another,

one can simulate the algorithms designed for the former topology on a parallel machine

that uses the latter topology.

First, the embedding of butterfly -like graphs into Banyan-Hypercube networks is

studied. The butterfly-like structures, considered here are the FFT, butterfly(wrap-

around FFT), and the CCC (cube-connected cycle). Our embedding finds that the FFT

graph, and CCC are the subgraphs of the smallest Banyan-Hypercubes which are big

enough to hold them.

Further, embedding of ring structured networks on Banyan-Hypercubes network

is studied. The ring structures, considered here are the regular rings, X-trees, Chordal

rings, and Torus. In many cases, it is shown that the dilation of these embeddings is

one. In the case where dilation is two, we show that the embedding is optimal in terms of

the average dilation.
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The topological properties of k-ary n-cube such as diameter, average distance,

connectivity, recursive decomposibility, node-symmetry, and the number of node-disjoint

paths between two nodes are also investigated.

In addition, the embedding of rings in the k-ary n-cube is investigated. Our

embedding fmds that a ring with n nodes, 0'1 < n 5 kP, can be embedded into a k-ary

p-cube with dilation 1 between any two adjacent nodes if k is odd. In the case of k being

even, a ring with n nodes, kP-1 < n S kP can be embedded into a k-ary p-cube with

dilation 2 if n is odd, and with dilation 1 if n is even.

The embedding of a Hamiltonian cycle in the presence of edge faults in the k-ary

n-cube is also studied. Our embedding shows that there exists a Hamiltonian cycle in any

direction in the k-ary n-cube with 2n - 2 edge faults, such that the Hamiltonian cycle

includes any particular nonfaulty edge in that direction; A Hamiltonian cycle in the k-ary

n-cube is said to be dominant in the dimension i, 0 5 i 5 n - 1 if the number of edges, not

of dimension i in the k-ary n-cube used in the Hamiltonian cycle is less than or equal to 2

(kn-1 1). It is also shown that there exists a dominant Hamiltonian cycle in the k-ary

n-cube with 4n - 5 edge faults, provided that each node is incident to at least two

nonfaulty links. These results are shown to be optimal in the sense that if more than

this number of edge faults occur, it may not be possible to construct a Hamiltonian cycle.

The problem of allocating processors in a banyan-hypercube multiprocessor to the

arriving task is also considered. We have shown that the subbanyan allocation problem

is NP-complete, and that there does not exist any statically or dynamically optimal

algorithm for recognizing subbanyan. We have presented an allocation algorithm that can

recognize any available subbanyan.
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Embeddings in Parallel Systems

Chapter 1

Introduction

1.1 What is embedding ?

A parallel computer can be represented by a graph, in which the nodes represent

the processors and the edges represent the communication links among the processors.

Similarly, a parallel algorithm can be represented by a graph, in which the nodes

represent the processes, and the edges represent the communications among the

processes[Ber 89]. To execute a parallel algorithm efficiently on a parallel computer, one

attempts to allocate communicating processes to adjacent processors insofar as possible,

so that the communication overhead is minimized. This problem is known as the

embedding problem.

By an embedding of a guest graph G into the host graph H, we mean a mapping f

G ---> H that takes the nodes of G to the nodes of H and the edges of G to paths in H.

The maximum amount that we must stretch any edge to achieve the embedding is called

the dilation of the embedding. By expansion, we mean the ratio of the number of nodes

in the host graph, H to the number of nodes in the guest graph, G. The congestion of an

embedding is the maximum number of edges of the guest graph that are embedded using

any single edge of the host graph. The load of an embedding is the maximum number of

nodes of the guest graph that are embedded in any single node of the host graph[Lei 92].
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1.2 Why is embedding important ?

Not surprisingly, the best embeddings are those for which the dilation, expansion,

congestion, and load are all small. This is because these four measures bound the speed

and efficiency with which a host graph can simulate the guest graph. If all four measures,

dilation, congestion, expansion, and load are constant, then the host graph will be able to

simulate the guest graph with constant slowdown[Lei 92]. Hence by developing a good

mapping function from one interconnection topology to another, one can simulate the

algorithms designed for the former topology on a parallel machine that uses the latter

topology without much loss of efficiency.

When commercial hypercube-based parallel computers were introduced in 1985, the

message passing strategy used was store-and-forward. Therefore, message transmission

time was proportional to the path length. Hence it was important to obtain a low dilation

mapping.

Beginning in 1987, the second generation of commercial hypercubes used more

sophisticated "virtual cut-through" routing networks, such as the Intel iPSC/2's Direct-

Connect routing, breaking the linear relationship between the path length and the

transmission time. The iPSC/2 is able to route a message to the most distant processor in

a 128-node network in only 10 % more time than it takes to reach an adjacent node[Int

87]. With the new generation of machines, the mapping problem seemed not to be

important.

The problem of interconnection networks in second-generation hypercubes is that

they have more communication capacity than their processors are capable of utilizing.

Routing times are comparatively uniform only as long as the networks are uncongested.

When a network becomes congested, delays grow with increasing path length. The

experience in building hypercube based parallel machine has shown that the mapping

problem becomes important whenever we try to make effective use of the communication



3

channels in the interconnection networks of the parallel machine[Woe89].

In this thesis, several embedding algorithms for two types of interconnection

network topologies - Banyan Hypercube and k-ary n-cube are investigated.

1.3 Why Banyan-Hypercube ?

A banyan is a hasse diagram of a partial ordering in which there is one and only one

path from any base to any apex. A base is defined as any node with no edges incident

into it, an apex is defined as any node with no edges incident out of it, and all other nodes

are called intermediates [Gok78]. A L-level banyan is a banyan in which every path

from any base to any apex is of length L.

(a)

000 001 010 011 100 101 110 111

(b)

Figure 1.1 : Rectangular Banyan

000 001 0 11 1 01 110 111

Figure 1.2 : 3-cube
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A regular banyan is a L-level banyan in which the indegree of every node except

the bases is s and the outdegree of every node except the apexes is f. A rectangular

banyan is a regular banyan in which s = f = d. A (d, L) rectangular banyan has dL

nodes at each level and (11-4-1 edges from each level to the next [Pre81]. Figure 1.1

shows rectangular banyan.

In a n-dimension hypercube Qn, each node i, 0 5 i 5 2n-1 is represented by a n-

bit binary number. Two nodes are adjacent iff they differ exactly in one bit. Figure 1.2

shows a Q3. An edge of a hypercube between two nodes that differ in the i-th bit is said

to lie in the i -th dimension.

A banyan-hypercube BH(h, k, s), where h 5 k+1 and s is a power of two, has hsk

nodes, distributed in h levels with sk nodes per level. All the nodes in each level are

connected such that they form a hypercube with sk nodes. Between the different levels,

the nodes are connected in rectangular banyan structure. A formal definition of banyan-

hypercube is given below.

Definition 1.1:

Let BH(h, k, s) be banyan-hypercube of h levels with sk nodes in each level. Each

node is uniquely identified by a pair (L, X) of its level number L and its cube label X,

where X = xk_i... x1 xo in base system s is adjacent to the following s nodes in level

L+1 : (L+1, xk_i...xL+1 a x1,4 x1 m), for a = 0, 1,... s-1 if L < h, and to the

following s nodes in level L-1: (L-1, xk_i... xis a x1,2._ x1 xo), for a = 0, 1,... s-1 if L

> 0. It is also adjacent to the k log s nodes (L, Y) in the same level where Y differs from

X in exactly one bit when both X and Y are expressed in binary [You90].
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Some of the desirable features of parallel machines are partitionability, the support

of some common topological structures, and small diameter. The hypercube is among the

networks that have been proposed and studied. It is partitionable, has a small diameter,

and embeds rings, meshes, trees, butterfly-like graphs(butterfly, wrap-around butterfly,

CCC), and mesh of trees efficiently.

Banyan-hypercube BH(h, k, s) can be viewed as recursive structures. BH(1, 0,

s) is the smallest banyan-hypercube and consists of one node only. BH(h, k, s) can be

viewed as constructed from s copies of BH(h, k - 1, s) in the following way if h < K+ 1.

101 110 111
11

10

01

Figure 1.3 : Banyan-Hypercubes : BH(4, 3, 2)

Label these networks by 0, 1...., s-1 in s-ary and transform the label of each

node (L, X) in the ith network to (L, iX) (iX is the concatenation of the s-ary digit and the

s-ary label X). Two nodes (L, iX) and (L, jX) in network i and j, respectively, are called

siblings. These two siblings are afterwards interconnected in an s-cube, that is, any two

nodes (L, ix) and (L, jX) become adjacent if i and j differ in only one bit when expressed

in binary. This is done at every level.

Similarly, BH(h, k, s) can be constructed from BH(h - 1, k, s) by adding a new

level (labeled h) of sk nodes, and then making every node (h - 1, xk_i, x0) of level h -

1 adjacent to all the s nodes (h, xk_i, ..xii+1ax/A..x0) of the new level



6

a = 0, 1,...,s - 1. Therefore, BH(k + 1, k, s) can for example be constructed from BH(k,

k, s) which in turn is constructed from s BH(k, k - 1, s),[You 90].

Let us compare the banyan-hypercube with the hypercube in terms of their density;

a measure that relates the size of the graph to two parameters - degree and diameter. The

degree of BH(h, k, s) can be easily seen to be 2s + k log s, the sum of the degree 2s of

the banyan of spread s and the degree k log s of the hypercube of sk nodes. The degree

of the hypercube of hsk nodes is log hsk, which is equal to h + k log s. Therefore, the

degree of the hypercube is asymptotically larger than that of the banyan-hypercube,

assuming fixed s and increasing k and h. However, for practical values of s (2 or 4), the

degree of the BH is slightly larger.

The diameter of BH(h, k, s) is k log s for s = 2, 4 [You 90]. The diameter of the

hypercube of the same number of nodes hsk is log hsk = log h + k log s. Therefore,

BH(h, k, s) has a smaller diameter than the hypercube of the same size.

Banyan-Hypercube Hypercube

Net-Size Diameter Avg. Dist Degree Diameter Avg. Dist Degree

4 1 0.75 3 2 1.0 2

32 3 1.41 7 5 2.5 5

1024 7 4.67 11 10 5.0 10

2**19 15 10.15 19 19 9.5 19

Table 1.1: Diameter, Average distance, and Degree of Hypercubes and
Banyan-Hypercubes of The Same Size.



7

As the diameter reflects only the worst case communication time, the average

distance conveys better in practice the actual performance of the network. The average

distance of BH(h, k, 2) is k/2 + (h2 - 1)/6h, and that of BH(h, k, 4) is k [You 90].

The average distance of the hypercube of the same number of nodes hsk as BH(h,

k, s) is (log hsk)/2 = (log h + k log s)/2. Therefore, the average distance k of BH(h, k,

4) is always smaller than the average distance (k log s + log h)/2 of the hypercube of the

same size. For the case s = 2, Table 1.1 presents some actual values of the diameter,

average distance and degree of BH(k + 1, k, 2)'s and the hypercubes of the same number

of nodes. The table clearly shows the improvement in diameter and average distance of

BH's over hypercubes for practical sizes, and also shows the somewhat larger node

degree of the BH.

From an embedding viewpoint, Banyan-hypercube has much to recommend it as a

general purpose architecture. BH(h, k, s) embeds a ring of any size with dilation cost 1.

If a 2i1 x x 21 mesh is embedded at every level of BH(h, k, s), a new h x 2i1 x

x 21 mesh can be embedded in BH(h, k, s) with dilation 1. Every two consecutive

levels of BH(h, k, s) embed a complete binary tree of 2sk - 1 nodes with dilation 1.

When (h Z 4) is a power of two, BH(h, k, s) embeds a complete binary tree of hsk - 1

nodes with dilation h/4. A pyramid with a 2k x 2k base is a subgraph of BH(k + 1, k,

4)[You 90]. The regular rings, X-trees, chordal rings, torus, and butterfly like graphs

such as CCC, butterfly and wrap-around butterfly can be embedded into BH(h, k, s) with

dilation 1 or 2 as shown in this thesis.
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1.4 Why k-ary n-cube ?

In the case of the hypercube, the Hamming distance is an appropriate parameter to

explain the interconnection topology. In a similar way, the Lee distance[Pet 72], which is

defined below, is an appropriate parameter to explain the k-ary n-cube topology.

Let A = an an-1.... al be an n-bit vector with each ai e {0, 1, 2,..., (k - 1)), where

1 5 i 5 n. The Lee weight of a vector A is defined as WL(A) = E lail, for i = 0...,k-1

where

lail=ai if 05aiSk/2

=k- ai ifk/2<ai5k- 1.

The Lee distance between two vectors A and B, denoted by DL(A, B) is WL(A - B),

the Lee weight of their difference, where - is the bitwise mod k subtraction operation.

For example, when k = 4, the Lee weight of 321is 14 - 31 + 2 + 1 = 4, and the Lee

distance between two vectors, 123, and 321 is DL(123, 321) = WL(123 - 321) =

WL(202) = 4.

When k = 2 or 3, the Lee distance between two vectors A and B is same as the

Hamming distance between them. Fork > 3, DL(A, B) z DH(A, B), where DH(A, B) is

the Hamming distance between two vectors A and B.

Each node in a k-ary n-cube is labelled by a distinct n-bit k-ary vector, an an_i....

al. Two nodes, U, and V in a k-ary n-cube are linked by an edge if and only if WL(U-

V) = 1, i. e, the Lee distance between them is 1. Further, the distance between any two

nodes, u, and v in the k-ary n-cube is equal to DL(u, v), the Lee distance between them.

Since k-ary n-cube is just the n-dimensional hypercube, when k = 2, here, we will

assume that k z 3.
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Figure 1. 4: 5-ary 2-cube

Most of the results on the embeddings related to parallel computations deal with the

problem of embedding different types of graphs into hypercubes or grids, as these are the

most commonly used large parallel architectures. However, the k-ary n-cube graph has

been successfully used in the design of several concurrent computers including the

Ametek 2010[Seil 88], the J-machine[Dal 89], [Dal 91], and the Mosaic [Sei2 88]. It is

thus of practical interest to consider embeddings of graphs into the k-ary n-cube.

A Cayley graph is a group action graph, in which the vertices correspond to the

elements of the finite group G and the edges correspond to the action of the generators.

That is, there is an edge from an element a to an element b if and only if there is a

generator g such that ag = b is in the group[Ann 90].

The cited sources argue that the interconnection networks based on Cayley graphs

endow an architecture with substantive advantages, in terms of algorithmic efficiency and

fault tolerance. They support their case by noting that many interconnection networks of

algorithmic and commercial importance are Cayley graphs, including the hypercube,

butterfly (with wraparound), cube-connected cycles, and star networks.
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It can be easily shown that the Cayley graph generated by n nodes (1, 0, 0 0),

(0, 1, 0,....0), (0, 0, 1,...., 0), (0, 0,....,1) with mod k bitwise plus operation is

isomorphic to the k-ary n-cube. Hence k-ary n-cube is also a Cayley graph. One of the

properties of Cayley graph is that it is node-symmetric[Ake 86]. Therefore, given any

two vertices in the k-ary n-cube, there exists an automorphism of the graph that maps one

vertex into the other ( An automorphism of a graph is a one-to-one mapping of the nodes

to the nodes such that edges are mapped to edges. A graph is said to be node-symmetric

if for every pair of nodes, u and v, there exists an automorphism of the graph that maps a

into b.).

Furthermore, k-ary n-cube is strongly hierarchical under any ordering of the set of

generators. (A Cayley graph is said to be hierarchical, if its generators can be ordered as

g1, g2,..., gd, such that for each i, 1 5 i 5 d, gi is outside the subgroup generated by the

fast i - 1 generators. If the Cayley graph is hierarchical under any ordering of the set of

generators, we call such a Cayley graph strongly hierarchical[Ake 86].). A strongly

hierarchical graph has the property that it can be recursively decomposed using the

generators in any order[Ake 86]. Thus, the k-ary n-cube can be decomposed into n k-ary

(n -1)-cubes along any one of its n dimensions.

Another important property of interconnection networks is their fault tolerance. The

fault tolerance of a graph is better defined through the graph theoretic property, called

connectivity. The connectivity of a graph is the minimum number of vertices that need to

be removed to disconnect the graph. The fault tolerance is then one less than the

connectivity and indicates the maximum number of vertices that can be removed and still

have the graph remain connected. Clearly, any graph can be disconnected by removing all

the vertices adjacent to a given vertex. Thus its connectivity can be at most its degree. It

has been shown that hierarchical Cayley graphs are maximally fault tolerant[Ake 84].

That is, their fault tolerance is exactly one less than their degree. Since the degree of k-ary

n-cube is 2n, k-ary n-cube is connected even in the presence of 2n -1 node faults.
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Chapter 2

Optimal Embedding of Butterfly-like Graphs into Banyan-Hypercube

2.1 Introduction

One of the important features affecting the performance of parallel machines is the

capability of embedding common topological structures . These structures have emerged

in many applications, and include variations of binary trees, arrays, butterflys, and

shuffle-exchange graphs. This occurs when the inherent underlying structure of the

algorithm is a tree (divide and conquer problem) or a mesh (as is the case for many

problems in numerical analysis and linear algebra)[Ber 89] or a butterfly or shuffle-

exchange graph (as is the case for Fourier Transform and data manipulation

problems)[Lei 92].

By developing a mapping function from one interconnection topology to another,

one can simulate the algorithms designed for the former topology machine on a parallel

machine that uses the latter topology. For this reason, the problem of embedding one

interconnection topology into another is well studied. In particular, Youssef and Narahar

[You90] proposed embeddings of Hamiltonian cycle, mesh, binary tree and pyramid

topologies into the banyan-hypercube.

In this chapter, we consider further results on embedding networks with butterfly-

like structures such as the FFT, butterfly(wrap-around FFT) and CCC ( cube connected

cycle) into the BH network.

The rest of the chapter is organized as follows. Section 2.2 introduces the

necessary definitions and notations. Embedding of butterfly-like networks into
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the banyan hypercube will be discussed in section 2.3.

2.2 Preliminaries

In this section, we give some definitions and preliminary results useful for the
subsequent sections.

In an n-dimensional hypercube Qn, each node(vertex) i, 0 5 i 5 211-1 is

represented by a n-bit binary number. Two nodes are adjacent if and only if they differ

exactly in one bit. A hypercube edge is said to lie in the ith dimension if it connects two

nodes that differ in the ith bit.

We say that a graph G = (V, E) is the cross product of graphs G1 = (V1, E1), G2 =

(V2, E2), , Gk = (Vk, Ek) if V = {(vi, v2, vk) I vi E Vi for 15i5 k } and

E ={ ((u1, u2, ..., uk), (v1, v2, ..., vk)) I 3 j such that (ui, vi) e Ej and ui = vi for all i

* j }. Notationally, we represent the cross product as G = 01® G2® eck.

Lemma 2.1[Lei92]

If 0 Gle 02® ®Gk and G' = GIOG'20 COOL

for some k Z 1, and Gi is a subgraph of di for 1 5 i 5 k. Then, G is a subgraph of G'.

