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When the assumption of independency between the independent

variables in a regression equation is violated, and in spite of

Ordinary Least Square (OLS) procedure yielding estimates that are

best linear unbiased (BLUE), the presence of multicollinearity can

have severe effects on the estimation of the coefficients and on van-

ables election techniques.

In an attempt to cope with the problem of multicollinearity in a

regression analysis, a number of techniques have been proposed.

Among these techniques, the deletion of variables most affected by

multicollinearity, the use of prior information models and the use

of ridge regression are described and commented upon. Advantages

and disadvantages are stated in this study. The sources of multi-

collinearity, its harmfuleffects and several methods of its detection

are presented anddiscussed.

The purpose of this study is to evaluate ridge regression as a
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possible method in obtaining stable and reliable estimates when multi-

collinearity effects are present in economic models. In order to do

that, four different economic models suffering from various degrees

of multicollinearity have been chosen, and three versions of ridge

regression estimators have been applied to these economic models.

Results of these studies indicate that the three ordinary ridge

estimators, one proposed by Horel, Kennard and aldwin (KA) the

second proposed by Lawless and Wang (KB) and the third introduced

by Dempster, Schatzoff and Werniuth (RIDGM) appear to be effective

in obtaining stable and reliable estimates when n-iulticollinearity is a

serious problem in a regression analysis.

Although the estimates obtained by ridge regression in this

study are biased, they appear to have desirable characteristics,

are all stable and have the correct sign, and lack the symptoms of

nonsense regression that was observed when OLS was used to

estimate these models with highly multicollinear data.



Application and Evaluation of Ridge Regression
to Selected Empirical Economic Models

by

Au Ahmed Rahun-ia

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Master of Science

June 1978



APPROVED:

Professor of Agricultural and Resotrce Ecoothics
in charge of major

Head of Dartmett of Agricultural and Resource Economics

Dean of Graduate School

Date thesis presented November 17, 1977

Typed by Susie Avery for Au Ahmed Rahuma

Redacted for privacy

Redacted for privacy

Redacted for privacy



AC KNOWLEDGMENT

I wish to express my appreciation to my major professor

Dr. W. Brown for his assistance and guidance throughout the course

of this study, and to other members of my graduate committee, Dr.

Roger Petersen, Dr. Richard Johnston, and Dr. Robert McMahon.

I especially acknowledge Dr. G. Blanch for his guidance and

advice throughout my academic study at Oregon State University.



TABLE OF CONTENTS

Chapter Page

I INTRODUCTION 1

Multicollinearity 3

Definition 4
Sources of Multicollinarity 4
Detection of Multicollinearity 7

Consequences of Multicollinearity 10

II SUGGESTED SOLUTIONS TO MULTICOLLINEARITY 14

Deletion of Variables 14
The Use of Prior Information 18
The Theil-Goldberger Mixed Model 19

Prior Information in the Form of
Inequality Restraints 21

Use of Ridge Regression 23

III BIASED LINEAR ESTIMATIONS 26

Stein Estimators 26

Ridge Regression 28

IV APPLICATION OF SOME RIDGE REGRESSION
MODELS FOR THE ESTIMATION OF ECONOMIC
RELATIONSHIPS 31

Nature of Economic Data 31

Ridge Regression in Estimating the Marginal
Value Productivity of Irrigation Water 32

A Production Function Analysis of Water
Resource Productivity in Pacific
Northwest Agriculture 40

Consequences of Multicollinearity in the Model 44
Salmon Steelhead Fishing Demand Relationship 50
Estimating the Demand Function for Commer-

cially Caught Salmon in the Columbia River 57

V SUMMARY AND CONCLUSIONS 63

Limitations and Additional Research Needed 65

BIBLIOGRAPHY 67



Table

LIST OF TABLES

P age

Estimated values for regression Qf county values
on all farm products sold as a Cobb-Douglas
function of inputs, OLS estimates for 25 Central
Pacific counties, 1954 33

2 Simple correlation coefficient for regression of
county values of all farm products sold as a
Cobb-Douglas function of inpiits 35

3 Estimates of the betas, variances and estimated
MSE, OLS vs. HA, KB and KM for regression of
county values of all farm products sold as a Cobb-
Douglas function of inputs 38

4 Variances and estimated MSE of coefficients, OLS
vs. HA, KB and KM (OLS = 100) for regression of
county values of all farm prodicts sold as a Cobbr
Douglas function of inputs 39

5 Ordinary least square estimates, standard errors,
means, and t'values for analysis of water resource
productivity in Pacific Northwest (Area C) 1964 41

6 Water resource productivity in Pacific Northwest
agriculture (Area C) simple correlation 43

7 Variance inflation factors on the diagonal elements
of the inverted correlation matrix (XX) Pacific
Northwest water resource productivity data (Area
C) 1964 45

8 Estimated coefficients, and standard errors, OLS,
Theil-Goldberger mixed model and ridge regression
for the analysis of water resource productivity in
Pacific Northwest (Area C) 1964 46

9 Simple correlation coefficients for salmon steel-
head fishing demand relationship 51



(List of Tables Continued)

Table Page

10 Salmon steelhead demand relationship coefficients,
variances and estimated MSE, OLS vs. ridge
regression 54

11 Salmon steelhead demand relationship coefficients,
variances and estimated MSE, OLS vs. ridge
regression (with restriction on the coefficients) 55

12 Coefficients, means, and standard deviations for
commercially caught saLmon in Columbia River
demand relationship 59

13 Simple correlation coefficients between variables
for cmtherciaL1y caught s almon in CàHinbia
River 60

14 Demand relationship for the commercially caught
salmon in Columbia River, coefficients, variances,
and estimated mean square errors, OLS vs.
KB and KM estimators ' 61



APPLICATION AND EVALUATION OF RIDGE REGRESSION
TO SELECTED EMPIRICAL ECONOMiC MODELS

I. INTRODUCTION

A serious problem that can occur in a regression analysis is

the presence of multicollinearity among the independent variables in a

regression equation.

The problem is unavoidable in most economic relationships

(1), due to the nature of the economic data available. These data are

usually aggregated over time, or over geographical location (cities

and counties). In any case, a researcher is usually interested in

cases of dependency or interrelationships among variables rather

than in states of independency.

When the assumption of independency- among explanatory

variables in a regression equation is violated, and in spite of the

Ordinary Least Square (OLS) procedure yielding estimates that are

best linear unbiased estimates (BLUE), the presence of milticollinear-

ity will destroy the quality of these estimates. This happens because

the variances of the estimates are unreasonably large. It also results

in rejecting variables for lack of statistical significance, or estimates

of the wrohg sign are obtained.

Vectors x1, x2, .. x are linearly dependent if there exist non-
p

zero constants, a , a , . . a such that a.x. 0
1 2 p j=l



Many researchers and economists concern themselves with the

problem of multicollinearity in order to improve the situation. There

are two ways that multicollinearity can be handled in a regression

analysis. One way is to delete the variable most affected in an attempt

to obtain more accurate and reliable estimates. There are some ad.-

vantages and many disadvantages to this technique. Few economists

have applied the ridge regression techniques to economic data (2) since

most of the ridge studies are based on non- economic data.

The purpose of this study is to apply some ridge regression

models which are shown to have promising res!.ilts for improving esti-

mates with multicollinearity present (10). These ridge regression

models are different only in the choice of K, but they are taken from

Hoerl, Baldwin and Kennard (11), Lawless and Wang (15), and Dempster,

Shatz off and Wermuth (5).

The plan of this paper is as follows multicollinearity will be

discussed in chapter one; in chapter two, some suggested remedies for

multicoUinearity will be presented; in chapter three, some models

of ridge regression will be discussed; and chapter four will apply the

ridge regression models to four different economic models discussed

in the literature (2).

The use of alternatives to variable deletion is both possible, and

reliable in some cases, and economists are coming to accept the

technique more readily. It is being discovered increasingly how to
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break the multicollinearity deadlocbc. Different techniques are dis-

cussed in past studies by Theil (19), Goldberger (8), and Brown (2),

by which prior information can be incorporated into regression analysis.

Ridge regression, introduced by Hoerl and Kennard (1968), is

among the techniques benefitting from prior information. Since then,

economists and statisticians have been developing the technique:

Lawless and Wang (16) Dempster, Schatzoff and Wermuth (5). When

multicollinearity is present, ridge regression techniques result in

estimates of the coefficients that are biased, but have smaller van-

ances than that of Ordinary Least Square (OLS), as a result of intro-

ducing some bias into the (X5() data matrix. Hoerl and Kennard (10),

Lawless and Wang (6), Dempster (5), Brown (1) and others have con-

sidered ridge regression as a possible remedy for improving esti..

mates when multicollinearity is a problem in regression analysis.

Multicollinearit

Multicollinearity is a situation in which one cannot single out

or separate the effects of two or more explanatory variables, because

they tend to move together in sample data. It is the degree of inter-

dependency between two or more theoretically independent variables.

Because of the nature of the economic and sociaj relationships

whose data tend to move together, we measure parameters of dependency

and not indepndency. Multicollineanity is thn an unavoidable case.
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ni ti on

Multicollinearity is defined by Farr3r and Glauber (7) as

departure from Orthogonality in an independent variable set. With

this definition in hand, two things can now be separated:

(1) The nature of the problem of multicollinearity: the lack of

independence between explanatory variables in he model.

(2) The effects and locations of multicollitiearity: to what

degree variables are affected by rnulticollinearity.

Sources of Multicollinearit

There are many sources of multicollinearity. Only four are

well known in the literature (see 1, 2, 6, 17, 19 and 20).

(1) Aggregation of data.

(2) Specification of the model.

(3) Sampling technique.

(4) Some physical limitations on the model.

Each of these sources presents a problem in the detection of multi-

collinearity and its effects.

Aggregation of data a common practice, resulting from the

bulkiness of the information and the difficulty of handling each

individual factor of this information. Economists and researchers

very often depend in their analyses on aggregated data based on
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available sources, such as an Agricultural or Commercial census.

Aggregation will result in loss of information, and it will create

dependency between economic variables with multicollinearity arising

as a result.

Specification of the model: in many cases, especially in medical

and industrial sections, a model may be specified in such a way that it

becomes over-defined, a situation in which one has more variables in

the model than observations. There is then a serious problem.

Sampling technique: this technique results in multicollinearity

when the investigator only samples a subspace of the experiment space.

An omission of important information is caused, often leading to

dependency between one or more of the explanatory variables in the

model.

Physical limitation of the model: the experimenter is confronted

with some limitation in the data such as in the presence of fixed pro-

portionality, or simply that some information is not available.

It Is important to recognize the different sources of multi-

collinearity in an attempt to remove it or to assist in the discovery of

some workable solutions to the problem.

In estimating parameters of an economic model in the form

y x+u
where y is (n x 1) vector of dependent variables, x is (n x p) matrix

of theoretically independent explanatory variables, 3 is (p x 1) vector



of coefficients and u is (ax 1) vectQr of terms, where u.-.-'N (0, 2).

OLS estimates

a ad

i_i /(xx) xy

A
Var-Coy (3) = o- (xx)

Two extreme cases may be recognized.

(1) The orthogonal case where (xx) is an orthogonal matrix with

zeros in all the off diagonal elements because of perfect independence

between each explanatory variable. Since

0 ij
r
13

1 i=j

the OLS estimates are BLUE with minimum bias. V(.) is small and

is not sensitiye to change in data or the specification of the model.

(2) The most drastic cases of multicollinearity where (x) 1

does not exist, or is hard to obtain using the existing computational

techniques. This is a c4se of perfect milticoUinearity between two or

more explanatory variables: the determinant of (xx) is zero and (xTx)

is not invertable. OLS estimates (3) are not possible and the van-

ance V( explodes at the limit.

Between these two extremes on the multicollineanity scale, there

are degrees of multicollineanity. tHarniful multicollinearity, a term

defined as Hone that causes a wrong sign or symptoms of nonsense
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regression' (7), concerns researchers the most, because of difficulties

it creates in estimation and model specification. The problem is of

estimation because the coefficients ar sensitive to change in data,

in specification. Wrong signs of some coefficients may mislead the

researcher to a wrong decision of deleting these variables.

Detection of Multicollinearity

(1) A simple measure for the detection of multicollinearity is

through the elements of the correlation matrix (x'x). r. is near
13

unity when there is perfect collinearity nd it is equal to zero when

the two variables x and x are not collinear. Unfortunately, this
1 3

measure is good only in the two factor case, and it is not useful when

more than two factors are in the model.

(2) Another method which is widely practiced for the detection

of multicollinearity is by regressing y on all the explanatory vari-

ables in the model except x3. Compare R2-' with R where x

is excluded from the model. R2 will be close to R in cases of
3

severe multicollinearity. Unfortunately this technique is not very

effective in the detection of multicollinearity, because it will reflect

xx
2/ iir.. where x and x are in deviation form from

13 2 2 i 3

1 3

their respective means.
-k" R2 regression sum of squares/total sum of squares.



only the importance of x. as a predictor arid riot necessarily that x
3 3

is collinear with other variables in the model.

(3) Another simple measure for the detection of multicolliri-

earity when (xx) is standardized, is that

Det (x'x) = lxTx = 0

when exact relationships are present between twoor more columns of

(x'x) and x'x = 1. indicates orthogonal columns of the data matrix.

(4) Different methods or the detection of multicollinearity are

suggested by Webster, Grurist and Mason (17). The idea of this test

is to utilize the smallest Eigenvalues (X jruin) and the corresponding

Eigenvector V.

The closer X is to zero, the stronger the linear relationship

among the columns or rows of (x) matrix.

The following is a more recent approach for the detection of

multicollinearity.

(5) To decide how to detect multicollinearity and how to deter-

mine its location:

As before assume y = x3 +u is thegeneral linear model with
'ft. -1 2 -1

= (x'x) xty and var - cov(3) = a- (x'x) . Following Glauber

and Farrar (7)

(xtx) is the correlation matrix



R = (x

p
x.x,

i=l
1 3

r,. =
13 r2 ,-2

x. ".Ix
1 3

r11 r12 . . r1

r21 r22 . . . r2

r r ... r
pl pZ pp

(x) is measured in a deviation form from its mean. The "variance
1

inflation factor" or the diagonal elements of the inverted correlation

matrix (xx) is a good measure of the degree and location of multi-

collinearity. Let it be

11 11

1(x x)

th
where (xx).. denotes the correlation matrix excluding the i vari-

11

able x and (x'x) is the whole correlation matrix
1

l.

C'1 the diagonal element or "variance inflation factor equal to unity,

when there is no multicollinearity. Since in this case, (x'x).. will be

the same as (x'x) and the ratio of

(x'x).j
=LO(x x)
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= 00 when (x'x) is singular, and there is perfect collinearity be-

tween two or more explanatory variables in the variable set.

The bigger C" is, the more serious the problem of multi-

collinearity because V(.) will be inflated by this factor (C'1) and the

usual (t) test will reject more variables (x.) as statistically insig-

nificant due to the small t values. As V(.) increases t becomes

small and may not reflect the true importance of x. as an explana-

tory variable.

As seen from this test, the partial correlation matrix R is not

a sufficient test for the detection of multicollinearity, because the

latter is a question of degree relative to the overall level of associa-

tion.

Consequences of Multicolunearia

(1) Because of the lack of independence among the variables in

the set of explanatory variables in the model, the precision of the

estimates falls due to the difficulty in separating individual variable

effects from other variabLe effects. This difficulty will create large

estimate errors and the variance of
.,

V(.) will be unreasonably

large. The following example will illustrate this point.

Assume the following: A model with two explanatory variables x1, x2

4/ Ap.-E(p.)
t S.E(.)
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r r
an(x'x)

lr12
1L

1
2

0-1A 2(x'x)
2

V(.)
1-r12

in a situation near orthogonality with r1
2

= 0. 20

[1.04 -. 208
A 2

=
1 U

-. 208 1.04

Now assume another case where r12 = 0.90. Due to multi-.

A
collinearity, VQ3.) will increase to

r 10
A 2V() =
1 u

10

i. e. V(.) increased by a multiple of about (10).