The r-dimensional FFT, F(r) has (r + 1)2r nodes and r2r+1 edges. The nodes

correspond to pairs (i, w) where i is the level of the node (0 5 i 5 r) and w is an r-bit

binary number that denotes the row of the node. Two nodes (i, w) and (i', w') are

adjacent if and only if i' = i + 1 and either

a) w and w' are identical, or

b) w and w' differ in precisely the i'th bit
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If w and w' are identical, the edge is said to be a straight edge. Otherwise, the edge is a

cross edge.

000 001 010 011 100 101 110 111

Figure 2.1: 3-dimensional FFT

Figure 2.1 shows the 3-dimensional FFT.

The r-dimensional cube-connected cycle (CCC), [Prep81] can be represented by a

pair (i, w) where i (1 5 i 5 r) is the position of the node within its cycle and w (r-bit

binary string) is the label of the node in the hypercube that corresponds to the cycle.

<

<3, 00a> <3, 001> <1, 001>

Figure 2.2 : 3-dimensional CCC

Two nodes (i, w) and (i', w') are adjacent in the CCC if and only if either
a)w=w' andl i- i'= modrl =l,or

b) i = i' and w differs from w' in precisely the ith bit .
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Edges of the first type are called cycle edges, and edges of the second type are called
hypercube edges. Figure 2.2 shows the 3-dimensional CCC.

When the first and last levels of the r-dimensional FFT are merged into a single

level, the result is an r-level graph with r 2r vertices, each of degree 4. We call this graph

the butterfly network. In this case, two vertices (w, i) and (w', i') are linked by an edge
if and only if i' = i + 1 mod r and either w = w' or w and w' differ in the i'th bit.

2 2 2 2

8

2 2 2

Figure 2.3 : 3-dimensional butterfly

Figure 23 shows the 3-dimensional butterfly.

Let do =(i0 , in..1) be an ordered sequence of n distinct integers.

Also, let do (p) =(i0 , i ip }, 0 5 p < n. Then, the dimensional-representation of

the nth Gray code sequence Gdn is defined recursively as follows.
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Gdn(0) = io

Gdn(k) = Gdn(k 1) . ik Gdn ac 1), where 1 5 k < n; and

Gdn = Gdn(11" 1).

We denote by Gdn ( i ) the ith element of Gdn .

For example, if we let d4 = (1, 2, 3, 4), Gdl =1, Gd2 = 1, 2, 1, Gd3 = 1, 2, 1, 3, 1,

2, 1, and Gd4= 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1.

Node-representation of a binary reflected Gray code of all n-bit binary numbers,

Gn is defined recursively as follows.

Gi = (0, 1).

Gk = ( OGk_i, 1 (Gk_Or ) for k > 1

where (Gk_ Or denote the sequence of binary strings obtained from Gk..1 by reversing

the order of the strings in Gk4. For example, we know that G2 = (00, 01, 11, 10) and

G3 = (000, 001, 011, 010, 110, 111, 101, 100). We denote by Gn (i) the ith element of

Gn.

2,3 Embeddings

2.3.1 Embedding an FFT into a Hypercube.

In this section, we propose an algorithm for embedding an r-dimensional FFT, F(r)

into the smallest subbanyan BH(h, k, 2) with at least (r + 1) 2r nodes, i.e, k > r and

h 2k z (r + 1)2r > (h - 1) 2k. We begin by describing a technique for embedding

F(m) into dm dimensional hypercube Q( dm ) where dm = m + 1 log (m + 1)1.
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Our algorithm for embedding an FFT into a subbanyan is related to this approach.

Embedding F(m) into Q( dm ), where dm = m + r log (m + 1)1 is accomplished

by labeling vertex v0 = del (0, 00....0) of F(m) with the length-dm string of 0's (thereby

assigning it to vertex 00...0 of Q(dm ) in the embedding) and by using a single pair (si ,

ci) of bit-positions, called a bp-pair (bit-position pair), for label assignments to edges

between levels i - 1 and i of F(m), 15 i 5 m; in particular, all straight-edges between

these levels flip bit-position si ,and all cross-edges between these levels flip bit-positions

ci .

A levelled bp-pair sequence (LBPS, for short), S (m) = (s1, c1), (s2, c2) (sm,

cm) has been defined in Pre 90]as follows.

si, = GdX (L)

. c i = t h e L t h l a r g e s t i n t e g e r in th e s e t dm + x - dx = {X + 1, X + 2 m + X}

for all Le {1, 2, 3m}, where X = r log (m + 1)1, dm +x. ={1, 2, 3, 4,..., m +

,}and dx, ={ 1, 2, 3, 4,..., A }.

2.3.2 Embedding an FFT into a Banyan-Hypercube

Theorem 2.1.

For any r, the r-dimensional FFT graph, F(r) with (r + 1)2r nodes is a subgraph of the

graph induced by all the nodes in any h adjacent levels of the BH(k + 1, k, 2), where k >

r and h 2k a (r + 1)2r > (h - 1) 2k . Thus every FFT graph is embeddable with unit

dilation in an optimal subbanyan-hypercube.
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Lemma 2.2[You2 90].

Any subgraph of h adjacent levels (of a full banyan-hypercube of k + 1 levels) is

isomorphic to BH(h, k, s) .

Hence, it is sufficient to embed F(r) into the BH(h, k, s) with dilation 1.

The embeddings of F(r) into BH(h, k, 2), necessary to prove Theorem 2.1 are

specified via three labelling schemes :

We relabel each vertex v = (L, xi, xi xo) in BH(h, k, 2) as

Gp (L + 1) I xk_i...xL+1 xo , where p = I log hl, 0 L h - 1,xi =0or

1 for all 0 S i 5 k -1 and I is the concatenation operation. For example, v = (2, 0100)

in BH(3, 4, 2) is relabelled as G2 (3) I 0100 = 110100.

An edge between two nodes in a relabelled banyan - hypercube that differ in the i-th

bit is said to lie in the i-th dimension. Also edge between two nodes u = Gp (L) I xk_

1. --xL+1 xis x1,1... x1 x0 and v = Gp (L + 1) I xk_ xi, cxi... x1 xo , i. e, (L

xk-1---xL+1 xi x0) , and (L, cxL4... x1 xo), where

cx1,4 is the complement of x11 is said to lie in dimensions tL ( Nodes u and v are

adjacent along the cross edge in BH(h, k, 2)) ; Here nodes u and v differ in two bit

positions, i.e, L and a, where a is the dimension between two nodes, Gp (L) I xk_

][.. xLif ... xi x0, and Gp (L + 1) I xk_i. .x14+1 .. xi xo.

For example, traversing an edge of dimensions t1 in BH(h, k, 2) flips the bit-positions 1,

and 1 + k.
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We assign to each vertex v of F(r) a unique I log hi + k - bit label L(v), which is it's

image vertex in the relabelled BH(h, k, 2).

We assign to each edge (u, v) of F(r) a bit position label B(u, v) e { h, h + 1,

I log hi + k, t1, t2, th_ } such that L(u) and L(v) differ only in bit-position B(u,

v).

That is, our embedding of F(r) into BH(h, k, 2) is specified by means of a LBPS

S (r) = (s1, c1), (s2, c2) (sr, cr)

as is the case of [Gre90].

We say that a dimension sequence among the set of dimensions, D generates a path

from vertex w to vertex x in some graph, if we traverse the edges of each dimension in

the dimension sequenece, vertex w reaches the vertex x. For example, the dimension

sequence 0, 1, 2, 0 among the set D = {0, 1, 2, 3} generates a path from the node 0001

to the node, 0111 in the 4-dimension hypercube.

Lemma 2.3.

Given any two nodes u, and v in the relabelled BH(h, k, 2), where h S k + 1, there is a

dimension sequence among the set of dimensions, D ={ h, h + 1,.., 1 log hi + k, t1,

t2., th_i }.

Proof:

Trivially, for any two nodes u, and v in BH(h, k, 2), there is a dimension sequence

among the set of dimensions, D1 = {1, 2,... h,...., I log hi + k, t1, t2,

But if we traverse edge of dimension d, 15 d 5 h -1, from a given node, and arrive at
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some node w, then by just traversing an edge of dimension td and an edge of dimension

a = k + d, we can arrive at node w from the given node. Hence, there is also a

dimension sequence among the set of dimensions, D ={ h, h + 1, r log hi + k, t1,

t2, , th_i } .

An algorithm for embedding F(r) into BH(h, k, 2) with k > r and h 2k z (r +

1)2r > (h - 1) 2k is as follows.

Algorithm

Let p = k - r, dx = {r + 1, r + 2,..,r + p -1, k,..., k + r log hl }, and GdX, be the

dimensional-representation of the Atli Gray-code.

. ci = h.

ci, = tx if Lmod 2P =0 andL = x 2P

ci, = c(L, 4) + 1 if L mod 2P * 0 and (L - 1) mod 2P * O.

ci., = c(L., _2) + 1 if L mod 2P * 0 and (L - 1) mod 2P = O.

si. = Gc/X (14

for all L E {1, 2, 3, ..., r}, where X = r loghl+p = r loghl+k - r.

Example 2.1 : Let us try to embed a 2-dimensional FFT with 3 * 22 =12 vertices into

BH(2, 3, 2) w i t h 2 * 23 = 16 v e r t i c e s. By t h e algorithm c1 = 2, c2 = t 1 , s1 = 3, s2 = 4.
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Lemma 2.4.

Bit-pair sequence, (sup , Cup ) from level L2P -1 to level L2P of F(r), when embedding

F(r) into BH(h, k, 2) with p = k - r is (a, L ED a ), for 1 5 L 5 h - 1, where a is the

dimension between two nodes, (L - 1, xk4...x14.1 xi, xi-1... x1 xo), and(L, xk_

1 xL+ 1 xi, xi.,_1... x1 xo) in BH(h, k, 2), and L a means complementing bit

positions L and a.

Proof : By the algorithm, cup = ti, =de L es a .

we can prove sup = a, using the following basic facts.

. sup = dd. GdA, (L2P), where dx = Ir + 1, r + 2,..,r + p -1, k,..., k +

r log hi) .

a is Gd8 (L), where d8 = { k + 1, k + 2,..., k + r log hi } .

By definition, a is the dimension between two nodes, Gn (L) I xk_1 ...xi.4.1

xi, xi.1... x1 x0, and Gn(L + 1) I xk_i...x",÷1 xis xi _1... xi xo ,

where n = I log hi. This is nothing but Gd8 (L).

. Gds, (Lp) = Gd8 (L).

T r i v i a l l y, S2p = G d X. (2P) = k + 1 = Gd8 (1).

Assume that GdA, ((L - 1)2P) = Gd8 (L - 1), for L > 2.

GdX. (L2P) = GdA, ((L - 1)2P + 2P ) = Gd8 (L) by inspection.
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Lemma 2. 5.

When we assign to vo = def (0, 00... .0) of F(r) string of O's of length r log hi + k in

the relabelled BH(h, k, 2), where ( h -1) 2k 5 (r + 1) 2r 5 h 2k, the LBPS in the

algorithm completely determines the labels of all remaining vertices within the given

BH(h, k, 2).

Proof :

It is sufficient to show that any vertex v e F(r) is mapped to the vertex L(v) in

BH(h, k, 2) by the LBPS. We shall show that all the labels of vertices from level 0 to

level 2P -1 in F(r), mapped by the LBPS come from the vertices of level 0 in BH(h, k, 2),

where p = k - r. Similarily, all the labels of vertices from level n *2P to level n *2P + 2P -

1 in F(r) comes from the vertices of level n in BH(h, k, 2), where 15 n 5 h - 1.

Let us take the label i corresponding to vertex (2P - 1, 0...0) in level 2P - 1 of F(r).

The label of this vertex comes from some node in level 0 of BH(h, k, 2), because label

00...00, corresponding to vertex (0, 00...0) in F(r) comes from level 0 in BH(h, k, 2),

and by the algorithm, we can arrive at label i ( vertex (2P - 1, 0...0) in F(r) ) from label

00...0 ( vertex (0, 00...0) in F(r)) by just traversing edges of dimension sequence among

{r + k}.

Let us take another label j corresponding to some vertex in level 2P - 1 of F(r). By

Lemma 2.3, there exists a dimension sequence among { h, h + 1, I log hi + k, t1,

t2 th_ 1 } that generates a path from label i to label j. By Lemma 2.4, the bit-pair

sequence, (slip cup) from level L2P -1 to level L2P in F(r) is (a, L 9 a ), where
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a is the dimension between two nodes, (L - 1, xk_ 1... xL+1 xL, xii_i x1 x0), and(L,

xk_1... xL+1 xi, x1A... x 1 xo) for 1 5 L 5 h - 1. Hence (sip , c2p ) = (k + 1, (1 + k) ED

1).

But the basic fact in F(r) is that for each level L e {0, 1, 2, ...., r}, the number of

level - L edges, i.e, edges from level L to level L + 1, appear an even number of times in

the path from label i to label j, because label i and label j are in the same level of F(r).

Therefore, for each dimension snap, in the dimension sequence from label i to label j with

1 5 m 5 h - 1, another corresponding sm2p or cep must also be in that dimension

sequence. Similarly, for each dimension cm2, in the dimension sequence from label i to

label j with 1 5 m 5 h - 1, another corresponding cep or sip must also be in that

dimension sequence.

Hence, traversing all the edges of dimension , Sup , and cup for 1 5 L 5 h - 1 in

the dimension sequence from label i to label j, just affects bit position L. Also by the

algorithm, traversing the edges of remaining dimensions in the dimension sequence just

changes bit position m, for h 5 m 5 k. Therefore, label j is also from some vertex in level

0 of BH(h, k, 2).

If all the labels in level 2P -1 are from the vertices in level 0 of BH(h, k, 2), then

trivially all the labels from level 0 to level 2P - 2 also come from the vertices in level 0 of

BH(h, k, 2). In a similar way, we can show that all the labels of vertices from level n

*2P to level n *2P + 2P -1 in F(r) come from the vertices of level n in BH(h, k, 2), where

15n5h-1.
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The proof of Lemma 2.6 is almost same as that of Proposition 1 in [Gre90].

Lemma 2.6.

Any mapping of the vertices of the FFT graph to the vertices of the BH(h, k, 2) induced

by the LBPS in the algorithm is well-defined.

Proof:

The proof is based on the three basic facts about cycles in an m-dimensional FFT.

1. For each level 1 e {0, 1, 2,.., m }, the number of level-1 edges in any cycle in F(m) is

even.

2. For each level 1 e {0, 1, 2,.., m), the number of level-1 cross-edges in any cycle in

F(m) is even.

3. For each level 1 E {0, 1, 2,.., in}, the number of level-1 straight-edges in any cycle in

F(m) is even.

The proof of Lemma 2.7 is similar to that of validation in Pre901.

Lemma 2.7.

The mapping of the vertices of the FFT graph to the vertices of the BH(h, k, 2) that is

induced by the LBPS in the algorithm is one-to-one.

Proof:

Let us take two arbitrary nodes, u, and v in F(m).

If they are from the same column, i.e, for u = (i, w), and v =(i', w'), w = w', the

dimension sequence in the straight path from node u to node v, mapped into BH(h, k, 2)

is a subsequence of the Gray code sequence, that forms a Hamiltonian cycle. Hence

nodes, u and v are mapped into different nodes in BH(h, k, 2).
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Now assume that nodes, u, and v are in different columns. Let u' be the vertex

of F(m) in the bottom level of the same column as u, and let v' be the vertex of F(m) in

the top level of the same column as v. Consider the path P in F(m) that starts at u,

traverses all the straight-edges up to node u', follows the unique length-m path from u' to

v' (there exists a unique length-m path from any node in the bottom level of F(m) to the

other node in the top level of F(m)), and finally traverses straight-edges up to node v.

Here let us think about the unique length-m path P' from u' to v'. The dimension

sequence from node u' to the node v' in the path P' , mapped into BH(h, k, 2) includes

some dimension d, de {h, h + 1, ..,k, t 1, t2, th4 } that is shared by no cross-

edge, and no straight-edge at any other level of F(m), mapped into BH(h, k, 2). Hence in

this case also, two nodes u' and v' are mapped into different nodes in BH(h, k, 2).

2.3.3 Embedding a CCC into a Banyan-Hypercube

Theorem 2.2

For any r, the r-dimensional cube-connected cycle (CCC) graph, C(r) with r2r vertice is

a subgraph of the graph induced by all the nodes in any h adjacent levels of the BH(k + 1,

k,2),wherek>randh2k 2 r2r>(h-1)2k.

0000 0001 loll to 11 0100 0101 0110 0111 1000 1001 1111 1011 1100 1101 1110 1111

(000,3)

(000, 2)

k .. . -,: th.,.... 'NI IL,... -...-".... 4.*. -."00.' IC; 41111 hAwin I. ipirw- irol , r.-,,,;---7--.
_,__,___,__:_--- -: --------------- 7:-.:-.---....:::""-r.40-""----.-----

.o.,. ........_, S., ,_:. ilh, 044,.. 4I, -..1. II.. 4, ',, ' .1111.7, 411.- b ..... il,

E., 'III"; r7. :-'! I"... ''''! !.. -: .- : :.:- 1- Irn''' -.I .-. Alit \ 1.
IL

. irk... _, . .4P... : .r A 1,,W,

its ;A: la riMe I.,i -A,,i '''. - ;-- ;-.!.r.011111 11

_-.- --

Figure 2.6 : Embedding of 3-dimensional CCC into BH(3, 4, 2).
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By Lemma 2.2, it suffices to embed C(r) into BH(h, k, 2) with dilation 1, where k > r

and h 2k z r 2r > (h - 1)2k .

Lemma 2.8.

Let Cr be the ring with r vertice. Then Cr 0 Qr is the subgraph of BH(h, k, 2), where Qr

denotes the r-dimensional hypercube, k > r and h 2k 2 r 2r > (11 - 1) 2k .

Proof : Let Lh be the line of length h.

. Lh 0 Qri ® Qr is the subgraph of BH(h, k, 2), where rl + r = k [Kwol].

. Let S be the induced subgraph of BH(h, k, 2) by all the nodes in Lh 0 Qri,

then, S 0 Qr is the subgraph of BH(h, k, 2).

. Let ISI be the number of vertices in the graph S, then ISI z r, and we can

embed ring of length r in S as in the proof of Theorem 1 in [Kwol].

Lemma 2.9. The r-dimensional CCC with r * 2r vertices is a subgraph of Cr 0 Qr

Proof: The proof follows from the definitions of the CCC and of Cr 0 Qr



27

2.3.4 Embedding a Butterfly network into a Banyan-hypercube.

Lemma 2.10[Lei92].

An r-dimensional butterfly can be embedded one-to-one with dilation 2 into the r-

dimensional FFT.

Theorem 2.3.