(2) Estimates obtained by OLS will be very sensitive to change

in data, i. e., an addition of more observations may result for instance

in a change in variance of the estimates. This can be seen by

". 2
V(3.) = o (x'x)

1 u

-1 2
in addition to the effect of multicollinearity on (x'x) o also

will be affected,
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2
2 1-R

- N-p

a change in data, as in the case of adding more observations, N will

be increased and will be more stable.

(3) Estimates obtained by OLS when multicollinearity is present

will be sensitive to model specification. For example, let the model

be specifiec to include another explanatory variable x3, and let oe

assume (for simplicity) that r12 = r13 = r23 = r. Then

1 r r

(x!x) = r 1 r

r r 1

2 2 2l-r r-r r-r
2 -1 °u 2 2 2V() = o (xx) = r -r l-r r -r

1 u 3 2Zr -3r +1
2 2r -r r -r l-r

2
2 1-rV() for example = V()

2r33rZ+1
instead of

o (112 ) when = 2.

When r0.9
A 2

V(13.) o (5. 263) for p = 2

v(p.) = 2(6786) for p 3,

1. e. v(.) increased by about 29% when changing the specification



of the model to include another explanatory variable. Although

r1

r21

(x'x) R

r1

r ... r
'p

r ... r
22 2p

r... r
12 pp

13

may be small, but (xlx)' may not exist and (xIx)t = 0

Glauber writes, 1tAs viewed here, rnulticolliriearity is a property

of the independent variable set alone. No account whatever is taken

of the extent, or even the existence, of dependence between y and x.
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II. SUGGESTED SOLUTIONS TO MULTICOLLINEARITY

In this section, some suggested solutions for the removal of

multicollinearity will be discussed. Some of these options are:

(1) Deletion of variables proiren to be highly affected by multi-

c ollinear ity.

(2) Use of prior information to estimate regression coefficients.

(3) The Theil-Goldberger mixed model.

(4) Use of Ridge Regression.

Deletion of Variables

As a consequence of multicollinearity, some researchers may

choose to drop one or more explanatory yariables and specify the

model in terms of the remaining variables that were not affected by

multicollinearity. This practice is useful either to obtain OLS esti-

mates which are otherwise not possible because of the sitigularity1.

of (x'x), or to obtain more precision in the estimates by reducing the

error created by interdependency between a set of explanatory variables

in the model, i. e., to obtain small ('.). Although this solution

has been popular, many econometricians are aware of the bias it

introduces to the model, or what is known as ITspecification errors.

matrix (x), t is singular if the Det(x) = lxi 0
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Since many types of error can be categorised as specification error,

only one type that results frmn the omissiou o otieorniore relevant

variable, will be discussed.

Let a true linear model be estimated in the form

y = t31x1 +32x2 +133x3 +u

Where (y) is a dependent variable, x1, x2, and are

theoretically independent variables. u is an error term. (All van-

ables are measured in a deviation from their respective means.)

Let one assume that instead of estimating the whole model, the

researcher chooses to drop x2 and and to fit the model in terms

of x1 only.

y +u

The ordinary least square estimates of the coefficient of (x) will be

n
xly

j=1
2

Contrary to the fact that this estimate (13k)
ignores completely the

effect of x2 in the estimate of the coefficient of the true estimate

of (13) as expected under the full model will be

Exx
'S 12 13

Pj +32 2
+

2Ex
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if y = t31x1 + 2x2 +133x3 is the true model and not the fitted

y = 131x +u

Ex1y
(l3) estimates will not be

2
but a bias is introduced.

1

This bias is in the form of

A Ex1x3
+ 133

and will depend on

(1) the coefficients of the dropped explanatory variables (13)

and (i33)

(2) the quantitiles:

2
and

xl xi

A
The bias will not be zero unless

13
and 133 are zeros because

x1x2 or x1x3 will not be zero, and this is also the case for

This case can be generalised to K independent variables, as

in the following

y 131x1+132x2+... +Pxku

xx Exx Exx
E(131)

l + 133 i3 + +
13k

1k

So whenever an important variable is deleted, OL1S estimates will be
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biased and the degree of the bias will depend upon therelative share

of the deleted variable in explaining the regression relationships, i. e.,

on p1, 33' .. . etc. For more discussion on the general case see

Johnston (14).

There are only trivial cases where no bias is introduced from

deleting the variable. In such a case, the deleted variables are irre1e

vant, i. e., where 3. of the x omitted, is zero. But this case

is unlikely because if x is irrelevant, it will not be in the specifica-
I

tion of the model in the first place.

Although OLS is a biased procedi.ire in cases of deleted variables,

it still produces a minimum variance
2

V(.)
+

But the bias created in the estimates can sometimes outweigh the
A

reduction i.n variance of t, V(.)
1 1

if MSE (n.)
1

is defined as
A A 2A

MSE (3) var (1) + Bias (1.)

MSE (a'.) of the full model <MSE ('.) with incomplete model due to

the bias2 factor introduced to the system.

Roa and Miller (18) pointed out that researchers should not be

Bias () = E(.- P)
1 1



discouraged by the reduction in variances of the estimates they obtain

from deleting variables because this reduction should be viewed in
F..

terms of MSE (1.) and not just in terms of the V(.).
1

The Use of Prior Information

Most econometricians and applied researchers agree that addi-

tional information is needed to lessen difficulties of multicollinearity.

Various methods of adding prior information into regression

analysis to help account for multicollinearity may be used. Prior

information could be in the form of;

(1) Exact prior information where the investigator knows

exactly some or all of the coefficients and their standard errors, either

from previous studies or on a theoretical basis. This information

can be incorporated into the regression analysis to ameliorate the

difficulties of multicollinearity.

(2) Subjective probability estimates of the coefficients and

their variances may be used similarly to solve multicollinearity.

Information in the form of inequality is based on the researchers

knowledge about the coefficients from previous experience. It is in

the form of probabilities and inequalities such as

o-i- 1.0

All this information can be used to help solve multicollinearity

problems.
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The Theil-Goldberger Mixed Model

Statistical prior information can be incorporated into a regres-

sion analysis using a method suggested by Th.eil and Goldberger (20)

and summarized as follows: Let the usual linear model expressed

as y = x +u where y is (nxl) vector of the dependent variable,

x is (nx p) matrix of independent variables, (3) is (n x 1) vector

of parameters and (u) is (u x 1) vector of disturbances.

E(u) = 0, E(u'u) = r2ln

-1 A
= (x'x) xty , var(1) 2(x'x)1

and the usual assumptions apply.

Let the statistical information given in the form

r R13 +V

apply, where (r) is a known (kxl) vector of estimates for R, (R), is a

(kxr) matrix of known fixed elements determining which parameters

have prior information, and how this information is weighted, and

(3) is (rxl) vector of fixed unknown parameters and V is (kxl)

vector of prior information errors.

Also assume that (V) is distribtted independent from (u),

E(y) = 0 and E(VV)

When incorporating prior information iato the basic 1inar

regression model, one obtains the mixed model in the form
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r1 rxl Fu
H lB +

LrJ [RJ L

where

rul rul 1oIn 0

E 0 and El
I

fu'v1}

LJ [vj [0
(The off diagonal elements were zeros because of the assumption of

independency of the distribution of v from the distribution of u.

Instead of OLS estimates = (xlx)'xty

[z
o]lrxTl

[2 o11 r
b = (x'R')

I I I
(''')

I I I

0 jLRJ 0

When =--- , b becomes

b ( XTX + R R) (pxy +R 4i r)

and

1var - coy (b) = (pxTx +Ri R)

Johnston (14) points out that the suggested Theii-.Goldberger

mixed model raises several questions.

(1) Is b BLUE only in terms of the combined information,

namely the prior information and the sample information (or in terms

of the model V and x from the sample, and r and R from prior

knowledge)?

(2) The Theil-Goldberger method was designed to cope with

apparent conflict between sample and prior information and as a



21

result, will be a weighted average of the two sets of information,

and it makes it difficult to. separate just how much both sample and

prior information each contribute to the estimate.
'4. 1

(3) The formula for estimating b contains the term (y -

and o- is not usually known from the sample information.

The use of as an estimate for o or as recommended by

Theil
-1

(yty - yx((xx) x'y)
n-k

will have only asymptotic distribution and has many limitations in

generalization.

Sometimes the estimates are affected by dominancy of prior

information and the sample information contribution is very limited.

When this happens, the whole purpose of the regression analysis is

undermined.

Prior Information in the Form of Ineqqality Restraints

G. G. Judge and T. Takayama (15) proposed a method to incor-

porate prior information in the form of inequality restraints that can-

not be utilized with the Theil-Goldberger mixed model technique.

This method can be summarized using their notation as follows

y x +u, E(u) = 0 and E(u1u) 2In

all as designed before
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'- 1 2 -1
(x'x) xty and \T() = o (x'x)

When prior information is in the form of equality restraints, exact.

linear relationship is in the form r = R where R is (jxk)

constant known coefficient matrix, r is (jxl) known vector. To find a

vector b which minimizes u'u = (y-xt3)'(y-x3) and is subject to

r - RB 0 a solution by the lagratigean method yields
A -1 -1 -1
b = +(x'x) RT {R(x1x) RT] (r-R13)

b, the restricted estimate, is the best linear unbiased estimator

(BLUE), and a linear function of y and r.

When the prior information is not exact, then r = RB +V which

is the case discussed by the Theil and Goldberer mixed model.

Assume thatthe following constraints prevail

u

["1 r

r
for

[ri> °
or O r r (1)

L"J L.

['21 [r

II for 0 < r < < r (2)

[r

['31 [r31

(3) for 0 < r
<

p3 < r (3)

L'J Lr3J

Where r and r , i 1, 2, 3 are known vectors of upper and

lower bound constraints on the unknown coefficients in the 'th set 1,.
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I for i = 1, 2, 3 is the identity matrix with a rank equal to the

number of elements included in the parameter vector 3. To find a

that mininize utu = (y - x)T (y-x) subject to the given con-

straints 1, 2, 3. The mathematical soliition using Lagragean rnul-

tipliers can be seen in Judge and Takayarna (15).

Use of Ridge Regression

A different way of incorporating prior information into the

regression analysis is through the use of Tiridge regression. ' The

basic idea of ridge regression is that multicollinearity is moderated

or alleviated by augmenting the main diagonal elements of the corre-.

lation matrix by small positive quantities.

Following Hoerl and Kennards (10) notation, assume a linear

model in a deviation form y = x+u

where

y denotes (nxl) vector of dependent variable,

x is (nxp) matrix of explanatory variables. 3 is (pxl) vector

of parameters, and u is (nxl) vector of disturbances.

Assume u has E(u) = 0

E(u'u) = 2(In) = V

is positive definite.

V is a positive definite matrix if it is non-singular, has
positive eigenvalues and a positive determinant.
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Let (x'x) denote the correlation matriX of the explanatory vari-

ables. , the standardized ridge regression estimate of the coeffi-

cients is
-.1

= (xtx +KI) x1y

-1
P = P + 'i +(x'x + 1<1) x'u

*
arid varlance-covarlance of 3 is

-1 -1
var - coy (3 ) = (x'x +KI) XIX (xtx +KI)

The non-standardized estimate n terms of the corrected sums

arid cross-products is
-1= (x'x+lX) x1y

where (x'x) is the (pxp) matrix of mean corrected sum of squares,

and cross-products, and

X diag (X1, X2, ...,

the diagonal matrix of order (p) consisting of the sums of squares.

var - coy ()

non- standardized is
2 -1 -1

var - coy (3 ) = o (x'x + K) x1x (x'x + K))

Since ridge regression is a biased estimator, the expected bias of it

is obtained from
-1 -1

E( ) (x'x +lçX) (xx)P (x'x+X) {(x'x+lcX)-EXJp

(xtx +IX) (x'x +KX) p -(x'x+KX)

- K (x'x +K)1 X
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where the bias of () is -K (x'x +KX For more details,

see Hoerl and Kenriard (10) or Brown (1).



III. BIASED LINEAR ESTIMATIONS

In multiple linear regression models, ordinary least squares
A -1

estimates (OLS) in the form 3 = (xtx) xty are in the class of

unbiased linear estimators (BLUE). But as discussed earlier, this

class of estimators can have very undesirable and unacceptable charac-

teristics. This is because of the large variance iriflations of the

estimates of the coefficients (Is.) that cat-i occur because of multi-

collinearity.

in this section, a class of linear biased estimators will be

briefly discussed.

Stein Estimators

The Shrunken Least Square Estimators

Assume a standard linear model in the form y = x +u where

as before y is (nxl) vector of dependent variables, x is (nxp)

matrix of explanatory variables, 3 is (pxl) vector of parameters,

and U is (rixi) vector of disturbances

u,JN(O, oI) i.e., E(u) = 0, E(u'u) oin.

Let (x'x) denote the correlation matrix, and (x'x)1x'y

the OLS estimates of the coefficients as before.

var - coy () =
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Af3 has the distribution independent, normal, with a mean 1

2 -1 2 -1
and o (xtx) variance, 13'lN N (3, o (xtx)

Assume the following transformation for simplicity: Q is an

Orthogonal symmetric positive definite matrix, such that

Q'Q=QQ' =1

Q'(x'x)Q = A diag (X1, X2, X

where (xtx) = correlation matrix and X. is the eigenvalue of (xtx).

Let Z = Qx and a = Q3. Then the litiea model is trans-

formed to y = Za + e. As before

e"-'N(O, aIn)

a,'-'N(a. o/X.)

= (x1x + KT)'xTy

T is a positive definite symmetric matrix and K is a non-negative

scalar.

Stein estimators are obtained by choosing T = (xix) and

Stein estimates will be equal to = fa where f = (l/l+K) that
S 1

gives all the coefficients an equal weight, which is a function of (K).

8/ . .Stein M , the most promising in the Stein class, inhich

N(fa. f22/X)

K is chosen so that E X.'/(w2+ r) is equal to its marginal

Stein M was first introduced and evaluated by Dempster,
Scharzoff and Wermuth in 1977.
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expectation p where a- is substituted for a- and w = a- 1K.

Because of the fact that f = (l/l+K) in Stein estimates is not a

function of the sample in formation (xtx), Stein estimators have very

little to recommend them for alleviating the multicollinearity problem.

Ridge Regression

Based on the choice of K in ridge regression, a class of ridge

estimators is defined, i. e., each choice of (K) determines a ridge

estimator.

Three of this class of biased estimators will be discussed in

this section.

Hoerl- Baldwin and Kennerd Ridge Regression

HoerL-.Baldwiri and Kennerd (11) proposed a technique for

choosing K. In this paper, K will be referred to as K

As before, assume a general linear model y = x13+ u where

x is (nxp) matrix of variables, y is (nxl) vector of observations,

3 is (pxl) vector of parameters, and u is (nxl) vector of dis-

turbances. UiIJN(O, cr2I) and (xtx) is a correlation matrix.

Assume the same transformation applies
-1= (xx+QKQ) xy

where K is a non-negative diagonal matiix and (x'x) = QT XQ.

X is the diagonal matrix of eigenvalues.



If a Q minimum MSE' (Mean Squared Error) is obtained

when K. = o-2/a2 and the harmonic mean of these individual is
1 1

1 1 a ata
= (-i--) 2

po

=

2
pa-

and sinc a-2 arid (3 are unknown, then Ka can be estimated as
,2

K
A P

/"2where 13 is OLS estimate for (3, arid a- is also an OLS estimate for
2

Cr

KA defines HBK ridge regression.

Lawless and Wang Ridge Estimators

This estimator is the same as HBK KA estimators, except

that the coefficients are weighted according to the eigerivalues of

(xx). KB is chosen in such a way that

2

K
B p 2

11
1=1

where p denotes the number of explanatory variables, X. is the
1th eigenvalue of (xtx), a is the OLS estimates of the coefficients

p.Z. 2
and a- is the OLS estimate of CT

9/ 2
MSE(13) = V(13.) +[E(13.
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In a study by Lawless and Wang (16) this choice of KB proved

to be more effective and produced better results than under the use of

KA.