The r-dimensional butterfly with r 2r nodes can be embedded into BH(h, k, 2) with

dilation 2, where h 2k Z (r + 1) 2r > (h - 1) 2k

Proof : The proof follows directly from Theorem 2.1, and Lemma 2.10



28

Chapter 3

Embedding Ring-structured Graphs into Banyan-Hypercube

3.1 Introduction

In this chapter, we consider results on embedding networks with ring connections

such as ring, chordal ring, X-tree, torus, and Miac networks into BH network.

The rest of the chapter is organized as follows. Section 3.2 introduces the

necessary definitions and notations. Embedding of ring structured networks into banyan

hypercube will be discussed in section 3.3.

3.2. Preliminaries

In this section, we give some definitions and preliminary results useful for the

subsequent sections.

An embedding f of a graph G = (Vg, Eg) to a BH(h, k, s) = (Vh, Eh) is a one-to-

one mapping from Vg to Vh. For a mapping function f, the dilation cost of an edge (v,

w) e Eg is d(f(v), f(w)), i.e, the distance between f(v) and f(w). The average dilation

of the mapping f is the total sum of the dilation cost of each edge in Eg divided by the

number of edges, I Egl. If we define Md = I( (a, b) I d(f(a), f(b)) = d, (a, b) E I,

then E Md, for d = 1
-dbh is directly related to average dilation, where dbh is the

diameter of the graph, BH(h, k, s).
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We say that a graph G = (V, E) is the cross product of graphs G1= (V1, E1), 02 =

(V2, E2), Gk = (Vk, Ek) if V = {(v1, v2, vk) I vi e Vi for 1 5 i 5 k} and

E ={((ui, u2, uk), (vi, v2, ..., vi)) I 3 j such that (ui, vi) e Ej and ui = vi for all i

j }. Notationally, we represent the cross product as G = 010 G20 0Gk.

000 001 010 011 100 101 110 111 000 001 010 011 100 101 110 111
1

(a) Node labels in the same level

in increasing order

(b) Node labels in the same level

in binary reflected Gray code order

Figure 3.1 : Banyan-Hypercubes BH(4, 3, 2)

Figure 3.1a and 3.1b shows banyan-hyperecubes BH(4, 3,2), where nodes of

each level in Figure 3.1a are in increasing order, and those in Figure 3.1b are in binary

reflected Gray code order .

In the next section, the properties of the Gray codes are used in embedding. In a

Gray code, every adjacent words differ in one bit. The binary reflected Gray codecan be

formally defined as follows.

Definition 3.1 : Let Gn denote a binary reflected Gray code of all n-bit binary

numbers. Then, Gn is defined recursively as follows.

G1 = (0, 1).

Gk = ( l(Gk_i)r ) fork > 1 where (Gk_i)r denote the
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sequence of binary strings obtained from Gk_1 by reversing the order of the strings in

Gk_1. For example, we know that G2 = (00, 01, 11, 10) and G3 = (000, 001, 011,

010, 110, 111, 101, 100).

Lemma 3.1 :

Let Gk be the binary reflected Gray code for the k-cube and Gk(r) denote the (r +1)th

element of 0k, where r = 0, ....2k-1, then Gk(i) and Gk(j) are adjacent if i + j = 2k-1.

Proof :

When k =1, it is triviaL Hence it is sufficient to prove for k > 1.

Without loss of generality, assume that i < j.

Since i + j = 2k - 1, trivially Gk(i) and Gk(j) belong to 00k_1, and 1 (Gk_0)r

respectively. Let ip and jp be the relative positions of Gk(i) and Gk(j) in

00k-1, and l(Gk_Or respectively ; then ip = i and jp = j - 2k-1. By the definition of

reverse operation, (Gk_Or(x) is equal to Gk_1(y) if y is 2k4 - x - 1, x = 2k -1- 1,

that is, if x + y = 2k-1 - 1. Since ip + jp = + j - 2k-1 = 2k 1 - 2k-1 = 2k-1

Gk -1(ip) = (Gk_O)r (ip) Since OGk_i(ip) and l(Gk_Or(jp) differs one bit in Gk,

OGk_i(ip) and l(Gk_Or(jp) are adjacent nodes in the k-cube. But ip and jp are the

relative position of Gk(i) and Gk(j)

and Gk(j) are adjacent in k-cube.

in OGir_1, and l(Gk_Or respectively. Hence Gk(i)

For example, in G3, G3(1) = 001, and G3(6) =101 are adjacent.

Lemma 3.2 [Lei92] For any k Z 1 and r = rl + r2 + + rk , the r-dimensional

hypercube Qr can be expressed as the cross product

Qr = (41 ® Qr2® ®Qrk

where Qri denotes the ri-dimensional hypercube for 15 i 5 k.



31

Lemma 3.3 [Lei92] If G = G1® G20 00k and G'= G' 1® G'2® OG'k

for some k z 1, and Gi is a subgraph of Gi' for 15 i 5 k, then G is a subgraph of G'.

3.3 Embeddings

3.3.1 Embedding rings into a Banyan-Hypercube.

In a bipartite graph, the nodes in the graph can be partitioned into two disjoint non-

empty subsets such that all the edges are connected from nodes in one subset to the nodes

in the other subset. In the case of hypercube, if we partition the set of nodes on the basis

of the parity, it is easy to see that the connections are only from the odd parity nodes to the

even parity nodes. Thus, hypercube is a bipartite graph.

One important result in graph theory is that a graph is bipartite iff all the cycles are

of even length [Swa81]. Thus cycle of odd length can't be embedded in hypercube with

dilation 1. However, in banyan-hypercube, using the edges in banyan structure and

hypercube together, we can embed a cycle of any length into the banyan-hypercube with

dilation 1 as shown in Theorem 3.1.

Theorem 3.1: A ring with n nodes, n 5 h2k, can be embedded into a BH(h, k, 2)

with dilation 1.

Proof :

Let us assume that binary reflected Gray code Gi for i-cube in level L of banyan-

hypercube is denoted as EL, Go, and (r + 1)th element of [L, GO as [L, Gi] [r] .

case 1: n : even and n 5 2k.

From Lemma 3.1, this even length cycle can be embedded in any level of banyan-

hypercube .
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case 2: n : even and p2k 5n<(p+1)2k where25(p+1)5h.

Let n - p2k be t. At level 0, t elements will be embedded, using the binary

reflected Gray code property as shown in Lemma 3.1. p 2k nodes are embedded in p

adjacent levels of the BH.

The even length cycle is given by

([0, Gk][0], [0, Gk][1] [0, Gk][t/2 - 1], [0, Gk][2k - t/2], [0, Gk][ 2k - t/2 + 1 ],

[0, Gk][ 2k - t/2 + 2 ] [0, GO 2k - 1 ] ) ( [1, 1Gk_1], [2, l(Gk_Or], [3, 10k-

1], ,[p, Mk_i], [p, 0(Gk_09, [p-1, OGk i] [1, o(Gk_Orl )

when p is odd.

and

([0, Gk] [O], [0, Gk][1], ...., [0, Gk] [t/2 - 1], [0, Gk] [2k - t/2], [0, Gk] [ 2k - t/2 + 1 ],

[0, Gk][ 2k - t/2 + 2 ] [0, Gk][ 2k - 1 ] ) ( [1, 16k-1], [2, l(Gk_09, [3, 1Gk_

1], JP, 1(Cik-09, [13, Wik-1], [P-1, 0(Gk-01)

when p is even.

[1, 0(Gk_09 )

case 3: n : odd and 2k-1 < n < 2k.

Let us embed the cycle in BH(2, k-1, 2). Let t = n - 2k-1. Then the cycle is

([0, Gk_1][0], [0, Gk_1][11 [0, Gk_i][(t - 1)/2 - 1], [0, Gk_i][2k-1 - (t - 1)/2],

[0, Gk_i][ 2k-1 - (t - 1)/2 + 1 ], [0, Gk_i][ 2k-1 - (t - 1)/2 + 2 ], [0, Gk_i][ 2k-1 - 2

] ) [1, l(Gk_2)], [1, 0(Gka)r]

Note that node [0, Gk_i][ 2k-1 - 2 ] is connected to the node [1, 1(Gk_2)][0]

with the edge in banyan structure



case 4: n : odd and p2k 5 n < (p + 1) 2k where (p + 1) 5 h.

Let n - p2k be t. Then, the following sequence of nodes form a ring of size n .

([0, Gk][0], [0, Gk][1] [0, Gk][(t - 1)/2 - 1], [0, Gk][2k - (t - 1)/2]

[0, Gk][ 2k - (t - 1)/2 + 1 1, [0, Gkli 2k - (t - 1)/2 + 2 ] [0, Gk][ 2k - 2 ] )

( [1, 1Gk_1], [2, 1(Gk_09, [3, 1Gk_i],

1] , [1, 0(Gk_09 )

when p is odd

and

010 110 111 101 100
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,[p, 1Gk_1], [p 0(Gk_1)r], [p - 1, OGk_

011 010 110 111 101 100

(a) Embedding a ring of size 6 on BH(4,3,2) (b) Embedding a ring of size 7 on BH(4,3,2)

000 001 011 010 110 111 101 100
11

11

10

01

001 011 010 110 111 101 100

(c) Embedding a ring of size 22 on BH(4,3,2) (d) Embedding a ring of size 21 on BH(4,3,2)

Figure 3.2 : Embedding of rings into BH(4, 3, 2)



34

([0, Gk][O], [0, Gk][1] [0, Gk][(t - 1)/2 - 1], [0, Gk][2k - (t - 1)/2],

[0, Gk][ 2k - (t - 1)/2 + 1 ], [0, Cik][ 2k - (t - 1)/2 + 2 ] [0, Gkj [ 2k - 2 ] )

( [1, 10k4], [2, 1(Gk_09, [3, 1Gk_i], ,[p, 1(Grk_09, [1:0, OGk_i], [p-1, 0(Gk_

Or] [1, 0(Gk_1r] )

when p is even

Figure 3.2 illustrates the embedding of cycles of length 6, 7, 22, and 21 on BH(4, 3, 2).

3.3.2 Embedding Chordal Rings into a Banyan Hypercube.

n12

[a] [b]

Figure 3.3 : Two layout of n nodes chordal ring with w = nt2

n12 +1

The Chordal Ring is a ring structured network, in which each node has an

additional link, called a chord, to some other node across the network. The number of

nodes in a chordal ring is assumed to be even and nodes are indexed 0, 1, 2....,n - 1

around the ring. In the chordal ring, each odd-numbered node i (i = 1, 3,....,n - 1) is

connected to a node (i + w) mod n. (This implies that each even-numbered node j (j = 0,

2,...n-2) is connected to a node (j - w) mode n.)
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Here, w is called the chord length and is assumed to be positive [Ard81]. In this paper,

we consider the case where w = n/2.

Lemma 3.4

A chordal ring with n nodes and w = n/2 (n > 5) can not be embedded with dilation 1

into any one level BH(h, k, 2), where 2k > n.

Proof :

Chordal ring of n nodes with w = n/2 is isomorphic to the Figure3.3 (b).

Hence, it is sufficient to check whether Figure3.3 (b) can be embedded into any one level

in BH(h, k, 2) with dilation 1. Since any level in BH(h, k, 2) is a hypercube of

dimension k, let us embed into level 0 of BH(h, k, 2).

Label each edge in the the above chordal ring with a number that represents the

dimension of the corresponding edge in hypercube of dimension k. Let's consider the

edge between nodes 1, and (n + 2)/2 in the chordal ring. If the dimension of that edge is

p, it can easily be checked that the dimension of all the vertical edges in Figure 3.3 (b)

also must be p for an embedding of dilation 1 . That is, if we partition the above

hypercube of dimension k into two hypercubes of dimension k - 1 with respect to

dimension p, then all the nodes from 0,1,...up to n/2 - 1 in the above chordal ring appear

in one hypercube of dimension k-1, and all the nodes from n/2,n/2 + 1,...up to n - 1

appear in another hypercube of dimension k-1. Here, node 0 in one hypercube of

dimension k - 1 is connected to two nodes in another hypercube of dimension k - 1. This

is impossible in hypercube.

Lemma 3.4 has also been proved differently in [Chu90]. The general concept ,used in

proving Lemma 3.4 will be useful in proving Lemma 3.5.
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Lemma 3.5 If n is not divisible by 4, a chordal ring with n nodes and w = n/2 (n > 5)

can not be embedded with dilation 1 into the BH(2, k, 2), when 2*2k > n.

Proof :

By assumption, we can represent n as n = 4*p + 2, where p is some integer.

Any subgraph of h adjacent levels (of a full banyan-hypercube of k + 1 levels) is

isomorphic to BH(h, k, 2) [You290]. Hence, let's try to embed into levels 0 and 1 of

BH(h, k, 2), i. e, BH(2, k, 2).

Here, BH(2, k, 2) has a hypercube of dimension k+1 as a subgraph . Let us

denote all the edges between nodes, (0, xk x 1 0) and (1, xk x1 1) as of

dimension s, and all the edges between (1, xk x 1 0) and (0, xk x 1 1) as of

dimension t, when xi = 0 or 1, i = 1,..k. Label each edge in figure 3.3(b) with a number

that represents the dimension of the corresponding edge in BH(2, k, 2).

If the embedding is of dilation 1, then it can be easily checked that edges of

dimension s and those of dimension t must appear the same number of times in the

embedding. Also if edges of dimension t or s appear r > 1 times in the embedding, then

we can also embed in such a way that only one edge of dimension s, say edge (0, n-1)

and only one edge of dimension t, say edge (n/2-1, n/2) appear.

Let's consider the edge between nodes 0, and n/2 in chordal ring. Then, the

dimension of that edge in the BH(2, k, 2) must be either 1, or k+1. This can be proved

similar to the proof of Lemma 3.4. Let us assume that the edge (0, n/2) is of dimension

k+1 in BH(2, k, 2). Then, all the corresponding edges from node set (0, 1, 2, n/2-1)

to another node set (n/2n-1) must be of dimension k+1.

Since level 0 of BH(2, k, 2) is a hypercube of dimension k, and the hypercube is a

regular structure, without loss of generality, we can assume that node 0 in the chordal
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ring is mapped into (0, 0 0). Then, by assumption, nodes n/2-1, n/2, n-1 are

mapped into nodes (0, 000...1), (1, 00....0), and (1, 00...1) respectively. That is, all the

nodes 0, 1,....n/2-1 appear in the 0 level of BH(2, k, 2), and all the nodes n/2,...n-1 in

the 1 level of BH(2, k, 2).

Here, closed path 0, 1, 2, 3,...,n/2-1, 0 form a cycle of odd length. This gives a

contradiction because cycle of odd length can't appear in the hypercube.

In the case of edge (0, n/2) being of dimension 1, a similar proof can be given.

I I I 001 011 010 111 111 101 100
11

10

Figure 3.4 : Embedding Chordal ring of size 16 into BH(4, 3, 2)

Theorem 3.2 :

If n is divisible by 4, a chordal ring with n nodes and w = n/2 (n > 5) can be embedded

with dilation 1 into the BH(2, k, 2), where 2*2k z n;

otherwise into BH(2, k, 4), where 2*4k 2 n.

Proof :

case 1: n is divisible by 4.

Let t = n/2. Now, it can be easily seen that the following sequence of nodes form

a chordal ring of size n.
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([0, Gk][0], [0, G O 2k - 1 ], [0, G O 2k - 2 ] ,[0, G k li 2k - t / 2 + 1 ], [0, Gk][ 2k -

t/2 ], [0, Gk][t/2 - 1], [0, Gk][t/2 - 2], [0, Gk][ll)

([1, Gk][0], [1, GO 2k - 1 ], [1, GO 2k - 2 ] ,[1, GO 2k - t / 2 + 1 I, [1, GO 2k -

t/2 1, [1, Gk][t/2 - 1], [1, Gk][t/2 - 2], [1, Gk][1])

case 2: n is not divisible by 4, i.e, n = 4y + 2, y : positive integer.

Let t = (n - 2)/2. The cycle is given by

([0, G2k][0], [0, G2k][ 4k - 1 1, [0, G2k][ 4k - 2 ] ,[0, G2k][ 4k - tr2 + 1 ],

[0, 02k][ 4k - t/2 ], [0, 02k][ 4k - t/2 - 1 ], [0, G2k1[t/2], [0, Gk][t/2 - 2][0,

Gk][2]) ([1, G2k][0], [1, G2k][ 4k - 1 ], [1, G2k][ 4k - 2 ] ,[1, G2k][ 4k - t/2 + 1 ],

[1, G2k][ 4k - t/2 ], [1, G2k][ 4k - t/2 - 1 ], [1, G2k][t/2], [1, Gk][t/2 - 2][1,

Gk][2])

The embedding of a ring of length 2n in an n-cube may be defined as a sequence

of nodes, R = (v1, v2, van), where each adjacent nodes vi and v(i +i) mod 2n, for

i=1,...2n, are neighbors across some dimension di in the n dimensional hypercube. The

same embedding can be represented in terms of the sequence of dimensions that the

adjacent nodes go across, i.e, S = (d1, d2, d2n).

Lemma 3.6

Let Qo be a hypercube of dimension n. Then, we can fmd an embedding sequence, S for

the Hamiltonian cycle, in which dimension m, and dimension d appears as follows, S =

(d, m, d, sl, d, m, d, s2, d, m, d, s3, d, m, d, s2(n-2)), where si depends on

m and d, i = 1,...2n-2, and m 0 d.
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Proof:

Let DM = (dmi, dm2, dmn) be a permutation of (1, 2, 3, n), in which

dm 1 = d, and dm2 = m. Then embedding sequence, S produced by the following

procedure satisfies the given condition.

S <- (dmi)

For i = 2 to n Do

S <- S 1(dmi) I S;

Return S;

where the vertical bar denotes the concatenation [Cha90, Dek81, Pro88].

v2 3 v3

; 2

v4
1 I

3 v7 v10 1 vii v14 1 v15

2 2 2 2___
v8 v9 v_7--1-"VA3 v

4

Figure 3 5 The embedding sequence and the Hamiltonian cycle for n = 4

For example, let dmi = 2, dm2 = 3, dm3 = 1, and dm4 = 4. Then DM = (2, 3, 1,

4). The embedding sequence for a 16-node cycle in a 4-cube resulting from DM = (2, 3,

1, 4) is S = (2, 3, 2, 1, 2, 3, 2, 4, 2, 3, 2, 1, 2, 3, 2, 4). The Hamiltonian cycle from

the embedding sequence S is shown in Figure 3.5.

Theorem 3.3

A chordal ring with n nodes and w = n/2 (n > 6) can be embedded with dilation 1 into

BH(m, k, 2) where m*2k Z n z (m - 1)*2k, and 3 5 m < k + 2.

Proof :

By assumption, we can represent n as n = ( m - 1)*2k + 2p, where p is an integer.

Our claim is that we can find the structure given in Figure 3.3(b) of n nodes in
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BH(m, k, 2). Let us assume that each edge from node [L - 1, Gk][x] to node [L,

Gk][x} is said to be a straight upward edge, and that each edge from node [L, GOA

to node EL-1, GOA a straight downward edge, where 0 5 x 5 2k-1, 0 5 y 5 2k-1 and 1

5L5m.

case 1: p = 0 :

Start from node [0, (Gk_00][0], and go up to the node [m - 2, (Gk_001[0],

traversing all the straight upward edges. From here, traverse the hypercube edge of

dimension m-2, and arrive at node [m - 2, (Gk_013][x] for some x. Then, go down to

the node [0, (Gk_00][4, traversing all the straight down edges. If we do the same

procedures continously in the order as we do in Lemma 3.6, where DM =(dm 1, dm2,

dmk) is a permutation of (2, 3, 4...., k, k + 1), in which dm 1= k + 1, and dm2

= m - 2, we will find a cycle of length (m - 1)2k-1. Let us call the above cycle as C 1.

In a similar way, we can find another corresponding cycle C2, such as [0, (Gk_01][0],

[1, (Gk4)1][0] [0, (Gk_01][0]

Let e I be the edge between nodes [0, (Gk_ 1)0][0], and [1, (0k-1)1][0], and e2 be the

edge between nodes [1, (Gk_ 00] [0] and [0, (Gk_01][0]. Let C1 El), and S=

( [r, (Gk_ 00} [x], [r, (Gk- 01][x] ) I [r, (Gk- 00][x] e V1 }. Then C1, C2, e1, e2 ,

and S form a Figure 3.3(b) structure of n nodes.

case 2: p = 2h, h 21 is integer

This is somewhat similar to case 1. Here, we create a cycle C1' of length (m -

i) *ok-1A + p by traversing straight upward edges up to level m - 1 in exactly h places. In

other places, we need to traverse upward edges up to level m - 2. Whenever we arrive at

[m - 1, (Gk_00][x], traversing straight upward edges, traverse the hypercube edge of

dimension m-2, and go to the node Ern - 1, (Gk_00][y] for some y .
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From the node [m - 1, (Gk_00][y], go down to the node, [0, (Gk_00][y] by traversing

all the straight downward edges. Another corresponding cycle, C2' of length (m -

i) *,k-1z + p can be constructed similarly.

Let S' = ( ( [r, (Gk_00][x], [r, (Gk- 01][x] ) I [r, (Gk_1)0][x] E Vi' I, where C1'=

(V1', E1'). Then C1', C2', el, e2, and S' form a Figure 3.3(b) structure of n nodes.

case 3: p = 2h + 1, h > 0 is integer.

Here, we create C1" by traversing straight upward edges up to level m - 1 in exactly

h + 1 places. The difference between C1' and C1" is that in C1", at exactly one place

among the above h + 1 places, when we arrive at [m - 1, (Gk_00][x] by traversing

straight upward edges, we traverse the banyan edge and go to the node [m - 2, (Gk_

°My], where [m - 1, (Gk_ °Mx] is adjacent to Ern - 1, (Gk_00][y] along dimension

m - 2.

000 001 0 0 011 100 101 110 111 011 100 101 110 111

(a) chordal ring with 18 nodes (b) chordal ring with 20 nodes

Figure 3.6 : Embedding chordal rings

Figure 3.6 shows the embedding of chordal rings of length 18, and 20 on BH(4, 3, 2).
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3.3.3 Embedding X-trees into a Banyan Hypercube

A L-level (L 1) X-tree is a complete binary tree of L levels with additional edges

added to connect consecutive nodes on the same level of the tree [Des78]. An example of

4-level X-tree is shown in Figure 3.7. Since there are (1 + 2 + 22+ + 2k-1) = 2k-1

nodes from level 1 to level k of L-level X-tree, L z k, we can label nodes at level (h +

1) as 2h, 2h + 1, 2h + 2, 2h+1- 2, 2h+1- 1 in the order as they appear in the tree

from left to right. The root of X-tree is then labeled as 1, and for each nonterminal node

n of X-tree, its left and right children are labeled as 2n and 2n + 1.

Figure 3.7 : 4-level X-tree

Lemma 3.7

In a L-level X-tree, there exists at least 2L-1. - 1 edge disjoint cycles, each of which is of

length 3.
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Proof :

Let us prove by induction on L.

When L = 2, trivially thew is 22-1 - 1 = 1 cycle of length 3.

Assume that them are 212 - 1 cycles with length 3 in (L - 1)-level X-tree.

In the L-level X-tree, there are 212 nodes at level L-1, and all the nodes and edges up to

level L - 1 in L-level X-tree form another (L - 1) level X-tree.

Here, each node at level L - 1 makes another one cycle of length 3 with the left and right

child of it. Hence, there are at least ( 212 - 1) + 212 = 211 - 1 of cycles with length 3

in a L-level X-tree.

Lemma 3.8

A L-level X-tree can't be embedded into BH(1, L, 2) with dilation 1.

Proof :

From Lemma 3.7, there are cycles of odd length in X-tree. Since cycle of odd

length can't be embedded in BH(1,L,2) with dilation 1, a L-level X-tree can't be

embedded into BH(1, L, 2) with dilation =1.

Lemma 3.9

A L-level X-tree can't be embedded into BH(1, L, 2) with dilation 2 and M2 < 211- 1.

( M2 = number of edges, mapped with dilation 2)

Proof :

Lemma 3.7 says that there are at least 214- 1 edge-disjoint cycles of length 3.

Since cycle of length 3 can't be embedded with dilation 1 into BH(1, L, 2), each cycle of

length 3 generates one pair of nodes, which are mapped with dilation 2.



Theorem 3.4 [Che9O]

A L-level X-tree can be embedded into BH(1, L, 2) with dilation 2 and M2 = 21P1-1 .

000 001 0 0 011 100 101 110 111 010 011 100 101 110 11
11

10

01
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(a) 4-level X-tree in BH(2, 3, 2) (b) 4-level X-tree in BH(4, 3, 2)

Figure 3.8 : Embedding X-tree into BH

Lemma 3.10

A L-level X-tree can't be embedded into BH(2, L - 1, 2) with dilation 2 and

M2 < 21-'2 - 1.

Proof :

Lemma 3.7 says that there are at least 21,1- 1 edge-disjoint cycles of length 3 in L-

level X-tree. But, it can be easily shown that there exist exactly 21-2 edge-disjoint cycles

of length 3 in BH(2, L-1, 2). Hence, (21A - 1) - 21-'2 = 21'-'2 - 1 cycles of length 3

must be mapped with dilation 2.

Theorem 3.5 A L-level X-tree can be embedded into BH(2, L - 1, 2) with dilation 2,

expansion = 211 (2L - 1), and M2 = 21,2 - 1.

Proof :

We prove by induction on L.
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When L = 2, it is trivial. Actually in this case, M2 = 21-'2 - 1= O. That is, dilation = 1.

Assume that n-level X-tree can be embedded into BH(2, n - 1, 2) with dilation 2,

expansion = 2n/ (2n - 1), and M2 = 211-2 - 1 such that (0, 0 0) is the idle node, and

the root node is at most of distance 1 from this idle node.

Any BH(2, n, 2) can be decomposed into BH1(2, n - 1, 2), and BH2(2, n - 1, 2),

each of which is of BH(2, n - 1, 2). Let us assume that the most significiant bit of all

the nodes in BH1(2, n - 1, 2) is 0, and the most significiant bit of all the nodes in

BH2(2, n - 1, 2) is 1. By assumption, we can embed one n-level X-tree into BH1(2, n -

1, 2) with dilation 2, expansion = 211/ (211 - 1), and M2 = 2n-2 - 1 such that (0, 00 0)

is the idle node and root node is at most of distance 1 from (0, 00....0).

Also, we can embed another n-level X-tree into BH2(2, n - 1, 2) with dilation 2,

expansion = 211/ (2n - 1), and M2 = 2n-2 - 1 such that (0, 10 0) is the idle node and

root node is at most of distance 1 from this idle node, (0, 10 0). Make node (0,

10...0) the new root with the old roots as its children. Then, (0, 00...0) becomes the

idle node, and the root node is of distance 1 from this idle node. Here in each step of the

embedding, we can embed in such a way that all the consecutive nodes in the same level

form a ring. Hence M2 = (2n-2 1) + (2n-2 - 1) + 1 = 2n -1- 1.

Lemma 3.11

A L-level X-tree can not be embedded into BH(h, h -1, 2) with dilation 1, if h < L .

Proof :

Let us say that edges between the nodes in the same level as hypercube edges, and

edges between the nodes in the adjacent level as banyan edges.
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case 1: root node of L-level X-tree is mapped into some node in the top level of BH(h, h -

1,2).

Since h < L, there exists at least one node, v = (m, xh_1...xm+1 xm xm_i... x1

x0) in X-tree, which is adjacent to its parent node along the banyan edge, and any of its

left or right child does not lie in the level lower than its level. Otherwise, we can easily

prove that the X-tree of level L can't be embedded into BH(h, h -1, 2) with dilation 1.

Here, both the left and right children of v can't be in the same level of v. Otherwise, we

will have a cycle of length 3 in the hypercube. Also left and right children of v can't be

in level m + 1 simultaneously, because at most two nodes at level i + 1 are adjacent to a

node at level i for each level, i = 0,..L - 1.

Hence, one of the two children of v must be in level m + 1 of BH(h, h - 1, 2), and

the other child in level m. Without loss of generality, assume that the left child ofv, lv is

in level m + 1, such that lv = (m + 1, xh.i...xm+1 xm xm_i x1 xo). Then parent

node, pv of v is pv = (m + 1, xh_i...xm+i cxm xm_1... x1 x0), and right child, rpv of

pv is rpv = (m, xh_i...xm+i cxm xm -l... x1 x0), where cxm is the complement of xm.

But right child, ry of v must also be ry = (m + 1, xh_1 ...xm+1 cxm xm_i... xi xo) or
(m, xh_i...xm÷i cxm xm_i x1 x0). Otherwise, three nodes, v, Iv and lv can't make a

cycle of length three. Assume that ry = (m + 1, xh-1xm+1 cxm xm-1 x1 x0)
This says (m + 1, xh_i...xm+1 cxm xm -l... x1 xo) is the child of v and also the parent

of v, which is impossible.

When ry = (m, xh_1 ...xm+1 cxm xm_i_. x1 xo), we can give a similar contradiction.

case 2: root node of L level X-tree is mapped into some node in level m, 0 < m < h.

Proof :

Similar to the case 1.
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case 3: root node of L level X-tree is mapped into some node in level 0 .

Proof :

Similar to the case 1.

Theorem 3.6 A L-level X-tree can be embedded into BH(L, L - 1, 2) with dilation 1.

Proof :

In X-tree, we can assign an integer label to each node in such a way that the root of

X-tree is 1, and for each nonterminal node n of X-tree, its left and right children as 2n and

2n + 1.

Let f be a mapping from the labels in X-tree to the nodes in BH(L, L - 1, 2) as follows.

f(1) = (L - 1, 111 1111), that is, the rightmost node in the top level.

For each nonterminal node, n, where f(n) = (m, xi..1.xm+1 xm xm_i xi x0),

f(2n) = (m - 1, xiA... xm cxm_i... x1 x0),

f(2n+1) = (m - 1, gi... xm xm_i... xi xo) if n is even.

f(2n) = (m - 1, xi.,..1... xmxm_i... x1 x0)

f(2n+1) = (m - 1, x1,1... xmcxm_i... x1 x0) if n is odd.

Then, it is easy to verify that f is an one-to-one mapping such that a given child and its

parent in the X-tree are mapped into two adjacent nodes in BH(L, L - 1, 2).

It remains to show that any two consecutive nodes in the same level of the X-tree

are adjacent in BH(L, L - 1, 2). We prove this by induction on label, n in X-tree.

Trivially, f(2) and f(3) are adjacent.

Assume that f(k) and f(k + 1) are adjacent if k 5 p, and they are in the same level of X-

tree, and let us consider f(p + 1) and f(p + 2), where label p + 1 and p + 2 are in the same

level. If p is odd, f(p + 1) and f(p + 2) are left and right children of f( (p + 1)/2).
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Hence, they are adjacent.

If p is even, it can be easily shown that label p/2 and p/2 + 1 are in the same level.

Hence f(p/2) and f(p/2 +1) are adjacent by induction assumption.

Also from the definition of the function, f, all the nodes in the same level of X-tree appear

in the same level of BH(L, L - 1,2). Therefore, we can represent f(p/2) and f(p/2 + 1) as

f(p/2) = (r, xUl xs. xi x0), and f(p/2 + 1) = (r, xIrl cxs... x1 xo) for some xs,

and r.

Here if p/2 is also even, then p/2 + 1 is odd. By the definition of the function , f,

f(2(p/2) + 1) = f(p + 1) = (r - 1, x13_1 xs. xi xo) and f(2(p/2 + 1)) = f(p + 2) =

(r - 1, xL.l cxs... x1 x0). Hence f(p + 1) and f(p + 2) are adjacent.

In the case of p/2 being odd, we can give a similar proof.
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Figure 3. 9 : (5, 5) torus and (5, 5) Illiac Network

3.3.4 Embedding a torus into a Banyan Hypercube.

A (11,12, l& d-dimensional mesh is a d-dimensional lattice of width li

for dimension i, i = 1, 2, d., where li nodes in each dimension i, i = 1, 2, d.,

form a line of length Li . The nodes are labelled as d-tuples (ii, i2,
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where 0 5 i
J

51
J
. - 1 for all 1 5 j 5 d. Two nodes are linked by an edge if they differ in

precisely one coordinate and if the absolute value of the difference in that coordinate is 1.

Torus is just a wrap-around mesh.

Lemma 3.12 [Ho87] If a (li, 12, ld-1, 1d) d-dimensional mesh is embedded

in an n-cube with dilation one, then n z / r loge lil, for i = 1, 2..., d.

Lemma 3.13 If a (11,12, ,id-1, 1d) d-dimensional torus is embedded in an n-

cube with dilation one, then n z I r loge lit, for i = 1, 2 ...., d.

Proof :

It follows from Lemma 3.12, and the definition of torus.

Theorem 3.7 A (11, 12, ,1d-1, 1d) d-dimensional torus can be embedded into

BH(1, n, 2), w h e r e n = / r log2 lil for i = 1, 2 ...., d.

(a) with dilation 1 if all li are even, for 1 5 i 5 d.

(b) otherwise, let lkj for 15 j 5 p be the given odd dimensions. Then

the mapping can be done with dilation 2, and M2 =E D(lkj),

for 1 5j 5 p where D(lki) = (II li) ilki, for i = 1,2 ....,d.

Proof :

(a) It follows from Lemma.3. 2, Lemma 3.3, and case 1 in Theorem 3.1.

(b) It follows from Lemma 3.2, Lemma 3.3 and the fact that a ring of odd length can be

embedded with dilation 2, and M2 =1 into r loge 11 -cube.

Lemma 3.14 For r = ri + r2, the BH(2, r, 2) can be expressed as the cross product

BH(2, r, 2) = BH(2, rl, 2)0 Qr2

where Qr2 denotes the r2- dimensional hypercube .
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Proof :

The proof is by induction on r2. When r2 = 1, the result is true by inspection.

Assume that the above is true when r2 = n, and consider the case, when r2 = n+1.

That is, r = rl + n + 1 = r' + 1, where rl + n = r'. By induction assumption, BH(2, r',

2) = BH(2, rl, 2)0 Qn. But by inspection also, BH(2, r, 2) = BH(2, r', 2)0% =

BH(2, rl, 2)0 Qn0Q1 = BH(2, rl, 2)0 Qn+i (by Lemma 3.2). Hence the above is

also true when r2 = n +1.

Lemma 3.15 For any k Z 1 and r = rl + r2 + + rk , the banyan-hypercube BH(2,

r, 2) can be expressed as the cross product

BH(2, r, 2) = BH(2, rl, 2)0 Q120 ®Qrk

where Qn denotes the ri-dimensional hypercube for 2 5 i 5 k.

Proof :

It follows by Lemma 3.2, and Lemma 3.14.

Theorem 3.8 A (11,12, ,1d-1, 1d) d-dimensional torus can be embedded into

BH(2, n, 2), where n + 1 = / r log210 , for i = 1,2 ....,d.

(a) with dilation 1 if either all li, 15 i 5 d, is even; or only one h odd and

the others even .

(b) otherwise, let lki for 15 j 5 p be the given odd dimensions. Then

the mapping can be done with dilation 2, and M2 =1 D(lki), for 15 j 5 p

where D(lkj) = (H li) ilkj, for i = 1,2 ....,d.
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Proof :

(a) By Lemma 3.15, Lemma 3.2, Lemma 3.3, and Theorem 3.1.

(b) It follows from Lemma 3.2, Lemma 3.3, case 3 in Theorem 3.1 and the fact that a

ring of odd length p can be embedded with dilation 2, and M2 =1 into F log2 plcube.

Lemma 3.16 C2h0 Qn_ 1 is a subgraph of BH(h, n, 2), where h 5 n + 1, and

is a cycle of length 2h.

Proof :

It follows from Lemma 3.2, the fact that Lhe Qn is a subgraph of BH(h, n, 2),

and that Lh® Qi is c2h

c 2h

Theorem 3.9 A (2h, 12, ,1d-1, 1d) d-dimensional torus can be embedded into

BH(h, n, 2), where n - 1 zE r loge lil, for i = 2,...d.

(a) with dilation 1 if for all 2 5 i 5 d, li is even.

(b) otherwise, let lki for 15 j 5 p be the given odd dimensions. Then

the mapping can be done with dilation 2 , and M2 = 2hE D(lki) ,

for 1 5 j 5 p where D(lki) = (r1 li) ilki, for i = 1,2 ....,d.

Proof :

(a) It follows from (a) in Theorem 3.7, and Lemma 3.16.

(b) It follows from Lemma 3.2, Lemma 3.3, case 3 in Theorem 3.1 and the fact that a

ring of odd length p can be embedded with dilation 2, and M2 =1 into F log2 p1 -cube.

3.3.5 Embedding an Iliac network into a Banyan Hypercube.

An Illiac network is a (1i,12) 2-dimensional grid, in which each column is a ring of
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length 11, and each row is a linear array such that last node of each row is connected to the

first node of its next row, where the next row of row i is defined as (i + 1) mod 11, i = 1,

2,.., 11 [Bar20].

Theorem 3.10 A (11,12) Miac network can be embedded into BH(2, (k + 1), 2)

(a) with dilation 2, expansion = 2* 2(k+1)/(11* 12), and M2 =11 if 11

or 12 is even, where 2k < 11 S 2k+1, and 21-1 < 12 5 21.

(b) with dilation 2, and M2 =11 + 12 if li and 12 are odd.

Proof :

(a) Without loss of generality, assume that 12 is even.

(1) By Theorem 3.8, torus (11, 12) can be embedded into BH(2, (k + 1), 2)

with dilation one.

(2) A (11, 12) Miac network can be embedded into torus (11, 12) with dilation 2,

and M2 = li.

(b) It follows from Theorem 3.8 and the fact that A (11,12) Iliac network can be

embedded into torus (11, 12) with dilation 2, and M2 =11.

Theorem 3.11 A (11, 12) Illiac network can be embedded into BH (h, n, 2)

(a) with dilation 2, expansion = h* 2n/(11* 12), and M2 =11 if

12 is even, where 11= 2h or 2h - 1, and r log2 121 = n - 1.