RIDGM

RIDGM developed by Dempster, Shatzoff and Wermuth (5) is

motivated by the Baysian interpretation of ridge. The observable

least square estimate is marginally independently distributed

N (0,2/X.).

KM is chosen in such a way that the prior expectation of

/wZ +oIX.) is p is the OLJS estimated of the

coefficients, o is substituted for a-
,

X is the i eigenvalue,

of (x'x), and w2 is o2/KM and p is tile number of parameters.

This specific choice of K yields a ridge regression referred to

as RIDGM.
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IV. APPLICATION OF SOME RIDGE REGRESSION
MODELS FOR THE ESTIMATION OF

ECONOMIC RELATIONSHIPS

Nature of Economic Data

Unfortunately, economists seldom have good quality data of

primary source. Instead, one often turns to some secondary sources,

such as the U. S. Census Agricultural and Business Survey reports.

These provide a somewhat poor indication of many important inputs in

our econon-iic models.

Data are always available on an aggregate basis, such as counties

and states, and one has to use these data in spite of the fact that aggre-.

gation results in a loss of information and a higher degree of multi-

collinearity.

To solve the data problems, it is better to return to the original

data whenever possible. When such a return is not possible, different

techniques to cope with the problem are tried.

In this section, several economic problems are analyzed using

ridge models. These economic models are chosen mainly because:

(1) They suffer from multicollinearity, i.e., they lack indepen-

dence in one or more of their explanatory variables.

(2) These models have some symptoms of nonsense regression

or harmful multicollinearity, i. e., the coefficients may take wrong

signs or have low t values.
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(3) These models cannot be handled very well by ordinary least

square regression, and one or more of thei' important explanatory

variables is not statistically different fron zero when OLS is used.

The analysis results of ridge regression will be viewed i.n terms

of their performances on a theoretical basis and expectation, a.nd how

they compare with ordinary least square estimates.

Ridge Regression in Estimating the Marginal
Value Productivity of Irrigation Water

Background

Using U.S. Census Agricultural data, Ruttan pioneered the esti-

mation of total value product functions to derive an economic value for

the water used in irrigating agriculture. The original formulation of

the production function model included six important explanatory van-

ables (1).

where

In functional relationship, the mode], was

y = g (x1, x2, x3, x4, x5, x6)

y denotes farm product sold;

x1 is number of family and hired labor;

x2 is number of tractors on the farm;

x3 is value of livestock investment in the farm;

x4 is acres of irrigated cropland;



Table 1. Estimated values for regression of county values of all farm products sold as a Cobb-Douglas function of inputs, OLS estimates for
25 Central Pacific counties, 1954.

xl x2 x3 x4 x5 x6 y

Means 4.03550944 3.589889 7,0501228 5.249523 3.168056 7.0311667 7.7910822

Betas 0269805 -.0628507 0.0227421 0.420649 0. 155389 0. 521785
(OLS)

Std. Dev. 0,215133 0.279637 0. 145926 0,145286 0,0900693 0,151354

tvalues 1,25413 -.224758 .155847 2.87553 1.72522 3,44745

X1 = number of family and hired workers

= number of tractors

X3 = value of livestock investment

= acres of irrigated cropland

X5 acres of non-irrigated cropland

X6 = current operating expenses

y = farm products sold

R2 = 0. 925
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x5 is acres of non-irrigated cropl3nd, and

x6 is current operating expenditure.

The Cobb-Douglas production function was fitted to the model.

Means, OLS estimates, standard deviation and t values are pre-

sented in Table 1.

Multicollinearity in the Model

The correlatiot matrix given in Table 2 shows that

r12 = 0.9299

= 0.7624

r14 = 0.5968

r16 = 0.8188

which indicates a degree of collinearity between x1 and the remaining

variable set.

Also from Table 2, x2 is highly collinear with some variable

sets in the model.

r23 = 0.8048

r24 0.7685

= 0. 80425

The main diagonal elements of the inverted correlation matrix

were:



Table 2. Simple correlation coefficient for regression of county values of all farm products sold as a Cobb-Douglas functiun of

inputs.

xl x2 x4 x5 x6 y

1.00000000 0.929918569 0,762442321 0.59685312 -.293808879 0.811853556 0.857723175

x2 1. 00000000 0. 804854828 0. 768523668 -. 343767007 0. 804250815 0. 895857998

x3 1.00000000 0.652256285 -.394812482 0.849321658 0.834051825

X4 1.00000000 -.598540061 0.507591052 -.251882809

x5 1.00000000 -. 170285996 -.251882809

X6 1.00000000 0.896652600

y
1.00000000

Ui



Variable Main diagonal or VIF

x1 11,2

18.9

x3 05.2

x4 05.2

02.0

x6 05.5

These diagonal elements show that x2 is the most likely to be

affected by multicollinearity and x1 is in the second place. x1 and

x2 were highly correlated with the other variables.

Since

and

r213456 = 1 - (1 718. 9) = 0.947

r123456 = 1- (1'/'ll.Z) = 0.9107,

then multicollinearity, brought about by the practical problem of sepa-

rating the effects of x1 (labor) from (x2) tractors on productivity,

leads to some serious problems in the model when ordinary least

square is fitted. Some of the problems are:

(1) Symptoms of harmful multicollinearity, since took an

illogical negative sign.

(2) Four out of six explantory variables in the model, namely

x1, x2, x3 and x5, were statistically insignificant at the 5% confi-
'4,

dence level, due to the high V(j).



37

(3) Only x4 and were statistically significant at the 5%

probability level.

Due to these serious problems caused by multicollinearity,

many econometricians, advocate the idea of deletion of the variables

that were highly affected by the problem, and only a subset of these

variables was used in the formulation of the final model.

To avoid the possibly serious bias introduced by the specifica-.

tion error which results from the deletion of important variables, the

suggested ridge regression (with KA KB and KM) was fitted to the

basic data using the same correlation matrix.

The coefficients, variances and their estimated MSE (1) for

OLS, KA KB and KM are given in Table 3. Very important results

are noticed in the table and these are:

(1) has changed from an unexpected negative sign (. 06285) to

an expected positive sign.

= 0. 1056 when I<A is used

= 0.1275 when KM is used; and,

= 0. 0699 using KB ridge regression.

(2) All the coefficients in the model were possibly statistically

significant at 5% (if the problem of bias is temporarily neglected) due

to the fact that more precision was obtained and the variances of

V() were reduced (see Table 4).
1



Table 3. Estimates of the betas, variances and estimates MSE, OLS vs. K, KM and KA for
regression of county values of all farm products sold as a Cobb-Doiglas function of inputs.

K =0 Lawless- RIDGM HBK

OLS Wang K KM KA

,
0.2698 0.2015 0.1821 0.1882

V(''1)
2

0.0462824 0.0167051 0.00874386 0,0114868
.-.-

V((31)+ E((3
1

0,0462824 0.0213712 0.0164372 0.0181405

-. 06285 0.0699 0. 1275 0. 1056
V((3) 0.0891969 0,0226519 0,00939931 0,0137192,-.*

V((32)+E((32
" 2

0.0781969 0.040276 0.0456276 0.0420975

0.02274 0.0613 0.0935 0.07952

V((3) 0.0212945 0.0141309 0.00939659 0.0113570
V((33)+E(3*

-(33) 0.0212945 0.0156170 0.0144069 0.0145812

(3 0.42065 0,3435 0.2969 0.3165

A V((34) A 2
0.0213995 0.019185 0.007310094 0.00867318

V((3 4) + E(' (3 ) 0.0213995 0. 168770 0.0226222 0.0195232

A
0. 15539 0. 1353 0. 1211 0. 127550

A V((3,) .00811247 0. 00618171 0. 00504492 0. 00553259

V((35)E((35*_ A 2
(35) 0.00811247 0.00658359 0.00621976 0.00630762

@6, 0. 52179 0. 4597 0.4082 0. 4309

V((3) 0.0229081 0.0146759 0.00938154 0.0115460
V((36)E(6* 2

6) 0.0229081 0.0185291 0.0222841 0.0198085

* Ordinary least square estimates were used to estimate MSE((3i*).