(b) with dilation 2, and M2 =11 + 12 if 11 and 12 are odd.

Proof :

(a) It follows from (a) in Theorem 3.9 and the fact that a (11, 12) Iliac network can be

embedded into torus (11, 12) with dilation 2, and M2 =11.

(b) It follows from (b) in Theorem 3.9 and the fact that a (1i,12) Miac network can be

embedded into torus (11, 12) with dilation 2, and M2 =11.
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Topological Properties of K-ary n-cube.

4.1 Introduction
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The hypercube topology for interconnection networks has been studied extensively

by many authors, because it has many interesting features such as node symmetry , edge

symmetry, logarithmic diameter, recursively defmable structure, and maximal fault

tolerance. In addition, many interesting topologies such as tree[Wu85, Bha85, Bha86,

Wag89, Lei89,Aie90, Bha91], mesh[A1e82, Cha88, Cha91, Ho87, Ho90, Lie91,

Me190], mesh of tree[Efa91], ring[Saa88, Pro88, Cha91], and butterfly -like

graph[Gre90] topologies can be embedded efficiently.

However, the hypercube has the major drawback that the number of connections

to each processor grows logarithmically with the size of the network. While this is not a

problem for small hypercubes, it can present some difficulties for very large

machines[Lei91].

The k-ary n-cube has many of the desirable properties of the hypercube. In

addition, the number of connections is independent of the size of the network.

Furthermore, it has the mesh topology as a subgraph. Hence many linear algebra

computations, or partial differential equations can be performed effectively on the k-ary n-

cube based topology. For this reason, several parallel machines based on the k-ary n-

cube topology have appeared, including the Ametek 2010[Sei188], the J-machine[Da189],

[Da191], and the Mosaic [Sei288].

The k-ary n-cube parallel machine consists of kn identical processors, each

provided with its own sizable memory, and connected to 2n neighbors.
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The purpose of this chapter is to study the topological properties of the k-ary n-

cube. The rest of the chapter is organized as follows. Section 4.2 introduces the

necessary definitions and notation. In Section 4.3, we will derive some simple graph

properties of the k-ary n-cube.

4.2 Preliminaries

In this section, we give some definitions useful for the subsequent sections.

In the k-ary n-cube, any k-ary p-cube, p < n is denoted by (k + 1)-ary strings in (0,

1, 2,...., (k - 1), *} rl, where * is the don't care symbol, which can be a 0, 1, 2,...(k -

2), or (k - 1). For example, 3-ary 2-cube formed by nodes, 000, 001, 002, 010, 011,

012, 020, 021, and 022 in the 3-ary 3-cube is denoted by 0**.

Any edge joining two nodes that differ in the ith bit position in the k-ary n-cube,

where 05i5n- 1 is said to be of dimension i. For example, (000, 001), and (001, 002)

are edges of dimension 0 in 3-ary 3-cube.

A nonempty set of elements G with a binary operation *, is called a group if the

following conditions are valid.[Her75]

1. a, b e G implies a*be G (closed).

2. a, b, c e G implies that a * (b * c) = (a * b) * c (associative law).

3. There exists an element e e G such that a*e=e*a =a for all a e

(the existence of an identity element in G).

4. F o r e v e r y a e G t h e w e x i s t s an element a 1 e G such that a* a 1= a 1* a = e

(the existence of inverses in G).
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For example, let G consist of the integers where * denotes addition, i.e, a * b is a + b

for a, b E G. Then G is a group in which 0 plays the role of e and -a that of el. When

the number of elements in the group G is finite, we say that G is a finite group. For

example, let G ={ 1, - 1) and let * denote multiplication. Then G is then a group with 2

elements.

A group action graph (GAG) is defined by a set V of vertices and a set H of

permutations of V: For each v E V and each it E H, there is an edge labeled it from

vertex v to vertex vie. A Cayley graph is a GAG(V, H), where V is the group Gr(rn

generated by H and where X e 11 acts on each g E Gra") by right multiplication

[Ann90].

4.3 Topological Properties

Lemma 4.1: The k-ary n-cube is a Cayley graph.

Proof:

It can be easily shown that Cayley graph generated by n vectors, (1, 0, 0 0),

(0, 1, 0,....0), (0, 0, 1,...., 0), (0, 0,....,1) with mod k bitwise addition is

isomorphic to the k-ary n-cube.

For example, the Cayley graph, generated by (1, 0), and (0, 1) with mod 4 addition

becomes the 4-ary 2-cube.
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An automorphism of a graph is a one-to-one mapping of the nodes to the nodes

such that edges are mapped to edges. A graph is said to be node-symmetric if for every

pair of nodes, u and v, there exists an automorphism of the graph that maps a into b. A

graph is said to be edge-symmetric if for every pair of edges, e 1 and e2, there exists an

automorphism of the graph that maps elinto e2.

The symmetric interconnection networks have the interesting property that the

network viewed from any node of the network looks the same. For this reason, identical

processors in each node can use identical routing algorithms. Furthermore, congestion

problems in this kind of network can be minimized if the load in the network is

distributed uniformly through all the nodes.

Lemma 4.2 : K-ary n-cube is node-symmetric.

Proof : The proof follows from Lemma 4.1 and the fact that all Cayley graphs are node

symmetric[Ake 81] .

Alternatively, we can show explicitly that given any two nodes in the k-ary n-cube,

there exists an automorphism of the graph that maps one vertex into the other. Let u and

v be the two nodes in the k-ary n-cube. Let w = u - v, where - is the bitwise mod k

subtraction operation. Then p(a) = a + w, where - is the bitwise mod k subtraction

operation, is a one to one mapping from vertices to vertices. Clearly, this maps u to v.

Further, p is an automorphism . For, if two nodes x and y are connected by an edge, i.

e, the Lee distance between them is 1, then Lee distance between p(x) and p(y) is also

1. Hence p(x) and p(y) are connected by an edge.

A Cayley graph is said to be hierarchical, if its generators can be ordered g 1, g2,

gd, such that for each i, 1 S i 5 d, gi is not in the subgroup generated by the first i - 1
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generators. If the Cayley graph is hierarchical under any ordering of the set of

generators, it is said to be strongly hierarchical[Ake87].). A strongly hierarchical graph

has the property that it can be recursively decomposed using the generators in any

order[Ake87].

Mother important measure of interconnection networks is their fault tolerance. The

fault tolerance of a graph is better defined through the graph theoretic property, called

connectivity. The connectivity of a graph is the minimum number of vertices that need to

be removed to disconnect the graph. The fault tolerance is then one less than the

connectivity and indicates the maximum number of vertices that can be removed and still

have the graph remain connected. Clearly, any graph can be disconnected by removing all

the vertices adjacent to a given vertex. Thus its connectivity can be at most its degree. It

has been shown that hierarchical Cayley graphs are maximally fault tolerant[Ake84]. That

is, their fault tolerance is exactly one less than their degree.

Lemma 4.3 : The k-ary n-cube is strongly hierarchical.

Proof :

Let us take any arbitrary (n - 1) vectors, gl, g1 g (i - 1) from the n vectors,

(1, 0, 0 0), (0, 1, 0, .0), (0, 0, 1 0), (0, 0,....,1). Let us think about

the subgroup G generated by g 1, g 1' g (n - i)with mod k bitwise addition

operation. Then the remaining vector is not in G.

For example, Let us think about the group, G = f(1, 0, 0), (1, 1, 0), (1, 2, 0), (2, 0, 0),

(2, 1, 0), (2, 2, 0), (0, 0, 0), (0, 1, 0), (0, 2, 0,) } generated by (1, 0, 0), and (0, 1, 0)

with mod 3 bitwise plus operation. Then, (0, 0,1) 0 G.

Lemma 4.4 : The k-ary n-cube is maximally fault tolerant

Proof : The proof follows from Lemma 4.3 and the fault tolerance of the strongly

hierarchical Cayley graphs.
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We can also prove Lemma 4.4 using induction on n.

When n = 1, i.e, in the case of ring with length k, 2 node faults are needed for the

network to be disconnected. Let us assume that 2r node faults are needed for the

network to be disconnected, when n = r. Suppose that n = r + 1, and that 2r + 1 node

faults are present. Then we can decompose the k-ary (r + 1)-cube along some

dimension, say, 1 into k k-ary r-cubes in such a way that in each k-ary r-cubes, at most

2r -1 node faults exist. By the induction assumption, each k-ary r-cube 0***..*,

1***..*,....(k -1 )***..* is the connected graph. kr > 2 (2r + 1) implies that there exists

two nodes, OA in 0***..*, and 1A in 1***..* , which are nonfaulty. Hence connected

graphs in 0***..*, and 1***..* are connected by the edge (OA, 1A). In a similar way,

between any two k-ary r-cubes, there exist two nonfaulty corresponding nodes, such that

connected graphs in those two k-ary r-cubes are connected by the edge between those two

nodes.

Since the degree of k-ary n-cube is 2n, the k-ary n-cube is connected even in the presence

of 2n - 1 node faults.

Lemma 4.5 : The k-ary n-cube can be recursively decomposed along any dimension.

Proof:

The proof follows from Lemma 4.3 and the recursive structure of the strongly

hierarchical Cayley graphs.

By the property of the recursive decomposibility, any k-ary (n + 1)-cube can be

decomposed into k k-ary n-cubes along any dimension. For example, the k-ary (n + 1)-

cube can be decomposed along dimension 0 into k k-ary n-cubes,

**..*2 and **..*(k - 1).

**..*0, **..*1,
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Also, any k-ary n-cube can be constructed recursively as follows.

1) A k-ary 1-cube is a ring with k nodes;

2) A k-ary n-cube consists of k k-ary (n - 1)-cubes, each one having kn-1 nodes.

Further, the corresponding nodes in each k-ary (n - 1)-cube form a ring of length k.

That is, k-ary n-cube, Gk, n is the cross product of a k-ary (n - 1)-cube, 0k, (n 1) and

a ring of length k, Ck.

Notationally, Gk, = Gk, 1) Ck .

Where V(Gk, n) = { uv I u e V( Ck) and v e V(Gk, (n 1)) } and

E(Gk, n) = { (uivi, u2v2) I ( (u1, u2) E E( Ck) and v1= v2 ) or

( ul = u2 and (vi, v2 ) e E(Gk, (n 1)) ) }

(0,1)

(0, 1) (O. 1) rri (O. 1) ri
(0, (0,1

(1, 0
(0, 2)I--1 (0, 31I

al
(1, '3) 1, 0

(1, 1 (1, 2) (1, 3)

(2, 0 1, 0) (2, 1)
(1, 0t

(2, 2) ( , 3

SI
(3, 0) (3, 1 (3, 2) (3, 3)

Figure 4.1 : 4-ary 2-cube as a Cayley graph.
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If vertices u and v are connected in graph G, the distance between u and v in G,

denoted by d(u, v) is the length of a shortest path from u to v in G. The diameter of G is

the maximum distance between two vertices of G. Let us assume D(G) and Da(G)

denote the diameter and average distance of the graph G respectively. When G is a

product graph of two graphs, G1, and G2, i. e, G = G1® G2, then D(G) = D(G 0 +

D(G2), and Da(G) = Da(G1) + Da(G2) [You3 90].

Lemma 4.6 : The diameter of the k-ary n-cube is Lk / 2J * n.

Proof: Let u and v be two nodes in the k-ary n-cube. Then from the definition of the Lee

distance, we have

DL,(u, v) = WL(u - v) = II ai I

However, lail5 Lk/2J

This results in DL(u, v) 5 Lk / 2J* n

We can also prove Lemma 4.6 by induction on n.

When n = 1, i. e, in the case of cycle with length k, the diameter is Lk / 2J.

Assume that the diameter of the k-ary p-cube is Lk / 2J * p, where p 5 n -1.

By the property of the product graph, the diameter of the k-ary (p + 1)-cube = the

diameter of the k-ary p-cube + the diameter of the k-ary 1-cube, i. e, Lk / 2J * p + Lk /

2.14k/ 2_1*(p+ 1).
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Lemma 4.7: The average distance of the k-ary n-cube is n*adist, where adist is the

average distance in the k-ary 1-cube.

Proof: It follows from the following facts, using induction on n.

1) : The k-ary n-cube is a product graph.

2): If graph G is the product graph of 01 and 02, then Da(G) = Da(G1) + Da(G2).

Lemma 4.8[Bos 93]:

Let u = unun_i....up v = vnvn_i....vi.

Let 1= DL(u, v), h = DH(u, v) and wi = Di (ui, vi). Then, in a k-ary n-cube, there are a

total of 2n node-disjoint parallel paths between u and v such that

1) h paths are of length 1,

2) 2(n - h) paths are of length 1 + 2, and

3) for each i, wi > 0, there is a path of length 1 + k - 2 wi ( a total of h paths)

Lemma 4.9 : There exists nCr * n - r k ary-- r-cubes in the k-ary n-cube.

Proof:

Let us take r positions from n bits, and put the "don't care" symbols in those

positions. There exists nCr cases of selecting r positions from n bits. For each case, we

can fix the remaining n - r positions in kn r.

Lemma 4.10: There exists kn r node-disjoint k-ary r-cubes in the k-ary n-cube.

Proof:

Let p be the maximal number of node-disjoint k-ary r-cubes in the k-ary n-cube.
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Then p * (number of nodes in the k-ary r-cube) = p k* r S n *kn.

Hence p 5 kn r (1).

Let S be the set of k-ary r-cubes in the k-ary n-cube such as S = { * *.. *ar+1

aria.... anl * is the don't care symbol, and ai e [0, 1, 2,..., k - 1] for all i = r+1,....,

n }. Then all the k-ary r-cubes in S are mutually node-disjoint.

Also, the number of elements in S is kn r (2). p = kn r follows from (1) and (2).

Lemma 4.11: There exists Ln/ rJ *kn - r edge-disjoint k-ary r-cubes in the k-ary n-

cube.

Proof:

Let N be the maximal number of edge-disjoint k-ary r-cubes in the k-ary n-cube.

Then N * (number of edges in the k-ary r-cube) = N * r *kr 5 n *kn. Hence N _n/r kn

-r j (1 ).

Let us denote the k-ary n-cube with 0, 1,... (k - 1) and * (don't care symbol). For

example, 0** with 9 nodes 000, 001, 002, 010, 011, 012, 020, 021, and 022 is a 3-ary

2-cube.

Let us say that two k-ary r-cubes overlap completely, if all the bit positions of don't

care symbols in the two k-ary r-cubes are same. For example, **00, and **01 overlap

completely. We can easily verify that any two k-ary r-cubes that overlap completely, are

edge-disjoint.

Let us say that two k-ary r-cubes do not overlap if all the bit positions of don't care

symbols in the two k-ary r-cubes are different. For example, **11, and 00** do not

overlap. We can easily verify that any two k-ary r-cubes not overlapping, are edge-

disjoint.
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Let us say that two k-ary r-cubes overlap partially if overlapping here is neither

"completely" nor "not overlap", and if constants in the same bit positions are equal . For

example, **11, and 0**1 overlap partially in the 4-cube. We can easily verify that any

two k-ary r-cubes that overlap partially, are not edge-disjoint.

Let S be the set of maximal k-ary r-cubes in the k-ary n-cube such that any pair of

k-ary r-cubes do not overlap. Trivially, ISI = L r/ si. For a given k-ary r-cube, the

number of k-ary r-cubes that overlap completely with that k-ary r-cube is 2r 5. Let T be

the edge-disjoint k-ary r-cubes in the k-ary n-cube obtained by the previous procedure.

I TI = L r/ si * 21. S. Let U be the set of all the k-ary r-cubes in the k-ary n-cube. Let us

take some arbitrary set of edge-disjoint k-ary r-cubes from U - T, and call it V. Then for

any ue V. there exists, a unique u' e T such that u and u' are partially overlapped, i.e, u

and u' are not edge disjoint. We can check this fact!. Hence T is the maximal edge-

disjoint k-ary r-cubes in the k-ary n-cube .

A graph G = (V, E) is bipartite if its vertex set V can be partitioned into two subsets

V1 and V2 such that each edge of E connects a vertex in V1 witha vertex in V2.

Lemma 4.12: When k is even, the k-ary n-cube is a bipartite graph.

Proof:

Let us say that a k-ary n-cube node is even if the sum of all the n digits in its k-ary

address is even, and that it is odd otherwise. In the case of k being even, any edge in the

k-ary n-cube connects an even node with an odd node.

For example, when k = 4, and n = 2, the edges connect nodes in 1(0, 0), (0, 2), (1,

1), (1, 3), (2, 0), (2, 2), (3, 1), (3, 3)) to nodes in { (0, 1), (0, 3), (1, 0), (1, 2), (2, 1),

(2, 3), (3, 0), (3, 2)).
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Lemma 4.13: No cycles of odd length exist as a subgraph of the k-ary n-cube when k

is even.

Proof:

When k is even, any cycle in the k-ary n-cube will have to alternate between

visiting even nodes and odd nodes. Hence, a cycle of odd length can't be a subgraph of

the k-ary n-cube, when k is even.

Lemma 4.14: There exists n edge-disjoint Hamiltonian cycles in the k-ary n-cube.

Proof:

A k-ary n-cube can be represented as the cross product of n cycles, where the

length of each cycle is k. Hence n edge-disjoint Hamiltonian cycles are in the k-ary n-

cube [Als90].

The degree of each node in the k-ary n-cube is 2n. Since there are kn nodes, and

each edge contributes 2 degrees in the graph, the total number of edges in the k-ary n-

cube is 2n * kn/2 = n * kn. But in each Hamiltonian cycle of k-ary n-cube, kn edges

are included. That means n * kn different edges are included in the n edge-disjoint

Hamiltonian cycles. Hence every edge in the k-ary n-cube is included in one of the n

edge-disjoint Hamiltonian cycles.
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Embedding Rings into K-ary n-cube.

5.1 Introduction
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The k-ary n-cube graph has been successfully used in the design of several

concurrent computers including the Ametek 2010 [Seil 88], the J-machine [Da189],

[Da191], and the Mosaic [Sei2 88]. Furthermore, it has many interesting topological

properties as an interconnection network for a parallel machine. For example, it is

node-symmetric, recursively decomposable, and maximally fault-tolerant [Ann90].

Embedding of rings into a given parallel machine has been studied by many

authors[Saa88, Pro88, Cha2 91, Yan, Wan]. In this chapter, we show that a ring with n

nodes, kP-1 < n 5 kP can be embedded into a k-ary p-cube with dilation 1 between any

two adjacent nodes if k is odd. We also show that in the case of k being even, a ring

with n nodes, kP-1 < n 5 kP can be embedded into a k-ary p-cube with dilation 2 if n is

odd, and with dilation 1 if n is even.

The rest of the chapter is organized as follows. Section 5.2 introduces the necessary

definitions and notation. Embedding of a ring network into a k-ary n-cube will be

discussed in Section 5.3.

5.2 Preliminaries

In this section, we give some definitions useful for the subsequent sections.

Let us denote the nodes and edges of the graph G as V(G), and E(G) respectively.
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G - e denotes the graph obtained after deleting the edge e from the graph G, for e e

E(G). Simi lardy, G + e denotes the graph obtained after adding the edge e = (u, v) to

the graph G, for u, v E V(G). The union of two graphs G1 and G2, denoted by Gi u

G2 is the graph, formed by the set of nodes V(G1) u V(G2) and edges E(G1)u E(G2)

such that e E E (Gi u G2) if e E E(G1) or e E E(G2).

In the k-ary n-cube, any k-ary p-cube, p < n is denoted by (k + 1)-ary strings in {0,

1, 2,...., (k - 1), *}n, where * is the don't care symbol, which can be a 0, 1, 2,...(k -

2), or (k - 1). For example, 3-ary 2-cube formed by nodes, 000, 001, 002, 010, 011,

012, 020, 021, and 022 in the 3-ary 3-cube is denoted by 0**.

Any edge joining two nodes that differ in the ith bit position in the k-ary n-cube,

where 0 5 i 5 n - 1 is said to be of dimension i. For example, (000, 001), and (001, 002)

are edges of dimension 0 in 3-ary 3-cube.

Let G be a subgraph of k-ary r-cube, induced by some set of nodes, V = {v1, v2,

...vp}. xG, for some xe {0, 1, ..., k - 1 ), denotes a subgraph of the k-ary (r + 1)-

cube, induced by nodes, V1 = {xv1, xv2,...., xvp} such that two nodes xvi and xvj, for

i, jE {1, ..., p} are adjacent in the graph xG if vi and vi are adjacent in the graph G. In a

similar way, if Y is a node in the k-ary s-cube, YG represents another subgraph of the

k-ary (r + s)-cube.

For example, Let Y be 01, and G be the graph with V(G) = {000, 001, 020, 010),

and E(G) = {(000, 001), (000, 010), (020, 010)), which is a subgraph of the 3-ary 3-

cube. Then YG is the graph with V(YG) = {01000, 01001, 01020, 01010), and E(YG)

= { (01000, 01001), (01000, 01010), (01020, 01010)),
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which is a subgraph of the 3-ary 5-cube.

Two edges e 1 and e 2 between two cycles R and S with length r and s respectively

are said to be connecting edges, if there exists a cycle of length r + s in the graph R t..) S

+ el + e 2. The basic idea of the proofs in this chapter uses the concept of connecting

edges.

By the property of recursive decomposibility, any k-ary n-cube can be constructed

recursively as follows.

1) A k-ary 1-cube is a ring with k nodes;

2) A k-ary n-cube consists of k k-ary (n - 1)-cubes, each one having 0'1 nodes.

Further, the corresponding nodes in each k-ary (n - 1)-cube form the ring of length k,

respectively.

By the property of the recursive decomposibility, any k-ary (n + 1)-cube can be

decomposed into k k-ary n-cubes along any dimension. For example, along the
dimension 0, k-ary (n + 1)- cube can be decomposed into k k-ary n-cubes,

**..*1, **..*2 and **..*(k - 1).

5.3. Ring Embeddings

**..*0,

The existence of a Hamiltonian cycle in the k-ary n-cube, using a mapping function

is shown in [Ma87]. The existence of a Hamiltonian cycle has also been shown, using

the gray code in the k-ary n- cube[Bos 93]. In Lemma 5.1, and Lemma 5.2, the
existence of a Hamiltonian cycle between any two adjacent nodes in the k-ary n-cube is

proven, using induction.
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Lemma 5.1 : In the k-ary 2-cube, there exists a Hamiltonian cycle between any

two adjacent nodes.

Proof :

By the property of node symmetry, it is sufficient to show that there exists a

Hamiltonian cycle between nodes, A = 01, and B = 02 in the k-ary 2-cube, Gk2.

Let Ci be the cycle formed by the sequence of nodes, i0, il i(k - 2), i(k - 1), and

i0 in Gk2, i = O.., k - 1. Then Ci , i = O.., k - 1 is the subgraph of Gam.

Also, for any v, v E V(Gk2), there exists some i, i e { O.., k - 1} such that v e

V(Ci). Hence, it is sufficient to prove that there exists a cycle, Hp, p = k -1,
which traverse all the nodes in Cj , j = 0..,p, such that Hp starts at node 01 and ends at

node 02.

Figure 5.1: Hamiltonian cycle in 5-ary 2-cube

Trivially, Ho = Co , and Hi is Ho u Ci - (00, 01) - (10, 11) + (00, 10) + (01, 11).

Let us assume that their exists a cycle, Hr 1 S r < k - 1, which traverse all the nodes in

9j= O.., r starting at node 01 and ending at node 02.

Then Hr+i = Hr t..) Cr+i - (rr, r(r + 1)) - ((r + 1)r, (r + 1)(r + 1)) + (rr, (r + 1)r) + (r(r

+ 1), (r + 1)(r + 1)) is a cycle, traversing all the nodes in Cm , m = O.., r, r + 1 .
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Here, Hr+1 begins at node 01 and ends at node 02.

Lemma 5.2 : In the k-ary n-cube, there exists a Hamiltonian cycle between any

two adjacent nodes.

Proof :

Again, the lemma is proven by induction.

When n = 1, it is trivial. When n = 2, it follows from Lemma 5.1.

Let us assume that there exists a Hamiltonian cycle between any two adjacent nodes

in the k-ary r-cube, where r Z 2. As in the proof of Lemma 5.1, it will be shown that

there exists a Hamiltonian cycle between two nodes, A 00 01, and B = 00 , 02

in k-ary (r + 1)-cube.

Let us partition the k-ary (r + 1)-cube in terms of r-th bit, and make k k-ary r-

cubes, 0**....*, 1**..*, (k -2)**..*, and (k - 1)**..*.

By the induction assumption, there exists a Hamiltonian cycle Co between nodes,

00 1, and 00...2 in the k-ary r-cube, 0**..* . Let us take two adjacent nodes, Oa

and 013, in Co, where a, and (3 are r-bit of k-ary vectors, and (00...1, 00...2) * (Oa,

0(3). By the induction assumption, there exists a Hamiltonian cycle C1, between nodes

la, and 113 in the k-ary r-cube, 1**..* . Then H1 = Co L.) C1 - (Oa, 0(3) - (la, 1(3) +

(Oa, 1 a) + 1(3) is the cycle between two nodes, 00 1, and 00...2, traversing all

the nodes in the two k-ary r-cubes, 0**....*, and 1**..*.

Let us again assume that there exists a cycle, Hp, traversing all the nodes in k-ary

r-cubes, 0**....*, 1** * and p** *, which begins at node A = 00 01 and ends

at node B = 00 02, when p Z 1. Let us complete the proof by showing that there



exists a cycle, traversing all the nodes in k-ary r-cubes, 0**....*, 1** *

and (p + 1)**..*, which begins at node A and ends at node B .

Let us take two adjacent nodes, pa, and p8 in Hp, where a, and 8 are r-bit of k-ary

vectors . By the induction assumption, there exists a Hamiltonian cycle, Cp+1 between

two nodes, (p + 1)a, and (p + 1)8 in (p + 1)**...**.
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,13:01%.*,

Then, Hp+ 1 = Hp + Cp+i - ( pa, p8) - ((p + 1)a, (p + 1)8) + ( pa, (p + pa) + (p8,

(p + 1)8) is the cycle between two nodes, 00 1, and 00...2, traversing all the nodes in

the k-ary r-cubes, 0**....*, 1**..*, ..., and (p + 1)**..* .

01 01

(a) Cycle of length 13 (b) Cycle of length 18

Figure 5.2 : Embedding cycles into 5-ary 2-cube

Lemma 5.3 : Between any two adjacent nodes in the k-ary 2-cube, a ring of length n,

k S n 5 k2 can be embedded with dilation 1, if k is odd.

Proof :

Case 1 : n is odd

Since n z k, and n is odd, there exists integers p and r such that n = p * k + r,

where r < k.
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1) When r is even, k and p must be odd.

a) Let us make a cycle C of length r, using 0*, and 1*.

Without loss of generality, let us assume that the adjacent nodes are 00 and 01.

The procedure here is to make a line of length r/2 in 0*. That is, line, L1 starts at node

00, and ends at node 0(r/2 - 1). Then make a corresponding line, 1.2 in 1*, that begins at

node 10 and ends at node 1(r/2 - 1). Then, Liu L2 + (00, 10) + (0(r/2 - 1), 1(r/2 - 1))

is a cycle of length r.

b) Make a cyle of length n = p * k + r.

Let us make a cycle, C' of length p * k, using 2*, 3*,...., (p + 1) *, that begins at

node 20 and ends at node 21. We can fmd the cycle, C' as is done in the proof of Lemma

5.1. Then C u C' - (10, 11) - (20, 21) + (10, 20) + (11, 21) is a cycle of length n.

2) When r is odd, p must be even.

a) Let us make a cycle C of length r + k , using 0* and 1*.

The procedure here is to make a line of length (r + k)/2 in 0*. That is, a line, that

starts at node 00 and ends at node 0((r + k)/2 - 1). Then make a corresponding line in 1*,

that begins from node 10, and ends at node 1((r + k)/2 - 1).

b) Make a cycle of length n = p * k + r.

Let us make a cycle, C' of length (p - 1) * k, using 2*, 3*,...., and p *, that begins

at node 20 and ends at node 21. We can fmd the cycle, C' as is done in the proof of

Lemma 5.1. Then C u C' - (10, 11) - (20, 21) + (10, 20) + (11, 21) is a the cycle of

length n.
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Case 2 : n is even

1) When n < k, we can embed cycle of length n in 0*, and 1*, as in the proof of Case 1.

Otherwise, since n z k, and n is even, there exists integers p, and r such that n = p * k +

r, where r < k.

ten r, and p are even, embed as in the proof of 1) in Case 1.

r, and p are odd, embed as in the proof of 2) in Case 1.

5.4 : A ring with odd length can't be embedded with dilation 1 into a k-ary n-

en k is even.

us say that a k-ary n-cube node is even if the sum of all the n digits in its k-ary

is even, and that it is odd otherwise. Then, k-ary n-cube is a bipartite graph if k

Thus when k is even, any dilation 1 embedding of a ring into that k-ary n-cube

re to alternate between visiting even nodes and odd nodes.

ring of odd length can't be embedded with dilation 1 into any k-ary n-cube,

: is even.

5.5: A ring with n nodes between any two adjacent nodes, n 5 k2 with k

being even can be embedded into a k-ary 2-cube with dilation 2 if n is odd, and with

dilation 1 if n is even.
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Proof :

Case 1 : n is even

Since n Z k and n is even, there exists integers p and r such that n = p * k + r,

where r < k. Here r must be even.

a) Let us make a cycle C of length r, using 0*, and 1*.

The procedure here is to make a line of length r/2 in 0*. That is, line L1 starts at

node 00 and ends at node 0(r/2 - 1). Then make a corresponding line, L2 in 1*, that

begins at node 10 and ends at node 1(r/2 - 1). Then, Liu I.2 + (00, 10) + (0(r/2 - 1),

1(r/2-.1)) is a cycle of length r.

b) Make a cycle of length n = p * k + r.

Let us make a cycle, C' of lenth p * k, using 2*, 3*,...., (p + 1) *, that begins at

node 20 and ends at node 21. We can fmd the cycle, C' as is done in the proof of Lemma

5.1. Then C u C' - (10, 11) - (20, 21) + (10, 20) + (11, 21) the cycle of length n.

Case 2 : n is odd

Just embed the cycle, C of length n + 1 on the k-ary 2-cube. Then, line, L of length

n that is in cycle C is the embedding of length n, cycle with dilation 2.

Theorem 5.1 : Between any two adjacent nodes in a k-ary p-cube, a ring with n

nodes, kPA < n S kP can be embedded with dilation 1 if k is odd.

Proof :

Let us prove by induction on p. When p = 2, by lemma 5.3.

Assume that the above is true when p = q, q z 2, and suppose that p = q + 1.
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By assumption, there exists integers r, and s such that n = s * kg + r, where 0 S r < kg.

1) Make a cycle of length r.

Without loss of generality, let us take the adjacent nodes to be 000...01 and

000...02. By the induction assumption, we can embed a cycle C of length r in a k-ary q-

cube, that is, in 0**..** between two nodes 000...01, and 000,...02.

2) Make a cycle of length s * kg + r

By Lemma 5.2, there exists a Hamiltonian cycle, H1 between two nodes, 100..01,

and 100...02. C u H1 - (000...01, 000..02) (100..01, 100..02) + (000...01,

100..01) + (000..02, 100..02) is the cycle of length kg + r.

In a recursive way, we can make a cycle of length s * kg + r between any two adjacent

nodes.

Theorem 5.2 : A ring with n nodes, kr" < n S kP can be embedded into a k-ary p-

cube with dilation 2 if n is odd, and with dilation 1 if n is even.

Proof :

Case 1 : n is even

We can prove this using lemma 5.5 , and the same method as is used in the proof of

Theorem 5.1.

Case 2 : n is odd

Similar to case 1 in Theorem 5.1.
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Chapter 6

Embedding a Hamiltonian Cycle into Faulty K-ary n-cube

6.1 Introduction

A Hamiltonian cycle in the k-ary n-cube is a cycle containing all nodes. Many

communication algorithms can be efficiently implemented in parallel systems using

Hamiltonian cycles [Ber91, John88]. In this chapter, we consider the problem of

finding a Hamiltonian cycle in a faulty k-ary n-cube. In [Cho 91], the embedding of a

Hamiltonian cycle in an n-dimensional binary hypercube in the presence of 2n - 5 edge

faults is given. In the case of the k-ary n-cube, since there exists n edge disjoint

Hamiltonian cycles [A1s90], there is a fault free Hamiltonian cycle even in the presence of

up to n - 1 edge faults. The results presented in this chapter improve upon this.

6.2 Embedding a Hamiltonian cycle into faulty k-ary n-cube.

The main interest here is the existence of a Hamiltonian cycle in the k-ary n-cube

with the edge faults. The necessary condition for the existence ofa Hamiltonian cycle in a

graph is that each node has to be incident to at least two nodes.

Most of the lemmas and theorems in this chapter can be proven using the following

concept. Let R and S be two cycles of length r and s and let el and e2 be two edges

connecting two adjacent nodes of R and S as shown in Figure 6.1[a]. Then a cycle of

length r + s can be constructed as shown in Figure 6.1[b]. The edges e 1 and e2 are called

the connecting edges of R and S.
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S R
[a] [b]

Figure 6.1: Combining two cycles into one

Any edge between two nodes that differ in the ith digit position is said to be of

dimension i, 0 5 i 5 n - 1. A Hamiltonian cycle in the k-ary n-cube is said to be

dominant in dimension i, 0 5 i 5 n - 1, if the number of edges not of dimension i used in

the Hamiltonian cycle is less than or equal to 2 (0'1 - 1).

Lemma 6.1 shows that there exists a dominant Hamiltonian cycle along any

dimension in the k-ary n-cube. Since there are kri edges in the Hamiltonian cycle, a

dominant Hamiltonian cycle in dimension i, 0 5 i 5 n - 1, uses at least kn - 2 (kn-1 1) =

(k 2) + 2 edges of dimension i.

Let us take any p consecutive k-ary n-cubes, **..*j, **..*(j + 1), ...., and **..*(j

+ p -1) from the k k-ary n-cubes, obtained by decomposing the k-ary (n + 1)-cube in

terms of dimension, 0, what j 2 0, and (j + p - 1) 5 k - 1. By extending the definition

of dominant Hamiltonian cycle for the k-ary n-cube, we can get the definition of

dominant Hamiltonian cycle for the graph, **..*j u **..*(j + 1) u,...., u**..*(j + p -1)

along dimension i, 0 < i 5 k -1 as the Hamiltonian cycle, that includes at least * kn- 1

(k - 2) + 2) - 2(p - 1) edges of dimension i.



77

When p = k, then pip(kn-1(L-2)+2)_2(p_1)=kn(x 2) + 2. When the k-ary (n

+ 1)-cube is decomposed into k k-ary n-cubes along any other dimension, A similar

definition of a dominant Hamiltonian cycle for the p consecutive k-ary n-cubes can be

given.

Lemma 6.1 : There exists a dominant Hamiltonian cycle along any dimension in the k-

ary n-cube.

Proof :

The embedding used in the proof of Lemma 5.2 is the dominant embedding. When

n = 2, just 2(k -1) edges of dimensions that differ from i, 0 5 i 5 n -1 are used. Assume

that 2(kP-1 -1) edges of dimensions that differ from i, 0 5 i 5 n -1, are used in the

embedding of Hamiltonian cycle for the k-ary p-cube. Then in the construction of k-ary

(p + 1)-cube, at most k * 2(1cP-1 -1) + 2(k - 1) = 2(kP - 1) edges of dimension different

from i, 0 5 i 5 n -1 is used in the embedding of Hamiltonian cycle for the k-ary (p + 1)-

cube.

The existence of a dominant Hamiltonian cycle along any dimension in the presence of 2n

- 2 edge faults for k-ary n-cube is shown in Lemma 6.2, Lemma 6.3, and Theorem 6.1.

Lemma 6.2 : There exists a dominant Hamiltonian cycle along any dimension in the

k-ary 2-cube with 2 edge faults.

Proof :

Let us say that the dimension along which the dominant Hamiltonian cycle exists is

the interested dimension.
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Case 1: No faulty edges are in the interested dimension.

Without loss of generality, let us assume that the interested dimension is 0. Then,

each of k-ary 1-cubes, 0*, 1*, .., and (k - 1)* forms a cycle of length, k z 3. k a 3 and

just two edge faults means that 0* includes one edge, (Ou, Ov) such that there exists one

corresponding edge, e in 1* or (k - 1)*, say, 1* with all the three edges,e = (lu, lv),

(Ou, lu), and (0v, lv) being nonfaculty. 0* u 1* (Ou, Ov) - (lu, lv) + (Ou, lu) + (0v,

1v) is the dominant Hamiltonian cycle for 0* u 1*. Using recursion, the remaining part

of Case 1 can be proved.

Case 2 : Just one faulty edge is in the interested dimension.

Without loss of generality, let us assume that the interested dimension is 0, and that

one faulty edge is (00, 01). There exists one corresponding edge, e in 1* or (k - 1)*, say

1* with all the three edges, e = (10, 11), (01, 11), and (00, 10) being nonfaulty.

0* t.) 1* (00, 01) - (10, 11) + (00, 10) + (01, 11) is the dominant Hamiltonian cycle for

0* U 1*. Using recursion, the remaining part of case 2 can be proved.

Case 3 : Two faulty edges are in the interested dimension.