Table 4. Variances and estimated MSE of coefficients OLS vs. KA, KB and KM (OLS = 100.00)
regression of county values of all farm products sold as a Cobb-Douglas function of inputs
for 25 Central Pacific counties, 1954.

K KM KA

V((31) 100.00 36.09% 18.89% 24.82
's*

V((31)+E((31
s 2

-(3i) 100.00 46.17 35.5 39.2

A
V((32) 100.00 28.96 12.02 17.54

A ,.
V((32)+E((32

,

(32) 100,00 51.5 58.34 53.84

V((33) 100.00 66.35 44.13 53,33
V((33) + E((33

" 2
(3) 100.00 73.34 67.66 68. 47

V((34) 100.00 51.02 34. 16 40. 53
A

+ E(4* (34) 100.00 78. 87 105. 7 91. 23

V((35) 100.00 76. 20 62. 19 68. 19
V((35) + E((35 (3) 100.00 81. 15 76.67 77.75

V((36) 100.00 64.06) 40.95 50.40
V((36)+E('6*_(36)

A
100,00 80.88 97.27 86.47

Over all 100,00 60. 17 64. 38 60. 77
V((3i)+E(i* )2

* V((3*) (E((3 (3)] was used to estimate MSE ((3*) because the true (3 values are unknown.
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was redu,ced 50-80% from the original under OLS.

KM yielded the highest reduction in variance, V(131) reduced

70-88%. Again, KM performs the best if possible bias is ignored.
-

In V(34) there was 5 0-60% reduction variance, and V(6), V(5)

was down by 30-60%.

Among the three ridge regressions used in this analysis, all

performed well. The overall performance of the three ridge regres-

sion models were obviously superior to that of ordinary least square

procedure in terms of the coefficient signs and the precision of the

estimates. This type of problem seems to be better tackled by ridge

regression rather than OLS.

A Production Function Analysis of Water Resource
Productivity in Pacific Northwest Agriculture

Background

The basic data for this analysis was taken from M. H. Holloway

(13) (Appendix Table IV). Agriculture has been a n-lajor consumer of

water in the Pacific Northwest, and the basic objective of this study

is to determine the contribution of agricultural water resource

development to recent agricultural production.

Cobb-Douglas production function was selected and ordinary

least square procedure was primarily chosen to determine the initial

estimates.



Table 5. Ordinary least square estimates, standard errors, means and t-values for analysis of water resource productivity in Pacific Northwest
(Area C) 1964.

(X1) (X2) (X3) (X4) (X5) (X6) (X7) (X8) y

OLS (p.) -5.0295 2.7431 1.2982 8.4439 -2.1119 9.1729 16.2737 -1,9993

S E(.) 0.2369 0.1422 0.3119 0.1341 0.0781 0.1174 0.08408 0.1016

means 1241. 10 5236. 29 3889.34 466. 678 180. 191 225. 613 10. 7535 84. 468 18416. 1

Tvalues -1.21953 5.22212 0.7946 2.2225 -.368790 2.463536 2.29539 -.392828

I-
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Area of Analysis

Only area ICT which consists of 20 counties producing mostly

field crops will be analyzed.

The Model

where

Cobb-Douglas production function (linear form) was fitted.

y = F(x1, x2, x3, x4, x5, x6, x7, x8)

y denotes values of farm products sold and value of home

consumption.

is hired and family labor;

x2 is value of current operating expenses;

x3 is flow of capital on farm;

x4 is cropland quantity adjusted for qiality;

x5 is animal unit months;

X6 s irrigation water application;

x7 is service flow of form investment in drainage;

is service flow of farm investment in water conservation

practice.

Ordinary least square estimates, standard deviations, t values,

and means of the variables are given in Table 5.



Table 6. Water resource productivity in Pacific Northwest agriculture. Simple correlation between variables,

X x5 x6 X

1.0000000

X2 .9357189 1. 0000000

X3 .9550682 .9138426 1.0000000

.4227123 .5606500 .5220780 1.0000000

X5 .5271189 .4865410 .4759668 ,0192848 1,0000000

.4992776 .3576612 .4362811 -0.2761547 .2773230 1.0000000

.3263360 .4369850 .4825480 .7575409 .1787583 .3354978 1.0000000

.3316825 .3137947 .4439894 .1110539 -0.0948184 .1058459 .2659048 1.0000000

Y .8908467 .9510433 .9101004 .6511569 .3913535 .4263892 .4818734 .2175557 1,0000000

(J
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Multi coil i near it y

With reference to the sample correlation matrix, (Table 6) and

to the diagonal elements of the inverted correlation matrix (VIF),

Table 7, the indication is that x1, x2, and x3 are the most affected by

multicollinearity since x3 has the highest value of 59.487, x1 is

32.584 and x2 has a value of 11.732. Also, one notices that

r12 = 0.9357 and r13 = 0.955, which points to the high degree of

dependency between these three variables.

Multicollinearity is brought about by the dependency between

some of these variables in the variable sets arid it is due to the loss

of information because of the aggregation in measuring the variables.

Multicollinearity here is unavoidable.

Consequence s of Multicollinearity in the Model

(1) Ordinary least square procedure yields estimates which. are

unstable because the variances of the estimates are unreasonably high.

(2) ', and toQk illogical, negative signs. These signs

were not expected theoretically, and were caused only by the presence

of multicollinearity. This is especially true of and p5, because

set.

and x5 are highly collinear with other variables in the variable

(3) Most of the variables in the model were statistically
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Table 7. Variance inflation factors in the diagonal elements of the inverted correlation matrix (XX)

Pacific Northwest water resource productivity data (Area C), 1964.

Explanatory Variables Main diagonal elements of inverted
correlation matrix (VIF)

(X1) 32.584

(X2) 11. 732

(X3) 56. 487

(X4) 10.436

(X5) 03. 538

(X6) 08.006

(X7) 04. 105

(X3) 05.997



Table 8. Estimated coefficients and standard error of OLS, Theil-Coldberger mixed model and ridge regression for the analysis of water resource
productivity in Pacific Northwest (Area C) 1964.

(3
2

" 2

OLS -5,029 2.743 1.298 8.443 -2,112 9.173 16.273 -1.999 4,760.308

S'E(.) (0.2369) (0.1422) (0.3119) (0.1341) (0.0781) (0.1174) (0.08408) (0,1016)

PM-i (3 0. 917 1, 562 0. 785 10. 904 1. 539 8,674 0.994 0. 894
,- *

S.E (3.
)

0.917 (0.328) (0.318) (1.637) (0.892) (1.634) (0.556) (0.541)

ridgrn (.3. 3.113 1.007 0.9923 5.906 0.5353 4.9657 6.348 -1.2459

S'E ((3*) (0,0168) (0.0202) .01416) (0,0229) (.0266) (.02475) (0.0255) (0.02613)

KB 2, 9638 1. 15944 0. 9954 6.6344 -.6738 5.68397 59. 5734 -1. 86549

S.E ((3*) (0.02334) (0.02849) (.01911) (.02933) (.03216) (.03085) (0.0328) (.030821)

KA 0. 904 1. 7828 0. 8305 8.2599 -2, 3398 7. 8145 44. 9101 -2, 12267

S'E (p.) (0.0661) (.07118) (.05824) (.06026) (.04855) (.05344) (.05679) (.04589)
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insignificant and not different from zero at the 5% level (Table 8).

This results from the fact that the V(.) are high and resulting t

values are small.

Prior Information Model

Due to the problem of multicollinearity, Hol.loway (13) fitted

another model based on incorporating prior information into the

regression analysis. The Theil-Goldberger approach (14) was chosen

among serveral alternatives because the model allows the specifica-

tion of the prior parameter estimates with variances (13).

In this analysis, a comparison between ordinary least square,

the Theil-Goldberger prior information model (discussed earlier) and

ridge regression, will be made.

The Use of Ridge Regression

Although ridge regression can be thought of as another way of

incorporating prior information into the regression analysis, it has

some advantages over both OLS and the Theil-Goldberger prior infor-

mation mixed model, as shown in Table 8.