Let us assume that the interested dimension is 0, and that the two faulty edges are

in 0*. Let us denote the two faulty edges as (Ou, Ov), and (Ow, Ox). Then, (lu, lv), (Ou,

lu), (0v, lv), ((k - 1)w, (k - 1)x), (Ow, (k - 1)w), and (Ox, (k - 1)x) are nonfaculty. 0*

u 1*- (Ou, Ov) - (lu, lv) + (Ou, lu) + (0v, lv) u (k -1)* - (Ow, Ox) - ((k - 1)w, (k - 1)x)

+ (Ow, (k - 1)w) + (Ox, (k - 1)x) is the dominant Hamiltonian cycle for 0* U 1* u (k -

1)*. Using recursion, the remaining part of case 3 can be proved. If one faulty edge is

in say, 0* and another faulty edge is in say, 3*, a similar proof can be given.
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Lemma 6.3 : There exists a dominant Hamiltoninan cycle along any dimension in the 3-

ary n-cube with the 2n - 2 edge faults, such that the Hamiltonian cycle includes any

given nonfaulty edge e in that direction.

Proof :

We shall prove the lemma by induction on n. When n = 2, Lemma 6.2 applies.

Assume that the lemma is true in the case n = p - 1 where p Z 3, and suppose that n = p.

Without loss of generality, let us try to show that there exists a dominant Hamiltoninan

cycle in dimension 0. From the fact that there are 2p - 2 edge faults in the 3-ary p-cube,

we know there exists a dimension i * 0, 0 5 i 5 p - 1, such that at most 1 edge fault

occurs in that dimension. We can also assume, without loss of generality, that the

dimension i is p - 1. Let us decompose the 3-ary p-cube in terms of dimension p - 1,

and make 3 3-ary (p - 1)-cubes, 0***..*, 1***..*, and 2***..* . Without loss of

generality, assume that the interesting nonfaulty edge, e is in 0***..*.

Case!: 2p - 2 edge faults are in 0***..*, 1***..*, or 2***..*. Suppose they are

in 0***..*.

Let us denote the 2p - 2 faulty edges by el, e2, ...., e(2p 2). Here, we know that

the nodes, Ov 11, Ov 12 , Ov21, and Ov22 are not incident to any faulty edge in the

dimension p - 1, where e1= (0v11, Ov 12) and e2 = (0v21, 0v22). Let us temporarily
assume that el= (0v11, 0v12) and e2 =(0v21, Ov22) are connected. Then, by the

induction assumption, there exists a dominant Hamiltonian cycle, Ho in 0***..*, that

includes the particular interesting edge. If e 1 and e2 are not included in H0, then we can

easily prove that there exists a dominant Hamiltonian cycle in the 3-ary p-cube that

includes that particular interesting edge. If el and e2 are included in Ho, we can

construct each of the corresponding dominant Hamiltonian cycles, H1 and H2 in

1***..*, and 2***..* in such a way that (Ou, Ov) e Ho means (1u, 1v) e H1 and (2u,

2v) e H2.
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Then H = Houtl - (0v11, Ov 12) - (1v11, 1v12) + (0v11, 1v11)+ (0v12, 1v12) V H2

(0v21, 0v22) (2v21, 2v22) (0v21, 2v20+ (0v22, 2v22) is the dominant

Hamiltonian cycle that includes the particular interesting edge.

A similar proof can be given for the case where just one edge from el and e2 is included

in Ho.

Case 2 : 2p - 3 edge faults are in 0***..*, 1***..*, or 2***..*. Suppose

they are in 0***..*.

The proof is similar to the proof of case 1.

Case 3: Number of edge faults in each of 0***..*, 1***..*, and 2***.. is at most

2p - 4.

By the induction assumption, there exists a dominant Hamiltonian cycle, Ho with

dimension 0 in 0***..*, that includes the particular interesting edge. Since Ho is a

dominant Hamiltonian cycle, Ho includes kP (k - 2) + 2 edges of dimension 0.

kP "1 (k - 2) + 2 - (2p - 4) = kP (k - 2) + 6 - 2p > 4 for each k 3, and at most one

edge fault in dimension p - 1 implies that Ho includes two edges, e1= (0v 11, Ov12) and

e2 =(0v21, Ov 22) of dimension 0 such that e * el, e * e2 , and all the edges, (1v11,

1v12), (2v21, 2v22), (0v11, 1v11), (0v12, 1v12), (0v21, 2v21), and (0v22, 2v22) are

nonfaulty. By the induction assumption, there exists a dominant Hamiltonian cycle Hi

with dimension 0 in 1***..*, that includes edge, (1v11, 1v12). Similarity, there exists a

dominant Hamiltonian cycle H2 with dimension 0 in 2***..* that includes edge, (2v

2v12). Then H = HouH (0v11, 0v 12) (1v11, 1v12) + (0v11, 1v11)+ (0v12,

1v12) u H2 - (0v21, Ov22) - (2v21, 2v22) + (0v21, 2v21)+ (0v22, 2v22) is the

dominant Hamiltonian cycle, that includes the particular interesting edge e.
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Theorem 6.1 : There exists a dominant Hamiltonian cycle in any direction in the k-ary

n-cube with 2n - 2 edge faults, such that the Hamiltonian cycle includes any particular

nonfaulty edge in that direction.

Proof :

For the case when k = 3, we can apply Lemma 6.3. The proof for the case when k

4 is similar to the proof of Lemma 6.3.

The existence of a dominant Hamiltonian cycle in the k-ary n-cube with 4n - 5 edge

faults, in which each node is incident to at least two nonfaulty links, is shown in the

following lemmas, and Theorem 6.2.

Lemma 6.4 : There exists a dominant Hamiltonian cycle in the k-ary 2-cube with 3

edge faults, provided that each node is incident to at least two nonfaulty links.

Proof :

Case 1: All the edge faults are in one dimension, say 0.

Embed a dominant Hamiltonian cycle in the direction of dimension 1 as in the proof

of Lemma 5.1.

Case 2: Exactly two edge faults are in one dimension, say, 0.

We can easily show that there exists a dominant Hamiltonian cycle in the direction

of dimension 0.

Lemma 6.5 : There exists a dominant Hamiltonian cycle in the k-ary 3-cube with 7 edge

faults, provided that each node is incident to at least two nonfaulty links.
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Proof :

7 edge faults in the k-ary 3-cube means that there exists a dimension, say 2 in

which at least 3 edge faults occur. Let us decompose the k-ary 3-cube into k k-ary 2-

cubes, 0**, 1**, .., and (k - 1)** with respect to dimension 2.

Case 1: At least 4 edge faults occur in dimension 2.

This means at most three faulty edges occur in the dimension 0 or 1.

Case 1.1: Three edge faults in dimensions 0, and 1 are incident on one particular

node.

Without loss of generality, let us assume that three edge faults, el, e2, and e3 in

dimension 0 and 1 are in 1**, and denoted by el= (111, 110), e2= (111, 101), and e3=

(111, 121).

Case 1.1.1: At most, three edges among the four faulty edges in

dimension 2 are incident on the nodes, 111, 110, 101, and 121.

In this case, there exists one edge, say el= (111, 110) such that in 0**, or

2**, say, 0**, e4= (011, 010) is nonfaulty, and two edges, e5= (011, 111), e6= (010,

110) are also nonfaulty. If we temporily assume that e 1 is nonfaulty, there exists a

dominant Hamiltonian cycle, Ho in 1** in the direction of dimension 0 that includes the

edge e 1 by Lemma 6.4. In a similar way, there exists a dominant Hamiltonian cycle Hi

in 0** in the direction of dimension 0 , that includes the edge e4. HouHi - (111, 110) -

(011, 010) + (011, 111) + (010, 110) is the dominant Hamiltonian cycle for 0** ul**

. The remaining part of the proof is by recursion.

Case 1.1.2: All the four faulty edges in the dimension 2 are incident

on the nodes, 111, 110, 101, and 121.

In this case, if there exists one edge, say, el= (111, 110) such that in 0**,

or 2**, say, 0**, e4= (011, 010) is nonfaulty, and two edges, e5= (011, 111), e6=

(010, 110) are also nonfaulty, prove as for the case 111. If not, we can decompose the
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k-ary 3-cube into k k-ary 2-cubes, **0, **1, .., **(k - 1) along dimension, 0 such that

one of k-ary 2-cubes, 0**, 1**,..., and (k - 1)**, contains three faulty edges, and each

of the other k-ary 2-cubes, contains at most one faulty edge . The remaining part of

proof is almost similar to the proof of Case 1.1.1.

Case 1.2: At most two edge faults in dimensions 0, and 1 are incident on

some particular node.

Let us take the k-ary 2-cube with the most edge faults from 0**, 1** .., and (k -

1) * *. Without loss of generality, let us assume that the chosen k-ary 2-cube is 0**.

By Lemma 6.4, there exists a dominant Hamiltonian cycle, Ho in 0** in the direction of

dimension 0, or 1. Assume it is in dimension 0. The existence of at least, k2 Z 32 = 9

edges in H0, and at most 7 edge faults in the dimension 2 mean that Ho includes one

edge, e 1= (0, 11, Ov12) such that in 1*, or (k - 1)*, say, 1**, there exists one edge, e

with all the edges, e = (1v11, 1 1,, (Ov11, 1v11), and (0v12, 1v12) being =faulty.

At most, one faulty edge in 1* means that there exists a dominant Hamiltonian cycle,

H lin the direction of dimension 0 that includes edge, e. HouHi - (0v11, Ov12) - (1v11,

1v12) + (Ovii, lv 11)+ (0v12, 1v12) is the dominant Hamiltonian cycle for 0** ul** .

The remainder of the proof is by recursion.

Case 2: Exactly, three edge faults are in dimension 2.

If in each of 0**, 1**, .., and (k 1)**, there exists at most three edge faults,

we can prove as in the proof of case 1. Hence let us assume that all the four edge faults

occur in 0**, 1**, .., or (k - 1)**, say, 0**.



84

Case 2.1 : At most three faulty edges in dimension 0, and 1 are incident on

one particular node.

The proof here is similar to the proof of Case!.!.!.

Case 2.2 : All four faulty edges in dimension 0, and lair incident on one

particular node.

Without loss of generality, let us assume that the four faulty edges , el, e2, e3, e4

in dimensions 0, and 1 are denoted by el= (111, 110), e2= (111, 101), e3= (111, 121),

e4 = (111, 112). Then, there exists, say, e 1= (111, 110), e2= (111, 101) such that

(011, 010) in 0** , (011, 111), and (010, 110) are nonfaulty, also (211, 201) in 2** ,

(111, 211), and (101, 201) are nonfaulty. If we temporarily assume that e 1 and e2 are

nonfaulty, the there exists a dominant Hamiltonian cycle H1 in 1**. Let us assume that

Ill includes the edges, e 1, and e2 . By Theorem 6.1, there exists a dominant

Hamiltonian cycle, H0 in 0**, that includes the edge (011, 010). Also,there exists a

dominant Hamiltonian cycle, H2 in 2**, that includes the edge, (211, 201). Then Hiv
Ho - (111, 110) - (011, 010) + (011, 111) + (010, 110) u H2 - (111, 101) - (211, 201)

+ (111, 211) + (101, 201) is the Hamiltonian cycle for 0** u 1** u 2**. The

remaining part of the proof is by recursion. In the case of Hl including just ei or e2 ,
we can give a similar proof. If 111 includes neither el nor e2 , we can also give a similar

proof.

Lemma 6.6 : There exists a dominant Hamiltonian cycle in the k-ary 4-cube with 11

edge faults, provided that each node is incident to at least two nonfaulty links.

Proof: 11 edge faults in the k-ary 4-cube means there exists a dimension, say, 3, in

which at least 3 edge faults occur. Let us decompose the k-ary 4-cube into k k-ary 3-

cubes, 0***, 1***, 2 * * *, (k - 1)*** with respect to dimension 3.
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Case 1: At least, 4 edge faults occur in dimension, 3.

Case 1.1: Six edge faults in the 0, 1, and 2 dimension are incident on some

particular node.

The proof here is similar to the proof of Case 2.2 in Lemma 6.5.

Case 1.2: Five edge faults in the 0, 1, and 2 dimension are incident on some

particular node.

The proof here is similar to the proof of Case 1.1 in Lemma 6.5.

Case 1.3: At most, four edge faults in the 0, 1, and 2 dimension are incident on

each node.

The proof follows from Theorem 6.1, Lemma 6.5, and the defmition of a dominant

Hamiltonian cycle.

Case 2: Exactly three faulty edges are in dimension, 3.

The proof here is similar to the proof of Case 1.

Lemma 6.7 : There exists a dominant Hamiltonian cycle in the k-ary 5-cube with 15

edge faults, provided that each node is incident to at least two nonfaulty links.

Proof: 15 edge faults in the k-ary 5-cube means that there exists a dimension, say, 4, in

which at least 3 edge faults occur. Let us decompose the k-ary 4-cube into k k-ary 3-

cubes, 0****, 1****, 2 * * * *, (k - 1)**** with respect to dimension 4.

Case 1: At least , 4 edge faults occur in dimension, 4.

Case 1.1: 8 edge faults in the 0, 1, 2 and 3 dimension are incident on some

particular node.

The proof here is similar to the proof of Case2.2 in Lemma 6.5.
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Case 1.2:7 edge faults in the 0, 1, 2 and 3 dimension are incident on some

particular node.

The proof here is similar to the proof of Case!.! in Lemma 6.5.

Case 1.3: At most, six edge faults in the 0, 1, and 2 dimension are incident on

each node.

The proof follows from Theorem 6.1, Lemma 6.6, and the definition of a dominant

Hamiltonian cycle.

Case 2: Exactly, 3 edge faults are in dimension, 4.

The proof here is similar to the proof of Case 1.

Theorem 6.2 : There exists a dominant Hamiltonian cycle in the k-ary n-cube with 4n -

5 edge faults, provided that each node is incident to at least two nonfaulty links, and this

result is optimal.

Proof: We shall prove the theorem by induction on n.

When n = 2, 3, 4, and 5, the proof follows from Lemma 6.4, 6.5, 6.6, and 6.7

respectively. Let us assume that there exists a dominant Hamiltonian cycle in the k-ary p-

cube with 4p - 5 edge faults, p > 5 in which each node is incident to at least two

nonfaulty links and suppose that n = p + 1. In this case, there exists a dimension, say, p

in which at least 4 edge faults occur. Let us decompose the k-ary (p + 1)-cube into k k-

ary p-cubes, 0***...*, 1 * * *.. *, 2***... * , , (k - 1)***..* with respect to dimension

P.

Case 1: 2p edge faults in dimension 0, 1, 2,.., (p -1) are incident on some particular

node.

The proof here is by the induction assumption, and uses an approach similar to the proof

of Case 2.2 in Lemma 6.5.
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Case 2: (2p 1) edge faults in dimension 0, 1, 2,.., (p -1) are incident on some

particular node.

The proof here is by the induction assumption, and uses an approach similar to the proof

of Case 2.1 in Lemma 6.5.

Case 3: At most, (2p 2) edge faults in dimension 0, 1, 2,.., (p -1) are incident on

each node.

The proof follows from Theorem 6.1 and the definition of dominant Hamiltonian cycle.

This result presented in Theorem 6.2 is optimal because there exists k-ary n-cube

with 4n - 4 edge faults, each node of which is incident to at least two nonfaulty links such

that no Hamiltonian cycle exists. Consider the 4n edges incident on the two nodes,

000...00, and 110...00. Let us assume that among the above 4n edges, just (000..00,

010..00), (010..00, 110..00), (110..00, 100..00), and (100..00, 000..00) are

nonfaulty. In this case, nodes 000..00, and 110..00 each have exactly two nonfaulty

links incident to them. Those four edges form a cycle by themselves, making a

Hamiltonian cycle impossible.
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Chapter 7

Processor Allocation In Banyan-Hypercube

7.1 Introduction

In parallel machines, user programs are composed of a number of tacks, each of

which can be executed by several processors in parallel. The processor allocation

problem involves assigning available processors to arriving tasks, and releasing

processors from finished tasks for later use . Efficient allocation and deallocation in the

parallel machine is an important issue for achieving high performance in the parallel

machine. An efficient processor allocation scheme maximizes the resource utilization,

and reduces external and internal fragmentation.

An allocation method is called static if it accommodates incoming requests without

considering processor relinquishment. If the allocation method considers processor

relinquishment, when it accommodates incoming requests, the method is said to be

dynamic.

An allocation method in which the operating system collects a sufficient number

of requests before proceeding to allocate processors to them is said to be off-line. On the

other hand, if each processor request is honored or denied immediately after it arrives,

regardless of subsequent requests, The allocation method is said to be on-line.
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The allocation of processors in a BH network consists of two steps.

1. Determination of the size of the incoming task in terms of the number of processors

needed in order to accommodate it.

2. Recognizing and locating a subbanyan that can accommodate the incoming task.

Step 2 will be the main topic of this Chapter.

This Chapter is organized as follows. Section 7.2 introduces the necessary

definitions and notation. Section 7.3 shows that the subbanyan allocation is an NP-

complete problem. Section 7.4 presents the allocation strategy .

7.2 Preliminaries

Let us denote the nodes constituting BH(h, n, s) by V(BH(h,n,$)).

A banyan-hypercube BH(hl, nl, s) covers a banyan-hypercube BH(h2, n2, s), denoted

by BH(hl, nl, s) DBH(h2, n2, s) if V(BH(hl, nl, s)) V(BH(h2, n2, s)).

The set of all free nodes of the banyan-hypercube BH(h, n, s) is denoted as Vf

(BH(h, n, s)). The dimension of the banyan-hypercube BH(h, n, s) is n, and the depth

of banyan-hypercube BH(h, n, s) is h.

A banyan-hypercube BH(hl, nl, s) is said to be prime if BH(hl, nl, s) D BH(h,

n, s) and there is no banyan-hypercube BH(h2, n2, s) such that BH(h2, n2, s) D BH(h,

n, s) and BH(hl, nl, s) D BH(h2, n2, s).
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BH(hh, kk, s) is said to be a subbanyan of BH(h, k, s) if and only if BH(hh, kk,

s) is a banyan hypercube, where hh 5 h, kk 5 k , hh 5 kk + 1, and BH(h, k, s) D

BH(hh, kk, s).

An allocation request set is denoted by R = { (h 1, n1), (h2, n2 ), (hk, nk) } ,

where k > 0, each ni is the dimension of banyan-hypercube, and each hi is the depth of

the corresponding banyan-hypercube. An allocation method is called statically optimal if

a BH(h, n, s) can accommodate any input request sequence (BH(hi, ni, s) }i =1.., k if

and only if / (hi)* (s)(11i) 5 h * sn .

7.3 Subbanyan Allocation problem

It has been shown that the decision problem corresponding to the off-line allocation

of the hypercube is NP-complete, an optimal on-line strategy is not computable [Dut91],

and that there exists an optimal algorithm for allocating hypercube statically [Che87].

We will show that off-line allocation of the Banyan-Hypercube is also an NP-

complete problem, an optimal on-line strategy is not computable for the Banyan-

Hypercube, and that there does not exist a statically optimal algorithm for allocating a

banyan-hypercube.