Using the basic data given by Holloway (13), ridge regression

in terms of KB and KM were fitted, and the results are given in

Table 8.



Comparison Between Ordinary Least Square, The Theil-
Goldberger Prior Information Model and Ridge Regression Models

With reference to Table 8, it was noted that

(1) estimate changed from a wrong negative sign to a posi-

tive sign for the Theil-Goldberger prior information (PM_l)L'' model.

All ridge procedures (KA KB and KM) seem to also correct for this

problem, although the magnitude of the coefficient in KA and Theil-

Goldberger PM-i were close (0. 917 for PM-i and 0.904 for KA).

also changed from a wrong negative sign under OLS to a

positive sign in PM-i and KM. For
(P&

the sign did not change for

any of the ridge regression models KA and KB.

Overall- results indicate that the use of ridge m worked as well

as the use of the Theil-Goldberger mixed model in correcting the wrong

sign caused by multicoIlinearity, except for

(P8) changed into positive sign ii PM-i, as a result of the prior

information dominancy over the sample information and in this case

the sample contribution to the estimate was minimum.

(2) The variances of the coefficients V(.) were reduced under

ridge regression with ridge performing the best, while PM-i V(.)

was higher than that obtained by OLS. For example:

SEU31) 0. 2369 in OLS 0.628 in PM-i and 0.0168 in ridge m.

11/
Theil-Goldberger model will be referred to as PM1

throughout this section.
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the same relativity applies to all the coefficients in Table 8.

(3) All the coefficients were significant under ridge m at 5%

confidence level, if one ignores the bias of the ridge m estimates.

This problem suffers from a severe case of multicollinearity,

worsened by some degree of aggregation in the data. Ridge m seems

to perform as well as the prior information model utilized by Holloway

(13) to account for multicollinearity, and in fact it has very good

merits as an effective tool in this type of problem.

Prior information about the coefficients and their variances is

not always available in a practical situation. U they are available

almost always there is a bias in utilizing this information because

of the different circumstances under which it is obtained. Thus, the

assumption of an unbiased prior estimate of one or more 3 values

would often be violated in using the heil-Goldberger mixed model.

The use of prior infprmation as in this case was associated with

the dominance of this prior information over the sample information,

which raises questions about the results. Use of the Theil-Goldberger

model under these conditions tends to reflect only the prior informa-.

tion effect, and the sample information contribution tends to be

obscured by the dominancy of the possibly biased prior information.
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Salmon Steelhead Fishing Demand Relationship

Basic data for this analysis was given by Brown, Singh and

Castle (3) and by Brown (2).

A demand relationship was proposed such a way that it dit-.

fered from past studies. The difference was in its separation of two

types of cost involved: a direct cost measured in a monetary form,

and another type-of cost, time cost, measured by the distance of

travel in miles.

The demand functional relationships were

DYS = F(INC. MLS. CST.)
3 3 3

DYS denotes Salmon steelhead (S-S) days of fishi.ng taken per

unit of population of subzone j.

iNC is average family income of subzorie j

MLS is average miles per (S-S) trip of sibzone 3

and CST is average (S-S) variable cost per day of subzone j.

The demand function fitted by Ordinary Least Square (OLS)

yields the following estimate:

In DYS = 0.7054 INC3 +0. 2948 MLS-3 - 1.1691 CST3

(.1297) (.2313) (.2551)

number of observations = 35

R2 = 0.6534

(Standard deviations of the coefficients are reported in parentheses

below the corresponding regression coefficients.)
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Table 9. Simple correlation coefficient maiTix for salmon steelhead fishing demana relationship.

INC MLS CST DYS

INC 1.000000

MLS 0.282220 1.000000

CST 0.493300 0.872860 1,000000

DYS 0.211790 -.526645 -.563864 1.000000

DYS Salmon days of fishing
INC Average family income
MLS Average miles per S-S trip
CST Average variable cost S-S per day
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Multicollinearit

Multicollinearity brought about by the difficulty in separating

the effect of the monetary cost of travel versis the time cost, is

discussed by Brown (3). The use of zone average and the loss of infor-

mation through the process of aggregation are some of the reasons

to suspect multicollinearity.

Test for Multicollinearit

Examining the simple correlation matrix shown in Table 9, it is

seen that the highest simple correlation is between the variables,

MLS and CST r23 0.87286.

A good indication of the degree of multicollinearity is given by

the main diagonal elements of the inverted correlation matrix (x'x).

These were

Explanatory Variance Inflation
Variable Factor (VIF)

INC, 1.5057

MLS 4.7844

CST 5.8197

The highest variance inflation factof (VIF) corresponded to the two

variables most affected by multicoUinearity, namely MLS and CST.
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As a consequence of multicollinearity, the following took place.

(1) Ordinary least square estimates () the coefficient of MLS

took an insignificant, wrong and theoretically unexpected positive sign.

(2) OLS coefficients, except for INC and CST, were statistically

insignificant due to the relatively high variance associated with the

coefficients.

Improving the Estimation of the Demand Relationship

To improve the estimation of the demand relationships, the three

types of ridge regression suggested to cope with the problem of multi-

collinearity were applied to the data. The results are given in Tables

10 and 11. With reference to these tables, the following results are

evident.

1) Hoerl-Baldwjn and Kennard Basic K Performance

changed from a large positive number to a relatively smaller

positive number.

is still taking an illogical positive sign although some improve-

ment in the V(132) is noticed.

(2) Lawless and Wa.ng KB Performances

(i) $2 changed from illogical positive to the theoretically expected

negative sign. changed from 0. 29468 to -.038079 50 the sign has

been corrected.
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a
Table 10. Salmon steelhead demand relationship coefficients, variances and estimated MSE, OLS

vs. ridge regression.

HGK LW RIDGM
OLS K KB KM

0.705293 0.591099 0.533813 0.521988

V(1 )
0.0168358 0.0128648 0.011627 0.0108254

V(1
)

%OLS 100.00% 76.4% 69.0% 64.2%
* * 2V(1 )+E((31 0.0168358 0.0259050 0.040679 0.0444289

%OLS 100.00 153.86 240.96 263.89

0.29468 0.05447 -.038079 -.0054505

V((32
)

0.0534989 0.0256152 0.0172359 0.0158737

% OLS 100.00 47. 879 32. 217 29.67
* * 2V(2 ) + 0.0534989 0.083317 0. 127965 0. 137804

% OLS 100. 00 153. 73 239. 13 257. 58

-1. 1690 -. 85999 -. 72840 -. 703438

V((33
) 0. 065073 0.0296403 0.0191532 0. 0174674

% OLS 100.00 45. 549 29. 433 26. 84
* *V(3 )+E(3 @2) 0.065073 0.125123 0.213281 0. 234215

%OLS 100.00 192.28 327.756 359.9

a
MSE ((3.) is estimated using OLS (3. as the true ((3) since the true (3 are unknown.



Table 11. Salmon steelhead fishing demand relationship, coefficients, variances and estimated MSE(3.) OLS vs. ridge regression, a

OLS KA K K

K=0 B M
OLS OLS OLS

K
A

K
B

K

0.705293 0,591099 0,533813 0.521988

V(1) 0.0168358 0.0128648 0.011627 0.0108254 .76 0.69 .64
V((31)E((31*_ (3*)2 0.57002 0.0177410 0.0113200 0.0108259 .34 .22 .21

0.29468 0.05447 -.038079 -.054505

V((32) 0.05344989 0.0256152 0,0172359 0.0158737 .47 .32 .29

V(2)+E((32* Q534774 0.231303 0,147543 0.0108259 .43 .27 .02

-. 11690 -. 859996 -. 7284 -. 703438

V(3) 0.065073 0.0296403 0.0191532 0.0174674 .45 .29 .26

V(3)lE((33*_33*)2 0.657880 0.242103 0.127612 0. 1101130 .36 .19 .16

a *Restrfcfion has been made as to the 1ue coefficient as follows:

= 0. 52127

39906

= -. 39906

u-I
u-I
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(ii) Again the precision of the estimates is recognized and the

estimates of changed from statistically insignificant to statistically

significant at a 5% level.