Definition 7.1 :

An allocation from BH(h, n, s) to an allocation request set R is a mapping f : R ->

2Vf(BH(h, n, s)) such that for all i, 1 5 i 5 IRI, the graph induced in BH(h, n, s) by f(hi,

ni) is a banyan-hypercube with depth hi , and dimension ni . A feasible allocation from

-> 2Vf(BH(h, n, s)BH(h, n, s) to R is a mapping f : R such that f is an allocation for R
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and for all (hi, ni) e R, and (hi, nj) e R, f(hi, ni) n f(hi, nj) = 0, if i * j. An allocation

request set for which there is a feasible allocation is a feasible allocation request set.

Problem 1: Subcube Allocation

Given a positive integer n, the set P of all prime cubes of Vf(Qn), and an allocation

request set R = (n1, ...,nk), is there a feasible allocation from Qn to R ?

Problem 2 : Subbanyan Allocation

Given a banyan-hypercube BH(h, n, s), the set P of all prime subbanyan of

Vf(BH(h, n, s)), and an allocation request set R = ((hp n1), (h2, n2 ), (hk, nk)}, is

there a feasible allocation from BH(h, n, s) to R ?

Theorem 7.1[Dut91]: Subcube Allocation is NP-complete.

Theorem 7.2 : Subbanyan Allocation is NP-complete.

Proof:

Let us consider the case where only nodes in the top level of the banyan-

hypercube are unavailable. Trivially, this case can happen.

If we assume allocation request R = {(h1, n 1), (h2, n2 ), (hk, nk) } to BH(h, n, s)

is such that h 1= h2 = h - 1, n 1= n2 = n -1, and h3 = h4 = hk = 0, then we have

to allocate (h 1, n1), (h2, n2 ) into two subbanyans BIli(h - 1, n, s), BH2(h - 1, n, s) of

BH(h, n, s) respectively. Since the only available subbanyan of BH(h - 1, n, s) in

BH(h, n, s) is the one whose nodes are all from level 0 to level n - 2 of BH(n, k, s), we

have to check whether the allocation request {(h3, n3) (hk, nk)} can be satisfied in

the top level of BH(n, k, s). This problem is actually that of subcube allocation. Hence

the subbanyan allocation problem is NP-complete.
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Lemma 7.1 : There exists no statically optimal algorithm for the subbanyan allocation

problem.

Proof:

Let us try to embed BH i(n - 1, k - 1, 2), BH2(n - 1, k - 1, 2), and BH3(2, k - 1,

2) into BH(n, k, 2).

Here, (n - 1)*2(k 1) + (n - 1)*2(k 1) + 2k = (n - 1)*2k + 2k = n*2k-

Hence, if there exists a statistically optimal algorithm, we must be able to embed

BH1(n -1, k -1, 2), BH2(n -1,k - 1, 2), and BH3(2, k - 1, 2) into BH(n, k, 2).

But this obviously cannot be done .

Lemma 7.2 :

There exists no dynamically optimal algoritm for the subbanyan allocation problem.

Proof: This proof follows directly from Lemma 7.1.

0 0 011 100 101 110 111
11

10

01

Figure 7.1 No dynamically optimal algorithm exists for BH

Lemma 7.3 :

Even in the case where the allocation sequence R = { (h1, n1), (h2, n2 ), (hk, nk)}

can be embedded into Vf (BH(h, n, s)) feasibly, there does not exist a dynamically

optimal algorithm.
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Proof:

Suppose that such an algorithm exists. Consider figure 7.1, which shows that

BH(2,2,2) has been assigned. The two allocation request set R1 = ((2, 2), (2, 3)) and

R2 = ((2, 2), (3, 2) ) are both feasible. Suppose a request for a (2, 2) arrives first; then

to grant the sequence of requests R1, the algorithm will have to allocate the bottom right

BH(2, 2, 2), while to grant the sequence of requests from R2 , it should allocate the top

left BH(2, 2, 2). Thus the algorithm can grant either R1 or R2 but not both, which

contradcts the assumption that there exists a dynamically optimal algorithm that can grant

all feasible allocation request sets.

7.4 Allocation Strategy

Our subbanyan recognition algorithm is based on the buddy strategy used to

recognize subcubes.

The buddy strategy in hypercube recognition

Since there are 2n nodes in an n-cube, 2n allocation bits are used to keep track of

the availability of the nodes. A value 0 (1) in the allocation bit indicates the availability

(unavailability) of the corresponding node.

Allocation :

Step 1: Set k : = I Ii I , where 11j1 is the dimension of a subcube required to accommodate

the request Ii.

Step 2: Determine the least integer m such that all the allocation bits in the region

tifm2k , (m+1)2k-11 are 0's, and set all these allocation bits to l's.
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Step 3: Allocate nodes to the request I.

Relinquishment:

Step 1: Reset every pth allocation bit to 0, where p is the address of node that was

released.

This strategy can be explained by the binary tree in Fig 7.2.

The level where the root node resides is numbered 0, and the nodes in level i are

associated with subcubes of dimension n - i. A node in this binary tree is available only if

all of its offspring are available. When an incoming request needs a Qk, the buddy

strategy searches level n - k of the tree from left to right and allocates the first available

subcube to the request.

level 0

level 1

level 2

level 3
( external node)

Figure 7.2 : The complete binary tree for the cube allocation using the buddy strategy

Definition 7.2

By rotation of a node, we mean a left cylic rotation of its address. If the address of i is

('n -l' in_2i1, io) , then Ro(i) = ( in-2, ,I11, is), in-1).

By rotation of a graph G(V, E), we mean a graph Ro(G(V, E)) =G(Ro(V), Ro(E)), where

Ro(V) = {Ro(i) I for all i belonging to V} and Ro(E) = { (Ro(i), Ro(j)) I for all (i, j)

belonging to E}.
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Lemma 7.4

The topology of a banyan-hypercube graph remains unchanged under rotation operation.

Proof:

Trivally, Ro : (in-1, in_2ii, io) --> ( in-2' ,ii, io ,in-i) is a one to one

onto and well defined function from V to Ro(v). Also by the definition of the rotation

graph, There exists a one-to-one correspondence between their edge sets so that each

corresponding edge of G and Ro(G) is incident on the corresponding nodes of V and

Ro(v) respectively.

Lemma 7.5

Let BH(n, k, s) be one banyan-hypercube, S1 the induced subgraph of BH(n, k, s) ,

generated by all the nodes from level 0 to n - p of BH(n, k, s), and S2 from level 1 to n -

p + 1, S1 from level 1- 1 to n - p+ 1 -1. Then S1 , S2 , S1 are topologically

equivalent, where n - p + 1 -15 n.

Proof:

It is sufficient to show that S 1 is topologically equivalent to S2 , ... S1

respectively. Trivially Ro(S 0 = S2 is . But by Lemma 7.4, we know that topology of Si

is same as that of Ro(S1). Hence the topology of S1 is equivalent to that of S2.

In a similar way, we can show that S1 is topologically equivalent to S3, ...S1 respectively.

Lemma 7.6

Let BH(n, k, s) be one banyan-hypercube with n - 1 levels, and let BH(n 1, k1, s) be

a subbanyan such that n15 n, k15 k, and n15 k1 + 1, whose lowest level lies at level

0 of BH(n, k, s). Then all the nodes existing at the lowest level of BH(n1, k1, s) form a

buddy .
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Proof

We shall prove lemma 7.6 by induction on k 1. When k 1 is 1, the claim is trivially

true. Assume that the above is true when k1= p, and that k1= p + 1.

By the recursive structure of banyan-hypercube, a subbanyan of k1 = p + 1 can be

constructed from the s copies of subbanyans BH1, and BH2....BHs, where k 1 of each

subbanyan is p. By the induction assumption, each of the nodes existing at the

lowest level of BHi, for i = 1...s forms a buddy. Without loss of generality, assume that

the labels of the nodes from BHi, for i = 1..s, are in increasing order. That is, all the bits

representing the nodes existing in BH1, come before all the bits representing the nodes

existing in BH2, all the bits representing the nodes existing in BHs_i, comes

before all the bits representing the nodes existing in BHs . Hence, there exists m such

that all the nodes at the lowest level of Bill are in region #[msk, (m + 1)sk- 1], those of

BH2 are in region #[(m + 1)sk, (m +2)sk - 1], and those of BHs are in region

#[(m + (s -1)) sk, (m + s)sk - 1].

Here, our claim is that m is divisible by s. If not, nodes from address #[msk, (m + s)sk -

1] can't form a Banyan-hypercube structure !!.

Since #[msk, (m+s)sk-1] = #[(m/s)sk+1, ((m/s) + 1)sk+1 - 1], the proof follows.

By Lemmas 7.3, 7.4 and 7.5, we know that if we want to fmd a subbanyan,

whose lowest level lies in level 1 of the original Banyan-hypercube, we have to rotate all

the nodes from level 1 to the top level, and then proceed as in Lemma 7.6. Hence, the

external nodes in the buddy tree for level i, 1 5 i 5 k + 1, of BH(h, k, s) can be

generated by just rotating i times, each external node in the buddy tree for the level 0.

For example, the buddy tree for level 1 of BH(4, 3, 2) comes from Figure 7.2, and is as

follows.



97

Figure 7.3 : Buddy tree for the level 1 of BH(4, 3, 2)

Lemma 7.7

Let BH(n, k, s) be one banyan-hypercube, and let BH(ni, 1[1, s) be the subbanyan

such that n15 n , ki k, and ni Ski + 1.

To allocate such subbanyan as BH(n 1, k1, s) in BH(n, k, s), including at least one node

from level 0, it is necessary and sufficient that we find the available region #[mskl, (m +

i)skl - 1] with ski nodes at level 0, using the buddy strategy such that for all h =

0..n1, and for all v e #[mskl, (m + 1)skl -1], (h, v) is available.

Proof:

The proof follows directly from Lemma 7.6.

Similarly, we can fmd a subbanyan, whose lowest level lies at level p, 0 5 p 5 n - n1+ 1,

of the original Banyan-hypercube.
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Data Structure

Let Ti be the buddy tree of level i in BH(k + 1, k, 2), i = 0.., k, and Ti(xk_i...xL+i a

xii... x1 xo) be the external node xk_i x1 x0 in the ith buddy tree, where xp = 0,

or 1 for each p = 0,...,k - 1. Then, make a directed path from To to Tk in the order of

increasing subscripts for each corresponding node. For example, the data structure for

BH(3, 2, 2) is as follows.

Figure 7.4 : Data structure for BH(3, 2, 2)

Algorithm

Let x[0, 2k - 1] denote the region #[0, 2k - 1] of level x in BH(h, k, 2) when all the

nodes in level x of BH(h, k, 2) is represented by the buddy tree, and xni[m 2k1, (m +

1) 2k1 - 1] denotes the nodes of BH(h, k, 2) which induce the subbanyan BH(ni, k1,

2), when nodes in level 0 of BH(ni, k1, 2) is x[m 2k1, (m + 1) 2k1 - 1].

Allocation: Let us allocate BH(n 1, k1, s) in BH(n, k, s), where n1 5 n, k1 5 k, and n1 5

kl + 1.

Step 1: Determine p such as n - p +1=n1.
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Step 2 : fact = TRUE;

x =0;

while (n - p + 1+ x 5 n and fact) do

begin

( determine the least integer m such that all the allocation bits in the

region x[m2k1, (m + 1)2k1 - 1] are 0, and all the allocation bits in the

region xh1[m2k1, (m + 1)2k1 - 1] are 0 }.

if such an m exist then fact = false

Else x =x+ 1;

end

Step 3: If fact is false then

begin

Set all the bits in xhi [m2k1, (m + 1)2k1 - 1] to l's.

Allocate nodes to the request BH(n1, kl, 2).

end;

Else put the request into the waiting queue.

Relinquishment :

Release every bit pe xhi[m2k1, (m + 1)2k1 - 1] , where xhi[m2k1, (m + 1)2k1- 1] is

the region for the released subbanyan BH(ni, k1, 2).

Theorem 7.3 The above allocation strategy can recognize any available subbanyan.

Proof:

The proof follows from Lemma 7.7, and the correctness of the algorithm.
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7.5 Algorithm Analysis

Let us analyze the algorithm's time complexity. The total number of subbanyan,

BH(hi, ki, 2) in BH(h, k, 2), where hi 5 h , and ki 5 k is (1 - h 1 + 1) 2( ( kl). The

worst case time needed to determine the least integer m such that all the allocation bits in

the region x[m2k1, (m + 1)2k1 - 1] are 0, and all the allocation bits in the region

xhi[m2k1, (m + 1)2k1 - 1] are 0 is hi 2k1 . Hence, the worst case complexity of

allocation is (h - hi + 1) 2(k kl) hi 2k1 = (h - hi + 1) 111 2k . The time complexity of

deallocation is h 1 2k1 . Hence, the overall time complexity of the algorithm is (h - h 1 +

1) 111 2k.



Chapter 8

Conclusion

8.1 Summary
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In Chapter 2, the embedding of butterfly-like graphs into a banyan-hypercube

network is studied. The butterfly-like structures considered here are the FFT,

butterfly(wrap-around FFT), and the CCC (cube-connected cycle). Our embedding finds

that the FFT graph, and CCC are the subgraphs of the smallest Banyan-Hypercubes

which are big enough to hold them.

That is, the n-level FFT graph, with (n + 1) 2n vertices can be embedded into the

BH(h, k, 2) with dilation 1, where k > n, and h 2k (n + 1) 2n (11 - 1) 2k, and the n-

level CCC graph with n 2n in the BH(h', k', 2) with dilation 1, where k' > n, and h' 21('

n 2n z (h' - 1) 2Ic'. A butterfly network with n 2n nodes can be embedded with

dilation 2 into the smallest banyan-hypercube.

In Chapter 3, the embedding of ring structured networks into a banyan-hypercube

network is studied. The ring structures considered here are regular rings, X-trees,

chordal rings, and the torus. We have obtained the following results.

1) A ring with n nodes, n 5 h2k, can be embedded into BH(h, k, 2) with dilation 1.

2) A chordal ring with n nodes and w = n/2 (n > 5) can't be embedded with dilation 1

into any one level BH(h, k, 2), where 2k > n.
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3) If n is not divisible by 4, a chordal ring with n nodes and w = n/2 (n > 5) can't be

embedded with dilation 1 into the BH(2, k, 2), where 2*2k > n.

4) If n is divisible by 4, a chordal ring with n nodes and w = n/2 (n > 5) can be embedded

with dilation 1 into the BH(2, k, 2), where 2*2k a n otherwise into BH(2, k, 4), where

2*4k z n.

5) A chordal ring with n nodes and w = n/2 (n > 6) can be embedded with dilation 1 into

BH(m, k, 2) where m*2k a n a (m - 1)*2k, and 3 5 m < k + 2.

6) An L-level X-tree can't be embedded into BH(1, L, 2) with dilation 1.

7) A L-level X -tree can't be embedded into BH(1, L, 2) with dilation 2 and M2 < 2" -

1. ( M2 = number of edges, mapped with dilation 2)

8) A L-level X-tree can't be embedded into BH(2, L - 1, 2) with dilation 2 and

M2 < 2L-2 - 1.

9) A L-level X-tree can be embedded into BH(1, L, 2) with dilation 2 and M2 = 2"-1 .

10)A L-level X-tree can be embedded into BH(2, L - 1, 2) with dilation 2,

expansion = 21.1 (2L - 1), and M2 = 21,2 - 1.

11)A L-level X-tree can not be embedded into BH(h, h - 1, 2) with dilation 1,

if h<L.
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12)A L-level X-tree can be embedded into BH(L, L - 1, 2) with dilation 1.

13) A (11,12, ,1d- 1, 1d) d-dimensional torus can be embedded into BH(1, n, 2),

where n = E I loge 10, for i = 1, 2 ...., d.

(a) with dilation 1 if li is even, for 1 5 i 5 d.

(b) otherwise, let lkj for 15 j 5 p be the given odd dimensions. Then

the mapping can be done with dilation 2, and M2 =I D(lkj),

forl5j5p
where D(lkj) = (Illi) ilki, for i = 1,2 ....,d.

14) A (11,12, ,1d4, 1d) d-dimensional torus can be embedded into BH(2, n, 2),

when n + 1 = I logs lii , for i = 1,2 ....,d.

(a) with dilation 1 if either all li, 15 i 5 d, is even; or only one h odd and

the others even .

(b) otherwise, let lkj for 15 j 5 p be the given odd dimensions. Then

the mapping can be done with dilation 2, and M2 =1 D(lkj),

for 15 j 5 p where D(lkj) = (II li) ilki, for i = 1,2 ....,d.

15) A (2h, 12, 1d) d-dimensional torus can be embedded into BH(h, n,

2), where n - 1 ZE r log2 lit, for i = 2,...d.

(a) with dilation 1 if for all 2 5 i 5 d, h is even.

(b) otherwise, let lkj for 15 j 5 p be the given odd dimensions. Then

the mapping can be done with dilation 2 , and M2 = 2hE D(lkj) ,

for 15 j 5 p where D(lkj) = (II li) ilki, for i = 1,2 ....,d.
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In Chapter 4, we have shown that the k-ary n-cube is a hierarchical Cayley graph

as well as a product graph. From those facts, we can easily deduce some topological

properties of k-ary n-cube such as diameter, average distance, connectivity, recursive

decomposibility, and node-symmetry.

In Chapter 5, embedding of rings into the k-ary n-cube is investigated. Our

embedding finds that a ring with n nodes, kP-1 < n 5 kP, can be embedded into a k-ary p-

cube with dilation 1 between any two adjacent nodes if k is odd. In the case of k being

even, a ring with n nodes, kP-1 < n 5 kP can be embedded into a k-ary p-cube with

dilation 2 if n is odd, and with dilation 1 if n is even.

In Chapter 6, we try to embed a Hamiltonian cycle in the presence of edge faults.

Our embedding shows that there exists a dominant Hamiltoninan cycle in any direction in

the k-ary n-cube with the 2n - 2 edge faults, such that the Hamiltonian cycle includes any

particular nonfaulty edge in that direction; further it is shown that there exists a dominant

Hamiltonian cycle in the k-ary n-cube with the 4n - 5 edge faults, provided that each node

is incident to at least two nonfaulty links, and this result is optimal.

In Chapter 7, we consider the problem of allocating processors in banyan-

hypercube multiprocessor to the arriving task. We have shown that subbanyan

allocation problem is NP-complete, and that there does not exist any statically or

dynamically optimal algorithm for recognizing subbanyans. We have presented an

allocation algorithm that can recognize any available subbanyans.
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8.2 Future Work

For future research, we have the following problems to explore :

From Chapter 2, try to determine whether the wrap-around butterfly is a subgraph

of the optimal banyan-hypercube. If the wrap-around butterfly is not a subgraph of the

optimal banyan-hypercube, finding an embedding with better average dilation will be

interesting.

From Chapter 3 :

Try to embed a chordal-ring with w * n/2 into the Banyan-hypercube.

From Chapter 5, and 6:

Try to find out the maximal size of a ring in the k-ary n-cube with faulty

nodes.

In addition, try to embed a complete binary tree, and mesh of trees in

the k-ary n-cube.

From Chapter 7:

Try to allocate processors in the k-ary n-cube.
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