(3) RIDGM Performances

(j) also changed from 0. 948 insignificant wrong positive

sign to -.054505.

(ii) All estimates were possibly statistically significant at a

5% level.

(iii) Gain in precision was obtained since V(131) decreased by

about 70% and V(133) decreased by about 73%.

Some Significant Advantages Over OLS

Two important advantages to ridge regression applied over OLS

can be noted from Table 10.

(1) The coefficient () of the variable MLS no longer carries

a wrong sign under RIDGM and KB. The symptoms of nonsense

regression caused by multicollinearity have been corrected.

(2) Precision has been improved under the suggested ridge, and

as a result, coefficients are now different from zero at a 5% level, if

possible bias effects are ignored.

To conclude this analysis, RIDGM and Lawless-Wang ridge have

very important advantages over OLS in improving the estimate in a

model which suffers from multic o]linearity.
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Estimating the Demand Function for
Commercially Caught Sairrion in the Columbia River

Bac kground

Objectives of the study as stated in Brown et al. (3) can be

summarized as follows.

(1) A necessary step in estimating benefits to consumers from

commercially caught salmon is to estimate their demand for salmon.

(2) The demand function can be used to compute the prices con-

sumers will be willing to pay for specified qtantiUes of the salmon.

The Demand Function

Basic data is given in Brown et al. (3) (Appendix Tables 1-2)

and a demand function is specified in the form

Pf =f(INC, PR, QF)t t t t
where Pf denotes the wholesale price of fresh and frozen Chinook

thsalmon in New York for the i year, deflated by the wholesale price

index; INC is U.S. per capita disposable personal income deleted by

the consumer price index; PR is the price of round steak deflated by

the consumer price index; and QF is U.S. per capita consumption

of fresh and frozen salmon.



Multic oil iriearity

Fortunately, multicollinearity is not a problem in the model

since the diagonal elements of the inverted correlation matrix (VIF)

showed no severe signs of multicollinearity. VIF were

Variables VIF

INC .07

PRt 1.04

QFt 2. 07

The simple corre1atioti matrix shown in Table 13 shows low

correlation except for r13 = -.716686. Other correlations were

= -.1965 and r23 = 0.18710. No harmful multicollinearity is

detected in the model.

Ordinary Least Square Estimates

This model is a case where ordinary least square performance

is expected to be effective and accurate because there is no multi-

collinearity, As shown in Table 1Z

(1) All coefficients have the correct sign.

(2) All variables were highly significant at the 5% level.

(3) V(31) are not unreasonably large.

Ridge Regressions

Ridge regression models are not ecpected to do much better than
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Table 12. Coefficients, means and standard deviations for com-
mercially caught salmon in ColumbiaRiver demand
r elation ship.

INC. PR t

0.000422 021262 -1.45308

mean 2362.21 1.18336 0.199357 0.84878

Standard 46.0965 0.0851157 0.0504147 0.25827
deviation



Table 13. Simple correlation coefficients between variables
for commercially taught salmon in Columbia-RIver.

pf INC PRt

1.000000

INC 0.042967 1.000000

PR -.1310547 -.196504 1.000000

0.810522 -.716686 0.187101 1.000000



61

Table 14. Demand relationships for the commercially caught salmon in Columbia River
coefficients, variances and estimated mean square errors for OLS, KA, KB and KM
estimators.

OLS KBKM KA
K=0

0.000422 0.000409 0.000404

V( ) 0.0059436 0.0052737 0.0060166
* *

V((31 )E((31 *2
0.0059436 0.005755 0.0049847

0.21262 0.200708 0.195019

V(
2

0? 002995 000287127 0.0028120

* *
V((32 )+E(2

*2
0.002995 0.002886 0.0028456

-1.45308 -1.4999 -1.51986

V((33 ) 0.005921 0.0052556 0.004968

* *
V(3 )+E((33

*2
) 0.005921 0.0053393 0.0051383
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ordinary least square models because of the fact that the data is close

to Orthogoriality and only a small improvement can be expected.

Comparison Between OLS and Ridge Regression Selected Models

As shown from Table 14 all ridge models (KAy KB KM) perform

as well as ordinary least square models with ridge regression carrying

a slight advantage over OLS in terms of

(1) VQ3.) slightly reduced in ridge models

(2) The measurement of MSE(.) in terms of MSE(13.) =
2V(13.) + E(. f3) indicating that ridge models show slight improve-

ment over OLS.

As stated earlier, it is not surprising that OLS performs so

well because of the nature of (x) data that tends toward Orthogonality.

Unfortunately economists do not always have access to such high

quality data.
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V. SUMMARY AND CONCLUSIONS

When there is a relatively severe multicollinearity problem in

economic data, xtx will be ill-conditioned--' and ordinary least

square estimates will be both unstable and unreliable. The variances

of the OLS coefficients will be unreasonably high, and t and F tests

will often result in the rejection of more important variables con-

sidered statistically the same as zero at any reasonable significatice

level.

I.n an attempt to solve the problem, many methods have been

suggested and practiced. Some require that data be collected outside

the multicollinearity range, while for others, variables must be

either combined or deleted from the economic model.

Frequently, these practices result in inadequate prediction equa-

tions giving poor and sometimes erroneous information about the

population under investigation. Yet at the same time, there are more

promising techniques demanding more information for the improve-

ment of regression estimates in the presence of multicollinearity.

The method of Theil and Goldberger (14) is one way of incorporating

prior information into the regression problem to lessen the difficul-

ties created by multicollinearity. But this method, also, is not

without drawbacks caused by dominance of the prior information over

Generally speaking, (x'x) is ill conditioned when one or
more of the eigenvalues of (x'x) re close to zero.



64

the sample information, and sometimes because of the biased nature

of the prior information.

Ridge regression can be considered as a method of incorporating

prior information into the regression analysis to solve the multicol-

linearity problem, where the, prior 13 vector is the null vector.

Ridge is among a class of biased linear estimators. It yields regres

sion coefficients that are biased in terms of the true 13 vector. But

these coefficients have a very desirable property, which is the

relatively small variance associated with the estimates. The gain in

precision obtained by the use of ridge regression overweighs the bias

introduced to the system, as measured by MSE(). The bias is

much smaller than the variances of ordinary least square as indicated

by the Monte Carlo studies by Hoerl, Kennard and Baldwin (11) and by

Lawless and Wang (16). RIDGM, a version of ridge regression, is

also a promising method for improving estimates highly affected by

multicollinearity.

When RIDGM was compared to ordinary least square, it ap-

peared to have important advantages.

(1) RIDGM estimates were biased but theoretically they were

more stable and reliable, while ordinary least square yielded esti-

mates of the wrong sign and offered no significant meaning when

interpreted. RIDGM yielded statistically significant estimates of the

right sign, if possible bias is ignored.
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(2) The variances of the coefficients obtained by RIDGM were

relatively smaller compared to those obtained by ordinary least

square.

The other two versions of ridge regression, KA and KB also

yielded estimate$ with variances much smaller than that obtained by

In conclusion, significant improvement is not expected from the

use of ridge regression over ordinary least squares, when the data

arenot ill-conditioned or near Orthogonality. In such cases, ordinary

least square will yield estimates that are unbiased with variances

not much larger than for ridge regression.

Limitations and Additional Res earcli Needed

Although ridge regression performed well for the empirical

models considered, additional questions raised by this research

are the following:

(1) Which method for estimating the biasing parameter K is

best? For the models considered, RIDGM appeared to do well.

However, an extensive Monte Carlo study would be needed, where

RLDGM and the other methods for selecting K could be compared.

(2) How would ridge regression compare with OLS when there

are other defects in the data, in addition to multicollinearity? For

example, errors in measurement of the explanatory variables are
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known to result in bias when OLS is used. Would such a problem

be made worse or better when ridge regression is employed? Again,

an extensive Monte Carlo experiment under carefully specified con-

ditions would seem to be a promising method for answering such

questions.

In summary, much additional research is still needed to ade-

quately evaluate the role of biased linear estimation in economic

research. However, for the four economic models considered in

this thesis, the use of ridge regression appears to be very promising

given the recent advances in the selection of the biasing parameter, K.
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